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ABSTRACT

The syntactic complexity of a regular language is the cardinality of its syntactic semi-
group. The syntactic complexity of a subclass of regular languages is the maximal
syntactic complexity of languages in that subclass, taken as a function of the state
complexity n of these languages. We study the syntactic complexity of six subclasses
of star-free languages. We find a tight upper bound of (n—1)! for finite/cofinite and re-
verse definite languages, and a lower bound of |e-(n—1)!] for definite languages, where
e is the base of the natural logarithms. We also find tight upper bounds for languages
accepted by monotonic, partially monotonic and “nearly monotonic” automata. All
these bounds are significantly lower than the bound n™ for arbitrary regular languages.
Also, witness languages reaching these bounds require alphabets that grow with n. The
syntactic complexity of arbitrary star-free languages remains open.
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1. Introduction

Star-free languages are the smallest class containing the finite languages and closed
under boolean operations and concatenation. In 1965, Schiitzenberger [26] proved that
a language is star-free if and only if its syntactic monoid is group-free, that is, has
only trivial subgroups. An equivalent condition is that in the minimal deterministic
finite automaton (DFA) of a star-free language no word can induce a permutation of
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any set of two or more states, other than the identity permutation. Such automata
are called aperiodic; they were studied in 1971 by McNaughton and Papert [21].

The state complexity of a reqular language is the number of states in the minimal
DFA recognizing that language. State complexity of operations on languages has been
studied quite extensively; for a survey of this topic and a list of references see [28].
An equivalent notion is that of quotient complexity [4], which is the number of left
quotients of the language.

Quotient complexity is closely related to the Nerode equivalence [23]. Another
well-known equivalence relation, the Myhill equivalence [22], defines the syntactic
semigroup of a language and its syntactic complexity, which is the cardinality of the
syntactic semigroup. It was pointed out in [8] that syntactic complexity can be very
different for languages with the same quotient complexity.

In contrast to state complexity, syntactic complexity has not received much atten-
tion until recently. Suppose L is a regular language with quotient complexity n. In
1970 Maslov [20] noted that n™ is a tight upper bound on the syntactic complexity
of L. In 2003-2004 Holzer and Koénig [15], and Krawetz, Lawrence and Shallit [18]
studied the syntactic complexity of unary and binary languages. In 2011 Brzozowski
and Ye [8] showed that, if L is any right ideal, then n"~! is a tight upper bound
on its syntactic complexity. They also proved that n"~! + (n — 1) (respectively,
n" 2+ (n—2)2""2+1) is a lower bound if L is a left (respectively, two-sided) ideal. In
2012 Brzozowski, Li and Ye [6] showed that n™~2 is a tight upper bound for prefix-free
languages and that (n—1)""2+4(n—2) (respectively, (n—1)""34(n—2)""3+(n—3)2" 3
or (n—1)""3+4(n—3)2""3+41) is a lower bound for suffix-free (respectively, bifix-free
or factor-free) languages.

Here we deal with the syntactic complexity of six families of star-free languages. We
start with the simplest family, that of finite and cofinite languages. Testing whether
a word belongs to a finite or cofinite language can be done by checking a list of words
shorter than some fixed length. We also study definite and reverse definite languages.

A language is definite if it can be decided whether a word w belongs to it simply
by examining the suffix of w of some fixed length. The class of definite languages
was the very first subclass of regular languages to be considered: it was introduced in
1954 in the classic paper by Kleene [17]. It was then studied in 1963 by Perles, Rabin,
and Shamir [24], and Brzozowski [3], in 1966 by Ginzburg [12], and later by several
others. Definite languages were revisited in 2009 by Bordihn, Holzer and Kutrib [2]
in connection with state complexity.

Reverse definite languages were first studied by Brzozowski [3]. Here membership
of w can be determined by its prefix of some fixed length. The class of finite and
cofinite languages is the intersection of the class of definite languages with the class
of reverse definite languages.

All three classes, finite/cofinite, definite and reverse definite, are boolean algebras.
The following characterizations of finite/cofinite, definite and reverse definite subsets
of ¥ in terms their syntactic semigroups can be found in Eilenberg’s book, volume
B [10]. The semigroup S of a finite/cofinite language is nilpotent: It is characterized
by the condition S = S% = ¢ for every idempotent ¢ in S. Equivalently, either S
is empty or has a zero and no other idempotent. For definite (respectively, reverse
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definite) languages every idempotent i is a right zero, that is, Si = ¢ (respectively, a
left zero, that is, 1.5 = i).

We discovered that the syntactic complexity problem gets difficult very quickly:
Although finite/cofinite and reverse definite languages were relatively easy, we have
been unable to establish a tight upper bound for definite languages.

Using known results from semigroup theory, we found the complexity (2"n_1) of
languages accepted by monotonic automata, and discovered that partially monotonic
automata lead to much higher complexities. We then found even higher complexities
with “nearly monotonic” automata.

Two other subclasses of star-free languages were studied in [5]. The syntactic
complexity of R-trivial languages is n!, and of J-trivial languages, it is |e - (n — 1)!];
those results are beyond the scope of this paper.

For large values of n, the list of subclasses with syntactic complexities in increasing
order is as follows: 1) monotonic, 2) partially monotonic, 3) nearly monotonic, 4) fi-
nite/cofinite and reverse definite, 5) J-trivial, 6) definite ? (upper bound not known),
7) R-trivial. Recently, Marek Szykuta? found subclasses of star-free languages with
even larger semigroups.

Our terminology and some basic facts are stated in Section 2. Aperiodic trans-
formations are examined in Section 3. In Section 4, we study finite/cofinite, reverse
definite, and definite languages. In Section 5, we study monotonic, partially mono-
tonic, and nearly monotonic automata and languages. Section 6 concludes the paper.

2. Preliminaries

We assume the reader is familiar with basic theory of formal languages as in [25] for
example. Let ¥ be a non-empty finite alphabet and ¥*, the free monoid generated
by ¥. A word is any element of ¥*, and the empty word is . The length of a word
w € ¥* is |w|. A language over ¥ is any subset of ¥*. For any languages K and
L over %, we use the boolean operations: complement (L) and union (K U L). The
product, or (con)catenation, of K and L is KL = {w € ¥* | w = wv,u € K,v € L};
the star of L is L* = J;50 L', and the positive closure of L is LT = J;5, L".

We call languages 0, {€}, and {a} for any a € X the basic languages. Regular
languages are the class of languages constructed from the basic languages using only
boolean operations, product, and star. Star-free languages are the class of languages
constructed from the basic languages using only boolean operations and product.

