
Worst Case Latency Analysis
of Hoplite FPGA-based NoC

1,2Saud Wasly, 1Rodolfo Pellizzoni, 1Nachiket Kapre
1University of Waterloo, Canada, {swasly, rpellizz, nachiket}@uwaterloo.ca

2King Abdulaziz University, Saudi Arabia, swasly@kau.edu.sa

Abstract—

Overlay NoCs, such as Hoplite, are cheap to implement on
an FPGA but provide no bounds on worst-case routing latency
of packets traversing the NoC due to deflection routing. In this
paper, we show how to adapt Hoplite to enable calculation of
precise upper bounds on routing latency by modifying the routing
function to prioritize deflections, and by regulating the injection
of packets to meet certain throughput and burstiness constraints.
We provide an analytical model for computing end-to-end latency
in the form of (1) in-flight time in the network T f , and (2) waiting
time at the source node T s. To bound in-flight time in an m×m
NoC, we modify the routing function and switching crossbar
richness in the Hoplite router to deliver T f = ∆X + ∆Y +
(∆Y ×m) + 2 where ∆X and ∆Y are differences of the source
and destination address co-ordinates of the packet. To bound the
waiting time at the source, we add a Token Bucket regulator
with rate ρi and burstiness σi for each flow fi of node (x, y) to
deliver (d 1

ρ
i
e − 1) + T s : T s = d σ(ΓCf )

1−ρ(ΓC
f

)
e which depends on the

regulator period 1/ρi, burstiness σ and the rate ρ of all interfering
flows ΓCf . A 64b implementation of our HopliteRT router requires
≈4% fewer LUTs, and similar number of FFs compared to the
original Hoplite router. We also need two small counters at each
client port for regulating injection. We evaluate our model and
RTL implementation across synthetic traffic patterns and observe
behavior that conforms with the analytical bounds.

https://git.uwaterloo.ca/watcag-public/hoplitert-bounds

I. INTRODUCTION

Overlay NoCs (network-on-chip) such as Hoplite [1] pro-
vide a low-cost, high-throughput implementation of communi-
cation networks on FPGAs. NoCs allow designers to compose
large-scale multi-processor, or multi-IP digital systems while
providing a standard communication interface for interaction.
This trend is true in the embedded, real-time computing
domain with multi-core chips supported by message-passing
NoCs [2], [3]. Modern real-time applications [4], [5] require
many communicating processing elements to cooperate on
executing the task at hand. In contrast, with shared memory
systems that rely on cache coherency, explicit message passing
on a suitably-designed NoC allows real-time applications to
have (1) deterministic bounds on memory access, and (2)
energy-efficient transport of data within the chip. FPGAs
should be a particularly attractive target for the real-time
computing market due to the small shipment volumes of
real-time products, and the ability to deliver precise timing
guarantees that are desirable for certification and correct, safe
operation of such systems.

Until recently, FPGA-based NoCs were inefficient and
bloated due to the implementation cost of switching multi-
plexers and FIFO queues. Hoplite [1] uses deflection routing
to (1) reduce the LUT mapping cost of the switching crossbar,
and (2) remove queues from the router that are particularly
expensive on FPGAs. When compared to other FPGA NoCs
such as CMU Connect [6], and Penn Split-Merge [7] routers,
Hoplite is lean, fast, and scalable to 1000s of routers on the
same FPGA chip. Deflection routing resolves conflicts in the
network by intentionally mis-routing one of the contending
packets. In baseline Hoplite, these deflections can go on forever
resulting in livelocks. Even if this is unlikely, such behavior
makes it unsuitable to use this NoC in a real-time environment
where bounds on routing time must be computable to meet
strict timing deadlines imposed by the application. An age-
based routing scheme for resolving livelocks in deflection-
routed networks does exist, but this requires extra wiring cost
for transporting age bits and still does not deliver strict upper
bounds that we are able to show in this work.

In this work, we answer the following question: Can we
modify Hoplite for real-time applications to deliver strong,
deterministic upper bounds on worst-case routing latency
including waiting time at the client? We introduce Hoplite-
RT (Hoplite with Real-Time extensions) that requires no extra
LUT resources in the router and only two cheap counters in the
client/processing element. These modifications implement the
new routing logic and packet regulation policy in the system.
The router modification has a zero cost overhead over baseline
Hoplite due to a simple re-encoding of multiplexer select
signals that drive the switching crossbars. With cheap counters
at the client injection port, we can enforce a token bucket
injection policy that controls the burstiness and throughput of
the various packet flows in the system.

The key contributions of our work include:

• Design and RTL implementation of Hoplite-RT routers
to (a) evaluate resource costs on a Xilinx Virtex-7 FPGA,
and (b) confirm correctness of the routing policy in cycle-
accurate simulations.

• Computation of analytical bounds for (a) in-flight time in
the NoC, and (b) waiting time at the client/PE ports.

• Design of an analysis tool for use in real-time system
design flow that accepts a list of traffic flows to determine
feasibility, and to calculate bounds using our analytical
expressions. Validation of these bounds on cycle-accurate

1



2:1

2:1

W
E

N

SPE

(a) Shared East exit

2:1

3:1

W
E

N

SPE

(b) Without sharing

Fig. 1: Implementation choices for the Hoplite FPGA NoC
Router. A LUT-economical version (left) is able to exploit
fracturable Xilinx 6-LUTs to fit both 2:1 muxes into a single
6-LUT. The larger, higher-bandwidth version (right) needs
2 6-LUTs instead as the number of common inputs is lower
than required to allow fracturing.

simulations of various test cases.

II. MOTIVATION

In this section, we introduce the Hoplite router switching
architecture and identify why the worst-case deflection and
source queueing latencies can be unbounded.

Hoplite routes single-flit packets over a switched commu-
nication network using Dimension Ordered Routing (DOR).
DOR policy makes packets traverse in the X-ring (horizontal)
first followed by the Y-ring (vertical). Hoplite uses bufferless
deflection routing and a unidirectional torus topology to save
on FPGA implementation cost. While DOR is not strictly
required for deflection-routed switches, Hoplite includes this
feature to reduce switching cost by eliminating certain turns
in the router. The internal microarchitecture of the router is
shown in Figure 1 with three inputs N (North), W (West)
and PE (processing element or client, used interchangeably
in the text) and two outputs S (South + processor exit) and E
(East). When packets contend for the same exit port, one of
them is intentionally mis-routed along an undesirable direction
to avoid the need for buffering. The fractured implementation
(Figure 1a) serializes the multiplexing decisions to enable
a compact single Xilinx 6-LUT realization of the switching
crossbar per bit. However, this sacrifices the routing freedom
to achieve this low cost. A larger design (Figure 1b) that needs
2 6-LUTs per bit (2× more cost) permits a greater bandwidth
through the switches. The larger cost is due to the inability
to share enough inputs that would have allowed fracturing
the Xilinx 6-LUT into dual 5-LUTs. This larger design will
become important later in Section III when considering the
microarchitecture of HopliteRT.

