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Abstract

This thesis applies numerical methods to analyze the security of quantum key distribution
(QKD) protocols. The main theoretical problem in QKD security proofs is to calculate the
secret key generation rate. Under certain assumptions, this problem has been formulated
as a convex optimization problem and numerical methods [8, 41] have been proposed to
produce reliable lower bounds for discrete-variable QKD protocols. We investigate the
applicability of these numerical approaches and apply the numerical methods to study a
variety of protocols, including measurement-device-independent (MDI) protocols, varia-
tions of the BB84 protocol with a passive countermeasure against Trojan horse attacks,
and the phase-encoding BB84 protocol using attenuated laser sources without continuous
phase randomization.
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Chapter 1

Introduction

Since the invention of first quantum key distribution (QKD) protocol BB84 by Charles
Bennett and Gilles Brassard in 1984 [2], over the past three decades, this field has advanced
dramatically both in theory and in physical implementation [33].

Unlike conventional cryptographic schemes whose security is based on computational
assumptions, QKD guarantees the security by the laws of quantum mechanics. In theory,
QKD has been proven to be unconditionally secure [15, 18, 21, 28, 35]. However, the
physical implementation of QKD deviates from the theoretical model in many aspects and
the gap between implementation and theory is vulnerable to eavesdropping attacks. To
close up the gap, from the theory side, the security proofs need to be modified by relaxing
the assumptions and taking into account what can be achieved by the current technology.
Analytical security proofs can be quite complicated and the key rate bound can be loose
due to available proof techniques. On the other hand, the key rate calculation problem can
be formulated as a convex optimization problem and therefore we can resort to computers
to perform the key rate calculation. In this thesis, we will apply numerical approaches
developed recently in Refs. [8, 41] to study various QKD protocols.

This thesis is organized as follows:

In chapter 2, we will review the basics of quantum mechanics, quantum key distribution,
entropy, quantum optics and convex optimization.

In chapter 3, we will discuss the fundamental theoretical problem in QKD - the key rate
problem. We will start with reviewing the theoretical frameworks developed previously, in
particular, the universally composable security definition and general key rate formulas.
Then we will discuss the particular key rate calculation problem we will focus on for this
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thesis and how this problem has been formulated as a convex optimization problem. Then
we will discuss the numerical security proof techniques developed recently. We have been
able to use a modified dual problem approach to tackle the key rate calculation of many
protocols. We will briefly mention the advantages and disadvantages of this approach.
We will also show some examples to illustrate how we treat each protocol in our numerical
framework. Then we will discuss the primal problem approach and and the idea of obtaining
a reliable lower bound from the primal problem. We end this chapter by discussing how
we handle sifting in the numerical framework, in particular, within the primal problem
approach.

In chapter 4, we will show the applications of the numerical approaches. In particular,
we will consider the analysis of QKD protocols with some passive optical components
acting as a countermeasure to the Trojan horse attacks. We will see how our numerical
approaches give a better key rate bound. Our analysis considers various types of sources,
including a single-photon source, phase-coherent laser source and phase-randomized laser
source.

In chapter 5, we will apply numerical approaches to study phase-encoding BB84 pro-
tocols with an attenuated laser source. We analyze the phase-coherent source where the
phase is known by Eve. We will also investigate the idea of phase randomization and
present our numerical security proofs in the case of discrete phase randomization.

In chapter 6, we make some concluding remarks and give the outlook for future works.

2



Chapter 2

Background

2.1 Quantum mechanics

In this section, we will review the basic formulation of quantum mechanics that is relevant
for understanding this thesis and also introduce some notations we will use. The section
is mainly based on [31]. Readers can refer to it for details.

2.1.1 Quantum states

Given a physical system1 of interest, every (pure) quantum state, denoted by a ket vector
|ψ〉, lives in a complex Hilbert space H, which we call the state space of this physical
system. We will use subscripts to label different systems when our discussion involves
multiple systems. For each ket vector |ψ〉 ∈ H, its dual vector 〈ψ|, a bra vector, lives in
the dual space of H, which is isomorphic to itself.2 Then 〈φ|ψ〉 ∈ C denotes the inner
product of two states |φ〉 , |ψ〉 ∈ H, and the outer product |φ〉〈ψ| is a linear map from H
to itself. In particular, |φ〉〈φ| is a projector onto the state vector |φ〉.

We may be interested in a bipartite system composed of two subsystems A and B with
associated state spaces HA and HB, respectively. The composite system of both A and
B has the state space HAB = HA ⊗HB with dimHAB = dAdB, where dA = dimHA and

1In this thesis, we will also use the term register for the physical system of our interest. Formally
speaking, a register is an abstraction of a physical device that stores quantum information.

2 Mathematically, a dual vector 〈ψ| is a linear functional from H to C, and the dual space is the space
of all bounded linear functionals, each of which maps every vector from H to a complex number.
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dA = dimHB. In this thesis, most of the time we will deal with finite-dimensional Hilbert
spaces unless stated otherwise.3 If {|i〉A}

dA
i=1 is a basis for HA and {|j〉B}

dB
j=1 is a basis for

HB, then {|i〉A⊗ |j〉B}
dA,dB
i,j=1 is a basis for HAB. We sometimes write |i〉A⊗ |j〉B as |i〉A |j〉B

or |ij〉AB for the ease of notation. We will drop the subscripts when the spaces in our
discussion are clear.

The system can also be prepared in a statistical ensemble of pure states. In this case,
such a state is called a mixed state and it cannot be described by a single ket vector. So,
we resort to a more general mathematical description of the quantum states, that is, the
density operator formulation. First, we define the density operators for pure states. The
density operator associated to the state vector |ψ〉 is ρ = |ψ〉〈ψ|. For a classical mixture of
pure states {|ψi〉} with a probability distribution {pi}, the density operator is given by

ρ =
∑
i

pi |ψi〉〈ψi| . (2.1)

In a finite-dimensional Hilbert space, we can choose an orthonormal basis and then
write every density operator in the matrix form, called the density matrix. We will use the
words density operator and density matrix interchangeably.

We will also be interested in linear operators on H. We denote L(H) as the set of
all linear operators on H. In particular, we will be interested in Hermitian operators and
positive semi-definite operators. Here, we review the definitions of Hermitian operators,
and positive semi-definite operators.

Definition 2.1. (Hermitian operator) A Hermitian operator X is a linear operator such
that for every |ψ〉 ∈ H, 〈ψ|X |ψ〉 ∈ R. Equivalently, a linear operator X is Hermitian if
X = X†, where X† is its adjoint operator.4 We denote the set of Hermitian operators on
H as Herm(H).

Definition 2.2. (Positive semidefinite operator) A positive semi-definite operator P is a
linear operator such that for every |ψ〉 ∈ H, 〈ψ|P |ψ〉 ≥ 0. If P is positive semidefinite,
we write P � 0. The set of all positive semidefinite operators on H is denoted as Pos(H).

It is clear from the definition that a positive semidefinite operator is also a Hermitian
operator.

We now can give a general mathematical definition of density operators.

3Later, we will also discuss a particular infinite-dimensional Hilbert space, called Fock space.
4The adjoint operator X† of X is defined as

〈
X†φ

∣∣ψ〉 = 〈φ|Xψ〉, where |ψ〉 and |φ〉 are arbitrary state
vectors.
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Definition 2.3. (Density operator) A density operator ρ is a positive semidefinite operator
such that Tr(ρ) = 1. We denote the set of all density operators as D(H).

Because the density matrix ρ represents a state of the system and H is the state space,
we will often say ρ in H even though formally ρ ∈ D(H).

Next, we discuss how to describe a subsystem. Suppose ρAB is the density operator
for a bipartite system consisting of two subsystems A and B. If we are only interested in
the subsystem A, then we can describe this subsystem by the reduced density operator
ρA = TrB(ρAB) after tracing out the system B. Similarly, we can describe the subsystem
B by ρB.

If the joint state ρAB is pure, by the following theorem, we then know that ρA and ρB
share the same set of eigenvalues.

Theorem 2.4 (Schmidt decomposition). Let ρAB = |ψ〉〈ψ|AB be a pure state in HAB. Then
we can write

|ψ〉AB =
∑
i

√
λi |ei〉A |ẽi〉B , (2.2)

ρA := TrB(ρAB) =
∑

i λi |ei〉〈ei|A, and ρB := TrA(ρAB) =
∑

i λi |ẽi〉〈ẽi|B, where {|ei〉A} and
{|ẽi〉B} are orthonormal sets on HA and HB, respectively.

In many scenarios, it is more convenient to deal with pure states than mixed states.
The following theorem is helpful for converting an arbitrary mixed state in a smaller space
to a pure state in a larger space.

Theorem 2.5 (Purification). Let ρA be a state in HA. Then there exists a reference space
HR with dimHR = dimHA, and a pure state |ψ〉 ∈ HA ⊗HR such that ρA = TrR(|ψ〉〈ψ|).

Such a purification can be constructed as the following:

We start with the orthogonal decomposition of ρA =
∑d

i=1 pi |i〉〈i|A , where {|i〉A}di=1

is an orthonormal basis.5 Then we introduce a reference system R such that dimHR =
dimHA = d and {

∣∣̃i〉
R
}di=1 is an orthonormal basis for HR. We then define a pure state

|ψ〉 =
∑d

i=1

√
pi |i〉A

∣∣̃i〉
R
. We notice that TrR(|ψ〉〈ψ|) =

∑d
i=1 pi |i〉〈i|A = ρA. Therefore,

|ψ〉 is a purification of ρA.

Finally, we end our discussion of quantum states with the definitions of separable states,
entangled states and Bell states.

5Since ρA is also a Hermitian operator, such an orthogonal decomposition can be realized by its spectral
decomposition.
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Definition 2.6. (Separable state) A state ρAB ∈ D(HAB) of some physical system AB is
separable if it can be written as a convex combination of product states:

ρAB =
∑
x

p(x)ρxA ⊗ ρxB.

Definition 2.7. (Entangled state) A state ρ ∈ D(H) is entangled if it is not separable.

Definition 2.8. (Bell states) The four Bell states are defined on a two-qubit Hilbert space
as ∣∣Φ+

〉
=

1√
2

(|00〉+ |11〉),∣∣Φ−〉 =
1√
2

(|00〉 − |11〉),∣∣Ψ+
〉

=
1√
2

(|01〉+ |10〉),∣∣Ψ−〉 =
1√
2

(|01〉 − |10〉).

(2.3)

These four Bell states are maximally entangled states.

2.1.2 Measurements

Every physical measurement can be described by a positive operator-valued measure (POVM),
which is defined below.

Definition 2.9. (POVM) An n-outcome POVM on a Hilbert space H is a set {Ei}ni=1

such that Ei � 0 for each i and
n∑
i=1

Ei = 1.

Also, every POVM can be realized by a physical measurement. Typically, one labels
the outcomes of a measurement by the elements of the index set of its POVM. For a
quantum state ρ ∈ D(H), and a physical measurement described by a POVM {Fj}mi=1, the
probability for the outcome j of the measurement to occur is given by Tr(ρFj).

A POVM {Fj} can be represented by a list of Kraus operators {Mi}i∈I acting on the

Hilbert space H such that
∑

i∈IM
†
iMi = 1 for some index set I, where 1 is the identity

operator. This representation is not unique and there can be several different lists of Kraus
operators representing the same POVM. For a given list of Kraus operators, each POVM
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element Fj can be written as Fj =
∑

i∈Ij M
†
iMi, where the summation is over a subset Ij

of the index set I. For a quantum state ρ, the probability pk for the k-th outcome to occur

is given by pk =
∑

i∈Ik Tr
(
ρM †

iMi

)
and the post-measurement state conditioning on the

outcome k is
∑
i∈Ik

MiρM
†
i

pk
.

A special type of measurements that we will frequently encounter is projective mea-
surements or projection-valued measure (PVM), where each measurement operator is a
projection operator. A projection operator P is a positive semidefinite operator such that
P 2 = P = P †.

A general POVM is not necessarily a projective measurement. However, we can con-
struct a projective measurement from a given POVM. This can be done through Naimark
dilation theorem. We state the Naimark dilation theorem in the form that is relevant to
our discussion.

Theorem 2.10 (Naimark). Let {Ei}ni=1 be a POVM on HA. There exists a Hilbert space
HR, an isometry V : HA → HA ⊗ HR and a projective measurement {Pi}ni=1 such that
Ei = V †PiV for each i.

Here, we give an explicit construction of this isometry and the corresponding PVM.
We first notice that for each positive semidefinite operator A, there exists a unique square-
root operator B such that B2 = A. Since Ei is positive semidefinite, we write

√
Ei as its

square-root operator. V can be constructed as V =
∑

i

√
Ei⊗ |i〉R. We verify that V is an

isometry since V †V =
∑

iEi = 1A. Each element of the desired PVM can be constructed
as Pi = 1A ⊗ |i〉〈i|R, which is a projection onto one of the basis states of the new register
system R.

2.1.3 Quantum channel

To define a quantum channel, we start with the definitions of completely positive (CP)
maps and trace-preserving (TP) maps.

Definition 2.11. A map Φ : L(HA)→ L(HB) is completely positive if for every complex
Euclidean space Z, Φ ⊗ 1L(Z) is a positive map. Φ is trace-preserving if for every X ∈
L(HA), Tr(Φ(X)) = Tr(X).

Definition 2.12. (Quantum channel) A quantum channel E between two registers A and
B with HA and HB is a map from L(HA) to L(HB) such that it is completely positive and
trace-preserving (CPTP).
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We notice that from the CPTP requirements, for ρ ∈ D(HA), we automatically have
E(ρ) ∈ D(HB).

An important representation of a quantum channel is its Kraus representation. A map
E from L(HA) to L(HB) is CP if and only if there exists a set of operators {Ka} such
that E(X) =

∑
a

KaXK
†
a for every X ∈ L(HA). It is trace-preserving (TP) if and only if∑

a

K†aKa = 1A. The operators {Ka} are called Kraus operators.

Before we end the discussion of quantum channels, we consider a particular channel of
a qubit system, called depolarizing channel. This is a model for introducing noise to the
system.

Definition 2.13. (Depolarizing channel) For a qubit system, a depolarizing channel E :
L(C2) → L(C2) is defined as E(ρ) = (1 − p)ρ + p1

2
for every ρ ∈ L(C2), where p is the

depolarizing probability.

Since for arbitrary ρ, we have 1
2

= ρ+σxρσx+σyρσy+σzρσz
4

, where σx, σy and σz are Pauli

operators, we can write the depolarizing channel as E(ρ) = (1− 3p
4

)ρ+ p
4
(σxρσx + σyρσy +

σzρσz). In the Kraus operator representation, the Kraus operators are
√

1− 3p
4
1,
√
p

2
σx,

√
p

2
σy, and

√
p

2
σz.

Sometimes, it is helpful to write an identity channel, which is the channel that does
nothing but simply returns the input state as the output state. We denote the identity
channel from L(HA) to L(HA) by IA.

2.2 Quantum key distribution

Quantum key distribution (QKD) allows two distant parties, the sender (commonly referred
as Alice) and the receiver (Bob) in the presence of an eavesdropper (Eve) to establish a
secret key for which Eve knows a negligible amount of information except the key length.
Unlike conventional classical cryptographic schemes for key distribution, whose security
is based on some computational assumptions, QKD in theory guarantees information-
theoretical security solely based on the law of quantum physics. In this section, we start
with reviewing general steps in a prepare-and-measure protocol and in an entanglement-
based protocol, and then discuss some useful tools to prove security of a QKD protocol,
namely, source-replacement schemes, and squashing models.
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A QKD protocol consists of a quantum phase and a classical phase. The goal of Alice
and Bob is to establish a secret key of ` bits. To do so, they use an insecure quantum
channel to transmit N quantum signals and then communicate through an authenticated
classical channel to perform classical post-processing procedures to distill `-bit secure key.

2.2.1 Prepare-and-measure protocols

We now discuss the QKD protocols in the prepare-and-measure scheme, where Alice pre-
pares some quantum states and sends them to Bob for measurements.

Quantum phase:

1. (Signal preparation) Alice prepares N quantum signals, each of which is chosen in-
dependently from the set of m distinct quantum states S = {|φ1〉 , . . . , |φm〉} ac-
cording to a priori probability distribution {pi}mi=1. Each quantum state |φi〉 in a
dA′-dimensional Hilbert space HA′ encodes the information of the key.

2. (Signal transmission) Alice sends each of the N quantum signals to Bob and records
the sequence of the states she sent.

3. (Measurement) Upon receiving the quantum states from Alice, Bob measures each
state by a k-outcome POVM {M j

B}kj=1 and records the measurement outcomes.

After all N signals have been transmitted to Bob and measured by Bob, they stop the
quantum transmission and start the classical phase of the protocol.

Classical phase:

4. (Parameter estimation) They randomly choose a small portion of their data as a test
set, which they use to estimate the amount of information leaked to Eve. For this test
set, Alice tells Bob which states were prepared and Bob tells Alice what measurement
outcomes he obtained via the classical channel. By doing so, they obtain a table of
relative frequencies f(i, j), where i = 1, . . .m, and j = 1, . . . , k, for all possible
combinations of states sent and measurement outcomes. Then from f(i, j), they
decide whether they will be able to generate secret key from the remaining data. If
not, they abort; otherwise, they continue.

