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Abstract

The modern cosmology started blossoming in the early 1900s, with the theoretical
framework provided by Einstein’s general relativity. Soon after that, with observational
discoveries such as expansion of cosmos by Hubble or later the CMB (Cosmic Microwave
Background), many hypotheses and postulations were made to reconcile the observational
data and the theoretical frameworks, and to answer open questions in the field. ΛCDM
model with inflation is a model which fits the observational data very well, and is one of
the most widely accepted theories. However, this model still leaves us with many puzzles
yet to be resolved. In this thesis, the theoretical frameworks and the mathematical tools to
understand the modern cosmology will be introduced, along with a brief review of inflation.
From there, we will explore three different approaches to address some of these unanswered
questions. Furthermore, we will give an example of how observational data can constraint
theories of early universe.
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Chapter 1

Introduction

The universe have always been a mystery to mankind. Early philosophers, such as Aristotle
and Ptolemy, developed many theories to describe the universe. With the development of
science, and mathematical tools along with it, came more accurate models and theories.
For example, Copernicus suggested a heliocentric model of the universe, in contract to
the Ptolemaic system of universe. Although, the idea of the Sun being the center of the
universe does not agree with the current model of physics, this model was based on very
crucial principle of relativity. What Copernicus suggested is that the physics on Earth
should be the same as the physics on the Sun. This marked a very important advance
in the history of cosmology. The Copernicus’ principle of relativity also suggests that if
the cosmos seems isotropic on Earth then it should also be isotropic at any other points.
Although this is not exactly correct, this led to the cosmological principle which views
our Universe as homogeneous and isotropic at large scales. The modern cosmology, as we
understand it now, took its shape in early 1900s when Albert Einstein developed the general
theory of relativity (GR) in 1915. Few years after this theoretical breakthrough, major
observational discoveries, including Edwin Hubble’s confirmation of expanding universe,
followed and the modern cosmology was set afoot.

Cosmology has come a long way since Einstein’s time and many models have been
developed, disputed, confirmed or disregarded along the way. One of the most widely ac-
cepted models of early universe is inflationary cosmology followed by standard big bang
nucleosynthesis. This model suggests that our universe went through a period of early
accelerated expansion i.e. Inflation, before the radiation dominated phase, and explains
some questions such as ‘why is our universe largely homogeneous and isotropic,’ or ‘why is
our universe flat’. However, there are still many questions and problems in early universe,
such as the initial conditions, the baryonic asymmetry, singularity problem and the cos-
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mological constant problem, left yet to be answered and solved. This thesis focuses on the
cosmology of early universe, describing some possible theories and approaches in attempts
to answer some of these cosmological questions, and how the current observational data
can give us information on the early universe.

In chapter 2, mathematical and physical tools, such as the theory of general relativity,
will be explained. I will also describe mathematically, how these tools shaped the modern
cosmology. Furthermore, in chapter 2, I will discuss some current problems we have with
our present models and theories. In chapter 3 to 5, I will explore some attempts to tackle
these questions with tools and ideas such as effective field theory, and modified gravity.
Chapters 4 to 5 will be based on the papers the author published on or submitted to
journals and will have texts, figures, and tables from those papers. Chapter 3 will have
texts from JCAP 1707 (2017) no.07, 022, chapter 4 will have texts from JCAP 1709 (2017)
09, 008, and chapter 5 will have text from arXiv:1703.05331 [hep-th].
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Chapter 2

Background

As mentioned in the introduction, this thesis focuses on the universe at early times, and
aims to present approaches and attempts to answer cosmological problems. To understand
these hypotheses and models, we must also understand the frameworks and tools which
shape the modern cosmology.

In this chapter, I will briefly explain general relativity, which is the most widely ac-
cepted theory of gravity, and the theory of cosmological perturbations, which describes
how quantum fluctuations generate cosmological perturbations. Furthermore, I will also
briefly explain a basic idea of inflationary models, and some of the challenges they face.

2.1 General Relativity and Cosmology

General relativity (General Theory of Relativity or GR) was formulated by Albert Einstein
in early 1990s. This theory was based on a very different idea of time and gravity than
the Newton’s idea. In GR, space and time are not separable, and gravity is described by
curvatures of space-time. In Newton’s picture, space and time are two different quantities
and gravity is a real force acting between two massive objectives in a straight line. In this
chapter, I will explain some of the mathematical description and important equations in
cosmology.
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Manifold

To understand how space-time curves, we must first have correct mathematical methods
to describe space-time. In general relativity, space-time is considered as a four dimensional
manifold. A manifold is a topological space that satisfies following three properties[18]:

• It has countable basis elements (second countable).

• For any two points p and q, one can construct neighborhoods of p and q, which do
not intersect with one another (Hausdorff).

• It is locally homeomorphic to Euclidean space.

Tensor

Tensor calculus is a powerful tool that can make calculations of physical quantities on
curved manifold much easier. For example, the Riemann tensor conveys information about
the curvature of space-time, and the stress-energy tensor describes the density and flux of
energy and momentum in space-time.

To understand tensor, we will start by introducing a coordinate function xα1, which
maps from the space-time manifold to Euclidean R4. In a coordinate system, we can write
a curve γ on space-time, parametrized by λ as xα(λ). Taking a derivative of xα along the
curve gives dxα/dλ = uα. This quantity is a vector which is tangent everywhere to the
curve. This vector evaluated at a point p ∈ γ does not lie on the space-time manifold itself,
but in a plane tangent to space-time at point p. Under a coordinate transformation from
xα to x̃β, we get2

ũβ =
dx̃β

dλ
=
∂x̃β

∂xα
dxα

dλ
= uα

∂x̃β

∂xα
. (2.1)

Any quantity V α that transforms as

Ṽ β =
∂x̃β

∂xα
V α (2.2)

is a vector.

1The general convention is that Greek indices range from 0 to 3, denoting time and space, and Latin
indices range from 1 to 3, denoting only the spatial part of space-time.

2Here, we used the Einstein’s summation convention. In this convention, when an undefined index
appears twice in a single term, we sum over all the values of the index.

4



If we consider the derivative of a scalar function f(xα) along the curve γ

df

dλ
=

∂f

∂xa
dxα

dλ
, (2.3)

we introduce another object ∂f/∂xα called a dual vector. Similarly to the definition of
vector above, any quantity Uα that transform as

Ũβ =
∂xα

∂x̃β
Uα (2.4)

is a dual vector. We notice that the contraction of a dual vector with a vector

UαV
α =

∂xα

∂x̃β
Ṽ β ∂x̃

β

∂xα
Ũβ = ŨβṼ

β (2.5)

is invariant under coordinate transformations.

With the introduction of vector and dual vector, we can define what a tensor is. A
tensor of rank (k, l) is a multi-linear map which takes k number of covector and l number
of vectors to R. A rank (k, l) tensor is written as T i1...ikj1...jl

. We can consider a vector as a
rank (1, 0) tensor, a dual vector as a rank (0, 1) tensor, and a scalar function as a rank
(0, 0) tensor.

We must be careful because in general relativity, there are some quantities with indices
just like tensors even though these quantities are not tensors. It can be shown that just
as vectors and dual vectors, a tensor must always transform in the following way under
coordinate transformation:

∂x̄α

∂xµ
∂x̄β

∂xν
T µν = T̄αβ. (2.6)

A basic example of this case is a partial derivative of a vector or any tensors. Intuitively,
because two tensors at different points live in different tangent planes the combination of
these two tensors is not tensorial. In another words, the difference between a vector field
Aα at point P with coordinate xβ and at point Q with coordinate xβ+dxβ is not tensorial:

dAα ≡ Aα(Q)− Aα(P ) (2.7)

= Aα(xβ + dxβ)− Aα(xβ)

=
∂Aα

∂xβ
dxβ.

We can quickly check rigorously that under a coordinate transformation, ∂Aα/∂xβ does
not act like a tensor:

∂Ãµ

∂x̃ν
=

∂

∂x̃ν
∂x̃µ

∂xα
Aα =

∂x̃µ

∂xα
∂xβ

∂x̃ν
∂Aα

∂xβ
+

∂2x̃µ

∂xα∂xβ
∂xβ

∂x̃ν
Aα. (2.8)
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Because of this, we need a different derivative to properly carry a tensor from a point to
another.

Covariant Derivative

If we wish to make a generalization of partial derivatives such that on a flat manifold it
reduces down to a partial derivative, we can do so by starting from a partial derivative
and adding a correction. Since a partial derivative follows two rules, linearity and Leibniz
rule, we demand the correction also be linear. It turns out that by introducing an another
object called the connection coefficients Γλµα, we can create an operator which has all the
qualifications that we were looking for. We will denote this derivative as D/dxµ and define
it as

DV λ

dxµ
≡ ∂

∂xµ
V λ + ΓλµαV

α, (2.9)

and call it a covariant derivative.

Through out the paper, a partial derivative ∂
∂xµ

V ν will be written as ∂µV
ν or with a

comma V ν
,µ. Similarly a covariant derivative D

dxµ
V λ will be written as DµV

ν or with a
semicolon V ν

;µ.

Line Element and Metric

One method of mathematically understanding the curvature of space-time is by comput-
ing a distance between two points. In a four dimensional flat space-time (known as the
Minkowski space-time), the distance between two points(events) can be calculated as

(∆s)2 = −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2. (2.10)

c is a fixed conversion factor between space and time, and it can be shown that elec-
tromagnetic waves also propagate at this speed [23]. Throughout this paper we will set
c = 1.

The infinitesimal distance between two events is called the line element and for the
Minkowski space-time, it can be written as

ds2 = −dt2 + dx2 + dy2 + dz2. (2.11)

In general, the local structure of space-time is described through the properties of its line
element. The line element in Einstein notation can be written as

ds2 = gµνdx
µdxν , (2.12)
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where gµν is a rank two tensor called metric. The metric tensor can be thought as the
tensor which captures the geometric and causal structure of space-time. In Minkowski
space-time, the metric in a matrix representation is simply gµν = diag(−1, 1, 1, 1) 3.

In general relativity, the metric tensor has following properties:

• The metric is invertible. This means that there exists a tensor gµν such that gµνgνα =
δµα

• Symmetric gµν = gνµ

• Lowers and raises indices of other tensors gµνT
αν = Tαµ

Curvature and Geodesic

Curvature can also be thought as how tangent vectors are affected after transporting them
along curves. A connection, Γλµν , introduced in eq. 2.9, connects tangent spaces, thus
contains all the information of curvature. Although there are infinitely many connections,
under two conditions of symmetry of the connection and metric compatibility of the co-
variant derivative

Γλµν = Γλνµ Dαgµν = 0, (2.13)

there is a unique connection in Riemannian manifolds called the Levi-Civita connection.
This connection can also be constructed from the metric tensor[23]

Γλµν ≡
1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν). (2.14)

Every information about the curvature is given by a tensor called the Riemann tensor
defined as

Rσ
ρµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (2.15)

The first and the third indices of the Riemann curvature tensor can be contracted to form
the Ricci tensor:

Rµν ≡ Rα
µαν . (2.16)

The Ricci Tensor can be contracted again using the metric to form the Ricci scalar

gµνRµν = Rµ
µ = R. (2.17)

3Sign of the components of the metric depends on the convention used. Either (−,+,+,+) or
(+,−,−,−) can be used for the sign of the metric
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A geodesic is a generalized concept of a straight line in curved spaces. It is the curve
that extremizes the distance between two points on a manifold. A parametrized curve
xµ(λ) is a geodesic if it satisfies the geodesic equation

d2xµ

dλ2
+ Γµσρ

dxσ

dλ

dxρ

dλ
= κ(λ)

dxµ

dλ
, (2.18)

where κ = d ln[
√

±( ds
dλ
)2]/dλ. The sign choice of ds is given by whether the curve is

spacelike (positive) or timelike (negative).

The Einstein Field Equations

So far, we have described curvature and the necessary tools to probe curved space-time.
However, we have not talked about the most crucial part of general relativity: how matter
and energy are related to the geometry of space-time. The Einstein field equations provide
such relations. Einstein’s equations are given by

Gµν + Λgµν =
1

M2
p

Tµν . (2.19)

Gµν is called the Einstein tensor and is defined as

Gµν ≡ Rµν −
1

2
Rgµν . (2.20)

Tµν is the stress energy tensor. It is a rank two tensor with components corresponding
to energy density, momentum density, shear stress, pressure, and momentum flux. This
tensor contains the information about the matter fields that source the gravitational field
in GR. Finally, Λ is referred to as the cosmological constant. Historically, the cosmolog-
ical constant has been a subject of many debates in the physics community. Currently
this quantity presents one of the biggest puzzles in fundamental physics, known as the
cosmological constant problem. This will be further discussed later in this thesis.

In GR, Einstein’s equations can also be derived from the Einstein-Hilbert action,

S =
1

2M2
p

∫ √
−g(R− Λ + Lmatter) d4x, (2.21)

where g is the determinant of the metric, R is the contribution from the gravity,Mp ≡ 1√
8πG

is the reduced plank mass, and Lmatter is the Lagrangian density of the matter field. The
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stress-energy tensor can be obtained from the Lagrangian:

Tµν =
−2√
−g

δ(Lmatter
√
−g)

δgµν
. (2.22)

Generally, most components of matter and energy in the universe on cosmological scales
can be approximated by perfect fluid, thus giving the stress-energy tensor of the form

T µν = (ρ+ p)UµUν + pgµν . (2.23)

Here, ρ represents the matter density, P represents the pressure, and Uµ represents the
4-velocity vector of the fluid.

Expanding Universe

As mentioned earlier, Edwin Hubble discovered that our universe is expanding. Therefore,
Minkowski metric is not a good description for our universe on large scales. However, given
the isotropy and homogeneity of the universe on cosmological scales, Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric is the appropriate approximation. The general form of
this metric can be written as

ds2 = −dt2 + a(t)dΣ2, (2.24)

where a(t) is called the scale factor and captures the dynamics (expansion and contraction)
of the cosmos. Σ corresponds to the spatial part of the manifold, and can be written as a
function of three spatial coordinates. In polar coordinates dΣ2 can be written as

dΣ2 =
dr2

1− κr2
+ r2(dθ2 + sin θdϕ2), (2.25)

where κ represents the curvature of the space4.

Friedmann Equations

We can plug in the FLRW metric in Einstein’s equation, and obtain two equations, namely
the Friedmann equations:

H2(t) ≡
(
ȧ(t)

a(t)

)2

=
1

3M2
p

ρ+
Λ

3
− κ

a(t)2
, (2.26)

4There are different conventions for κ. It can either be taken to have units of length−2 or unitless. We
can rescale the scale factor such that κ belongs to the set {−1, 0,+1} with value depending on negative,
zero, or positive curvature respectively. Regardless of the convention, for a perfectly flat space, κ is zero.
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and
ä(t)

a(t)
= − 1

6M2
p

(ρ+ 3p) +
Λ

3
, (2.27)

where the quantityH(t) is known as the Hubble constant. These two equations describe the
approximate background evolution of the cosmos from the very early time to the present
time. We will now turn our attention to the early universe, and briefly discuss the most
accepted paradigm for that era, called inflation.

2.2 Inflation

Inflation was developed in 1980s [34] to answer some physical puzzles and problems. Al-
though the theory has its own unanswered questions, it is still considered to be the most
successful model to explain much of the current observational data [34] [41].

In this section, we will begin with the standard Hot Big Bang model, and show it’s
limitation. From there, we will explain how inflationary models resolve those challenges.
Finally, we will wrap up this section by presenting the limitations of inflation itself.

2.2.1 Introduction to Hot Big Bang Model

As mentioned before, Hubble discovered that the Universe is currently expanding. Ex-
trapolating from this argument, we arrive at the conclusion that the current observable
universe started from a very small, hot, and dense region of space. The idea that universe
started from a very hot phase was consolidated by more observational evidences such as
abundance of light elements including deuterium, and the discovery of Cosmic Microwave
Background (CMB).

To understand the Hot Big Bang model, and its limitations, we begin with a general
FLRW metric in spherical coordinate

ds2 = a2(τ)

[
−dt2 + dr2

1− κr2
+ r2(dθ2 + sin2(θ)dϕ2)

]
. (2.28)

Here κ belongs to the set {−1, 0, 1} and determines the curvature of the spatial hyperplane
as hyperbolic, flat, and elliptic respectively.

