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Abstract 

 

Changes in lake ice dates and duration are useful indicators for assessing long-term 

climate trends and variability in northern countries. Lake ice cover observations are also a 

valuable data source for predictions with numerical ice and weather forecasting models. In recent 

years, satellite remote sensing has assumed a greater role in providing observations of lake ice 

cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has 

become a promising tool for lake ice mapping at high latitudes where cloud cover and polar 

darkness severely limit observations from optical sensors. In this study, we assessed and 

characterized the physical scattering mechanisms of lake ice from fully polarimetric 

RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying 

open water and ice cover during the freeze-up and break-up periods. Model-based and eigen-

based decompositions were employed to construct the coherency matrix into deterministic 

scattering mechanisms, and secondary physical parameters were generated following the 

polarimetric decompositions. This study presents an application of the Markov Random Field by 

introducing radar signals and polarimetric parameters as features. These features were labeled 

using the entropy-alpha Wishart classifier. We show that the selected polarimetric parameters 

can help with interpretation of radar-ice/water interactions and can be used successfully for 

water-ice segmentation. As more satellite SAR sensors are being launched or planned, such as 

the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume 

growth of data and their analysis require the development of robust automated algorithms. The 

approach developed in this study was therefore designed with the intent of moving towards fully 

automated mapping of lake ice for consideration by ice services. 
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1 Introduction 

1.1 General Introduction 

In Canada, over 4 million square kilometres of waters are covered by ice in winter (Canadian 

Ice Service [CIS], 2017). Lake ice, river ice, sea ice, icebergs and other forms of ice are observed, 

recorded, and reported by CIS. The monitoring of ice cover is essential due to its profound impacts 

on Canadian life in many ways: aquatic ecology, economics, marine transportation, fishing, 

resource development, and tourism (CIS, 2017). 

 

Lakes are widespread land features and are covered by ice for many months of the year in 

most regions of Canada. Ice cover is an important component of the Canadian cryosphere (Duguay 

et al., 2006). Ice cover is governed by the following processes: supercooling of the water, initial 

ice formation, ice thickening, and ice cover breakup (Ashton, 1986). Lake ice phenology (freeze-

up, break-up, and duration) is strongly influenced by local weather/climate conditions and global 

climate change (Duguay et al., 2015); therefore, lake ice has been proven to be a sensitive indicator 

of climatic variability and change (Duguay et al., 2006; Colbeck, 2012; Brown & Duguay, 2012). 

Ice dates and duration play a key role in weather and climate, balancing cryosphere-atmosphere 

energy interactions, controlling heat fluxes, and have an impact important hydrological, ecological 

and economical implications (Duguay et al., 2006; Brown & Duguay, 2012; Du et al., 2017). More 

specifically, lake ice has a significant influence on aquatic life including the composition and 

abundance of aquatic species, and human activities including marine transportation, fishing, 

resource development, and tourism (Du et al., 2017; CIS, 2017). 

 

Canadian studies have been conducted on observing, monitoring, and documenting lake ice 

for many years (e.g. Duguay et al., 2006; Geldsetzer, van der Sanden, & Brisco, 2010). Due to the 

increasing need for monitoring lake ice cover across Canada in the context of improved numerical 

weather forecasting, the CIS is actively employing remote sensing technology as an operational 

tool. Since many lakes are located at high latitudes, monitoring of ice cover is limited when using 

optical sensors alone due to polar darkness and extensive cloud cover (Gurney, Foster, & 
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Parkinson, 1993; Warner, Foody, & Nellis, 2009). Although passive microwave remote sensing 

has its unique value for global mapping, the main drawback of passive microwave sensors is the 

coarse spatial resolution (tens of km) they offer (Ulaby, Moore, & Fung, 1981). Active microwave 

remote sensing is not only insusceptible to solar illumination conditions and cloud cover, but is 

also capable of providing details with much finer spatial resolution (tens of meters or better) (Ulaby, 

Moore, & Fung, 1981). Thus, active microwave remote sensing has become the preferred choice 

for lake ice monitoring (Duguay et al., 2002; Nghiem & Leshkevich, 2007; Geldsetzer, van der 

Sanden & Brisco, 2010; Geldsetzer & van der Sanden, 2013; Leshkevich & Nghiem, 2013). 

 

Synthetic Aperture Radar (SAR) is the most common imaging active microwave sensor. In 

the 1960s, as SAR was derestricted from military purposes and could be used for civilian 

applications, its development flourished (Natural Resources Canada [NRC], 2017). SEASAT, the 

first civilian SAT satellite, was launched in 1978 by NASA/JPL. With the growing need for earth 

observation, RADARSAT-1, launched in 1995 and declared non-operational in 2013, proved to 

be an invaluable source for managing resources and monitoring global climate change (Canadian 

Space Agency [CSA], 2014). The follow-on RADARSAT-2, launched in 2007, enhanced marine 

surveillance, ice observation, resource management and environment monitoring globally (CSA, 

2015). The series of next generation Earth observation missions being planned and currently in 

orbit, for example, the Sentinel mission of the European Space Agency (ESA) and the upcoming 

RADARSAT Constellation Mission (RCM) by the CSA, will ensure the continuity of data, and 

enhance operational use of SAR (ESA, 2017; CSA, 2017). In addition, these missions will not only 

enhance the traditional Earth observations and applications, but also broaden their use and the 

development of services (e.g. lake ice monitoring).  

 

The CIS has the responsibility for operational monitoring lake ice, sea ice, and iceberg 

conditions in Canadian regions and adjacent waters (Arkett et al., 2013). To accomplish this 

mandate, the CIS primarily relies on visual interpretation of satellite optical and SAR imagery to 

conduct analyses and prepare products (e.g. ice charts for Laurentian Great Lakes and ice fraction 

for other large lakes across Canada and the northern U.S.). Due to the advantages of SAR under 

polar darkness and cloud-covered conditions, fractional ice cover (reported in tenth) from 139 
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Canadian lakes is currently monitored by CIS using single-pol (HH or VV) and dual-pol (HH+VV 

or VV+VH) C-band SAR and optical images to meet its responsibilities. Since the performance of 

single and dual-polarized imagery is limited by the loss of full polarization and phase information, 

there is a great deal of interest by CIS in using polarimetric SAR for lake and sea ice monitoring. 

Given the large volume of satellite images already used operationally by CIS and the expected 

rapid growth of more data from new and upcoming missions, exploring automated image 

classification of SAR imagery is paramount (Arkett et al., 2013; CIS, 2017). In this thesis, we 

analyzed the physical scattering mechanisms of lake ice using a quadrature polarimetric 

RADARSAT-2 dataset obtained over Great Bear Lake, Canada, with the intent of automatically 

classifying open water and ice cover during the freeze-up and break-up periods. 

 

1.2 Study Objectives 

As mentioned above, automated classification of SAR imagery is a research field of high 

interest for ice cover monitoring. Therefore, the primary goal of this thesis is to analyze 

polarimetric parameters for ice mapping and to propose a classification method for polarimetric 

radar imaging to discriminate open water and ice cover. The RADARSAT-2 quadrature 

polarimetric data was used to achieve the following objectives: 

1. Analyze polarimetric parameters in identifying open water and lake ice to improve 

understanding of lake ice observations. 

2. Develop an image classification approach that can segment open water and lake ice 

from polarimetric parameters.  
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1.3 Thesis Structure 

This manuscript-based thesis is comprised of four chapters which address the objectives 

identified in Section 1.2. This introductory chapter provides the general context related to the 

necessity of lake ice monitoring and the remote sensing of lake ice. It identifies the need for 

automated lake ice classification. Background Chapter 2 provides a review of current SAR 

research for lake ice mapping and methodologies being used for dual-pol and quad-pol 

classification. It summarizes the basics of polarized electromagnetic waves, polarimetric radar 

scatterings, target decompositions, statistical property of polarimetric parameters and classifiers 

relevant to this study. To addresses the objectives listed above, the manuscript chapter (Chapter 3) 

implements the Markov Random Field to segment open water and ice from polarimetric 

parameters. Fourteen RADARSAT-2 polarimetric images are employed to conduct the study for 

training and testing purposes. The final chapter (Chapter 4) provides a summary of the thesis. It 

also discusses some of the limitations of the study and identifies possible directions for further 

research.  

 

The manuscript is included in its own format, containing its own introduction, background, 

methodology and conclusion sections. This inevitably results in the partial duplication of equations, 

background material and methodologies from other chapters of the thesis.  
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2 Background 

2.1 Introduction  

The research topic of this thesis requires a strong background knowledge in various fields 

of research. This chapter presents a review of previous lake ice investigations using radar remote 

sensing, the basic principles of electromagnetic wave and scattering representations, the extraction 

of polarimetric features, and classification algorithms relevant to this study. Section 2.2 reviews 

previous studies on lake ice mapping/monitoring using SAR and the current research challenges 

for lake ice/open water discrimination. The necessity of an automated classification method for 

lake ice mapping is identified, and previous methodologies for solving the polarimetric 

classification is presented from physical and mathematical aspects, respectively. Section 2.3 

presents the basic principles of monochromatic electromagnetic waves to introduce the basics for 

understanding the representations of polarization in Section 2.4 and then polarimetric scattering in 

Section 2.5. Section 2.4 describes the polarization ellipse, which is the basis for the vector-format 

representation of polarization. The monochromatic plane wave can be represented by Jones vector 

and Stokes vector, which simulate the status of the polarizations before and after scattering; 

therefore, the scattering processes or polarization transfer is depicted by the scattering matrix in 

Section 2.5. Section 2.5 begins with the radar equation that links the power of radar signal and 

scatterer characteristics. Section 2.6 presents the polarimetric decomposition theorems. The 

decomposition is developed to separate a scattering process to individual basic scattering 

mechanisms. Insight into the scattering characteristics can therefore be achieved through 

polarimetric decomposition. Section 2.7 introduces the statistical properties of polarization 

intensity and other polarimetric features. The basic principles of the two classifiers: Entropy-alpha 

Wishart classifier (Lee et al., 2009) and Markov Random Field (MRF), the classifiers employed 

in this study, are presented in the Section 2.7.4. Finally, Section 2.8 contains a description of 

RADARSAT-2 and the dataset used in this study. This section also provides the link between the 

RADARSAT-2 quadrature polarized signals and the theories of polarization descriptors and 

scattering operators introduced in Sections 2.4 and 2.5, respectively. 
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2.2 Reviews of Lake Ice Mapping and Classification 

The changing ice cover regime of lakes affects local and regional weather/climate as well as 

aquatic ecosystems and socio-economic activities. As a sensitive indicator of climate change and 

an important component of lake-atmosphere interactions at high-latitude, lake ice cover needs to 

be monitored frequently (ideally on a daily basis). Synthetic aperture radar (SAR) has been widely 

used for lake ice mapping due of its capacity in operating under darkness and in all weather 

conditions. 

  

The monitoring of ice formation and decay processes and the determination of freeze-up 

(ice-on) and break-up (ice-off) dates has been the primary focus of most investigations. As 

mentioned in the introductory chapter, trends and variability in ice dates have been used as climate 

indicators. The task of mapping and monitoring lake ice during the freeze-up and break-up periods 

has largely been based on the use of C-band SAR in recent years. For instance, multi-polarized 

RADARSAT-2 images have been employed to monitor ice cover on shallow Arctic lakes during 

the break-up period. Methods based on thresholds in backscatter have been used to distinguish 

melting lake ice from open water (Geldsetzer, van der Sanden & Brisco, 2010). Polarimetric and 

non-polarimetric parameters retrieved from RADARSAT-2 have been compared for their capacity 

in identifying ice and open water during the freeze-up period (Geldsetzer & van der Sanden, 2013). 

Trends in freeze-up and break-up dates have been documented for many lakes across Canada 

during the second half of the 20th century based on ground-based observations (Duguay et al., 

2006). Radar remote sensing is seen as a useful tool that could replace the ever-declining ground-

based lake ice observational networks. 

  

Table 2.1 presents a summary of studies that have used SAR imagery to map/monitor ice 

cover on Canadian lakes. The earlier investigations have utilized SAR to distinguish between 

floating ice and grounded ice on Arctic and sub-Arctic lakes. The backscatter from lake ice during 

the initial ice formation (i.e. thin ice) has been reported to be lower than -18 dB (Morris et al., 

1995; Duguay et al., 2002). Floating ice on shallow lakes is characterized by high backscatter, 

which was originally attributed to the double bounce scattering from columnar air inclusions and 
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ice-water interface, and an increase in volume scattering (Geldsetzer, van der Sanden & Brisco, 

2010). However, recent experiments rather support single bounce scattering (surface scattering) at 

the ice-water interface as the dominant scattering mechanism (Atwood et al., 2015). Low radar 

return occurs when the ice freezes to the bottom of lakes in the case of shallow lakes (Duguay et 

al., 2002; Atwood et al., 2015). A significant decrease in backscatter can also be observed during 

the break-up period due to the microwave absorption by the wet snow and specular reflection from 

the water or ponds on the ice surface (Duguay et al., 2002; Geldsetzer, van der Sanden & Brisco, 

2010). Co-polarized backscattering at a given frequency from open water not only depends on 

incidence angle, but also relates to the wind speed and wind direction relative to radar looking 

direction (Geldsetzer & van der Sanden, 2013). However, cross-polarized backscattering is 

relatively independent of wind direction and incidence angle (Vachon & Wolfe, 2011). Both co-

pol and cross-pol backscattering from lake ice are affected by the geometry of ice surface, ice 

structure, dielectric properties, and incidence angle (Duguay et al., 2002; Geldsetzer & van der 

Sanden, 2013). Since single and dual-polarized data are limited by their capability to distinguish 

open water and different ice types (Scheuchl et al., 2004; Geldsetzer & Yackel, 2009), the dual-

pol signals combined with polarimetric parameters may increase the potential for ice 

discrimination (Geldsetzer et al., 2011). C-band polarimetric and non-polarimetric parameters, 

including sigma naught of individual polarization, co-pol and cross-pol ratio, the co-pol correlation 

coefficient, entropy, anisotropy and alpha angle have been assessed and summarized for their 

potential to discriminate lake ice and open water on small, shallow, lakes (Geldsetzer & van der 

Sanden, 2013). It has been shown that the single-pol VV is preferred when wind speed data is 

available from a nearby meteorological station and incidence angle is low. The co-pol ratio has 

been recommended when the incidence angle is larger than 31.2°, and when no wind speed data is 

available (Geldsetzer & van der Sanden, 2013). Anisotropy has also been shown to be useful when 

the incidence angle is lower than 27.6°; however, it is insensitive to wind as well (Geldsetzer & 

van der Sanden, 2013). More recently, as the Canadian RADARSAT Constellation (RCM) and 

other future missions are planned and launched, more interest has been drawn on compact 

polarimetry (CP) for (sea) ice classification due to the additional information that CP can provide 

compared to dual-pol and wider swath widths than quad-pol (Dabboor & Geldsetzer, 2014). 

However, the necessity of an efficient and automated segmentation or classification of SAR 
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imagery is still paramount to enhance lake ice monitoring on lakes of all sizes in Canada in view 

of the operational requirements of weekly lake ice monitoring by the Canadian Ice Service. 

 

Table 2.1: The Summary of Recent Studies of Canadian Lake Ice Mapping Using SAR 

 

Author Year Satellite Methods Parameters Content 

Duguay et al.  2002 RADARSAT Backscatter 

characteristics 

HH backscatter Monitoring ice growth, 

decay and related 

processes of shallow sub-

Arctic lakes 

Duguay & 

Lafleur 

2003 ERS-1 & 

Landsat TM 

Backscatter 

differences 

VV backscatter Utilizing SAR to 

determine whether lakes 

were frozen to bed 

Nghiem & 

Leshkevich 

2007 ERS-2, 

RADARSAT, 

& Envisat 

Backscatter 

signatures  

Co-pol backscatter, 

co-pol ratio 

Mapping ice cover on the 

Laurentian Great Lakes 

with ground-based radar 

and satellite measurements 

Geldsetzer, 

van der 

Sanden, & 

Brisco 

2010 RADARSAT-2 Backscatter 

threshold 

HH and HV 

backscatter 

Monitoring lake ice during 

spring melt period on 

shallow lakes 

Geldsetzer 

van der 

Sanden, & 

Drouin 

2011 RADARSAT-2 Parameter 

evaluation 

Multi-polarized and 

polarimetric SAR 

parameters 

Investigating the potential 

of multi-polarized and 

polarimetric parameters for 

monitoring river and lake 

ice 

Geldsetzer & 

van der 

Sanden 

2013 RADARSAT-2 Decision tree 

classifier 

Single polarized 

backscatter, co-pol 

ratio, cross-/co-pol 

ratio, anisotropy, 

alpha angle 

Monitoring of lake ice 

during freeze-up period on 

shallow lakes 

Leshkevich & 

Nghiem 

2013 Envisat ASAR, 

RADARSAT-2 

Ice 

backscatter 

library 

Multi-polarization, 

quad-pol 

Mapping ice cover on the 

Laurentian Great Lakes 

with ground-based radar 

and satellite measurements 
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The characteristics of scattering mechanisms from ice and open water have been investigated. 

When the incidence angle is small (lower than 30°), scattering is dominated by surface scattering 

from open water where water with high relative permittivity has higher co-pol backscatter than ice 

(Leshkevich & Nghiem, 2013). For large incidence angles, surface scattering is dominant for both 

open water surface and ice covered area, and volume scattering tends to contribute more from ice 

(Nghiem & Leshkevich, 2007; Leshkevich & Nghiem, 2013). More specifically, surface scattering 

mainly comes from the air-ice, air-snow and snow-ice surface (Hossain et al., 2014; Atwood et al., 

2015). When the ice surface is smooth enough to be a specular reflector, little or no backscatter 

can be observed (Cable et al., 2014). Volume scattering is contributed due to the dielectric 

discontinuities of the medium and geometry of the ice structure (Hossain et al., 2014). Double-

bounce scattering occasionally occurs on ice ridges and ice fractures, and it is rarely dominant for 

the overall scattering compared to surface and volume scattering (Scheuchl, Hajnsek & Cumming, 

2002).  

 

The scattering matrix generated from polarimetric signal enables insight into the 

contributing scattering mechanisms from targets (Atwood et al., 2015), therefore, polarized 

backscatters have widely been used for ice discrimination and monitoring (Geldsetzer & Yackel, 

2009; Leshkevich & Nghiem, 2013; Geldsetzer & van der Sanden, 2013). Due to the distributed 

nature of targets (introduced later in Section 2.5.5), the target or the environment can be depicted 

by second order stochastic processes, where the covariance matrix is employed (Lee et al., 1999; 

Lee & Pottier, 2009). Several studies have been conducted for understanding the scattering 

mechanisms by decomposing the covariance matrix into second order descriptors corresponding 

to canonical scatterings or modelled scatterings, which is so called incoherent decomposition 

(Huynen, 1970; van Zyl; 1989; Cloude & Pottier, 1996; Freeman & Durden, 1998; Yamaguchi, 

Moriyama, Ishido & Yamada, 2005; Lee, Ainsworth & Wang, 2014). Results from target 

decompositions are widely used for classification (Cloude & Pottier, 1997; Lee et al., 1999), 

including sea ice (Scheuchl, Hajnsek & Cumming, 2002; Gill & Yackel, 2012) and lake ice 

classification (Geldsetzer & van der Sanden, 2013; Leshkevich & Nghiem, 2013). Therefore, the 

backscatter intensity, covariance matrix and decomposition results are employed for classification 

in the present thesis. 
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Ice discrimination is challenging for three reasons. First, the radar signal is sensitive to the 

geometry and dielectric properties of the objects being sensed, which results in that the object 

scatters incoherent signals or coherent signals with different polarizations and intensities. Second, 

the radar signal is easily affected by noise from the environment and the system. Third, different 

objects may have similar scattering under geometric conditions of illuminations in different 

locations and incident angles. 

 

There are generally two directions of solving classification problems. The first is to consider 

the inherent characteristics of the polarimetric features, and classifiers are usually based on the 

physical scattering mechanisms. Huynen (1970) presented the phenomenological theory to extract 

the physical properties and the structure of a radar target. The Huynen decomposition theorem 

aims to separate the Mueller matrix as the sum of a single average target and a residue component 

called N-target (Cloude & Pottier, 1996; Lee & Pottier, 2009). Cloude (1985) was the first to 

consider eigen-based decomposition where singular value decomposition was employed. Freeman 

& Durden (1993) developed the model-based decomposition for physically fitting the three-

component scattering model to the covariance matrix or polarimetric observations (Cloude & 

Pottier, 1996; Freeman & Durden, 1998; Lee & Pottier, 2009). Following from the eigen-based 

decomposition, Cloude & Pottier (1997) proposed the entropy based classification, extracting 

average scattering parameters to determine the randomness of the scatters. The second direction is 

to consider the mathematical modelling, which includes the traditional image processing, 

probabilities, statistics, and machine learning. Yueh et al. (1988) introduced Bayesian theorem for 

the complex Gaussian distributed polarimetric returns. Lee et al. (1999) proposed a distance 

measure of covariance matrix based on complex Wishart distribution. The unsupervised classifier 

employed the expectation maximization for optimization. Furthermore, Du and Lee (1996) 

introduced fuzzy set theory into k-means (expectation maximization) clustering algorithm for 

multi-look polarimetric SAR images to deal with the case where the area covered by a pixel 

embraces imprecise classes. In recent years, the success of deep learning in the field of computer 

vision, image/speech recognition has resurrected the use of neural networks. However, Hara et al. 