5. (Announcement) For the remaining data, they can choose to make announcements
based on their local data. By doing announcements, they may partition their data
into subsets for further post-processing.
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6. (Sifting) They may agree on which parts of the data are not suitable for generating
secret key, and then discard those parts. For example, they may perform a basis
sifting or discard rounds where Bob fails to detect the signals.

7. (Key map) Either Alice or Bob maps her (or his) remaining raw data into a key
string of some predefined alphabet.6 Although any alphabet is allowed, we consider
binary alphabet below for the ease of our discussion. After this step, she (or he) now
has an n-bit string,7 where n<N . This n-bit string is usually called the raw key or
sifted key.8

8. (Error correction) At the end of the previous step, Alice and Bob may have a pair
of strings that are possibly only weakly correlated. To create a pair of perfectly
correlated key strings, they then perform the error correction. One party sets his or
her key as the reference key, and sends the error correction information to the other
party. The other party corrects all errors to match with the reference key. If Alice
(Bob) has the reference key, we sometimes call this procedure as direct (reverse)
reconciliation. The error correction step leaks some amount of information to Eve,
denoted by leakEC .

9. (Privacy amplification) In order to eliminate Eve’s information about their secret
key, Alice and Bob then distill `-bit key of their n-bit raw key (` ≤ n) by applying
privacy amplification. This can be done as follows. They first need to calculate `.
Then Alice randomly chooses a hash function F : {0, 1}n → {0, 1}` from the two-
universal family of hash functions9. She applies F to her n-bit string X and sends
Bob her choice of F . At the end of the protocol, Alice and Bob share an `-bit string
F (X).

The above steps are generic for many protocols of our interests. Some variations are
possible. In particular, we will only focus on discrete-variable QKD protocols. To give a
concrete example, we briefly comment the specific setting in the case of the well-known
BB84 protocol proposed by Charles Bennett and Gilles Brassard in 1984 [2]. For BB84,
the set of signal states is S = {|0〉 , |1〉 , |+〉 , |−〉}, where {|0〉 , |1〉} is referred as the Z-basis

6In many real-world implementations, the typical alphabet is binary even though there is no restriction
on the choice of alphabet. Our discussion can be easily generalized to arbitrary alphabets.

7Without loss of generality, we assume one party obtains an n-bit string after this step and uses it as
a reference key to which the other party needs to match his/her key later.

8In some older papers, raw key may refer to the one before the sifting step.
9A precise definition of two-university hashing is the definition 5.4.1 in [32]. This two-universal family

of hash functions guarantees information-theoretical security.
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(or computational basis) of a qubit system, and {|+〉 , |−〉} is called the X-basis, where
|±〉 = 1√

2
(|0〉±|1〉). The a priori probability for each of these four states is 1

4
. Bob’s POVM

consists of {1
2
|0〉〈0| , 1

2
|1〉〈1| , 1

2
|+〉〈+| , 1

2
|−〉〈−|}. That is, Bob chooses randomly with an

equal probability to measure the state in Z-basis or in X-basis. For the announcement
step, they discard the rounds where Alice prepares in Z-basis, but Bob measures in X-
basis, and the rounds where Alice prepares in X-basis, but Bob measures in Z-basis. We
refer to f(i, j) from the parameter estimation as the fine-grained statistics, and we can
coarse-grain f(i, j) by some classical processing, such as summing up some of the entries
in the table f(i, j) or taking average values. A single average error rate called quantum
bit error rate (QBER) can be obtained for BB84 by coarse-graining f(i, j). Alice and Bob
then decide to abort the protocol if this error rate is above a certain threshold value. Other
steps of the BB84 protocol are exactly what is described above.

We remark that in the case of infinitely long key limit (N →∞), the relative frequencies
f(i, j) can become a probability distribution p(i, j). The number of secret bits ` that we
can extract from the protocol depends on n (and therefore N). In the asymptotic key
limit, the secret key generation rate per channel use `

N
is defined as R∞ := lim

N→∞
`
N

, which

we call the asymptotic key rate. Sometimes, we also talk about the key rate per sifted (or
raw) key `

n
and asymptotic sifted key rate r∞ := lim

n→∞
`
n
.

2.2.2 Entanglement-based protocols

Another major type of QKD protocols is the entanglement-based scheme. For the secu-
rity proofs, entanglement-based protocols are usually more convenient to analyze. For
the completeness of our presentation, we summarize the steps for the entanglement-based
protocols. Later on, we will see, with regard to the security proofs, that there is an
equivalence between prepare-and-measure and entanglement-based protocols. The main
difference between a prepare-and-measurement protocol and an entanglement-based pro-
tocol is the quantum phase. We give a detailed description of the quantum phase for
entanglement-based scheme and then comment on the classical phase.

Quantum Phase:

1’. (Signal preparation) An untrusted source prepares N quantum signals of a bipartite
system. Ideally, the source emits N copies of the maximally entangled state |Φ+〉 =

1√
2
(|00〉 + |11〉) or some noisy version of |Φ+〉⊗N . However, Eve can have access to

the source or even prepare the states for Alice and Bob. She may prepare whatever
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states she wishes. She may instead prepare tripartite states, keep one system for
herself and use the remaining two systems for the next step.

2’. (Signal transmission) The source sends one part of each of N bipartite states to Alice,
and the other part to Bob.

3’. (Measurements) Alice performs her measurements on each of the states she receives
by a POVM {M i

A}mi=1 and records her measurement outcomes. Similarly, Bob per-
forms his measurements on each of the states he receives by a POVM {M j

B}kj=1 and
records his measurement outcomes.

The classical phase of an entanglement-based protocol runs almost the same as the
prepare-and-measure protocol. They perform parameter estimation to decide whether or
not to abort the protocol, and if not aborting, they continue with other post-processing
steps, error correction and privacy amplification as mentioned above. Some variations of
these procedures can be done. For example, they can postpone their measurements until
receiving all N states. Then they can perform random permutation on these N states,
choose a subset of these states to perform their POVMs and use this subset as the test set
for parameter estimation. If they do not abort after the parameter estimation, then for
the remaining set of states, they can perform subsets of their POVMs. For instance, thank
to the random permutation, for the remaining data set, they then are allowed to measure
in the same basis (as in the case of BB84). By doing so, they avoid discarding more data
in the sifting step due to basis mismatch.

2.2.3 Source-replacement scheme

In the entanglement-based picture, it is more natural to discuss the joint state shared
by Alice and Bob (and Eve), and to quantify the amount of information leaked to Eve
by some entropy measure on this joint state. Therefore, it is often easier to analyze an
entanglement-based protocol. To analyze the security of a prepare-and-measure protocol,
the first step is usually transforming it to an equivalent entanglement-based protocol. A
canonical method to achieve this transformation is the source-replacement scheme [11].

We introduce an additional register A for Alice’s system, whose state space is HA. If
the set of signal states S contains m states, then dimHA = m and HA has an orthonormal
basis {|i〉}mi=1. Alice’s source, instead of just sending the signal states to Bob, creates an
entangled pair between the register A, which stores the information about the signal states
prepared, and the register A′ that holds the signal states. The source emits the following
state for every signal transmission round:
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|Ψ〉AA′ =
m∑
i=1

√
pi |i〉A |φi〉A′ . (2.4)

Then Alice keeps the register A and sends the system A′ to Bob through the insecure
quantum channel. To establish the equivalence between the entanglement-based protocol
based on the source replacement scheme and the original prepare-and-measure protocol,
Alice performs a projective measurement {|j〉〈j|}mj=1 on system A. With a probability
pa, this measurement outcome is a, and then the state sent to Bob is collapsed to the
conditional state |φa〉. Since Eve has no access to Alice’s register A and this replaced
source emits the same set of signal states with the same probability distribution as before,
Eve cannot distinguish this new source and the original source. Therefore, the equivalence
between the entanglement-based protocol with this source replacement and the original
prepare-and-measure protocol is clear.

We want to highlight that in the source-replacement scheme, the source is in Alice’s lab
and is protected. This puts the constraint that the reduced density operator ρA on system
A is unchanged before and after the signal transmission. Equivalently, we describe the
quantum channel as a CPTP map EA′→B : D(HA′) → D(HB) such that the state shared
by Alice and Bob after the quantum transmission is ρAB = (IA ⊗ EA′→B)(|Ψ〉〈Ψ|AA′). The
additional requirement is ρA = TrB(ρAB) = TrA′(ρAA′). Specifically,

ρA = TrA′(|Ψ〉〈Ψ|AA′) =
∑
j,k

√
pjpk 〈φk|φj〉 |j〉〈k| . (2.5)

2.2.4 Squashing model

Historically, QKD protocols were initially designed based on qubit systems and security
proofs were first given assuming qubit systems, for example, see [35]. In reality, QKD
protocols are implemented by quantum optical devices. In quantum optical implemen-
tations of QKD protocols, we deal with optical modes. Optical modes are described on
infinite-dimensional Hilbert spaces, such as an infinite-dimensional Fock space. However, a
finite-dimensional space is usually easier to study theoretically. It would be nice if we can
make a reduction from an infinite-dimensional space to a finite-dimensional space, or even
to a qubit. The idea of squashing model is to accomplish this reduction for the measurement
devices. If such a squashing model exists for a QKD protocol, then we can think Bob’s mea-
surements on a higher-dimensional space by measurements on a lower-dimensional space.
We now give a high-level overview of the basic ideas of squashing models since we only
need to know whether such a squashing model exists for the protocol to be analyzed and
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if exists, then we can conveniently treat Bob’s system on a low-dimensional Hilbert space.
All technical details regarding how to search for a squashing map is beyond the scope of
this thesis, and we direct readers to Refs. [1, 13, 38] for technical details.

Figure 2.1: Schematics of squashing model, reproduced from the Fig. 1 of Ref. [13]. In
reality, the measurement device may perform the POVM FB. By applying an appropriate
post-processing, the full measurement is now described by POVM FM . If there exists a
squashing map, then it allows us to think the measurement in terms of the target POVM
FQ on a lower-dimensional space.

As depicted in Fig. 2.1, we want to establish the equivalence of these two boxes. For the
measurements in QKD, the physical measurement device B is described by the POVM FB
on the optical modes and the desired qubit measurement is given by the POVM FQ. Since
FB is on a higher-dimensional Hilbert space and may have different numbers of outcomes
from that of FQ on a lower-dimensional space, a classical post-processing is needed for
basic outcome events, and the full measurement including both FB and the classical post-
processing is then described by another POVM FM . As we are typically interested in
measurement outcomes and the statistics, we want to establish the equivalence of these
two boxes in the sense that both boxes take the same general optical input ρin and output
the same set of measurement outcome events with the same probability distribution. That
is, these two boxes are statistically indistinguishable. Once this equivalence is established,
even though the actual measurement we perform in the experiment is FM , we can think in
terms of FQ and analyze the security with FQ.

We remark that the essential step to find a squashing model is to show the existence of

14



this squashing map ΛB. Usually FB is already defined by the protocol and fixed. In many
circumstances when we study an optical implementation of a protocol, we may choose FQ
to be the measurements on the qubit version of the protocol with an additional flag for
no detection in order to make connections to the security proofs of the qubit protocol.
Our task is then to specify an appropriate post-processing procedure that may allow this
squashing map to exist. Throughout this thesis, we will apply the squashing model, and
the essential post-processing step is to map the double clicks to random bits. Fortunately,
squashing models exist for the protocols studied here [1, 13, 38].

2.3 Entropy

In this section, we give a brief introduction to entropy based on the Ref. [31]. Entropy
is a useful tool to quantify the amount of information. A traditional way to present this
material is to start with the classical Shannon entropy and then to introduce the quantum
analog. Roughly speaking, the Shannon entropy is defined for probability distributions,
and in the quantum analog of Shannon entropy, which is called von Neumann entropy, the
density operators replace the probability distributions. Now, we start to define them more
formally.

Let X be a random variable taking values in a finite set of alphabet X with the prob-
ability p(x) for X = x. Shannon entropy of X, denoted as H(X) or H({p(x)}) is defined
as H(X) = −

∑
x p(x) log(p(x)).10 A nice interpretation of Shannon entropy is that H(X)

quantifies the uncertainty of X before we learn the value of X or the amount of information
we gain after learning the value of X. Similarly, von Neumann entropy of a density oper-
ator ρ describing a physical system X is H(ρ) = −Tr(ρ log(ρ)), sometimes also denoted
as H(X). If λ’s are eigenvalues of ρ, then H(ρ) = −

∑
λ λ log(λ). We remark that the von

Neumann entropy is a generalization of the Shannon entropy. If the system is classical,
then the density operator for this system can be written as a diagonal matrix, where the
basis consists of all possible events and each diagonal entry corresponds to the probability
of each event. In this case, the von Neumann entropy is the same as the Shannon entropy.
That is, for ρ =

∑
x p(x) |x〉〈x|, H(ρ) = H({p(x)}). This is also the reason that we use the

same notation for Shannon and von Neumann entropy. It should be clear that if a register
is classical, then the von Neumann entropy reduces to the Shannon entropy.

For a pair of random variables X and Y with a joint probability distribution p(x, y), we
can define the joint entropy H(XY ) as H(XY ) = −

∑
x,y p(x, y) log(p(x, y)). Analogously,

10In this thesis, log is assumed to be in base 2, and 0 log 0 = 0. We will denote natural logarithm by ln.
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for a bipartite system XY with a density operator ρXY , H(XY ) = H(ρXY ).

The conditional entropy H(X|Y ) = H(XY )−H(Y ) tells us the remaining uncertainty
of the pair (X, Y ) after learning the value of Y . In the quantum case, for a density operator
ρXY , H(X|Y ) = H(ρXY ) − H(ρY ). In the classical picture, from the joint probability
distribution p(x, y), we can define the marginal probability for the random variable Y as
p(y) =

∑
x p(x, y). Then the conditional entropy H(X|Y ) = H({p(x, y)})−H({p(y)}).

The mutual information I(X : Y ) = H(X) + H(Y ) − H(XY ) quantifies how much
information X and Y have in common. We remark that I(X : Y ) ≥ 0 in both classical
and quantum cases.

These definitions are schematically represented in the Fig. 2.2.

Figure 2.2: Schematic description of entropy. The left circle represents the amount of
certainty for X, and the right circle represents the amount of uncertainty for Y . The blue
area represents H(X|Y ); green area H(Y |X) and grey area I(X : Y ).

The following is a useful theorem concerning the entropy of pure states:

Theorem 2.14. If ρAB is a pure state, then H(ρA) = H(ρB), where ρA = TrB(ρAB) and
ρB = TrA(ρAB).

Proof. This follows directly from the Schmidt decomposition of ρAB (Theorem 2.4). ρAB =∑
i

√
λi |i〉A

∣∣̃i〉
B

. ρA =
∑
i

λi |i〉〈i|A and ρB =
∑
i

λi
∣∣̃i〉〈̃i∣∣

B
, where λi’s are eigenvalues of ρA

and ρB. Since ρA and ρB have the same eigenvalues, H(ρA) = H(ρB).
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Another useful quantity is the relative entropy. For two probability distribution p(x)

and q(x) over the same index set x, the relative entropy, D(p(x)||q(x)) =
∑

x p(x) log p(x)
q(x)

,

describes how the probability distribution p(x) diverges from the other probability distri-
bution q(x). The quantum relative entropy is D(ρ||σ) = Tr(ρ log ρ) − Tr(ρ log σ). Since
H(ρ) = −Tr(ρ log ρ), we can also write D(ρ||σ) = −Tr(ρ log σ) − H(ρ). A nice property
of the relative entropy is the joint convexity, that is, D(

∑
i piρi||

∑
i piσi) ≤

∑
i piD(ρi||σi)

for
∑

i pi = 1 and pi ≥ 0.

2.4 Quantum optics

The physical realization of QKD protocols resorts to quantum optics. In this section, we
give a short introduction to the relevant part of quantum optics based on [20].

2.4.1 Optical modes

A photon can be used as a carrier of information by encoding the information in some
optical mode. In classical electrodynamics, optical modes refer to some orthonormal basis
solutions to the Maxwell’s Equations for the vector potential in the vacuum space. A
general solution can be expressed as a linear combination of those modes. Since the basis
choice is not unique, any solution can be defined as a mode. In quantum mechanics,
through canonical quantization, the field amplitudes of orthonormal modes are promoted
to mode operators. We describe those mode operators in terms of creation operator â†

and annihilation operator â. Since photons are excitations of the electromagnetic field, we
say â† creates a photon in an optical mode, and â annihilates a photon. The associated
Hilbert space that creation and annihilation operators of a mode act on has a convenient
orthonormal basis, called Fock states, denoted as |n〉, where n represents the number of
photons in a mode.11 Mathematically, â† |n〉 =

√
n+ 1 |n+ 1〉, â |n〉 =

√
n |n− 1〉 and

â |0〉 = 0. We will use subscripts in the creation and annihilation operators to distinguish
which mode they are associated with when we talk about several modes. The commutation
relations between the creation and annihilation operators with several modes are [âi, â

†
j] =

δij, where δij is the Kronecker delta, that is, δij = 1 if i = j and δij = 0 otherwise.