In our current universe, we have different types of matter and energy (baryons, radi-
ation, dark matter, etc.) contributing to the stress-energy tensor. As mentioned before,
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for most of these components, we can approximate the stress-energy tensor to the leading
order as

T µν(i) = diag[−ρ(i), P (i), P (i), P (i)], (2.29)

with ρ(i) and P (i) corresponding to energy density and pressure density for each compo-
nent. To characterize the contributions from different species, we introduce a dimensionless
parameter, Ωi, defined as

Ωi ≡
ρ(i)

3M2
pH

2
, (2.30)

where the index i represents different species of matter. The Friedmann equations (eq.
2.26) implies that ∑

i

Ωi = Ωtot = 1 +
κ

a2H2
. (2.31)

To see how each type of matter contributes to the evolution of universe, we start with
the continuity equation, which can be derived from the energy-momentum conservation of
each species (T

µν(i)
;ν = 0),

ρ̇(i) + 3H(ρ(i) + P (i)) = 0. (2.32)

For all of these components, relativistic or non-relativistic, one can show that the equations
of state can be approximated by

P (i) ≈ w(i)ρ(i), (2.33)

where w(i) is some constant. For example, for non-relativistic particles, w = 0 and for
relativistic particles such as photons (radiation), w = 1/3. Substituting eq. 2.33 into eq.
2.32, we get

ρ(i) ∝ a−3(1+w(i)). (2.34)

For κ = 0, and when one particular component dominates over other components, we get

a(t) ∝

{
t

2

3(1+w(i)) w(i) ̸= −1

eHt w(i) = −1.
(2.35)

From the above equations, we can see that for radiation we have, a(γ)(t) ∝ t1/2 and ρ(γ) ∝
a−4, and for non-relativistic matter (dust), we have a(m)(t) ∝ t2/3 and ρ(m) ∝ a−3 [41].

Historically, it was evident to cosmologists from very early on that the density of non-
relativistic particles was much higher than the relativistic particles in the present universe.
However, comparing the energy density evolution of radiation and matter, we can see that
as a(t) goes to smaller values, radiation must have dominated over the matter density
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in the background evolution. This implies that the universe was dominated by radiation
phase preceding the matter dominated phase. This model was referred to as the standard
Hot Big Bang model. It suggests that the universe originated from a very hot, dense and
a small region, and went through different phases of expansion. With evidence such as
the discovery cosmic background radiation (Penzias and Wilson, 1964 [47]), or the number
of light elements (helium, deuterium, etc.), this model was in good agreement with the
observations.

2.2.2 Shortcomings of Hot Big Bang Model

Even with all its successes, the Hot Big Bang model faced some fundamental challenges.
Here, we present couple of these problems.

Flatness Problem

When we look at the equation 2.31, we can consider the term Ωκ ≡ κ
a2H2 as the contribution

from the curvature of the Universe. In late 1900s, cosmologists noticed that the ratio
between the curvature contribution and the matter contribution is order of 1:

Ωκ

Ωm

≤ 1. (2.36)

However, since Ωκ/Ωm ∝ a, one can easily see that as a → 0 in the early times, Ωκ gets
extremely fine tuned. In fact, the actual calculation showed that Ωκ had to be less than
10−60 around the Planck time. So the question arises: why was κ so small in the very early
Universe?

Horizon Problem

In the Hot Big Bang model, the universe started from a very dense, small region. In the
very early times, the universe was so dense and hot, the matter content was ionized (i.e.
free protons and electrons) and the radiation was scattered very efficiently by matter. In
other words, the universe was completely opaque to radiation. As universe cooled down, the
electrons and protons could combine into atoms. This phase is called the recombination.
During this period, the universe cooled down enough so that ions combined into neutral
hydrogens and the mean free paths of photons became larger than the size of the observable
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universe. The CMB radiation we observe today is the photons traveling to us from this
era, called the last scattering surface.

The Horizon Problem arises from the homogeneity of the CMB temperature to precision
of 10−5 at last scattering surface. To probe this problem, consider a photon radial trajectory
within the flat FRLW metric, given by a(t)dr = dt. We can integrate both sides to get a

r =

∫ t

ti

dt′

a(t′)
=

∫ a(t)

a(ti)

da

a2H
, (2.37)

where ti is the initial time. Therefore, the physical size of causal horizon (light cone) at
time t is given by

dH(t) = ar = a(t)

∫ a(t)

a(ti)

da

a2H
. (2.38)

Now, looking at the Friedmann equations 2.26, we can show that

H(t) = H0

√∑
i

Ωi,0a−3(1+ω(i)), (2.39)

where the subscript 0 denote the value of the corresponding parameter in the present
day. For the matter dominated universe, we have H = H0

√
Ωm,0a−3, and for the radiation

dominated universe, we have H = H0

√
Ωγ,0a−4. As we mentioned before the universe must

have been radiation dominated preceding matter phase. The time when the contributions
from radiation and matter density were equal can easily be calculated by taking into
account the present time density of each which leads to aeq ∼ 1/3000. Thus we can separate
the integral into two part to evaluate the size of horizon at surface of last scattering

dH(tLS) = a(t)

[∫ aeq

ai

da

a2H
+

∫ aLS

aeq

da

a2H

]
(2.40)

where subscripts i, eq, LS correspond to values at initial time, at the equal density time,
and at the surface of last scattering. The first term is for the radiation dominated era and
the second term is for the matter dominated era. Now writing H in terms of the scale
factor a, we can compute the physical distance from the beginning of the universe to the
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last scattering:

dH(t) = a(t)

[∫ aeq

ai

da

a2(H0

√
Ωγ,0a−4)

+

∫ aLS

aeq

da

a2(H0

√
Ωm,0a−3)

]
(2.41)

= a(t)

[∫ aeq

ai

da

(H0

√
Ωγ,0)

+

∫ aLS

aeq

da

a1/2(H0

√
Ωm,0)

]
(2.42)

= a(t)

[
aeq

H0

√
Ωγ,0

+ 2
a
1/2
LS − a

1/2
eq

H0

√
Ωm,0

]
. (2.43)

Here we took ai = 0, which would be mathematically the smallest value5. It is often more
convenient to write these calculations in terms of redshift, z given by

z =
1

a
− 1. (2.44)

By plugging in the current values of Ωγ,0 ∼ 10−4, Ωm,0 ∼ 0.3, H0 ∼ 70km/s/Mpc, zeq ∼
3000, and zLS ∼ 1100, we can compute the value of the causal horizon at the time of last
scattering to be about dH,ls ∼ 0.001 Mpc. Two points separated by dH,ls at z ∼ 1100 will
now be separated by 1100× dH,ls ∼ 1 Mpc due to the expansion of the universe. However,
we can measure temperature of CMB on cosmological scales ∼ 104 Mpc. In other words
the causal horizon at the time of last scattering corresponds only to about 10−4 radian
angle of the sky. This means that less than 1 angular degree of the sky was in causal
contact at the end of recombination era. However, in the CMB data, is homogenous to
one in 105 on all cosmological scales, which indicates correlations on the scales that had
not been in casual contact. This is called the Horizon problem.

Solution: Accelerated Expansion Phase

Some of the above problems can be answered if we consider a scenario where the universe
undergoes a phase of accelerated expansion. Here we will briefly explain how the horizon
problem can be solved in this model. Later in the thesis, we will also explain how the
flatness problem can be solved. To achieve this, consider the size of comoving horizon at
time t :

r =

∫ r(t)

r(ti)

dt′

a(t′)
=

∫ a(t)

a(ti)

da

a2H
=

∫ ln a

ln ai

RH d ln a, (2.45)

5From physical of point of view we couldn’t extend the theory all the way to that limit as energy
densities become super Planckian. However, for the following argument as we see the exact value of lower
limit of the integral doesn’t make much difference.
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where we we define the Hubble radius as

RH = 1/(aH). (2.46)

As we see from eqs. 2.39 and 2.35, for radiation RH ∝ a = eln a. This means as a → 0,
the contribution from early universe to causal horizon is exponentially suppressed and
integral is dominated by upper bound. Note that during radiation and later, matter era,
the dependence of RH to a (or redshift) is determined by density of radiation and matter
in the universe (see eqs 2.39, 2.46) which is fixed by Big Bang Nucleosynthesis (BBN).
Therefore we can not solve the problem by changing the history of universe after BBN,
during the radiation phase or after that. However, if we have a pre-radiation phase during
which RH doesn’t decay away as a → 0 or in other words, RH was bigger at very early
times, then we could make the size of comoving horizon much bigger.

That means during that phase RH decreases with time. In other words, we need a
period of time where

d(aH)−1

dt
< 0 ⇒ −1

a
− Ḣ

H2

1

a
< 0 ⇒ ä > 0. (2.47)

This leads to the conclusion that Universe must have gone under a phase of acceleration,
now known as inflation.

2.2.3 Inflation, the Acceleration Phase

From the second Friedmann equation, eq 2.27, we can see that for the accelerating phase
(ä > 0) to happen, we need an equation of state that satisfies the inequality

p < −1

3
ρ. (2.48)

One of the simplest example of sources achieving this relation is cosmological constant,
corresponding to the equation of state

p = −ρ. (2.49)

From the equation 2.35, we see that under the above condition, the scale factor grows
exponentially in time, a(t) ∝ eHt, which corresponds to a space-time manifold, called de
Sitter space-time. Note that in this space-time, we have the light-like trajectory

r =

∫
dt

a
=

∫
e−Htdt = − 1

eHtH
⇒ a ∼ 1

r H
(2.50)
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However, setting a strict cosmological constant leads to a never-ending acceleration of the
universe that does not enter a radiation era. As we will show in the following subsections,
we can get approximately that equation of state leading to quasi-de Sitter space-time by
introducing a scalar field, called inflaton field.

Inflation

To begin with, consider a scalar field, Π, and its potential, V (Π), minimally coupled to
gravity. The action is given by

SΠ =

∫
dx4

√
−g(−1

2
∂µΠ∂

µΠ− V (Π)). (2.51)

Varying this action with respect to the metric, we get the stress-energy tensor

Tµν = ∂µΠ∂νΠ− gµν

(
1

2
∂σΠ∂σΠ+ V (Π)

)
. (2.52)

In FLRW universe, where the metric and the scalar field, Π(t), are assumed to be homo-
geneous and isotropic, the energy density is given by

ρ = −T 0
0 =

1

2
Π̇2 + V (Π), (2.53)

and the pressure is given by

p =
1

2
Π̇2 − V (Π). (2.54)

Furthermore, we can obtain the equation of motion from varying the action (the Euler-
Lagrange equation):

Π̈ + 3HΠ̇ + V ′(Π) = 0, (2.55)

where V ′(Π) is the derivative with respect to the scalar field Π. Computing the time-time
component of Einstein equations leads to the following Friedmann equation:

H2 =
1

3M2
p

(
1

2
Π̇2 + V (Π))− κ

a2
(2.56)

From these two equations we also can derive another useful equation

Ḣ = − 1

2M2
p

Π̇2 +
κ

a2
. (2.57)

Here, κ, the curvature of space-time, can be neglected because it is not the dominant
term, and it becomes extremely small. These are the systems of equations governing the
dynamics of homogeneous and isotropic scalar field in flat FRLW space-time and the
corresponding cosmological geometry [41].
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The Slow-Roll Regime

The system of equations (2.56 - 2.57) does not always ensure an accelerated expansion
of the universe[41]. To obtain such acceleration, we work in a regime called the slow-roll
approximation.

As mentioned, we want the equation of state to look like p ≈ −ρ. From the eqs. 2.54
and 2.53, we can achieve that equation of state, if the potential is much greater than the
kinetic term:

|V (Π)| ≫ 1

2
Π̇2. (2.58)

Then from the Friedmann equations, we see that

H2 ≈ 1

3M2
p

V (Π) (2.59)

and

Ḣ = − 1

2M2
p

Π̇2. (2.60)

From these two equations, and the requirement that the potential must be much bigger
than the kinetic term, comes the first slow roll parameter ϵ and its condition:

ϵ ≡ − Ḣ

H2
≪ 1. (2.61)

Now, we need another condition that will allow inflation to happen for a long enough
period. This means that we need the change in the kinetic energy to be much less than
the change in the potential energy:

d

dt

(
1

2
Π̇2

)
≪ ˙(V (Π)) ⇒ Π̇Π̈ ≪ ∂ΠV Π̇.⇒ Π̈ ≪ V ′(Π). (2.62)

Imposing the first slow-roll approximation, Π̇2 ≪ V , the Friedmann equations give us the
relations

V ′(Π) ≈
2M2

pHḢ

Π̇
(2.63)

and

Ḧ = − 1

M2
p

Π̇Π̈ ⇒ Π̈ =
−M2

p Ḧ

Π̇
. (2.64)
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The above equations gives us the second slow-roll parameter η

η ≡ − Ḧ

2HḢ
≪ 1. (2.65)

In the slow-roll regime, the first Friedmann equation and the equation of motion, eqs. 2.56
and 2.55, simplify to

H2 ≃ 1

3M2
p

V, (2.66)

3HΠ̇ + V ′(Π) ≃ 0. (2.67)

Often it is convenient to work in terms of the potential, V , than in terms of Hubble
parameters. We here define slow-roll parameters in terms of V as

ϵv ≡
M2

p

2

(
V ′

V

)2

≪ 1, (2.68)

and

ηv ≡M2
p

V ′′

V
≪ 1. (2.69)

Note that ϵv corresponds to ϵ and ηv corresponds to ϵ+ η.

In the regime where the expansion of the universe is accelerated, we see that the slope
and the curvature of the potential energy have to be small enough

Number of e-folds

Inflation must last for at least some duration of time to match the current observational
data. Thus, we introduce a quantity called the number of e-folds denoted by N , defined as

N = ln
aend
a
, (2.70)

where aend is the scale factor at the end of the inflation. Since

dN = −d ln a = −Hdt = −H
Π̇
dΠ, (2.71)

in the slow-roll regime, we can approximate N as [49]

N(Π) ≃
∫ Πend

Π

V (Π̃)

M2
pV

′(Π̃)
dΠ̃. (2.72)
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Since the contribution from the curvature is defined as

Ωκ = − κ

a2H2
, (2.73)

we have the relation from the onset of inflation to the end of the inflation

Ωk(aend) ≃ Ω(ain)
a2in
a2end

≃ e−2N . (2.74)

This relation tells us how the e-foldings and the contribution from the curvature is related.
For example, if we had Ωκ ∼ 1 at the beginning of inflation, after 20 e-foldings of inflation,
we will have Ωκ,BBN ∼ 10−18.

From the observational data, we have the current total contribution, Ω
(0)
tot ≡ Ωtot(t0) ≃

1.02. From the equation 2.31, we see that this observation means that there’s no evident
curvature [49]. Therefore, the curvature parameter, κ, throughout this thesis, is taken to
be zero. From here on, when we refer to FLRW metric, we mean flat FLRW metric:

ds2 = −dt2 + a2(t)dx⃗2, (2.75)

which can also be written as

ds2 = a(τ)2[−dτ 2 + dx⃗2]. (2.76)

Here, we introduced the conformal time, τ , with the relation a(τ)dτ = dt.

However, the universe is not completely homogeneous and isotropic. We have large
scale structures such as galaxies and clusters of galaxies. In order to explain the forma-
tion of these large scale structures, we need to go beyond the homogeneity and isotropy
approximation. The cosmological perturbation theory provides such a framework.

2.3 Cosmological Perturbation Theory

The theory of cosmological perturbations is the theory through which we understand how
the quantum fluctuations during the very early universe can generate the seeds for the
large-scale structures in the late time universe. This theory plays a very important role in
the modern cosmology. In this section, the concept and the formulation of the theory will
be explained. This discussion is mainly based on “Lectures on the Theory of Cosmological
Perturbations” by Brandenberger [22] and “Theory of Cosmological Perturbations” by
Mukhanov, Feldman, and Brandenberger [46].
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2.3.1 Perturbative General Relativity

In the previous section, we introduced the FLRW metric with the line element

ds2 = a(τ)[−dτ 2 + dx⃗2], (2.77)

as a background approximation to our universe on a cosmological scale. In this subsection,
we introduce a formalism named after Arnowitt, Deser, and Misner: the ADM formalism
[7]. The basic idea is that we can break down space-time into a foliation of 3-dimensional
space-like manifold and a time direction. This formalism can be very useful when we
work with perturbations. Using ADM formalism, we introduce three new quantities in the
metric known as the lapse function, N , shift vector, N i, and a 3-dimensional metric, hij.
Using this formalism we can write the line element as

ds2 = −N2dτ 2 + hij(dx
i +N idτ)(dxj +N jdτ). (2.78)

Note that for N = a(τ), hij = a(t)2δij and N
j = 0, this metric represents the flat FLRW

metric.

To introduce inhomogeneities and anisotropies on top of the FLRW metric, we start by
perturbing the ADM variables, N , N i, and hij:

N = a(τ)(1 +N1) (2.79)

N i = ∇iψ +N i
T (2.80)

hij = a(τ)2[(1 + 2ζ)δij + 2E,ij + Fi,j + Fj,i + γij]. (2.81)

Here, we separated perturbations into scalar (N1, ψ, ζ, and E), vector (N
i
T and Fi), and

tensor perturbations (γij) by requiring

∇iFi = 0, ∇iN
i
T = 0

∇iγij = 0, γii = 0. (2.82)

Here,∇i is a 3 dimensional covariant derivative from the 3 dimensional metric hij. Through-
out this thesis, we will mostly study scalar perturbations.