A deterministic finite automaton (DFA) is a quintuple D = (Q, %, d, q1, F), where
Q is a finite, non-empty set of states, X is a finite alphabet, §: Q x ¥ — @ is the
transition function, ¢1 € @ is the initial state, and F' C @ is the set of final states.
We extend § to @ x X* in the usual way. The DFA D accepts a word w € X* if
d(q1,w) € F. The set of all words accepted by D is L(D). Regular languages are
exactly the languages accepted by DFAs. By the language of a state ¢ of D we mean
the language L,(D) accepted by the DFA (Q, 3,4, q, F). A state is empty (also called
dead or a sink state) if its language is empty. Two states p and g of D are equivalent if

4personal communication



4 J. Brzozowski, B. Li, and D. Liu

L,(D) = Ly(D). Otherwise, there exists a word w € L,(D)® Ly(D), where & denotes
symmetric difference, and states p and ¢ are distinguishable. A DFA is minimal if all
states are reachable and pairwise distinguishable.

An incomplete deterministic finite automaton (IDFA) is a quintuple Z =
(Q,%,0,q1, F), where Q, &, ¢1 and F are as in a DFA, and § is a partial function.
Every DFA is also an IDFA.

The left quotient, or simply quotient, of a language L by a word w is the language
w L = {z € ¥* | wz € L}. The Nerode equivalence ~p, of any language L over ¥ is
defined as follows [23]: For all z,y € ¥*,

x ~p yifand only if zv € L & yv € L, for all v € ¥*.

Clearly, 27 'L = y~'L if and only if 2 ~; y. Thus each equivalence class of the
Nerode equivalence corresponds to a distinct quotient of L.

Let L be a regular language. The quotient DFA of L is D = (Q, %, 0, q1, F'), where
Q={w'LjweX*}, §(w'La)=(wa) 'L,y = 'L=L,and F = {w™ 'L |c €
w~1L}. Every quotient DFA is minimal. The quotient IDFA of L is the quotient DFA
of L after the empty state, if present, and all transitions incident to it are removed.
The quotient IDFA is also minimal. If a regular language L has quotient IDFA 7,
then the DFA D obtained by adding the empty state to Z, if necessary, is the quotient
DFA of L. The two automata D and Z accept the same language.

The number (L) of distinct quotients of L is the quotient complezity of L. Since
the quotient DFA of L is minimal, quotient complexity is the same as state complexity.

The Myhill equivalence =y, of L is defined as follows [22]: For all z,y € X*,

x =~y y if and only if uzv € L & uyv € L for all u,v € ¥*.

This equivalence is also known as the syntactic congruence of L, and the quotient
¥*/~r is the syntactic monoid of L.

We also use ~, restricted to X7, that is, define ~, only for z,y € ¥T; then X1/~
is the syntactic semigroup of L, which we denote by Sp. The syntactic complexity
o(L) of L is the cardinality of its syntactic semigroup.

Although it would be possible to state our results entirely in terms of subsets of
YT, there are some serious disadvantages in doing so. One would then have to use
complementation with respect to X*. The DFA for the complement L of a language
L would no longer be obtained from the DFA of L by interchanging the sets of final
and non-final states. The state complexity of L would no longer be the same as that
of L. Also, almost all literature on regular languages deals with subsets of ¥*. For
these reasons, we deal with languages as subsets of ¥* as usual, but measure their
syntactic complexity by the size of the syntactic semigroup.

In Section 1, we mentioned the characterizations of finite/cofinite, definite, and
reverse definite languages in terms of syntactic semigroups. Such results cannot be
stated in terms of syntactic monoids, since the identity transformation induced by
the empty word is an idempotent that does not satisfy the stated conditions. For
consistency, we also use syntactic semigroups with monotonic, partially monotonic,
and nearly monotonic languages studied in Section 5.
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A partial transformation of a set @ is a partial mapping of Q) into itself; we consider
partial transformations of finite sets only, and assume without loss of generality that
Q ={1,2,...,n}. Let t be a partial transformation of Q. If ¢ is defined for i € @,
then it is the image of ¢ under ¢; otherwise it is undefined and we write it = 0. For
convenience, we let Ot = O. If X is a subset of @, then Xt = {it | i € X}. The
composition of two partial transformations ¢; and ¢2 of @) is a partial transformation
t1 o tg such that i(t; o to) = (it1)te for all i € Q. We usually drop the composition

[{PNki

operator “o” and write t1to for short.
An arbitrary partial transformation can be written in the form

¢ = 12---n—-1n
C \drdg e dny i )

where iy, = kt and i, € QU {0}, for k € Q. The domain of ¢ is the set dom(t) = {k €
Q | kt # O}. The range of t is the set rng(t) = dom(t)t = {kt | k € Q and kt # O}.
When the domain is clear, we also write t = [i1,..., 5]

A (full) transformation t of Q) is a partial transformation such that dom(t) = Q. Let
To be the set of all transformations of @); then 7¢ is a semigroup under composition.
The identity transformation 1 maps each element to itself, that is, :1 =i for all € Q.
A transformation ¢ is a cycle of length k > 2 if there exist pairwise distinct elements
i1,...,0 such that i1t = i9,iot = i3,...,ixg_1t = ig, ixt = 41, and jt = j for all
j & {i1,...,ir}. Such a cycle is denoted by (i1, i2,...,ix). For i < j, a transposition
is the cycle (4,7). A singular transformation, denoted by (i — j), has it = j and
ht = h for all h # i. A constant transformation, denoted by (Q — j), has it = j
for all i. A permutation of @ is a mapping of @) onto itself. A transformation ¢ is
permutational if there exists some X C @ with |X| > 2 such that t|x is a permutation
of X. Otherwise, t is non-permutational.

Let D = (Q,%,d,q1, F) be a DFA. For each word w € X7, the transition function

defines a transformation t,, of Q: for all i € Q, it,, def 0(i,w). The set Tp of all such
transformations by non-empty words forms a subsemigroup of 7¢, called the transition
semigroup of D [25]. Conversely, we can use a set {t, | a € X} of transformations to
define 4, and so the DFA D. When the context is clear we write a: ¢, where ¢t is a
transformation of ), to mean that the transformation performed by a € ¥ is t. If D
is the minimal DFA of L, then Tp is isomorphic to the syntactic semigroup Sy, of L
[21], and we represent elements of S by transformations in Tp.

For any IDFA 7, each word w € ¥* performs a partial transformation of ). The set
of all such partial transformations is the transition semigroup of Z. If 7 is the minimal
IDFA of a language L, this semigroup is isomorphic to the transition semigroup of
the minimal DFA of L, and hence also to the syntactic semigroup of L.