When considering the routing function capabilities of the
Hoplite router, we make the following observations:

• The PE port has lower priority than the network ports
N and W resulting in waiting time for packet injections.
A client can get dominated by traffic from other clients

PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw

PE
(3,3)

PE
(0,0)

Fig. 2: Endless deflection scenario where red packets from
(0,0)→ (3,3) are perpetually deflected by blue packets from
(3,3) → (3,1). The red spaghetti is the flight path of one
packet that gets trapped in the top-most ring of the NoC and
never gets a chance to exit due to the bossy blue packets.

potentially blocking it forever. This is the source of un-
bounded waiting time at the client injection and called
source queueing latency.
• The N packet only travels S and no path to E is permitted
under DOR routing rules. Thus N packets can never be mis-
routed (or deflected) and are guaranteed unimpeded delivery
to their destination.
• As a consequence, conflicts and deflections may only

happen on a W → S packet which is attempting to turn.
A deflected packet must route around the entire ring in the
network before attempting a turn again.
• Due to the static priority for N → S packets, an unlucky
W → S packet may deflect endlessly in the ring and
livelock and result in unbounded NoC in-flight routing
time. This scenario is shown in Figure 2.
• Deflections also steal bandwidth away from PEs in the ring,

and add more waiting time penalty for packets wishing to
use the PE exit.

To summarize, the communication latency between two
PEs at (X1, Y1) and (X2, Y2) on the zero-load network is
T s + (∆X + 1) + (∆Y + 1) due to DOR policy. Here, T s is
the waiting time at PE level, (∆X + 1) + (∆Y + 1) are the
number of steps in the X-ring and the Y-ring respectively. The
worst-case in-flight routing and source queueing latencies
in Hoplite are both ∞. This is problematic for real-time
applications that need guaranteed bounds on application execu-
tion. If such an application wishes to use the baseline Hoplite
NoC for interacting with other components, one of the packets
may get victimized and deflect endlessly or a client port may
get blocked forever. As a result, the real-time application will
miss its deadline and violate the system design requirements.
For safety critical applications (hard real-time applications)
the deadlines are hard constraints that cannot be violated. For
NoCs in general, it is possible to provide statistical guarantees

2



3:1

3:1

W
E

N

SPE

Fig. 3: Proposed router configuration for bounded in-flight
latency. Despite splitting the logic into 2× 5-LUTs (3:1
muxes), the same multiplexer select signals (with different
interpretation) drive both multiplexers. This allows a com-
pact 6-LUT implementation per bit.

on packet delivery times but these are still not strong enough
for hard real-time problems.

The next two sections proposes minimal modifications to
the Hoplite router and Client (PE) to provide exact upper
bounds of the worst-case latency of packet routing, and the
worst-case waiting time at the source. These bounds can then
be used by the real-time application developer to satisfy the
hard deadline constraints imposed by the system.

III. MANAGING IN-FLIGHT DEFLECTIONS

In this section, we describe the modifications to the Hoplite
router to support bounded deflections in the network. We ex-
plain the resulting routing table modifications that are required
and explain the operation of the NoC with an example.

In Figure 3, we show the proposed microarchitecture of
HopliteRT. The key insight here is the need to strategically
introduce deflection freedom by making the switching cross-
bar more capable without sacrificing LUTs in return. The
fractured LUT dual 2:1 LUT implementation in Figure 1a
is too restrictive to permit any adaptations to the routing
policy, and hence we consider a more capable dual 3:1 mux
microarchitecture instead that may need the more expensive
two 6-LUT implementations. This 3-input, 2-output crossbar
arrangement permits any input to be routed to either output as
desired by the routing policy. Thus, unlike the original Hoplite
designs in Figure 1, we are able to use a N → E turn now to
support our goals.

With this rich switching crossbar, we must now choose
our routing policy. An age-based routing prioritization (Oldest-
First [8]) can be implemented that prefers older packets over
newer packets when in conflict. This is a good use of the
N → E path which is exercised if W → S packet is older
in age than the N → S packet. In this conflict situation the
N packet can be deflected E. The original ∞ bound will be
reduced to a different bound that depends on the network size
m ×m and congestion or load in the system. However, this
policy is unfair as it is biased towards traffic travelling from
distant nodes as traffic from nearby closer nodes is always

victimized. A variation of the policy that increments age only
on deflections may be slightly fairer but the resulting bound is
still dependent on network congestion. Furthermore, we need
to transmit extra bits in each packet to record age of the packet
which is wasteful of precious interconnect resources.

It turns out that we can limit the number of deflections
without carrying any extra information in the packet. The key
idea is to invert the priorities of the router to always prefer W
traffic over N traffic. This is the exact opposite of the original
Hoplite DOR policy that always prioritizes N traffic (due to
the absence of the N → E link). This modified policy allows
traffic on the X-ring to be conflict free, even when making the
turn to the Y-ring. On the other hand, it is the Y-ring traffic
(North) that can suffer deflections. Once the Y-ring traffic has
been deflected onto the X-ring, it will have a higher priority
over any other Y-ring traffic it will encounter next. Thus, unlike
the original design where packets deflects multiple times on the
same row without making progress, now the deflected packet
is guaranteed to make progress toward its destination. A packet
might deflect only once on each row (X-ring).

The routing table for this new HopliteRT router is shown in
Table I. The added benefit of this routing policy is the ability
to use the exact same select bits for both 3:1 multiplexers. So
not only do we bound deflections in the NoC, but we also
ensure we can retain fracturability of the 6-LUT by supplying
identical five inputs to the 3:1 mux. Each mux interprets the
same two select bits differently to implement the proper rout-
ing decision. In this arrangement, the PE→E with W→S turns
happening in the same cycle are not supported even though
the mux bandwidth is rich enough to support this condition.
This is because we want to avoid creating a third mux select
signal that would prevent the fractured 6-LUT mapping. If the
developer can afford to double the cost of their NoC, then this
extra function can be supported without affecting the in-flight
NoC worst-case routing time bounds computed in this paper.
It is important to note that the bandwidth capability of the
HopliteRT switch is in-between Figure 1a and Figure 1b. When
compared to Figure 1a, HopliteRT supports an extra routing
condition PE→S + W→E which is otherwise blocked due to
cascading of the muxes. However, unlike Figure 1b, HopliteRT
does not support PE→E + W→S condition. Thus, HopliteRT
is strictly the same size as a less-capable switch in Figure 1a
while offering extra bandwidth and latency guarantees.

TABLE I: Routing Function Table to support Real-Time
extensions to Hoplite. PE injection has lowest priority and
will stall on conflict. PE→E + W→S is not supported to
avoid an extra select signal driving the multiplexers and
doubling LUT cost by preventing fracturing a 6-LUT into
2×5-LUTs.

Mux select Routes Explanation

sel1 sel0

0 0 W→E + N→S Non-interfering
0 1 W→S + N→E Conflict over S
1 0 PE→E + N→S No W packet
1 1 PE→S + W→E No N packet

3



PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw

PE
(3,3)

PE
(0,0)

Fig. 4: Worst-Case path on Hoplite-RT for packet traversing
from top-left PE (0,0) to bottom-right PE (3,3). The red
packets will deflect N→E in each ring due to a conflicting
flow (not shown). The blue packets previously had priority
are now deflected in the top-most ring before delivery.