Coordinate Transformation and Gauge Fixing

In the previous subsection, we introduced 7 variables to represent the metric perturbations.
However, not all these variables correspond to actual degrees of freedom. Since the laws of
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physics should not depend on the coordinates, we can use coordinate transformations to
identify these artifacts. We start with a coordinate transformation

xµ → xµ + ξµ. (2.83)

The spatial component ξi of ξµ can be decomposed into

ξi = ξi⊥ + hijξ,j, (2.84)

where hij is the spatial background metric. The first term is a transverse part, which
contributes to vector perturbations in the metric. The second term is the gradient of a
scalar, which contributes to scalar perturbations [22].

If we just look at the scalar perturbations in eq. 2.79 - 2.81, we can see that these
variables change under these coordinate transformation (eq. 2.83) as:

N1 → Ñ1 = N1 −
a′

a
ξ0 − (ξ0)′

ψ → ψ̃ = ψ + ξ0 − ξ′

E → Ẽ = E − ξ

ζ → ζ̃ = ζ +
a′

a
ξ0, (2.85)

where primes denote derivatives with respect to τ , the conformal time. By choosing specific
values of ξ0 and ξ, we can fix the values of one or two of these variables. This formalism
is referred as gauge fixing.

There are different gauges we can use for gauge fixing. For example, we can always take
ξ = E, and ξ0 = E ′−ψ, such that in the new coordinate systems, the values of E = ψ = 0.
This is the Newtonian or longitudinal gauge. In general, choosing a gauge will remove two
degrees of freedom for scalar perturbations. As we will see later, these does not necessarily
need to be E and ψ.

Similarly, the vector perturbations transform as

N i
T → Ñ i

T + ξi′⊥, Fi → F̃i + ξ⊥i. (2.86)

Therefore, we can remove one vector perturbation variable through gauge fixing. From
here on, we set Fi = 0.
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Perturbations with Canonical Scalar Field

Many models of early universe, such as inflationary scenarios, involve scalar fields in the
action. Therefore, in this subsection, we continue the discussion of metric perturbations
in the context of a canonical scalar field minimally coupled to gravity. That represents the
simplest model of generating scalar perturbations. The total action in this model can be
written as

S =
1

2

∫
d4x

√
−g( 1

M2
p

R− ∂αΠ∂
αΠ− 2V (Π)). (2.87)

We can rewrite this action in terms of ADM variables and in conformal time as

S =
1

2

∫
d3xdτ

√
h
[
NR(3) − 2NV +N−1(EijE

ij − E2) +N−1(Π′ −N i∂iΠ)
2 −Nhij∂iΠ∂jΠ

]
,

(2.88)
where R(3) is the 3 dimensional Ricci scalar, and Eij and E given by

Eij ≡
1

2
(h′ij −∇iNj −∇jNi) (2.89)

E ≡ Ei
i.

Here, h is the determinant of the spatial metric, hij.

In the previous subsection, we already derived perturbed ADM variables around the
FLRW metric. We now need to take into account the fluctuations in the scalar field around
the homogeneous background as well. We can represent this as

Π(τ, x⃗) = Π0(τ) + δΠ(τ, x⃗). (2.90)

We now have in total five variables corresponding to scalar perturbations (δΠ, N1, ψ, ζ,
E). We can remove E by gauge fixing as mentioned earlier. However, note that under the
transformation given in eq. 2.83, δΠ transforms as

δΠ → δΠ̃− Π′
0ξ

0. (2.91)

Therefore, through coordinate transformation, we can also remove δΠ instead of the other
metric perturbation variable. This corresponds to choosing our time foliation along the
Π constant hypersurfaces. This choice is known as the comoving gauge (or the Unitary
gauge), which implies

δΠ = 0, hij = a(τ)2[(1 + 2ζ)δij + γij]. (2.92)
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The convenience of ADM formalism is that it makes it clear that the lapse function, and
the shift vector are not dynamical variables. This allows us to remove two more degrees of
freedom from the equation of motions for N , and Ni:

∇i[N
−1(Ei

j − δijE)] = 0 (2.93)

R(3) − 2V −N−2(EijE
ij − E2)−N−2Π′2

0 = 0. (2.94)

These equations are referred to as Hamiltonian and momentum constraints. Solving these
constraints, we find

N1 =
ζ ′

H
, N i

T = 0, ∇2ψ = − 1

H
∇2ζ +

Π′2
0

2H2
ζ ′, (2.95)

where ∇2 = ∇i∇i = hij∇i∇j.

We can plug these values in the action, given by eq. 2.87, along with the Friedmann
equations for inflaton field to compute the part of the action which is second order in scalar
perturbations

S(2) =
1

2

∫
d3xdτ a2(τ)

Π′2
0

H2
[ζ ′2 − (∂iζ∂

iζ)], (2.96)

where H ≡ a′/a. The above equations reduces the analysis of scalar perturbations into
the field theory of a single variable, ζ [22]. We often refer to ζ as the comoving curvature
perturbation. This formulation allows us to apply techniques of quantum field theory in
curved space-time to quantize cosmological perturbations.

2.3.2 Quantizing Cosmological Perturbations

To understand the generation of cosmological fluctuations, we need both QuantumMechan-
ics and General Relativity. Since universe is expanding, the wavelengths of fluctuations as
we look into past gets smaller and smaller. In the context early universe scenarios, such
as inflation, this implies that the fluctuations has to be treated as quantum fields. As long
as gravity is weekly coupled, the theory of quantum field theory on curved space-time is
sufficient to describe the quantum nature of fluctuations [22].

In previous sections, we showed that in an action described only by the gravitational
term and a single scalar field, we can reduce the degrees of freedom to one single variable.
Here, we show that trough a redefinition of variables, we can rewrite the action in a
canonical form with a time dependent mass. This will lead to the production of quantum
particles overtime.
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Mukhanov Variable

As shown earlier, the Einstein-Hilbert term plus a scalar field Π(t, x⃗)

S =

∫
d4x

√
−g
[

1

2M2
p

R− 1

2
∂µΠ∂

µΠ− V (Π)

]
, (2.97)

leads to the following quadratic action for the scalar perturbations:

S(2) =
1

2

∫
d3xdτ a2(τ)

Π′2

H2
[ζ ′2 − (∂iζ∂

iζ)]. (2.98)

The coefficient of the kinetic term in this action is time dependent. To resolve that we
introduce v, known as the Mukhanov variable, given by

v = −zζ, (2.99)

and

z =
aΠ′

0

H
. (2.100)

In terms of these new variables, v and z, the quadratic action (eq. 2.98) becomes

S(2) =
1

2

∫
d4x[v′2 − v,iv

,i +
z′′

z
v2]. (2.101)

This equation represents the action of a single canonical field with a time-dependent mass.

The equation of motion for v is

v′′ − ∂i∂
iv − z′′

z
v = 0. (2.102)

In momentum space, the equation of motion becomes

v′′k + k2vk −
z′′

z
vk = 0. (2.103)

With these equations, we can study how quantum fluctuations in early universe shaped
the current cosmos, especially in inflationary scenarios.
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Quantization and Initial Conditions

Since we derived the second order action

S =
1

2

∫
dτ d3x

[
v′2 − v,iv

,i +
z′′

z
v2
]
, (2.104)

from eq. 2.97 in subsection 2.3.2, we can quantize the field in a standard way. First, we
take the conjugate momenta of the field v,

πv =
δS

δv′
, (2.105)

which satisfies the commutation relation

[v̂(τ, x⃗), π̂v(τ, x⃗
′)] = iδ(x⃗− x⃗′), (2.106)

and
[v̂(τ, x⃗), v̂(τ, x⃗′)] = [π̂u(τ, x⃗), π̂v(τ, x⃗

′)] = 0. (2.107)

Note that since the scalar field v has the canonical kinetic term, we have πv = v′. Now,
the quantum field v can be expanded in Fourier series:

v̂(τ, x⃗) =
1√
(2π)3

∫
d3k

{
âk⃗vk(τ)e

ik⃗·x⃗ + â†
k⃗
v∗k(τ)e

−ik⃗·x⃗
}
. (2.108)

The operators, ak⃗ and a
†
k⃗
are the usual creator and annihilator operators, and the function

vk satisfying the usual classical equation of motion in Fourier space [49]. The normalization
for the mode functions is given by

vkv
′∗
k − v∗kv

′
k = i. (2.109)

Since we have quantized the fields, we turn our attention to the equation of motion:

v′′k + (k2 − z′′

z
)vk = v′′k + (k2 +m2

eff )uk = 0. (2.110)

As mentioned before, for the inflation to start, we need the slow-roll approximation. In
the slow-roll regime, the evolution of Π̇ and H is much smaller than the evolution of the
scale factor, a ( so we can see from the slow roll parameters Π̈ and Ḣ are much smaller
than H). This means that we can approximate the effective mass as

m2
eff = −z

′′

z
≈ −a

′′

a
= − 2

τ 2
, (2.111)
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in de Sitter space-time. Note that as mentioned earlier, when ρ ≈ −P , we have de Sitter
space-time and exponentially increasing scale factor a = eHt. In this space-time, the
equation for the conformal time

τ =

∫
dt

a
=

∫
e−Htdt = − 1

aH
⇒ a ∼ 1

Hτ
. (2.112)

In de Sitter, and under the slow-roll regime, we have the general solution to the eq.
2.110 given by

vk = αe−ikτ
(
1− i

kτ

)
+ βeikτ

(
1 +

i

kτ

)
. (2.113)

In the region where the wavelength associated with a given k value is much less than the
Hubble radius, we have k|τ | ≫ 1. Given, the normalization choice given by eq. 2.109,
along with the requirement of Minkowski vacuum in that limit,

lim
τ→−∞

vk(τ) =
1√
2k
e−kτ , (2.114)

we obtain

vk =

√
1

2k
e−ikτ

(
1− i

kτ

)
, (2.115)

known as the Bunch-Davis Vacuum [41]. This vacuum state is a zero particle state in the
asymptotic past infinity.

Power Spectrum and Two Point Correlation Function

The power spectrum Pv of the quantum fluctuations v is given by

Pv(k) = k3|ṽ(k)|2, (2.116)

where ṽ(k) is from the Fourier transformation

ṽ(k⃗, t) =

∫
d3xv(x⃗, t)e−ik⃗·x⃗. (2.117)

We can define the correlation function for the scalar field v, which gives us the relation

⟨0 |v̂(x⃗1)v̂(x⃗2)| 0⟩ =
∫
d3k eik⃗·(x⃗1−x⃗2)

Pv(k)

4πk3
, (2.118)
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where Pv is the power spectrum for the scalar field v [41]. Since v = −zζ, the power
spectrum of the curvature perturbation ζ becomes

Pζ = k3|ζk|2,= k3
|vk|2

z2
=
Pv
z2

(2.119)

since ζ = z−1v. In the region where the wavelength is smaller than the Hubble radius
(k|τ | ≫ 1), we have

Pζ(k) ≃
H2

4k3ϵ
, (2.120)

where ϵ = Π̇2/H2. From the CMB data we obtain the amplitude of the primordial power

spectrum to be P
1/2
v ≃ 5×10−5. We can write the power spectrum in terms of the potential

and the slow-roll parameter (2.68)

Pζ =
1

24π2

(
V

M4
p ϵv

)
. (2.121)

This equation now gives us the restriction on the energy scale during inflation. For example,
if ϵv ∼ 1 then we get

V 1/4 ∼ 10−3 ∼ 1015 GeV. (2.122)

2.3.3 Summary

In this chapter, we started by introducing the most accepted mathematical theory for de-
scribing gravity, the General Theory of Relativity. We showed how this theory allows us to
understand the background evolution of the universe, and how the components of matter in
the universe can contribute to the evolution. We proceeded to introduce the Hot Big Bang
model, which had its successes but also had many puzzles, such as the horizon problem.
Then we introduced a possible solution: inflation - the accelerated expansion of the universe
at early times. We explained how it could solve the horizon and flatness problems, and
how the background would evolve in this model. We then introduced inhomogeneities in
our picture, and quantized these perturbations, and how they could generate the observed
power spectrum.

This chapter’s purpose was to expose to readers the essential frameworks and models to
understand the rest of the thesis, which focuses on exploring the limitations of the current
paradigm of cosmology (the standard inflationary Big Bang model). For example, we do
not quite know what the initial condition for the beginning of the universe. It seems that
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assuming Bunch Davies initial conditions gives us nice predictions, but there are debates
on the validity of this assumption. Another famous problem in the field of cosmology is the
cosmological constant problem, where we cannot reconcile predictions from quantum field
theories and general relativity. The next chapters will look to these puzzles in inflationary
Big Bang scenarios by suggesting alternative models, or using techniques such as effective
field theories.
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Chapter 3

Cuscuton: IR Modification of
Gravity

To answer some of the problems in the standard inflationary Big Bang model, many meth-
ods and approaches have been made, with interesting models. In this chapter, we introduce
a causal scalar field theory with non-canonical kinetic terms called Cuscuton, a Latin name
of a parasitic plant of dodder [3]. The field gets its name because it becomes an auxiliary
field, and follows the dynamics of the field that it attaches or couples to [3]. Since its first
proposal, the cuscuton has been seen in many independent works in cosmology/high-energy
physics. The low energy limit of Horava gravity[35], the different types of inflationary mod-
els [20], approaches to resolve cosmological constant [28] are some of the examples of where
we can see the rediscovery of cuscuton.

In this chapter, we will study the second order action of cuscuton based on the works
of Boruah et al. [21]. Although there were many works regarding cuscuton cosmology,
the second order action of cuscuton in terms of the curvature perturbation ζ had not been
obtained. This is a significant step forward because with the obtained second order action
for ζ, we can rigorously explore the evolution of its fluctuations. In this chapter, we will
begin by a brief review of cuscuton, then we will obtain the second order action in terms
of ζ and background quantities and present the analysis of the result. Finally, we will
conclude the chapter by commenting on the analysis and the possible future works.
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3.1 Introduction

To conjure such field consider an action given by

S =

∫
d3xdτ

√
−g [P (X,φ)] , (3.1)

where τ is the conformal time, and X given by X = ∂µφ∂
µφ, and φ is a scalar field. In a

homogeneous and isotropic background with metric

ds2 = a2(τ)(−dτ 2 + δijdx
idxj), (3.2)

the equation of motion of such field takes the following form [21]

(P,X + 2XP,XX)φ
′′ + 3HP,Xφ′ + P,Xφφ

′2 − 1

a2
P,φ = 0. (3.3)

Again, P,X denotes the partial derivative of P with respect to X. For the second derivative
terms to vanish, it requires that [3] [21]

(P,X + 2XP,XX) = 0. (3.4)

A theory where the above condition is automatically satisfied is

S =

∫
d4x

√
−g[±µ2

√
X − V (φ)]. (3.5)

The equation of motion for this theory at all orders in perturbations is given by(
gµν −

∂µφ∂νφ

X

)
∇µ∇νφ± 1

µ2

√
XV ′(φ) = 0. (3.6)

By doing a simple analysis of the above equation at zeroth order of perturbation, we can
see that the above equation will lead to no second order derivatives. However, even at the
first order of perturbation, the second order derivative terms vanish.

We now develop the cosmological perturbation theory for this theory. We will also show
that the scalar comoving curvature perturbation ζ is conserved in super-horizon scales in
the frameworks of cuscuton gravity and that the cuscuton theory is ghost free.
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3.2 Background Cosmology with Cuscuton

Since the cuscuton field is an auxiliary field and lacks its own dynamics, we need another
field with propagating degrees of freedom to study the dynamics of the cuscuton field.
To do that, we will consider a scalar field Π with a canonical kinetic term and minimally
coupled to cuscuton to be the source of the scalar mode. Then, we have the action

S =

∫
d4x

√
−g
[
1

2
R− 1

2
∂µΠ∂

µΠ− U(Π)± µ2
√

−∂µφ∂µφ− V (φ)

]
. (3.7)

Now from the eq. 2.22, and the Einstein field equations, we can get two background
equations

3H2 =
1

2
Π′2

0 + V (φ0)a
2 + U(Π0)a

2 (3.8)

H2 −H′ =
1

2
Π′2

0 ± µ2

2
|φ′

0|a, (3.9)

where the subscript 0 denotes the back ground homogeneous quantities. The above two
equations give us two constraints on background parameters. Note that the right hand
side of eq. 3.9 gives H2 −H′ = −Ḣa2. Then we have a relation

Ḣ = − 1

2a2
Π′2

0 ∓ µ2

2a
|φ′

0|. (3.10)

Interestingly, we notice if we choose the negative sign choice for the sign of µ2 term in
the action, it allows us to have a positive value for Ḣ.In standard GR positive Ḣ would
require −Π′2

0 for kinetic term and would violate the Null Energy Condition. However,
here the sign of the Π′2

0 does not need to change, and thus the Null Energy Condition for
the source scalar field is not violated even with Ḣ > 0. Thus, we do not expect any ghost
instabilities, and later in the chapter, we will show that this is true.