(1994), Chen et al. (1996), and Tzeng & Chen (1998) implemented neural networks for 

polarimetric image classification in the last century. Rignot & Chellappa (1992) proposed an 
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optimal region labeling model using maximum a posteriori (MAP) estimate, where MAP 

combined the conditional distribution of polarimetric complex data with a Markov random field 

for the region labels as prior. Other machine learning methods also show their capabilities on 

qualitative or quantitative analysis in remote sensing field. Non-probabilistic binary linear 

classifiers, such as support vector machine, are widely used because they are easy to apply and 

generalize to testing cases without even considering the statistical and physical properties. When 

features cannot be linearly separated in lower-dimensional space, mapping variables into higher 

order spaces, where these features may be linearly separated, is an alternative way to deal with this 

case. However, the curse of dimensionality may arise from organizing data in high-dimensional 

spaces. At present, models with cheaper computational operations, for instance, kernel methods, 

K-nearest neighbors, may be helpful.  

 

 

2.3 Electromagnetic Wave 

This section presents the basic principles of monochromatic electromagnetic waves to 

provide some basis for understanding the representations of polarization developed in Section 

2.4 and then polarimetric scattering in Section 2.5. 

 

2.3.1 Equation of Propagation 

The behavior of electromagnetic waves in time and space is governed by the Maxwell 

equations. They are presented to describe the electromagnetic filed vector and polarization 

descriptors, which will be used to determine the scattering operator. The Maxwell’s equations are 

given by 

i. ∇ ∙ 𝑫 = 𝜌𝑓 

ii. ∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 

iii. ∇ ∙ 𝑩 = 0 

iv. ∇ × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
                                              (2.1) 
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which are the differential forms with magnetic and polarizable media. The electric field, electric 

displacement field, magnetic field, and magnetic induction are presented as vector field 𝑬, 𝑫, 𝑩, 

and 𝑯, respectively. The total current density 𝑱 is composed of conduction current density 𝑱0 and 

magnetization current density 𝑱𝑚 and polarization current density 𝑱𝑝 as follows: 

𝑱 = 𝑱0 + 𝑱𝑚 + 𝑱𝑝                                                                                (2.2) 

In the following, it is assumed that a monochromatic electromagnetic wave is propagated in a 

linear medium, free of source (Lee & Pottier, 2009). This assumption implies that magnetization 

𝑴=0, electric polarization 𝑷=0, the volume charge density 𝜌 = 0, and currents related to sources 

are also zeros (𝑱𝑚 = 0, 𝑱𝑝 = 0). The differential form of Maxwell’s equations (Equation 2.1) in 

the absence of magnetic and polarizable media can be transformed to 

i. ∇ ∙ 𝑬 =
𝜌

𝜀0
= 0  

ii. ∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 

iii. ∇ ∙ 𝑩 = 0 

iv. ∇ × 𝑩 = μ0𝑱𝟎 + μ0𝜀0
𝜕𝑬

𝜕𝑡
                                                   (2.3) 

 

The wave propagation equation is obtained by taking the curl of the curl of electric field 

∇ × (∇ × 𝑬) = −
𝜕

𝜕𝑡
(∇ × 𝑩) = −μ0𝜀0

𝜕2𝑬

𝜕𝑡2                                     (2.4) 

and considering vector identity equation 

∇ × (∇ × 𝑬) = ∇(∇ ∙ 𝑬) − ∇2𝑬                                                       (2.5) 

where ∇2  is the Laplace operator. The Equation 2.4 equals to Equation 2.5, and ∇ ∙ 𝑬 is zero 

according to Equation 2.3; therefore, the propagation equation can be presented as 

μ0𝜀0
𝜕2𝑬

𝜕𝑡2 − ∇2𝑬 = 0                                                                            (2.6) 

where μ0𝜀0 = 1/𝑐2.  
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2.3.2 Monochromatic Plane Wave Solution 

Without any loss of generality, the direction of monochromatic wave propagation is 

defined as z in an orthogonal basis {x, y, z}. Since the electric field is dependent only on the spatial 

variable and temporal variable t, the wave equation in one of space dimensions (x and y) can be 

written as follows： 

𝜕2𝑬

𝜕𝑡2
= c2 𝜕2𝑬

𝜕𝑧2
                                                                                          (2.7) 

In this case, the temporal part of the wave function takes the form of 𝑒𝑗𝜔𝑡, and the spatial part 

takes the form of 𝑒±𝑗𝑘𝑧, so the total wave equation can be represented by 

𝑬(z, t) = A𝑒𝑗(𝜔𝑡±𝑘𝑧+𝜑)                                                                      (2.8) 

where 𝑐 = 𝜔/𝑘 . Positive and negative z represent wave equations travelling in two opposite 

directions in z. In terms of radar imaging, only one direction in z is considered (we take negative 

z in this case); thus, the electric field can be expressed in a vector from as follows: 

𝑬(z, t) = [
𝐸𝑥0𝑒

𝑗(𝜔𝑡−𝑘𝑧+𝜑𝑥)

𝐸𝑦0𝑒
𝑗(𝜔𝑡−𝑘𝑧+𝜑𝑦)] = [

𝐸𝑥0 cos(𝜔𝑡 − 𝑘𝑧 + 𝜑𝑥) + 𝑗𝐸𝑥0 sin(𝜔𝑡 − 𝑘𝑧 + 𝜑𝑥)

𝐸𝑦0 cos(𝜔𝑡 − 𝑘𝑧 + 𝜑𝑦) + 𝑗𝐸𝑦0 sin(𝜔𝑡 − 𝑘𝑧 + 𝜑𝑦)
]         (2.9)                                                             

The disturbance (instantaneous amplitude) and phase are recorded by the real and imaginary parts 

of the radar signal, respectively. They describe a helical trajectory in z direction as general elliptic 

polarization case. Two special cases of polarization can be determined by the difference of phases 

(𝜑 = 𝜑𝑥−𝜑𝑦). Linear polarization occurs when 𝜑 = 𝑘𝜋; circular polarization occurs when 𝜑 =

𝑘𝜋 +
2

𝜋
 . Measuring instantaneous amplitude and phase at four polarizations is a possible way to 

construct the Stokes vector and scattering matrix (Durden et al., 1989), which will be introduced 

in Sections 2.3.3 and 2.4.2, respectively. 
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2.4 Polarization Descriptors 

With the knowledge of Maxwell equations and the wave propagation function from section 

2.3.1 and 2.3.2, the electric field of monochromatic plane wave in time and space was represented 

in Equation 2.9. This section focuses on the concepts of polarization representation. 

 

2.4.1 Polarization Ellipse 

The polarized ellipse can be represented by three parameters: ellipse amplitude A, ellipse 

orientation 𝜙 ∈ [−
𝜋

2
,

𝜋

2
], and ellipticity or ellipse aperture 𝜏 ∈  [ 0,

𝜋

4
 ]. They can be determined 

through Equation 2.10 to Equation 2.12 as follows: 

𝐴 = √𝐸𝑥0
2 + 𝐸𝑦0

2                           (2.10) 

tan 2𝜙  =
2 𝐸𝑥0 𝐸𝑦0

𝐸𝑥0
2 −𝐸𝑦0

2  cos 𝜑            (2.11) 

|sin 2𝜏|  =
2 𝐸𝑥0 𝐸𝑦0

𝐸𝑥0
2 +𝐸𝑦0

2  |sin𝜑|                       (2.12) 

 

2.4.2 Jones Vector 

To describe the polarization state of a plane monochromatic electric field, the Jones vector 

is generally employed. The time-space electric field in Equation 2.9 can be rewritten as 

𝑬(z = 𝑧0, t = 𝑡0) = [
𝐸𝑥0𝑒

𝑗(𝜔𝑡−𝑘𝑧+𝜑𝑥)

𝐸𝑦0𝑒
𝑗(𝜔𝑡−𝑘𝑧+𝜑𝑦)] = [

𝐸𝑥0𝑒
𝑗𝜔𝑡𝑒−𝑗𝑘𝑧𝑒𝑗𝜑𝑥

𝐸𝑦0𝑒
𝑗𝜔𝑡𝑒−𝑗𝑘𝑧𝑒𝑗𝜑𝑦

]                     (2.13) 

To describe the state of wave polarization at a fixed time (𝑡 = 𝑡0) and a fixed space (𝑧 = 𝑧0), Jones 

vector 𝑱 is defined from Equation 2.10 (Lee & Pottier, 2009) 

𝑱 = [
𝐸𝑥0𝑒

𝑗𝜑𝑥

𝐸𝑦0𝑒
𝑗𝜑𝑦

] = 𝐴𝑒𝑗α [
cos𝜙   −sin𝜙
sin𝜙      cos 𝜙

] [
  cos 𝜏
𝑗sin 𝜏 ]                 (2.14) 

where α  is an absolute phase term. The unit Jones vector and its associated orientation and 

ellipticity for some primary polarizations are presented in Table 2.2. 
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Table 2.2: The Jones Vectors and the Associated Polarization Ellipse Parameters for 

Canonical Polarization States 

Polarization State Unit Jones Vector Orientation Ellipticity 

Horizontal 𝑱 = [
1
0
] 0 0 

Vertical 𝑱 = [
0
1
] 

𝜋

2
 0 

Linear 
𝝅

𝟒
 𝑱 =

1

√2
[
1
1
] 

𝜋

4
 0 

Linear −
𝝅

𝟒
 𝑱 =

1

√2
[

1
−1

] −
𝜋

4
     0 

Left circular 
𝑱 =

1

√2
[
1
𝑗
] 

 𝜋

4
 

Right circular 
𝑱 =

1

√2
[
1
−𝑗

] 
 −

𝜋

4
     

 

 

2.4.3 Stokes Vector 

Besides the Jones vector, there is another characterization of polarization states of a plane 

monochromatic electric field: the Stokes vector. The Jones vector can be obtained through 

acquiring complex quantities in a coherent radar system. However, in non-coherent radar system, 

where only power measurement (real quantities of complex signal) is available, the Stokes vector 

is able to characterize the polarization of a wave (Lee & Pottier, 2009). 

 

As identity matrix 𝑰2 introduced in Pauli matrices 𝝈 as 𝝈0: 

𝝈0 = [
1    0
0    1

]  𝝈1 = [
1       0
0  − 1

]  𝝈2 = [
0    1
1    0

]  𝝈3 = [
0  − 𝑗
𝑗       0

]                        (2.15) 

the product of a Jones vector and its conjugate transpose (a Hermitian matrix shown in Equation 

2.16) can be decomposed. 
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𝑱𝑱∗𝑇 = [
𝐸𝑥𝐸𝑥

∗      𝐸𝑥𝐸𝑦
∗

𝐸𝑦𝐸𝑥
∗      𝐸𝑦𝐸𝑦

∗] =
1

2
(𝑔0𝝈0 + 𝑔1𝝈1 + 𝑔2𝝈2 + 𝑔3𝝈3) 

=
1

2
[
𝑔0 + 𝑔1      𝑔2 − 𝑗𝑔3

𝑔2 + 𝑗𝑔3      𝑔0 − 𝑔1
]        (2.16) 

Thus the Stokes vector denoted by 𝒈 is presented: 

𝒈 = [

𝑔0

𝑔2

𝑔2

𝑔3

] =

[
 
 
 
 

𝐸𝑥𝐸𝑥
∗ + 𝐸𝑦𝐸𝑦

∗

𝐸𝑥𝐸𝑥
∗ − 𝐸𝑦𝐸𝑦

∗

𝐸𝑥𝐸𝑦
∗ + 𝐸𝑦𝐸𝑥

∗ 

𝑗(𝐸𝑥𝐸𝑦
∗+𝐸𝑦𝐸𝑥

∗) ]
 
 
 
 

=

[
 
 
 
 
 |𝐸𝑥|

2 + |𝐸𝑦|
2

|𝐸𝑥|
2 − |𝐸𝑦|

2
 

2𝑅𝑒(𝐸𝑥𝐸𝑦
∗)

−2𝐼𝑚(𝐸𝑥𝐸𝑦
∗)]

 
 
 
 
 

 

=

[
 
 
 
 

𝐸𝑥0
2 + 𝐸𝑦0

2

𝐸𝑥0
2 − 𝐸𝑦0

2  

2𝐸𝑥0
2 𝐸𝑦0

2 cos𝜑

2𝐸𝑥0
2 𝐸𝑦0

2 sin 𝜑]
 
 
 
 

= [

𝐴2

𝐴2 cos 2𝜙 cos 2𝜏 

𝐴2 sin 2𝜙 cos 2𝜏

𝐴2 sin 2𝜏

]                           (2.17) 

 

The Stokes parameters characterize the polarization state of a wave, and three wave ellipse 

parameters (ellipse amplitude A, ellipse orientation 𝜙, and ellipticity 𝜏) can be determined from 

Stokes parameters. The unit Stokes vector and its associated unit Jones vector for some primary 

polarizations are presented in Table 2.3. 
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Table 2.3: The Stokes Vectors and the Associated Jones Vectors for Canonical Polarization 

States 

Polarization State Unit Jones Vector Unit Stokes Vector 

Horizontal 𝑱 = [
1
0
] 

𝒈 = [

1
1
0
0

] 

 

Vertical 𝑱 = [
0
1
] 

𝒈 = [

1
−1
0
0

] 

 

Linear 
𝝅

𝟒
 𝑱 =

1

√2
[
1
1
] 

𝒈 = [

1
0
1
0

] 

 

Linear −
𝝅

𝟒
 𝑱 =

1

√2
[

1
−1

] 
𝒈 = [

1
0

−1
0

] 

 

Left circular 
𝑱 =

1

√2
[
1
𝑗
] 

𝒈 = [

1
0
0
1

] 

 

Right circular 
𝑱 =

1

√2
[
1
−𝑗

] 
𝒈 = [

1
0
0

−1

] 
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2.5 Scattering Operator 

With polarization of the wave represented by Jones vector or Stokes vector, the scattering 

processes can be described by transforming the status of polarizations before and after the 

scattering. This section begins with the radar equation that links the power of radar signal and the 

characteristics of scatterers, and then describes the scattering representations including scattering 

matrix and second-order covariance matrix. 

 

2.5.1 Radar Equation 

An electromagnetic wave may reach an object or a target and interact with it. The 

interaction may result in scattering (reflecting), transmitting, energy absorbing, and reradiating. 

The problems arising from the wave interaction with objects raise the necessity to characterize the 

scatters. In a case where the radar footprint is larger than the size of an object, the scatters are fully 

viewed within the footprint, and it can be characterized by a single radar cross section 𝜎. When 

the radar footprint is smaller than the size of an object, the object will be characterized through 

considering its extent and determining the averaged radar cross section over a unit area, the so-

called scattering coefficient 𝜎0. Changes in power are fundamental as the result of wave interaction 

with objects, they can be described by the radar equation in a monostatic radar system as follows: 

𝑃𝑅 =
𝑃𝑇𝐺𝑇

4𝜋𝑟2  𝜎 
𝐴𝑒

4𝜋𝑟2                                                                             (2.18) 

where 𝑃𝑅 is the power detected at the receiver, the peak transmitted power from radar is denoted 

as 𝑃𝑇, antenna gain as 𝐺𝑇, and the effective aperture of the receiver as 𝐴𝑒. 

 

Since it is assumed that an isotropic radiator emits equal radiation in all directions and 

waves propagate in an ideal condition of linear medium and free of source, power density 𝑆 at a 

distance 𝑟 away from radiator can be expressed as 

𝑆 =
𝑃

4𝜋𝑟2
                                                                                              (2.19) 
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If the radiated power is redirected by radar antennas, it results in a redistribution (an increase) of 

the power density in direction of the propagation. This process is characterized by the antenna 

gain 𝐺. The antenna gain is related with antenna effective aperture 𝐴𝑒 through 

𝐴𝑒 =
𝐺𝜆2

4𝜋
                                                                                             (2.20) 

The peak transmitted power from a radar is denoted as 𝑃𝑇, then the power density at incident point 

of the target using a directive antenna is given as 

𝑆𝑖 =
𝑃𝑇𝐺𝑇

4𝜋𝑟2
                                                                                            (2.21) 

The scattered power at the target is denoted as 𝑃𝑠; thus the scattered power density 𝑆𝑟 seen from 

the radar, a distance 𝑟 away from the target, can be simply represented by 

𝑆𝑟 =
𝑃𝑠

4𝜋𝑟2                                                                                            (2.22) 

The total power 𝑃𝑅 received by an effective antenna area is 

𝑃𝑅 = 𝑆𝑟𝐴𝑒                                                                                          (2.23) 

The radar cross section 𝜎 is an area (𝑚2) defined as the ratio of backscatter density of reflecting 

signals in the direction of the receiver: 

𝜎 =
𝑃𝑠

𝑆𝑖
= 4𝜋𝑟2 𝑆𝑟

𝑆𝑖
= 4𝜋𝑟2 |𝐸𝑠|

2

|𝐸𝑖|
2                                                       (2.24) 

 

As mentioned above, when the target is larger than the radar footprint, the scattering 

coefficient should be employed to model the target characteristics. The total power reviewed from 

the target is integrated in an illuminated area 𝐴0 in a monostatic radar system: 

𝑃𝑅 = ∬  
𝑃𝑇𝐺𝑇

4𝜋𝑟2 𝜎0 𝐴𝑒

4𝜋𝑟2

 

 𝐴0
 𝑑𝑠                                                             (2.25) 

The scattering coefficient 𝜎0, the averaged radar cross section over unit area, is a dimensionless 

parameter, which is different from radar cross section 𝜎 (unit: 𝑚2). The relationship of these can 

be expressed as: 
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𝜎0 =
𝜎

 𝐴0
=

4𝜋𝑟2

 𝐴0

𝑆𝑟

𝑆𝑖
=

4𝜋𝑟2

 𝐴0

|𝐸𝑠|
2

|𝐸𝑖|
2
                                                        (2.26) 

 

2.5.2 Scattering Matrix 

Since the polarization of a plane monochromatic electric field can be described by the Jones 

vector, given 𝑱𝑖, 𝑱𝑠 of the incident and scattered wave, respectively, the scattering can be depicted 

in the local coordinate system as follows: 

𝑱𝑠 =
𝑒−𝑗𝑘𝑟

𝑟
𝑺 𝑱𝑖 =

𝑒−𝑗𝑘𝑟

𝑟
[
S𝑋𝑋    S𝑋𝑌

S𝑌𝑋    S𝑌𝑌
] 𝑱𝑖 =

𝑒−𝑗𝑘𝑟

𝑟
[
S𝑋𝑋    S𝑋𝑌

S𝑌𝑋    S𝑌𝑌
] [

𝐽𝑋𝑖

𝐽𝑌𝑖
]                             (2.27) 

where the 𝑺 is defined as scattering matrix, and the S𝑖𝑗  is complex scattering coefficient. The 

diagonal elements and off-elements of 𝑺 are called co-polar and cross-polar, respectively. The 

term 
𝑒−𝑗𝑘𝑟

𝑟
 addresses the propagation process  𝑟 away from the target to the receiving antenna. In a 

monostatic radar system, the scattering matrix 𝑺 is named the Sinclair 𝑺 matrix (Lee & Pottier, 

2009). By considering Equation 2.24, the radar cross section can be relevant to the elements in the 

scattering matrix as 

𝜎 = 4𝜋|𝑆|2                                                                                        (2.28) 

 

In the following discussions, the polarizations are defined in the backscatter alignment 

(BSA) convention in a monostatic coordinate system. The Sinclair matrix described with 

quadrature polarization in linear horizontal and vertical bases can be expressed as 

𝑺 = [
S𝐻𝐻    S𝐻𝑉

S𝑉𝐻    S𝑉𝑉
]                                                                                (2.29) 

The reciprocity theorem in this monostatic backscattering case constrains the Sinclair matrix to be 

symmetrical, where S𝑋𝑌 = S𝑌𝑋 (Lee & Pottier, 2009). 
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2.5.3 Scattering Vector 

For further interpretation of target characteristics, the Sinclair matrix 𝑺 can be converted 

to target vectors as follows: 

𝒌 = Trace(𝑺𝝍)                                                                                (2.30) 

where 𝝍 is basis matrices. Two popular basis sets, lexicographic basis matrix set and Pauli spin 

matrix set, as introduced in Equation 2.15, are employed in this thesis 

{𝝍𝐿} = {[
1    0
0    0

]   [
0    1
0    0

]   [
0    0
1    0

]   [
0    0
0    1

]}                               (2.31) 

{𝝍𝑃} = {[
1     0
0     1

]   [
1       0
0  − 1

]   [
0     1
1     0

]   [
0 − j
j     0

]}                        (2.32) 

 

As mentioned above, the reciprocity theorem constrains the cross-polar to be the same, 

therefore the basis matrices can be reduced from four bases in Equation 2.31 and Equation 2.32 to 

three bases as follow (Lee & Pottier, 2009): 

{𝝍𝐿} = {[
1    0
0    0

]   √2 [
0    1
0    0

]     [
0    0
0    1

]}                                       (2.33) 

{𝝍𝑃} = {[
1     0
0     1

]    [
1       1
0  − 1

]    [
0     1
1     0

]}                                       (2.34) 

Their corresponding scattering vectors are 

𝒌𝐿 = [S𝐻𝐻    √2S𝐻𝑉    2S𝑉𝑉]
𝑇

                                                        (2.35) 

𝒌𝑃 =
√2

2
[S𝐻𝐻 + S𝑉𝑉     S𝐻𝐻 − S𝑉𝑉    2S𝐻𝑉]𝑇                                (2.36) 

The purpose of adding the factors in the bases sets is to keep total power of scattering consistent; 

therefore, 

Span(𝑺) = Trace(𝑺𝑺∗𝑇) = |𝒌𝐿|
2 = |𝒌𝑃|2 = |S𝐻𝐻|2 + 2|S𝐻𝑉|2 + |S𝑉𝑉|2         (2.37) 
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2.5.4 Polarimetric Parameters 

 The complex correlation coefficients between polarizations are important effects on 

statistical distribution of the phase difference and polarization ratio. Those parameters can be 

discriminators for recognition and further estimations. 