In Figure 4, we show the path taken by the packet from
(0,0)→(3,3) as the example earlier in Figure 2. In this scenario,
we assume there are W → S flows in X-ring 0, 1, and 2
that will interfere with the red packets in each ring. These
flows will have priority over the N → S red packet and will
deflect those red packets in each ring. The blue packet from
(3,3)→(3,1) had the right of way in the original Hoplite NoC
as shown in Figure 2. In HopliteRT, it will be deflected once
in the topmost ring, and then descend downwards to exit at its
destination.

Analytic In-Flight Latency Bound: Under the proposed
HopliteRT policy, the in-flight latency between nodes (X1, Y1)
and (X2, Y2) on an m×m NoC is as follows:

zero load: T f = ∆X + ∆Y + 2 (1)
worst case: T f = ∆X + ∆Y + (∆Y ×m) + 2 (2)

Here, ∆X = (X2 −X1 + m)%m and ∆Y = (Y2 − Y1 +
m)%m are based on traversal distances of the packet on the
torus irrespective of relative order of the two nodes along the
directional topology. The zero load latency on the NoC is the
same as original Hoplite.

Finally, in Table II, we show the effect of compiling Hoplite
and HopliteRT to the Xilinx Virtex-7 485T FPGA and observe
a minor 4% reduction in LUT costs as (1) the design is able
to exploit the fracturable dual 5-LUTs per bit of the switching
crossbar, and (2) the DOR logic is marginally simpler.

TABLE II: FPGA costs for 64b router (4×4 NoC) with
Vivado 2016.4 (Default settings) + Virtex-7 485T FPGA

Router LUTs FFs Period (ns)

Hoplite 89 149 1.29 ns
HopliteRT 86 146 1.22 ns

PE
(0,0)

sw
PE

(1,0)

sw
PE

(2,0)

sw
PE

(3,0)

sw
PE

(1,0)

Fig. 5: Unlucky client at (1,0) is swamped by client at (0,0)
that has flooded the NoC with packets at full link bandwidth
(one packet per cycle). Red packets from (0,0)→(x,y) are
perpetually blocking the client exit at (1,0). This results in
a waiting time of ∞ for packets at (1,0)

Token
Bucket

rate
counter

token
counter

User
Logic

NoC
Switch

NoC ready

Packet

(rate+1)% 1
ρ

max(token+1,σ)

σ

overflow

Fig. 6: Conceptual view of the Token Bucket regulator at
the injection port of each NoC client. FPGA implementation
cost is two cascaded counters (no actual memory is needed
to store any tokens). The client can inject a packet into the
NoC only when the NoC is ready and there is at least one
token available in the Token Bucket.

IV. REGULATING TRAFFIC INJECTION

While the HopliteRT modification to the original Hoplite
router was able to bound in-flight NoC latency, source queue-
ing delays can still be unbounded. Source queueing delays are
attributed to the least priority assigned to client injection port
by the Hoplite router. This is unavoidable in a bufferless setup
where we do not have any place to store a packet that may
get displaced if the client port was prioritized. Furthermore,
when using deflection routing, there is no mechanism to
distribute congestion information to upstream clients to throttle
their injection. Hence, a client may wait arbitrarily long if it
is swamped by another upstream client that has decided to
flood the NoC with packets; a simple scenario is depicted
in Figure 5. Here, we have two flows: the blue flow from
(0,0)→(3,0), and a red flow from (1,0)→(x,0). If the rate of
the blue flow is 1 (one packet per cycle), the red flow will never
get an opportunity to get onto the NoC. This is the cause of the
∞ waiting time at a client port. In this section, we discuss a
discipline for regulating traffic injection that ensures bounded
source queueing times in the bufferless, deflection-routed NoC
such as Hoplite.

A. Token Bucket Regulator

In Figure 6, we show a high-level conceptual view of
a Token Bucket regulator [9] inserted on the client→NoC
interface. The regulator shapes the traffic entering the network
and bounds the maximum amount of time the client (user
logic) will have to wait to send a packet over the network. The

4



regulator is defined by parameters ρ (rate of packet injection
<1 packet/cycle) and σ (maximum burst of consecutive pack-
ets ≥1). While conventional token bucket implementations in
large-scale network switches (i.e. internet) need to queue or
drop packets, we assume that we are able to directly stall or
throttle the source (client).

The regulator is implemented using two counters that are
cheap to realize on an FPGA. A free-running rate counter is
programmed to overflow after the regulation period 1

ρ . On each
overflow a token is added to an abstract bucket. The bucket
will fill until it reaches its capacity σ where is saturates. This
is tracked by the second counter token counter. Whenever a
client wants to inject traffic into the NoC, the client is stalled
until the bucket is not empty and the NoC is ready (that is,
no other NoC packet is blocking the client). The client then
withdraws one token from the bucket and sends the packet.

As an example, if a client has a rate ρ = 1
10 , it can

inject one packet every 10 cycles. The burstiness parameter
σ determines the maximum number of packets that the client
can send consecutively, assuming that the NoC is ready. If the
client has a burst length σ = 5, and it did not send any packets
for 50 cycles, it will accumulate five tokens. As a result, it can
send 5 packets in a burst before the token bucket is emptied.

It is worth mentioning that, in the worst case, if the traffic
in the network is not regulated (unknown traffic) the entire
network will be considered as one ring. Therefore, all the
clients will have to share the bandwidth utilization

∑
ρ = 1.

In this case the aggregated injection rates for each client needs
to be 1/m2 to guarantee injection for everybody; otherwise, a
client will be starved by the upstream traffic indefinitely, and
the bound on the waiting time will be unknown.

Based on the described regulation mechanism, in the next
Section IV-B we compute the maximum time that the client
requires to send a sequence of k packets, with k ≤ σ. We first
bound the amount of network traffic that interferes with the
injection of packets on either the East or South port. Then, we
express a tight bound on the maximum amount of interference
to ensure that the client is not starved. Assuming that the bound
is met, we finally determine the maximum network delay for
the injection of the first packet, and of any successive packet
in the sequence.

B. Analysis

We consider an m × m matrix of clients (x, y). We
generalize the earlier discussion in Section IV-A by assuming
that (x, y) can send packets to multiple other clients in the
network, using a different token bucket regulator for each such
client. Hence, for any client (x, y), we can define a set of flows:

Fx,y = {(x1, y1, ρ1, σ1), (x2, y2, ρ2, σ2), ..., (xn, yn, ρn, σn)},
(3)

where for flow fi = (xi, yi, ρi, σi), the destination client is
(xi, yi) and the token bucket parameters are ρi, σi. For a flow
f ∈ Fx,y , we use the notation f.x, f.y, f.ρ, f.σ to denote
the horizontal, vertical coordinates and regulator parameters

of the flow, respectively. We further use the notation λ(t) to
denote a traffic curve, that is the maximum number of packets
transmitted on a port in any window of time of length t cycles.
By definition of the token bucket regulator, the maximum
number of packets injected by (x, y) with destination (xi, yi)
is then:

λσi, ρix,y (t) = min
(
t, σi + bρi · (t− 1)c

)
. (4)

To determine the total traffic that could pass through a
client and possibly affect its injection rate, we need to know
the aggregated traffic of the different sources that can reach
to the client. Consider two traffic curves λσ1,ρ1 and λσ2,ρ2 ,
bounding the traffic on two input ports of a node and directed
to the same output port. Lemma 1 defines an operator ⊕ that
combines the two traffic curves to compute a tight bound on
the resulting aggregated traffic.