Also, by defining two parameters

α ≡ Π′2
0

2H2
(3.11)

ϵ ≡ H2 −H′

H2
, (3.12)

we can write the cuscuton contribution on the background equations as a new parameter:

σ ≡ ϵ− α = ± µ2

2H2
|φ′

0|a. (3.13)
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Note that in the limit µ2 → 0, we get σ → 0. In the standard inflationary model, α equals
to ϵ, and its value represents the the first slow roll parameter introduced in eq. 2.68 [21].

The equation of motion for cuscuton (3.6) at zeroth order in perturbations reduces to

± 3µ2 sign (φ′
0)H = −aV,φ(φ0). (3.14)

For a specific potential we can write φ as

φ0 = V −1
,φ

(
∓3µ2 sign(φ′

0)H
a

)
. (3.15)

Thus, the eq. 3.8 can be written as

3H2 =
1

2
Π′2

0 + U(Π0)a
2 + V

(
V −1
,φ

(
∓3µ2 sign(φ′

0)H
a

))
a2, (3.16)

which shows how Friedmann equation gets modified due to cuscuton correction to GR.

Finally, we have one more background equation from the equation of motion of the
scalar field Π,

Π′′
0 + 2HΠ′

0 − a2
∂U

∂Π
Π′

0 = 0. (3.17)

However, this is a dynamical equation and therefore does not act as a constraint equation.

3.3 Curvature Perturbations with Cuscuton

In this section, we turn our attention to linear perturbations of scalar fields and the metric.
We first write the metric with ADM variables, which provide a convenient way of splitting
space-time into a 3-dimensional space-like hypersurface and a time direction [21][7]. The
metric in ADM variables is written as

ds2 = −N2dτ 2 + hij(dx
i +N idτ)(dxj +N jdτ), (3.18)

where N is the lapse, N j is the shift, and hij is the metric of the 3-dimensional hypersurface
given by

hij = a2[(1 + ζ)δij + γij]. (3.19)

The scalar parameter ζ is also known as the comoving curvature perturbation in the stan-
dard inflationary scenario. The tensor parameter γij is the traceless, gradientless(γii = 0,
∂iγij = 0) part of the 3-dimensional metric.
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With the ADM formalism we can write the total action in terms of ADM variables.
The Einstein-Hilbert action, the action with canonical scalar field, and the cuscuton action
can be re-written as

SEH =
1

2

∫
d3xdτ

√
−gR =

1

2

∫
dτd3x

√
h
[
NR(3) +N−1(EijE

ij − E2)
]
. (3.20)

SΠ =
1

2

∫
dτd3x

√
h
[
N−1(Π′ −N i∂iΠ)

2 −Nhij∂iΠ∂
jΠ− 2NU(Π)

]
. (3.21)

Sφ =
1

2

∫
dτd3x

√
h

[
±2µ2

√
((φ′ −N i∂iφ)2 −N2hij∂iφ∂jφ)− 2NV (φ)

]
, (3.22)

where R(3) is the Ricci scalar of the hypersurface,
√
h is the square root of the determinant

of the 3-dimensional metric hij and

Eij =
1

2
h′ij −

1

2
(∇iNj +∇jNi) and E = Ei

i. (3.23)

Variation of the total action SEH + SΠ + Sφ with respect to lapse and shift gives us the
momentum and Hamiltonian constraints,

∇i(N
−1(Ei

j − δijE)) = q,j (3.24)

R(3) +N−2(E2 − EijEij) = 2ρ, (3.25)

where q,i and ρ are the momentum density and the total energy density respectively.

The scalar perturbations give us two gauge degrees of freedom. We can fix one degree
of freedom by choosing a comoving uniform field gauge with respect to Π field such that
δΠ = 0. Another freedom can be fixed by setting

γij = 0, (3.26)

such that
hij = a2(1 + 2ζ)δij. (3.27)

The scalar contributions to N and Ni can be written as [21]

Ni = ∇iψ N = a(1 +N1). (3.28)

The constraint equation, eqs. 3.24 and 3.25, give us

N1 =
ζ ′

H
± 1

2
µ2a sign(φ′

0)
δφ

H
(3.29)

∇2ψ = − 1

H
∇2ζ +

Π′2
0

2H
N1. (3.30)
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Notice that with metric and scalar field perturbations, we had six perturbative variables,
N1, ψ, ζ, δφ, δΠ, and γij. We removed two degrees of freedom by fixing δΠ = 0, and
γij = 0. We also fixed two more freedom by eq. 3.29 and 3.30, fixing N1, and ψ in terms of
other variables. Now we can write the action to the second order in perturbation in terms
of only ζ and δφ:

S
(2)
EH =

∫
dτd3x a2

{[
3ϵ

2
− 9

]
(ζH)2 − ϵ(∂ζ)2 + µ2aδφ

[
αζ ′ − 9

2
ζH
]

−(µ2aδφ)2
[
α

2
+

3

4

]}
(3.31)

S(2)
φ =

∫
dτd3x a2

{[
6(α− ϵ) +

[
3V a2

H2

](
1 +

ϵ

2

)]
(ζH)2 + µ2aδφ

[
3a2V

2H2
(ζH)

−1

2
αζ ′ +

∂2ζ

2H

]
+ (µ2aδφ)2

(
α

4
+

3

4

)}
(3.32)

S
(2)
Π =

∫
dτd3x a2

{
αζ ′2 +

[(
9− 6α +

9ϵ

2

)
− 3V a2

H2

(
1 +

ϵ

2

)]
(ζH)2

+µ2aδφ

[(
9

2
− 3a2V

2H2

)
ζH− αζ ′

]
+

1

4
(µ2aδφ)2

}
(3.33)

Combining these expressions we obtain the expression ,

S(2) =

∫
dτd3x a2

[
αζ ′2 − ϵ(∂ζ)2 + σ

(
Hδφ
φ′
0

)(
αHζ ′ − ∂2ζ

)]
. (3.34)

In the limit where σ → 0, we can see that the contributions from cuscuton vanish and the
above action eq. 3.34 simplifies to

S(2) =

∫
dτd3x a2

[
αζ ′2 − ϵ(∂ζ)2

]
=

∫
dτd3x a2α

[
ζ ′2 − (∂ζ)2

]
, (3.35)

which is the standard quadratic action for curvature perturbations [21].

The total action is now written with only two perturbation variables, ζ and δφ. We can
remove one more variable using the field equation for cuscuton as a constraint equation:

∇2δφ−H2α[3 + α− ϵ]δφ =
φ′
0

H
[∇2ζ − αHζ ′]. (3.36)
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However, to write δφ in terms of other variables, we need to invert derivative opvaertors.
Thus, we will begin working in fourier space and then we can write δφ in fourier space as

δφk =
φ′
0

H
k2ζk + αHζ ′k

[k2 + (3 + α− ϵ)αH2]
. (3.37)

We can now write eq. 3.34 as

S(2) =

∫
dτd3k z2

[
ζ ′k − c2sk

2ζ2k
]
. (3.38)

Here, we introduced two functions z(k, τ) and cs(k, τ) given by

z2 ≡ a2α

(
k2 + 3αH2

k2 + αH2(3− σ)

)
(3.39)

c2s ≡
k4 + k2H2B1 +H4B2

k4 + k2H2A1 +H4A2

, (3.40)

where we also introduce some other notations given by

η ≡ ϵ′

Hϵ
(3.41)

β ≡ α′

Hα
(3.42)

A1 ≡ 6α− ασ (3.43)

A2 ≡ 9α2 − 3α2σ (3.44)

B1 ≡ A1 + σ(6 + η + β + 2ϵ) + α(η − β) (3.45)

B2 ≡ A2 + σα(12− 4σ + 3η) + 3α2(η − β). (3.46)

Note that in the σ → 0 limit, we get c2S → 1 and z2 → a2α as expected for the case of
the standard scalar field. Also, we see that the same is true for the ultra-violet case where
k → ∞.

3.4 Analysis

Ghosts

When a field has the wrong sign of the kinetic term, we refer to this as ghosts. If the kinetic
term has a negative sign, as the field vibrates more, we get a negative energy unbounded
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below. The vacuum state, which is the lowest energy state, will be unbounded below, and
any system will roll towards the infinite negative energy state. This instability is why we
do not want ghosts in our theory.

In the ultra-violet limit of the theory, the coefficient of the ζ ′2 term is z2 ∼ a2α > 0,
which implies that the theory is ghost free independent of ϵ or the sign choice for µ2 in the
action [21]. In fact, if we choose a negative sign for µ2, the sign of σ will always be negative
and we will not have any ghosts. Although for the positive sign of µ2, the sign of z2 can
change depending on the value of σ as can be seen in the eq. 3.39, the notion of ghost
instabilities is only meaningful in the ultra-violet limit and we do not need to worry about
ghosts [21]. When we deviate from the limit of flat background or time independent actions,
energy conservation and plain wave description of modes breaks down. The Hamiltonian
could become negative, but that does not necessarily mean instabilities within the system.
In fact, during the standard inflationary scenario, the Hamiltonian becomes negative in on
super horizon scales and resembles excited states with negative energy, but the theory is
still healthy.

Other Instabilities and Poles

Although the theory does not have ghosts, we might have other issues such as gradient
instability. Whether a scenario shows instability or not depends on the parameters of the
model.

To study possibilities of instabilities, consider the equation of motion for ζk from the
action (3.34)

ζ ′′k +

(
2 + β +

C1H2k2 + C2H4

k4 + k2H2A1 +H4A2

)
Hζ ′k + c2sk

2ζk = 0, (3.47)

where

C1 = (β + 2α− 2α2 − 2ασ)σ + 3α2(η − β) (3.48)

C2 = 3α2(η − β). (3.49)

As we see there are quite a few parameters that can determine the sign and behaviour of
c2s and coefficients of ζ ′k. While we can not make conclusive statement for every cuscu-
ton scenario, we comment on some generic features. First, in UV limit all the cuscuton
contributions go away and c2s → 1. Therefore, there is no gradient instability in that limit.
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Second, the non trivial denominator shared in one of the coefficients of ζ ′k and c2s can
be factored as

k4 + k2H2A1 +H4A2 = (k2 + 3αH2)(k2 + αH2(3− σ)). (3.50)

Therefore, for −µ2 in the action or +µ2 with σ < 3, the equation of motion for ζk is not
singular. Models with +µ2 and σ ≥ 3 can allow for poles which make the equation of
motion for ζk singular. Singular ODEs are not necessarily catastrophic and they may be
treatable. In fact as we mentioned before for +µ2, eq. 3.13, dictates that ϵ > 0 at all
times. Therefore, an expanding universe can not go through a bounce. It turns out for
+µ2 and ϵ > 0, one can write the equation of motion for Φ potential in longitudinal gauge
and there the equation is not even singular [2].

Conservation for ζ

Now we see if the parameter ζk is conserved in the infrared limit where k → 0. In this limit,
given that σ ̸= 3, z2c2s becomes finite and the equation of motion can be approximated to

d

dτ
z2ζ ′k ≈ 0. (3.51)

The solutions to this will have a constant mode for ζk and a time dependent mode that goes
like

∫
dτ/z2 [21]. Then using eq. 3.39, and defining the number of e-fodling as N ≡ ln a,

we get

ζ
(time)
IR ∝

∫
dτ

z2

⏐⏐⏐⏐
IR

≈
∫ (

1− σ
3

α

)(
dN

e3N −
∫
ϵdÑ

)
. (3.52)

This shows that, in an expanding universe where N is increasing in time, ϵ < 3 can lead
to a decaying mode beyond the horizon, but ϵ ≥ 3 can give us a growing mode. Also, we
can expect the opposite case for the decreasing N case (contracting universe) [21].

ζ Comparisons

We now turn our attention to how our ζ differs from other definitions of ζ in other literature.
In single field models, ζs sometimes is defined as

ζs = Φ+
Φ′ +HΦ

ϵH
(3.53)
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in Newtonian guage. By performing time transformation t→ t− ψ, we can see that our ζ
and ζs are related by the relation

ζs = ζ − σHδφ
φ′
0

. (3.54)

Using the definiton given by eq. 3.37 and working in Fourier space, we get

ζk = Φk +
Φ′
k +HΦk

ϵH

[
1− 3H2σ

k2 + 3H2ϵ

]
. (3.55)

Note that in the ultra-violet and in σ → 0 limit, this matches with eq. 3.53. In the infrared
limit, we have

ζs ≃ ζ +
σ

H(3− σ)
ζ ′. (3.56)

We can see that if ζ is conserved ζs is also conserved.

3.5 Summary and Future Works

The main goal of this work was to obtain the quadratic action for comoving curvature
perturbations, ζ, in cuscuton models. We started from an action that included the stan-
dard Hilbert-Einstein term, a canonical scalar field and a cuscuton field. We then used
ADM formalism and the uniform field gauge with respect to the scalar field to obtain the
quadratic action for ζ. In order to eliminate the cuscuton dependence from this action we
had to invert the cuscuton constraint equation. Therefore, we carried on the derivation
in Fourier Space. As we expected our final action eq. 3.38 had a complicated form but it
explicitly shows that cuscuton models are ghost free and have no instabilities in UV limit.
Basically in UV limit, the action becomes the standard quadratic action for a scalar field,
minimally coupled to gravity. Upon further investigation of equation of motion for ζk in
section 3.4, we also saw that there are no out of ordinary instabilities on non-UV scales
either. This analysis shows that depending on the details of a particular cuscuton model
and the potential of the scalar field, some corners of parameter space may lead to growing
modes. Interestingly, it seems if we choose a −µ2 for cuscuton kinetic term in the action,
there is more flexibilities in engineering different background evolutions and less chance of
developing instabilities. That will be very useful in engineering bounce scenarios. In order
to get a bounce one has to choose −µ2 in the action and make the parameter ϵ become
negative. However, with cuscuton that does not lead to ghosts since the source field does
not violate null energy condition. This could be the subject of our possible next upcoming
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project. We also showed that our choice of ζ was consistent with producing a conserved
mode on super horizon scales. However, we noticed that other common definitions of ζ
while are different physical quantities, they also produce a conserved mode and all of these
definitions merge on small scales. From computation point, we found that derivation of
equations and action were considerable simpler when we picked ζ as the comoving curvature
perturbation with respect to the source field.

For possible future works following the analysis of second order action with cuscuton,
we could study a possible bounce scenario in the early universe. To properly study the
bounce case with cuscuton, we will need to study the equation of motion for ζ and see how
it evolves over time. Furthermore, we will need to specify the potential V (φ0), and see
how parameters, such as a(τ), H, Ḣ behaves. The next course for this field should involve
setting a toy model, an initial condition and studying the differential equation to see how
ζ behaves over time.
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Chapter 4

Effective Field Theory and Modified
Dispersion Relations

The standard Big Bang model with inflation poses the trans-Planckian problem, and we do
not know if Bunch-Davies initial condition is suitable. However, even with the absence of
high energy physics at such scales, we can still construct a systemic way to make progress.
In this chapter, we will show the technique of effective field theory(EFT) in the inflationary
picture, and how this could give us modified dispersion relations that leads to a modification
to the Bunch-Davies initial conditions.

4.1 Introduction

Much has been said and written about the possible effects due to perturbation modes
evolving inside the horizon with energies larger than the scale of known physics (see
Refs. [44, 30, 32, 29, 31, 38, 39, 40, 24, 9, 10, 8, 6] for a few examples). Depending
on how one models the new physics, various assessments for the amplitude of the correc-
tions to standard quantum field theory results were suggested. In fact, in most scenarios,
these effects were estimated to be of order (H/M)n, where H and M are respectively the
inflationary Hubble parameter and scale of new physics, and the exponent n ≳ 1, typically.