11|0〉 of a mode means the vacuum state in this mode. Sometimes, to avoid confusion with the compu-
tational basis state |0〉 of a qubit, we will denote the vacuum state by |∅〉 . Otherwise, the meaning of the
state should be clear from the context.
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The Fock state |n〉 of one mode is the eigenstate of the Hamiltonian of this mode for the
electromagnetic field. The Hamiltonian of one mode is Ĥ = ~ω(â†â+ 1

2
). The Hamiltonian

of the whole system is then just the sum of the Hamiltonians of each mode, and the Fock
state for several modes is just the tensor product of individual modes.

2.4.2 Coherent states

A laser source emits coherent states. A coherent state |α〉 is an eigenstate of the annihilation
operator â with a complex eigenvalue α = eiφ|α|. We can express a coherent state |α〉 in
the Fock state basis as

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (2.6)

The number operator N̂ := α̂†α̂ measures the number of photons in a mode. For a
coherent state |α〉, the average photon number is µ := 〈N̂〉 = 〈α| α̂†α̂ |α〉 = |α|2. The
probability of finding n photons for a coherent state |α〉 is given by Pµ(n) = |〈n|α〉|2 =

e−|α|
2 |α|2
n!

, a Poissonian distribution.

Since the photon intensity is proportional to the mean photon number µ, we may use
these two terms loosely when other parameters are assumed to be fixed and irrelevant for
our discussion. When we say the coherent state with an intensity µ, we actually mean that
the average photon number is µ. This is commonly found in the literature.

2.4.3 Linear optics

Linear optics are used to manipulate modes. Since each state can be written as some
creation operators acting on the vacuum state |0〉, we can think the transformation of the
state in terms of the transformations of creation and annihilation operators (that is, in
the Heisenberg picture). We will use the subscripts to indicate the input modes and the
output modes.

Phase shifter

A phase shifter (PS) changes the phase of the electromagnetic field. This can be realized
by any device or material that changes the optical path, such as a delay line to change the
length of the optical path, or some material with an index of refraction that can be changed
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by an applied voltage. The output mode and input mode are related by â†out = eiφâ†in and
âout = e−iφâin.

Beam splitter

A beam splitter (BS) is an optical device that reflects some part of the incident light and
transmitting the rest part. It is usually implemented by a semi-reflective mirror. It has two
input ports and two output ports. We denote these two input modes in two input ports as
âin and b̂in, and the two output modes as âout and b̂out. Then âout =

√
tâin + eiϕ

√
rb̂in, and

b̂out = −e−iϕ
√
râin +

√
tb̂in, where t is the transmission probability and r is the reflection

probability, t + r = 1, and ϕ is a phase shift introduced by the coating of the mirror.12

This transformation can be compactly written as a unitary matrix in the vector notation
as follows: [

âout

b̂out

]
=

[ √
t eiϕ

√
r

−e−iϕ
√
r
√
t

] [
âin

b̂in

]
. (2.7)

For a 50/50 beam splitter, the transmission probability is the same as the reflection
probability, that is, t = r = 1

2
, and the phase shift is ϕ = 0. Then,[

âout

b̂out

]
=

[
1√
2

1√
2

− 1√
2

1√
2

] [
âin

b̂in

]
. (2.8)

We can also express the input mode in terms of the output modes by the inverse of
this unitary matrix. In the case of a 50/50 beam splitter, âin = 1√

2
(âout − b̂out), and

b̂in = 1√
2
(âout + b̂out).

Polarization rotator

A polarization rotator (PR) changes the polarization of the input mode to its orthogonal
polarization, and is physically realized by quarter- and half-wave plates. If we write âin

as âx, and b̂in as ây, where x and y represent a set of orthogonal polarization directions,

and write âout as âx′ , and b̂out as ây′ , where x′ and y′ represent another set of orthogonal
polarization directions, then the transformation can be written as:[

âx’

ây’

]
=

[
cos θ eiϕ sin θ

−e−iϕ sin θ cos θ

] [
âx

ây

]
, (2.9)

12We only consider symmetric lossless beam splitters in this thesis.
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where θ and ϕ are angles of rotation. We notice this transformation has the same form as
the transformation of the beam splitter. From the unitary transformation, the equivalence
between polarization and two-mode representation in a conceptual level can be established.

Polarizing beam splitter

A polarizing beam splitter (PBS) can separate modes with same spatial mode functions
but orthogonal polarization into spatially different output modes. A PBS can be made
to separate a preferred polarization mode decomposition. For example, if the PBS is
designed to separate horizontal and vertical polarization, then such a transformation can
be as follows for two input modes (âin and b̂in):

âin,H → âout,H, âin,V → b̂out,V, b̂in,H → b̂out,H, b̂in,V → âout,V,

where the subscript H indicates horizontal polarization and V vertical polarization.

A PBS can also be designed to separate other polarization directions, such as left-
circular polarization (L) and right-circular polarization (R). In this case, the transformation
is the same as listed above with the substitution H ↔ L and V ↔ R.

2.5 Convex optimization and semidefinite program-

ming

Many problems in the field of quantum information can be formulated as mathematical
optimization problems. In particular, if the problem can be expressed as a convex opti-
mization problem, it means this problem can be efficiently solved numerically. With an
aid of numerical optimization tools, we then are able to tackle many problems that are
difficult to solve analytically. In this thesis, the focus of proving the security of QKD
protocols resides on the calculation of secret key generation rate. Fortunately, the key rate
calculation problem can be formulated as a convex minimization problem, as we will see
later.

In this section, we briefly review some results from the theory of convex optimization,
which will be useful for understanding the numerical approaches we adopt. We will also
look at a specific type of convex optimization problems, semidefinite programming (SDP)
problems. We direct readers to Ref. [3] for a detailed discussion of this topic.

We start with the basic definitions of convex functions and convex sets.
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Definition 2.15. (Convex function) A function f : Rn → R is convex if for any x1, x2 ∈ Rn

and 0 ≤ p ≤ 1, f(px1 + (1− p)x2) ≤ pf(x1) + (1− p)f(x2).

Definition 2.16. (Convex set) A subset C ⊆ Rn is convex if for every x1, x2 ∈ C, and for
any 0 ≤ p ≤ 1, px1 + (1− p)x2 ∈ C.

We then state a convex optimization problem in the standard form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m.

aTi x = bi, i = 1, . . . , k,

(2.10)

where f0, . . . , fm are convex functions from Rn to R, ai ∈ Rn and bi ∈ R. We call the set
of x that satisfies these constraints as the feasible set, denoted as D. We usually refer this
problem as the primal problem.

For this optimization problem, we rewrite the equality constraints as hi(x) = aTi x− bi
and then we require hi(x) = 0 for each i. With this rewriting, we then define the Lagrangian
L : Rn × Rm × Rk → R for this problem (2.10) as

L(x, ν, λ) = f0(x) +
m∑
i=1

νifi(x) +
k∑
i=1

λihi(x). (2.11)

We call the vectors ν and λ as the dual variables or Lagrange multiplier vectors associated
with the problem.

For each optimization problem, there is an associated Lagrange dual problem, defined
as below:

maximize g(ν, λ)

subject to ν ≥ 0
, (2.12)

where g(ν, λ) := inf
x∈D

L(x, ν, λ) = inf
x∈D

(
f0(x) +

∑m
i=1 νifi(x) +

∑k
i=1 λihi(x)

)
. We will use

the superscript ∗ to indicate the optimal value of the variable.

Let p denote the primal objective function value and d denote the dual objective func-
tion value. An important relation between the optimal value p∗ of the primal objective
function and optimal function value d∗ of the Lagrange dual problem is called weak duality,
which states d∗ ≤ p∗. This weak duality holds even if the primal problem is not convex.

Weak duality tells us that the optimal value of the primal problem is always lower
bounded by the optimal value of the dual problem, which in turn is lower bounded by any
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value of the dual problem objective function in the dual feasible set. If the gap between p∗

and d∗ is zero, then we call this relation d∗ = p∗ strong duality. For convex optimization
problems, the strong duality holds if Slater’s condition is satisfied. Slater’s condition is
that there exists a point x inside the relative interior of the feasible set D such that these
inequality constraints fi(x) are strictly less than zero, and all the equality constraints are
satisfied.

Another useful statement is that suppose a function f is differentiable, then f is convex
if and only if domf (domain of f) is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) (2.13)

holds for all x, y ∈ domf . This is called first-order condition. The right-hand side of this
inequality is the first-order Taylor approximation of f near x. For convex functions, this
first-order approximation is always a lower bound of the function value.

We end this section with a special class of convex optimization problems, where the
objective function is linear and we only have linear constraints and matrix nonnegativity
constraints. This class is called semidefinite programs (SDP).

The feasible set of an SDP problem is within a positive semidefenite cone, which we
now define.

Definition 2.17. A subset C ⊆ Rn is called a cone if for every x ∈ C, and for any p ≥ 0,
px ∈ C. A cone C is called a convex cone if it is also convex.

It is straightforward to check the set of positive semidefinite matrices of size n by n is
a cone, which we call positive semidefinite cone. In fact, this positive semidefinite cone is
convex.

We now state the standard form of an SDP problem and its dual problem.

minimize
X

〈A,X〉

subject to 〈Bi, X〉 = bi, i = 1, . . . ,m.

X � 0

(2.14)

Here, Bi ∈ Herm(H), bi ∈ R, and 〈·, ·〉 denotes an inner product. In this thesis, we will
use Hilbert-Schmidt inner product 〈A,X〉 = Tr

(
A†X

)
.
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The dual problem is

maximize
y1,...,ym

m∑
i=1

biyi

subject to
m∑
i=1

yiBi � A

yi ∈ R, i = 1, . . . ,m.

(2.15)
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Chapter 3

Key rate calculation problem

In this chapter, we will discuss the essential components for security proofs, review the
key rate formulas, present the formulation of the key rate calculation problem as a convex
optimization problem, summarize the numerical approaches we use to solve this problem
and show some simple examples.

To prove the security of QKD, we first need a meaningful definition of security. In
Section 3.1, we present the formal definition given by Renato Renner in his PhD. thesis
[32]. In Section 3.2, we specify the framework for the security analysis, including any
assumptions we have to impose, and then discuss possible attack models for Eve in Section
3.3. In analyzing QKD protocols, a main theoretical problem is to calculate the secret
key generation rate. In Section 3.4, we discuss the formulation of the key rate calculation
problem that we will focus on for this thesis. Finally, in Section 3.5 and Section 3.6, we
will summarize the numerical approaches developed in [8, 41], which we will deploy for the
following chapters of this thesis. In addition, we will give some simple examples that we
have used to verify the numerical approaches. These examples now serve the purposes of
illustrating the numerical methods.

3.1 Formal security definition

The secret key generated by QKD is usually used in other cryptographic applications,
such as one-time pad encryption scheme. The universally composable security allows us to
analyze the security of each cryptographic component separately. Among many security
definitions, the definition given by Renato Renner in his PhD. thesis [32] fits into the
framework of universal composability. Here, we restate this definition.
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Definition 3.1. A key distillation protocol KD1 with its description of the full protocol
EABE→SASBE′ , which is a completely positive map, is said to be ε-secure on ρABE if the
trace distance2 between the output state ρSASBE′ := EABE→SASBE′(ρABE) and the ideal
state σSASBE′ is less than ε, that is,

D(ρSASBE′ , σSASBE′) :=
1

2
||ρSASBE′ − σSASBE′||1 ≤ ε,

where the ideal state σSASBE′ :=
∑
s∈S

1
|S| |s〉〈s|SA⊗|s〉〈s|SB ⊗ρE′ satisfies correctness, secrecy

and uniform randomness, and {|s〉} is a set of orthonormal vectors representing the values
of the key space S. Furthermore, this protocol is ε-fully secure if it is ε-secure on all density
operators ρABE ∈ D(HA ⊗HB ⊗HE).

We want to make several remarks here to give a more intuitive understanding of this
definition.

Remark 3.2. EABE→SASBE′ is not trace-preserving. In fact, the trace of the output state
ρSASBE′ is the probability that the protocol does not abort. We also notice that ρSASBE′ =∑
s,s′
p(s, s′) |s〉〈s|SA ⊗ |s

′〉〈s′|SB ⊗ ρ
(s,s′)
E′ .

Remark 3.3. We can interpret this security definition from an operational point of view.
We consider the joint probability that the protocol does not abort and the key S from this
state ρSASBE′ is not the same as the perfectly secure key U from the ideal state σSASBE′ .
This joint probability is upper bounded by ε.

3.2 Framework for security proofs

Unlike classical cryptography, the security of QKD is not based on some computational
assumptions. Here, Eve is only limited by the laws of quantum physics. In her possession,
she has unlimited computational powers. She also has access to quantum computers and
quantum memories, as well as any other advanced technology that is physically allowed.3

To say a QKD protocol is secure, we want it to be secure not only against currently available

1A key distillation protocol is a generalization of a key distribution protocol.
2The 1-norm of a linear operator A is ||A||1 = Tr(|A|) = Tr

(√
AA†

)
and the trace distance of two

linear operators A and B is D(A,B) = 1
2 ||A−B||1.

3To name a few, perfect photon-number resolving devices, lossless channels.
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technology, but also against future technology. QKD in theory is unconditionally secure,
that is, information-theoretically secure. However, there are still explicit or even implicit
assumptions in many security proofs of QKD, especially when it connects to physical
implementations. Eve may exploit any gap between theory and real QKD devices, and
launch so-called side-channel attacks. To prevent side-channel attacks, this gap has to be
closed up either by revising the theory or improving the physical implementations, such
as, adding countermeasures.

Before we proceed to analyze any QKD protocols, we briefly discuss the framework for
security proofs. We review some of the common assumptions in QKD security proofs and
comment on the feasibility of each assumption.

1. Eve can listen to the classical channel, but she cannot tamper the message transmit-
ted through this classical channel since this classical channel is authenticated.

2. Eve is physically isolated from Alice’s and Bob’s laboratories. Eve cannot access any
devices in Alice’s and Bob’s laboratories.

3. Alice’s and Bob’s physical devices behave as modeled.

The first assumption is feasible due to the development of classical cryptography. There
exist information-theoretical secure message authentication schemes. Also, this classical
channel is only required to be authenticated before the secret key can be generated. This
authentication requires two parties to share a short secret key before they start communi-
cation. In this sense, QKD is said to be a key growing protocol. From a practical point
of view, the initial secret key for authentication can also be generated by classical cryp-
tography, such as post-quantum algorithms, since this key is only needed for a very short
amount of time before any secure key from QKD can be generated [29]. Once a secure key
is generated from one session of QKD, a small portion of the secret key can be used for
authenticating the classical channel in the next session of QKD. Since to attack a QKD
system, Eve needs to attack in real time and she cannot do it retrospectively, the security
of QKD is still guaranteed if the security of the initial key cannot be broken in the required
short amount of time.

The second assumption requires that Eve cannot directly learn Alice’s and Bob’s ran-
dom bits used for preparing signals or making measurement choices or even the key itself.
If such information is leaked to Eve, then Eve can break the security of the protocol. This
assumption can be broken in a realistic setup through side-channel attacks. In particular,
so-called Trojan horse attacks, which we will discuss more in Chapter 4, explore such a side
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channel. Therefore, a countermeasure is needed to prevent or minimize the information
leakage, and revised security proofs might be needed to address this problem. If we can
quantify the amount of the information leaked from the side channel, then we might still
be able to generate secret key by applying appropriate privacy amplification.

The feasibility of the third assumption depends on the specific assumptions used in
security proofs. Many security proofs may involve the characterization of these physical
devices. Then if the physical implementation deviates from what is modeled, it is likely
to open up a side channel for Eve to attack. Some security proofs leave the devices
uncharacterized, for example, in measurement-device-independent QKD (MDI-QKD) [23],
the measurement devices are not characterized, and no assumptions are put on these
devices. There are also active research activities in device-independent QKD (DI-QKD),
where both the sources and the measurement devices are not characterized or trusted (see,
for example, Ref. [40]). Even in the DI-QKD, one may still need to impose some minimal
assumptions, for example, the device does not directly leak the measurement outcomes
that are used for generating secret keys to Eve through a side channel.

With regard to the optical implementation of QKD protocols using dim laser sources
instead of single-photon sources, it is usually assumed that the phase of the coherent
states emitted by the source is continuously randomized. This assumption about the
phase randomization needs to be verified carefully. When the phase of the coherent states
from the laser source is fully randomized, since Eve does not know the phase, we can
prove the security in terms of the Fock states and Poisson distributions. In practice, this
phase-randomization assumption may not hold. If the phase is not randomized at all, then
Eve might be able to learn this phase information and then launch more powerful attacks.
The key rate in this case has been shown in Ref. [24] to be much lower than that with a
continuously phase-randomized source. The phase randomization can be achieved either
passively or actively. For the passive phase randomization, a common assumption is that
after each switch on and off of the laser source, the coherent state from the source acquires
a new random phase. On the one hand, this assumption lacks a rigorous justification. On
the other hand, switching on and off the laser can be a slow process to prevent the source
from operating at a high clock rate. An active phase randomization process is to use an
additional phase modulator to actively changing the phase of coherent states. However,
a phase modulator cannot have an infinite number of settings. This might cause some
deviation from the continuous phase-randomized picture. Fortunately, one can perform
discrete phase randomization with just a few choices of phase to obtain almost the same
key rate as with continuous phase randomization in the asymptotic case [5]. We will discuss
more in Chapter 5.