Lemma 1. Let λσ1,ρ1 and λσ2,ρ2 bound the traffic on input
ports (West, North or PE) directed to the same output port
(East or South). Then the traffic on the output port is bounded
by the following curve:

(λσ1,ρ1⊕λσ2,ρ2)(t) = min
(
t, σ1+σ2+bρ1 ·(t−1)c+bρ2 ·(t−1)c

)
.

(5)

Proof: In any time window of length t, the number of
packets transmitted on an output port cannot be greater than
the traffic produced by the input ports; hence it holds:

(λσ1,ρ1 ⊕λσ2,ρ2)(t) ≤ σ1 +σ2 + bρ1 · (t− 1)c+ bρ2 · (t− 1)c.

Furthermore, since the number of packets cannot be larger
than t, it also holds (λσ1,ρ1 ⊕ λσ2,ρ2)(t) ≤ t. Equation 5 then
immediately follows.

Based on Equation 5, the operator ⊕ is both commutative
and associative and we are essentially combining traffic flows.
Hence, for any set A of traffic curves λσ,ρ, we write ⊕A
to denote the aggregation of all curves in A based on the
operator. We also write σ(A) and ρ(A) to denote the sum of
the burstiness and rate parameters, respectively, for all traffic
curves in A. Note that based on Equation 5, this implies:

⊕A(t) = min

(
t, σ(A) +

∑
∀λσ,ρ∈A

⌊
ρ · (t− 1)

⌋)
.

Deriving Conflicting Flows ΓCf : Having defined how to
aggregate traffic curves for multiple flows, the next step is
to define the set of conflicting flows, that is, those flows
that block the injection of packets at the analyzed client. In
particular, we consider a given flow f ∈ Fx,y for the client at
(x, y), and define a set ΓCf of traffic curves of other flows that
conflict with f . Due to the complexity of the formal derivation,
the full definition of ΓCf is presented in Appendix B. Instead,
here we provide intuition on how to derive such conflicting
set. We show the set of interfering flows used to compute ΓCf
in Figure 7.

• First, we do not make any assumption on the arbitration
used by client (x, y) to decide which flow to serve. Hence,

5



f can suffer self conflicts from any other flow in Fx,y that
is injected on the same port of (x, y). For example, it may
conflict on the South port if f.x = x, that is the destination
of f is on the same Y-ring as client (x, y), or East otherwise.
• Second, we need to add to ΓCf all flows generated by other
clients that conflict with f . According to Table I, if f injects
packets to the East port, then it suffers conflicts from any
flow (W → E or W → S) arriving on the West port of
(x, y). If, instead, f injects to the South port, it suffers
conflicts from flows turning W → S at (x, y), as well as
N → S flows arriving on the North port of (x, y) directed
South.
• The set of flows going N → S is easy to determine,
because flows are never deflected on a different Y-ring
(it may deflect N → E but will never switch Y-rings).
However, determining the set of flows on the West port is
more involved, because traffic arriving on the North port of
any node in the y-th X-ring can be deflected N→E on the
ring itself if there is any traffic simultaneously turning W→S
at the same node. Finally, if the optimization discussed in
Section III is employed, where the router is modified to
support PE→E + W→S routing at the cost of doubling the
LUTs, the conflicting set ΓCf can be modified to exclude
W→S traffic in the case of East port injection.

PE

W→E

W→S

N→S N→E

PE→E

PE→S

Fig. 7: Understanding interfering traffic flows at a client
for determining the set of conflicting flows ΓCf . Dotted
N → E is a deflected flow that will wrap around the X-
ring and return at the W port. The PE → E (red flow)
will interfere with W → E, and also W → S flow due
to HopliteRT router limits. And, the PE → S flow (blue
flow) will interfere with N → S, W → S, and the deflected
N → E flows.

Computing Bounds based on ΓCf : Once the set of con-
flicting flows ΓCf has been derived, we can now study the
maximum delay suffered by client (x, y) to inject a sequence
of k packets of flow f , under the assumption that k ≤ f.σ.
First, in the worst case, the sequence of packets can arrive at
the client when the bucket has just been emptied; hence, in
the worst case it will take a delay of d1/f.ρe − 1 before the
bucket has one token. After such initial time, the packets can
be further delayed by conflicting traffic in the network, which
is bounded by ⊕ΓCf . Based on the properties of traffic curves,
we can prove that the flow cannot be starved as long as the
condition ρ(ΓCf ) < 1 is satisfied. Intuitively, this means that the
cumulative rate of conflicting flows is less than 1 packet/cycle;
hence, eventually there will be available clock cycles when the
flow can be injected on the NoC. The available rate of injection
is thus 1− ρ(ΓCf ).

Assuming that the condition ρ(ΓCf ) < 1 is satisfied, we
then, as proved in Appendix C, show that:

• The first packet in the sequence can suffer a delay of at
most d1/f.ρe − 1 + T s cycles, where:

T s =

⌈
σ(ΓCf )

1− ρ(ΓCf )

⌉
. (6)

Here, T s represents the delay caused by the burstiness of
conflicting flows; it is proportional to the cumulative burst
length of conflicting flows, and inversely proportional to
the available injection rate 1− ρ(ΓCf ).

• For each successive packet in the sequence, the client
suffers an addition delay of either 1/f.ρ or 1/

(
1−ρ(ΓCf )

)
cycles, whichever is higher. Here, the 1/f.ρ term rep-
resents the case where further packets are delayed by
regulation, hence they are sent at the regulator rate f.ρ.
The term 1/

(
1−ρ(ΓCf )

)
represents the case where packets

are delayed by conflicting flows, hence they are sent at
the available injection rate of 1− ρ(ΓCf ). In essence, we
can prove that further packets in the sequence are delayed
by either regulation or conflicting traffic, but not both.

This result, which is formally expressed by Theorem 2 in
Appendix C, only holds for sequences of packets of length at
most equal to the burst length f.σ of the flow. The key intuition
is that the burst length must be sufficient to allow the token
bucket for f to “fill up” while the flow is being blocked by
conflicting NoC traffic. In the extreme case in which f.σ =
1, every packet in the sequence could suffer d1/f.ρe − 1 +
T s delay, that is, it suffers delay due to both regulation and
conflicting traffic. This reveals a fundamental trade-off for the
burst length σ assigned to each flow: if σ is too small, then
consecutive packets can be unduly delayed. However, a larger
σ increases the delay T s suffered by other clients. Finally,
if ρ(ΓCf ) ≥ 1, then no delay bound can be produced as the
flow might be starved indefinitely by conflicting traffic. If burst
lengths can be chosen freely, an assignment of burst lengths
could be computed with a distributed optimization problem to
minimize the worst case latencies. Formulating and solving
this optimization approach is left as future work.