One approach to model physics at very high momenta, is to assume that the Lorentzian
dispersion relation, ω2 = k2, is modified by higher order corrections. Depending on whether
the dispersion relation respects the adiabaticity condition when the mode are inside the
horizon, the corrections to the spectrum can be negligible [45] or dominant [43, 55]. The
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authors of these studies used the gluing approximation to estimate the corrections. How-
ever, comparing the outcome of this approximation in the case of Ref. [45] with the exact
analytical solution, authors of [13] showed that the gluing method overestimates the cor-
rection to the power spectrum by an extra factor of (H/M). Moreover, for a dispersion
relation with non-adiabatic evolution, the numerical solution for the mode equation sug-
gests that the effect is drastically different from what the gluing technique predicts. In
Ref. [43], the gluing method indicated that the correction to the power spectrum is given
by an oscillatory function whose amplitude depends almost linearly on the amount of time
each mode spends in the non-adiabatic region. The numerical solution on the other hand
demonstrated that the exact behaviour of the power spectrum is more involved, depending
on other parameters in the problem [36]. It is often argued that effects of order one or
higher on the power spectrum (see [51] as an example) should be excluded due to the
back-reaction of excited states in the phase governed by the known physics [54]. How-
ever, as demonstrated in Ref. [33], as long as the scale of new physics is different from the
Planck scale, the back reaction is not very constraining for corrections to observables like
the power spectrum. They estimated the upper bound on the second Bogolyubov coeffi-
cient to be of order

√
ε η H Mp/M

2, where ε and η are respectively the first and second
slow-roll parameter for a given inflationary potential and Mpl is the Planck mass. In fact,
for a given inflationary model, the back reaction of excited states with large Bogolyubov
coefficients, could be counteracted by simultaneously reducing the ratio of H and M [15].
Further more, for a large-field model of inflation with highly excited initial condition the
new physics scale cannot be arbitrarily larger than the Hubble parameter during inflation
[15]. For example for the quadratic potential, the largest value allowed turns out to be
M ≃ 21H. In this thesis, we call such highly excited initial conditions as “super-excited”
states. These super-excited initial conditions can generate interesting observational effects.
For instance, super-excited states with k dependence, induce a running in the spectral in-
dex larger than O(ϵ2) [14]. In another example, it was shown that the position-dependent
modulations of excited states with large occupation numbers lead to the hemispherical
anomaly [1]. In a recent work, the effect of rotational symmetry-breaking excited initial
conditions was used to obtain statistically anisotropic power and bi-spectrum. Such an
effect is not yet observed in the CMB, but may have an impact for future galaxy surveys,
leaving a trace in the shape of galaxies [26].

All of the above motivates us to further investigate the microphysical origin of such
super-excited initial states. Recalling that dispersion relations with an intermediate phase
that break WKB condition can induce large corrections to the power spectrum, we were
inspired to further study the implications of modified dispersion relations for excited initial
states. In particular, we are exploring the modified dispersion relations of the following
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form
ω2(kph) = β̄ k6ph − ᾱk4ph + k2ph , (4.1)

where β̄, ᾱ ≥ 0. In particular, we like to explicitly show that the region of parameter
space that results in larger than one modification of the power spectrum corresponds
to an initial condition with super excited state in standard picture. To estimate the
solution of the mode equation, we use both the analytical technique called gluing as well as
numerical techniques. Gluing method has been used quite extensively in the literature [45]
for estimating the power spectrum. In this method, the solution to the differential equation
in different regions of the domain are glued to each other by matching the functions and
their first derivatives at the boundaries. The initial condition is usually set to be adiabatic
vacuum which corresponds to positive frequency WKB mode at infinite past. However,
one has to keep in mind that the precision of this method relies strongly on how well the
solutions overlap or merge at the boundaries. In the case of β̄ = 0 and ᾱ < 0, we have
an exact analytic solution for mode equation (4.1), and therefore we can extract the exact
correspondence to Bogolyubov coefficients. This allows us to test the reliability of the
gluing prediction in this case. As we will show the second Bogolyubov coefficient goes
to zero much faster than what the simple matching technique suggests. The discrepancy
between the two methods can be as significant as order (H/M)2.

For β̄ ̸= 0 and ᾱ > 0, one has a sixth order polynomial dispersion relation with
an intermediate phase that dispersion curve has negative slope. In this case no exact
analytic solution is known for equation of motion (4.1). However, matching excited mode
solutions to the implicit solution given by Mathematica will provide us the corresponding
Bogolyubov coefficients. In our approach, we make sure that the matching is performed
in the regime that solutions are overlapping to a high precision. As we will observe,
these dispersion relation even in the cases where there is only one turning point in the
equation (corresponding to usual Hubble crossing) can mimic excited states with particle
number density as large as 80. This verifies the result of previous studies [14, 16, 12]. Our
derivation also shows that in some regions of parameter space, above dispersion relation
does not lead to any corrections to power spectrum. We will identify the corresponding
“calm excited states” [17] resulting from the evolution of these modes. In the last section,
we will comment on how dispersion relations like the one in Eq. (4.1) can arise in the
context of the Effective Field Theory of Inflation [25]. Finally, we will present a conclusion
and propose avenues for future developments.
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4.2 Precision of gluing method for estimating power

spectrum

As already pointed out, we want to study the effects of modified dispersion relations on
the power spectrum. Modified dispersion relations can lead to complicated Ordinary Dif-
ferential Equations (ODEs) in Fourier space that are hard to solve analytically. A popular
analytical method in the literature to estimate the solution of an ODEs, is to use matching
techniques. In this approach, one first finds the general solutions to the ODE in different
domains. Imposing an initial or boundary condition then fixes the coefficients in one re-
gion, and the coefficients in the other regions are determined by matching the solutions
at the boundaries of these regions. This is in fact quite a powerful technique to estimate
outgoing amplitudes in different areas of physics, such as optics and quantum mechanics.
As is customary in the cosmology community, we will refer to this technique as gluing
method . The precision of this technique depends on how smoothly the solutions of differ-
ent intervals merge to each other. Depending on the intended accuracy, one can always
divide the domain in more regions. Nonetheless, doing that might not necessarily provide
additional intuitions or advantages compared to numerical methods.

To highlight this point, we review the gluing method for the mode equation of the
standard Lorentzian dispersion relation. This example will help us understand one source
of offsets when we deal with more complicated modified dispersion relations. In this vanilla
model, the mode equation for a massless spectator field ϕ on the de Sitter background (with
scale factor a = −1/H τ) and minimally coupled to gravity is

u′′k +

(
k2 − 2

τ 2

)
uk = 0 . (4.2)

Here u represents the canonical variable defined as u ≡ a ϕ. This equation is the modified
Bessel equation and we can find exact solutions and the corresponding power spectrum.
Assuming Bunch-Davis initial conditions, the exact modes are given by

uk =
1√
2
e−i k τ

(
1− i

k τ

)
. (4.3)

Substituting this solution into the power spectrum,

P ϕ
k ≡ k3

2π2
⟨ϕ2

k ⟩ =
k3

2 π2 a2
⟨u2k ⟩ , (4.4)

one obtains that at late times (τ → 0),

PBD ≡ P
ϕ (exact)
k =

H2

4π2
. (4.5)
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In the following, we will use this value as our reference point and evaluate corrections with
respect to this value.

Suppose we now try to estimate the power spectrum via a gluing approach. We di-
vide the time domain τ ∈ (−∞, 0) into two regions, namely region I =

(
−∞,−

√
2/k
]

and region II =
[
−
√
2/k, 0

)
. We then impose continuity of the solutions and their first

derivatives at the boundary point

τb ≡ −
√
2

k
. (4.6)

In the limit τ ≪ τb, Eq. (4.2) simplifies to a simple harmonic oscillator. The particular
solution of this equation that approaches the Bunch-Davies vacuum is given by

uk I =
1√
2 k

exp(−i k τ) . (4.7)

On the other hand, one can neglect k2 in Eq. (4.2) for τ ≫ τb. Therefore, the general
solution in the second region is given by

uk II = C1τ
2 +

C2

τ
. (4.8)

The coefficients C1 and C2 can be determined by assuming uk I and uk II remain good
approximations around the boundary point τb, and requiring the continuity of the function
and its derivative at this point,

uk I(τb) = uk II(τb) (4.9)

duk I(x)

dτ

⏐⏐⏐⏐
τb

=
duk II(x)

dτ

⏐⏐⏐⏐
τb

. (4.10)

These conditions yield

C1 =
1

12

(√
2 + 2 i

)
ei

√
2 k3/2 (4.11)

C2 = −2− i
√
2

3 k3/2
ei

√
2 , (4.12)

and the power spectrum (4.4) becomes

P ϕ
k ≈ k3H2

2 π2
|C2|2 ≈

12

9

H2

4π2
≈ 1.33P

ϕ (exact)
k . (4.13)
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The discrepancy between the gluing result and the one obtained from the exact normalized
modes is almost 33%, which shows the inadequacy of the gluing technique in properly
estimating the amplitude of the power spectrum.

Of course, the reason for this discrepancy is that our approximate solutions in region I
(4.7) and in region II (4.8) are not a good description of the actual solution in the neigh-
bourhood of the turning point τb. If the regions of the validity of these solution had
overlapped, then one would expect that the corresponding power spectrum be a good ap-
proximation for the exact expression. In fact, similarly to tunnelling problems in quantum
mechanics, one could improve the accuracy by employing a WKB approximation in the
first region and Airy functions around the turning point τb. We should remark that, in
inflationary backgrounds unlike most tunnelling problems, the WKB approximation is not
restored after crossing the turning point. To summarize, matching techniques are helpful
to estimate the power spectrum, but when it comes to small corrections, one should be
aware of the limitations that come with this approximation.

4.3 Corley-Jacobson dispersion relation

We now turn our attention to the simplest correction to Lorentzian dispersion relation,
namely the Corley-Jacobson (CJ) dispersion relation [27] 1. This dispersion relation as-
sumes an additional quartic term to the physical momenta in the Ultra Violet (UV) regime,

ω2
ph = k2ph + β0 k

4
ph . (4.14)

Changing to comoving momenta, k = a kph and ω2(k),= a2 ω2
ph(k/a) the new mode

equation becomes

u′′k +

(
ϵ τ 2 k4 + k2 − 2

τ 2

)
uk = 0 , (4.15)

where we also defined the parameter ϵ ≡ β0H
2. This mode equation was extensively

analyzed in Ref. [13]. It was shown there that it has exact analytical solutions and the
power spectrum can again be obtained without any approximations. Imposing adiabatic
vacuum initial conditions, the exact modes are given by

u
(exact)
k (τ) =

exp(− π
8 ϵ
)

√
−2 ϵ τ k

WW

(
i

4 ϵ
,
3

4
,−i ϵ k2 τ 2

)
, (4.16)

1Please also see [37] for such modified dispersion for gravitino in the context of Effective Field Theory.
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with WW representing the Whittaker W function. Computing the power spectrum (4.3),
one obtains

P
ϕ (exact)
k = γ(exact) PBD , (4.17)

where the modulation of the Bunch-Davis power spectrum (4.5) is given by

γ(exact) =
π e−

π
4 ϵ

4 ϵ3/2 Γ
(
5
4
− i

4 ϵ

)
Γ
(
5
4
+ i

4 ϵ

) . (4.18)

In order to determine the Bogolyubov coefficients, we note that Eq. (4.15) reduces to the
usual vanilla one in an expanding background as x→ 0. Therefore, the exact solution (4.16)
in this limit can be matched smoothly to an excited mode,

uk IV =

√
−x π
2

[
ξ H

(1)
3/2(−x) + ρH

(2)
3/2(−x)

]
, (4.19)

We can then obtain the corresponding Bogolyubov coefficients ξ and ρ. Since the mode
function (4.19) itself is singular at x = 0, instead we work with function f(x) = xu(x) for
which

f(0) = −i ξ − ρ√
2

(4.20)

f ′(0) = 0 (4.21)

f ′′(0) = −i ξ − ρ√
2

= f(0) (4.22)

f ′′′(0) = −
√
2 (ξ + ρ) . (4.23)

The Bogolyubov coefficients are then determined by evaluating the function f and its third
derivative at x = 0. We obtain

ρ(ϵ) =

√
π e−

π
8 ϵ

4 ϵ3/2

[
8 (−1)3/8 ϵ9/4

Γ
(
− ϵ+i

4 ϵ

) − (−i ϵ)3/4

Γ
(
5
4
− i

4 ϵ

)] (4.24)

ξ(ϵ) =

√
π e−

π
8 ϵ

4 ϵ3/2

[
8(−1)3/8ϵ9/4

Γ
(
− ϵ+i

4 ϵ

) +
(−i ϵ)3/4

Γ
(
5
4
− i

4 ϵ

)] . (4.25)

The number density of particles in an excited state is then given by

Nk(ϵ)
exact =

(−1)5/8 e−
π
4ϵ

32π ϵ3
cosh

( π
2 ϵ

)[
(−1)3/8 (i ϵ)3/4 Γ

(
i− ϵ

4 ϵ

)
− 8 ϵ9/4 Γ

(
5

4
+

i

4ϵ

)]
,

(4.26)
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Figure 4.1: Ratio of Corley-Jacobson power spectrum to Bunch-Davies power spectrum
from various methods: γ(3) is the modulation factor when using three regions for gluing
solutions; γ(2) is the modulation factor when using two regions for matching solutions; and
γ(exact) is the exact modulation factor. Notice that, beside the superimposed oscillations,
further gluing at the horizon crossing causes an offset of 1/3 with respect to the exact result
around ϵ = 0. Oscillations near ϵ = 0 are an artefact introduced by the gluing technique
and are absent in the exact result.

which goes like 25 ϵ4/64 for small ϵ.

Now that we have the exact answer, we can again check the precision of the gluing
technique. As noted previously in Ref. [13], assuming ϵ ≪ 1/

√
2, one can decompose the

time domain into three regions:

k τ ≤ −ϵ−1 region I (4.27)

−ϵ−1 ≤ k τ ≤ −
√
2 region II (4.28)

k τ ≥ −
√
2 region III . (4.29)

The solution in region I that satisfies the wronskian condition,

u(τ)u′∗(τ)− u∗(τ)u′(τ) = i , (4.30)
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and the adiabatic vacuum initial conditions, turns out to be

uk I =
D− 1

2

(
(−1)3/4

√
2 ϵ x

)
(2 ϵ)1/4

√
k

. (4.31)

Here, Dν(x) is the parabolic cylinder function of order ν, and we defined the dimensionless
parameter x ≡ k τ . Next, this solution is glued to the general solutions in region II,

uk II = A2 exp(i x) +B2 exp(−i x) , (4.32)

and the coefficients are determined by requiring continuity at x1 = −1/ϵ. This yields

A2 = −
(1 + i) ei/ϵ

[√
ϵD 1

2

(
1−i√
ϵ

)
− (1− i)D− 1

2

(
1−i√
ϵ

)]
(32 ϵ)1/4

√
k

(4.33)

B2 =
(1 + i) e−i/ϵ 4

√
ϵD 1

2

(
1−i√
ϵ

)
2 4
√
2
√
k

. (4.34)

Likewise, matching these solutions to the general solutions in region III,

uk III =
A3

x
+B3 x

2 , (4.35)

leads to

A3 =
e−

i(
√
2 ϵ+1)
ϵ

3 4
√
8 ϵ

√
k

{
(1 + i)

√
ϵ
[(

2 + i
√
2
)
e2 i/ϵ + i

(√
2 + 2 i

)
e2 i

√
2
]
D 1

2

(
1− i√
ϵ

)
−
(
4 + 2 i

√
2
)
e2 i/ϵD− 1

2

(
1− i√
ϵ

)}
(4.36)

B3 =
(1 + i) e−

i(
√

2 ϵ+1)
ϵ

12 4
√
8 ϵ

√
k

{√
ϵ
[(√

2 + 2 i
)
e2 i

√
2 −

(√
2− 2 i

)
e2 i/ϵ

]
D 1

2

(
1− i√
ϵ

)
+(1− i)

(√
2− 2 i

)
e2 i/ϵD− 1

2

(
1− i√
ϵ

)}
. (4.37)

The power spectrum is finally obtained to be

P
(3)
CJ ≡ γ(3) PBD = 2 |A3|2 PBD . (4.38)
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In fig. 4.1, we plotted the factor γ(3) as a function of ϵ. One can see that the factor γ(3)

oscillates around 4/3 for small values of ϵ, with an amplitude roughly proportional to ϵ.
This oscillatory behaviour continues for larger values of ϵ, up to the point of validity of
the above computation. Note that when we are matching two oscillatory solutions at high
frequencies we expect the error to oscialite as well. As we see the exact result does not
show any oscillations, but only a suppression proportional to −ϵ2 close to ϵ ≈ 0. The
large offset of 1/3 from the exact result is reminiscent of the discrepancy observed in the
previous section from gluing the modes at the horizon crossing point, x = −

√
2. In fact,

the offset can be removed if the regions II and III are combined. The improved solutions
in this unified region, (4.19), can then be glued to the solution in region I. As we see in
fig. 4.1, the modulation factor γ(2) obtained using just two region does not show any offset
from the exact result anymore. This result still displays an oscillatory feature for small
values of the distortion parameter ϵ, which is again due to the inadequacy of this technique
in the UV.

The number of particles obtained from the gluing technique with two-regions is

N
(2)
k (ϵ) =

π

4
√
2 ϵ3/2

{
D− 1

2

(
1− i√
ϵ

)[
H

(1)
1
2

(ϵ−1)− (ϵ− i)H
(1)
3
2

(ϵ−1)
]

+(1− i)
√
ϵD 1

2

(
1− i√
ϵ

)
H

(1)
3
2

(ϵ−1)

}
×
{
(1 + i)

√
ϵD 1

2

(
1 + i√
ϵ

)
H

(2)
3
2

(ϵ−1)

+D− 1
2

(
1 + i√
ϵ

)[
H

(2)
1
2

(ϵ−1)− (ϵ+ i)H
(2)
3
2

(ϵ−1)
]}

,

(4.39)

which behaves like ϵ2/16 for small ϵ, as opposed to 25 ϵ4/64 for the exact solution. In
fig. 4.2, we have plotted both the number of particles obtained by the gluing method and
the one from the exact mode functions. It displays it clearly that the number of particles
for exact solution goes to zero faster than what the gluing method predicts for small ϵ, .