This list is not exhausted. When we study security proofs, it is crucial to understand
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the underlying assumptions. The gap between theoretical security proofs and the physical
implementations has to be closed up by relaxing those unfeasible assumptions besides
improving the current technology.

3.3 Eavesdropping strategies

Historically, three categories of eavesdropping strategies have been considered in the secu-
rity analysis of QKD protocols. We summarize these categories.

Individual attacks

When Alice sends the system A′ that contains the signal to Bob, Eve interacts with each
individual signal using the same strategy. For each signal, she may attach an ancillary
system E to the system A′, and then perform a unitary operator U to both the signal
system A′ and her system E. Then she sends A′ to Bob and stores her system E in a
quantum memory. At the time of her choosing, she measures her system E to gain some
information about the raw key, and applies any post-processing procedures of her wish,
possibly the same classical post-processing procedures as Alice and Bob. Individual attacks
are weaker than collective attacks and coherent attacks.

Collective attacks

Eve interacts with each signal in the same way as in individual attacks. However, Eve
has a quantum memory to store all the ancillary systems E’s and then makes a collective
measurement on them. She can wait until after listening to the classical communication
between Alice and Bob. She uses the additional information learned from the classical
communication to decide how to make her collective measurements on her systems E’s
and then obtain her version of the raw key. Under the assumption of collective attacks,
the bipartite system between Alice and Bob after N signal transmission ρNAB has a tensor
product structure, that is, ρNAB = ρ⊗NAB .

Coherent attacks

Coherent attacks are the most general type of attacks. Instead of interacting with each
signal individually, Eve interacts with all signals coherently. She may have one ancillary

28



system E attached to all the signals and then make a coherent measurement at any time
of her choosing.

3.4 Key rate calculation problem formulation

In this section, we will review some important steps to reduce the calculation of secret key
generation rate to a convex optimization problem.

3.4.1 Reduction from coherent attacks to collective attacks

To prove the security of a QKD protocol, we need to prove it secure against the coherent
attacks. On the other hand, under the assumption of the collective attacks, the density
operator ρNAB has a simplified structure, which is easier to analyze. Fortunately, one can
simplify the security proofs against the most general attacks to the security proofs against
collective attacks by entropic uncertainty principle approach [37], post-selection technique
[6] or quantum de Finetti theorem [32]. For a generic QKD protocol, we can invoke the
quantum de Finetti representation theorem to make such a connection. Roughly speaking,
for the system composed of N rounds, if the system is invariant under permutation of
subsystems corresponding to each round, then coherent attacks are not stronger than
collective attacks. This means we can prove the security against collective attacks and
then the proof generalizes to the coherent attacks easily.

More precisely, quantum de Finetti representation theorem states that any density op-
erator ρn on H⊗n that is infinitely exchangeable can be written as a statistical mixture
of product states σ⊗n. Infinitely exchangeable means that ρn is the partial state of a
permutation-invariant operator ρn+k on n + k subsystems, where k is arbitrary. The ex-
tension of quantum de Finetti representation theorem to the finite case has been presented
in Ref. [32].

With this powerful representation theorem, we can focus our calculation under the
assumption of collective attacks. Since the real state is just statistical mixture of product
states, the key rate under the coherent attacks is upper bounded by the key rate of the
worst-case product states under the collective attacks as we replace the statistical mixture
by the state that gives Eve the most information in the mixture.
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3.4.2 Finite key rate and infinite key rate formulas

After transmitting N quantum signals, Alice and Bob are able to obtain an n-bit raw key,
from which they can distill an `-bit secret key. The value of ` is given by the key rate
formula.

In the case that N is finite, the finite key rate formula under the assumption of collective
attacks is given as follows in Ref. [4]:

`

N
=

n

N

[
min
Cξ

H(X|E)− 7

√
log
(

2
ε̄

)
n
− 2

n
log

(
1

εPA

)
− δleak

n

]
, (3.1)

where Cξ is the set containing all ρAB that are compatible with the observed data during
parameter estimation, except of the probability εPE, X is the classical register that stores
the result of key map, ε̄ is the smoothing parameter for the smooth min-entropy, εPA is
the failure probability of the privacy amplification, and δleak is the amount of information
leaked during error correction step. The total security parameter ε is then given by

ε = (εEC + ε̄+ nPEεPE + εPA)(N + 1)d
2−1,

where εEC is the failure probability that the error correction step fails to correct all errors,
nPE is the number of parameters that need to be estimated, and d is the dimension of
single-copy signals. We also notice that the factor (N + 1)d

2−1 comes from the post-
selection technique described in the Ref. [6] to generalize the security against collective
attacks to coherent attacks.

By the Corrollay 6.3.5 of Ref. [32], one can bound δleak in the case of ideal error
correction performed at the Shannon limit by

1

n
δleak ≤ H(X|Y ) + log(5)

√√√√3 log
(

2
εEC

)
n

, (3.2)

where Y is the classical register that stores Bob’s raw key.4 Then the number of distillable
secret bits can be chosen to be

`

N
=

n

N

[
min
Cξ

H(X|E)−7

√
log
(

2
ε̄

)
n
− 2

n
log

(
1

εPA

)
−H(X|Y )−log(5)

√√√√3 log
(

2
εEC

)
n

]
, (3.3)

4We assume without loss of generality that Alice holds the register X.
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We observe that these terms 7

√
log( 2

ε̄ )
n

, 2
n

log
(

1
εPA

)
and log(5)

√
3 log

(
2

εEC

)
n

in Eq. (3.3)

all vanish when n (and N) goes to infinity. These terms are related to the finite-size effects
since when N is smaller, their influences on the key rate become more visible. Also, they
are all related to the number of signals transmitted in one QKD session, and the security
parameters of individual sub-protocols used in QKD. In the finite-size key scenario, a
careful analysis of these terms is needed to in order to calculate `. We remark here that the
study of finite-size effects is also an active research area in the field of QKD, for example,
see [34]. Unfortunately, under the scope of this thesis, we won’t discuss more.

In the case that N is infinite, n
N

becomes the probability that the initial signal leads to
the generation of raw key, which we may also call the sifting probability or sifting factor,
denoted by q. We do not need to worry about the statistical fluctuation in the parameter
estimation. The relative frequencies f(i, j) become the probability distribution p(i, j), and
the set Cξ becomes the set C of all density matrices ρAB compatible with the observed data.
Then, the infinite key rate formula becomes

R∞ = q[min
C
H(X|E)−H(X|Y )]. (3.4)

Notice that this equation is derived under the assumption of collective attacks. We may
use subscripts to indicate this. The calculation of asymptotic key rate is an important step
for security proofs of QKD protocols, which allows us to compare the performance of QKD
protocols and also provides an upper bound of the finite-size key rate. In this thesis, we
will limit ourselves to the calculation of the asymptotic key rate.

Before we proceed to discuss how to calculate this key rate, we shoud make several
comments on this formula. First of all, the asymptotic key rate formula under the collective
attacks has been given by the Devetak-Winter formula in Ref. [9] as

r∞coll = I(X : Y )− χ(X : E), (3.5)

where the definitions of X, Y and E are the same as above, and χ is the Holevo quantity.
Here, we denote this key rate by r since it is the key rate per raw key (or taking the sifting
factor q = 1). The Holevo quantity is just the quantum mutual information χ(X : E) =
H(X) + H(E) −H(XE). Since I(X : Y ) = H(X) + H(Y ) −H(XY ), Eq. (3.5) can also
be written as

r∞coll = I(X : Y )− χ(X : E)

= H(X) +H(Y )−H(XY )−H(X)−H(E) +H(XE)

= H(X|E)−H(X|Y ).

(3.6)
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This formula is valid if we know the exact state shared by Alice and Bob. But in reality,
there might be multiple states that are compatible with the parameter estimation data.
Then, we need to consider the worst-case scenario in order to guarantee security. Therefore,
we need to do a minimization of this key rate formula over all possible states. The key
rate formula is then

r∞coll = min
ρAB∈C

[H(X|E)−H(X|Y )]. (3.7)

This is exactly what we have derived in Eq. (3.3) up to the sifting factor q. In this
equation (as well as in Eq. (3.3)), these conditional entropies are evaluated for the state

ρXY E =
∑
j,k

p(j, k) |j〉〈j|X ⊗ |k〉〈k|Y ⊗ ρ
(j,k)
E .

Let {Zj
A} be the POVM that Alice uses to obtain her raw key, and {Zk

B} be Bob’s
POVM for deriving his raw key. Then p(j, k) = Tr

(
ρABZ

j
A ⊗ Zk

B

)
. Since the registers X

and Y store the outcomes of measurements ZA, and ZB, respectively, we may also denote
H(X|E) by H(ZA|E) and H(X|Y ) by H(ZA|ZB).

A final comment is that the term H(X|Y ) is directly determined by the observed data,
and therefore can be taken outside the minimization. This term is related to the cost
of error correction. Since we invoke Eq. (3.2) to derive this term, we should notice the
assumption behind this term is that the error correction can be performed efficiently at
the Shannon limit. In reality, this might not be possible. Then we replace this term by
fECH(X|Y ), where fEC is the efficiency (or inefficiency) of the error correction and fEC ≥ 1.

3.4.3 Transformation to a convex optimization problem

From the key rate formula, we have an optimization problem. The set of ρAB we need to
minimize over is C = {ρAB ∈ D(HAB) : Tr(ρABΓi) = γi, i = 1, . . . ,m}, where m is the
total number of observables in the parameter estimation sub-protocol, Γi’s are Hermitian
operators corresponding to the observables, and γi’s are corresponding observed data.
These constraints that ρAB needs to satisfy are linear constraints. The requirement that
ρAB is a density matrix is decoupled into two constraints, that is, ρAB � 0 and Tr(ρAB) = 1.
The first constraint restricts our minimization to the positive semidefinite cone, which is a
convex set. The second constraint is a linear constraint, for which we can define Γ0 = 1AB
and γ0 = 1. We can then rewrite the set as C = {ρAB ∈ Pos(HAB) : Tr(ρABΓi) = γi, i =
0, 1, . . . ,m}.
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Therefore, the optimization problem we have is of the form:

minimize
ρAB

H(ZA|E)

subject to Tr(ρABΓi) = γi i = 0, . . . ,m.

ρAB � 0.

(3.8)

At this moment, we still need to show that the objective function H(ZA|E) is a convex
function and express it without the unknown Eve’s conditional state. The transformation
from this optimization problem to a convex optimization problem without involving Eve’s
conditional state has been done in Ref. [8], which is based on Ref. [7].

The essential part of this transformation is to apply the Theorem 1 in Ref. [7]. We
restate the relevant part of this theorem here.

Theorem 3.4. Let ρABE be a pure state and Z = {Zj
A} be a set of orthogonal projectors

such that 1A =
∑

j Z
j
A. We define ρ̃MzABE := VZρABEV

†
Z and ρ̃MZE = TrAB(ρ̃MzABE),

where VZ =
∑
j

|j〉Mz
⊗Zj

A is an isometry used to model this Z measurement on system A,

which stores the measurement outcomes in a register system Mz. Then

H(Z|E) := H(ρ̃MZE)−H(ρE) = D(ρAB||
∑
j

Zj
AρABZ

j
A). (3.9)

The original proof can be found in Appendix C of Ref. [7]. We present this proof with
more explanations here for the completeness of our discussion since this is an important
result to allow us to formulate the key rate calculation problem as a convex optimization
problem.

Proof. Since ρABE is a pure state and VZ is an isometry, ρ̃MzABE := VZρABEV
†
Z is also pure.

Then H(ρ̃MzE) = H(ρ̃AB) and H(ρE) = H(ρAB) directly follow from Theorem 2.14. We
will use the following two observations. First,

ρ̃AB := TrMZE(ρ̃MZABE) = TrMZE(
∑
j,k

|j〉〈k|MZ
⊗ Zj

AρABEZ
k
A)

=
∑
j

TrE(Zj
AρABEZ

j
A) =

∑
j

Zj
AρABZ

j
A.

(3.10)

Second,
∑

j Z
j
A(log ρ̃AB)Zj

A = log ρ̃AB since Zj
A commutes with ρ̃AB =

∑
k Z

k
AρABZ

k
A by

direct computation (using the fact {Zj
A} are orthogonal projectors), and thus Zj

A commutes
with log ρ̃AB. Also,

∑
j Z

j
AZ

j
A =

∑
j Z

j
A = 1A.
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Now, putting everything together:

H(Z|E) = H(ρ̃MZE)−H(ρE) (definition of H(Z|E))

= H(ρ̃AB)−H(ρAB) (from Theorem 2.14)

= −Tr(ρ̃AB log ρ̃AB)−H(ρAB) (definition of H)

= −Tr

(∑
j

Zj
AρABZ

j
A log ρ̃AB

)
−H(ρAB) (first observation, Eq. (3.10))

= −Tr

(
ρAB

∑
j

Zj
A(log ρ̃AB)Zj

A

)
−H(ρAB) (cyclic property of trace)

= −Tr(ρAB log ρ̃AB)−H(ρAB) (second observation above)

= D(ρAB||ρ̃AB) = D(ρAB||
∑
j

Zj
AρABZ

j
A) (definitions).

The application of this theorem to QKD key rate problem is straightforward. First of
all, we restrict ourselves to the protocols where {Zj

A} is a PVM in order to apply this the-
orem. We remark that for a general POVM, we can obtain a PVM by Naimark’s Theorem
(Theorem 2.10). Also, when we consider prepare-and-measure protocols, we usually obtain
a PVM for Alice after the source-replacement scheme. Moreover, for each ρAB in the min-
imization, in the worst-case, Eve holds a purification of ρAB, which leads to a pure state
ρABE shared by Alice, Bob and Eve. We directly see H(ZA|E) = D(ρAB||

∑
j Z

j
AρABZ

j
A).

Now, we can write the key rate formula as

r∞coll = min
ρAB∈C

[D(ρAB||
∑
j

Zj
AρABZ

j
A)]−H(ZA|ZB). (3.11)

A nice property of the quantum relative entropy, as we mentioned in Section 2.3, is the
joint convexity. A direct application of joint convexity implies D(ρAB||

∑
j Z

j
AρABZ

j
A) is a

convex function of ρAB. In summary, we now have a convex optimization problem:

minimize
ρAB

D(ρAB||
∑
j

Zj
AρABZ

j
A)

subject to Tr(ρABΓi) = γi i = 0, . . . ,m.

ρAB � 0.

(3.12)
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This is the first term in the asymptotic key rate formula (Eq. (3.11)), and the second
term is directly calculated from experimental data. When we refer Eq. (3.12) as our key
rate calculation problem, we implicitly mean subtracting the term H(ZA|ZB) from the op-
timal value obtained in this optimization problem to derive the asymptotic key rate. Since
the asymptotic key rate calculation problem has been formulated as a convex optimization
problem, it means this problem can be efficiently solved by computers. However, in the
context of QKD security proofs, there is an additional requirement, that is, the key rate
that we obtain should have a security guarantee. This means, we are interested in a reli-
able lower bound of the key rate, which is the physically achievable key rate, instead of an
upper bound of the key rate. Unfortunately, since computers have finite-precision in repre-
senting real numbers, optimization algorithms will stop when the solution is close enough
to the optimal point by some tolerance parameter. Virtually no algorithms can find the
exact minimum. Since this convex optimization in Eq. (3.12) is a constrained minimiza-
tion problem, by solving this problem directly, we can only obtain an upper bound of the
key rate if all constraints are satisfied. Moreover, again due to the numerical imprecision,
these equality constraints cannot be satisfied exactly. From our experience of tackling this
problem directly, the positivity constraint on ρAB is also hard to be fulfilled as we desire.
This is because in theory, ρAB can have zero eigenvalues and numerically, the minimum
eigenvalue of ρAB can be slightly negative. If these constraints are not satisfied, then we
do not have any good interpretation of the number output from the computer.

In the next two sections, we will discuss how to bypass these issues or how to address
them directly in a rigorous way. In Section 3.5, the approach is to solve the simplified
version of the Lagrange dual problem of this convex optimization problem in Eq. (3.12),
which is an unconstrained maximization problem. This is the approach we adopted initially.
Later on, we discovered some limitations of this approach. In Section 3.6, we then solve
the primal problem via a two-step procedure, and the issues mentioned above are dealt in
the second step. In the end, we obtain a reliable lower bound.