3. Aperiodic Transformations

A transformation is aperiodic if it contains no cycles of length greater than 1. A semi-
group T of transformations is aperiodic if and only if it contains only aperiodic trans-
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Figure 1: Forests and aperiodic transformations.

formations. Thus a language L with minimal DFA D is star-free if and only if every
transformation in Sp is aperiodic.

Let A, be the set of all aperiodic transformations of (). Each aperiodic transfor-
mation can be characterized by a forest of labeled rooted trees as follows. Consider,
for example, the forest of Figure 1 (a), where the roots are at the bottom. Convert
this forest into a directed graph by adding a direction from each child to its parent
and a self-loop to each root, as shown in Figure 1 (b). This directed graph defines
the transformation [1,4,4,5,5,7,7] and such a transformation is aperiodic since the
directed graph has no cycles of length greater than one. Thus there is a one-to-one
correspondence between aperiodic transformations of a set of n elements and forests
with n nodes.

Proposition 1 There are (n + 1)~ aperiodic transformations of a set Q of n > 1
elements.

Proof. By Cayley’s theorem [9, 27|, there are (n+ 1)"~! labeled unrooted trees with
n + 1 nodes. If we fix one node, say node n + 1, in each of these trees to be the root,
then we have (n+1)""! labeled trees rooted at n+1. Let T be any one of these trees,
and let vy, ..., v, be the children of n+ 1 in T'. By removing the root n + 1 from T,

we get a labeled forest F' with n nodes formed by m rooted trees, where vy, . .., v,, are
the roots. Then we get an aperiodic transformation of {1,...,n} by adding self-loops
ON V1, ..., U

All labeled rooted forests with n nodes can be obtained uniquely from some rooted
tree with n + 1 nodes by deleting the root. Hence there are (n+ 1)"~! labeled rooted
forests with n nodes, and that many aperiodic transformations of Q. O

Since the minimal DFA of a star-free language can perform only aperiodic trans-
formations, we have

Corollary 2 Forn > 1, the syntactic complexity o(L) of a star-free language L with
n quotients satisfies o(L) < (n+ 1)""L.

The bound of Corollary 2 is our first upper bound on the syntactic complexity of
a star-free language with n quotients, but this bound is not tight in general because
the set A, is not a semigroup for n > 3. For example, if a: [1,3,1] and b: [2,2,1],
then ab: [2,1, 2], which contains the cycle (1,2). Hence our task is to find the size of
the largest semigroup contained in A,,.
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Figure 2: Conflict graph for n = 3.

First, let us consider small values of n:

1. If n = 1, the only two languages, () and X*, are star-free, since X* = (0. Here
o(L) = 1, for both languages, the bound of Corollary 2 holds and is tight.

2. If n = 2, |A2| = 3. The only unary languages are € and € = aa*, and o(L) = 1
for both. For ¥ = {a,b}, one verifies that o(L) < 2, and X*aX* meets this
bound. If ¥ = {a, b, c}, then L = X*aX*bX* has o(L) = 3.

In summary, for n = 1 and 2, the bound of Corollary 2 is tight for |X| > 1 and
|Z| > 3, respectively.

We say that two aperiodic transformations a and b conflict if ab or ba contains
a cycle; then (a,b) is called a conflicting pair. When n = 3, |A3| = 42 = 16. The
transformations ag = [1,2,3], a1 = [1,1,1], a2 = [2,2,2], a3 = [3, 3, 3] cannot create
any conflict. Hence we consider only the remaining 12 transformations.

Let by = [1,1,3], bo = [1,2,1], b3 = [1,2,2], by = [1,3,3], b5 = [2,2,3], and
bs = [3,2,3]. Each of them has only one conflict. There are also two conflicting triples
(b1, b3, be) and (b, by, bs), since bybsbg and babsbs both contain a cycle. Figure 2 shows
the conflict graph of these 12 transformations, where normal lines indicate conflicting
pairs, and dotted lines indicate conflicting triples. To save space we use three digits
to represent each transformation, for example, 112 stands for the transformation
[1,1,2], and (112)(113) = 111. We can choose at most two inputs from each triple
and at most one from each conflicting pair. So there are at most 6 conflict-free
transformations from the 12, for example, by, bs, ba, b5, ¢c1 = [1,1,2], ca = [2,3,3].
Adding ag, a1,as and a3, we get a total of at most 10. The inputs ag, b4, b5, c1 are
conflict-free and generate precisely these 10 transformations. Hence (L) < 10 for
any star-free language L with x(L) = n = 3, and this bound is tight with |3| = 4.

4. Finite/Cofinite, Reverse Definite, and Definite Languages

One of the simplest classes of regular languages is the class of finite and cofinite
languages, where a language is cofinite if its complement is finite. We also study two
related classes: reverse definite and definite languages.

4.1. Finite/Cofinite Languages

Let L be a regular language and let D = (@, %, 6,1, F) be its minimal DFA. It is
well-known that L is finite/cofinite if and only if there exists a numbering 1,...,n on
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Q such that for all w € X%, 6(4,w) = j implies that ¢ < j or ¢ = j = n. Next, we
define the set B,, of transformations on Q:

B,={t]|it>ivVi=1,...,n—1, and nt = n}.

It is clear that B,, is a semigroup under composition and that its size is (n — 1)!.

Theorem 3 Let L be a finite or cofinite language with state complexity n. Then the
syntactic complezity of L satisfies o(L) < (n — 1)! and this bound is tight.

Proof. Let D = (Q,%,9,¢1, F) be the minimal DFA of L. The above discussion
implies that we may label the states @) so that Sy, is a subsemigroup of B,,. Therefore
the bound holds.

Let n > 1 and |3| = (n — 1)!. Let D be a DFA with states numbered {1,2,...,n},
initial state 1, empty state n, and final state n — 1. For each transformation t € B,,,
assign a letter in ¥ whose transformation in D is exactly ¢t. To show that D is
minimal, note that state ¢ > 1 is reached from the initial state 1 by the transformation
[i,m,n,...,n]. Also, ifiand j are two states and i < j < n—2, then the transformation
t € By, that has it = n—1, and kt = n for all other k # i, distinguishes the two states.
State n — 1 is distinguishable from other states because it accepts e, and state n is
the unique empty state. Hence D is minimal and accepts a finite language. Therefore
the bound is tight.

For cofinite languages, interchange final and non-final states and use the same
argument. O

A natural question is the minimal size of the alphabet required to achieve the upper
bound. Let D be the minimal DFA of a finite or cofinite language L with Sp = B,,.
For any state ¢ € Q and a € X, it is clear that §(i,a) > i+ 1 or i = n. It follows that
if an input transformation t € B,, satisfies it = i + 1 for some i € {1,2,...,n — 2},
then any word w corresponding to ¢t must have length 1, that is, w must be in 3.