4.4 Sixth order polynomial dispersion relation

We are now going to take one step further and investigate mode equations of the form (4.1),
where the dispersion relation is governed by ω2 ∝ k6 in the infinite past. In particular we
consider the cases that perturbation modes start from adiabatic vacuum, then go through
a non-adiabatic phase where group velocity becomes negative and finally re-emerge as
super-excited states when ω2 ≃ k2. For convenience we have set the sound speed in (4.1)
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Figure 4.2: Number of particles in the corresponding excited states obtained via gluing is
compared to the exact one as function of ϵ . The exact number of particles goes to zero
faster by an extra factor of ϵ2.

to unity 2. Implementing this dispersion for the the canonicalized variable u, mode equation
takes the following form

u′′k +

(
β0 x

4 − α0 x
2 + 1− 2

x2

)
uk = 0 , (4.40)

where x ≡ kτ as before, β0 ≡ β̄H4 and α0 ≡ ᾱH2. As we will discuss in section ??,
these dispersion relations can be realized, in the effective field theory of inflation [25],
from terms like ∇µδK

νγ ∇µδKνγ, (∇µδK
ν
ν)

2, ∇µδKνµ∇νδKσ
σ and ∇µδK

µ
ν ∇γδK

γν . A
similar dispersion relation has also come up in the study of trans-Planckian signatures
in inflation [43, 36]. We can constraint the dispersion relation (4.1) to be nonnegative
(non-tachyonic) at all sub Hubble scales by setting [36],

z ≡ β0
α2
0

≥ 1

4
. (4.41)

2If cs ̸= 1, one can still make it to one in mode equation for the canonical variable u, by changing the
conformal time dτ → csdτ . When evaluating the power spectrum for field ϕ or curvature perturbations
that factor will reemerge.
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To be on the conservative side, we also assume that the modes get lighter than the Hubble
scale only once during inflation, which corresponds to the time of horizon-crossing, i.e
ω2 = 2H2 has only one solution which is around k ∼ 1/aH . This is different from the
study of Ref. [36], where it was assumed that there are three turning points corresponding
to three solutions of the equation ω2 − 2H2 = 0. For

z >
1

3
, (4.42)

this equation automatically has only one solution. For values of α0 and β0 such that

1

4
≤ z ≤ 1

3
, (4.43)

having only one solution imposes one of the following conditions

α0 ≤
9z − 2− 2(1− 3z)3/2

54z2

or α0 ≥
9z − 2 + 2(1− 3z)3/2

54z2
. (4.44)

Again, we will first try to estimate the particle number density using the gluing ap-
proach. We decompose the domain of x ≡ kτ ∈ (−∞, 0] into the intervals

−∞ < x ≲ x1(α0, β0) region I (4.45)

x1(α0, β0) < x < 0 region II (4.46)

where x1(α0, β0) is the transition point below which the higher order corrections to the dis-
persion relation can be neglected and the mode equation becomes the stabdard Lorentzian
dispersion relation. In general x = x1(α0, β0) can be determined by solving the equation

α0x
4 − β0x

2 = 1− 2

x2
, (4.47)

and is a complicated function of α0 and β0, but we note that for the cases of our interest
β0 ∼ α2

0, and one has

x1(α0, β0) ≈ − 2
√
α0

. (4.48)

Interestingly, Maple can find a compact solution in terms of Heun T functions to the mode
equation if the term 2/x2 was dropped. Therefore this solution is applicable to region I.
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After normalizing it according to the Wronskian condition (4.30), and imposing adiabatic
vacuum initial condition, we obtain

uk I(x) =
β
1/4
0

k1/2 α
1/2
0

HeunT(A , 0,B,−C x) exp(−y) , (4.49)

where

A =
1

32

α0
2181/3

(
i
√
3 + 1

)2
β0

4/3

B = −1

4

α0
3
√
12
(
i
√
3 + 1

)
β0

2/3

C = −1

3
32/3

3
√
2 6
√
β0

6
√
−1 , (4.50)

and

y =
1

12

x
(
−4 iβ0 x

2 + 3
√
3 (−1)2/3 α0 + 3 6

√
−1α0

)
√
β0

. (4.51)

This solution has to be matched to the general solution in region II, which is nothing other
than a linear combination of Hankel functions (4.19),

uk II =

√
−xπ
2
√
k

[
ξ H

(1)
3/2(−x) + ρH

(2)
3/2(−x)

]
. (4.52)

The solutions should be glued following the same prescription as (4.9) and (4.10) at the
point xg = x1(α0, β0).

For α0 = 0.2 and
α2
0

4
≤ β0 ≤

α2
0

3
(4.53)

Eqs. (4.44) is satisfied. For larger ratios of β0/α
2
0, although one can solve for the Bo-

golyubov coefficients implicitly in terms of Heun T and Heun T Prime functions, Maple
software cannot evaluate the values of these parameters numerically. Apparently Maple
employs a series expansion for the Heun T Prime function which does not converge for
such range of parameters. For α0 = 0.2, the enhancement factor for power spectrum is in
the following range

183.35 ≤ γ ≤ 454.89, (4.54)
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Figure 4.3: Power spectrum enhancement (left panel) and occupation number (right panel)
obtained with gluing method (red and blue curves) compared to full numerical result (dots).
For few values of α0 and β0, we have computed the correction to the power spectrum and
the number of particles in the corresponding excited state numerically. The difference
between these dots and the corresponding point on the curves shows that the gluing method
could have a large error in estimating these parameters. The blue and red curves (dots),
correspond to α0 = 0.2 and α0 = 0.18, respectively.

which is quite large. The range for number of particles in the excited state, Nk, is

47.31 ≤ Nk ≤ 229.63 (4.55)

In Fig. 4.3, we have plotted γ and Nk for α0 = 0.2 and α0 = 0.18, in the range 1
4
≤ z ≤ 1

3
.

Such values of α0 satisfy the constraints (4.44) and thus there is only one turning point
corresponding to the horizon crossing. As we discussed in the last section, the gluing
technique can become unreliable in obtaining the enhancement parameter and the number
of particle. Thus, one may wonder to what extent the above results can be trusted. The
following derivation shows that in fact, compared to the numerical result, gluing method
significantly overestimates the occupation number of excited states and the enhancement
factor.

Although one cannot find the exact power spectrum parametrically as a function of
α0 and β0, we can still compute the power spectrum numerically for fixed values of these
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parameters. Starting from the normalized positive frequency WKB mode in the infinite
past,

uk(x→ −∞) ≃ 1

2

(
−π
3
x
)
H

(1)
1
6

(
−
√
β0
3

x3
)
, (4.56)

the solution is then evolved numerically. Table 5.1, lists the values of the enhancement
factor and other variables evaluated numerically, for given pairs of (α0, β0). The largest
enhancement for the power spectrum occurs when α0 ≃ 0.2 and β0 ≃ α2

0/4 and, for
illustration purposes, we focus on these particular values of parameters. The enhancement
factor over the Bunch-Davies result for the power spectrum is about γ = 14.738. This is
much smaller than the enhancement factor, γ = 454.89, obtained through gluing. Contrary
to the adiabatic case, the gluing technique fails by a huge amount with respect to the
numerical result.

Although Mathematica does not recognise any compact explicit solution for the mode
equation (4.40) inside the horizon, it can come up with implicit solutions for the complete
mode equation, which formally read as

uk(x) = c1 u
(1)
k (x) + c2 u

(2)
k (x) , (4.57)

where c1 and c2 satisfy
c1 c̄2 − c2 c̄1 = i . (4.58)

The solutions u
(i)
k , with i = 1, 2, are normalized so that for one of them u

(i)
k (1) = 1 and

u
(i)′

k (1) = 0 and for the other one it is the other way around3. The most general solutions
to the Wronskian condition with real c1 is

c1 =
1√
2 s

(4.59)

c2 = −i s√
2
, (4.60)

where s ∈ R. We determine the parameter s, by requiring that the power spectrum
obtained from the modes (4.57) matches the one obtained by numerically evolving the
initial condition (4.56). There are usually four different solutions, two by two negative
of each other. For all these values of s, one can compute the corresponding implicit
mode function and we choose the one which leads to almost the same value of the mode

3It turns out that these implicit solutions are much easier to evaluate if their argument is real and
positive. Noting that the differential equation is even under x → −x, we will work in the domain (0,∞),
instead of (−∞, 0).
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function obtained by integrating numerically the mode equation. In principle, one can then
follow the steps taken in the previous section to determine the number of particles in the
corresponding state. However, while the amplitude of fluctuations, which is proportional
to f(x) ≡ xuk(x), approaches a constant value outside the horizon, the way Mathematica
numerically solves the equation, the error accumulates in higher derivative terms such
as f ′′′, and make them diverges as x → 0. What we do instead is the following, we
expect the general solution of (4.40) to merge quite well to Henkel functions even before
Hubble crossing. Therefore, we glue the mode function (4.57) to a linear combination of
Hankel functions at an arbitrary point xg. We next demand the corresponding Bogolyubov
coefficients ξ(xg) and ρ(xg) yield the numerically computed value for the power spectrum.
We then test our solution to make sure our assumption for gluing at xg is justified. For
α0 = 0.2 and β0 = α2

0/4, we have plotted both the real and imaginary parts of the implicit
numerical solution and the excited one obtained though matching the linear combination
of Hankel functions (see fig. 4.4). In this case xg = 1.2145, and as the figure displays
these functions merge very well at that point. The values of the Bogolyubov coefficients
estimated at this point are

ξ(xg) = 1.95519− 8.80935 i ρ(xg) = −1.88359− 8.7681 i , (4.61)

which suggests that the particle number density in the corresponding excited state is
Nk = 80.4275. This number is quite large and suitable to serve as a highly excited state
above the Bunch-Davies vacuum. In the language of [15], this corresponds to χS ≃ 2.19,
which is enough to serve our interests.

In table 5.1, we also list the corresponding values of the Bogoliubiov coefficients that
yields the correct enhancement factor to the power spectrum.

We note in passing that it is also possible to produce the so called ”calm excited
states”. [17], with this type of dispersion relations. One can cook up values for α0 and β0
that lead to excited states but do not modify the power spectrum at all. For example, with

α0 = 0.0101982725 , (4.62)

β0 =
α2
0

3
, (4.63)

one obtains an excited state with Bogolyubov coefficients

ρ = −0.320196− 2.16841 i , (4.64)

ξ = 0.669079− 2.31449 i , (4.65)

and particle number density Nk ≃ 4.80453. Nonetheless, the impact of such an excited
state on the two-point function is negligible. Therefore, one cannot say conclusively if the
mode has originated from an excited state just by examining the power spectrum.
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α0 β0 γ ρ ξ Nk

0.1 α2
0/3 2.62652 −0.727078− 3.65736 i 0.890536− 3.75658 i 13.9049

0.18 α2
0/4 14.7378 1.88601 + 8.77648 i −1.95745 + 8.81771 i 80.5836

0.18 α2
0/3 5.95909 −1.16428− 5.55538 i 1.27598− 5.62047 i 32.2178

0.19 α2
0/4 14.7739 −1.88609− 8.77973 i 1.95736− 8.82098 i 80.641

0.19 α2
0/3 5.95909 −1.16407− 5.55488 i 1.27619− 5.61989 i 32.2118

0.2 α2
0/4 14.738 −1.88359− 8.7681 i −1.95519 + 8.80935 i 80.4275

0.2 α2
0/3 6.06496 −1.17517− 5.60415 i 1.2867− 5.6685 i 32.7875

0.3 α2
0/4 12.838 −3.66837 + 1.44445 i 1.83104− 8.21655 i 69.8644

0.3 α2
0/3 6.06576 −1.17328− 5.59953 i 1.28877− 5.66307 i 32.7313

0.4 α2
0/4 10.6292 −1.58475− 7.42534 i 1.67516− 7.47268 i 57.647

0.4 α2
0/3 5.44107 −1.10289− 5.29483 i −4.44333 + 1.44564 i 29.2516

0.5 α2
0/4 8.87117 −1.43795− 6.77284 i 1.54006− 6.82402 i 47.939

0.5 α2
0/3 4.79253 1.16308− 5.03005 i −1.02498− 4.9602 i 25.6542

Table 4.1: Modulation factor γ, Bogolyubov coefficients ξ and ρ, and particle number
density Nk for the sixth order dispersion relation.

4.5 Effective Field Theory

Effective field theory is a technique in which the relevant low-energy degrees of freedom
are isolated yet the effects of high-energy degrees of freedom are systemically included[53].
This sounds obvious in most fields of physics. Quantum effects or multipole expansions are
both ignored in classical scales, or at a large distance scale. We do not need to worry about
physics of small scale quantum mechanics when we want to study the orbital motions of
planets.

Now, taking advantage of this scale separation in quantum field theories gives us effec-
tive field theories. The basic principle of effective field theories is the same idea as scale
separation in other fields of physics. The high energy or low distance scale effects are
suppressed by powers of the ratio of scales [53]. Effective field theories are everywhere, but
in this section we will focus on the effective field theory of inflation.

4.5.1 Basic Principles

The first step in building effective field theories is to identify which degrees of freedom
is relevant for the purpose of interest. In particle physics, light particles ϕL are included
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in the theory, but the heavy particles ϕH are not [19]. However we do not always have
light or heavy particles, so we characterize heavy and light degrees of freedom based on
whether the particles can be generated on shell within the energies relevant to the problem
of interest.

Effective Actions and Lagrangian

Since the heavy degrees of freedom are integrated out by a path integral, so we have an
effective action given by

eiSeff (ϕL) ≡
∫

DϕHeiS(ϕL,ϕH). (4.66)

The effective Lagrangian contains a finite number of renormalizable terms of dimension
four or less and a infinite number of non-renormalizable terms of dimensions bigger than
four [19],

Leff (ϕL) = L∆<4 +
∑
i

ci
Oi(ϕL)

Λ∆i−4
, (4.67)

where ∆i denote the deminsions of the operators Oi, and Oi are the operators local in
space-time for the energy scales less than the mass of the heavy particles [19]. Although
the sum of the operators Oi is an infinite sum, only a few terms are relevant. Not all the
terms needs to be kept because the higher the diemsnion of an operator, the smaller the
contribution to low-energy observables [19]

4.5.2 Effective Field Theory in Inflation

In the onctext of inflation, the relevant energy scale is E ∼ H. Then the effective field
theory consists at least one light scalar field, the inflaton, denoted as ϕ in this section.
Also we will have all the operators consistent with the symmetries of ϕ,

Oδ

Λδ−4
, (4.68)

where δ is the mass dimension of the corresponding operator [19].

Sensitivity

In effective field theories, the larger the cut off Λ is, the more suppressed the effects of
Oδ is. However, since the known physics is up to the Planck-scale, the largest cutoff we
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can make is the Planck-scale. Also, as mentioned, operators of very high dimsions become
irrelevant because they decouple in the low-energy limit. Thus, in most of particle physics,
very high dimensional operators and Planck-scale processes become irrelevant. However,
in inflation, the flatness of potential in Planck units makes the theory sensitive to the case
of δ ≤ 6 Planck-suppressed operators [19],

O6

M2
p

. (4.69)

4.6 Effective Field theory of Inflation

In the previous section, the basic idea and principles of inflation were introduced. In this
section, using the same principles, we set up the effective field theory of inflation. To do
so, we look at inflation as the inflation as the theory of a Goldstone boson [49] [25].

4.6.1 Goldstone Boson

Consider a simple theory of a U(1) global symmetry given by ϕ → eiαϕ that is sponta-
neously broken by the mexican hat like potential ϕ →< ϕ >. In this theory, we have
Goldstone boson π that gives us the symmetry π → π + α [49]. The Lagrangian of a
complex scalar field, ϕ, given by

L = ∂µϕ
∗∂µϕ−m2ϕ∗ϕ+ λϕ∗2ϕ2, (4.70)

gives us

ϕ =
m

λ1/2
eiπ, (4.71)

where m is the mass. The Lagrangian of π resembles massless scalar field with a shift
symmetry

Lπ = (∂π)2 +
1

( m
λ1/2

)4
(∂π)4 + ... (4.72)

with higher derivatives suppressed by powers of the energy scale m/λ1/2.

The inflation means that there existed a period of accelerated expansion of our quasi de
Sitter universe. Because it had to end, this requires spontaneous time-translation breaking
[25].
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Now, suppose a physical clock which allows us to measure time and forces inflation to
end. We can always use coordinate transformation to go to the frame where this clock is
set to zero. This can be done by time translating to coordinates where the fluctuations of
the clock are set to zero. For example, suppose that we have ϕ as a fundamental scalar
field with δϕ ̸= 0. Then we can translate time t→ t̃+ δt such that

δ̃ϕ = δϕ− ϕ̇0δt = 0. (4.73)

Now we write the action with all the relevant degree of freedom, which is the metric
fluctuations. We expand in fluctuations and write down all the operators corresponding to
relevant symmetries of the theory [49]. Also note that we can change spatial coordinates
within different spatial hypersurface in a different way meaning that the residual gauge
symmetry becomes time-dependent spatial diffeomorphisms

xi → x̃i = xi + ξi(t, x⃗). (4.74)

We can then expand the action in perturbations to the order that we are interested.