Before we discuss the numerical methods to solve Eq. (3.12), we comment on the con-
straints we can put in the problem. In a QKD protocol, Alice and Bob perform their mea-
surements using POVMs {M j

A} and {Mk
B}, respectively. In the case of entanglement-based

protocols, we have fine-grained constraints p(i, j) = Tr
(
ρABM

i
A ⊗M

j
B

)
, corresponding to

all possible measurement outcomes. One may reduce the number of constraints by coarse-
graining. A coarse-grained constraint is obtained by some post-processing of the data,
such as, taking the average value or sum of a subset of observed data. We notice that by
using coarse-grained constraints, the calculated key rate can only be smaller or equal to the
optimal value of the calculation with fine-grained constraints since the minimization is now
done with a larger set of density operators. One may use the coarse-grained constraints
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if the calculation can be sped up by using fewer constraints. For prepare-and-measure
protocols, as we discussed in Section 2.2.3, when we use the source-replacement scheme to
transform a prepare-and-measure protocol to its equivalent entanglement-based protocol,
we also need to constrain ρA as unchanged by Eve. Therefore, in addition to the probabil-
ity distribution, we constrain ρA by additional linear constraints. Let {Ωi} be a Hermitian
basis of Herm(HA). We then impose additional Γ′k = Ωk ⊗ 1B with the expectation value
γ′k = Tr(ρAΩk).

3.5 Dual problem approach

As we have already discussed previously, the convex optimization problem in Eq. (3.12)
does not give us a lower bound for numerical reasons, and therefore cannot serve the
purpose of security proofs. In this section, we summarize the dual problem approach
proposed in [8].

3.5.1 Formulation of optimization problem

The main result is Theorem 1 in Ref. [8]. We restate this theorem here.

Theorem 3.5. The minimization problem in Eq. (3.11) is lower bounded by the following
maximization problem:

r∞coll ≥
Θ

ln 2
−H(ZA|ZB), (3.13)

where
Θ := max

~λ

(
− ||

∑
j

Zj
AR(~λ)Zj

A||∞ − ~λ · ~γ
)
, (3.14)

and
R(~λ) := exp

(
−1− ~λ · ~Γ

)
, (3.15)

The infinity norm ||M ||∞ is defined as ||M || = sup||v||=1 ||Mv||. When M is positive

semidefinite, this norm is the same as the maximum eigenvalue of M . ~λ is the vector of
dual variables λj from the Lagrange dual problem of Eq. (3.12) (see Section 2.5). ~Γ and ~γ
are just a compact way to write Γi’s and γi’s.

We only describe the proof idea of this theorem here, and direct the reader to Ref.
[8] for technical details. We refer the convex optimization problem in Eq. (3.12) as the
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primal problem. The ln(2) factor in this theorem is due to rescaling of log to ln. We de-
note α := minρAB∈C D(ρAB||

∑
j Z

j
AρABZ

j
A) as the optimal value of the objective function

and define α̂ = α ln(2). This rescaling is helpful to change all logarithms in the relative
entropy to natural logarithms. As defined in Eq. (2.11), the Lagrangian function associ-

ated with the rescaled optimization problem is L(ρAB, ~λ) = ln(2)D(ρAB||
∑

j Z
j
AρABZ

j
A))+∑m

i=0 λi(Tr(ρABΓi)− γi). According to Eq. (2.12), the Lagrange dual problem is then

max
~λ

inf
ρAB∈Pos(HAB)

L(ρAB, ~λ). (3.16)

We denote the optimal value of Eq. (3.16) as β̂.

Specifically, this minimization inf
ρAB∈Pos(HAB)

L(ρAB, ~λ) can be rewritten as

min
σAB∈D(HAB)

min
ρAB∈Pos(HAB)

[
ln(2)D(ρAB||

∑
j

Zj
AσABZ

j
A)) +

m∑
i=0

λi(Tr(ρABΓi)− γi)
]
.

The inner minimization problem can be solved analytically and the optimal ρ∗AB is given by

exp
(
−1AB − ~λ · ~Γ + ln

(∑
j Z

j
AσABZ

j
A

))
. The optimal value of this inner minimization is

−Tr(ρ∗AB)− ~λ · ~γ. Until this moment, no approximation has been introduced. To perform
the outer minimization to simplify the expression, Ref. [8] applied the Golden-Thompson
inequality to obtain a lower bound on the dual problem. The Golden-Thompson inequality
states that for two Hermitian matrices A and B, Tr(exp(A+B)) ≤ Tr(exp(A) exp(B)).
After using Golden-Thompson inequality to rewrite Tr(ρ∗AB), the optimization over σAB can
be easily performed. In the end, the desired result of the theorem is obtained. We denote
the optimal value of this simplified version of dual problem using the Golden-Thompson
inequality as β̂′. So, β̂ ≥ β̂′. Ref. [8] also shows strong duality holds. In the end, we have
α̂ = β̂ ≥ β̂′.

We have implemented MATLAB code to perform the key rate calculation using this
approach. We adopted two-round procedure in general. In the first round, we apply the
MATLAB built-in fmincon function with either the interior point method or the sequential
quadratic programming (SQP) method to perform a coarse-grained search. The set of dual
variables as a result of the first round is fed into the second round. In the second round, we
then apply amoeba method [30] to do a refined optimization. We notice this optimization
problem in Eq. (3.14) is an unconstrained maximization. The advantage of this dual
problem approach is that we are guaranteed to have a reliable lower bound even if the
computer terminates before reaching the optimal point. Also, the number of optimization
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Figure 3.1: Schematic description of MDI protocols. Alice and Bob both prepare signal
states and send to an untrusted third party Charlie. Charlie performs a joint measurement
on both signals in a black box (from Alice and Bob’s perspective) and publicly announces
the measurement outcomes. In this setup, Eve can control both quantum channels and
Charlie, as well as listening to the communication in the classical channel.

variables is the cardinality of ~λ, which is equal to the number of constraints. Due to the
non-convexity of the objective function in Eq. (3.14) as a result of the Golden-Thompson
inequality, we typically perform an initial point optimization.

3.5.2 Examples: MDI QKD protocols

To test the practicality of this approach, I have applied this approach to many protocols.
Now we discuss simple examples that I calculated to illustrate how to apply this numer-
ical optimization to study a real QKD protocol. We can apply this approach to study
measurement-device-independent (MDI) QKD protocols [23]. The schematic setup of this
protocol is depicted in Fig. 3.1.

In each round during signal transmission, each of Alice and Bob chooses randomly and
independently a signal from a set of signal states {|φi〉} and sends it to an untrusted third
party Charlie, who then performs a joint measurement on both signals. After the mea-
surement, Charlie publicly announces the measurement outcomes to both Alice and Bob.
In MDI protocols, measurement devices are not characterized nor trusted. Since Charlie
is not trusted, it could be Eve who acts as Charlie and performs any measurements of her
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wish. What Charlie (Eve) has to do is to make an announcement for each transmission. In
MDI protocols, there are still assumptions on the sources. Both Alice’s and Bob’s sources
are trusted and protected such that Eve cannot access them. The security of this protocol
is based on post-selected entanglement. In each round, Alice prepares |φi〉 for some i, Bob
prepares |φj〉 for some j and Charlie announces the outcome k. Then in the parameter
estimation step, Alice and Bob can obtain the joint probability distribution p(i, j, k) (in the
asymptotic limit). From this probability distribution, Alice and Bob can verify whether
they can generate secure key bits. To calculate the asymptotic key rate for MDI protocols,
we apply the source-replacement schemes to both Alice and Bob. If the number of differ-
ent signal states that they can choose is dA, then the dimension of Alice’s (Bob’s) register
A (B) is dA. We also have the constraint that ρAB is fixed from the source-replacement
scheme. Alice’s source prepares an entangled state |Ψ〉AA′ =

∑
j

√
pj |j〉A |φj〉A′ . Bob’s

source prepares the similar entangled state |Ψ〉BB′ =
∑

j

√
pj |j〉B |φj〉B′ . After reordering

of the systems A′ and B, the initial state prepared from Alice and Bob is

|Ψ〉ABA′B′ =
∑
i,j

√
pipj |i〉A |j〉B |φi〉A′ |φj〉B′ . (3.17)

ρAB has the form

ρAB =
∑
i,j,k,l

√
pipjpkpl 〈φj|φi〉A′ 〈φl|φk〉B′ |i〉〈j|A ⊗ |k〉〈l|B . (3.18)

MDI BB84

For simplicity, we consider the MDI QKD protocol with BB84 signal states using a perfect
single-photon source.

Each of Alice and Bob prepares BB84 signal states {|0〉 , |1〉 , |+〉 , |−〉}, which are Z-
basis states and X-basis states. For the normal behavior of the protocol without the
intervention of Eve, Charlie is supposed to perform a Bell-state-measurement (BSM), that
is, projecting onto one of the four Bell states in Eq. (2.3). Table 3.1 lists the state of the
register A (similarly B) and the corresponding signal state sent to Charlie in the register
A′ (B′) after the source-replacement scheme for this protocol. It also lists the basis choice
and the bit value after applying a specific key map. This key map maps the qubit states
|0〉 and |+〉 to bit value 0 and the qubit states |1〉 and |−〉 to bit value 1. We assume the
implementation of the efficient BB84 protocol [22] in the MDI setting, in which one of the
two bases is chosen with a high probability. By doing so, the sifting factor can be made
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state of A(B) state of A′(B′) basis choice key bit value
|0〉 |0〉 Z 0
|1〉 |1〉 Z 1
|2〉 |+〉 X 0
|3〉 |−〉 X 1

Table 3.1: A table for this MDI QKD protocol with BB84 signal states, showing the relation
between the state in Alice’s (Bob’s) register A (B) and the signal state prepared as well
as the basis choice and bit value after applying a key map.

very close to 1. By applying the biased basis choice, we do not need to perform explicit
sifting since most of the states will be prepared in the same basis. We take into account
that the cost of error correction would be slightly higher than that in the case with sifting
since the error rate is higher and Alice and Bob also need to correct the errors when they
actually use different bases.

We performed this calculation with the dual problem approach using the two-round
procedure described before with the fmincon function and the amoeba method. The set
of constraints we put is the fine-grained constraints p(i, j, k). To use this dual problem
approach, in reality, one performs the experiments and collects the data to obtain the
joint probability distribution in the asymptotic case. For our calculation, we simulate the
quantum channel to produce this probability distribution. For this protocol, we vary the
observed error rate and calculate the asymptotic key rate to compare with the known
analytical key rate formula. We modeled the quantum channel as a depolarizing channel,
which introduces noises. As for the measurements, Charlie announces which of the four Bell
states he obtains during the measurement. So, we introduce a classical register C to store
the announcements. This register C has a 4-dimensional state space with four orthonormal
basis states corresponding to four announcement outcomes. To simulate the probability
distribution, we choose the quantum channel to be composed of a depolarizing channel
for each of two quantum channels depicted in Fig. 3.1 and the Bell-state measurements
performed on Charlie.

Specifically, let Edp
A′B′ be the depolarizing channels with depolarizing probability ε. Then

in the Kraus operator representation,

ρ̃ABA′B′ = IAB ⊗ Edp
A′B′(ρABA′B′) =

3∑
r,s=0

qrqs(1AB ⊗ σr ⊗ σs)ρABA′B′(1AB ⊗ σr ⊗ σs),

where q0 = 1− 3ε
4

, q1 = q2 = q3 = ε
4
, and σ0 = 12, σ1 = σx, σ2 = σy and σ3 = σz.
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We then simulate the statistics

p(i, j, k) = Tr(ρ̃ABA′B′ |i〉〈i|A ⊗ |j〉〈j|B ⊗ |Φk〉〈Φk|A′B′),

where {|i〉A}, {|j〉B} are standard bases for systems A and B, and Φk are these four Bell
states in Eq. (2.3) after relabeling.

After simulation, we perform the optimization with the following constraints for ρABC
of Alice, Bob and the classical announcement outcomes:

Γobsijk = |i〉〈i|A ⊗ |j〉〈j|B |k〉〈k|C , γobsijk = p(i, j, k)

Γρij = Ωi ⊗ Ωj ⊗ 1C , γρij = Tr(ρABΩi ⊗ Ωj),

where {Ωi} is a Hermitian basis of Herm(HA) (as well a Hermitian basis of Herm(HB)),
and ρAB is from Eq. (3.18).

Therefore, we have ~Γ = [Γobsijk,Γ
ρ
sr,1ABC ]T , where each of i, j, k runs from 0 to 3

since dim(HA) = dim(HB) = dim(HC) = 4, and each of s, r runs from 1 to 16 since
dim(Herm(HA)) = 42 = 16. The corresponding expectation values are ~γ = [γobsijk , γ

ρ
sr, 1]T .

In total, we had 321 constraints in this case. We find that reducing the number of con-
straints of ρAB by only constraining the eigenvalues of ρAB gave us effectively the same
results. In this case, we only had 81 constraints, which sped up the calculation.

To perform the numerical calculation, we also need to specify the key map elements
{Zj

A}. In this case, we have two elements

Z0
A = (|0〉〈0|A + |2〉〈2|A),

Z1
A = (|1〉〈1|A + |3〉〈3|A).

In the simulation, we vary the parameter ε of the depolarizing channel. This parameter
is related to the observed error rate Q. We calculate this error rate Q by defining the
total error operator EQ such that Q = Tr(ρ̃ABA′B′EQ). The exact expression of EQ is quite
long, but the way to construct EQ is simple to describe. After projecting onto one of the
Bell state, we can identify the situations where Alice and Bob would have an error. For
example, conditioning on projecting onto |Φ+〉 state, Table 3.2 lists the situations that they
would have an error. This corresponds to a term in EQ, that is, (|01〉〈01|AB + |10〉〈10|AB +
|23〉〈23|AB + |32〉〈32|AB + |03〉〈03|AB + |30〉〈30|AB + |12〉〈12|AB + |21〉〈21|AB)⊗ |Φ+〉〈Φ+| . We
can similarly construct the terms related to |Φ−〉, |Ψ+〉 and |Ψ−〉.

In Fig. 3.2, we show the result of this calculation. Since we only investigate how the
key rate depends on the error rate due to depolarizing noises, the theoretical key rate is
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State of AB |01〉 |10〉 |23〉 |32〉 |03〉 |30〉 |12〉 |21〉
State of A′B′ |01〉 |10〉 |+−〉 |−+〉 |0−〉 |−0〉 |1+〉 |+1〉

Table 3.2: The list of situations that would lead to an error, conditioning on that Charlie
announces the measurement outcome corresponding to |Φ+〉 . The first row lists the state
of AB after measurements of Alice and Bob. The second row lists the corresponding states
they prepare for Charlie. The interpretation of these states is listed in Table 3.1.

1 − 2h(Q), the same as prepare-and-measure BB84, where h is the binary entropy.5 Our
calculation using this dual problem approach reproduces the theoretical results.

Figure 3.2: Key rate for MDI protocol with BB84 signal states using a single-photon source.
This plot shows the asymptotic key rate of MDI BB84 as a function of the observed error
rate Q. Blue solid dots are our numerical results using the dual problem approach described
in Theorem 3.5, and black dashed line is the theoretical key rate, which is 1 − 2h(Q) in
this case.

5h(p) = −p log(p)− (1− p) log(1− p).
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MDI B92

Here, we give another example to demonstrate this dual problem approach. One purpose
of this example is to show how we can handle post-selection. In this protocol, instead
of using a perfect single-photon source, we can use a dim laser to emit weak coherent
states. The schematic setup is the same as depicted in Fig. 3.1. Instead of preparing BB84
signal states, Alice and Bob choose B92-type signal states, that is, they send one of two
non-orthogonal states. Alice and Bob prepare coherent states |+α〉 or |−α〉.

In this protocol, Charlie (or Eve) is supposed to make announcements, chosen from the
set of announcement choices that an ideal measurement can give. In a practical implemen-
tation of this protocol, Charlie ideally can perform a joint unambiguous state discrimination
(USD) measurement.6 In this joint USD, Charlie (or Eve) must distinguish between the
correlated joint state ρ+and anti-correlated joint state ρ−:

ρ+ =
1

2
(|α, α〉〈α, α|+ |−α,−α〉〈−α,−α|)

ρ− =
1

2
(|α,−α〉〈α,−α|+ |−α, α〉〈−α, α|)

From these measurements, Charlie is supposed to announce one of three possible outcomes,
which we denote them by “ + ”, “ − ” and “?”. “ + ” and “ − ” correspond to successful
discrimination of one of these two states ρ+ and ρ−. However, since these two states are
not orthogonal, this USD measurement cannot distinguish them perfectly. There will be
events when Charlie fails to discriminate, which he announces “?”.

In the security proof, there is no assumption on how the measurements are actually
done. We only need to have a predefined set of possible announcements. We prove the
security based on the observed data. In this protocol, the possible announcements are “ +
”, “− ” and “?”. The observed data corresponding to USD measurement has the following
properties: there is no error in Alice and Bob’s data and there is non-zero probability for
this “?” announcement. For our simulation and investigation of the performance of this
protocol, we simulated the data by assuming optimal USD measurement, where the success
probability is optimal allowed by quantum mechanics.

This optimal success probability is given by 1− |〈α|−α〉| = 1− e−2|α|2 , which has been
reported in Ref. [10].

6The optical implementation of joint USD is straightforward and involves only beamsplitters and single-
photon threshold detectors, although it is not necessarily the best measurements that could lead to the
optimal key rate of this protocol. We consider this case for the ease of implementation and simplicity of
simulation.
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To make things even simpler, we simulated the data assuming no loss in the quantum
channel. Our simulated statistics gives us the observed error rate Q = 0 and the probability
of “?” announcement p(“?”) = |〈α|−α〉| = e−2|α|2 .