Theorem 4 Let L C ¥* be a finite or cofinite language with state complexity n > 3,
and suppose that o(L) = (n — 1)I. Then || = (n — 1)! = (n — 2)! and this bound is
tight.

Proof. By Theorem 3, we may assume that S; = B,. The preceding discussion
implies that |3] is at least the number of transformations which satisfy it =i + 1 for
some i =1,...,n— 2. Let G,, C B, be the set of these transformations. If we place

the restriction it # i+ 1 for all ¢ € {1,2,...,n — 2}, then there are n —i — 1 choices
for these it, and hence a total of (n — 2)! such transformations. Therefore |G| =
|Bn| —(n—2)! = (n—1)! = (n—2)!. Now let t = [j1,...,Jn—2,n,n] € By, be arbitrary.
We have j,_o € {n —1,n}. If j,_2 = n—1, then t € G,,. Otherwise, j,_2 = n,
and let ' = [j1 — 1,...,jn-3— L, jn—2— L,n,n] =[j1 — 1,...,jn—3 — L,n — 1,n,nl.
Then t' € G, and t = t'[2,3,...,n — 1,n,n]. Thus G,, generates B,,, and the bound
is tight. ]
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Example 5 For n = 4, the largest transition semigroup of the minimal DFA of a
finite language has (4 — 1)! = 6 elements

B4 = {[2’ 374’ 4]7 [274’ 47 4]7 [37 3’ 47 4]’ [3’ 47 45 4]5 [4) 374) 4]5 [4) 47 4) 4]})

and its minimal generating set of 4 elements is shown in boldface. |

4.2. Reverse Definite Languages

A reverse definite language is a language L C ¥* of the form L = FE U FX*, where
E and F are finite languages. Because reverse definite languages are characterized
by prefixes of a fixed length, their minimal DFAs (and hence syntactic complexity
bounds) are very similar to those of finite/cofinite languages. We assume L is not
finite in this section. For state complexities n > 1, we note first that if () is not a
quotient of L, then L is cofinite. Otherwise, () and ¥* are both quotients of L. Let
D =(Q,%,0,q1, F) be the minimal DFA of L, and label the states corresponding to
() and ¥* with n — 1 and n, respectively. One can number the other states in Q so
that for all words w € X, if §(i,w) = j then i < j, with equality if and only if
ie{n—1,n}.

The syntactic complexity results for reverse definite languages now follow directly
from the results for finite/cofinite languages.

Theorem 6 Let L = E U FX* be a reverse definite language with state complezity
n > 2. Then o(L) < (n — 1)}, and this bound is tight. Moreover, if this language L
achieves this upper bound and n > 4, then |X| = (n — 1)! — 2(n — 2)!, and this bound
is tight.

Proof. TFirst, if () is not a quotient of L, then L is cofinite, and hence has the same
bounds as in the previous subsection.

Otherwise, let D be the minimal DFA recognizing L, and let the states be totally
ordered as in the preceding discussion. Define the set of transformations analogous
to the case of finite/cofinite languages:

B, ={t|it>iVi=1,...,n—2, (n—1)t =n—1, and nt = n}.

Then Sy, C B!, which a straightfoward calculation shows to be a semigroup. Clearly,
|B},| = (n — 1)!, thus proving the bound.

To find a witness, start with the finite witness as in the proofs of Theorems 3 and 4,
make all transitions from state n — 1 to go to n — 1 itself, and make state n the only
final state. The new automaton is minimal.

For the minimal size of the alphabet, we define G, C B], to be the set of trans-
formations ¢ in B!, satisfying it = i 4+ 1 for some ¢ = 1,...,n — 3. As in Section
4.1, these transformations must correspond to individual letters in ¥. The same in-
direct counting argument shows that for n > 4, |G| = (n — 1)! = 2 - (n — 2)!, hence
proving the bound. Now let ¢t = [j1,...,n-3,Jn—2,7 — 1,n] € B!, be arbitrary. Let
k = minlglgn_3{jl - — 1} Let t/ = []1 — k’, . ,jn_g — k,jn_z,n — 1,7’L]. Then
t' € G, and t =t'[2,3,...,n — 1,n — 1,n]k. Thus G/, generates B/,. Therefore the
alphabet-size bound is tight. ]
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Example 7 For n = 4, the finite witness meeting the bound (n — 1)! has the trans-
formation set given in Example 5. We modify this set by making n — 1 the empty
state, thus obtaining

B, =1{[2,3,3,4],(2,4,3,4],[3,3,3,4], (3,4, 3,4], 4,3, 3, 4], [4,4, 3, 4]},

where the generators are in boldface, and state 4 is final. This DFA accepts a reverse
definite language, and meets the syntactic complexity and alphabet-size bounds. W

4.3. Definite Languages

A definite language is a language L C X of the form L = EUX*F, where E and F are
finite languages. Like finite/cofinite and reverse definite languages, definite languages
are characterized by their transformation semigroups [10]. It follows from the com-
prehensive theory of definite languages developed by Perles, Rabin and Shamir [24]
that every transformation of the minimal DFA of a definite language must be non-
permutational, and conversely, if the transformation semigroup of a minimal DFA
contains only non-permutational transformations, then the DFA accepts a definite
language.

Our goal for this section is to find the maximal size of a non-permutational trans-
formation semigroup, that is, one which contains only non-permutational transforma-
tions. There is a straightforward bijection between such transformations on {1,...,n}
and simple labeled forests on n — 1 nodes, obtained by removing the unique node
for which it = i. Then Cayley’s Theorem [9, 27] shows that there are n"~! non-
permutational transformations of {1,...,n}.

Identifying non-permutational transformations is not sufficient to find a syntactic
complexity bound, as the set of such transformations does not form a semigroup for
n > 3. For example, the composition of s = [2,3,3] and ¢t = [1,1,2] is st = [1,2, 2],
which is permutational. Two transformations conflict if there exists a permutational
transformation in the semigroup that they generate.

We exhibit the following sets of non-permutational transformations which do not
conflict; they are similar to the semigroup B,, from Section 4.1.

Theorem 8 Let n > 2, and define the following sets of transformations:

Cok={t|it>iV1<i<k, and it=kVi>k}, k=123 ... ,n

n
Then the set of transformations C,, = U Ch i 15 a mazimal non-permutational semi-
k=1
group of size |e- (n—1)!].