4.6.2 Action in Unitary Gauge

Now to write down the most general action in this gauge, we write down all the opera-
tors that are functions of the metric gµν and are invariant under time-dependent spatial
diffeomorphisms. Since these time-dependent spatial diffeomorphisms are unbroken, we
can consider inflation as “the theory of space-time diffeomorphisms spontaneity broken
to time-dependent spatial diffeomorphisms [49].” The most general action then can be
written as

S =

∫
d4x

√
−g
{
M2

p

[
1

2
R + Ḣg00 −

(
3H2 + Ḣ

)]
+ Ln

}
, (4.75)

where

Ln =
n∑

m≥2

F (m)(δg00, δKµν , δRµνρσ;∇µ; t), (4.76)

and F (m) denotes functions of order m in perturbations. Kµν is the extrinsic curvature of
the sliced hypersurface, and Rµνρσ is the Riemann tensor.

4.6.3 Relaxing Gauge Conditions

Once we have the most general action in the unitary gauge, we can relax the gauge condi-
tions by reintroducing time diffeomorphism invariance again. We can do this by promoting
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ξ0(xµ) to Goldstone boson −π(xµ) and setting π → π(xµ)− ξ0(xµ) under the time diffeo-
morphisms [11]. Introducing the Goldstone boson, the perturbation of the scalar field ϕ is
no longer set to zero. In fact, we have δϕ = −ϕ̇0ξ

0 → π = δϕ/ϕ̇0.

Advantage of this approach is that as long as we are in the slow roll regime, we can
ignore the metric perturbation. The reason is that when the time dependence of the
coefficients in the unitary gauge is much less than the Hubble scale, then the decoupling
limit is larger than the Hubble scale. Thus when we calculate the power spectrum, we can
neglect the metric perturbations.

4.6.4 k6 Modification to the Dispersion Relation

Consider the case where we expand to the zeroth order. This is equivalent to setting Ln = 0
and we get an action

Sπ = −M2
p

∫
dx

√
−gḢ

(
π̇2 − (∂π)2

a2

)
. (4.77)

We can use gauge transformation to show that the field π is related to the conserved
quantity ζ by

ζ = −Hπ. (4.78)

Now we are interested in the terms that gives us k6 modification to the dispersion relation.
Then only keeping the terms that contribute to the quadratic action of π and at most sixth
order of gradient operators, Ln becomes

Ln =
M4

2

2!
(g00 + 1)2 − M̄2

2

2
(δKµ

µ)
2 − M̄2

3

2
δKµ

ν δK
ν
µ

−δ1
2
(∇µδK

νγ)(∇µδKνγ)−
δ2
2
(∇µδK

ν
ν)

2 − δ3
2
(∇µδK

µ
ν)(∇γδK

γν)

−δ4
2
∇µδKνµ∇νδKσ

σ . (4.79)

The coefficients Mi and δi are time dependent free coefficients. The first line of eq. 4.79
gives us the quartic modification o the dispersion relation,

u′′ + (γ0k
2 + a0k

4τ 2 − 2

τ 2
)u = 0, (4.80)
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where γ0 and α0 are functions of Mi and δi. The second line and the third line, gives us,
to the second order of π,

L(2nd)
n = −1

2
δ1

(
k6π2

a6
− 13H2k4π2

a4
+
k4π̇2

a4
+

24H4k2π2

a2
+

2H2k2π̇2

a2
− 6H4π̇2 − 3H2π̈2

)
−1

2
δ2

(
k6π2

a6
+
H2k4π2

a4
− k4π̇2

a4
+

6H4k2π2

a2
− 9H2π̈2

)
−1

2
δ3

(
k6π2

a6
− 10H2k4π2

a4
+

15H4k2π2

a2
− 9H4π̇2

)
−1

2
δ4

(
k6π2

a6
− 13H2k4π2

2a4
+

21H4k2π2

2a2
− 9H2k2π̇2

a2
− 9

2
H4π̇2

)
.

(4.81)

Now the kn, n ≥ 4 terms do appear, but not all of them stays. For example δ1 and δ2 terms
also produce higher time derivatives of π and this usually lead to the ghost instabilities
[11]. Furthermore terms k2π̇2 and k4π̇2 brings the correction to the modified dispersion
relation back to k4 or k2. Thus we set δ1 − δ2 = δ4 = 0. The only remaining term then
becomes the δ3 term.

This modification to the Lagrangian gives us the modification to the dispersion relation

u′′ + (γ0k
2 + α0k

4τ 2 + β0k
6τ 4 − 2

τ 2
)u = 0. (4.82)

Even though such dispersion relations are in principle easy to produce within the ef-
fective field theory of inflation, it has been argued [25] that invoking dispersion relations
ω2 ∝ k2n with n ≥ 3 undermines the concept of effective field theory itself. This is because
for n ≥ 3 the interaction terms scale with negative power of energy and therefore become
strongly coupled at low energies. That comes from the fact that the scaling dimension of π
will not be the same as the one for the Lorentzian dispersion relation. This implies that in
the high momenta regime where we are invoking ω2 ∝ k6, theory has an IR cut off, below
which it becomes strongly coupled. However, note that as universe expands the quartic
and Lorentzian corrections to dispersion relation become more important and eventually
take over. Given the different parameters that can contribute to kinetic terms, we think it
is plausible to tune the IR cut off for that regime to be below the scale where dispersion
relation transitions to ω2 ∝ k2−ᾱk4. One may argue that this makes the theory highly fine
tuned at UV. That may very well be the case, but given that we don’t know what the UV
complete theory is, it is hard to say what is natural and what terms are protected under the
fundamental symmetries. For example Horava’s proposal for a UV completion of gravity
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[35] naturally predicts dispersion relation of the form ω ∝ k3 for graviton, based on Lifshitz
symmetry. In the end, we also expect that the overall bounds on the non-gaussianity be
satisfied when speed of sound is close to one [15]. The non-gaussianity parameter, fNL,
remains finite for super-excited states, since it is defined as bispectrum divided by the
power spectrum squared. Even though three point functions for such super-excited states
may get enhanced [52], as we showed here the power spectrum is enhanced too, so the net
effect on fNL may still remain small.

4.7 Conclusion

We constructed super-excited initial conditions around the new physics hypersurface, with
the help of modified dispersion relations. In this peculiar type of dispersion relations,
there is an intermediate phase where dispersion relation has a negative slope and results
in increasing energy of the modes while their wavelength expands. Still the energy of the
modes remain larger than Hubble parameter while they are sub horizon. Even though
the modes start from adiabatic vacuum in infinite past, due to this intervening phase,
there will be a substantial amount of particle production if the evolved state is mapped to
standard Lorentzian modes. Such excited initial states can have interesting phenomenology
and it is interesting to know if they are motivated from a more fundamental perspective.
We demonstrated that these states can possibly appear within the effective field theory of
inflation where the existence of higher dimensional operators naturally leads to the modified
dispersion relation. It is interesting to further investigate the bispectrum of such dispersion
relations and work out the allowed region of parameters explicitly. The possibility of
sixth order and higher dispersion relations were dismissed in the earlier investigations of
effective field theory of inflation noting that in the IR they will be strongly decoupled and
invalidate the effective field theory description. The argument is based on dimensional
energy scaling argument that evaluates the dimension of the goldstone boson scalar field
based on dispersion relation. However, in an expanding background, where the higher
dimensional terms get redshifted as the universe expands, such dimensional arguments
does not seem to be strong. Still, at low energies, the dispersion relation reduces to the
Lorentzian one and, a priori, it is not clear that evolution of the mode during the time
the physical momentum of the mode is in the new physics region, can lead to effect that
makes the effective field theory invalid. In addition, the three point function needs to be
compared with the two point function, which as we showed in this article, is by itself large.
This analysis is something we plan to return to in future.

Here we also assumed that all the modes that are relevant for the CMB and structure
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formation have gone through all three phases of evolution of dispersion relation from the
onset of inflation. This would be true if Inflation lasted for the number of e-foldings larger
than the minimum number required to solve the problems of standard Big Bang cosmology.
In this case, if the largest scale mode that corresponds to our horizon today satisfies this
condition, the smaller ones in the CMB have also experienced all three phases of the
dispersion relation throughout their evolution. However, the reverse is not necessarily
true; if the smaller modes are already in the regime of domination of the k6 term, the
largest mode could have started from k4 or k2 regions. Therefore the initial condition
which should be set for these modes are not the same as (4.56) and the amplitude of the
power spectrum would be different. It would be interesting to investigate the observational
consequences of such situations. This is another interesting feature that we plan to get
back to in a future study.

Here we only discussed the possibility of generating sextic modified dispersion rela-
tions with negative quartic terms from EFT of Inflation for the scalar perturbations. If
similar contributions could be generated for tensor perturbations, one can expect similar
enhancement for the tensor power spectrum too. Assuming that both tensor and scalar per-
turbations are affected similarly, that would mean that the tensor-scalar ratio, r, remains
intact, but the scale of inflation could be lowered. Then r ≳ 0.01 would not necessarily
correspond to a GUT scale inflation. Investigating whether such dispersion relations is
conceivable for tensor perturbations, is another avenue to pursue.
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Figure 4.4: Imaginary and real parts of the implicit mode function is compared with the
excited state for the choice of a that results in the coalescence of the modes after the
collision point.
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Chapter 5

Pulsar Data and Constraints on Mass
of Particles

5.1 Introduction

The cosmological constant problem is a very well known problem in the field of cosmology.
We expect the vacuum energy governed by a ultraviolet cutoff scale Λ to couple to the
metric and start accelerated expansion long before any structure can form. However, the
observed present time acceleration of expansion requires some sixty orders of magnitude
smaller values of vacuum energy [5]. In quantum mechanics, the higher order correlators

of stress-energy tensors such as
⟨
T

(V )
µν (x)T

(V )
µν (y)

⟩
characterizes the vacuum, while the

cosmological constant problem concerns with how the vacuum expectation value of the

stress-energy tensor
⟨
T

(V )
µν (x)

⟩
affects the metric. Thus, naturally, the question of how the

ultraviolet physics of the vacuum affects space-time geometry in the lower energy scale, so
called Cosmological non-Constant problem, arises [5]. Or, simply put, how the two-point
correlation function for metric perturbations and the vacuum are related. Thus, in this
chapter we will study exactly that, and how the cosmological observations put constraints
on high-energy physics.

As a rough analysis and to gain insights of the methodology, we start with two point
correlators, which scale as ⟨

T
(V )
ij (x⃗)T

(V )
kl (y⃗)

⟩
∼ δ3(x⃗y⃗)Λ5, (5.1)
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where Λ is the cutoff scale. The dimensionless power spectrum ∆2
Φ of the gravitational

potential Φ is given by

(∆
(V )
Φ )2 ∼ Λ5

M4
pk
. (5.2)

Now requiring ∆Φ ≲ 1 to match with the homogeneity of the universe and approximating
k ∼ H0, the largest scale, roughly gives

Λ ≲ (M4
pH0)

1/5 ≈ 2 PeV. (5.3)

2 PeV limit on mass is not very meaningful because it’s too big. However, we can set
strong restrictions using the Cosmic Microwave Background or pulsar data.

5.2 Using Pulsar Data

Pulsars in binary systems have short spin periods, about order of milliseconds, and thus
act as a stable precise clocks. Period of these pulsars are incredibly stable, and in some
cases can be measured to better than 1 part in 1015. About a decade ago the double-
radio pulsar was discovered, providing a unique laboratory for testing Einstein’s General
Theory of Relativity in the strong field regime. The fact that this double pulsar system
PSR J0737-3039A/B comprises two neutron stars, both visible as radio pulsars and also
the most relativistic binary pulsar system observed allows very precise testing of general
relativity in the strong field regime. The observation and data from this system agrees
with the General Theory of Relativity with less than 0.05% uncertainties [42].

In the process of measuring the time of arrival (TOA) for pulses we encounter timing
residuals, which is the difference between the observed TOA and predicted values for a
model pulsar using TEMPO [42]. The remaining residuals after fitting the residuals with
functions representing the model parameters, such as pulsar periods, may be noise. The
sources of these timing noises can vary from intrinsic noise of pulsars to perturbations of
pulsar motion[42]. In this section, we will view the universe as the semi-classical back-
ground and look at metric fluctuation as the source of noise. From there, we will study
how double pulsar systems sets a restriction in the mass of particles.

5.2.1 Stress-Energy Correlators

In the section VI of [5], N. Afshordi and E. Nelson calculated spin-0 and spin-2 spectral
densities of different fields [5]. For a simple massive scalar field Π with Lagrangian given
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by

Lϕ = −1

2
[(∂ϕ)2 +m2ϕ2], (5.4)

we have

ρ
(ϕ)
0 (−k24) =

k4

144π2

√
1 + 4

m2

k2

[
1

2
− m2

k24

]2
Θ(−k2 − 4m2)

ρ
(ϕ)
2 (−k24) =

k4

1920π2

√
1 + 4

m2

k2

[
1

2
− m2

k24

]2
Θ(−k2 − 4m2). (5.5)

Note that in the limit where k → 0 we can ignore Θ function and we get ρ
(ϕ)
2 = 6ρ

(ϕ)
0 /5 [4].

For a Dirac field with Lagrangian given by

LDirac = ψ̄(iγµ∂
µ −m)ψ, (5.6)

we get

ρ
(ψ)
0 (−k2) = 1

144π2
m2(k2 + 4m2)

(
1 4m2

k2

)1/2
Θ(−k2 − 4m2), (5.7)

where again in the limit k → 0 we have ρ
(ψ)
2 = 6ρ

(ψ)
0 /5 [4].

For a real massive spin-1 scalar field with Lagrangian

LA = −1

4
FµνF

µν − 1

2
m2AµAµ, (5.8)

we get

ρ
(A)
0 (−k2) = 1

144π2
(3m4 +m2k2 +

1

4
k4)

(
1 +

4m2

k2

)1/2

Θ(−k2 − 4m2). (5.9)

Also note that a complex scalar or a vector field will have a factor of 2 and a Majorana
field will be a half of the Dirac field [4].

Now the integration of the step function Θ(−k2−4m2) can be realized in the frequency
space. The frequency integral, restricted to ω2 > 4m2+|k|2 can be deformed in the complex
plane [4]: ∫ ∞

−∞
dk0Θ(−k2 − 4m2)× ... =

1

2

(∫
C+
∞

+

∫
C−
∞

+

∫
CIR

)
× ..., (5.10)
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where C±
∞ and CIR are show in the Figure 5.1. The trick is that when we restrict the

integration on real line to k20 < Λ2, and take Λ → ∞ limit, then C±
∞ gets divergences

in Λ, which vanishes after renormalization, and CIR converges such that the step function
effectively becomes just −Θ(k2). Thus the low frequency spectra density is much simplified
to

ρ
(ϕ)
0,IR = − 1

72π2

m5

√
k2

Θ(k2). (5.11)

The relationship between the low frequency spectral density of each field is

ρ(ψ) = 4ρ(ϕ) =
4

3
ρ(A), (5.12)

with ρ
(X)
2 = 6

5
ρ
(X)
0 .