We performed the key rate calculation with these simulated data using both the fmincon
function and the amoeba method. We used coarse-grained constraints in the calculation,
by only constraining the eigenvalues of ρAB, the error rate and p(“?”), in addition to
normalization constraint on ρABC . Here, dim(HA) = dim(HB) = 2 and dim(HC) = 3. For
the register C, |1〉 corresponds to “ + ”, |2〉 corresponds to “ − ” and |3〉 corresponds to
“?”. The operator corresponding to the error rate is (|01〉〈01|AB + |10〉〈10|AB) ⊗ |1〉〈1|C +
(|00〉〈00|AB+ |11〉〈11|AB)⊗|2〉〈2|C . And the operator corresponds to p(“?”) is 1AB⊗|3〉〈3|C .
In total, we had only 7 constraints (4 of which are constraints for eigenvalues of ρAB.).

Now, we discuss the post-selection for this protocol. Since when the announcement
“?” is made, there is no correlation between Alice and Bob’s signals for this round, Al-
ice and Bob have to discard this round. This post-selection corresponds to a CP map
G such that ρ̃ABC = G(ρABC)

Tr(G(ρABC))
= 1

ppass
(|1〉〈1|C ρABC |1〉〈1|C + |2〉〈2|C ρABC |2〉〈2|C), where

ppass = Tr(G(ρABC)) = p(“ + ”) + p(“ − ”). So, if we could know what ρABC is, we then
could transform ρABC according to this CP map and plug ρ̃ABC into the relative entropy
expression in Eq. (3.11). The complication is that since we are dealing with the dual vari-
ables λi’s, we need to express this CP map in terms of the dual variables. Ref. [8] provides
a framework to perform this transformation, but it is slightly more involved. Here, we
discuss another approach we actually used to simplify the post-selection step.

This post-selection can be done by carefully choosing Alice’s key map POVM {Zj
A} such

that all signals corresponding to the inconclusive “?” announcement will not contribute to
the value of the relative entropy D(ρABC ||

∑
j Z

j
AρABCZ

j
A). This smart choice of key map

allows us to directly proceed with our dual problem.

The key map POVM {Zj
A} in this case actually acts on both A and C and has three

elements:
Z0
ABC = |0〉〈0|A ⊗ 1B ⊗ (|1〉〈1|C + |2〉〈2|C),

Z1
ABC = |1〉〈1|A ⊗ 1B ⊗ (|1〉〈1|C + |2〉〈2|C),

Z2
ABC = 1AB ⊗ |3〉〈3|C .

(3.19)

Here we explicitly write out the identity operator on the register B, and denote them as
Zj
ABC instead of Zj

A, while before implicit identity operators are assumed for BC. In Ap-
pendix A, we show the equivalence between this post-selection approach and the canonical
way to perform post-selection mentioned above.

In Fig. 3.3, we showed how the asymptotic key rate of this protocol depends on the
choice of coherent state. For convenience, we plot the key rate against the amplitude of
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the coherent state. This scenario has also been studied analytically in Ref. [10], which
gives the following key rate expression:

R∞USD = (1− |〈α|−α〉|)
[
1− h(

1 + |〈α|−α〉|
2

)

]
. (3.20)

By using only 7 constraints, our numerical calculation can reproduce the analytical
result.

Figure 3.3: Key rate for MDI protocol with B92 signal states |+α〉 and |−α〉. This plot
shows the asymptotic key rate of MDI B92 as a function of the amplitude of the coherent
state. Blue solid dots are our numerical results using the dual problem approach described
in Theorem 3.5, and black dashed line is the analytically calculated key rate in Ref. [10].

3.5.3 Limitations of this approach

The advantage of this approach is that it always gives us a reliable lower bound. For many
entanglement-based protocols, especially for high-dimensional protocols, this approach can
solve the key rate calculation problem efficiently since the number of optimization variables
is just the number of constraints, and we can choose coarse-grained constraints such that
the number of variables does not scale up with the dimension of the protocol. On the
other hand, for prepare-and-measure protocols, since we need to impose ρA constraints,
this optimization problem scales up as the number of signal states increases.
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The primal problem (Eq. (3.12)) is a convex optimization problem and thus the La-
grange dual problem (Eq. (3.16)) is also convex. However, in the simplification of the dual
problem to make it implementable in computers, the convexity property of the simplified
version (Eq. 3.14) is lost due to Golden-Thompson inequality. In addition, this lower
bound is not necessarily tight because of this inequality. In fact, when we applied this ap-
proach to protocols with more signal states, we encountered the the problem of looseness.
Also due to the non-convexity of this simplified dual problem, we then have to perform
some initial point optimization to try to improve the key rate, which renders the problem
inefficient in this situation.

Since we deal with dual variables, it is not easy (if not impossible) to obtain a corre-
sponding density operator that gives rise to the output key rate. Since the optimal density
operator ρAB gives us some information about the optimal eavesdropping attacks, in this
dual problem approach, we do not obtain such information.

In summary, this numerical method offers some advantages in solving the key rate
calculation problem. However, it has its own limitations.

3.6 Primal problem approach

We now describe another approach to solve the key rate calculation problem presented in
Eq. (3.11). We refer this approach as primal problem approach since we first directly solve
the primal minimization problem and then derive a lower bound. This approach and its
technical details are presented in Ref. [41]. In this section, we describe the general ideas.

3.6.1 Formulation of optimization problem

Fig. 3.4 depicts the essential idea behind this approach to solve the key rate calculation
problem in Eq. (3.12) by thinking of a 1-dimensional abstraction. This approach involves
a two-step procedure. In the first step, we try to solve this convex optimization primal
problem (Eq. (3.12)) directly. As we mentioned in Section 3.4.3, there are two main issues.
First, the computer is most likely to stop at a suboptimal point due to the finite precision.
Then we may end up with an upper bound of the key rate, which has no security guarantee.
Secondly, it is likely that this suboptimal point is actually outside the feasible region since
constraints are only satisfied up to some predefined precision.

Nevertheless, the first step is to try to solve this minimization problem as good as
possible. Then, in the second step, we take into account of these numerical issues to
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obtain a reliable lower bound. To achieve this goal, one can take the linearization from
the suboptimal point. This linearization is actually the first-order Taylor approximation
of the objective function at that point. Since we have a convex optimization problem, if
the objective function is differentiable, and defined on a convex set, then by the first-order
condition in Eq. (2.13), this linearization always gives us a lower bound. A technical
detail is that the objective function that we have is not differentiable at every point in
the domain. To remedy, a perturbation is introduced such that the perturbed objective
function is always differentiable and the difference between the original objective function
and the perturbed one is small enough. To solve this linearization problem, which is
actually formulated as an SDP minimization problem (see Eq. (2.14)), we actually solve
the dual problem since the dual problem is a maximization problem (see Eq. (2.15)). In
such a way, we can obtain a lower bound of the optimal value, thereby giving a security
guarantee in the context of QKD. So far, our discussion has ignored the issue of feasibility
of the suboptimal point. If the suboptimal point is actually outside the feasible region of
the primal problem, we then enlarge the set that we optimize with and take care of the
issue in the formulation of the second step optimization.

Figure 3.4: Illustration of the numerical method in a 1-dimensional abstraction. The gap
between our lower bound and the optimal value can be made smaller by finding ρ closer
to the optimal ρ∗. Red arrows indicate the optimizations we actually perform.

For simplicity of our discussion, we present the algorithm used in our MATLAB code
and state the main theorem from Ref. [41] that allows us to perform the second step
calculation.
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Step 1: Finding suboptimal solution

Now, we describe the algorithm that we choose to solve the first step. In theory, we are
free to choose any algorithm to obtain a suboptimal point since the security guarantee
comes from the second step. However, as depicted in the Fig. 3.4, one can imagine that
if we solve the first step poorly, then we need to sacrifice more in the second step. In the
end, the gap between the lower bound we obtain and the true optimal value of the primal
problem will be large. From a practical point of view, the key rate lower bound obtained
in this situation would be too loose to have any significance. Therefore, we need to try as
best as we can. For our MATLAB implementation, we adapt the Frank-Wolfe algorithm
[12], which is an iterative first-order optimization algorithm. We now describe some details
of applying this algorithm to our particular problem.

For the ease of notation, we define f(ρ) := ln(2)D(ρ||
∑

j Z
j
AρZ

j
A), the rescaled objective

function.7 By matrix calculus, we can have an analytical expression for the gradient of f

as ∇f(ρ) = [ln(ρ)]T + [ln
(∑

j Z
j
AρZ

j
A

)
]T .

We restate the primal problem in Eq. (3.12) here.

minimize
ρAB

f(ρ)

subject to Tr(ρABΓi) = γi i = 0, . . . ,m.

ρAB � 0.

We first remove these linear equality constraints by implicitly imposing these constraints
into the decomposition of ρAB. Since we have a set of Hermitian operators {Γi}, we first
apply the Gram-Schmidt process to obtain an orthonormal set of Hermitian operators {Γ̄k}
(k ≤ m) with respect to the Hilbert-Schmidt norm. Correspondingly, we have renormalized
expectation values γ̄i = 〈Γ̄k〉. Then, we can extend this set to an orthonormal basis of
Herm(HAB) by finding an orthonormal basis {Ωj} of the orthogonal complementary space
of span({Γ̄k}). We then can express ρAB in this orthonormal basis {Γ̄k} ∪ {Ωj}, and
incorporate the linear equality constraints into the coefficients of Γ̄k’s. The feasible set C
of our convex optimization contains ρAB of the form

ρAB =
∑
k

γ̄kΓ̄k +
∑
j

ωjΩj, (3.21)

7As we will see in Section B.1, if we impose any post-selection by a CP map G, then the actual
definition of our objective function is f(ρ) = ln(2)D(G(ρ)||

∑
j Z

j
AG(ρ)ZjA). In this case, [∇f(ρ)]T =

G†(ln(G(ρ))) + G†(ln
(∑

j Z
j
AG(ρ)ZjA

)
), where G† is the adjoint map of G. We do not worry about all

technical details here, and just give some intuitive understanding of how this approach works.
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and ρAB � 0. γ̄k’s are fixed to make sure these linear equality constraints are satisfied.
ωj’s are the variables we need to optimize with. A direct observation is that the more
constraints we have for the primal problem, the fewer optimization variables we have.
This is in contrast with the situation in the dual problem approach mentioned in previous
section. To speed up calculation, we desire to use fine-grained constraints in this step.

Next, we define εth be some small non-negative number, representing the threshold
value for the stopping condition of the iterations.

The algorithm runs as follows:

0. Set the iteration counter k to be 0.

1. Find a good initial point ρ0.

By varying optimization variables ωj’s, find ρ0 ∈ Pos(HAB), where ρ0 =
∑

k γ̄kΓ̄k +∑
j ωjΩj.

2. Solve the direction-finding subproblem.

For the kth iteration, find the optimal ∆ρ from the following SDP problem:

minimize
∆ρ

Tr
[
(∆ρ)T∇f(ρk)

]
subject to ρk + ∆ρ ≥ 0,

where ∆ρ =
∑

j ωjΩj due to our decomposition.

3. Check whether stopping criterion is satisfied:

|Tr
(
ρTk∇f(ρk)

)
− Tr

(
(ρk + ∆ρ)T∇f(ρk)

)
| ≤ εth

If so, stop. Otherwise, continue.

4. Determine the step-size t.

Find t that minimizes f(ρk + t∆ρ) and 0 ≤ t ≤ 1

5. Update and repeat.

Set ρk+1 = ρk + t∆ρ.

Increment the counter k and go back to step 2.
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Step 2: Obtaining a reliable lower bound

Once the step 1 is done, we obtain a suboptimal point ρsub. Let us denote the optimal
point as ρ∗. From the first-order condition in Eq. (2.13), we have

f(ρ∗) ≥ f(ρsub) + Tr
(
[∇f(ρsub)]T (ρ∗ − ρsub)

)
. (3.22)

Since we do not know what ρ∗ is, we need to rewrite this equation. We notice that

Tr
(
∇f(ρsub)(ρ∗ − ρsub)T

)
≥ min

σ∈C
Tr
[
(σ − ρsub)T∇f(ρsub)

]
,

since ρ∗ ∈ C.

Therefore,

f(ρ∗) ≥ f(ρsub) + min
σ∈C

Tr
[
(σ − ρsub)T∇f(ρsub)

]
= f(ρsub)− Tr

[
(ρsub)T∇f(ρsub)

]
+ min

σ∈C
Tr
(
σT∇f(ρsub)

) (3.23)

We observe that f(ρsub) − Tr
[
(ρsub)T∇f(ρsub)

]
can be directly calculated after step 1

is done, and minσ∈C Tr
(
σT∇f(ρsub)

)
is a standard linear SDP problem (see Eq. (2.14)).

Then, the task of the step 2 is to perform the following optimization

minimize
σ

Tr
[
σT∇f(ρsub)

]
subject to Tr(σΓi) = γi, i = 1, . . . ,m,

σ � 0.

(3.24)

This minimization problem can be lower bounded by its dual problem (see Eq. (2.15)).

maximize
~y

~γ · ~y

subject to
∑
i

yiΓ
T
i � ∇f(ρsub),

~y ∈ Rn.

(3.25)

Strong duality holds for this SDP problem [41]. Therefore, the optimal objective func-
tion value of Eq. (3.24) is equal to the optimal objective function value of Eq. (3.25).
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So far, we have ignored the issue that the objective function is not always differentiable.
To remedy, one can define a perturbed version of the objective function fε(ρ) = f [(1 −
ε)ρ + ε1

d
], where d is the dimension of HAB and ε is some small positive number that

determines the perturbation.8 Ref. [41] shows fε is always differentiable and its domain is
a convex set. Then we can apply the first-order condition. It is also shown |f(ρ)− fε(ρ)| ≤
2ε(d−1) ln d

ε(d−1)
.9 Another issue to address is that the computer representations of Γi’s and

γi’s are not precise so that the constraints are not satisfied to any arbitrary precision. To
take everything into account, Ref. [41] presents the theorem that allows us to perform the
step 2 calculation and to obtain a reliable lower bound. For completeness of our discussion,
we present this reliable lower bound expression but without proof here.

We start with defining all relevant terms in this lower bound. Let n be the number
of constraints, and let Γ̃i, γ̃i be the numerical representations of the constraint Γi and γi,
respectively. Let ε′ be the tolerance of linear constraints, that is,∣∣∣Tr

(
ρΓ̃i

)
− γ̃i

∣∣∣ ≤ ε′. (3.26)

We define the following quantities:

Lε(σ) := fε(σ)− Tr
(
σT∇fε(σ)

)
(3.27)

Mεε′(σ) := max
~y

(~̃γT + ε′,−~̃γT + ε′)T · ~y

subject to
n∑
i=1

yi(Γ̃
+
i )T +

n∑
i=1

yi+n(Γ̃−i )T � ∇f̃ε(σ),

~y ∈ R2n,

(3.28)

where Γ̃+
i := diag(Γ̃i, δi1, δi2, . . . , δin,~0

T ), Γ̃−i := diag(−Γ̃i,~0
T , δi1, δi2, . . . , δin), ∇f̃ε(σ) =

diag(∇fε(σ),~0T ), where δij is the Kronecker delta and ~0 denotes a vector with an ap-
propriate number of zero’s such as all these three matrices are of size 2n + d by 2n + d.
The expansion of dimension from d to 2n + d is related to converting those n inequality
constraints in Eq. (3.26) to 2n equality constraints with 2n slack variables.

Finally, we state the lower bound expression without proof

f(ρ∗) ≥ Lε(ρ
sub) +Mεε′(ρ

sub)− ζε, (3.29)

8With the post-selection CP map G, we define f(ρ) = f [(1− ε)G(ρ) + ε 1d′ ], where d′ is the dimension of
G(HAB).

9|f(ρ)− fε(ρ)| ≤ 2ε(d′ − 1) ln d′

ε(d′−1) in the case of post-selection.
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where ζε = 2ε(d− 1) ln d
ε(d−1)

.10

In the limit ε→ 0 and ε′ → 0, we actually have an equality in Eq. (3.29).

For all the SDP subproblems, we use CVX, a package for specifying and solving convex
programs [16]. We typically use the underlying solvers SDPT3 [36] and Mosek.

3.6.2 Examples

We now show simple examples to illustrate how to use this primal problem approach.

Sifting in BB84

In this primal problem approach, we directly deal with the density operators in the step 1.
This allows us to manipulate the density operator with post-selection CP map. A general
framework to deal with post-selection is described in Ref. [41], and a slight variation is
explained in Appendix B.

In this example, we discuss how to do sifting in BB84 with polarization encoding. From
source-replacement scheme, Alice’s register A corresponds to a four-dimensional system.
The correspondence between the state in A and the signal state in A′ is the same as
in Table 3.1. Suppose in this protocol, Alice prepares Z basis states with a probability
pz and X basis states with probability 1 − pz. For simplicity of our discussion, suppose
Bob has the same a priori probability of measurement basis choice. As shown in Ref.
[1], there exists a squashing model for this protocol. This allows us to think that Bob’s
measurements are actually done on the Fock space restricted to vacuum and single photon.
So, we model Bob’s system as a qutrit, a three-dimensional system, corresponding to
a qubit system and a flag that indicates no detection. We write Bob’s target POVM
as MB = {pz |0〉〈0| , pz |1〉〈1| , (1 − pz) |+〉〈+| , (1 − pz) |−〉〈−| , |2〉〈2|}, where the state |2〉
indicates the detection of vacuum.