 

The total power of scattering Span(𝑺) is provided in Equation 2.37. The co-polarization 

ratio 𝑟𝑐𝑜 and cross-polarization ratios 𝑟𝑐𝑟𝑜𝑠𝑠 can be calculated through 

𝑟𝑐𝑜  =  
|𝑆𝐻𝐻𝑆𝐻𝐻

∗|

|𝑆𝑉𝑉𝑆𝑉𝑉
∗|

                                                                                 (2.38) 

𝑟𝑐𝑟𝑜𝑠𝑠  =  
|𝑆𝐻𝑉𝑆𝐻𝑉

∗|

|𝑆𝐻𝐻𝑆𝐻𝐻
∗|

 or  
|𝑆𝐻𝑉𝑆𝐻𝑉

∗|

|𝑆𝑉𝑉𝑆𝑉𝑉
∗|

                                       (2.39) 

The depolarization Ratio 𝑟𝑑𝑒𝑝𝑜𝑙 is represented by 

𝑟𝑑𝑒𝑝𝑜𝑙  =  
2𝑆ℎ𝑣𝑆ℎ𝑣

∗

𝑆ℎℎ𝑆ℎℎ
∗+𝑆𝑣𝑣𝑆𝑣𝑣

∗                                                                 (2.40) 

Co-polarization phase difference 𝜙 can be represented by 

𝜙 =  Arg(𝑆𝐻𝐻𝑆𝑉𝑉
∗) = 𝑡𝑎𝑛−1 [

𝐼𝑚〈𝑆𝐻𝐻𝑆𝑉𝑉
∗〉

𝑅𝑒〈𝑆𝐻𝐻𝑆𝑉𝑉
∗〉
]                                (2.41) 

Co-polarized correlation coefficient 𝜌 can be calculated by 

𝜌 =   
|𝑆𝐻𝐻𝑆𝑉𝑉

∗|

√|𝑆𝐻𝐻𝑆𝐻𝐻
∗||𝑆𝑉𝑉𝑆𝑉𝑉

∗|
                                                                  (2.42) 

 

2.5.5 Covariance Matrix and Coherency Matrix 

The signals received by a radar may be averaged or integrated scattering from various 

single targets, which are called distributed radar targets or distributed scatters. The scatters may 

not be stationary or fixed, subject to spatial and temporal variations in a dynamically changing 

environment, and the radar itself is also moving with respect to the illuminated area (Lee & Pottier, 

2009). All the above circumstances may result in incoherent and partial-polarized wave received 

by radar. Due to the presence of speckle noises, it will also be an incoherent case once speckle 

filtering has been applied. Since the coherent scattering matrix 𝑺 is able to characterize only the 
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coherent or pure scatterers, incoherent averaged covariance matrix and coherency matrix are 

introduced to statistically analyze stochastic processes more precisely. These two representations 

are equivalent to each other. 

 

The covariance 𝑪 matrix or coherency 𝑻 matrix are formed from the outer product of the 

target vector and its conjugate transpose: 

 𝑪 = 𝒌𝐿𝒌𝐿
∗𝑇                                                                                       (2.43) 

𝑻 = 𝒌𝑃𝒌𝑃
∗𝑇                                                                                       (2.44) 

where the size of both covariance and coherency matrix is 3 by 3. Since 𝒌𝐿  and 𝒌𝑃  can be 

transformed to each other through unitary transformation matrix 

𝒌𝑃 = 𝑼𝐿−𝑃𝒌𝐿                                                                                    (2.45) 

where  

𝑼𝐿−𝑃 =
√2

2
[
1 0 1
1 0 −1

0 √2 0
]                                                               (2.46) 

 

The covariance 𝑪 matrix and coherency 𝑻 matrix can also be transformed as 

𝑻 = 𝑼𝐿−𝑃𝑪𝑼𝐿−𝑃
−1                                                                                (2.47) 
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2.6 Target Decomposition  

The scattering operators introduced in Section 2.5 can be used to describe the scattering 

processes or polarization transfer. However, the insights of the scattering characteristics have not 

been interpreted. The target decomposition aims to find a statistical description that represents the 

scattering processes through a combination of scattering effects and noise (Lee & Pottier, 2009).  

 

Polarimetric decomposition theorems are categorised into coherent and incoherent target 

decompositions. Coherent decomposition is based on the scattering matrix, which is expressed as 

a combination of canonical scattering matrices 

𝑺 = ∑ 𝜔𝑘𝑺𝑘
𝐾
𝑘=1                                                                                  (2.48) 

Since the scattering matrix can characterize only the scattering process with both incident and 

scattered wave fully polarized, the coherent decompositions can decompose only the coherent 

targets (single or pure scatters) with coherent scattering. In this case, coherent decompositions 

ignore the disturbing environment and speckle noise associated with single-look data. To solve the 

noise influence, speckle filters more or less average the data, which leads us to a condition of using 

the covariance 𝑪 matrix or coherency 𝑻.  

Incoherent decomposition is based on the incoherently averaged covariance or coherency 

matrices. The objective is to decompose the covariance matrix and coherency matrix into the 

second order descriptors corresponding to canonical scattering. The covariance 𝑪  matrix and 

coherency 𝑻 are most important observable measurements that account for local variations over 

the scattering matrix. 

 

2.6.1 Pauli Decomposition 

The Pauli decomposition expresses the scattering S matrix as the complex sum of the Pauli 

matrices as introduced in Equation 2.32. Thus, the canonical scattering mechanisms are associated 

with each basis matrix in the Pauli spin matrices as 

𝑺 = [
S𝐻𝐻    S𝐻𝑉

S𝑉𝐻    S𝑉𝑉
] =

𝑎

√2
[
1     0
0     1

] +
𝑏

√2
[
1       0
0  − 1

] +
𝑐

√2
[
0     1
1     0

] +
𝑑

√2
[
0 − j
j     0

]                  (2.49) 
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Those four components 𝑎, 𝑏, 𝑐, 𝑑 are considered as follows: single scattering from a plane surface 

(single or odd bounce scattering), diplane scattering (double or even-bounce scattering) with 

relative orientation of 0°, diplane scattering with relative orientation of 45°, and antisymmetric 

components of the scattering 𝑺 matrix (Lee & Pottier, 2009). The reciprocity theorem in the 

monostatic backscattering case results in 𝑑 = 0. Therefore, the total power (Span) is given by 

Span(𝑺) = |S𝐻𝐻|2 + 2|S𝐻𝑉|2 + |S𝑉𝑉|2 = |𝑎|2 + |𝑏|2 + |𝑐|2                              (2.50) 

 

The scattering mechanisms which are not visible with the linear lexicographic basis can be 

enhanced through transformation of basis from linear to Pauli for a clear representation. The Pauli 

basis is therefore defined as the sum and difference of co-pol, and the sum of cross-pol in Equation 

2.49. The first two elements in Pauli scattering vector represent the scattering from a trihedral or 

odd-bounce reflector for S𝐻𝐻 + S𝑉𝑉, and from a dihedral or even-bounce reflector for S𝐻𝐻 − S𝑉𝑉 

(Van Zyl & Kim, 2010). The last term 2S𝐻𝑉  occupies the cross-polarized components of the 

scattering; from a theoretical view, it represents the scattering from a dihedral reflector rotated by 

45 degree (Van Zyl & Kim, 2010). In practise, cross-pol components are typically derived from a 

depolarization of the scattering; since this term involves only the cross-pol, it can be interpreted as 

random scattering in most circumstances. 

 

The trihedral scattering characterizes the mechanisms where no cross-polarization 

components occur, co-polarized components are identical, and co-polarization components are in 

phase. The characteristics for a dihedral reflector are that no cross-polarized components are 

generated in a linear radar signal (horizontal or vertical) and co-pol components are identical but 

out of phase. A dihedral reflector rotated by 45 degrees results in cross pol components reaching 

the maximum, with no corresponding co-pol components.  
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2.6.2 Eigen Decomposition 

The singular value decomposition factorize an 𝑚 × 𝑛  complex matrix  𝑴  into a form 

of  𝑼𝜮𝑽∗𝑇, where 𝑼 is an 𝑚 × 𝑚 unitary matrix; 𝚺 is an 𝑚 × 𝑛 diagonal matrix with non-negative 

real numbers, and 𝐕 is an 𝑛 × 𝑛 unitary matrix. Since the covariance 𝑪 matrix or coherency 𝑻 

matrix are positive semi-definite matrices, and they are also Hermitian matrices, the coherency 𝑻 

matrix can be factorized as 

𝑻 = 𝑼𝜮𝑼∗𝑇 = 𝑼𝜮𝑼−1                                                                    (2.51) 

where 𝚺 is a 3 × 3 diagonal nonnegative real eigenvalue matrix with 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0, 𝐔 =

[𝒖𝟏 𝒖𝟐 𝒖𝟑] is a 3 × 3 unitary matrix. The 𝒖𝟏, 𝒖𝟐, and 𝒖𝟑 are unit eigenvector orthogonal to each 

other. In this case, the coherency matrix can be decomposed into the sum of three independent 

scattering mechanisms. The contribution from the scattering mechanism is determined by the 

corresponding eigenvalue 𝜆𝑖 of the related unitary eigenvector 𝒖𝒊. The Eigen decomposition can 

be written as 

𝑻 = ∑ 𝜆𝑖𝒖𝒊𝒖𝒊
∗𝑇𝟑

𝒊=𝟏                                                                            (2.52) 

 

If only one eigenvalue is nonzero, the scattering is related to a single scattering matrix from 

a pure target. If all the eigenvalues are equal, three orthogonal scattering mechanisms are included 

equally. The target is randomly distributed. The eigenvectors 𝒖𝒊 can be formulated as (Cloude & 

Pottier, 1996) 

𝒖𝒊 = 𝑒𝑗𝜙𝑖 [

cos 𝛼𝑖

sin 𝛼𝑖 cos 𝛽𝑖 𝑒
𝑗𝛿𝑖

sin 𝛼𝑖 cos 𝛽𝑖 𝑒
𝑗𝛾𝑖

]                                                         (2.53) 

where 𝛼 angle corresponds to the variation from surface scattering (𝛼 = 0°) to randomly oriented 

dipole scattering (𝛼 = 45°), and to double bounce scattering (𝛼 = 90°). The 𝛽 angle is the twice 

that of the polarization orientation angle. The 𝛿 angle is the phase difference between S𝐻𝐻 + S𝑉𝑉 

and S𝐻𝐻 − S𝑉𝑉, the 𝛾 angle is the phase difference between S𝐻𝐻 + S𝑉𝑉 and S𝐻𝑉, and the 𝜙 angle 

is physically equivalent to target absolute phase S𝐻𝐻 + S𝑉𝑉 (Lee et al., 1999). 
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2.6.3 Entropy-Alpha Decomposition  

Cloude eigenvector decomposition is mathematically unique; however, its interpretation is 

not necessarily straightforward, because the eigenvectors are not guaranteed to represent known 

physical scattering mechanisms directly (van Zyl & Kim, 2010). In this case, the coordinate 

systems generated from the eigenvectors vary from pixel to pixel. Fortunately, a statistical model 

over the scatterer can be built as the sum of three eigenvectors with their corresponding 

contributions (eigenvalues) in Equation 2.52.  

 

The averaged alpha angle  𝛼̅ , directly related to three eigenvectors, can identify the 

dominant scattering mechanisms, which relies on the mean of 𝛼, which is defined as 

𝛼̅ = ∑ 𝑃𝑖𝛼𝑖
𝟑
𝒊=𝟏                                                                                     (2.56) 

As introduced in 2.5.2, 𝛼 angle varies from surface scattering to dipole scattering and to double 

bounce scattering. The  𝛼̅  is the averaged scattering mechanisms obtained by considering the 

contributions of each independent scattering.  

  

 The contribution from each eigenvector can be represented by the probability 𝑃𝑖, which 

given by 

𝑃𝑖 =
𝜆𝑖

∑ 𝜆𝑗
𝟑
𝒋=𝟏

                                                                                         (2.54) 

In order to define the degree of statistical disorder of each distinct scatterer, the polarimetric 

entropy 𝐻 is expressed by 

𝐻 = −∑ 𝑃𝑖𝑙𝑜𝑔3(𝑃𝑖)
𝟑
𝒊=𝟏                                                                    (2.55) 

The entropy ranges from 0 to 1. It represents the disorder of the scatterer from weakly depolarized 

isotropic (𝐻 = 0) to totally depolarized random scattering (𝐻 = 1). The Figure 2.1 suggests 

discrete distributions of entropy based on three contributions or pseudo probabilities 𝑃𝑖. When the 

scattering system is dominated by a single scattering, the entropy is relatively lower. If the system 

is highly depolarized or mixed with distinct scatterings, the entropy is relatively higher. 
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Figure 2.1: Discrete distributions of entropy based on three contributions or pseudo 

probabilities 𝑃𝑖. When the scattering system is dominated by a single scattering, the entropy is 

relatively lower. If the system is highly depolarized or mixed with multiple scatterings, the entropy 

is relatively higher. 

 

2.6.4 Freeman-Durden Decomposition 

A limitation of Eigen decomposition and the dichotomy of Kennaugh matrix is that they 

highly rely on mathematical methods instead of modeling the physical scatterings. Freeman & 

Durden (1993) proposed a three-component scattering mechanism model to estimate the 

contribution to the total backscatter from Bragg surface scatter, randomly oriented dipoles 

(volume), and even-bounce scattering mechanism. The volume scattering is an incoherent 

scattering model, while both of the surface scattering and the double-bounce scattering are 

coherent in nature (Lee, Thomas & Yanting, 2014). 
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The original idea behind the Freeman-Durden decomposition is to hypothesize that the 

covariance matrix can be decomposed into the combinations of predicted scattering covariance 

matrices, where the scattering mechanism of random oriented branches is modeled as volume 

scattering, the dihedral structure as double-bounce scattering, and the surface scattering 

 𝑻 = [
𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33

] = 𝑚𝑆 [
1 𝛽∗ 0

𝛽 |𝛽|2 0
0 0 0

] + 𝑚𝐷 [
|𝛼|2 𝛼 0
𝛼∗ 1 0
0 0 0

] + 𝑚𝑉 [
2 0 0
0 1 0
0 0 1

]  

(3.21) 

 

The first component of the Freeman-Durden decomposition models the scattering from 

first-order Bragg scatter with a moderately rough surface. In this case, the cross-pol can be 

negligible. The scattering matrix for this component can be represented by 

𝑺𝒔 = [
R𝐻    0
0    R𝑉

]                                                                              (2.57) 

where R𝐻 and R𝑉 are associated with local incidence angle and the relative dielectric constant of 

the surface. The corresponding covariance matrix 𝑪𝒔 of 𝑺𝒔 can be represented as 

𝑪𝒔 = [
|R𝐻|2 0 R𝐻R𝑉

∗

0 0 0
R𝑉R𝐻

∗ 0 |R𝑉|2
] = 𝑓𝑆 [

|𝛽|2 0 𝛽
0 0 0
𝛽∗ 0 1

]                  (2.58) 

where 𝑓𝑆 = |R𝑉|2 corresponds to the contribution of the odd-bounce scattering to the |S𝑉𝑉|2, and 

𝛽 = R𝐻/R𝑉. 

 

Double-bounce scattering is modeled by scattering from a dihedral reflector. The double-

bounce scatterings are contributed mainly from ice ridges and ice fragments (Hossain et al., 2014). 

Recall Freeman & Durden’s (1993) descriptions of this model: The reflection coefficients for 

horizontal surface are R𝐺𝐻  and R𝐺𝑉  for horizontal and vertical polarizations, respectively. The 

reflection coefficients for vertical surface are R𝑇𝐻 and R𝑇𝑉for horizontal and vertical polarizations, 

respectively. The propagation term 𝑒𝑗2𝛾 models the intensity attenuation and phase changes along 
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the propagation. The cross-pol components are also negligible in this case. Thus, the scattering 

model of double-bounce is given by 

 𝑺𝑫 = [
𝑒𝑗2𝛾ℎR𝑇𝐻R𝐺𝐻                0         

         0                𝑒𝑗2𝛾𝑣R𝑇𝑉R𝐺𝑉

]                                         (2.59) 

It yields the corresponding covariance matrix 𝑪𝑫 

𝑪𝑫 = [
|R𝑇𝐻R𝐺𝐻|2 0 𝑒𝑗2(𝛾ℎ−𝛾𝑣)R𝑇𝐻R𝐺𝐻R𝑇𝑉

∗𝑅𝐺𝑉
∗

0 0 0
𝑒𝑗2(𝛾𝑣−𝛾ℎ)R𝑇𝑉R𝐺𝑉R𝑇𝐻

∗𝑅𝐺𝐻
∗ 0 |R𝑇𝑉R𝐺𝑉|2

] 

= 𝑓𝐷 [
|𝛼|2 0 𝛼
0 0 0
𝛼∗ 0 1

]                                                                                                         (2.60) 

where 𝑓𝐷 = |R𝑇𝑉R𝐺𝑉|2 represents the contribution of the even-bounce scattering to the |S𝑉𝑉|2, and  

𝛼 = 𝑒𝑗2(𝛾ℎ−𝛾𝑣)
R𝑇𝐻R𝐺𝐻

R𝑇𝑉R𝐺𝑉
                                                                     (2.61) 

 

The volume scattering is modeled as radar returns from a cloud of randomly oriented 

dipoles. The scattering matrix of a horizontally oriented dipole can be expressed by 

𝑺𝒅𝒊𝒑𝒐𝒍𝒆 = [
a    0
0    b

]                                                                              (2.62) 

where a and b are complex scattering coefficients, and a ≫ b. We simply rotate the horizontal 

dipole an angle 𝜃, thus the scattering matrix of 𝜃 oriented can be derived from 

𝑺(𝜃) = [
cos 𝜃  sin 𝜃

−sin 𝜃   cos 𝜃
] 𝑺𝒅𝒊𝒑𝒐𝒍𝒆 [

cos 𝜃   −sin 𝜃
sin 𝜃    cos 𝜃

] 

= [
𝑎 cos2 𝜃 + 𝑏 sin2 𝜃       (𝑏 − 𝑎) sin 𝜃 cos 𝜃

(𝑏 − 𝑎) sin 𝜃 cos 𝜃        𝑎 sin2 𝜃 + 𝑏 cos2 𝜃
]               (2.63) 

where the cross-pol components are the same. Since the volume scattering counts a mixture of 

scattering from randomly oriented dipoles, the second order covariance matrix 𝑪𝑽  can be 

represented by 

|S𝐻𝐻|2 = |a|2𝐼1 + |b|2𝐼2 + 2𝑅𝑒𝑎𝑙(𝑎𝑏∗)𝐼4 
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|S𝑉𝑉|2 = |a|2𝐼2 + |b|2𝐼1 + 2𝑅𝑒𝑎𝑙(𝑎𝑏∗)𝐼4 

|S𝐻𝑉|2 = |b − a|2𝐼4 

S𝐻𝐻S𝐻𝑉
∗ = (𝑏 − 𝑎)∗(𝑎𝐼5 + 𝑏𝐼6) 

S𝐻𝐻S𝑉𝑉
∗ = (|a|2 + |b|2)𝐼4 + 𝑎𝑏∗𝐼1 + 𝑏𝑎∗𝐼2 

S𝐻𝑉S𝑉𝑉
∗ = (𝑏 − 𝑎)(𝑎∗𝐼6 + 𝑏∗𝐼5)                                                 (2.64) 

where 

𝐼1 = ∫ cos4 𝜃 𝑑𝜃
2𝜋

0
=

3𝜋

4
                                                                           

𝐼2 = ∫ sin4 𝜃 𝑑𝜃 =
3𝜋

4

2𝜋

0
                                                     

𝐼3 = ∫ sin2 2𝜃 𝑑𝜃 = 𝜋
2𝜋

0
                                                                     

𝐼4 = ∫ sin2 𝜃 cos2 𝜃 𝑑𝜃
2𝜋

0
=

𝜋

4
           

𝐼5 = ∫ cos3 𝜃 sin 𝜃 𝑑𝜃
2𝜋

0
= 0                    

𝐼6 = ∫ sin3 𝜃 cos 𝜃 𝑑𝜃
2𝜋

0
= 0                                                       (2.65) 

We assume the orientation angles are uniform, which results 

|S𝐻𝐻|2 =
3𝜋

4
(|a|2 + |b|2) +

𝜋

4
∙ 2𝑅𝑒𝑎𝑙(𝑎𝑏∗) 

|S𝑉𝑉|2 =
3𝜋

4
(|a|2 + |b|2) +

𝜋

4
∙ 2𝑅𝑒𝑎𝑙(𝑎𝑏∗) 

|S𝐻𝑉|2 =
𝜋

4
|b − a|2 

S𝐻𝐻S𝐻𝑉
∗ = 0 

S𝐻𝐻S𝑉𝑉
∗ =

𝜋

4
(|a|2 + |b|2) +

3𝜋

4
𝑎𝑏∗ +

3𝜋

4
𝑏𝑎∗ 

S𝐻𝑉S𝑉𝑉
∗ = 0                                                                                      (2.66) 
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Since we consider the scatter to be thin cylinder-like scatterers, which result in a ≫ b → 0, the 

Covariance matrix 𝑪𝑽 is given by: 

𝑪𝑽 =
𝜋

4
|a|2 [

3 0 1
0 2 0
1 0 3

] = 𝑓𝑉 [
3 0 1
0 2 0
1 0 3

]                                     (2.67) 

Hence, the covariance matrix 𝑪 can be given by the sum of corresponding covariance matrix of 

surface, double-bounce and volume scattering: 

𝑪 = [

|𝛽|2𝑓𝑆 + |𝛼|2𝑓𝐷 + 3𝑓𝑉 0 𝛽𝑓𝑆 + 𝛼𝑓𝐷 + 𝑓𝑉
0 2𝑓𝑉 0

𝛽∗𝑓𝑆 + 𝛼∗𝑓𝐷 + 𝑓𝑉 0 𝑓𝑆 + 𝑓𝐷 + 3𝑓𝑉

]            (2.68) 

 

The next step is to estimate the three parameters: 𝑓𝑆, 𝑓𝐷, and 𝑓𝑉. It is easy to determine the 

value of  𝑓𝑉  from the  2|S𝐻𝑉|2 , and 𝑓𝑆  and  𝑓𝐷  should be positive real values since they are 

proportional to the contribution of surface and double bounce scattering. Since 𝛽 is the ratio of 

horizontal to vertical polarized reflection coefficient for surface scattering, there should be no 

phase difference between HH and VV returns, so theoretically 𝛽 is a positive real value; however, 

in practice, 𝛽 remains to be a complex number when 𝛼 has been fixed. There are various ways to 

fix the value of 𝛼 and 𝛽 or to add a relation function between 𝛼 and 𝛽. Van Zyl (1989) determined 

the dominant contribution from the real part of S𝐻𝐻S𝑉𝑉
∗
. If 𝑅𝑒𝑎𝑙(S𝐻𝐻S𝑉𝑉

∗) ≥ 0, the scattering is 

dominated by surface scattering, and 𝛼 = −1 is fixed; otherwise if 𝑅𝑒𝑎𝑙(S𝐻𝐻S𝑉𝑉
∗) < 0, double-

bounce scattering is dominant, and 𝛽 = 1.  