5.2.2 Pulsar Timing

We will work in the synchronous comoving gauge where the metric is given by

ds2 = −dt2 + γijdx
idxj. (5.13)

The change of energy of a photon moving from x⃗ to x⃗+∆x⃗ is given by

∆E = −Γ0
µνp

µdxν = −1

2
γ̇ijp

idxj. (5.14)

Taking time derivative of both sides, we get

∂∆E

∂t
= −1

2
γ̈ijp

idxj = Ri0j0p
idxj = Rµναβu

νuβpµdxα, (5.15)

where Rµναβ is a Riemann Tensor and uµ is the velocity vector. If we sum over all the
possible paths from the pulsar to the observer on Earth, we have

dEobs
dt

=

∫ Earth

pulsar

Rµναβu
νuβpµdxα. (5.16)

Because the Riemann tensor is first order in curvature, we can consider pµ = Edxµ/dt and
uµ = δµ0 [4]. Then the derivative of log of frequency, ν of the pulsar can be written as

d ln ν(t)

dt
= −d lnP (t)

dt
= uνuσ

dxµ

dt

dxρ

dt

∫ t

t−L
dt′Rµνρσ

[
t− t′

L
xipulsar +

t′ − t+ L

L
xiEarth, t

′
]
,

(5.17)

68



where P is the observed frequency of a pulsar and L is the distance to a pulsar. We can
also define the contracted curvature as

R̄ ≡ uνuσnµnρRµνρσ, (5.18)

where nµ = dxµ/dt. The two point function of the contracted curvature is then given by⟨⟨
R̄kR̄k′

⟩⟩
=

π

2M4
p

1

k4
(k · n)2[k · n+ 2(k · u)(n · u)]2(ρ0(−k2) +

8

3
ρ2(−k2)). (5.19)

5.2.3 Power Spectrum

The power spectrum of the pulsar period is given by

P(ω) ≡ ω−2

∫
d(∆t)

⟨
d lnP (t)

dt

d lnP (t′)

dt′

⟩
eiω∆t, (5.20)

where ∆t = t− t′ [4]. Furthermore P(ω) and the power spectrum of the timing noise ΦTN

and the amplitude of the stochastic gravitation waves hc,eq are all related by the equation

P(ω) =

(
Pω

2π

)2

ΦTN =
h2c,eq
6πω

. (5.21)

Now, suppose that we choose a coordinate or an orientation such that the pulsar and
Earth is on the z-axis with the observer on Earth as the origin so that nµ = (−1,−ẑ), the
equation 5.20 gives, by plugging in eq. 5.17 and 5.18,

h2c,eq =
12π

ω

∫
d3k

(2π)3

{
1− cos[(ω + kz)L]

(ω + kz)2

}⟨⟨
R̄kR̄k′

⟩⟩
, (5.22)

where k2z = k2−k2⊥+ω2 [4]. Also using the same set up and setting uµ = (−1, 0⃗) simplifies
the two point correlator for R̄

⟨⟨
R̄kR̄k′

⟩⟩
=

π

2M4
p

(k2z − ω2)2

k4

(
ρ0(−k2) +

8

3
ρ2(−k2)

)
. (5.23)

We can also define the effective low frequency spectral density

ρ
(X)
eff (−k

2) = ρ
(X)
0,IR(−k

2) +
8

3
ρ
(X)
2,IR(−k

2) = −cX
7

120π2

m5

√
k2

Θ(k2), (5.24)
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where

cX = 1 (X = ϕ, real)

= 2 (X = ϕ, complex)

= 2 (X = ψ, Majorana)

= 4 (X = ψ, Dirac)

= 3 (X = Aµ, real)

= 6 (X = Aµ, complex). (5.25)

We can finally evaluate the equation 5.22 to get

(h2c,eq)
(X) ≈ −cX

7

480π3

m5

M4
pω

[√
4πωL+ ln (KmaxL)

]
≈ −4× 10−30cX

( m

600GeV

)5√2πL(kpc)

ω(yr−1)
, (5.26)

where kmax is the cut off for kz such that |kz| < kmax. Notice that in the second line the
O(1) contribution from the term ln(kmaxL) has been dropped.

Since we have equations for h2c,eq and the values of ΦTN , P , and ω [50] [48], we can
plug the values to get the values for m. The least 2σ upper bound was m < 420GeV for
complex vectors and the highest bound was given by the real scalar at m < 600GeV. Table
5.1 shows the 2σ upper bounds for different type of fields and Figure 5.2 shows the upper
bound of real scalars given by different pulsar data.

Beyond-SM Mass Bounds
Particle Species 2σ upper bound
Real Scalar m < 600 GeV

Complex Scalar m < 525 GeV
Majorana m < 525 GeV
Dirac m < 450 GeV

Real Vector m < 480 GeV
Complex Vector m < 420 GeV

Table 5.1: Mass bounds on Beyond Standard Model particles of different species, from
PSR J1909-3744.
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5.3 Summary and Future Works

Here we started from how the fluctuation of the cosmological constant, albeit the constant
itself can be small, can become large and modify how our universe can look in the current
era. Instead of attempting to resolve the issue, we looked at observational data and how
that sets constraints on to the models and theories at high energies. Afshordi and Nelson,
showed that the CMB data sets restriction on how big the vacuum fluctuation can be in
the early universe, and thus computed the upper bound on mass of particles to be less
than 35 TeV [5].

In this chapter, we took the similar approach. We briefly showed how Afshordi and
Nelson used the CMB data to mathematically compute the upper bound of mass. Using
a similar approach we set upper bounds to mass using 11 different pulsar data. We used
the relationship between the timing noise of pulsars, the metric fluctuations, and the
vacuum stress-energy correlators to analyze the upper bound for mass of particles. We
have computed that the lowest 2σ upper bound is 420 GeV for complex vector fields, and
the highest elementary particle found is a top quark at 173 GeV. Fortunately since there
are more telescopes and particle colliders being built in the future, we should be able to test
our result more rigorously and learn more about the physics beyond the standard model.
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Figure 5.1: The frequency integral in complex plane. The contours at infinity C±
∞ and the

low frequency contours CIR is shown.
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Figure 5.2: This graph shows the mass bounds given by the timing noise of different pulsars
for the real scalar field. The 11 different pulsars were chosen [48]. The least mass bound
was given by PSR J1901-3744 at f ≈ 0.2 yr−1. Mass bounds on higher-spin particles are
slightly stronger (see Table 5.1).
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Chapter 6

Conclusion

We started by introducing the key concepts and theories and also the challenges in the
current models in cosmology in the chapter 2. In chapter 3 and 4, the attempt to re-
solve those questions were made by using different models and approaches. Thus, the
non-canonical scalar cuscuton was introduced, and the effective field theory approach of
inflation was also mentioned. Although in chapter 3, we did not suggest a theory or model
which helps answering puzzles that the inflationary scenarios have, the rigorous calculation
of second order action with cuscuton can help probing non inflationary models, such as
bounce scenarios. In chapter 4, we noticed that from modified dispersion relations could
lead to different initial states. Furthermore, we showed that the effective field theory of
inflation could give us the modification on dispersion relations that we were looking for. In
chapter 5, how a problem, yet unanswered, still sets a limit to our models by using the ob-
servational data. This thesis, in essence, aimed to provide basic background of cosmology,
the challenges it’s facing and the community’s effort to finding possible ways to answer
them. And this concludes the work. Thank you for reading.

74



References

[1] P. A. R. Ade et al. Planck 2015 results. XX. Constraints on inflation. Astron. Astro-
phys., 594:A20, 2016.

[2] Niayesh Afshordi, Daniel J. H. Chung, Michael Doran, and Ghazal Geshnizjani. Cus-
cuton Cosmology: Dark Energy meets Modified Gravity. Phys. Rev., D75:123509,
2007.

[3] Niayesh Afshordi, Daniel J. H. Chung, and Ghazal Geshnizjani. Cuscuton: A Causal
Field Theory with an Infinite Speed of Sound. Phys. Rev., D75:083513, 2007.

[4] Niayesh Afshordi, Hyungjin Kim, and Elliot Nelson. Pulsar Timing Constraints on
Physics Beyond the Standard Model. 2017.

[5] Niayesh Afshordi and Elliot Nelson. Cosmological Non-Constant Problem: Cosmo-
logical bounds on TeV-scale physics and beyond. In Meeting of the APS Division of
Particles and Fields (DPF 2015) Ann Arbor, Michigan, USA, August 4-8, 2015, 2015.

[6] Gian Luigi Alberghi, Roberto Casadio, and Alessandro Tronconi. Planck scale infla-
tionary spectra from quantum gravity. Phys. Rev., D74:103501, 2006.

[7] R. Arnowitt, S. Deser, and C. W. Misner. Dynamical structure and definition of
energy in general relativity. Phys. Rev., 116:1322–1330, Dec 1959.

[8] A. Ashoorioon, J. L. Hovdebo, and Robert B. Mann. Running of the spectral index
and violation of the consistency relation between tensor and scalar spectra from trans-
Planckian physics. Nucl. Phys., B727:63–76, 2005.

[9] A. Ashoorioon, Achim Kempf, and Robert B. Mann. Minimum length cutoff in infla-
tion and uniqueness of the action. Phys. Rev., D71:023503, 2005.

75



[10] A. Ashoorioon and Robert B. Mann. On the tensor/scalar ratio in inflation with UV
cut off. Nucl. Phys., B716:261–279, 2005.

[11] Amjad Ashoorioon, Roberto Casadio, Ghazal Geshnizjani, and Hyung J. Kim. Getting
Super-Excited with Modified Dispersion Relations. 2017.

[12] Amjad Ashoorioon, Roberto Casadio, and Tomi Koivisto. Anisotropic non-
Gaussianity from Rotational Symmetry Breaking Excited Initial States. JCAP,
1612(12):002, 2016.

[13] Amjad Ashoorioon, Diego Chialva, and Ulf Danielsson. Effects of Nonlinear Dispersion
Relations on Non-Gaussianities. JCAP, 1106:034, 2011.

[14] Amjad Ashoorioon, Konstantinos Dimopoulos, M. M. Sheikh-Jabbari, and Gary Shiu.
Non-BunchDavis initial state reconciles chaotic models with BICEP and Planck. Phys.
Lett., B737:98–102, 2014.

[15] Amjad Ashoorioon, Konstantinos Dimopoulos, M. M. Sheikh-Jabbari, and Gary Shiu.
Reconciliation of High Energy Scale Models of Inflation with Planck. JCAP, 1402:025,
2014.

[16] Amjad Ashoorioon and Tomi Koivisto. Hemispherical Anomaly from Asymmetric
Initial States. Phys. Rev., D94(4):043009, 2016.

[17] Amjad Ashoorioon and Gary Shiu. A Note on Calm Excited States of Inflation. JCAP,
1103:025, 2011.

[18] John M. Lee (auth.). Introduction to Smooth Manifolds. Graduate Texts in Mathe-
matics 218. Springer New York, version 3.0 draft edition, 2003.

[19] Daniel Baumann. Inflation. In Physics of the large and the small, TASI 09, proceedings
of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder,
Colorado, USA, 1-26 June 2009, pages 523–686, 2011.

[20] D. Bessada, W. H. Kinney, D. Stojkovic, and J. Wang. Tachyacoustic cosmology: An
alternative to inflation. Phys. Rev. D, 81(4):043510, feb 2010.

[21] Supranta S. Boruah, Hyung J. Kim, and Ghazal Geshnizjani. Theory of Cosmological
Perturbations with Cuscuton. JCAP, 1707(07):022, 2017.

[22] Robert H. Brandenberger. Lectures on the theory of cosmological perturbations. Lect.
Notes Phys., 646:127–167, 2004. [,127(2003)].

76



[23] Sean Carroll. Spacetime and geometry: an introduction to General Relativity. Ben-
jamin Cummings, 2004.

[24] Aidan Chatwin-Davies, Achim Kempf, and Robert T. W. Martin. Impact of Natural
Planck Scale Cutoffs that are Fully Covariant on Inflation. 2016.

[25] Clifford Cheung, Paolo Creminelli, A. Liam Fitzpatrick, Jared Kaplan, and Leonardo
Senatore. The Effective Field Theory of Inflation. JHEP, 03:014, 2008.

[26] Nora Elisa Chisari, Cora Dvorkin, Fabian Schmidt, and David Spergel. Multitracing
Anisotropic Non-Gaussianity with Galaxy Shapes. Phys. Rev., D94(12):123507, 2016.

[27] Steven Corley and Ted Jacobson. Hawking spectrum and high frequency dispersion.
Phys. Rev., D54:1568–1586, 1996.

[28] G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, and A. J.
Tolley. Massive Cosmologies. Phys. Rev., D84:124046, 2011.

[29] Ulf H. Danielsson. A Note on inflation and transPlanckian physics. Phys. Rev.,
D66:023511, 2002.

[30] Richard Easther, Brian R. Greene, William H. Kinney, and Gary Shiu. Inflation as a
probe of short distance physics. Phys. Rev., D64:103502, 2001.

[31] Richard Easther, Brian R. Greene, William H. Kinney, and Gary Shiu. A Generic es-
timate of transPlanckian modifications to the primordial power spectrum in inflation.
Phys. Rev., D66:023518, 2002.

[32] Richard Easther, Brian R. Greene, William H. Kinney, and Gary Shiu. Imprints of
short distance physics on inflationary cosmology. Phys. Rev., D67:063508, 2003.

[33] Brian R. Greene, Koenraad Schalm, Gary Shiu, and Jan Pieter van der Schaar. Decou-
pling in an expanding universe: Backreaction barely constrains short distance effects
in the CMB. JCAP, 0502:001, 2005.

[34] Alan H. Guth. Inflationary universe: A possible solution to the horizon and flatness
problems. Phys. Rev. D, 23:347–356, Jan 1981.

[35] Petr Horava. Quantum Gravity at a Lifshitz Point. Phys. Rev., D79:084008, 2009.

[36] S. E. Joras and G. Marozzi. Trans-Planckian Physics from a Non-Linear Dispersion
Relation. Phys. Rev., D79:023514, 2009.

77



[37] Yonatan Kahn, Daniel A. Roberts, and Jesse Thaler. The goldstone and goldstino of
supersymmetric inflation. JHEP, 10:001, 2015.

[38] Nemanja Kaloper, Matthew Kleban, Albion E. Lawrence, and Stephen Shenker. Sig-
natures of short distance physics in the cosmic microwave background. Phys. Rev.,
D66:123510, 2002.

[39] Achim Kempf. Mode generating mechanism in inflation with cutoff. Phys. Rev.,
D63:083514, 2001.

[40] Achim Kempf and Jens C. Niemeyer. Perturbation spectrum in inflation with cutoff.
Phys. Rev., D64:103501, 2001.

[41] D. Langlois. Lectures on inflation and cosmological perturbations. Lect. Notes Phys.,
800:1–57, 2010.

[42] R. N. Manchester. Pulsars and Gravity. Int. J. Mod. Phys., D24(06):1530018, 2015.

[43] Jerome Martin and Robert Brandenberger. On the dependence of the spectra of fluc-
tuations in inflationary cosmology on transPlanckian physics. Phys. Rev., D68:063513,
2003.

[44] Jerome Martin and Robert H. Brandenberger. The TransPlanckian problem of infla-
tionary cosmology. Phys. Rev., D63:123501, 2001.

[45] Jerome Martin and Robert H. Brandenberger. The Corley-Jacobson dispersion rela-
tion and transPlanckian inflation. Phys. Rev., D65:103514, 2002.

[46] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger. Theory of cosmological
perturbations. Phys. Rev., 215:203–333, Jun 1992.

[47] Arno A. Penzias and Robert Woodrow Wilson. A Measurement of excess antenna
temperature at 4080-Mc/s. Astrophys. J., 142:419–421, 1965.

[48] D. J. Reardon et al. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar
Timing Array. Mon. Not. Roy. Astron. Soc., 455(2):1751–1769, 2016.

[49] Leonardo Senatore. Lectures on Inflation. In Proceedings, Theoretical Advanced Study
Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI
2015): Boulder, CO, USA, June 1-26, 2015, pages 447–543, 2017.

78



[50] R. M. Shannon et al. Gravitational waves from binary supermassive black holes missing
in pulsar observations. Science, 349(6255):1522–1525, 2015.

[51] Gary Shiu and Ira Wasserman. On the signature of short distance scale in the cosmic
microwave background. Phys. Lett., B536:1–8, 2002.

[52] Ashish Shukla, Sandip P. Trivedi, and V. Vishal. Symmetry constraints in inflation,
α-vacua, and the three point function. JHEP, 12:102, 2016.

[53] Witold Skiba. Effective Field Theory and Precision Electroweak Measurements. In
Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced
Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, 1-26 June
2009, pages 5–70, 2011.

[54] Takahiro Tanaka. A Comment on transPlanckian physics in inflationary universe.
2000.

[55] Tao Zhu, Anzhong Wang, Klaus Kirsten, Gerald Cleaver, and Qin Sheng. High-
order Primordial Perturbations with Quantum Gravitational Effects. Phys. Rev.,
D93(12):123525, 2016.

79


	List of Figures
	List of Tables
	Introduction
	Background
	General Relativity and Cosmology
	Inflation
	Introduction to Hot Big Bang Model
	Shortcomings of Hot Big Bang Model
	Inflation, the Acceleration Phase

	Cosmological Perturbation Theory
	Perturbative General Relativity
	Quantizing Cosmological Perturbations
	Summary


	Cuscuton: IR Modification of Gravity
	Introduction
	Background Cosmology with Cuscuton
	Curvature Perturbations with Cuscuton
	Analysis
	Summary and Future Works

	Effective Field Theory and Modified Dispersion Relations
	Introduction
	Precision of gluing method for estimating power spectrum
	Corley-Jacobson dispersion relation
	Sixth order polynomial dispersion relation
	Effective Field Theory
	Basic Principles
	Effective Field Theory in Inflation

	Effective Field theory of Inflation
	Goldstone Boson
	Action in Unitary Gauge
	Relaxing Gauge Conditions
	k6 Modification to the Dispersion Relation

	Conclusion

	Pulsar Data and Constraints on Mass of Particles
	Introduction
	Using Pulsar Data
	Stress-Energy Correlators
	Pulsar Timing
	Power Spectrum

	Summary and Future Works

	Conclusion
	References