V. EVALUATION

In this section, we show experimental validation of our
bounds under various workloads, and packet flow configu-
ration. We vary injection rates (in %), system sizes, traffic
patterns, and real-time feature support and measure in-flight
NoC latency and source queueing delays in the clients across
our NoC. We compare the results to a baseline Hoplite
NoC without real-time support. For in-flight latency tests, we
evaluate synthetic traffic with 2K packets/client that exercises
worst-case paths. We consider LOCAL, RANDOM, TORNADO,
TRANSPOSE, and ALLTO1 (everyone sends a packet to (0,0)
client) traffic generators. For source queueing tests, we provide
a tool to evaluate a user-supplied set of flows for feasibility
and provide a bound where one can be proved.

6



● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

ALLTO1 LOCAL RANDOM TORNADO TRANSPOSE

10 100 10 100 10 100 10 100 10 100

1e+01

1e+03

1e+05

System Size

In
−

F
lig

ht
 L

at
en

cy
 (

W
or

st
 C

as
e)

●● Bound Hoplite HopliteRT

Fig. 8: Effect of Traffic Patterns on Worst-Case In-Flight Latency of the Workload at 100% injection rate. Worst-case analytical
bounds (red) are easily violated by baseline Hoplite. With HopliteRT we are always within the bound, and deliver superior
worst-case latency for ALLTO1, TORNADO, RANDOM, and LOCAL patterns. For TRANSPOSE, the persistent victimization of
N → S packets causes a slightly longer worst-case latency.

In-Flight NoC Latency Bounds: In Figure 8, we show
the effect of using HopliteRT over the baseline design when
counting the worst-case latency suffered by the packet in the
NoC. It is clear that for ALLTO1, TORNADO, RANDOM, and
to some extend for LOCAL patterns, the worst-case latency
with our extensions has been significantly improved. This is
particularly true in the adversarial case where each client sends
data to a single destination. This pattern is representative of
situations where a limited resource like a DRAM interface
must be shared across all clients in the system. Without Ho-
pliteRT, some client requests to a DRAM interface may never
route to the DRAM interface unless other clients complete
their requests1. For other traffic patterns, the benefit is less
pronounced, and it gets slightly worse for TRANSPOSE. This is
because W→S static priority victimizes N → S packets each
time, which abundantly occur in other workloads. It is possible
to improve fairness by using an extra priority bit and history
information, but that would increase the cost of the NoC router.
Finally, we show that our router never violates the predicted
bounds that are calculated based on our analysis and these
are better than the worst-case latencies observed in baseline
Hoplite in most cases. Apart from the proofs detailed in the
Appendix, this experimental validation supports a real-time
developer in safely using these bounds during system design.
In Figure 9, we take a closer look at a 256-client simulation
and vary the injection rates from 0.1% to 100% for RANDOM
workload. As expected, we observe that at low injection rates
<10%, both networks deliver packets better than the bound.
However, as network gets congested, the baseline Hoplite
design delivers packets with increasing worst-case latency that
exceeds the bounds. The HopliteRT design is always better
than the bound at all injection rates. Our observed latencies
are within 20% of the computed bound. The computed bound
is consider tight, as it can be reached in some cases as in
ALLTO1 and LOCAL.

1This behavior was demonstrated at the FCCM 2017 Demo Night where
Jan Gray’s GRVI-Phalanx [10] engine with 100s of RISC-V processors
interconnected with Hoplite. Clients closer to the DRAM interface were
effectively starved and never got service in a DRAM interface test.

● ●

100

200

300

400

1 100
Injection Rate

In
−

F
lig

ht
 L

at
en

cy
 (

W
or

st
 C

as
e)

●● Bound
Hoplite
HopliteRT

Fig. 9: Effect of Injection Rate on Worst-Case In-Flight
Latency of the RANDOM Workload for 256 clients. At low
injection rates, the NoC routing latencies are not very
different, but as the NoC gets congested, HopliteRT starts
to deliver improvements.

Source-Queueing Bounds: We now show the benefit of
client injection regulation on source queueing delay. In these
experiments, we use HopliteRT router in all comparisons
and selectively enable regulation. This shows the need for
regulation in addition to modification to the Hoplite router
for delivering predictable, bounded routing latencies in the
network. In this experiment, we set the offered rate ρ= 1

m2

(m × m=size of NoC) and a burst σ=1. The traffic rate is
scaled to 1

m2 to ensure feasible flows to the single destination
client.

In Figure 10, we show the effect of using our regula-
tor on source queueing delay for traffic with the ALLTO1
pattern. From this experiment, it is clear that simply using
the HopliteRT router is insufficient and the source queueing
times are large. When we add regulator hardware to the client,
the waiting times drops dramatically by over four orders of
magnitude. Our analytical bound tracks our observed behavior
but there is a gap as it must assume pessimistic behavior
from interfering clients in the calculations. We also consider
RANDOM traffic pattern in Figure 11. Again, we observe better
behavior with regulated traffic injection but the latencies are
lower than the ALLTO1 case. While RANDOM traffic is less

7



●●
●

●

●
●

● ●

1e+02

1e+04

1e+06

0 100 200
System Size

S
rc

Q
 L

at
en

cy
 (

W
or

st
 C

as
e)

● Bound
Unregulated

Regulated

Fig. 10: Comparing source queueing times for regulated vs.
unregulated HopliteRT NoCs as a function of system size
for the ALLTO1 traffic pattern. Regulated traffic offers much
improved waiting times at the clients.

●●
●

●
●

●

100

10000

0 100 200
System Size

S
rc

Q
 L

at
en

cy
 (

W
or

st
 C

as
e)

● Bound
Unregulated

Regulated

Fig. 11: Comparing source queueing times for regulated
vs. unregulated HopliteRT NoCs as a function of system
size for the RANDOM traffic pattern. Again, regulated traffic
offers better latency behavior, but bounds are much lower
than the ALLTO1 pattern.

adversarial than the ALLTO1 pattern, our bound still holds,
and regulation is still up to two orders of magnitude lower
latency. You may also note that the bound calculation is now
significantly tighter than the ALLTO1 scenario as the traffic
flows now interfere is less-adversarial manner.

Finally, we show a breakdown of the bounds for the PE
South and East ports in Figure 12. The difference in bounds
is because the E port can accept more packets due to the
DOR routing policy, and furthermore due to the limits of the
routing configurations shown in Table I. Recall, we want to
avoid doubling the LUT cost of the HopliteRT router, and
intentionally disallow PE → E and W → S packets to route
simultaneously. These have the effect of creating a difference
in bounds for traffic injection along S and E ports as shown
in the figure. The E port suffers a higher waiting time as
injection rate is increased as we disallow E traffic in our LUT-
constrained router.