Proof. One can check that each C,, j is a semigroup. Let t; € C,; and t; € Cy, ;,
with ¢ < j. A direct computation shows that t;t; € Cy, it;, and t;t; € C, 4; hence Cy, is
a semigroup. Moreover, for all t € G, j, t* =1 = (%), and so all of the transformations

are non-permutational.
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A counting argument shows that |Cy, x| = = k), Since the C),  are disjoint,

Cal =2 EZ k)!
k=1

this result is well known in combinatorics; see [14], for example.

For the maximality of C},, we show that adding any other non-permutational trans-
formation creates a conflict. Let ¢t ¢ C,, be non-permutational, with it = i.

First suppose that there exists a j < ¢ with jt = k£ < j. Since t is non-
permutational, we may assume k < j. Then there exists a t’ € Cy,; with kt' = j; then
itt’ =i and jtt' = j, and so ¢ and ¢’ conflict.

If no such j exists, then there must exist a j > i with jt # 7. Consider the sequence
defined by jo = j, i = ji—1t. If there exists an [ such that j;t = ji+1 <4, let [ be the
minimal one. Let ¢’ € Cy, ;, with ji41t' =i and i’ = j;. Then itt’ = j;, jitt’ = ¢, and
so tt’ is permutational. Finally suppose j; > ¢ for all [. Since ¢ is non-permutational,
1 must appear in the sequence; moreover, since j; = jt # i, we can pick [ > 0 so that
i = ji42. Since ji41 > ¢, we may find a transformation ¢’ € C,, ;, with it’ = j;11 and
i1t = ji. Then it't =4, ji1t't = ji11, and 't is permutational. |

s (n—1)!
D e (a1

M

=0

To compute the generators of C,, we require the following definition. Let D,
be the set of all transformations ¢ = [i1,...,4,] € C, with all i; < n. Define the
function «: D,, — C,, by «a(t) = [i1 +1,...,i, + 1], and also a(D,) = {t € C,, |
a(ty) =t for some ty € D, }. Clearly, « is a bijection. Note that we may also write
at) =1t[2,3,...,n,n].

Theorem 9 Let H,, = C,\a(D,,). Then

(1) H, is the minimum set of generators for C,,.
(2) [Hn| = le-(n=1)!] —[e- (n—2)!].

Proof. For (1), note that [2,3,...,n,n] € H,. For any t € C,, we can write t =
t0[2,3,...,n,n]* with k > 0 and tq € H,,. Therefore H, generates C,,.

Now let ¢; € Cp; and t; € Cy, ;, with ¢ > j. We consider mt;t;, and use the fact
that each transformation t € C,, j, satisfies mt > min{k, m + 1}. There are two cases:

(a) If m > j — 1, then mt; > min{i,m + 1} > j; hence mt;t; = j.
(b) If m < j — 2 < i, then mt; > m + 1; hence mt;t; > min{j, m¢; + 1} > m + 2.

It follows that a=1(t;t;) € Cy, j—1; a similar argument shows that a1 (¢;t;) € Cy_jt, —1.
Consequently, no transformation in H, is a composition of two others in C,,, and so
H,, is the minimum generating set of C,.

For (2), we calculate |a(D,,)|, or equivalently |D,| because « is a bijection. A

counting argument shows that |C, N D, | = % Therefore

|Hp| = |Ch| — |a(Dy)] = |Cnl| — i (n— gn__(]i)'_ 1)!
k=1 '

—le-(n—1)!]—|e-(n—2)].

O
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The following corollary establishes a direct connection with definite languages.

Corollary 10 For all n > 2, there exists a definite language L with state complexity
n, syntactic complezity o(L) = |e-(n—1)!|, and alphabet size |e-(n—1)!|—|e-(n—2)!].

Proof. Let D = (Q,%,0,q1, F) be a DFA with @ = {1,2,...,n}, 1 = 1, F = {n},
and |X| = [e- (n — 1)!] — |e - (n — 2)!] with each letter representing a different
transformation in H,,, so that the transformation semigroup of D is C,. We claim
that this is a minimal DFA of a definite language. First, all the states are reachable by
the constant transformations (Q — i) € C,,. Also, any two states i, j with i < j <n
are distinguishable by the transformation t € ), which acts as kt = k+1 for 1 < k < 1,
and kt = n for k > i. State n is distinguishable from every other state because it is
the only final state. Hence D is minimal. Since C,, is a non-permutational semigroup,
D accepts a definite language. O

Conjecture 11 Let L be a definite language with state complexity n > 2. Then
o(L) < e (n—1)!], and if equality holds then |X| = |e- (n—1)!] — [e- (n — 2)!].

Example 12 For n = 4 we have the following transformations in C,:

Cin={[1,1,1,1]},

Cio=1{[2,2,2,2],[3,2,2,2],[4,2,2,2]},

Cys = {[2,3,3,3],[2,4,3,3],[3,3,3,3],[3,4,3,3|,[4,3,3,3],[4,4, 3, 3]},
Cya= {[2, 3,4,4], [2,4,4,4], [3, 3,4,4], [3,4,4,4], [4, 3,4,4], [4,4,4,4]}.

The generators are in boldface. |

5. Monotonicity in Transformations, Automata and Languages

We now study syntactic semigroups of languages of monotonic and related automata.

5.1. Monotonic Transformations, DFAs and Languages

In Section 3 we have shown that, when n = 3, the tight upper bound on the syntactic
complexity of star-free languages is 10, and it turns out that this bound is met by a
monotonic language (defined below). This provides one reason to study monotonic
automata and languages. A second reason is the fact that all the tight upper bounds
on the quotient/state complexity of operations on star-free languages are met by
monotonic languages [7].

Let < be a total order on Q. A transformation ¢ of @ is monotonic if, for all
p,q € Q, p < q implies pt < gt. From now on we assume that < is the usual order on
integers, and that p < ¢ means that p < ¢ and p # q.

Let Mg be the set of all monotonic transformations of ). In the following, we
restate slightly the result of Gomes and Howie [13, 16] for our purposes, since the
work in [13] does not consider the identity transformation to be monotonic.
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Theorem 13 (Gomes and Howie) When n > 1, the set Mg is an aperiodic semi-
group of cardinality

-0 (20 - ()

and it is generated by the set H = {a,b1,...,bn_1,c}, where, for 1 <i<n—1,
1. la=1,ja=j—1for2<j<n
2. ib; =141, and jb; = j for all j #i;
3. c is the identity transformation.
Moreover, for n = 1, a and ¢ coincide, but the cardinality of the generating set
cannot be reduced for n > 2.