 

Although the Freeman-Durden decomposition is simple to implement, it has two major 

deficiency: the reflection symmetry assumption and negative powers of surface and double-bounce 

scatterings. The Freeman-Durden decomposition concerns only the reflection symmetry instead of 

rotation symmetry or both. The assumption of reflection symmetry denies the correlations existing 

between co-pol and cross-pol (𝑇13,  𝑇23=0). Therefore, all cross-pol power is assigned to volume 

scattering, and volume scattering tends to be overestimated. The overestimation of 𝑃𝑉 contributes 

to the negative power of surface and double-bounce scattering, because when volume scattering is 
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determined, the rest of the elements in the coherency matrix should be undertaken only by surface 

and double-bounce scattering: 

𝑪𝑺𝑫 = [
|𝛽|2𝑓𝑆 + |𝛼|2𝑓𝐷 𝛽𝑓𝑆 + 𝛼𝑓𝐷
𝛽∗𝑓𝑆 + 𝛼∗𝑓𝐷 𝑓𝑆 + 𝑓𝐷

] = [
𝑐11 𝑐13

𝑐31 𝑐33
]               (2.69) 

This restriction results in an invalid power estimation (negative power), especially when any of 

the following conditions are violated: 

𝑇11 − 2𝑇33 ≥ 0 

𝑇22 − 𝑇33 ≥ 0 

(𝑇11 − 2𝑇33)(𝑇22 − 𝑇33) − |𝑇12|
𝟐 ≥ 0                                    (3.22) 

 

Negative power occurs when |𝑐13| is too large, yielding a negative determinant of 𝑪𝑺𝑫. The 

negative powers can be avoided by adjusting the determinant of  𝑪𝑺𝑫  to 0 through fixing the 

magnitude of 𝑐13: 

𝑐13
′ =

√𝑐11𝑐33

|𝑐13|
𝑐13                                                                           (2.70) 

This methodology has been written into the SNAP ESA software as generalized Freeman-Durden 

decomposition. On the other hand, the ratio 
|𝛼|

𝛽
 can be determined by 

|𝛼|

𝛽
=

∑
R𝑇𝐻R𝐺𝐻
R𝑇𝑉R𝐺𝑉

𝑛𝐷

∑
R𝐻
R𝑉

𝑛𝑆

=
𝑛𝐷∙

R𝑇𝐻R𝐺𝐻
R𝑇𝑉R𝐺𝑉

𝑛𝑆∙ 
R𝐻
R𝑉

=
𝑛𝐷

𝑛𝑆
                                               (2.71) 

where 𝑛𝑖 is the number of corresponding scattering occurrences over the pixel field. Co-polarized 

ratio for surface and double-bounce scattering can be safely assumed as equal, and this information 

can be retrieved from the distribution of alpha angle 𝛼 (alpha angle is different from the 𝛼 ratio in 

Freeman-Durden decomposition) or entropy-alpha angle space. Once we fix one of the 𝛼 and 𝛽 or 

add the ratio 
|𝛼|

𝛽
, the residual parameters can be easily estimated from the rest of the equations. 
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When applying the traditional Freeman-Durden decomposition, the negative power issue 

may occur in open water area especially when the signals received by sensor are weak, which can 

be explained by the overestimated volume scattering and negative determinant of covariance 

matrix excluding the volume scattering. Note that the replacement of surface scattering by 

incoherent scattering model can mitigate the negative power problem in generalized Freeman-

Durden decomposition. 

 

In the end, the contribution of each scattering mechanism can be determined: 

Span(𝑺) = |S𝐻𝐻|2 + 2|S𝐻𝑉|2 + |S𝑉𝑉|2 = P𝑆 + P𝐷 + P𝑉                          (2.72) 

where 

𝑃𝑆 = (1 + |𝛽|2)𝑓𝑆                                                                             (2.73) 

𝑃𝐷 = (1 + |𝛼|2)𝑓𝐷                                                                           (2.74) 

𝑃𝑉 = 8𝑓𝑉                                                                                              (2.75) 
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2.7 Statistics and Classifiers Used in This Thesis 

The scattering operators and target decompositions were introduced in Sections 2.5 and 

2.6, respectively. Therefore, all the polarimetric features (backscatter intensity, covariance 

matrix, decomposition parameters and secondary physical parameters) can be generated for can 

be used as inputs to classifiers. In this section, the statistical properties of these parameters is 

summarized and classifiers are then introduced in Section 2.7.4. 

 

2.7.1 Multilooking 

In a single-look complex mode, the azimuth resolution is generally higher than the 

resolution in range direction, which applies to RADARSAT-2 Single Look Complex data used in 

this thesis. Multilooking involves taking the average of 𝑁 single-look data in the azimuth 

direction (Lee & Pottier, 2009). There are two benefits achieved from this processing: it reduces 

speckle noise on the one hand; on the other hand, the multilooking pixel spacing is nearly square 

in measurements.  

 

The number of looks for a square pixel is calculated through 

𝑁 =
Δ𝑟

sin (𝜃)Δ𝑎
                                                                                      (2.76) 

where Δ𝑟 and Δ𝑎 are range spacing and azimuth spacing respectively, and 𝜃 is the incidence angle. 

Note that the pixel spacing is different from the resolution. Pixel spacing is the distance between 

adjacent pixels in an image measured in metres, while spatial resolution is the minimum distance 

that radar can distinguish between adjacent targets. 
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2.7.2 Radar Signal Statistics for Intensity 

2.7.2.1 Gaussian Distribution of Real and Imaginary Parts of Signals 

The real and imaginary components, 𝑖  and  𝑞 , of each polarization have a Gaussian 

distribution, which is denoted as 𝑖, 𝑞 ~ 𝒩(𝜇 = 0,  𝜎2). The probability density function (PDF) is 

𝑓(𝑥|𝜇, 𝜎2) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2                                                              (2.77) 

 

2.7.2.2 Rayleigh Distribution of Amplitude 

The amplitude for individual polarization 𝐴 = √𝑖2 + 𝑞2  is Rayleigh distributed with mean 

√
𝜋

2
𝜎  and variance 

4−𝜋

2
𝜎2. The PDF of Rayleigh distribution is given by 

𝑓(𝐴|𝜎) =
𝐴

𝜎2 𝑒
−

𝐴2

2𝜎2                                                                            (2.78) 

 

2.7.2.3 Gamma Distributions of Multilooked Intensity 

The intensity 𝐼 = 𝐴2 = 𝑖2 + 𝑞2 has an exponential distribution, denoted as 𝐼~ ℰ𝓍𝓅(𝐼|𝜆 =

1

2𝜎2). Its PDF is given by 

𝑓 (𝐼|𝜆 =
1

2𝜎2) =
1

2𝜎2 𝑒
−

𝐼

2𝜎2                                                              (2.79) 

As an extension to the multilooking intensity is given by 

𝐼 =
1

𝑁
∑ 𝐼𝑛

𝑁
𝑛=1 =

1

𝑁
∑ (𝑖𝑛

2 + 𝑞𝑛
2)𝑁

𝑛=1                                             (2.80) 
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Once the real part and the imaginary part of signals have been standardized to have a mean 

of 0 and standard deviation of 1, the 𝑁𝐼  will be distributed according to the Chi-squared 

distribution with 2𝑁  degrees of freedom, denoted as  𝑁𝐼 ~ 𝜒2(2𝑁). The PDF of Chi-squared 

distribution is expressed as 

𝑓(𝑥 = 𝑁𝐼|𝑘 = 2𝑁) =
1

2
𝑘
2Γ(

𝑘

2
)

𝑥
𝑘

2
−1𝑒−

𝑥

2 =
1

2𝑁Γ(𝑁)
(𝑁𝐼)𝑁−1𝑒−

𝑁𝐼

2                          (2.81) 

where Γ(𝑛) represents the gamma function. When 𝑛 is a positive integer, the gamma function is  

Γ(𝑛) = (𝑛 − 1)!                                                                               (2.82) 

Thus, the E(𝐼) = 2 and Var(𝐼) =
4

𝑁
. Note that the N-look amplitude √𝑁𝐼 has a Chi distribution.  

 

When signals have not been standardized, the multilooked intensity  𝑁𝐼  is distributed 

according to the Gamma distribution, denoted as 𝑁𝐼 ~ 𝛤(𝛼 =
𝑘

2
= 𝑁, 𝜃 = 2𝜎2), where 𝛼 is the 

shape parameter, and 𝜃 the scale parameter. The PDF of multilooking intensity is given by 

𝑓(𝑥 = 𝑁𝐼|𝛼 = 𝑁, 𝜃 = 2𝜎2) =
1

𝜃𝛼Γ(𝛼)
𝑥𝛼−1𝑒−

𝑥

𝜃 =
1

2𝑁𝜎2𝑁Γ(𝑁)
(𝑁𝐼)𝑁−1𝑒

−
𝑁𝐼

2𝜎2              (2.83) 

The mean and the variance are E(𝐼) = 2𝜎2 and Var(𝐼) =
4𝜎4

𝑁
. 

 

2.7.2.4 K-Distribution of Multilooked Intensity from Heterogeneous Scattering 

Over homogeneous areas, the intensity of signals is Chi-squared distributed (or Gamma 

distributed if not standardized). However, signals from heterogeneous backscattering processes 

may be modeled more rationally through K-distribution. The intensity 𝐼ℎ received by a radar 

receiver can be modeled by a product of Gamma distribution and a Gamma distributed noise 

variable 𝑔 as a texture descriptor (Lee & Pottier, 2009).  
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To make things simple, we rescale the multilooked intensity through 

𝐼𝑟 =
𝐼

𝐸(𝐼)
=

𝐼

2𝜎2                                                                                   (2.84) 

Then the normalized multilooked intensity is gamma distributed 𝐼𝑟 ~ 𝛤(𝛼 = 𝑁, 𝜃 =
1

𝑁
), with its 

mean  E(𝐼𝑟) = 1 and Var(𝐼𝑟) =
1

𝑁
. The PDF is given by 

𝑓 (𝐼𝑟|𝛼 = 𝑁, 𝜃 =
1

𝑁
) =

𝑁𝑁𝐼𝑟
𝑁−1

Γ(𝑁)
𝑒−𝑁𝐼𝑟                                           (2.85) 

 

On the other hand, multilooked intensity from the heterogeneous scattering may have a 

gamma processes on its mean value E(𝐼𝑟) ~ 𝛤; thus, we introduce a Gamma distributed texture 

descriptor g~ Γ(𝛼 = 𝑣, 𝜃 =
1

𝑣
) as noises on the mean of normalized multilooked intensity: 

𝑓(g) =
𝑣𝑣𝑔𝑣−1

Γ(𝑣)
𝑒−𝑣𝑔                                                                           (2.86) 

with its mean E(𝑔) = 1 and Var(𝑔) =
1

𝑣
. 

 

The multilooked intensity from heterogeneous scattering can be expressed as 

𝐼ℎ = 𝑔𝐼𝑟                                                                                              (2.87) 

Its probability function is given by 

𝑓(𝐼ℎ) = ∫ 𝑓(𝐼ℎ|𝑔)𝑓(𝑔)
∞

0
d𝑔                                                          (2.88) 

where (𝐼ℎ|𝑔) ~ 𝛤(𝛼 = 𝑁, 𝜃 =
𝑔

𝑁
)  can be transformed from Equation 2.85, which is given by 

𝑓(𝐼ℎ|𝑔) =
𝑁𝑁𝐼ℎ

𝑁−1

Γ(𝑁)𝑔𝑁 𝑒
−

𝑁𝐼ℎ
𝑔                                                                  (2.89) 

 

As briefly reviewed here, the intensity 𝐼ℎ received by a radar receiver can be modeled by a 

product of the Gamma distributed 𝐼𝑟  and a Gamma distributed noise variable 𝑔. The 𝐼𝑟 is gamma 
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distributed with mean g~ 𝛤(𝛼 = 𝑣, 𝜃 =
1

𝑣
) and shape parameter 𝛼 = 𝑁. The mean of g is denoted 

as μ = 1. Therefore, the PDF of K-distributed intensity from heterogeneous scattering can be 

represented by 

𝑓(𝐼ℎ|𝜇 = 1, 𝑣, 𝑁) =
2(𝑁𝑣)

𝑁+𝑣
2 𝐼ℎ

𝑁+𝑣
2

−1

Γ(𝑁)Γ(𝑣)
K𝑣−𝑁(2√𝑁𝑣𝐼ℎ)                               (2.90) 

where K𝛼(.) is the modified Bessel function of the second kind, defined by: 

K𝛼(𝑥)  =
𝜋

2

I−𝛼(𝑥)−I𝛼(𝑥)

sin (𝛼𝜋)
                                                                    (2.91) 

where I𝛼(.) is the modified Bessel function of the first kind, defined by: 

I𝛼(𝑥)  = ∑
1

𝑚!Γ(𝑚+𝛼+1)
 (

𝑥

2
)2𝑚+𝛼∞

𝑚=0                                             (2.92) 

 

2.7.3 Scattering Statistics and Coherence Statistics between Polarizations 

2.7.3.1 Complex Gaussian Distribution of Scattering Vector 

In Section 2.4.3, complex scattering vectors 𝒌𝐿 and 𝒌𝑃 are represented in Equation 2.35 

and 2.36 respectively. The dimension of scattering vector is denoted as 𝑛 = 3 on a reciprocal 

condition. The mean of  𝒌, 𝐸(𝑘𝑖) = 𝜇𝑖 = 0  for  𝑖 = 1,2…𝑛 , so we have  𝝁 = 𝟎 . The PDF for 

scattering vector 𝒌 is given by multivariate complex Gaussian distribution: 

𝑓(𝒌|𝝁 = 𝟎, 𝚺) =
1

𝜋𝑛|𝚺|
𝑒−𝒌∗𝑻𝚺−𝟏𝒌                                                   (2.93) 

where 𝚺 is the complex positive definite covariance matrix of 𝒌, which can be the unbiased sample 

covariance matrix or can be estimated through maximum likelihood estimator. 

 

2.7.3.2 Complex Wishart Distribution of Covariance Matrix or Coherency Matrix 

The multilooked polarimetric analysis takes multiple single look complex covariance 

matrices. The N-look covariance matrix is expressed as 

𝑪𝒏 =
1

𝑁
𝑾 =

1

𝑁
∑ 𝒌𝒊𝒌𝒊

∗𝑇𝑁
𝑖=1                                                             (2.94) 



40 

 

where 𝒌𝒊 ~ 𝒩(𝟎, 𝚺) . The matrix 𝑾  is complex Wishart distributed  𝑾 ~ 𝒲(𝑁, 𝚺) , with 𝑁 

degrees of freedom, which is the number of looks in this case. The PDF of 𝑾 is represented by 

𝑓(𝑾|𝑁, 𝚺) =
|𝑾|𝑁−𝑛

𝐼(𝑁,𝑛)|𝚺|𝑁
𝑒−𝑇𝑟𝑎𝑐𝑒(𝚺−1𝑾)                                          (2.95) 

 where 𝑛 is the dimension of 𝒌 With   

𝐼(𝑁, 𝑛) = 𝜋
1

2
𝑛(𝑛−1) ∏ 𝛤(𝑁 − 𝑖 + 1)𝑛

𝑖=1                                        (2.96) 

where the Gamma function given by: 𝛤(𝑛) = (𝑛 − 1)! The PDF for averaged covariance matrix 

𝑪𝒏 is given by 

𝑓(𝑪𝒏|𝑁, 𝚺) =
𝑁𝑁𝑛|𝑪𝒏|𝑁−𝑛

𝐼(𝑁,𝑛)|𝚺|𝑁
𝑒−𝑁∙𝑇𝑟𝑎𝑐𝑒(𝚺−1𝑪𝒏)                                  (2.97) 

 

2.7.4 Classification Approach Used in This Thesis 

2.7.4.1 H-alpha Complex Wishart Classifier 

Since radar signals are averaged through multilooking and speckle filtering, only the 

covariance matrix or coherency matrix can be employed for analyzing the incoherent targets. It 

was introduced in Section 2.7.3.2 that the covariance matrix and coherency matrix are complex 

Wishart distributed: 

𝑓(𝑪|𝑁, 𝚺) =
𝑁𝑁𝑛|𝑪|𝑁−𝑛

𝐼(𝑁,𝑛)|𝚺|𝑁
𝑒−𝑁∙𝑇𝑟𝑎𝑐𝑒(𝚺−1𝑪)                                        (2.98) 

where 𝑪 is the covariance matrix variable, 𝑁 is the number of looks, 𝑛 is the dimension of the 

target vector, and 𝚺 is the positive definite covariance matrix of moment matching.  

 

The unsupervised H- alpha complex Wishart classifier developed by Lee et al. (1999) was 

proposed to maximize the posterior: 𝑃(𝜔|𝑿) by applying Bayes’ rule: 

𝑃(𝜔|𝑿) =
𝑃(𝑿|𝜔)𝑃(𝜔)

𝑃(𝑿)
                                                                     (2.99) 
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where 𝜔 represents the classes or labels of a scattering vector 𝒌. Since 𝑃(𝑿) is an independent 

constant number, 𝒌 belongs to class 𝜔 = 𝑖, if 𝑃(𝑿|𝜔 = 𝑖)𝑃(𝜔 = 𝑖) > 𝑃(𝑿|𝜔 = 𝑗)𝑃(𝜔 = 𝑗), for 

all 𝑗 ≠ 𝑖. The 𝑓(𝑪|𝑁, 𝚺) is the model used for the likelihood of a feature given a label, 𝑃(𝑿|𝜔). 

Maximizing the posterior is equivalent to minimizing the negative natural logarithm of the 

posterior. The maximum a posterior (MAP) function is therefore given by 

𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∏𝑃(𝑿|𝜔)𝑃(𝜔) 

= 𝑎𝑟𝑔𝑚𝑖𝑛 ∑− 𝑙𝑛(𝑃(𝑿|𝜔)𝑃(𝜔))  

= 𝑎𝑟𝑔𝑚𝑖𝑛∑−𝑁𝑛 ln(𝑁) − (𝑁 − 𝑛) ln(𝐶) + 𝑁 ∙ 𝑇𝑟𝑎𝑐𝑒(𝚺−1𝑪) + ln(𝐼(𝑁, 𝑛)) + 𝑁 ln(|𝚺|)

− ln(𝑃(𝜔)) 

= 𝑎𝑟𝑔𝑚𝑖𝑛∑𝑁 ∙ 𝑇𝑟𝑎𝑐𝑒(𝜮−1𝑪) + 𝑁 𝑙𝑛(|𝜮|) − 𝑙𝑛(𝑃(𝜔)) 

  (2.100) 

 

Since the prior 𝑃(𝜔) has an unknown probability, Lee et al., (1999) assumed priors to be 

equal, thus this classifier now is equivalent to maximum likelihood estimation instead of a MAP 

algorithm. We name this maximum likelihood function as loss function: 

𝐿(𝜔, 𝚺, 𝑪) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑𝑇𝑟𝑎𝑐𝑒(𝚺−1𝑪) + ln(|𝚺|)                               (2.101) 

Therefore, the pixels are assigned to the class with minimum of loss to achieve the overall 

minimum of the loss function.  

 

This unsupervised classification employed expectation maximization (EM) has its 

optimizing algorithm, which involves two iterative steps. In the first expectation step, it estimates 

the covariance matrix 𝚺 through the methods of moment. In the second maximization step, it 

reassigns the pixels to the corresponding classes for minimizing the loss function. Those two steps 

are iterated until the loss function converges or the termination criterion is met. 
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2.7.4.2 Markov Random Field 

Since the Entropy-alpha Wishart classifier assumes that the priors for each class is equal at 

any time, the objective does not incorporate prior knowledge. However, regions or clusters are 

often homogeneous with neighboring pixels having similar properties and features. To fulfill the 

knowledge of neighboring pixels and prior probability, the Markov properties are considered due 

to the conditional independence of any two non-adjacent pixels. Therefore, Markov Random Field 

(MRF), a graphical model of a joint probability distribution by considering the neighboring pixels, 

is employed in this thesis. 