VI. DISCUSSION AND RELATED WORK

Existing literature on real-time NoCs can be summarized
in the following broad directions:

• Some research has built static routing tables for time-
division NoCs such as those proposed in [11], [12]. How-
ever, this approach requires full knowledge of all communi-

300

600

900

1 2 3 4 5 6
Injection Rate

S
rc

Q
 L

at
en

cy
 (

W
or

st
 C

as
e)

East
South

Fig. 12: Effect of Injection Rate on Worst-Case Source-
Queueing Latency of the ALLTO1 workload for 16 clients.
The E port can accept more packets due to the DOR routing
policy; and furthermore be blocked by our LUT-constrained
HopliteRT router.

cation flows, and is unsuitable for NoCs that needs to sup-
port both real-time flows requiring worst case guarantees and
best effort flows where average case delay is important. [13]
has different assumptions about the communication pattern,
ranging from one-to-one restriction to none. It uses Time-
Division Multiplexed (TDM) schedule to derive worst-case
latency bound and splits traffic into multiple non-interfering
flows. However, the bound limits the maximum rates of
the flows depending on the number of non-interfering sets.
The TDM schedule may exaggerate the required latency
depending on the extent of interference. For HopliteRT, we
only need to know the communication pattern and do not
limit injection rates when flows are feasible.
• Other work focuses on wormhole NoCs with virtual chan-

nels. The seminal work in [14] proposes priority-based
networks, where each virtual channel corresponds to a
different real-time priority, thus providing reduced latency
for high-priority flows at the cost of low-priority ones.
Recent work has extended the analysis to NoCs using credit-
based flow control [15], as well as to round-robin, rather
than priority-based arbitration [16]. However, these designs
are expensive on FPGA, and require full knowledge of
communication flows to derive tight latency bounds. In
contrast, our approach rely on static modification of routing
function as well as client regulators to bound latencies.
• Approaches such as Oldest-First [8] and Golden Flit [17]

provide livelock freedom on deflection-routed networks sim-
ilar to Hoplite, but are optimized for ASICs and use a
richer mesh topology. On the other hand, minimally buffered
deflection NoC [18] is suitable for FPGA and provides in-
order delivery of flits eliminating the need for reassembly
buffers. However, these reviewed approaches do not provide
exact bounds on worst-case times.
• The use of regulators to bound the maximum network la-

tency is well-known in the context of network calculus [19].
In [3], the authors show how to use Token Bucket regulators,
similar to ours, to control traffic injection on the Kalray
MPPA. Unlike HopliteRT, the Kalray NoC is source routed
(client computes the complete path taken by the packet), and
requires queuing at the client interface and within the NoC.

8



VII. CONCLUSIONS

We present HopliteRT, an FPGA-based NoC with real-
time support, that provides strong bounds on both (1) in-flight
NoC routing latency due to deflection, and (2) the source-
queuing waiting time at the source node. A 64b HopliteRT
router implementation delivers approximately identical LUT-
FF cost (2% less) compared to the original Hoplite router.
We also add two counters to the client interface to provide a
Token Bucket regulator for controlling packet injection in a
manner that bounds source queueing delay. We show the in-
flight NoC routing bound to be (∆X+ ∆Y + (∆Y ×m) + 2),
and the source-queueing bound to be (d 1

ρ
i
e − 1) + T s :

T s = d σ(ΓCf )

1−ρ(ΓCf )
e. We test HopliteRT across various statistical

datasets and show that (1) our analytical bounds are relatively
tight for RANDOM workloads, and (2) our solution provides
significantly better latency behavior for ALLTO1 workload that
models shared DRAM interface access.

Analysis tools are freely available to download at
https://git.uwaterloo.ca/watcag-public/hoplitert-bounds.

Acknowledgement: This work was supported in part by
NSERC and CMC Microsystems. The authors would like
to thank Jan Gray for providing access to Hoplite RTL.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do
not necessarily reflect the views of the sponsors.

REFERENCES

[1] N. Kapre et al. Hoplite: Building austere overlay NoCs for FPGAs. In
FPL, 1–8 [2015].

[2] A. Olofsson, et al. Kickstarting high-performance energy-efficient
manycore architectures with epiphany. CoRR, abs/1412.5538 [2014].

[3] M. Becker, et al. Partitioning and Analysis of the Network-on-Chip
on a COTS Many-Core Platform. In Proceedings of the IEEE RTAS
[2017].

[4] A. Kurdila, et al. Vision-based control of micro-air-vehicles: Progress
and problems in estimation. In 43rd IEEE CDC, volume 2, 1635–1642.
IEEE [2004].

[5] H.-M. Huang, et al. Cyber-physical systems for real-time hybrid
structural testing: a case study. In Proc. 1st ACM/IEEE Int. Conf. cyber-
physical Syst., 69–78. ACM [2010].

[6] M. K. Papamichael et al. CONNECT: re-examining conventional
wisdom for designing nocs in the context of FPGAs. In the ACM/SIGDA
international symposium, 37. ACM Press, New York, New York, USA
[2012].

[7] Y. Huan et al. FPGA optimized packet-switched NoC using split and
merge primitives. In FPT, 47–52 [2012].

[8] T. Moscibroda et al. A case for bufferless routing in on-chip networks.
In Proceedings of the 36th ISCA, ISCA ’09, 196–207. ACM [2009].

[9] A. Van Bemten et al. Network Calculus: A Comprehensive Guide
[2016].

[10] J. Gray. GRVI-Phalanx: A Massively Parallel RISC-V FPGA Acceler-
ator. In Proc. 24th IEEE Symposium on FCCM, 17–20. IEEE [2016].

[11] K. Goossens et al. The aethereal network on chip after ten years: Goals,
evolution, lessons, and future. In 47th DAC, 306–311. IEEE [2010].

[12] N. Kapre. Marathon: Statically-scheduled conflict-free routing on fpga
overlay nocs. In 2016 IEEE 24th FCCM (FCCM), 156–163 [2016].

[13] J. Mische et al. Guaranteed Service Independent of the Task Placement
in NoCs with Torus Topology. In Proc. 22Nd RTNS., RTNS ’14,
151:160. ACM [2014].

[14] Z. Shi et al. Real-Time Communication Analysis for On-Chip Networks
with Wormhole Switching. In Second ACM/IEEE NOCS (nocs 2008),
NOCS ’08, 161–170. IEEE [2008].

[15] H. Kashif et al. Buffer Space Allocation for Real-Time Priority-Aware
Networks. In Proceedings of the IEEE RTAS, 1–12. IEEE [2016].

[16] M. Panic, et al. Modeling High-Performance Wormhole NoCs for
Critical Real-Time Embedded Systems. In Proceedings of the IEEE
RTAS [2016].

[17] C. Fallin, et al. Chipper: A low-complexity bufferless deflection router.
In Proceedings of the 2011 IEEE 17th IS-HPCA, HPCA ’11, 144–155.
IEEE Computer Society [2011].

[18] J. Mische, et al. Minimally buffered deflection routing with in-order
delivery in a torus. IEEE/ACM NOCS ’17, 1–8 [2017].