Example 14 For n = 1 there is only one transformation a = ¢ = [1] and it is
monotonic. For n = 2, the three generators are a = [1,1], by = [2,2] and ¢ = [1, 2],
and Mg consists of these three transformations. For n = 3, the four generators
a=1[1,1,2], by = [2,2,3], bo = [1,3,3], and ¢ = [1,2, 3] generate all ten monotonic
transformations, as shown in Table 1. For n = 4, the following five transformations
generate all 35 monotonic transformations: [1,1,2,3], [2,2,3,4], [1,3,3,4], [1,2,4,4]
and [1,2,3,4]. [ ]

Table 1: The monotonic transformations for n =

| [ a] b | 62| c|aa]abi|abs]bsa]boby \ablbg\
12 Jaffi]2]1][1]2]3
1] 2[3 121 ]2]3]3
2] 3|3 123 ]2]3]3

[\

w

Remark 15 By Stirling’s approximation, f(n) = |Mg| grows asymptotically like

4" /(24/7n) as n — oo.

Now we turn to DFAs whose inputs perform monotonic transformations. A DFA
is monotonic [1] if all transformations in its transition semigroup are monotonic with
respect to some fixed total order. Every monotonic DFA is aperiodic because mono-
tonic transformations are aperiodic. A regular language is monotonic if its minimal
DFA is monotonic.

Let us now define a DFA having as inputs the generators of Mg:

Definition 16 For n > 1, let DM = (Q,%,6,1,{n}) be the DFA in which Q =
{1,...,n}, X ={a,b1,...,bp_1,c}, and each letter in ¥ performs the transformation
defined in Theorem 183.
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DFA D,l\f is minimal for the following reasons: For 2 < i < n, state ¢ is reached
by w; = b1 ---b;j—1; so all states are reachable. For all ¢,j such that 1 <1 < j < n,
state j accepts u; = b; - - - b,_1, but state i rejects u;; state n is the unique final state.
Hence all states are distinguishable. From Theorem 13 we have

Corollary 17 For n > 1, the syntactic complexity o(L) of any monotonic language
L with state complezity n satisfies o(L) < f(n) = (**'). Moreover, this bound is

met by the language L(DM) of Definition 16, and when n > 2 it cannot be met by any
monotonic language over an alphabet having fewer than n + 1 letters.

5.2. Monotonic Partial Transformations and IDFAs

As we shall see, for n > 4 the maximal syntactic complexity cannot be reached by
monotonic languages. We now extend the concept of monotonicity from full trans-
formations to partial transformations, and hence define a new subclass of star-free
languages. The upper bound of syntactic complexity of languages in this subclass is
above that of monotonic languages for n > 4.

Let < be a total order on Q. A partial transformation ¢ of Q is monotonic if, for
all p,q € dom(t), p < ¢ implies pt < gt. As before, we assume that the total order
on @ is the usual order on integers. Let PMg be the set of all monotonic partial
transformations of @ with respect to such an order. Gomes and Howie [13] showed
the following result, again restated slightly:

Theorem 18 (Gomes and Howie) When n > 1, the set PMg is an aperiodic
semigroup of cardinality

Paal =90 =3 (1) ("1 7))

k

and it is generated by I = {a,b1,...,bp_1,¢1,...,Cn-1,d}, where, for 1 <i<n—1,
1. la=0,andja=j—1 forj=2,...,n;
2. ibj=4i+1, (i+1)b;=0, and jb; =3 forj=1,...;i —1,i+2,...,n;
3. ic, =141, and je; = j for all j # i;
4. d is the identity transformation.
Moreover, the cardinality of the generating set cannot be reduced.

Example 19 For n = 1, the two monotonic partial transformations are ¢ = [0O],
and d = [1]. For n = 2, the eight monotonic partial transformations are generated
by a = [0,1], by = [2,0], ¢; = [2,2], and d = [1,2]. For n = 3, the 38 monotonic
partial transformations are generated by a = [0,1,2], by = [2,0,3], b2 = [1,3,0],
c1=1[2,2,3], c2 =[1,3,3] and d = [1,2,3].

Partial transformations correspond to IDFAs. For example, a = [0, 1], b = [2,0]
and ¢ = [2, 2] correspond to the transitions of the IDFA of Figure 3 (a). |

Laradji and Umar [19] proved the following asymptotic approximation:
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b
a m
Q=00 O
(a) a,b,¢ (b)

Figure 3: Partially monotonic automata: (a) IDFA; (b) DFA Dy.

Remark 20 For large n, g(n) = |[PMg| ~ 273/4(v/2 +1)?"+1 )\ /mn.

An IDFA is monotonic if all partial transformations in its transition semigroup
are monotonic with respect to some fixed total order. A minimal DFA is partially
monotonic if its corresponding minimal IDFA is monotonic. A regular language is
partially monotonic if its minimal DFA is partially monotonic. Note that monotonic
languages are also partially monotonic.

Example 21 If we complete the transformations in Figure 3 (a) by replacing the
undefined entry O by a new empty state 3, as usual, we obtain the DFA of Figure 3 (b).
That DFA is not monotonic, because 1 < 2 implies 2 < 3 under input b and 3 < 2
under ab. A contradiction is also obtained if we assume that 2 < 1. However, this
DFA is partially monotonic, since its corresponding IDFA, shown in Figure 3 (a), is
monotonic.

The DFA of Figure 4 is monotonic for the order shown. It has an empty state, and
is also partially monotonic for the same order. |

Consider any partially monotonic language L with quotient complexity n. If its
minimal DFA D does not have the empty quotient, then L is monotonic; otherwise,
its minimal IDFA Z has n — 1 states, and the transition semigroup of Z is a subset of
PMg/, where Q" = {1,...,n—1}. Hence we consider the following semigroup C'M¢ of
monotonic completed transformations of . Start with the semigroup PMg . Convert
all t € PMg to full transformations by adding n to dom(¢) and letting it = n for
all i € @\ dom(t). Such a conversion provides a one-to-one correspondence between
PMgr and CMg. For n > 2, let e(n) = g(n —1). Then semigroups C Mg and PMc¢:

b a

BBl

Figure 4: Partially monotonic DFA that is monotonic and has an empty state.
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are isomorphic, and e(n) = |CMg]|.

Definition 22 For n > 2, let D'M = (Q,%,5,1,{n — 1}) be the DFA in which
Q={L1,....,n}, X ={a,b1,...,bp—2,¢1,...,Cn2,d}, and each letter in ¥ defines a
transformation such that, for 1 <i<n— 2,

1. la=na=mn,andja=j—1forj=2,...,n—1;

2. ib=i+1, i+ 1)bi=n, and jb; =3 forj=1,...,i—1,i4+2,...,n;

3. ic;=1+1, and je; = j for all j #i;

4. d is the identity transformation.