 

Let 𝑠 = (𝑖, 𝑗) denote the pixel at 𝑖, 𝑗 in the graph 𝑆. For each pixel 𝑠 in the image, it has a 

feature vector 𝑋𝑠; thus, we have the feature 𝑿 = {𝑿𝑠, 𝑠 ∈ 𝑆} for the whole image. Each pixel 𝑠 has 

its corresponding label 𝜔𝑠 ∈ Λ, where the Λ is the range of the classes the label can choose from. 

For the whole image, we have  𝝎 = {𝜔𝑠, 𝑠 ∈ 𝑆} . According to the Bayes’ theorem, the 

posteriori 𝑃(𝝎|𝑿) is given by 

𝑃(𝝎|𝑿) =
𝑃(𝑿|𝝎)𝑃(𝝎)

𝑃(𝑿)
                                                                  (2.102) 

which measures the probability of labelling given the observed feature  𝑿 . The objective of 

classifying the whole image is to find an optimal labelling which maximizes the 𝑃(𝝎|𝑿) by 

maximum a posteriori (MAP) estimation. Since 𝑃(𝑿) is a constant and independent of any classes 

to be chosen, MAP is equivalent to 

arg𝑚𝑎𝑥 𝑃(𝝎|𝑿) ∝ 𝑃(𝑿|𝝎)𝑃(𝝎)                                             (2.103) 

 

The labelling field can be modeled as a Markov Random Field (MRF) if all the  𝜔𝑠 ∈

Λ: 𝑃(𝝎) > 0; and if for every 𝑠 ∈ 𝑆, 𝜔𝑠 ∈ Λ, we have 

𝑃(𝜔𝑠|𝜔𝑟 , 𝑟 ≠ 𝑠) = 𝑃(𝜔𝑠|𝜔𝑟 , 𝑟 ∈ 𝑁𝑠)                                       (2.104) 

where the neighbour set 𝑁𝑠 is defined as the surrounding pixels of a pixel 𝑠. Besides the neighbours, 

a subset 𝐶 is defined as a clique if every pair of pixels in 𝐶 are neighbours. A clique 𝐶𝑛 containing 

𝑛 pixels is called an nth order clique, thus the set of cliques is denoted as 
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𝐶 = 𝐶1 ∪ 𝐶2 ∪ ⋯∪ 𝐶𝑘                                                                  (2.105) 

The first order and second order clique are named after singleton and doubleton, respectively. 

 

 According to the Hammersley-Clifford theorem, the joint probability 𝑃(𝝎) of a MRF 

follows a Gibbs distribution: 

𝑃(𝝎) =
1

𝑍
𝑒−𝑈(𝝎) =

1

𝑍
𝑒−∑ 𝑉𝑐(𝝎)𝑐∈𝐶                                              (2.106) 

where 𝑍 = ∑ exp (𝑉𝑐(𝝎))𝝎∈Ω  is the normalizing constant, and Ω denotes all the possible labelling 

conditions, the 𝑉𝑐(𝝎) denotes the clique potential of clique 𝐶 , the  𝑈(𝝎) is called the energy 

function, which requires taking the sum of potentials of all cliques: 

𝑈(𝝎) = ∑ 𝑉𝑐(𝝎)𝑐∈𝐶 = ∑ 𝑉𝐶1
(𝜔)𝐶1

+ ∑ 𝑉𝐶2
(𝜔)𝐶2

+ ⋯                         (2.107) 

In this case, we do not have any hidden layer within the Markov model. Only the first order 

(singletons) and second order cliques (doubletons) are considered for determining the clique 

potential 𝑉𝑐, which are given by 

𝑉𝐶1
(𝜔𝑠, 𝑟 ∈ 𝑁𝑠) = {

0            𝑖𝑓  𝜔𝑠 
𝜀            𝑒𝑙𝑠𝑒   

                                            (2.108) 

 𝑉𝐶2
(𝜔𝑠, 𝜔𝑟 , 𝑟 ∈ 𝑁𝑠) = {

𝛽            𝑖𝑓  𝜔𝑠 ≠ 𝜔𝑟 
−𝛽         𝑖𝑓  𝜔𝑠 = 𝜔𝑟

                         (2.109) 

where 𝜀, 𝛽 > 0 is a parameter tuning the weights of contributions of corresponding clique 

potentials.  
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 The likelihood 𝑃(𝑿|𝝎) is determined by the distributions of the features themselves. For 

instance, the multi-looked intensity from heterogeneous scattering should be K-distributed 

according to the Equation 2.90, the scattering matrix and covariance matrix are complex Gaussian 

distributed and complex Wishart distributed, which were introduced in Sections 2.6.3.1 and 2.6.3.2, 

respectively. The decomposition parameters are assumed to be Gaussian distributed. The estimate 

of the parameters in these PDFs are completed through the method of moments.  

 The entropy-alpha Wishart classifier and MRF classifier were introduced above. Note 

that the purpose of using the entropy-alpha Wishart classifier is to label the images instead of 

achieving the final classification output. The entropy-alpha Wishart classifier only includes the 

covariance matrix as input and the maximized likelihood. However, the MRF classifier includes 

more polarimetric features and considers the prior knowledge based on neighboring pixels. 

Therefore, in this research, the two classifiers were integrated as a whole, where the posterior 

was calculated through the product of maximized likelihood from Wishart classifier and the prior 

based on MRF.  
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2.8 RADARSAT-2 

Data employed in this thesis are RADARSAT-2 Wide Standard Quadrature Polarimetric 

images. RADARSAT-2 is equipped with an active C-band antenna, and takes 24 days to revisit 

its original orbit path. Wide Standard Quad-pol beam mode images (single look complex, SLC, 

product) were used for extracting polarimetric features and then in classification. The images 

cover 50 km by 25 km area at ground range by azimuth range. The pixel spacing for the near side is 

8.0 m by 5.1 m (slant range by azimuth range), and the pixel spacing for the far side is 11.8 m by 5.1 

m (MDA, 2016). The slant range resolution is 9.0 m for SQ1 to SQ11 and 12.8 for SQ12 to SQ21. 

The azimuth resolution is 7.6 m. The noise-equivalent sigma-zero is -35± dB (MDA, 2016). 

 

2.8.1 Radar Operation 

The RADARSAT-2 system includes a radar transmitter, a radar receiver and a data downlink 

transmitter (MDA, 2016). The antenna in the radar transmitter and receiver directs the transmitted 

energy in a beam, normal to the satellite track. The elevation profile and angle are adjusted to ensure 

that the beam arrives at the earth surface at a certain range of incidence angle (MDA, 2016).  

 

Radar imaging can be carried out in different beam modes, which contain their own unique 

imaging characteristics for variety of application needs. These characteristics include nominal 

swath widths, pulse bandwidths, sampling rates, and a specific set of available beams at specific 

incidence angles (MDA, 2016). The fundamental imaging modes available are Single Beam, 

ScanSAR, and Spotlight. These beam modes are summarized in the Figure 2.2 (MDA, 2016). 

When the radar operates in a given beam mode, the receiver receives scattered or reflected signals 

after the transmitted signals interacts with the earth surface.   
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 Figure 2.2: RADARSAT-2 SAR beam modes. It shows the unique imaging characteristics of the 

beam modes. These characteristics include nominal swath widths, swath position, and specific set 

of beams at specific incidence angles. Figure retrieved from RADARSAT-2 Product Description 

(MDA, 2016). 

 

2.8.2 Wide Standard Quad Polarization Beam Mode  

Single Beam modes are strip-map SAR modes. The beam elevation and profile are constant 

during the data collection. The beam mode employed in this thesis is the Wide Standard Quad 

Polarization. The radar transmits pulses in either horizontal or vertical polarizations alternatively, and 

receives the returns from each pulse in both horizontal and vertical polarizations separately but 

simultaneously (MDA, 2016). Therefore, it collects full polarimetric imaging signals at the same time. 

The Wide Standard Quad Polarization Beam Mode extends the swath range up to 50 km. The incidence 

angle, ranging 18-42 degrees, are covered by 21 beams. The characteristics of beam modes on swath 

length and resolution are illustrated in Figure 2.3. 
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2.8.3 Single Look Complex Product 

The products offered by RADARSAT-2 can be one of three basic types: Slant Range data, 

Ground Range data, and Geocorrected data. The slant range is the length measured between the radar 

and the target, while the ground range is the length measured between the ground track and the target. 

Since it measures the distance in slant range instead of the distance along the ground, the distance in 

slant range always represents less than that in corresponding ground range and slant range scale 

distortion occurs, resulting in varying scales from near to far range in each image, which is depicted in 

Figure 2.4. The product employed in this thesis is the Single Look Complex product, which is Slant 

Range data; therefore, no interpolation into ground range is performed for this product, and slant range 

is therefore converted to ground range by 

𝑑𝑔 =
𝑑𝑠

sin𝜃
                                                                                    (3.1) 

where 𝜃 the incidence angle, 𝑑𝑠 and 𝑑𝑔 are slant range and ground range, respectively. 

 

Each SLC Wide standard Quad Pol image covers 50 km by 25 km area at ground range by 

azimuth range. The pixel spacing for the near side is 8.0 m by 5.1 m (slant range by azimuth range), 

and the pixel spacing for the far side is 11.8 m by 5.1 m (MDA, 2016). The slant range resolution is 

9.0 m for SQ1 to SQ11 and 12.8 for SQ12 to SQ21 (MDA, 2016). The azimuth resolution is 7.6 m. 

The noise-equivalent sigma-zero is -35± dB (MDA, 2016). The incidence angle ranges from 18 to 42 

degrees for different swath positions, which are summarized in Table 2.4. 
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Figure 2.3: Relationship between beam modes and sensor modes including swath width and 

resolution cell size for RADARSAT-2 products. The beam positions for each beam mode are also 

indicated in parentheses. Figure retrieved from RADARSAT-2 Product Description (MDA, 2016). 
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Figure 2.4: The relationship between slant range image and ground range image. The slant range is 

the length measured between the radar and the target, while the ground range is the length measured 

between the ground track and the target. This figure is retrieved from European Space Agency Earth 

Online Website: https://earth.esa.int/web/guest/missions/esa-operational-eo-

missions/ers/instruments/sar/applications/radar-courses/content-2/-

/asset_publisher/qIBc6NYRXfnG/content/radar-course-2-slant-range-ground-range 
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Table 2.4: Incidence Angle and Range Resolution for Specific Swath Position of Wide 

Standard Quad-Polarization Beam Mode 

 

Beam/  

Swath Position 

Near Incidence 

Angle (degrees) 

Far Incidence 

Angle (degrees) 

Nominal Near 

Range Resolution 

(m) 

Nominal Far 

Range Resolution 

(m) 

SQ1W 17.5 21.2 30.0 24.9 

SQ2W 19.0 22.7 27.7 23.4 

SQ3W 20.0 23.6 26.3 22.5 

SQ4W 21.3 24.8 24.9 21.5 

SQ5W 22.5 26.0 23.6 20.6 

SQ6W 23.7 27.2 22.4 19.8 

SQ7W 24.9 28.3 21.4 19.0 

SQ8W 26.1 29.4 20.5 18.4 

SQ9W 27.2 30.5 19.7 17.8 

SQ10W 28.4 31.6 19.0 17.2 

SQ11W 29.5 32.6 18.3 16.7 

SQ12W 30.6 33.7 26.5 24.3 

SQ13W 31.7 34.7 25.7 23.7 

SQ14W 32.7 35.7 24.9 23.1 

SQ15W 33.7 36.7 24.3 22.6 

SQ16W 34.8 37.6 23.6 22.1 

SQ17W 35.7 38.6 23.1 21.6 

SQ18W 36.7 39.5 22.5 21.2 

SQ19W 37.7 40.4 22.0 20.8 

SQ20W 38.6 41.3 21.6 20.4 

SQ21W 39.5 42.1 21.2 20.1 
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2.8.4 Pixel Representation Radiometric Calibration 

In a single-look complex mode, each pixel is represented by a complex number. The 

complex representation consists of two signed integers for the real and imaginary parts: 𝑖 and 𝑞. 

The magnitude of the complex number is denoted as: 

𝐷𝑁 = √𝑖2 + 𝑞2                                                                              (2.110) 

Note that the magnitude of the complex number is different from the amplitude of the 

electromagnetic wave. 

 

Radiometric calibration of the data is essential to adjust the radiometric values without 

contribution of the target characteristics (Richards, 2009). The digital values received by the sensor 

can be converted to calibrated physical parameters. The radar backscatter coefficient (sigma 

nought 𝜎0), radar brightness (beta nought 𝛽0), and Gamma nought (𝛾0) are three of the most 

common calibrated coefficients that can be scaled from original pixel values.  

 

The backscatter coefficient is the averaged radar cross section per unit area; the radar 

brightness corresponds to the backscatter per unit area in slant range, which requires no prior of 

the local incident angle; Gamma corresponds to the backscattering coefficient normalized by the 

cosine of the incidence angle. The scaling procedure can be derived from the following (only the 

sigma nought is shown as an example): 

𝜎0 =
|𝑖+𝑗𝑞|2

𝐴2 =
|𝐷𝑁|2

𝐴2                                                                        (2.111) 

where 𝐴 is the corresponding range dependent gain for sigma nought. The corresponding gain 

value 𝐴 of sigma nought, beta nought, and gamma can be found in corresponding Look-up Table 

files.  
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Calibrated sigma nought, beta nought and gamma nought can be converted through 

𝜎0 = 𝛽0 sin 𝛼                                                                                 (2.112) 

𝛾0 = 𝛽0 tan 𝛼                                                                                 (2.113) 

where 𝛼 is the local incidence angle. These coefficients in decibels (dB) can be given by the 

following (only the sigma nought in dB is shown as an example): 

𝜎0(𝑑𝐵) = 10 log10 𝜎0                                                                  (2.114) 

 

With the assumption that the backscattering is constant across a pixel, we recall Equation 

2.28, which indicated the relationship between the radar cross section and the elements in the 

scattering matrix. The elements in the scattering matrix can be related to sigma nought as follows: 

𝜎0 =
𝜎

 𝐴0
=

4𝜋|𝑆|2

Δ𝑟Δ𝑎
                                                                            (2.115) 

where Δ𝑟 and Δ𝑎 are range spacing and azimuth spacing, respectively. Note that sigma nought is 

a real-valued coefficient, while scattering matrix is valuable only when the elements (so-called 

scattering coefficient or scattering amplitudes) are complex. The direct transformation from the 

complex pixel value to scattering amplitude is given by: 

𝑆 =
√Δ𝑟Δ𝑎

2𝐴√𝜋
(𝑖 + 𝑗𝑞)                                                                         (2.116) 

where 𝑆 is the element in the scattering matrix in equation 2.29. At this stage, the polarization 

descriptors including the intensities and amplitudes and scattering operators can be fully built from 

the RADARSAT-2 Standard quad-pol data. 
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2.9 Summary 

This chapter reviewed recent studies on lake ice mapping and relevant methodologies that 

have been used for SAR image classifications. It identified the needs for improvement in the 

automated classification methodology to help operationalize lake ice monitoring using 

polarimetric RADARSAT-2 data at CIS. The basic principles of monochromatic electromagnetic 

waves are helpful for understanding the representations of polarization and further scattering 

processes. The characteristics of polarimetric scattering processes provide insight to the scatterers 

(open water and lake ice); therefore, the statistical properties of polarimetric parameters including 

multi-looked polarization intensity, covariance matrix, decomposition results, and secondary 

physical parameters (entropy and alpha angle) are introduced to the classifier for determining the 

likelihood function. The MRF provides an approach to calculate the prior probability, therefore 

the posterior probability can be achieved by following Bayes’ theorem. The connections between 

the radar signal and the theories of polarization descriptors and scattering operators were 

summarized in the Section 2.8, which is the first step to generate polarimetric parameters from 

RADARSAT-2 images. The next chapter consists of a paper, to be submitted for publication in a 

journal, which used Wide Standard Quad-pol beam mode RADARSAT-2 images with the H-alpha 

Wishart classifier and MRF for the classification of lake ice and open water using Great Bear Lake 

as the study area. 
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3 Polarimetric Radar Imaging for Lake Ice Mapping 

3.1 Introduction 

In Canada, over 4 million square kilometres of waters are covered by ice in winter (Canadian 

Ice Service [CIS], 2017). Since lakes are a widespread land feature in many regions of Canada, 

lake ice cover is an important component of the Canadian cryosphere (Duguay et al., 2006). Lake 

ice phenology parameters (freeze-up, break-up, and ice cover duration) are highly relevant in the 

context of global climate change (Duguay et al., 2015) as lake ice has been proven to be a sensitive 

indicator of climatic variability and change (Duguay et al., 2006; Colbeck, 2012; Brown & Duguay, 

2012). Ice extent and duration have an impact on local weather conditions and regional climate, 

influencing lake-atmosphere interactions (Duguay et al., 2006; Du et al., 2017). Lake ice also has 

a significant influence on aquatic ecosystems including the composition and abundance of aquatic 

species, as well as on human activities including marine transportation, fishing, resource 

development, and tourism (CIS, 2017). 

 

Consistent and accurate records of ice phenology provide valuable information for weather 

forecasting and for climate change analysis (Du et al., 2017). The Canadian Ice Service (CIS) has 

the responsibility for operational monitoring of lake ice, sea ice, and iceberg conditions in 

Canadian Regions and adjacent waters (Arkett et al., 2013). The CIS primarily relies on visual 

interpretation of satellite optical and synthetic aperture radar (SAR) imagery to conduct analyses 

and prepare lakes ice products (fractional ice coverage for close to 140 lakes on a weekly basis 

and daily ice charts of the Laurentian Great Lakes). Since SAR can acquire data under polar 

darkness and cloud cover conditions, it is a tool of primary importance for lake ice monitoring 

across Canada. Since the performance of single (e.g. HH) and dual-polarized (e.g. HH and HV) 

imagery is limited by the loss of full polarization and phase information, there is a great deal of 

interest in using polarimetric SAR data for lake ice monitoring. Given the large volume of satellite 

images and the expected rapid growth of data from upcoming satellite missions such as the 

RADARSAT Constellation Mission (RCM), exploring automated image classification for 

polarimetric SAR imagery is paramount (Arkett et al., 2013; CIS, 2017). 
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Previous research using SAR for freshwater ice mapping/monitoring has largely focus on 

shallow Arctic and sub-Arctic lakes for the determination of floating and grounded ice as well as 

determination of freeze-up and break-up dates. Investigations of radar backscatter from large lakes 

have been more limited (e.g. Nghiem & Leshkevich, 2007; Leshkevich & Nghiem, 2013). SAR 

backscatter from thin lake ice during the initial ice formation has been reported to be lower than -

18 dB (Morris et al., 1995; Duguay et al., 2002). Floating ice on shallow lakes later during the ice 

season has been characterized by high backscatter,  attributed to the double-bounce scattering from 

columnar air inclusions and ice-water interface, and an increase of volume scattering (Geldsetzer, 

van der Sanden & Brisco, 2010). However, recent work supports single bounce scattering at the 

ice-water interface as the dominant scattering mechanism (Atwood et al., 2015). The low radar 

returns have been reported when ice freezes to the bottom of shallow lakes (e.g. Duguay et al., 

2002; Atwood et al., 2015). A decrease in backscatter has also been document from floating ice 

during the break-up period due to radar signal absorption by the wet snow and specular reflection 

from the water or ponds on the ice surface (Duguay et al., 2002; Geldsetzer, van der Sanden & 

Brisco, 2010). Co-polarized backscattering at a given frequency from open water not only depends 

on incidence angle, but it is also influenced by wind speed and wind direction relative to the radar 

look direction (Geldsetzer & van der Sanden, 2013). However, cross-polarized backscattering can 

be independent of wind direction and incidence angle (Vachon & Wolfe, 2011). Both co-pol and 

cross-pol backscattering from lake ice are affected by the geometry of ice surface, ice structure, 

dielectric parameter, and incidence angle (Duguay et al., 2002; Geldsetzer & van der Sanden, 

2013). Since single and dual-pol data are limited by their capability to distinguish open water from 

different ice types (Scheuchl et al., 2004; Geldsetzer & Yackel, 2009), dual-pol signals combined 

with polarimetric parameters may increase the potential for ice discrimination (Geldsetzer et al., 

2011). C-band polarimetric and non-polarimetric parameters, including sigma naught of individual 

polarizations, co-pol and cross-pol ratios, the co-pol correlation coefficient, entropy, anisotropy 

and alpha angle, were assessed and summarized for their potential to discriminate lake ice and 

open water (Geldsetzer & van der Sanden, 2013). The study showed that the single-pol VV was 

preferred when wind speed measurements are available and incidence angle is low. The co-pol 

ratio was recommended when the incidence angle is larger than 31.2° and, in such case, wind speed 

data is not required (Geldsetzer & van der Sanden, 2013). Anisotropy also showed its great 
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potential when incidence angle is lower than 27.6°, and it is insensitive to wind as well (Geldsetzer 

& van der Sanden, 2013).  

 

The characteristics of scattering mechanisms from ice and open water have been investigated. 

Using shipped-based and satellite SAR observations of the Great Lakes, it has been sown that 

when incidence angle is small (lower than 30°), scattering is dominated by surface scattering from 

open water where water with high relative permittivity has higher co-pol backscatter than ice 

(Leshkevich & Nghiem, 2013). For large incidence angles, surface scattering is dominant for both 

open water surface and ice covered area, and volume scattering tends to contribute more from ice 

(Nghiem & Leshkevich, 2007; Leshkevich & Nghiem, 2013). To be more specific, the surface 

scattering is mainly contributed from the air-ice (if no snow), air-snow, snow-ice and ice-water 

interfaces (Hossain et al., 2014; Atwood et al., 2015). When the ice surface is smooth (and thin) 

enough to act as a specular reflector, low or no backscatter can be observed (Cable et al., 2014).  