[19] J.-Y. Le Boudec et al. Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet. Springer-Verlag, Berlin, Heidelberg
[2001].

APPENDIX

A. Derivation of In-Flight Latency Bounds

Theorem 1. The in-flight latency of the HopliteRT is upper
bounded by Equation 2

Proof: As described in Section III, HopliteRT is engi-
neered with a policy to prioritize the traffic turning from the
X-ring to the Y-ring. This policy provides guarantees that a
packet will be able to progress down on the Y-ring and cannot
deflect more than once at every row. In the worst case, a packet
can be deflected on every router during its journey on the Y-
ring to the destination which is captured by Equation 2.

Equation 2 captures the worst-case bound of the in-flight
latency with no assumption about the traffic, e.g., the com-
munication patterns and rates are unknown. The bound can be
improved farther by leveraging the knowledge about the traffic.
In particular, we can reduce the number of deflection points
on the Y-ring if we know that on specific X-rings there will be
no conflicting traffic. To do this we include only the X-rings
that can cause conflict. As a result, we can update Equation 2,
to be as in Equation 7, to optimize the term (∆Y ×m) to be
(V ×m), where V ≤ ∆Y is the number of conflicting rows
which is defined in Equation 8. The results of the optimized
in-flight latency is beneficial especially in large networks. As
shown in Figure 13, the optimized bound improves over the
basic bound about 25% in the case of 16X16 network.

T f = ∆X + ∆Y + (V ×m) + 2 (7)

V x1,y1
x2,y2 =

(y1+1+DY )%m∑
j=(y1+1)%m

(1) | ΓW2S
x2,j 6= ∅ (8)

B. Derivation of Conflicting Flows

In this Appendix, we focus on formally deriving the set
of conflicting traffic curves ΓCf for a flow f of client (x, y),
as discussed in Section IV-B. We first consider the set of
conflicting flows of other clients, and then determine the set
of conflicting flows of the same client (x, y).

According to Table I, in order for a client to inject on the
East port there must be no traffic on the West port. Similarly, to

9



Fig. 13: The optimized bound versus the basic one on
Worst-Case In-Flight Latency of RANDOM workload at
100% injection rate

inject on the the South port, there must be no North traffic and
no West traffic turning South. Note that all North traffic goes
South and does not turn East unless forcefully deflected due
to a conflict on the South port. To know if a client is able to
inject a packet, we need to know the total incoming traffic on
each port. Equations (9 - 11) define the sets ΓN2S

x,y , ΓW2E
x,y , and

ΓW2S
x,y of all traffic curves for source clients that have traffic

on the North port of (x, y) aiming South, on the West port
aiming East, and on the West port aiming South respectively.
∆Y (f.y, j) ≥ ∆Y (y, j) and ∆X(f.x, i) > ∆X(x, i) mean
that the traffic passes through the router (X, Y) on the Y-ring
or on the X-ring respectively.

ΓN2S
x,y = {λf.σ, f.ρi,j | ∃ f ∈ Fi,j ,∀ i, j ∈ [0,m) : (j 6= y)

∧ (f.x = x) ∧∆Y (f.y, j) ≥ ∆Y (y, j)} (9)

ΓW2E
x,y = {λf.σ, f.ρi,y | ∃ f ∈ Fi,y,∀ i ∈ [0,m) : (i 6= x)

∧∆X(f.x, i) > ∆X(x, i)} (10)

ΓW2S
x,y = {λf.σ, f.ρi,y | ∃ f ∈ Fi,y,∀ i ∈ [0,m) : (i 6= x)

∧ (f.x = x)} (11)

Note that the presented sets do not consider the deflection
effect. In the case of a conflict on the South port, the deflected
traffic on the East port will cause extra pressure on all the
clients in the X-ring. Since deflection does not increase the
mount of traffic going South, the traffic on the North port
of (x, y) is simply λN2S

x,y = ⊕ΓN2S
x,y . However, the same is

not true for the traffic λW2E
x,y and λW2S

x,y on the West port of
(x, y). Consider a client (i, y) on the same X-ring as (x, y):
when λW2S

i,y and λN2S
i,y conflict on the South port of (i, y),

some amount of traffic in λN2S
i,y is deflected East and affects

all the m clients on the y-th X-ring. If the client under analysis

(x, y) wants to inject packets to the East, the deflected traffic
at (i, y) thus need to be added to the set ΓW2E

x,y of conflicting
injected traffic flows.

It remains to determine the amount of traffic of λN2S
i,y that

can be deflected in the general case. Clearly, the amount of
deflected packets in a window of length t cannot be greater
than λN2S

i,y (t). Also, if there is no traffic turning West to South
at (i, y), that is if ΓW2S

i,y = ∅, then no traffic can be deflected.
In all other situations, we conservatively assume that all traffic
produced by ΓN2S

i,y is deflected; even if the amount of traffic
produced by ΓW2S

i,y is smaller than λN2S
i,y , deflected packets of

λN2S
i,y can travel around the X-ring and deflect further packets

of λN2S
i,y when turning W→S. Hence in the worst case, all

N→S traffic will be deflected. Since the deflected traffic affects
every client on the X-ring, we can thus define the set of
aggregated deflected traffic Γdtoty that goes around in the X-
ring as the union of the sets ΓN2S

i,y for any client (i, y) such
that there is traffic going W→S at that client:

Γdtoty (t) = ∪∀i∈[0,m){ΓN2S
i,y | ΓW2S

i,y 6= ∅}. (12)

We can now compute the set of traffic curves ΓCEx,y of
other clients that conflict with injections on the East port at
(x, y), and the set of traffic curves ΓCSx,y of other clients that
conflict with injections on the South port at (x, y). For ΓCEx,y ,
we combine the original traffic generated from other clients in
the same X-ring, ΓW2E

x,y that pass to the East port and ΓW2S
x,y

that turns south, plus the total deflected traffic on the X-ring:

ΓCEx,y = ΓW2E
x,y ∪ ΓW2S

x,y ∪ Γdtoty . (13)

For ΓCSx,y , we combine the original traffic generated from other
clients in the same X-ring, ΓW2S

x,y that turns South, plus the
traffic that arrives from the North port headed South, ΓN2S

x,y :

ΓCSx,y = ΓW2S
x,y ∪ ΓN2S

x,y . (14)

Note that we do not consider the deflected traffic Γdtoty (t) as
part of ΓCSx,y(t), since among the deflected traffic, only the flows
in ΓN2S

x,y (t) turn south at (x, y). If the optimization discussed in
Section III is employed, where the router is modified to support
PE→E + W→S routing at the cost of doubling the LUTs, then
the bounds can be improved. Since the W→S traffic does not
affect injection on the East port anymore, the set of conflicting
traffic on the East port is now equal to:

ΓCEx,y = ΓW2E
y ∪ (Γdtoty \ ΓN2S

x,y ). (15)