DFA DSM is minimal for the following reasons: For 2 < ¢ < n—1, state ¢ is reached
by w; = by ---b;—1, and state n is reached by a; hence all states are reachable. For
1 < i < n—2 only state i accepts b; - - - b,,—2, state n — 1 is the unique final state, and
state n is the unique empty state. Hence all the states are distinguishable.

We know that monotonic languages are also partially monotonic. As shown in
Table 2 on page 21, |Mg| = f(n) > e(n) = |CMg| for n € {2,3}. On the other hand,
one verifies that e(n) > f(n) when n > 4. By Corollary 17 and Theorem 18, we have

Corollary 23 The syntactic complexity of a partially monotonic language L with
state complexity n satisfies o(L) < f(n) for n < 3, and o(L) < e(n) for n > 4.
Moreover, when n > 4, this bound is met by L(DEM) of Definition 22, and it cannot
be met by any partially monotonic language over an alphabet having fewer than 2n — 2
letters.

Table 2 contains these upper bounds for small values of n. By Remark 20, the
upper bound e(n) is asymptotically 273/4(v/2 4+ 1)**~1//m(n — 1).

5.8. Nearly Monotonic Transformations and DFAs

In this section we develop an even larger aperiodic semigroup based on partially
monotonic languages.

Let K¢ be the set of all constant transformations of (), and let NMg = CMoUKg.
We shall call the transformations in N Mg nearly monotonic with respect to the usual
order on integers.

Theorem 24 When n > 2, the set NMg of all nearly monotonic transformations of
a set QQ of n elements is an aperiodic semigroup of cardinality

|NMQ|—h(n)—e<n>+<n—1>—§(”;1> (") -,

k=0

and it is generated by the set J = {a,by,...,bp_2,¢1,...,Ccn_2,d,e} of 2n — 1 trans-
formations of Q, where e is the constant transformation (Q — 1), and all other
transformations are as in Definition 22. Moreover, the cardinality of the generating
set cannot be reduced.
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Proof. Pick any ti,t2 € NMg. If t1,to € CMg, then tita € CMg. Otherwise
t1 € Kg or tg € Kq, and tity is a constant transformation. Hence £t € NMg
and N Mg is a semigroup. Since constant transformations are aperiodic and C'Mg is
aperiodic, N Mg is also aperiodic.

If X is a set of transformations, let (X') denote the semigroup generated by X. Since
J C NMg, (J) C NMg. Let I' = J\ {e}, and Q' = Q\ {n}. Then PM¢g ~ CMqg =
(I'). For any t = (Q — j) € K¢, where j € Q, since s; = [j,...,j,n] € CMg C ({J),
we have t = es; € (J). So NMg = (J). Note that (Q — i) € CMg if and only if
i =n. Thus h(n) = [NMg| = |[PMg/|+ (n — 1) = e(n) + (n — 1).

Suppose J' is a generating set of NMg and |J'| < |J|. Note that NMg = CMg U
Kg, and CMo N Kg = {(Q — n)}. Let R =J" NCMg. We must have J' \ R # 0;
otherwise, since C' Mg is a semigroup, J' = R C CMg, and (J') C CMg # NMg. So
|R| < |I'|. Pick any t € CMg. Since CMg C NMg = (J'), there exist s1,...,s, € J’
such that ¢ = s;1---s5. If t # (Q — n), then t ¢ Kg; since Kq is an ideal of
NMg, we have s; € J'\ Kg C R for all s;, and t € (R). If ¢t = (Q — n), then
t=12,3,...,n,n]""1 € (R) as well. Thus (R) = CMg. This contradicts the fact that
I' is a minimal generating set of CMg. So J is a minimal generating set of NMg. O

Example 25 For n = 2, the three nearly monotonic transformations are a = [2,2],
d =[1,2] and e = [1,1]. For n = 3, the ten nearly monotonic transformations are
generated by a = [3,1,3], by =[2,3,3], c1 =[2,2,3], d=[1,2,3], and e = [1,1,1]. W

An input a € ¥ is constant if it performs a constant transformation of ). Let D
be a DFA with alphabet X; then D is nearly monotonic if, after removing constant
inputs, the resulting DFA D’ is partially monotonic. A regular language is nearly
monotonic if its minimal DFA is nearly monotonic.

Definition 26 For n > 2, let DM = (Q,%,5,1,{n — 1}) be a DFA, where Q =
{1,...,n}, ¥ ={a,b1,...,bp—2,¢1,...,Cn2,d, e}, and each letter in ¥ performs the
transformation defined in Definition 22 and Theorem 24.

Theorem 24 now leads to the following result:

Theorem 27 Forn > 2, if L is a nearly monotonic language with state complezity
n, then o(L) < h(n) = Z;é " ("Jr,]:*Q) + (n—1). Moreover, this bound is met by
the language L(DYM) of Definition 26, and cannot be met by any nearly monotonic
language over an alphabet having fewer than 2n — 1 letters.

Proof. Note that DXM is obtained from D™ by adding the input e. Since DEM is
minimal, D™ is minimal as well. Thus L has state complexity n. The syntactic
semigroup of L is generated by J; so L has syntactic complexity (L) = h(n) =

Z;é ™ ("+Zf2) + (n — 1), and it is nearly monotonic. O

Recall that e(n) > f(n) for n > 4. Since h(n) = e(n) + (n — 1), and h(n) = f(n)
for n € {2,3}, as shown in Table 2, we have h(n) > f(n) for n > 2, and the maximal
syntactic complexity of nearly monotonic languages is at least that of both monotonic
and partially monotonic languages.
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Although we cannot prove that N Mg is the largest semigroup of aperiodic transfor-
mations, we can show that no transformation can be added to NMg. The following
result shows that the syntactic semigroup Sppyxwy = NMg of L(DYXM) in Defini-
tion 26 is a local maximum among aperiodic subsemigroups of 7g.

Proposition 28 Let S be an aperiodic subsemigroup of Tg. If NMg C S, then
NMg =S.

Proof. Suppose S C Tg is an aperiodic semigroup and NMg C S. Assume S #
NMg. Then there exists t € S\ NMg. There are two cases:

1. nt =n. Since CMg C NMg, t is not a monotonic completed transformation,
and there exist 4,7 € Q\{n} such that i < j and n > it > jt. Let 7 € 7o be such
that (jt)7 =i, (it)7 = j, and h7 = n for all h # it,jt. Then 7 € NMg C S,
and tr € S. However, t7 contains a cycle (4, j); so it is not aperiodic.

2. nt # n. Since Kg € NMg, t is not constant; so there exists ¢ # n such that
it # nt. Let 7/ € Tg be such that (it)7’ = n, and hr’ =i for all h # it. Then
7€ CMg C NMg C S, and t7’ € S. However, ¢’ contains a cycle (i,n); so it
is not aperiodic.