We then write the Kraus operators for sifting. These Kraus operators introduce a
new register system R to store the basis choices. R has four orthogonal basis states
corresponding to four possible combinations of Alice’s and Bob’s basis choices, which we

10ζε = 2ε(d′ − 1) ln d′

ε(d′−1) in the case of post-selection.
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denote as |zz〉R, |zx〉R, |xz〉R, |xx〉R. We define the following Kraus operators.

Kzz =
√

(|0〉〈0|A + |1〉〈1|A)⊗
√
pz(|0〉〈0|B + |1〉〈1|B)⊗ |zz〉R ,

Kzx =
√

(|0〉〈0|A + |1〉〈1|A)⊗
√

(1− pz)(|+〉〈+|B + |−〉〈−|B)⊗ |zx〉R ,

Kxz =
√

(|2〉〈2|A + |3〉〈3|A)⊗
√
pz(|0〉〈0|B + |1〉〈1|B)⊗ |xz〉R ,

Kxx =
√

(|2〉〈2|A + |3〉〈3|A)⊗
√

(1− pz)(|+〉〈+|B + |−〉〈−|B)⊗ |xx〉R

(3.30)

Then after the basis announcement, we transform the state ρAB by the announcement CP
map Eann, ρann

ABR = Eann(ρAB) =
∑

s,rKsrρABK
†
sr, where s, r ∈ {z, x}. We note that this

CP map (and these Kraus operators) can be thought of as an isometry from Naimark’s
Theorem (Theorem 2.10) that turns the original POVM to a PVM acting on the extra
register R, and then a decoherence in the register R to make it classical and public.

During sifting, Alice and Bob only keep the data when they measure in the same
basis. The sifting procedure is then projecting the register R onto the subspace spanned
by {|zz〉 , |xx〉}. This projection operator is Π = |zz〉〈zz|R + |xx〉〈xx|R.11 The state after

sifting is ρsiftABR = ΠρannABRΠ. In the end, the post-selection CP map G is just a composition
of Eann and the projection Π, that is, G(ρAB) = ΠEann(ρAB)Π.

The procedure of simulation can be the same as discussed in MDI examples. For
simplicity, we show how the key rate depends on the error rate Q and the choice of pz
using this numerical approach. Instead of using the fine-grained constraints, we just use
coarse-grained constraints, like error rate in each basis.

In Fig. 3.5, we show the key rate plot of single-photon BB84 protocol in the situation
where there is no loss in transmission. In this situation, we can actually model Bob’s
system as a qubit system. As we vary the a priori probability pz, we see how the key
rate depends on the error rate Q in each case. Theoretically, we expect the key rate as
R∞BB84 = (p2

z + (1− pz)2)(1− 2h(Q)). Our numerical calculation using this primal problem
approach and post-selection CP map reproduces the theoretical results.

In Fig. 3.6, we show the key rate plot of single-photon BB84 protocol in the situation
where there is loss in transmission. Let η be the single-photon transmission probabil-
ity. Theoretically, we expect the key rate as R∞BB84,loss = η(p2

z + (1 − pz)
2)(1 − 2h(Q)).

Our numerical calculation with this primal problem approach and post-selection CP map
reproduces the theoretical results for each choice of error rate Q and a priori probability.

In both η = 1 and η = 0.8 scenarios, our numerical key rate bounds are tight.

11Identity operators on unspecified spaces are implicitly assumed.
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Figure 3.5: Key rate as a function of observed error rate Q for single-photon BB84 with
single-photon transmission probability η = 1. The solid dots are our numerical results
using the primal problem approach and the lines are given by the analytical key rate
expression R∞BB84 = (p2

z + (1 − pz)2)(1 − 2h(Q)). Different curves correspond to different
a priori probabilities for basis choice. This is a demonstration of handling sifting in the
numerical framework.
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Figure 3.6: Key rate as a function of observed error rate Q for single-photon BB84 with
single-photon transmission probability η = 0.8. The solid dots are our numerical results
using the primal problem approach and the lines are given by the analytical key rate
expression R∞BB84,loss = η(p2

z + (1− pz)2)(1− 2h(Q)). This figure is similar to Fig. 3.5.
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We remark here that the set of Kraus operators in Eq. (3.30) applies for other variations
of BB84 protocols as long as there exists a squash map that allows the reduction of Bob’s
measurements to target qubit measurements. We will apply the same idea described here
to other suitable scenarios.
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Chapter 4

Numerical security analysis for
Trojan horse attacks

In this chapter, we apply the numerical approaches described in the previous chapter to an-
alyze the security of protocols with passive optical components that act as countermeasures
to prevent the so-called Trojan horse attacks.

4.1 Preliminary

In a QKD system, Alice has an encoding device to write the information of her secret
random bits into some degree of freedom of photons emitted by a source.

A common assumption in many security proofs is that Eve cannot access devices in
Alice’s laboratory. In particular, Eve has no information about the setting of the encoding
device in each round. However, since the signal needs to exit from Alice’s laboratory and
goes to Bob through a quantum channel, Eve can potentially inject strong lights through
this quantum channel into Alice’s encoding device. These lights will also go through the
same encoding device and carry the same encoded information as the signal prepared
by Alice. Some portion of these lights will be reflected back to Eve. Eve can perform
some measurements on these back-reflected lights. Through the measurements, she can
learn some information about the setting of this encoding device, which may help her
unambiguously discriminate the transmitted states. In the end, Eve can end up with
the same key as Alice and Bob have after the classical post-processing. If there is no
mechanism to prevent the back-reflected lights, then the security of QKD can be completely
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compromised through this side-channel attack. This is called Trojan horse attacks(THA),
as Eve intrudes the presumably secure and protected area, Alice’s encoding device.

Since it was initially described in Ref. [39], many countermeasures have been proposed.
However, the security analysis has not been derived for a lot of those countermeasures.
Recently, Ref. [25] analyzed a passive architecture to counteract the Trojan horse attacks.
I apply the numerical approaches to quantify the information leakage due to THA given
this specific countermeasure.

The purpose of our calculation is two-fold. First, we want to demonstrate the appli-
cability of the numerical approaches and have a better understanding of the advantages
and disadvantages of the numerical methods. This helps for the future development of the
numerical approaches. The vision we have is to develop an efficient, reliable approach to
solve key rate problems, which are difficult to solve analytically. Second, since the ana-
lytical security bound in Ref. [25] can be loose due to the underlying proof techniques,
we want to tighten up the key rate bound. The intuition behind this argument is that
to make problems solvable by available analytical tools, analytical proofs usually resort to
pessimistic lower bound, such as entropic uncertainty relation, which can make the key
rate bound loose. On the other hand, our numerical methods, especially the primal prob-
lem approach described in the previous chapter, in principle, can be very tight. We know
the difference between the loose lower bound and the exact key rate formula is due to the
proof techniques, not because of the information leakage to Eve. Many efforts in QKD
community have been devoted to improving the key rate from both theoretical point of
view and from physical implementation perspectives. With a better proof technique, we
can give a tighter lower bound on the key rate. From a practical point of view, this tighter
lower bound allows us to distill more secure key bits than we previously thought.
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Figure 4.1: Schematics of Trojan horse attacks on Alice’s devices. Eve injects a coherent
light into Alice’s system to probe the encoding device’s setting. Some part of the light is
reflected back to carry the information about the secret information. By measuring the
back-reflected lights, Eve can break the security of QKD.

To make our discussion more concrete, we will focus on the unidirectional QKD setup
depicted in Fig. 4.1. Here, after the source emits a pulse, it will be split into a reference
pulse and a signal pulse. The photons traveling in the short arm of the interferometer
will go through a phase modulator that acts as an encoding device. This phase modulator
writes the phase information onto this signal pulse. Then both pulses will be transmitted
to Bob. We also restrict our attentions to BB84 protocols. However, our study can be
adapted to many other protocols with slight changes. Our restriction is mostly helpful for
the purpose of data simulation and for dimension reduction.

A small caveat is that the numerical calculation can only handle finite-dimensional
matrices. In dual problem approach, we need to make the measurement operators Γi finite-
dimensional and in the primal problem approach, we need to make the density operator ρAB
finite-dimensional. In fact, Γi and ρAB should have the same size to allow the calculation
Tr(ρABΓi).

To be able to calculate within a suitable amount of time and with a limited computa-
tional power, it would be desirable to make Bob’s dimension as small as possible so that
the size of ρAB is small. On the other hand, in reality, measurements are usually done on
optical modes, which live on infinite-dimensional Fock spaces. As we discussed before, we
can apply an analytical tool, the squashing model, to reduce the dimension of Bob’s mea-
surements if there exists a squashing map for this connection. Other techniques, such as
truncation of the infinite-dimensional space to a finite one, may also work, but may require
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a lot of analysis, such as the effects of truncation on the security proof. For simplicity, we
restrict our attentions to the situations where we know the squashing model applies. Due
to this reason, our analysis below can be generalized to protocols where a squashing map
exists with a slight modification. Generalization to protocols without a squashing map
may require more research.

Due to the limitation mentioned above, we need to impose some assumptions on Bob’s
system. We focus on the detection scheme based on two-mode interference and assume
both detectors have the same efficiency (or all detectors in a passive detection scheme have
the same efficiency). In reality, this assumption can be fulfilled by calibrating and setting
the detector efficiency of two detectors to lower one. For this type of protocols, it has been
proven in Ref. [1] that a squashing map exists, if we apply appropriate post-processing.
In particular, we need to map double-click events (simultaneous clicks of both detectors)
to the basis events of the target measurements. A reasonable post-processing randomly
assigns a bit value for a double-click event.

4.2 Countermeasure

The study of each countermeasure requires both analyzing the behaviors of the physical
devices and then quantifying the information leakage with some conditions imposed by
physical devices. Within the scope of this thesis, we choose to focus on quantifying the
information leakage and base our calculation on the physical properties of the counter-
measure described in Ref. [25], which uses the laser induced damage threshold (LIDT) of
passive optical components, such as optical fiber. Our work deviates from this existing
work by using a different approach to quantify the information leakage. Nevertheless, we
summarize some essential properties of this countermeasure mechanism that are relevant
for our security analysis.

To limit Eve’s action, this countermeasure relies on physical properties of the common
optical components in a fiber-based QKD system. We can consider an optical fiber as a
concrete example. The physical mechanism behind this countermeasure is that if Eve uses
a laser with a sufficiently high power to probe Alice’s encoding device, a lot of energy is
accumulated in a small region of an optical fiber, which will increase the temperature and
induce the fiber thermal damage. This damage threshold is characterized by the LIDT.

The LIDT for our purpose can be quantified by the maximum number of Trojan horse
photons per second N such that Eve does not cause a permanent damage on the optical
components. To effectively restrict Eve’s attacks, a suitable estimation of this LIDT of
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Alice’s system is crucial for bounding Eve’s information. In our analysis, we will see the
value of LIDT affects the key generation rate.

To proceed with our security analysis, suppose N is determined by carefully examining
the optical components of Alice’s devices. As the phase modulator operates at some certain
clock rate fA, to maximize the amount of information Eve can learn, the best eavesdropping
attack is to send Trojan horse photons at the same frequency fA to probe each setting of
the phase modulator. To probe the setting of i-th round within a second, Eve sends one
coherent state

∣∣√µi〉 with some mean photon number µi. Then
∑fA

i=1 µi = fAµin ≤ N ,
where µin is the overall mean photon number. As we will show later (also shown in Ref.
[25]), it is better for Eve to evenly distribute the Trojan horse photons in each round, that
is, µi = µin. Since the maximum number of photons per second N is bounded by the
physical mechanism of this countermeasure, µin is also bounded. As Alice’s transmitting
unit has the optical isolation factor γ such that µout = γµin, to reduce the information
leakage, Alice can also choose this optical isolation factor γ to limit µout in addition to
reducing the LIDT value N .

For our security analysis, we have the following setup: after Eve injects a coherent
state

∣∣√µin

〉
into Alice’s system, this coherent state is modulated by the phase modulator

and acquires a phase ϕA. After back-reflection, Eve obtains a coherent state
∣∣eiϕA√µout

〉
.

µout can be upper bounded by this countermeasure mechanism. We can think that Alice’s
system, not only emits the signal states she prepares, but also sends this additional coherent
state to Eve. We will investigate how the value of µout influences the key rate.

4.3 Single-photon source

4.3.1 Problem setup

We first calculate the key rate when the source is an ideal single-photon source using the
primal problem approach with CVX and the SDPT3 solver.

In the BB84 protocol, the set of signal states emitted from Alice’s system is the follow-
ing:

|φ0X〉A′E = |0X〉A′ |+
√
µout〉E

|φ1X〉A′E = |1X〉A′ |−
√
µout〉E

|φ0Y 〉A′E = |1Y 〉A′ |+i
√
µout〉E

|φ1Y 〉A′E = |0Y 〉A′ |−i
√
µout〉E

(4.1)
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Suppose Alice prepares states in the X basis with a probability px and in the Y basis
with a probability 1− px. To analyze this protocol, we first apply the source-replacement
scheme (see Section 2.2.3) to transform it into its equivalent entanglement-based protocol.
Then, from Eq. (2.5), we have to constrain ρA to be the following

ρA =


px
2

0

√
px(1−px)

2
V

√
px(1−px)

2
V ∗

0 px
2

√
px(1−px)

2
V ∗

√
px(1−px)

2
V√

px(1−px)

2
V ∗

√
px(1−px)

2
V 1−px

2
0√

px(1−px)

2
V

√
px(1−px)

2
V ∗ 0 1−px

2

 , (4.2)

where V = 1+i
2
e−(1+i)µout and V ∗ is the complex conjugate of V .

Now we compare the constraints we have in the numerical optimization between two
scenarios. One scenario is that there are Trojan horse photons coming from Alice’s labo-
ratory due to Eve’s attack. The other scenario is that the Trojan horse photons are not
present when this side channel is assumed to be completely blocked. Since Trojan horse
attacks explore the side channel, in the worst-case scenario, we assume Eve can split off
this back-reflected light without introducing any additional disturbance. This means, Alice
and Bob would observe the same statistics during parameter estimation in both scenarios.
Translating into the language of our numerical framework, we notice that the constraints
from the joint probability distribution are the same for these two situations. On the other
hand, with this LIDT countermeasure mechanism, we can think that the source actually
emits one of the four states in Eq. (4.1) in the first scenario and normal BB84 signals in
the second scenario. Different signal state structures will result in different ρA as shown
in Eq. (2.4). Since ρA has to be of the form in Eq. (4.6) in the first situation, we notice
that constraints on ρA reflect the influences of Trojan horse photons. This is the main
difference between the two optimization problems associated to these two scenarios.

To perform our numerical optimization, we put constraints on ρA in addition to coarse-
grained constraints on observed statistics, such as the error rate in each basis and total
detection probability.

We first investigate how the key rate depends on the mean photon number µout of Eve’s
coherent light. While Eve may use different intensities for different probe of Alice’s phase
modulation, we assume for this moment, that Eve will use the same intensity of light for
each probe. From our numerical results, we will see this is actually the best strategy for
her.

To compare our numerical results with the existing key rate bound, we briefly discuss
the analytical key rate bound derived in Ref. [25].
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Their key rate expression derives from the refinement of the “GLLP” approach [15] done
by Koashi [19]. It is assumed that the efficient BB84 protocol [22] is implemented and the
key is generated from the X basis. The asymptotic key rate under collective attacks is
then given by

R∞ = Qx[1− h(e′Y )− fECh(eX)], (4.3)

where QX is the single-photon detection rate in the X basis, fEC is the error correction
efficiency, eX is the single-photon quantum bit error rate (QBER) measured in the X basis,
and e′Y is the single-photon phase error rate, which is given by

e′Y = eY + 4∆′(1−∆′)(1− 2eY ) + 4(1− 2∆′)
√

∆′(1−∆′)eY (1− eY ),

∆′ =
∆

Y
,

∆ =
1

2
[1− exp(−µout) cos(µout)],

Y = min[YX ,YY ],

(4.4)

where eY is the observed single-photon quantum bit error rate in the Y basis, YX and YY
are the single-photon yields1 in the X and Y bases, respectively.

Without explaining a lot of details, we want to point out how the analytical expression
changes with or without Trojan horse photons. ∆ quantifies the imbalance between X-
basis state and Y -basis state in the sense that the source leaks some information about
which basis is used. This is because when averaged over the bit value, the state prepared
in the X basis might not be the same as the state prepared in the Y basis. With an ideal
single-photon source, in the absence of Trojan horse photons, these two states are actually
identical. This can be seen that ∆ = 0 in the limit µout = 0. With the presence of Trojan
horse attacks, these two states become more distinguishable.