Finally, we determine the set of conflicting flows of the
same client (x, y). We make no assumption on the arbitration
used by the client to decide which flow to serve. Hence, we
consider a worst case where f is the lowest priority flow: that
is, if there is any other flow at (x, y) ready to be injected to the
same port (East or South) as f , then f is blocked. Based on
this assumption, we simply consider all other flows in Fx,y as
conflicting flows, similarly to traffic produced by other clients
in the network. More in details, if f.x = x, then flow f injects

10



to the South port at (x, y) and the set of conflicting traffic
curves is:

ΓCf = ΓCSx,y ∪ {λf.σ,f.ρx,y | ∃p ∈ Fx,y, p 6= f : p.x = x}; (16)

if instead f.x 6= x, then flow f injects to the East port and the
set of conflicting traffic curves is:

ΓCf = ΓCEx,y ∪ {λf.σ,f.ρx,y | ∃p ∈ Fx,y, p 6= f : p.x 6= x}. (17)

C. Derivation of Delay Bounds

We now focus on formally deriving delay bounds for a
sequence of k ≤ f.σ packets of flow f injected by client
(x, y), as intuitively described in Section IV-B. In any window
of time of length t, by definition there must be at least t −
⊕ΓCf (t) free clock cycles, that is, clock cycles where the flow
is not delayed by conflicting flows. Therefore, if the flow has
sufficient tokens, it can inject up to t−⊕ΓCf (t) packets. The
rest of the analysis proceeds as follows. First, in Lemma 2 we
derive a condition under which the flow is not starved, that
is, it will eventually receive free cycles. Assuming that such
condition holds, in Lemma 3 we then show that:

t−⊕ΓCf (t) ≥ max
(
0,
⌊(
t− (T s + 1)

)
·
(
1− ρ(ΓCf )

)⌋
+ 1
)
, (18)

where T s is defined as in Equation 6. This implies that the flow
might receive no free cycles for T s clock cycles (it receives
one for a window of length T s + 1), but is then guaranteed
to receive slots at a rate of 1 − ρ(ΓCf ). Finally, note that the
flow also cannot inject packets at a rate higher than the one
of its regulator, f.ρ. In summary, as proven in Theorem 2, the
first packet in the sequence waits for at most d1/f.ρe−1+T s

cycles; successive packets are sent either every 1/f.ρ or every
1/
(
1− ρ(ΓCf )

)
cycles, whichever is higher.

Lemma 2. Flow f cannot suffer starvation if ρ(ΓCf ) < 1.

Proof: By expanding the expression for the guaranteed
number of free injection cycles t−⊕ΓCf (t) we obtain:

t−⊕ΓCf (t) = t−min

t, σ(ΓCf ) +
∑

∀λσ,ρ∈ΓCf

bρ · (t− 1)c


= max

0, t− σ(ΓCf )−
∑

∀λσ,ρ∈ΓCf

bρ · (t− 1)c


≥ max

(
0, t− σ(ΓCf )− ρ(ΓCf ) · (t− 1)

)
= max

(
0, t ·

(
1− ρ(ΓCf )

)
−
(
σ(ΓCf )− ρ(ΓCf )

))
. (19)

Now note that ρ(ΓCf ) < 1 implies 1− ρ(ΓCf ) > 0; hence, the
number of guaranteed free slots increases with t, meaning that
the flow cannot be starved.

Lemma 3. If ρ(ΓCf ) < 1, then Equation 18 holds.

Proof: The lemma follows directly by algebraic manipu-

lation, where the last inequality is based on Equation 19.

max
(
0,
⌊(
t− (T s + 1)

)
·
(
1− ρ(ΓCf )

)⌋
+ 1
)

≤ max
(
0,
(
t− (T s + 1)

)
·
(
1− ρ(ΓCf )

)
+ 1
)

= max
(
0, t ·

(
1− ρ(ΓCf )

)
−
(
(T s + 1) ·

(
1− ρ(ΓCf )

)
− 1
))

= max

(
0, t ·

(
1− ρ(ΓCf )

)
−
((⌈

σ(ΓCf )

1− ρ(ΓCf )

⌉
+ 1

)
(20)

·
(
1− ρ(ΓCf )

)
− 1

))
≤ max

(
0, t ·

(
1− ρ(ΓCf )

)
−
((

σ(ΓCf )

1− ρ(ΓCf )
+ 1

)
(21)

·
(
1− ρ(ΓCf )

)
− 1

))
= max

(
0, t ·

(
1− ρ(ΓCf )

)
−
(
σ(ΓCf )− ρ(ΓCf )

))
≤ t−⊕ΓCf (t).

Theorem 2. Assume ρ(ΓCf ) < 1 and the client wishes to inject
a sequence of k ≤ f.σ packets for flow f . Then the delay to
inject all packets in the sequence is upper bounded by:

d1/f.ρe − 1 + T s +

⌈
(k − 1) ·max

(
1

f.ρ
,

1

1− ρ(ΓCf )

)⌉
. (22)

Proof: In the worst case, the token bucket for f can
be initially empty for at most d1/f.ρe − 1 clock cycles.
Afterwards, a new token is added to the bucket every 1/f.ρ
cycles, at which point the next packet in the sequence becomes
ready to be injected once the NoC port is free. Note that since
k ≤ f.σ, the times at which the first k tokens are added, and
thus the packets in the sequence become ready at the regulator,
do not depend on the time at which the packets themselves are
sent; this is because the bucket does not become full until the
k-th token is added.

Now consider the effect of conflicting NoC traffic. Let
λfree(t) = max

(
0,
⌊(
t − (T s + 1)

)
·
(
1 − ρ(ΓCf )

)⌋
+ 1
)
, and

consider any subsequence of i packets out of the sequence of k
packets under analysis which are being delayed by NoC traffic.
Since the time at which the packets become ready is fixed, the
delay suffered by the last packet in the subsequence cannot
be larger than both d(i − 1) · (1/f.ρ)e and t̄, where t̄ is the
minimum window length for which λfree(t̄) = i (that is, the
time that it takes for the NoC to have i free cycles based on
Lemma 3). Based on the expression for λfree, it is then trivial to
see that if 1/f.ρ ≥ 1/

(
1−ρ(ΓCf )

)
, the worst case delay for the

sequence is found when the first (k−1) packets are sent as soon
as they become ready at the regulator, while the last packet
suffers NoC delay of T s; while if 1/f.ρ ≤ 1/

(
1−ρ(ΓCf )

)
, the

worst case is found where all k packets are delayed by NoC
traffic rather than regulation. Combining the two cases yields
Equation 22.

Theorem 2 only holds for sequences of packets of length
at most equal to the burst length of the flow. If the sequence
is longer than the burst length, then the token buffer might
become full during a window of length T s when the NoC
port is blocked, at which point the time when further tokens
are added is delayed based on when packets in the sequence
are sent. This in turn causes extra delay.

11


	Introduction
	Motivation
	Managing In-Flight Deflections
	Regulating Traffic Injection
	Token Bucket Regulator
	Analysis

	Evaluation
	Discussion and Related Work
	Conclusions
	References
	References
	Appendix
	Derivation of In-Flight Latency Bounds
	Derivation of Conflicting Flows
	Derivation of Delay Bounds