Since S is not aperiodic in both cases, we have a contradiction. Hence NMg = S. O

5.4. Containment and Closure Properties

Let Las, Lpas, Lyas, and Lgp be the classes of monotonic, partially monotonic,
nearly monotonic and star-free languages. Then the following holds:

PI‘OpOSitiOI‘l 29 LM g_ LPM g LNM g_ LSF-

Proof. The DFA Dy of Figure 3 (b) is partially monotonic but not monotonic. If we
add to that DFA the input d: [1, 1, 1], then the new DFA is nearly monotonic but not
partially monotonic. The DFA of Figure 5 is aperiodic, as one can verify. It has no
constant input; hence it must be partially monotonic if it is nearly monotonic. Since
it has no empty state, it must be monotonic if it is partially monotonic. However, if
1 < 2, then 3 < 2 by a, and also 2 < 3 by b. We get a similar contradiction if we set
2 < 1. Therefore D is not monotonic. One verifies that these DFAs are minimal. O

Proposition 30 The following closure properties of Lys, Lppr, and Ly hold:

1. All three classes are closed under left quotients.
2. The class LLys is closed under complementation, but Lpys and Ly are not.

3. None of the three classes is closed under union, symmetric difference, intersec-
tion, difference, product, star and reversal.



Syntactic Complexities of Six Classes of Star-Free Languages 19

EO==O==0 o]

Figure 5: A DFA that is aperiodic but not monotonic.

Proof. The left quotient of any monotonic, partially monotonic, or nearly monotonic
language is defined by a DFA that is a subautomaton of the DFA of the original
language; such a DFA is minimal, and closure under quotients follows.

For monotonic languages, closure under complementation is obvious, since mono-
tonicity does not involve final states. For partially monotonic languages, consider
the DFA Dy of Figure 3 (b), which is minimal, partially monotonic, and also nearly
monotonic since it has no constant inputs. By interchanging final and non-final states,
we obtain DFA Dj, which is minimal and accepts L(Dy). From the proof of Propo-
sition 29 we know that Dy is not monotonic, and so neither is Dj; since Dj, has no
empty state, it is not partially monotonic. Hence ILpjys is not closed under comple-
ment. Because Dj, does not have any constant inputs, it is not nearly monotonic.
Since Dy is nearly monotonic, Ly is also not closed under complement.

The language of the DFA of Figure 5 is not nearly monotonic. However, it is the
union of languages L1 = a(e U X*b) and Ly = bE*b. The DFA of Ly is shown in
Figure 4, and it is monotonic. One verifies that Lo is also monotonic. This proves
that each of the classes is not closed under union.

Since Ly and Lo are disjoint, none of the three classes is closed under symmetric
difference, since there is lack of closure under union.

For intersection, consider L} = Ly and L, = Lg; L) and L), are monotonic, since
monotonic languages are closed under complement. Since neither L} nor L/ has
the empty quotient, both are also partially monotonic. Since their DFAs do not
have empty quotients, L] nor L} are also nearly monotonic. If L/ = L} N L}, then
L' = LiNLy;=(LyULy). Since L1 U Ly is not monotonic, neither is L'. Since L’
does not have the empty quotient, it is not partially monotonic. Also, the DFA of L’
has no constant inputs, and so L’ is not nearly monotonic. This proves lack of closure
under intersection for all three classes.

Since the class of monotonic languages is closed under complement, it cannot be
closed under difference. If the class of partially or nearly monotonic languages were
closed under difference, then it would also be closed under complement, since L =
¥*\ L, and ¥* is in the class.

Now consider DFAs: D3 = ({1,2,3},{a,b},d3,1,{2}), where a: [1,1,1] and
b: [2,3,3], and Dy = ({1,2,3},{a,b},ds,1,{2}), where a: [1,1,3] and b: [2,3,3].
Both D3 and D4 are monotonic. Let L = L(D3) - L(D4). Then L is star-free
with minimal DFA D = ({1,2,3,4,5,6},{a,b},0,1,{3,6}), where a: [1,5,5,1,5,5]




20 J. Brzozowski, B. Li, and D. Liu

Figure 6: Minimal DFA D of product of partially monotonic DFAs D3 and Ds.

and b: [2,3,4,4,6, 3], as shown in Figure 6. However, D is not nearly monotonic. If
1<6,then1 <5bya, 2<3byb 3<4bybdagain, and 5 < 1 by a, which is a
contradiction. We get a similar contradiction by assuming 6 < 1. Hence none of the
three classes of monotonic languages is closed under product.

Lack of closure under star follows, since each class contains the language {aa}, and
the star of {aa} is not star-free.

The counterexamples to closure under reversal are L(D3) above for monotonic
languages, and L(Dj5) for both partially and nearly monotonic languages, where D5 =
({1,2,3,4},{a,b},d5,1,{4}), a: [2,3,4,4] and b: [1,4,2,4]. ]

6. Conclusions

We have found tight upper bounds on the syntactic complexity of finite/cofinite and
reverse definite languages. We have conjectured the bounds on the syntactic com-
plexity and the corresponding alphabet size for definite languages. The conjecture
has been verified through enumeration for n < 4, but remains unproven for n > 4.

Our results on the other three subclasses of star-free languages are summarized in
Table 2, where @ = {1,...,n}, and Q' = Q\ {n}. The numbers in bold type are tight
bounds verified using GAP [11], by enumerating aperiodic subsemigroups of 7¢g. The
asterisk * indicates that the bound is already tight for a smaller alphabet. The last
four rows show the values of f(n) = |Mg|, e(n) = |CMg| = |PMg/|, h(n) = |[NMg|,
and the weak upper bound (n + 1)"7L.

For future work, it would be interesting to establish tight upper bounds on the
syntactic complexity of these subclasses for fixed alphabet sizes. But the main open
problem is that of syntactic complexity of arbitrary star-free languages.
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Table 2: Syntactic complexity of monotonic and related languages.

=) n 1 ]2]3]4]5]¢6 |
1 1 1 2 3 5 6
2 * 2 7 | 19 | 62 ?
3 * 3 9 | 31 | 7 ?
4 * x |10 | 34 | 7 ?
5 * * * | 37 | 125 | 7

f(n) = |Mg)| 1 10 | 35 | 126 | 462

e(n) =|CMq|=g(n—1)=|PMqg| || — 8 | 38 | 192 | 1,002

h(n) =|NMg|=e(n)+ (n—1) — 10 | 41 | 196 | 1,007

wWlw|Nn| W

(n—+1)"1 1 16 | 125 [1,296]16, 807
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