Volume scattering is contributed due to the dielectric discontinuities of the medium and geometry 

of the ice structure (Hossain et al., 2014). Double-bounce scattering occasionally occurs on ice 

ridges and ice fragments, and it is rarely dominant for the overall scattering compared to surface 

and volume scattering (Scheuchl, Hajnsek & Cumming, 2002).  

 

 The objective of this study was to develop an automated segmentation procedure of 

polarimetric SAR images for the classification of lake ice and open water. The physical scattering 

mechanisms of lake ice were analyzed from a quadrature polarimetric RADARSAT-2 dataset 

obtained over Great Bear Lake, Canada, with the intent of automatically mapping/monitoring open 

water and ice cover during the break-up and freeze-up periods of 2015. As the Canadian 

RADARSAT Constellation (RCM) and other future missions are being planned for launch, the use 

of compact polarimetry (CP) is also drawing attention for lake ice classification (Dabboor & 

Geldsetzer, 2014). However, the necessity of an efficient and automated segmentation approach 

of SAR imagery (single, dual-pol and polarimetric) is still paramount to enhance lake ice 

monitoring capabilities at ice services such as CIS. 
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3.2 Study Area 

The SAR data used in this study were acquired over Great Bear Lake (GBL), Northwest 

Territories, which is the largest lake entirely within Canada (Figure 3.1). The lake straddles the 

Arctic Circle between 65° and 67° N and between 118° and 123° W. Its altitude is 156 m above 

sea level. It is one of the major freshwater resources of northern Canada. The surface area of GBL 

is 3,1153 km2. Globally, the lake ranks 9th in surface area and 15th in depth (maximum depth: 446 

m; average depth 71.7 m). RADARSAT-2 images acquired for this study cover an area of 25 km 

by 50 km in the northern part of GBL (Figure 3.1).  

 

 

 

 

Figure 3.1: Location of Great Bear Lake within Canada on the left (delineated by solid red line) 

and area covered by RADARSAT-2 acquisitions on right (delineated by dashed blue line) 
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3.3 Data and Methods 

3.3.1 Data 

Data employed in this study is RADARSAT-2 Wide Standard Quadrature (SQ) 

Polarimetric imagery. Fourteen SQ images of single look complex product were acquired from 

both ascending and descending overpasses during spring break-up and fall freeze-up of 2015. 

RADARSAT-2 was launched in December 14, 2007. The orbit of the satellite is polar, sun-

synchronous orbit with a period of approximately 101 minutes. The satellite takes 24 days to revisit 

its original orbit path. In the Wide SQ beam mode, the C-band steerable antenna transmits and 

receives 5405 MHz microwave pulses separately but simultaneously with an assigned bandwidth 

of 100,540 kHz (MacDonald, Dettwiler and Associates Ltd. [MDA], 2014). Therefore, full 

polarimetric imagery provides wide swaths of approximately 50 km with incidence angle from 18 

degrees to 42 degrees for 21 swath positions. In the single look complex product of Wide SQ mode, 

images cover 50 km by 25 km in area at ground range by azimuth range. The pixel spacing for the 

near side is 8.0 m by 5.1 m (slant range by azimuth range) and the pixel spacing for the far side is 

11.8 m by 5.1 m (MDA, 2016). The slant range resolution is 9.0 m for SQ1 to SQ11 and 12.8 for 

SQ12 to SQ21 (MDA, 2016). The azimuth resolution is 7.6 m. The noise-equivalent sigma-zero 

is -35± dB (MDA, 2016). A summary of radar parameters for all 14 polarimetric images is shown 

in the Table 3.1. Note that the daily temperature observations were retrieved from the Déline 

meteorological station (65°12´ N and 123°26´) from the historical climate database of 

Environment and Climate Change Canada. The maximum, minimum and mean near-surface air 

temperatures help with interpreting the snow cover and ice melting/freezing conditions, which may 

influence the backscatter and scattering mechanisms. For instance, high near-surface air 

temperature (over 0 °C) will cause wet snow cover and melting on the ice surface.  A decrease can 

be observed in backscatter due to the signal being absorbed by the wet snow cover and specular 

reflection over the water or ponds on the lake ice surface (Duguay et al., 2002).  
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Table 3.1: Summary of RADARSAT-2 acquisition dates, modes and range of 

incidence angles. Also shown are the maximum, minimum and mean near-surface air 

temperatures recorded at the closest meteorological station (Déline, NWT) 
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3.3.2 Methods 

3.3.2.1 Data pre-processing and processing steps 

RADARSAT-2 Wide SQ-pol images were employed in this study. The distance measured 

in Single Look Complex product in slant range was converted to ground range. The number of 

looks for each image was calculated, and multi-looking was implemented to take the average of 

the corresponding single-looks in the azimuth direction. The number of looks for these 14 images 

are typically from 3 to 5, which is not large enough for reducing the noise effect (Lee & Pottier, 

2009). Additional polarimetric speckle filtering was considered to further reduce the noise. The 

polarimetric refined Lee speckle filter (Lee, Grunes, & Grandi, 1999) was employed for weighted 

averaging covariance matrix from the neighboring pixels. The refined Lee filter preserves the 

polarimetric properties and statistical properties, avoiding crosstalk between polarization channels, 

and preserves the scattering features, edge sharpness, and point targets (Lee, Grunes, & Grandi, 

1999). The above pre-processing steps, including the extraction of polarimetric parameters, were 

performed in the Sentinel Application Platform (SNAP) version 4.0. 

 

The Entropy-alpha Wishart classifier proposed by Lee et al. (1999) was used to classify 

the images at the first stage. It initialized the original classes based on the entropy and alpha angle 

zones proposed by Cloude & Pottier (1997), and only used the covariance matrix for maximizing 

the likelihood based on the complex Wishart distribution (Lee et al., 1999). The Entropy-alpha 

Wishart classifier was summarized in Section 3.3.2.2. Since Entropy-alpha Wishart classifier 

assumed priors for all classes equal, the posterior did not incorporate the prior knowledge. To 

fulfill the prior probability by considering neighboring pixels, the supervised Markov Random 

Field (MRF) was implemented on top of Entropy-alpha Wishart classifier, which is detailed in 

Section 3.3.2.3. The classification results from Entropy-alpha Wishart classifier was used as labels 

for training the MRF. The features for MRF classifier included the co-pol and cross-pol multi-

looked intensities, coherency matrix, Freeman-Durden decomposition results as well as two 

secondary physical parameters: entropy and alpha angle. The entropy represents the disorder of 

the scattering, and the alpha angle, directly related to three eigenvectors, can identify the dominant 

scattering mechanisms. After all features were extracted and labels were generated from Entropy-

alpha Wishart classifier, 10 cross validation was used for training and testing: each image was 
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separated to 10 folds, 9 folds of the image were used for training and the rest fold was retained for 

testing. In the training process, the prior was calculated through the joint probability by considering 

the clique potential; the parameters for the individual distribution of input features were estimated 

by method of moments. In the testing step for each cross validation, the likelihood was determined 

by product of the probabilities of individual features with the parameters estimated in the training 

process. The posterior was determined by the multiplication of the likelihood and the prior based 

on the Bayes’ Theorem. The class with highest posterior will be selected as the output. The final 

classes were merged according to the merging and termination criteria proposed in Section 3.4.2.4. 

The overall processing chain of feature extraction, label generation and MRF classifier are 

illustrated in Figure 3.2.  

 

The accuracy assessment was conducted by an ice analyst of Canadian Ice Service at 

Environment and Climate Change Canada (ECCC). The open water and ice polygons were 

delineated through manual (visual) identification based on the RADARSAT-2 polarimetric images. 

These delineations of open water and ice were digitized as regions of interest and further projected 

into an image with the same size as multilooked images. The accuracy assessment will be detailed 

in Section 3.3.2.5. 

 

Figure 3.2: The processing chain of feature extraction, label generation and MRF classifier. 
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3.3.2.2 Entropy-Alpha Angle Complex Wishart Classifier 

Since radar signals were averaged through multilooking and speckle filtering, only the 

covariance matrix or coherency matrix could be employed for analyzing the incoherent targets. 

The covariance matrix and coherency matrix are complex Wishart distributed: 

𝑓(𝑪|𝑁, 𝚺) =
𝑁𝑁𝑛|𝑪|𝑁−𝑛

𝐼(𝑁,𝑛)|𝚺|𝑁
𝑒−𝑁∙𝑇𝑟𝑎𝑐𝑒(𝚺−1𝑪)                                   (3.3) 

where 𝑪 is the covariance matrix variable, 𝑁 is the number of looks, 𝑛 is the dimension of the 

target vector, and 𝚺 is the positive definite covariance matrix of the variable 𝑪.  

 

The unsupervised H-alpha complex Wishart classifier proposed by Lee et al. (1999) aims 

to maximize the posterior:  𝑃(𝜔|𝑿) by applying the Bayes’ rule: 

𝑃(𝜔|𝑿) =
𝑃(𝑿|𝜔)𝑃(𝜔)

𝑃(𝑿)
                                                             (3.4) 

where 𝜔 represents the classes or labels of a scattering vector 𝒌. Since 𝑃(𝑿) is an independent 

constant number, 𝒌 belongs to class 𝜔 = 𝑖, if 𝑃(𝑿|𝜔 = 𝑖)𝑃(𝜔 = 𝑖) > 𝑃(𝑿|𝜔 = 𝑗)𝑃(𝜔 = 𝑗), for 

all 𝑗 ≠ 𝑖. The 𝑓(𝑪|𝑁, 𝚺) is the model used for the likelihood of a feature given a label, 𝑃(𝑿|𝜔). 

Maximizing the posterior is equivalent to minimizing the negative natural logarithm of the 

posterior. The maximum a posterior (MAP) function is given by: 

𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑𝑁 ∙ 𝑇𝑟𝑎𝑐𝑒(𝜮−1𝑪) + 𝑁 𝑙𝑛(|𝜮|) − 𝑙𝑛(𝑃(𝜔))                  (3.5) 

Since the prior 𝑃(𝜔) has an unknown probability, Lee et al. (1999) assumed priors to be equal, 

thus this classifier now is equivalent to the maximum likelihood estimation instead of a MAP 

classifier. This maximum likelihood function is called a loss function 

𝐿(𝜔, 𝚺, 𝑪) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑𝑇𝑟𝑎𝑐𝑒(𝚺−1𝑪) + ln(||𝚺||)                                    (3.6) 

Therefore, the pixels are assigned to the class with minimum of loss to achieve the overall 

minimum of the loss function.  
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The Entropy-alpha Wishart classification is a typical unsupervised classification, which 

uses the expectation maximization (EM) as its optimization algorithm. The initial classes are 

assigned according to the admissible alpha and entropy zones as shown in Figure 3.3. Once the 

initial classes are prepared, the following procedure involves two iterative steps. In the expectation 

step, for each class, the covariance matrix 𝚺 can be estimated through the method of moments; in 

the second maximization step, it reassigns the pixels to the corresponding classes with the lowest 

loss for minimizing the entire loss function. These two steps are iterated until the loss function 

converges or the termination criterion is met, which will be presented in Section 3.3.2.4. 

 

 

Figure 3.3: Entropy and alpha angle zones (Cloude & Pottier, 1997) 

 

3.3.2.3 Markov Random Field 

Since the Entropy-alpha Wishart classifier assumes that the priors for each class are equal 

at any time, the objective did not incorporate the prior knowledge. However, regions or clusters 

are often homogeneous with neighboring pixels having similar properties and features. To fulfill 

the knowledge of neighboring pixels and prior probability, the Markov properties are considered 

due to the conditional independence of any two non-adjacent pixels. Therefore, MRF, a graphical 

model of a joint probability distribution by considering the neighboring pixels, was employed. 
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Let 𝑠 = (𝑖, 𝑗) denote the pixel at 𝑖, 𝑗 in the graph 𝑆. For each pixel 𝑠 in the image, it has a 

feature vector 𝑋𝑠; thus, we have the feature 𝑿 = {𝑿𝑠, 𝑠 ∈ 𝑆} for the whole image. Each pixel 𝑠 has 

its corresponding label 𝜔𝑠 ∈ Λ, where the Λ is the range of the classes the label can choose from. 

For the whole image, we have  𝝎 = {𝜔𝑠, 𝑠 ∈ 𝑆} . According to the Bayes’ theorem, the 

posteriori 𝑃(𝝎|𝑿) is given by 

𝑃(𝝎|𝑿) =
𝑃(𝑿|𝝎)𝑃(𝝎)

𝑃(𝑿)
                                                                (3.7) 

which measures the probability of labelling given the observed feature  𝑿 . The objective of 

classifying the whole image is to find an optimal labelling which maximizes the 𝑃(𝝎|𝑿) by a 

MAP estimation. Since 𝑃(𝑿) is a constant and independent of any classes to be chosen, MAP is 

equivalent to 

arg𝑚𝑎𝑥 𝑃(𝝎|𝑿) ∝ 𝑃(𝑿|𝝎)𝑃(𝝎)                                             (3.8) 

 

The labelling field can be modeled as a MRF if all the  𝜔𝑠 ∈ Λ:𝑃(𝝎) > 0; and if for 

every 𝑠 ∈ 𝑆, 𝜔𝑠 ∈ Λ, we have 

𝑃(𝜔𝑠|𝜔𝑟 , 𝑟 ≠ 𝑠) = 𝑃(𝜔𝑠|𝜔𝑟 , 𝑟 ∈ 𝑁𝑠)                                        (3.9) 

where the neighbour set 𝑁𝑠 is defined as the surrounding pixels of a pixel 𝑠. Besides the neighbours, 

a subset 𝐶 is defined as a clique if every pair of pixels in 𝐶 are neighbours. A clique 𝐶𝑛 containing 

𝑛 pixels is called an nth order clique, thus the set of cliques is denoted as 

𝐶 = 𝐶1 ∪ 𝐶2 ∪ ⋯∪ 𝐶𝑘                                                             (3.10) 

The first order and second order clique are named after singleton and doubleton, respectively. 
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 According to the Hammersley-Clifford theorem, the joint probability 𝑃(𝝎) of a MRF 

follows a Gibbs distribution: 

𝑃(𝝎) =
1

𝑍
𝑒−𝑈(𝝎) =

1

𝑍
𝑒−∑ 𝑉𝑐(𝝎)𝑐∈𝐶                                            (3.11) 

where 𝑍 = ∑ exp (𝑉𝑐(𝝎))𝝎∈Ω  is the normalizing constant, and Ω denotes all the possible labelling 

conditions, the 𝑉𝑐(𝝎) denotes the clique potential of clique 𝐶 , the  𝑈(𝝎) is called the energy 

function, which requires taking the sum of potentials of all cliques: 

𝑈(𝝎) = ∑ 𝑉𝑐(𝝎)𝑐∈𝐶 = ∑ 𝑉𝐶1
(𝜔)𝐶1

+ ∑ 𝑉𝐶2
(𝜔)𝐶2

+ ⋯          (3.12) 

In this case, we do not have any hidden layer within the Markov model. Only the first order 

(singletons) and second order cliques (doubletons) are considered for determining the clique 

potential 𝑉𝑐, which are given by 

𝑉𝐶1
(𝜔𝑠, 𝑟 ∈ 𝑁𝑠) = {

0            𝑖𝑓  𝜔𝑠 
𝜀            𝑒𝑙𝑠𝑒   

                                          (3.13) 

 𝑉𝑐(𝜔𝑠, 𝜔𝑟 , 𝑟 ∈ 𝑁𝑠) = {
𝛽            𝑖𝑓  𝜔𝑠 ≠ 𝜔𝑟 
−𝛽         𝑖𝑓  𝜔𝑠 = 𝜔𝑟

                           (3.14) 

where 𝜀, 𝛽 > 0 is a parameter tuning the weights of contributions of corresponding clique 

potentials. 

 

 The likelihood 𝑃(𝑿|𝝎)  is determined by the probability density function of the 

corresponding features. For instance, the multi-looked intensity from heterogeneous scattering 

should be K-distributed; the PDF can be given by 

𝑓(𝐼ℎ|𝜇 = 1, 𝑣, 𝑁) =
2(𝑁𝑣)

𝑁+𝑣
2 𝐼ℎ

𝑁+𝑣
2

−1

Γ(𝑁)Γ(𝑣)
K𝑣−𝑁(2√𝑁𝑣𝐼ℎ)                               (3.15) 

The covariance matrix is complex Wishart distributed as presented in Equation 3.3. The 

decomposition parameters are assumed to be Gaussian distributed (Lee & Pottier, 2009). The 

parameters in these PDFs can be estimated through the method of moments. 
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3.3.2.4 Class Merging and Termination Criteria 

The number of classes provided by the classifiers is generally more than 2 classes: ice and 

open water; therefore, class merging and termination criteria are needed for combining the classes 

that indicate the same target and decreasing the number of classes. The number of classes cannot 

be specified due to the fact that open water or different ice types may have various manifestations 

in the space of polarimetric features. For instance, the surface roughness of water may differ over 

time, when water is disturbed by wind creating waves. Therefore, scattering from surface water 

may have significant difference in polarization and polarimetric parameters; more than one class 

should be reserved for water. The overflowing classes can be merged according to the following 

proposed algorithms. The dispersion is introduced at this stage to measure distance between classes. 

The dispersion within class 𝑖, 𝐷𝑖𝑖 is defined as the averaged distance from the covariance matrix 𝑪 

of each pixel in class 𝑖 to the sum of covariance matrix 𝚺𝒊 of the class 𝑖: 

𝐷𝑖𝑖 =
1

𝑛𝑖
∑ [𝑇𝑟𝑎𝑐𝑒(𝚺𝒊

−1𝑪𝒌) + ln(|𝚺𝒊|)]
𝐾𝑖
𝑘=1 = ln(|𝚺𝒊|) + 𝑛                               (3.16) 

where 𝐾𝑖 is the number of the pixels in the class 𝑖, n=3 is the dimension of the covariance matrix. 

The distance between two classes 𝐷𝑖𝑗 is defined as 

𝐷𝑖𝑗 =
1

2
{

1

𝑛𝑖
∑[𝑇𝑟𝑎𝑐𝑒(𝚺𝒋

−1𝑪𝒌) + ln(|𝚺𝒋|)]

𝐾𝑖

𝑘=1

+
1

𝑛𝑖
∑[𝑇𝑟𝑎𝑐𝑒(𝚺𝒊

−1𝑪𝒌) + ln(|𝚺𝒊|)]

𝐾𝑗

𝑘=1

} 

=
1

2
{ln(|𝚺𝒊|) + ln(|𝚺𝒋|) + 𝑇𝑟𝑎𝑐𝑒(𝚺𝒊

−1𝚺𝒋) + 𝑇𝑟𝑎𝑐𝑒(𝚺𝒋
−1𝚺𝒊)}                                 (3.17) 

Parameter 𝑅𝑖𝑗, originally proposed by Davies & Bouldin (1979), is always provides an indication 

of the separation (Lee, et al., 1999): 

𝑅𝑖𝑗 =
𝐷𝑖𝑖+𝐷𝑗𝑗

𝐷𝑖𝑗
                                                                      (3.18) 

where 𝑅𝑖𝑗 ∈ (0, 2]. When 𝑅𝑖𝑗 is close to 2, the two classes 𝑖 and 𝑗 is likely to be merged; when it 

is close to 0, the two classes are highly separated.  
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The termination criterion can be obtained by an optimization problem defined as 

arg𝑚𝑖𝑛 𝑅 = arg𝑚𝑖𝑛 {
1

𝑛Λ
∑ 𝑅𝑚𝑎𝑥−𝑖

𝑛Λ
𝑖=1 }                                (3.19) 

where 𝑛Λ is the number of classes, and 𝑅𝑚𝑎𝑥−𝑖 is the maximum separation of the class 𝑖, defined 

as  

𝑅𝑚𝑎𝑥−𝑖 = max𝑗(𝑅𝑖𝑗) , 𝑖 ≠ 𝑗                                                    (3.20) 

The procedure is as follows: the initial number of classes 𝑛Λ is set as 9; calculate 𝑅 for 𝑛Λ; deduct 

the number of classes: 𝑛Λ = 𝑛Λ − 1; merge the two classes with the maximum 𝑅𝑖𝑗 value. If the 

current 𝑛Λ is larger than 1, go back to the second step to calculate 𝑅, iteratively until the current 

𝑛Λ equals to 1.  

 

3.3.2.5 Accuracy Assessment 

The accuracy assessment was conducted by an ice analyst of CIS at ECCC. The open water and 

ice polygons were delineated through manual (visual) identification based on the hard copy of 

RADARSAT-2 polarimetric multi-looked images, which are the same images for the 

classification. These delineations of open water and ice were digitized as samplings of regions of 

interest (ROI) and further projected into the multi-looked images with the same size. As shown 

on the left of Figure 3.4, the blue spots were the ROI of open water and yellow spots were the 

ROI of ice, which were located within the original delineated open water and ice polygons. 

When we had the classification results from either Entropy-alpha Wishart classifier or MRF 

classifier as shown on the right of Figure 3.4, we summed the pixels within the ROI that were 

correctly classified and this number was divided by the overall pixels in the ROI to achieve the 

accuracy. For instance, if the pixels in blue ROIs was classified as open water shown in black on 

the right of Figure 3.4, they were marked as correctly classified pixels. If pixels within orange 

ROIs were identified as lake ice in the classification results, they were marked as correctly 

classified pixels. The overall accuracy was achieved by summing all the correctly classified 

pixels and dividing it by all the pixels within all ROIs.  
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Figure 3.4: The image on the left shows the digitized ROI, which sampled the delineation of open 

water and ice by the ice analyst from CIS. The blue ROI represents open water, and orange ROI 

represents ice. The image on the right shows an example of classification results. The black 

corresponds open water area, and the rest of colored area correspond lake ice. 

 

3.4 Results and Discussion 

The multi-looked intensities are presented in Figures 3.5-3.18 through the Pauli 

decomposition (A), the diagonal elements of the coherency matrix (B), the powers of surface, 

double bounce and volume scattering from Freeman-Durden decomposition (C) as well as entropy 

(D) and alpha angle (E). The labels generated from the Entropy-alpha Wishart classifier (G) and 

the corresponding legend (F) for the classification results from the MRF classifier (H) are also 

shown in these figures. The characteristics of features and their physical meanings as well as 

accuracy assessments of the classifier are presented below. 
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RS2-SLC-SQ18W-ASC-16-Jun-2015_01.36 

 

Figure 3.5: This image was acquired during the break-up period on June 16, 2015 at ascending 

orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three features from 

Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency matrix (Red: T11, 

Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from Freeman-Durden 

Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy (H); E: Alpha 

angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from H-alpha 

classifier developed by Lee et al. (1999); H: Results from the MRF classifier. 
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RS2-SLC-SQ1W-ASC-17-Jun-2015_01.07 

 

Figure 3.6: This image was acquired during the break-up period on June 17, 2015 at ascending 

orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three features from 

Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency matrix (Red: T11, 

Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from Freeman-Durden 

Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy (H); E: Alpha 

angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from H-alpha 

classifier developed by Lee et al. (1999); H: Results from the MRF classifier.  
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RS2-SLC-SQ11W-DES-17-Jun-2015_14.46 

 

Figure 3.7: This image was acquired during the break-up period on June 17, 2015 at descending 

orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three features from 

Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency matrix (Red: T11, 

Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from Freeman-Durden 

Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy (H); E: Alpha 

angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from H-alpha 

classifier developed by Lee et al. (1999); H: Results from the MRF classifier.  
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RS2-SLC-SQ21W-DES-21-Jun-2015_14.29 

 

Figure 3.8: This image was acquired during the break-up period on June 21, 2015 at descending 

orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three features from 

Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency matrix (Red: T11, 

Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from Freeman-Durden 

Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy (H); E: Alpha 

angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from H-alpha 

classifier developed by Lee et al. (1999); H: Results from the MRF classifier. 

 

 

 

A B C 

D E F 

G H 



73 

 

RS2-SLC-SQ14W-DES-24-Jun-2015_14.42 

 

Figure 3.9: This image was acquired during the break-up period on June 24, 2015 at descending 

orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three features from 

Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency matrix (Red: T11, 

Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from Freeman-Durden 

Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy (H); E: Alpha 

angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from H-alpha 

classifier developed by Lee et al. (1999); H: Results from the MRF classifier.  
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RS2-SLC-SQ5W-ASC-27-Jun-2015_01.15 

 

Figure 3.10: This image was acquired during the break-up period on June 27, 2015 at ascending 

orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three features from 

Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency matrix (Red: T11, 

Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from Freeman-Durden 

Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy (H); E: Alpha 

angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from H-alpha 

classifier developed by Lee et al. (1999); H: Results from the MRF classifier. Note that the red 

area pointed by red arrow cannot be interpreted as double-bounce scattering dominating on open 

water surface. 
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RS2-SLC-SQ6W-DES-27-Jun-2015_14.54 

 

Figure 3.11: This image was acquired during the break-up period on June 27, 2015 at descending 

orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three features from 

Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency matrix (Red: T11, 

Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from Freeman-Durden 

Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy (H); E: Alpha 

angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from H-alpha 

classifier developed by Lee et al. (1999); H: Results from the MRF classifier. Note that the red 

area pointed by red arrow cannot be interpreted as double-bounce scattering dominating on open 

water surface. 
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RS2-SLC-SQ13W-ASC-30-Jun-2015_01.28 

 

Figure 3.12: This image was acquired during the break-up period on June 30, 2015 at ascending 

orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three features from 

Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency matrix (Red: T11, 

Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from Freeman-Durden 

Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy (H); E: Alpha 

angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from H-alpha 

classifier developed by Lee et al. (1999); H: Results from the MRF classifier. 
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RS2-SLC-SQ5W-ASC-18-Nov-2015_01.15 

 

Figure 3.13: This image was acquired during the freeze-up period on November 18, 2015 at 

ascending orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three 

features from Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency 

matrix (Red: T11, Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from 

Freeman-Durden Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy 

(H); E: Alpha angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from 

H-alpha classifier developed by Lee et al. (1999); H: Results from the MRF classifier. Note that 

the red area pointed by red arrow cannot be interpreted as double-bounce scattering dominating on 

open water surface. 
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RS2-SLC-SQ7W-DES-18-Nov-2015_14.54 

 

Figure 3.14: This image was acquired during the freeze-up period on November 18, 2015 at 

descending orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three 

features from Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency 

matrix (Red: T11, Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from 

Freeman-Durden Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy 

(H); E: Alpha angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from 

H-alpha classifier developed by Lee et al. (1999); H: Results from the MRF classifier. Note that 

the red area pointed by red arrow cannot be interpreted as double-bounce scattering dominating on 

open water surface.  

 

 

 

 

A B C 

D E F 

G H 



79 

 

RS2-SLC-SQ13W-ASC-21-Nov-2015_01.28 

 

Figure 3.15: This image was acquired during the freeze-up period on November 21, 2015 at 

ascending orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three 

features from Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency 

matrix (Red: T11, Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from 

Freeman-Durden Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy 

(H); E: Alpha angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from 

H-alpha classifier developed by Lee et al. (1999); H: Results from the MRF classifier.  
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RS2-SLC-SQ2W-ASC-25-Nov-2015_01.11 

 

Figure 3.16: This image was acquired during the freeze-up period on June 25, 2015 at ascending 

orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three features from 

Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency matrix (Red: T11, 

Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from Freeman-Durden 

Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy (H); E: Alpha 

angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from H-alpha 

classifier developed by Lee et al. (1999); H: Results from the MRF classifier.  
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RS2-SLC-SQ9W-DES-25-Nov-2015_14.50 

 

Figure 3.17: This image was acquired during the freeze-up period on November 25, 2015 at 

descending orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three 

features from Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency 

matrix (Red: T11, Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from 

Freeman-Durden Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy 

(H); E: Alpha angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from 

H-alpha classifier developed by Lee et al. (1999); H: Results from the MRF classifier. 
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RS2-SLC-SQ11W-ASC-28-Nov-2015_01.24 

 

Figure 3.18: This image was acquired during the freeze-up period on November 28, 2015 at 

ascending orbit. See Table 3.1 for further details on image acquisition characteristics. A: Three 

features from Pauli decomposition (Red: HH-VV, Green: 2HV, Blue: HH+VV); B: Coherency 

matrix (Red: T11, Green: T22, Blue: T33); C: Surface, double bounce and volume scattering from 

Freeman-Durden Decomposition (Red: double-bounce, Green: volume, Blue: surface); D: Entropy 

(H); E: Alpha angle; F: Legend of labels and color codes from H-alpha classifier; G: Labels from 

H-alpha classifier developed by Lee et al. (1999); H: Results from the MRF classifier. 
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3.4.1 Interpretation of Polarimetric Features 

3.4.1.1 Pauli Decomposition and Coherency Matrix 

In the scattering elements from the Pauli-feature scattering vector (Figures 3.5-3.18, A), 

calm open water tends to be dark in most of these images. When the radar signal is reflected away 

from the sensor, these areas are expected to be black, with less backscatter power. It is easy to 

notice that open water areas in the image of June 17 (Figure 3.6) are much bluer, because this 

image was acquired in swath position of SQ1W, where the incident angle is small, from 17.5° 

to 21.2°, and more backscatter was received by the sensor. These areas are consistent with the 

single scattering mechanism (S𝐻𝐻 + S𝑉𝑉) (Lee & Pottier, 2009; Van Zyl & Kim, 2010). For the 

same reason, in the image of June 27 (Figure 3.11) the left part of water area is also shown as blue. 

Ice covered areas tend to show a mixture of scattering, where even reflection (S𝐻𝐻 − S𝑉𝑉) and 

random scattering (2S𝐻𝑉) tend to contribute more to the ice signal than open water areas. Therefore, 

the mixture of blue and green is typically observed over ice covered areas. Different ice types show 

a different concentration of specific color due to the dielectric/scattering properties and incidence 

angle. This explanation proceeds from the Pauli basis, which has been chosen to interpret the 

scattering. 

 

The diagonal elements of the coherency matrix are presented also presented in Figures 3.5 

to 3.18 (B). The scattering mechanisms are coded as different colors compared to Pauli 

decompositions. The red, green and blue channels are filled by T11, T22 and T33, respectively. 

Therefore, single scattering or even-bounce scattering (surface) tends to be red, odd bounce 

scattering (double-bounce) tends to be green, and random scattering (volume) tends to be blue in 

these images. Note that the refined Lee filter was applied to coherency elements; thus, speckle 

noise was further reduced, and neighbouring stochastic processes considered. Since the signal 

received by the sensor was averaged or integrated by the scatterings from various single targets 

and a target itself may not be stationary, the distributed scatters can be analyzed more precisely 

through the second-order moments of fluctuations (Lee & Pottier, 2009; Van Zyl & Kim, 2010). 
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3.4.1.2 Freeman-Durden Decomposition 

For large incidence angles, surface scattering is dominant for open water and volume 

scattering tends to be contributed mainly from ice (Leshkevich & Nghiem, 2013; Nghiem & 

Leshkevich, 2007). When the incidence angle is small (lower than 25°), scattering is dominated 

by surface scattering from open water where water with a  high relative permittivity has higher co-

pol backscatter than ice (Leshkevich & Nghiem, 2013). An increase of double-bounce scattering 

may be seen at the ridges or cracks of ice (Scheuchl, Hajnsek & Cumming, 2002).  

 

When incidence angle is large (larger than 30°), it is expected that open water may have 

single scattering (surface), where the radar signal is reflected away from the radar; thus, open calm 

water tends to be dark generally. Even if the power received by the radar sensor is small, the 

surface scattering is still dominant for open water areas (Leshkevich & Nghiem, 2013). For 

example, the surface scattering can be observed as blue in the image of Jun 24 (Figure 3.9) during 

the break-up period and Nov 21 during fall freeze-up. As the incidence angle becomes smaller or 

waves form on the lake, higher power is received by the radar from open water areas, where surface 

scattering is dominant. The dominant surface scattering is easily detected as blue in many images; 

for example, the June 17 (Figure 3.6) and June 27 (Figure 3.11) for the break-up period, and Nov 

18 for the freeze-up period.  

 

It is noticeable that red (pink or orange) can be observed in open water area; however, it 

cannot be interpreted as double-bounce scattering dominating on the water surface; for example, 

red shows up in open water occasionally in the image of Jun 27 in Figure 3.10 and Figure 3.11 and 

Nov 18 in Figure 3.13 and Figure 3.14, pointed by red arrows. It can be explained by the small 

scale of double bounce scattering (intensity). Even if double bounce scattering still has the weakest 

contribution among three orthogonal scattering mechanisms, it is bright for the red channel when 

displaying due to the low maximum power. We randomly collected samples over these red areas, 

and the statistical properties for three scattering mechanisms were summarized in Table 3.2. 
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Table 3.2: The Summary of Statistical Properties of Samples over Red Areas 

 

SCATTERING  Min. Max. Mean Std. Dev. 

Double Bounce 49.765 60.797 56.023 1.296 

Volume 51.009 74.815 62.568 0.619 

Surface 49.765 74.727 72.148 0.593 

 

 

Over ice covered areas, backscatter from surface scattering is higher than volume scattering, 

and double bounce scattering has been reported as the weakest contribution (Scheuchl, Hajnsek, 

& Cumming, 2002; Leshkevich & Nghiem, 2013; Hossain et al., 2014). The total power is higher 

for low incidence angle than high incidence angles because of the sensitivity of surface scattering 

to incidence angle (Hossain et al., 2014). Although surface scattering still dominates over ice 

covered areas, the volume scattering contributes more to the total scattering for rough ice. Radar 

incidence angle has a limited effect on volume scattering for ice covered areas (Hossain et al., 

2014). Double bounce scattering shows a greater contribution for rougher ice especially when ice 

ridges are present. During the freeze-up period, new ice with a smooth surface can easily be 

misidentified as calm open water. The total power of the three scattering mechanisms from the 

smooth ice is low, where volume scattering has an obvious decrease. Surface scattering increases 

as incidence angle becomes smaller (Hossain et al., 2014).  

 

3.4.1.3 Entropy and Alpha Angle 

Most open water areas are dominated by surface scattering for both large and small 

incidence angles (Scheuchl, Hajnsek, & Cumming, 2002; Leshkevich & Nghiem, 2013; Hossain 

et al., 2014). The dominant surface scattering corresponded to the eigenvector 𝒖 = [1 0 0 ]𝑇, 

where S𝐻𝐻 is close to S𝑉𝑉 (Lee & Pottier, 2009); thus 𝛼̅ is low (less than 42.5°). Since surface 

scattering is the only scattering mechanism that is dominant over these open water areas, the 

entropy is relatively low. Therefore, it can be observed that most of water areas with Bragg (surface) 

scattering tend to have low or medium entropy and very low alpha angle (Lee & Pottier, 2009). 
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On the other hand, an exception can be observed when an open water surface is calm (no/low wind 

or wave disturbance). In such situation, the entropy and alpha angle are both observed as being 

high (𝛼̅ larger than 47.5° and entropy larger than 0.9). The scattering mechanisms over open water 

cannot be simply interpreted as double reflection or complex structures as characterized in the 

traditional H and 𝛼̅ space (Cloude & Pottier, 1997); nevertheless, the scattering from such surface 

is single scattering and the sensor received very weak signals for all polarizations from calm open 

water areas. In this case, the surface acts as a specular reflector (Cable et al., 2014); therefore, the 

cross-pol signals are low enough (at the noise floor) to counter the existence of volume scattering 

(Cable et al., 2014), and co-pol signals are very weak as well, which results in both high entropy 

and alpha angle.  

 

Double bounce scattering occurs in the presence of ice ridges and fracture, shown as red 

spots or lines in the image of Jun 21 (Figure 3.8 C). Such takes place when entropy is low 

(generally less than 0.5) and 𝛼̅ is more than 47.5°, where S𝐻𝐻 is close to −S𝑉𝑉; therefore, double-

bounce scattering, that corresponds to eigenvector 𝒖 = [0 1 0 ]𝑇, is the dominant scattering 

mechanism (Lee & Pottier, 2009). 

 

 Entropy is generally moderate (0.5 to 0.9) for ice-covered areas, where scattering is highly 

random and mixed (Hossain, 2012; Cloude & Pottier, 1997). Surface scattering is still dominant; 

however, volume scattering tends to have a larger contribution. Power from double-bounce 

scattering is found to be low.  
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3.4.2 Accuracy Assessment of Classification Results 

Accuracy assessments for the Entropy-alpha Wishart classifier and the MRF classifier in 

the identification of open water and ice cover (two classes) are summarized in Table 3.3 and Table 

3.4, respectively. Note that the image of Nov 25 at ascending orbit was fully covered by ice; 

therefore, this image was not included in the accuracy assessments. The overall accuracy of the 

Entropy-alpha Wishart classifier is 95.55% for the 13 images, and the MRF classifier 96.75%, 

which provides a slight improvement of 1.20% in overall accuracy. For lake ice identification, the 

Entropy-alpha Wishart classifier performed better than the MRF classifier, which is due to a higher 

accuracy during the freeze-up period. The Entropy-alpha Wishart classifier displays a lower 

accuracy for water identification, especially on June 17 due to the lack of consideration of 

neighboring pixels. The MRF classifier provided a better and more stable performance for open 

water identification, where accuracies are 97.45% and 98.09% for the break-up and freeze-up 

periods, respectively. This is due to the prior being added to the probability calculation with MRF, 

in which case noise-like pixels misidentified as water were partially avoided.  

Overall both classifiers performed better during the break-up period than the freeze-up 

period, mainly as a result of misidentification of new ice and thin ice during freeze-up. Compared 

to the Entropy-alpha Wishart classifier, the MRF classifier achieved a 2.03% higher accuracy 

during break-up. The two classifiers performed similarly during the freeze-up period with an 

accuracy of 94.3%. However, the Entropy-alpha Wishart classifier can identify ice better than the 

MRF classifier, while the MRF classifier is better at identifying open water. The misclassified 

pixels may result not only from the misclassification from the two classifiers, but also from the 

misidentification and mistakes in digitization of the manual (visual) delineation of open water and 

ice polygons. 
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Table 3.3: The Summary of Overall Accuracy for Entropy-Alpha Wishart Classifier 

 

CLASS 

DATE 

Open Water Ice Overall 

Jun 16, ASC 1 0.9989 0.99945 

Jun 17, ASC 0.6574 0.9505 0.80395 

Jun 17, DES 0.9990 0.9999 0.99945 

Jun 21, DES 1 0.9872 0.9936 

Jun 24, DES 1 1 1 

Jun 27, ASC 1 0.9853 0.9927 

Jun 27, DES 0.9937 0.9932 0.9935 

Jun 30, ASC 0.8465 1 0.9233 

Nov 18, ASC 0.9929 0.9032 0.9481 

Nov 18, DES 0.9988 0.9291 0.9640 

Nov 21, ASC 0.9977 1 0.9989 

Nov 25, DES 0.8681 0.9068 0.8875 

Nov 28, ASC 0.9582 0.8753 0.9168 

Freeze-up Period  0.9631 0.9229 0.9430 

Break-up Period 0.9371 0.9894 0.9632 

Overall Accuracy 0.9471 0.9638 0.9555 
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Table 3.4: The Summary of Overall Accuracy for MRF Classifier 

 

CLASS 

DATE 

Open Water Ice Overall 

Jun 16 ASC 0.8688 1 0.9344 

Jun 17 ASC 1 0.9366 0.9683 

Jun 17 DES 0.9943 1 0.9972 

Jun 21 DES 0.9846 0.9994 0.9920 

Jun 24 DES 1 1 1 

Jun 27 ASC 1 0.9996 0.9998 

Jun 27 DES 0.9996 0.9948 0.9972 

Jun 30 ASC 0.9489 1 0.9745 

Nov 18 ASC 0.9826 0.9012 0.9419 

Nov 18 DES 1 0.8659 0.9330 

Nov 21 ASC 0.9983 1 0.9992 

Nov 25 DES 0.9822 0.8973 0.9398 

Nov 28 ASC 0.9416 0.8598 0.9007 

Freeze-up  0.9809 0.9048 0.9429 

Break-up 0.9745 0.9913 0.9829 

Overall Accuracy 0.9770 0.9580 0.9675 
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3.5 Conclusion 

In this study, we analyzed the scattering mechanisms associated with polarimetric 

parameters from RADARSAT-2 quadrature polarimetric data obtained over the Great Bear Lake 

during the break-up and freeze-up periods of 2015. When incidence angle is large, the power 

received by the sensor is weak. Surface scattering is dominant for open water area and volume 

scattering contributed more to the total scattering from ice covered area especially when ice surface 

is rough. When incidence angle is small, higher power can be received by the sensor from open 

water areas, where surface scattering is still dominant. Automated classification of lake ice was 

also presented by expanding the Entropy-alpha Wishart classifier to more polarimetric features 

and by introducing MRF to complete the prior probability. Labels used for training the MRF were 

generated from the H-alpha Wishart classifier proposed by Lee et al. (1999), which initialized the 

original classes based on the entropy and alpha angle zones proposed by Cloude & Pottier (1997), 

and only used the covariance matrix to maximize the likelihood based on the complex Wishart 

distribution (Lee et al., 1999). The parameters for features’ distribution were estimated through 

the method of moments based on the labels, and these were further used to calculate the likelihood 

for each class. The priors were achieved through MRF, and the class with the highest posterior 

were chosen as the final output. 

 

The MRF classifier used in this study successfully classified open water and lake ice, with 

an overall accuracy of 96.75%, which provided a small improvement of 1.2% over the Entropy-

alpha Wishart classifier. Results from MRF classifier were in strong agreement with the manual 

identification of ice and open water areas delineated by the ice analyst of Canadian Ice Service, 

Environment and Climate Change Canada (ECCC). Therefore, the MRF classifier developed in 

this study has a large potential to semi-automatically operate lake ice classification and substitute 

visual interpretation in the face of large volume of data and analytics pressures. 

 

The limitation of this study was the lack of optical satellite data sources for the evaluation 

of classification results. The coarse resolution, cloud cover and polar darkness highly influenced 

the availability of using optical data. On the other hand, the classifications in this study still rely 
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on manual combination and identification at the end to determine if a class belongs to water or ice. 

The polarimetric parameters can be characterized for ice and open water in the future studies, so 

that classes can be automatically combined and identified based on their polarimetric 

characteristics instead of manual operations. This study employed the method of moments instead 

of EM optimization due to the balance of running time and classification performance; therefore, 

it utilized the Entropy-alpha Wishart classification results as labels. In the future work, the MRF 

can be easily transformed to unsupervised clustering by replicating the EM algorithm to estimate 

the parameters and maximizing the posterior iteratively.  
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4 Conclusion 

4.1 Summary 

The overall objective of this research was to analyze polarimetric parameters in identifying 

open water and lake ice to improve the understanding of lake ice observations, and to develop a 

classification approach that can discriminate open water and lake ice. This work did not only 

contribute to an improved understanding of polarimetric radar imaging of the cryosphere, but it 

also provided insight into canonical scattering mechanism of microwave interactions with ice and 

open water. The MRF algorithm implemented in this study successfully classified open water and 

lake ice, which was in close great agreement with manual (visual) identification by the ice analyst 

of the Canadian Ice Service (CIS). Therefore, the MRF classifier with pixels labeled by H-alpha 

Wishart classifier has a large potential for semi-automated lake ice classification as a complement 

to visual interpretation of a large volume of RADARSAT-2 images at CIS.   

 

Chapter 1 introduced the necessity for lake ice monitoring and an overview of current 

remote sensing techniques for lake ice research. It also identified the need for improvement in 

automated lake-ice classification. The background chapter then provided a more detailed review 

of SAR research for lake ice mapping/monitoring and approaches being used for SAR 

classification. It also summarized the basics of electromagnetic and polarimetric radar theory, 

relevant probabilities and mathematical statistics, and the classifiers used to this study. The 

manuscript chapter implemented the Markov Random Field with pixels labeled by H-alpha 

Wishart classifier for discriminating open water and lake ice. This chapter provides an overall 

summary of the thesis, identifies some of its limitations and gives possible directions for future 

research.  

 

The study presented an application of the Markov Random Field in polarimetric radar 

imaging. To reduce the running time caused by the optimization of the unsupervised clustering 

(EM), the entropy-alpha Wishart classifier was introduced for labeling; therefore, the parameters 

of the individual distributions can be determined by the method of moments estimator. Instead of 

using covariance matrix alone, the feature space has been extended by introducing more 
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polarimetric features. In the Entropy-alpha classifier, the prior was fixed to a constant; however, 

this study employed the Markov Random Field to determine the prior according to the neighbors 

of a pixel. For initializing the original classes, we retained the entropy and alpha space of the 

Entropy-alpha Wishart classifier. Since each sample was labeled, the parameters for the likelihood 

of the MRF classifier could be estimated by the method of moments instead of expectation 

maximization optimizer. The class merging and termination criteria introduced an optimizing 

problem for determining the number of classes. However, it was difficult to deduct the classes to 

the desired number of classes because of the characteristics of the statistical distribution over the 

feature spaces. Nonetheless, results showed a strong agreement with visual interpretation by an ice 

analyst CIS, with an overall accuracy of 96.75%. New thin ice during the freeze-up period was the 

main source of misclassification, resulting in a lower accuracy of 90.48%. 

 

4.2 Limitations 

The greatest limitation of this study was the lack of other (optical) satellite data sources for 

the evaluation of classification results. Some MODIS images were available during the time of 

RADARSAT-2 image acquisitions during the break-up period (no useful MODIS images were 

available during the freeze-up period due to polar darkness). However, the spatial resolution of the 

MODIS corrected reflectance product is 250 m, which is much coarser than that of the 

RADARSAT-2 images (9.0 - 12.8 m by 7.6 m) used in this thesis. We also turned to possible 

Landsat scenes; however, the radar illuminated areas were not clear in these optical images as they 

were highly affected by cloud cover and were acquired only once weekly. In addition, the time of 

acquisitions between Landsat and RADARSAT-2 presented a problem for comparison. The 

movement of ice floes over time scales of minutes to hours during the freeze-up and break-up 

periods made the use of Landsat images difficult for the evaluation of classification results.  

 

The manual (visual) delineation of open water and ice polygons by the ice analyst from CIS 

had its advantages and disadvantages. It did not present the same type of problems as mentioned 

above because the analysis and classifications were both performed on the radar images directly. 

Although the available RADARSAT-2 images were employed to help recognize and distinguish 
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open water and ice targets during the delineation, the accuracy of this process fully depends on the 

ice analyst’s experiences of visual identification, which may introduce errors and uncertainties due 

to artificial factors. The assessment of this process when humans are involved is very difficult to 

control.  

 

As mentioned in Section 3.3.2 (methodology of the manuscript), the performance of the 

running time for optimization, expectation maximization, should be improved. This process in the 

Entropy-alpha Wishart classifier operates only on the covariance matrix. When the EM algorithm 

is expanded to more polarimetric features like intensities and decomposition parameters, the time 

complexity may increase exponentially. In the end, we decided to retain the low-dimensional EM 

processes for seeking the clusters as unsupervised labeling and recalculate the probability for each 

pixel in the following supervised training and testing. The complexity of the model has been 

decreased, but it has also uncovered some limitations. First, it might be constrained from the 

Entropy-alpha Wishart classifier, and not take advantage of the newly introduced polarimetric 

features, due to the influences of low-dimensional labeling. For instance, these classes or targets, 

which can only be discriminated in the higher dimensional space, may not be correctly 

distinguished in covariance relations, the second order space. Second, there are no further iterative 

processes to adjust the centre of each class for labeling. The Entropy-alpha Wishart classifier takes 

advantage of the zones in entropy and alpha angle space to initiate the clusters, and then iteratively 

seek for the updated centre. However, in this study, once these pixels are labeled by Entropy-alpha 

Wishart classifier, the centre of the classes no longer moved during the training. In addition, the 

classes are initialized according to the admissible zones in alpha and entropy plane as shown in 

Figure 3.3. However, it could be divided into more classes. It could be applied to achieve the 

desired number of classes instead of a fixed 9 zones.   

 

The likelihoods of decomposition parameters in the Bayesian inference are assumed to be 

Gaussian distributed. As they arise from application of the central limit theorem, when independent 

random variables are sampled, their sum tend to a Gaussian distribution. However, the original 

variables may not be normally distributed. The convergence in Gaussian distribution is toward a 
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single peak; however, each class may contain multi targets or distributed targets, where the 

decomposition parameters may converge towards multi peaks or at least a single value. 

 

Fourteen images (eight during the break-up period and six during the freeze-up period) were 

used for testing the model built in this study. Unfortunately, these radar images were acquired at 

individual swath position, and each swath position corresponds to a different incidence angle range. 

The incidence angle plays an important role in scattering, which will be manifested in the radar 

return and polarimetric parameters. To control the variance caused by the incidence angle, the 

training and testing of the MRF can be conducted only at a fixed swath position, which means the 

parameter estimate and elements in the Bayesian inference cannot be shared among different 

images or, to be more specific, different swath position. 

 

4.3 Future Work 

The model built in this study has high potential to be fully unsupervised by simply replicating 

the EM algorithm to estimate the parameters and maximizing the inference iteratively for newly 

introduced polarimetric features. This study employed the method of moments instead of EM 

optimization for the parameter estimate due to a balance of the running time and classification 

performance. The model can be improved by optimizing the Matlab code or moving onto a new 

platform with a faster running and operating performance, such as machine learning libraries and 

Hadoop distributed systems.  

 

As mentioned in Section 4.2, to control the variance caused by the incidence angle, the 

training and testing of the MRF could be conducted only at a fixed swath position; in other words, 

the parameter estimate and elements in the Bayesian inference could not be shared among different 

images. However, as images acquired at the same swath position increase, the samples from the 

specific swath position are large enough to be generalized to any new images at the same swath 

position. At this time, previous images that have been validated with confident labels could be 

employed to characterize the statistical properties of open water and different ice types. A 

supervised classification (the same algorithm as in this study) could be conducted for more 
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accurate inference and faster classification. To accomplish this task, one needs to take advantage 

of big data development, as it enables a computing solution that maintains computing speed in the 

processing of a large dataset. 
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Appendices 

Appendix A: Performance Assessments on Individual Classes between 

Classification and Validation for Entropy-Alpha Wishart Classifier 

RS2-SLC-SQ18W-ASC-16-Jun-2015_01.36 

                             MODEL 

VALIDATION                    

Water Water Ice Ice Ice Ice Ice 

Water 0.9995 0.0005 0 0 0 0 0 
Ice 0 0.0011 0.1693 0.4691 0.0194 0.2555 0.0857 

 

 

RS2-SLC-SQ1W-ASC-17-Jun-2015_01.07 

                             MODEL 

VALIDATION                    

Land Ice Ice Ice Ice Ice Water 

Water 0.8599 0 0.048 0 0 0 0.0921 
Ice 0.0022 0.1586 0.1513 0.2596 0.1751 0.2037 0.0494 

 

 

RS2-SLC-SQ11W-DES-17-Jun-2015_14.46 

MODEL 

VALIDATION 

Water Ice Ice Ice Ice 

Water 0.999 0 0 0.001 0 
Ice 0.0001 0.3241 0.2631 0.0364 0.3763 

 

 

RS2-SLC-SQ21W-DES-21-Jun-2015_14.29 

MODEL 

VALIDATION 

Water Water Ice Ice Ice Ice Ice 

Water 0.9866 0.0134 0 0 0 0 0.9866 
Ice 0.0021 0.0107 0.3733 0.2984 0.0637 0.2518 0.0021 
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RS2-SLC-SQ14W-DES-24-Jun-2015_14.42 

MODEL 

VALIDATION 

Water Water Ice Ice Water Ice Ice 

Water 0.594 0.1647 0 0 0.2413 0 0 
Ice 0 0 0.0072 0.2047 0 0.0004 0.7878 

 

RS2-SLC-SQ5W-ASC-27-Jun-2015_01.15 

MODEL 

VALIDATION 

Water Water Ice Water Ice Ice Water Water 

Water 0.0124 0 0 0.4897 0 0 0.4853 0.0125 
Ice 0 0.0147 0.0369 0 0.1674 0.781 0 0 

 

 

RS2-SLC-SQ6W-DES-27-Jun-2015_14.54 

MODEL 

VALIDATION 

Water Ice Water Water Ice Ice Water Water 

Water 0.0522 0.006 0.4073 0.1028 0.0003 0 0.2493 0.1821 
Ice 0.0003 0.0134 0.0065 0 0.138 0.8418 0 0 

 

 

RS2-SLC-SQ13W-ASC-30-Jun-2015_01.28 

MODEL 

VALIDATION 

Water Water Water Ice Water 

Water 0.388 0.0694 0.2721 0.1535 0.117 
Ice 0 0 0 1 0 

 

 

RS2-SLC-SQ5W-ASC-18-Nov-2015_01.15 

             MODEL 

VALIDATION 

Ice Water Ice Ice 

Open Water 
0.0071 0.9929 0 0 

Thin Ice 
0.8449 0.1485 0.0066 0 

Ice Floes 
0.0635 0.045 0.3186 0.5729 
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RS2-SLC-SQ7W-DES-18-Nov-2015_14.54 

MODEL 

VALIDATION 

Water Ice Ice Ice Ice 

Open Water 0.9988 0 0.0012 0 0 
Ice 0.0709 0.5464 0.2128 0.0625 0.1075 

 

RS2-SLC-SQ13W-ASC-21-Nov-2015_01.28 

MODEL 

VALIDATION 

Water Ice Ice Ice 

Open Water 0.9977 0 0.0023 0 
New Ice 0 0.6969 0.03 0.273 

 

 

RS2-SLC-SQ2W-ASC-25-Nov-2015_01.11 

MODEL 

VALIDATION 

Medium/Thick 

Ice 

Thin Ice Thin Ice Medium/Thick 

Ice 

Thin Ice 

Thin Ice 0.0317 0.1906 0.3997 0.0019 0.3762 
Medium Ice/ Thick Ice 0.0642 0 0 0.9358 0 

 

 

RS2-SLC-SQ9W-DES-25-Nov-2015_14.50 

MODEL 

VALIDATION 

Thin/New 

Ice 

Thick 

Ice 

Water Thin/New 

Ice 

Thick 

Ice 

Water Thin/New 

Ice 

Open Water 0.0003 0 0.4383 0.0066 0 0.4297 0.125 
Thin Ice/ New Ice 0.1749 0.0461 0.103 0.2619 0.0037 0.1666 0.2438 
Medium Ice 0.0003 0.0288 0 0 0.9709 0 0 
Thick Ice 0.004 0.8876 0 0.0003 0.1081 0 0 

 

 

RS2-SLC-SQ11W-ASC-28-Nov-2015_01.24 

                     

MODEL 

VALIDATION 

Thin 

Ice 

Medium/ 

Thick 

Ice 

Thin 

Ice 

Water Water Medium/ 

Thick 

Ice 

Thin 

Ice 

Thin 

Ice 

Open Water 0.0002 0 0.0324 0.4727 0.4856 0 0.0091 0.0001 
Thin Ice 0.0154 0.0822 0.2427 0.1585 0.0909 0.0033 0.2094 0.1977 
Medium/ Thick Ice 0.0002 0.0972 0 0 0 0.9018 0 0.0007 
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Appendix B: Performance Assessments on Individual Classes between 

Classification and Validation for MRF 

RS2-SLC-SQ18W-ASC-16-Jun-2015_01.36 

                             MODEL 

VALIDATION                    

Ice Water Ice Ice Ice Ice Ice 

Water 0.1312 0.8688 0 0 0 0 0 

Ice 0 0 0.3517 0.3163 0.0025 0.2623 0.0672 

 

 

RS2-SLC-SQ1W-ASC-17-Jun-2015_01.07 

       MODEL 

VALIDATION 

Water Land Ice Ice Ice Ice 

Water 0.6388 0.3612 0 0 0 0 

Ice 0.0012 0.0633 0.3045 0.2723 0.1682 0.1906 

 

 

RS2-SLC-SQ11W-DES-17-Jun-2015_14.46 

MODEL 

VALIDATION 

Water Ice Ice Ice Ice 

Water 0.9943 0 0 0.0057 0 

Ice 0 0.5487 0.2392 0.0158 0.1963 

 

 

RS2-SLC-SQ21W-DES-21-Jun-2015_14.29 

MODEL 

VALIDATION 

Water Ice Ice Ice Ice Ice Ice 

Water 0.9845 0.0152 0 0 0.0002 0 0 

Ice 0.0006 0.0044 0.3197 0.3098 0.0207 0.2357 0.1092 

 

 

RS2-SLC-SQ14W-DES-24-Jun-2015_14.42 

MODEL 

VALIDATION 

Water Water Ice Ice Water Water Ice 

Water 0.6465 0.1262 0 0 0.2269 0.0004 0 

Ice 0 0 0.0031 0.1509 0 0 0.846 
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RS2-SLC-SQ5W-ASC-27-Jun-2015_01.15 

MODEL 

VALIDATION 

Ice Water Ice Ice Water Water 

Water 0 0.4194 0 0 0.5647 0.0159 

Ice 0.0326 0 0.1405 0.8264 0 0.0004 

 

 

RS2-SLC-SQ6W-DES-27-Jun-2015_14.54 

MODEL 

VALIDATION 

Water Water Ice Ice Water Water 

Water 0.5042 0.118 0.0004 0 0.2592 0.1182 

Ice 0.0052 0 0.0961 0.8987 0 0 

 

 

RS2-SLC-SQ13W-ASC-30-Jun-2015_01.28 

MODEL 

VALIDATION 

Water Water Ice Water Water 

Water 0.361 0.3687 0.0511 0.05 0.1692 

Ice 0 0 1 0 0 

 

 

RS2-SLC-SQ5W-ASC-18-Nov-2015_01.15 

             MODEL 

VALIDATION 

Ice Ice Ice Water 

Open Water 0.0174 0 0 0.9826 

Thin Ice 0.8481 0.0048 0 0.147 

Ice Floes 0.0479 0.2922 0.6094 0.0506 

 

 

RS2-SLC-SQ7W-DES-18-Nov-2015_14.54 

MODEL 

VALIDATION 

Water Ice Ice 

Open Water 1 0 0 

Ice 0.1341 0.71 0.1558 
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RS2-SLC-SQ13W-ASC-21-Nov-2015_01.28 

MODEL 

VALIDATION 

Water Ice Ice Ice 

Open Water 0.9983 0 0.0017 0 

New Ice 0 0.3208 0.021 0.6582 

 

 

RS2-SLC-SQ2W-ASC-25-Nov-2015_01.11 

MODEL 

VALIDATION 

Medium/Thick 

Ice 

Thin Ice Medium/Thick 

Ice 

Thin Ice Thin Ice 

Thin Ice 0.0607 0.3028 0.0026 0.3997 0.2342 

Medium Ice/ Thick Ice 0.0444 0 0.9556 0 0 

 

 

RS2-SLC-SQ9W-DES-25-Nov-2015_14.50 

MODEL 

VALIDATION 

Thick 

Ice 

Thin/New 

Ice 

Thin/New 

Ice 

Thick 

Ice 

Water Water 

Open Water 0.0001 0.0108 0.0069 0 0.5072 0.4749 

Thin Ice/ New Ice 0.0924 0.3069 0.288 0.0046 0.1919 0.1162 

Medium Ice 0.004 0 0 0.996 0 0 

Thick Ice 0.4616 0 0.0004 0.5379 0 0 

 

 

RS2-SLC-SQ11W-ASC-28-Nov-2015_01.24 

                     MODEL 

VALIDATION 

Thin 

Ice 

Water Water Medium/Thick 

Ice 

Thin Ice Thin Ice 

Open Water 0.0044 0.4122 0.5294 0 0.0536 0.0004 

Thin Ice 0.297 0.1462 0.1343 0.0041 0.265 0.1534 

Medium/ Thick Ice 0 0 0 0.9776 0 0.0224 
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Appendix C: Summary of Classification Performances after Manual 

Combination for Entropy-Alpha Wishart Classifier 

RS2-SLC-SQ18W-ASC-16-Jun-2015_01.36 

MODEL 

VALIDATION                    

Water Ice 

Open Water 1 0 
Ice 0.0011 0.9989 

 

 

RS2-SLC-SQ1W-ASC-17-Jun-2015_01.07 

MODEL 

VALIDATION                    

Water Ice 

Open Water 0.6574 0.3426 
Ice 0.0495 0.9505 

 

 

RS2-SLC-SQ11W-DES-17-Jun-2015_14.46 

MODEL 

VALIDATION                    

Water Ice 

Open Water 0.999 0.001 
Ice 0.0001 0.9999 

 

 

RS2-SLC-SQ21W-DES-21-Jun-2015_14.29 

MODEL 

VALIDATION                    

Water Ice 

Open Water 1 0 
Ice 0.0128 0.9872 

 

 

RS2-SLC-SQ14W-DES-24-Jun-2015_14.42 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
1 0 

Ice 
0 1 
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RS2-SLC-SQ5W-ASC-27-Jun-2015_01.15 

MODEL 

VALIDATION                    

Water Ice 

Open Water 1 0 
Ice 0.0147 0.9853 

 

 

RS2-SLC-SQ6W-DES-27-Jun-2015_14.54 

MODEL 

VALIDATION                    

Water Ice 

Open Water 0.9937 0.0063 
Ice 0.0068 0.9932 

 

 

RS2-SLC-SQ13W-ASC-30-Jun-2015_01.28 

MODEL 

VALIDATION                    

Water Ice 

Open Water 0.8465 0.1535 
Ice 0 1 

 

 

RS2-SLC-SQ5W-ASC-18-Nov-2015_01.15 

MODEL 

VALIDATION                    

Water Ice 

Open Water 0.9929 0.0071 
Ice 0.0968 0.9032 

 

 

RS2-SLC-SQ7W-DES-18-Nov-2015_14.54 

MODEL 

VALIDATION                    

Water Ice 

Open Water 0.9988 0.0012 
Ice 0.0709 0.9291 
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RS2-SLC-SQ13W-ASC-21-Nov-2015_01.28 

MODEL 

VALIDATION                    

Water Ice 

Open Water 0.9977 0.0023 
Ice 0 1 

 

 

RS2-SLC-SQ2W-ASC-25-Nov-2015_01.11 

MODEL 

VALIDATION                    

Medium/Thick 

Ice 

Thin Ice 

Medium Ice/ Thick Ice 1 0 
Thin Ice 0.03360 0.96640 

 

 

RS2-SLC-SQ9W-DES-25-Nov-2015_14.50 

MODEL 

VALIDATION                    

Water Ice 

Open Water 0.8681 0.1319 
Ice 0.0932 0.9068 

 

 

RS2-SLC-SQ11W-ASC-28-Nov-2015_01.24 

MODEL 

VALIDATION                    

Water Ice 

Open Water 0.9582 0.0418 
Ice 0.1247 0.8753 
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Appendix D: Summary of Classification Performances of MRF after Manual 

Combination 

RS2-SLC-SQ18W-ASC-16-Jun-2015_01.36 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
0.8688 0.1312 

Ice 
0 1 

 

 

RS2-SLC-SQ1W-ASC-17-Jun-2015_01.07 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
1 0 

Ice 
0.0634 0.9366 

 

 

RS2-SLC-SQ11W-DES-17-Jun-2015_14.46 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
0.9943 0.0057 

Ice 
0 1 

 

 

RS2-SLC-SQ21W-DES-21-Jun-2015_14.29 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
0.9846 0.0154 

Ice 
0.0006 0.9994 

 

 

RS2-SLC-SQ14W-DES-24-Jun-2015_14.42 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
1 0 

Ice 
0 1 
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RS2-SLC-SQ5W-ASC-27-Jun-2015_01.15 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
1 0 

Ice 
0.0004 0.9996 

 

 

RS2-SLC-SQ6W-DES-27-Jun-2015_14.54 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
0.9996 0.0004 

Ice 
0.0052 0.9948 

 

 

RS2-SLC-SQ13W-ASC-30-Jun-2015_01.28 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
0.9489 0.0511 

Ice 
0 1 

 

 

RS2-SLC-SQ5W-ASC-18-Nov-2015_01.15 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
0.9826 0.0174 

Ice 
0.0988 0.9012 

 

 

RS2-SLC-SQ7W-DES-18-Nov-2015_14.54 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
1 0 

Ice 
0.1341 0.8659 
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RS2-SLC-SQ13W-ASC-21-Nov-2015_01.28 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
0.9983 0.0017 

Ice 
0 1 

 

 

RS2-SLC-SQ2W-ASC-25-Nov-2015_01.11 

MODEL 

VALIDATION                    

Medium/Thick 

Ice 

Thin Ice 

Medium Ice/ Thick Ice 
1 0 

Thin Ice 
0.0633 0.9367 

 

 

RS2-SLC-SQ9W-DES-25-Nov-2015_14.50 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
0.9822 0.0178 

Ice 
0.1027 0.8973 

 

 

RS2-SLC-SQ11W-ASC-28-Nov-2015_01.24 

MODEL 

VALIDATION                    

Water Ice 

Open Water 
0.9416 0.0584 

Ice 
0.1402 0.8598 

 

 

 