4.3.2 Numerical result

We first restrict our attention to some ideal situation, where the detector has no dark
count rate and operates with the perfect efficiency, and the channel is lossless. We vary
the intensity of back-reflected lights and calculate the asymptotic key rate for different
observed error rates. We show this result in Fig. 4.2. Since the LIDT threshold value N

1The single-photon yield is the conditional probability that Bob’s detectors gets a click conditioned on
Alice sending a single-photon pulse.
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Figure 4.2: Asymptotic key rate versus the intensity of back-reflected Trojan horse light
µout for different observed error rates. Solid dots are our numerical results and lines are
given by Eq. (4.3). Parameters are listed in the figure. We consider ideal parameters for
simplicity. We numerically observe the key rate is a convex function of µout.

is determined, Alice can choose the optical isolation factor γ to limit the intensity of back-
reflected light. A plot like this can tell Alice how to choose γ. We also plot the key rate
from the analytical expression in Eq. (4.3) for comparison. We directly see our numerical
key rate bound is tighter than the analytical bound. Another direct observation is that
the key rate is a convex function of µout. This means the best eavesdropping strategy for
Eve is to send the same intensity of lights for each probe and to choose the intensity to
be slightly below N

fA
, where fA is again the clock rate of Alice’s phase modulator. Also,

since in this situation of ideal parameters, we know when µout is zero, the analytical bound
is tight. Our numerical results reproduce the expected analytical results in this special
scenario. Finally, we point out that for this specific figure shown here, we applied the dual
problem approach with the fmincon function and amoeba method. However, we can also
obtain similar results with the primal problem approach using CVX and the SDPT3 solver.

Moving away from the ideal parameters, we then use the set of parameters reported
in Ref. [25], as shown in Table 4.1 for data simulation. We investigate how the key rate
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Dark count (Pe) 1× 10−5

Error correction efficiency (fEC) 1.2
Attenuation coefficient (α) 0.2 dB/km
Detector efficiency (ηBob) 12.5%

Detector error probability (ed) 0.01

Table 4.1: Parameters used in the data simulation for the key rate calculation in the case
of Trojan horse attacks. Those parameters are taken from Ref. [25].

depends on the transmission distance for various back-reflected intensities.

In Fig. 4.3, we show how the key rate varies with the transmission distance for different
intensities µout of back-reflected Trojan horse photons. The key rate is plotted in logarith-
mic scale. This calculation was done with the primal problem approach using CVX and the
SDPT3 solver. We first observe that our numerical results are higher than the analytical
bound for each choice of µout. As µout becomes smaller and closer to zero, the analytical
key rate reaches the tight theoretical key rate bound. We see the difference between our
numerical key rate values and the analytical ones become smaller as µout becomes smaller.
Our numerical results agree with our expectation in the limiting cases. When µout becomes
larger, the analytical key rate lower bound in Eq. (4.3) is more pessimistic in estimating
the key rate. Since our numerical methods produce reliable lower bounds, we see the nu-
merical calculation gives tighter bounds here. We also want to point out that when µout is
10−8, the key rate is almost the same as that in the absence of Trojan horse attacks.

4.4 Phase-coherent laser source

Now, we consider that the source is an attenuated laser since it is commonly used in QKD.
A laser emits coherent states with some intensity µ, which can be fixed for all signals. We
consider the situation where the global phase of the coherent state is not randomized. We
call this source a phase-coherent laser source. In particular, this phase is fixed and can
be assumed to be known by Eve. Our analysis can proceed by changing the states in Eq.
(4.1) to the following:

|φ0X〉A′E = |+√µ〉A′ |+
√
µout〉E

|φ1X〉A′E = |−√µ〉A′ |−
√
µout〉E

|φ0Y 〉A′E = |+i√µ〉A′ |+i
√
µout〉E

|φ1Y 〉A′E = |−i√µ〉A′ |−i
√
µout〉E

(4.5)
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Figure 4.3: Asymptotic key rate versus the transmission distance for various intensities of
back-reflected Trojan horse light µout. Solid dots are our numerical results and lines are
given by Eq. (4.3). Parameters are listed in the Table 4.1.

Then ρA has the following form:

ρA =


px
2

px
2
U

√
px(1−px)

2
W
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px(1−px)

2
W ∗
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2
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2

√
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2
W ∗
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px(1−px)

2
W√

px(1−px)

2
W ∗
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px(1−px)

2
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2
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2
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px(1−px)

2
W

√
px(1−px)

2
W ∗ 1−px

2
U 1−px

2
,

 (4.6)

where U = e−2(µ+µout) and W = e−(1+i)(µ+µout).

Again, we compare the constraints in the presence of THA with that in the absence
of THA. In particular, we consider how the constraints change from the case without
THA to the case with THA. As we will discover in the end, for this type of source, the
analysis for the presence of THA is simply the analysis of the protocol in the absence of
THA, but with a different set of parameters. To clarify what this means, let us suppose
that there exists a key rate function RnoTHA for the protocol in the absence of THA. In
fact, for the purpose of our discussion, this function takes two parameters as its input,
specifically, the intensity of coherent light coming out of Alice’s laboratory and the single-
photon transmission probability for the quantum channel between Alice and Bob. We will
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show that in the presence of THA, the key rate can be calculated by using the same key
rate function with a different choice of values for these input parameters.

First, we look at the reduced density matrix ρA. As shown in Eq. (4.6), when µout

becomes nonzero, we notice that in the presence of Trojan horse photons, the density
matrix ρA associated with the signal intensity µ is replaced by the one associated with
intensity µ + µout. Secondly, since the µout part of the coherent light exiting from Alice’s
laboratory is split off by Eve, and only µ part is sent to Bob, we can think that the single-
photon transmission probability changes from η to η µ

µ+µout
when Trojan horse photons are

present. In other word, we can think that in the presence of THA, the source emits a
coherent state with intensity µ+ µout and then the single photon transmission probability
becomes η µ

µ+µout
so that in the end, the intensity of light arriving at Bob’s side is still ηµ.

Since Bob’s measurement outcomes depend on the intensity ηµ of the arriving light, the
observed statistics would be same for both the case that the source sends lights of intensity
µ and the transmission probability is η and the case that the source sends lights of intensity
µ+µout and the transmission probability is η µ

µ+µout
. Since the optimization depends on the

constraints on ρA and the constraints from the observed statistics, by thinking in terms of
how constraints change in the presence of THA, we are able to find the key rate function
in the presence of THA, which we denote as RTHA with the same set of input parameters.
In summary, RTHA(µ, η) = RnoTHA(µ+ µout, η

µ
µ+µout

).

Even though this equivalence can be argued in terms of constraints, we can verify it
numerically. We have implemented MATLAB codes to perform both optimization prob-
lems, which effectively give us RTHA and RnoTHA. In Fig. 4.4, we show the key rate versus
the intensity of Alice’s signal µ for this phase-coherent protocol and we set µout = 10−3 to
be fixed. We first see that the presence of THA decreases the key rate, compared to the
protocol without THA for the same set of parameters. Also, we numerically verify that
RTHA(µ, η) = RnoTHA(µ+ µout, η

µ
µ+µout

). We will discuss more about this protocol without
THA and the calculation of RnoTHA in Section 5.1. We postpone the analysis until then.
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Figure 4.4: Asymptotic key rate versus the transmission distance for various intensities
of Alice’s signal intensity µ. η = 12.5%. Blue diamond curve represents the key rate
in the situation if we assume Trojan horse photons are completely blocked. Black circle
curve represents the key rate in the case the Trojan horse photons are of intensity µout =
10−3. The connected line represents the calculation if we assume Trojan horse photons
are completely blocked, but the intensity of lights coming out from Alice’s laboratory is
actually µ + µout = µ + 10−3 and the transmission probability is actually η µ

µ+µout
. Other

parameters are listed in the Table 4.1.

4.5 Phase-randomized laser source

4.5.1 Problem setup

If the laser emits a phase-randomized coherent state, that is, a state from a statistical
ensemble {p(θ),

∣∣√µeiθ〉}, without the information about the phase θ, Eve sees the state

ρ =
1

2π

∫ 2π

0

dθ
∣∣√µeiθ〉〈√µeiθ∣∣ = e−µ

∞∑
n=0

µn

n!
|n〉〈n| , (4.7)
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where p(θ) is uniformly distributed. Then we can think that the source emits a Fock state
|n〉 with a Poisson distribution pµn = e−µ µ

n

n!
.

For Eve, she can choose her attack strategy according to the number of photons in the
signal pulse since Eve can first perform quantum non-demolition measurements for each
signal pulse to obtain the number of photons in the pulse. Since in multi-photon pulses,
each photon carries the same secret information, Eve can launch so-called photon-number-
splitting (PNS) attack [26]. For n ≥ 2, Eve can split out just one photon to forward to
Bob and keep the remaining n− 1 photons in her quantum memory. She then postpones
her measurements until listening to the communication during the classical phase of the
protocol. In this way, she is able to measure these photons in the same basis as Alice or
Bob. Thus, for multi-photon pulses, Eve learns every single bit value without introducing
any disturbance. In summary, multi-photon pulses leak complete information to Eve and
no secure bits can be generated.

On the other hand, Alice does not know exactly which of her pulses contain single
photons and which contain multiple photons. She can only estimate the contribution of
multi-photon pulses and assume Eve knows everything about these pulses. Then she needs
to apply appropriate privacy amplification to reduce Eve’s information to a negligible
amount. In the security analysis, the idea of tagging is helpful.

We can think the signals coming from Alice live in a seven-dimensional space. All multi-
photon signals (n ≥ 2) leak complete information to Eve so that multi-photon signals can
be represented by four orthogonal states. We denote them by |H〉, |V 〉, |D〉 and |A〉 . Since
they are four orthogonal states, Eve can perfectly discriminate them.

Without Trojan horse attacks, we would model Alice’s system A as a nine-dimensional
space since she would send one of these 9 states listed in Table 4.2.

With Trojan horse attacks, since Eve’s Trojan horse photons can still carry some infor-
mation about the setting of phase modulator even if Alice’s source emits a vacuum state.
Eve can use this information. For example, if she successfully learns the phase informa-
tion, then she can prepare a photon with this phase information for Alice and send to
Bob. In this way, she can block more parts of the single-photon contribution where she
fails to learn the phase information to discriminate the states unambiguously. Since Alice
does not know how many photons her pulse contains, by doing this, Eve can learn more
information. Therefore, it is important to distinguish these four states even if Alice sends
a vacuum. With Trojan horse photons, there are actually 12 signal states listed in Table
4.3.

Again, since Alice does not know how many photons her pulse contains, each obser-
vation has three contributing components, vacuum, single-photon and multi-photon. This
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state a priori probability meaning of the state
|∅〉 pµ0 vacuum state
|0X〉 pµ1

px
2

state 0 in X basis for single-photon component
|1X〉 pµ1

px
2

state 1 in X basis for single-photon component

|0Y 〉 pµ1
1−px

2
state 0 in Y basis for single-photon component

|1Y 〉 pµ1
1−px

2
state 1 in Y basis for single-photon component

|H〉 pµmulti
px
2

state 0 in X basis for multi-photon component
|V 〉 pµmulti

px
2

state 1 in X basis for multi-photon component

|D〉 pµmulti
1−px

2
state 0 in Y basis for multi-photon component

|A〉 pµmulti
1−px

2
state 1 in Y basis for multi-photon component

Table 4.2: Signal states and a priori probability distribution for the phase-randomized
laser source. By using the idea of tagging, we can think that the source emits one of these
nine states. pµ0 is the probability of emitting vacuum state from a Poisson distribution with
mean photon number µ. Similarly, pµ1 is the probability of emitting single photons, and
pµmulti for multi-photons.

Alice’s register state signal state a priori probability basis bit value
|0〉 |∅〉

∣∣+√µout

〉
pµ0

px
2

X 0
|1〉 |∅〉

∣∣−√µout

〉
pµ0

px
2

X 1

|2〉 |∅〉
∣∣+i√µout

〉
pµ0

1−px
2

Y 0

|3〉 |∅〉
∣∣−i√µout

〉
pµ0

1−px
2

Y 1
|4〉 |0X〉

∣∣+√µout

〉
pµ1

px
2

X 0
|5〉 |1X〉

∣∣−√µout

〉
pµ1

px
2

X 1

|6〉 |0Y 〉
∣∣+i√µout

〉
pµ1

1−px
2

Y 0

|7〉 |1Y 〉
∣∣−i√µout

〉
pµ1

1−px
2

Y 1
|8〉 |H〉 pµmulti

px
2

X 0
|9〉 |V 〉 pµmulti

px
2

X 1

|10〉 |D〉 pµmulti
1−px

2
Y 0

|11〉 |A〉 pµmulti
1−px

2
Y 1

Table 4.3: Source-replacement states for phase-randomized laser source. By using the
idea of tagging, we can think the source emits one of these 12 states. The meaning of
probabilities is the same as in Table 4.2. Since multi-photon states are orthogonal to each
other, there is no need to attach Trojan horse pulses because Eve has complete knowledge.
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means, for the measurement operators MA, for example, if she wants to project onto
the 0 state of X basis, the corresponding measurement operator is defined as M0X

A =
|0〉〈0| + |4〉〈4| + |8〉〈8|. On Bob’s side, since we assume both detectors have the same ef-
ficiency, there exists a squashing model such that Bob’s measurements can be treated as
measurements on a qutrit system as discussed before. In the end, we optimize ρAB of size
36 by 36.

4.5.2 Numerical result

We performed the calculation with the primal problem approach using CVX and the
SDPT3 solver. In Fig. 4.5, we see that first of all, compared with the single-photon
source (Fig. 4.3), the key rate drops dramatically. This is expected from the difference
between single-photon BB84 and weak-coherent-pulse BB84 in the absence of THA. Also,
as expected, as the Trojan horse intensity µout becomes stronger, the key rate decreases be-
cause Eve can learn more information with stronger back-reflected lights. For µout = 10−5

and µout = 10−6, the difference is small. Without decoy states, the maximum transmission
distance is limited. We plan to have a calculation with decoy state methods. If we as-
sume that Eve can also attack the phase modulator, but not the intensity modulator used
for the decoy-state setting, then the analysis can be generalized to the calculation with
decoy states straightforwardly. In our numerical optimization, we then impose additional
inequality constraints for the single-photon error rate and single-photon yield from the
decoy-state method. The extension to Trojan horse attacks on both the intensity mod-
ulator and the phase modulator requires a significant modification of our problem setup.
We expect to solve this problem once we are able to deal with decoy states directly in our
numerical framework.

71



Figure 4.5: The asymptotic key rate versus the transmission distance for a phase-
randomized coherent state source for different intensities of back-reflected lights µout. Solid
dots are our numerical results.
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Chapter 5

Numerical security analysis of
coherent-state BB84 protocols

Unconditional security of the QKD protocols was first proven for single-photon sources
[21, 28, 35]. However, even to date, no efficient and reliable single-photon source with
a high clock rate is commerically available. Experimental implementations of QKD and
commercial QKD devices commonly use attenuated laser sources instead of single-photon
sources since lasers with integrated circuits can make clock rates in the order of GHz
possible. A laser source emits coherent states, which has a non-zero probability to emit
multi-photon pulses. Multi-photon pulses are vulnerable to photon number splitting at-
tacks. Fortunately, the unconditional security of QKD with laser sources has also been
proven [15, 18].

The physical implementation of a QKD protocol can deviate from the theory in many
aspects, intentionally or unintentionally. An assumption in security proofs [15, 18] is that
the phase of coherent states is totally random such that Eve has no a priori information
about the phase. As we discussed before, if the phase is truly random, the laser source
effectively prepares photon number Fock states with a Poisson distribution. However, this
assumption may not hold in many implementations. For example, for protocols with a
strong reference pulse, the phase of this reference pulse can be correctly measured and
may be correlated with the phase of the signal pulse. Also, even for weak pulses, if the
same global phase is used for many pulses, the phase information may also be determined
unambiguously. While the phase randomization can be achieved by active phase random-
ization using an additional phase modulator, some implementations in favor of high clock
rate may avoid this additional phase modulator and also maintain the phase coherence.
Even for the active phase randomization, since the phase modulator has a finite number
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of settings, the phase is not random enough to allow us to obtain a Fock state picture. In
this chapter, I apply the numerical methods to study a protocol with the phase informa-
tion known by Eve and to study discrete-phase-randomization. We will also compare our
numerical results with other existing analytical or semi-analytical analysis.

For concrete discussions, we consider BB84 protocols with phase-encoding. Specifically,
the pulse emitted from a laser will be split into a reference pulse and a signal pulse by
an interferometer. We will focus on the protocols where the reference pulse has the same
intensity as the signal pulse. We remark that an extension to strong reference protocols
can be obtained straightforwardly in our numerical framework.

5.1 Phase-coherent laser source

We consider the phase-encoding BB84 protocol with a phase-coherent laser source. A
similar version of this protocol was proposed in Ref. [17]. The schematic setup of this
protocol is shown in Fig. 5.1.

5.1.1 Problem setup

The source emits a coherent state with an intensity of 2µ. After the first 50/50 beam
splitter, each of the signal pulse and the reference pulse has an intensity of µ. Since the
information is encoded in the relative phase between a signal pulse and a reference pulse,
we consider a two-mode representation of the signals. Effectively, Alice prepares one of the
following BB84 states:

|0Z〉A′ = |+√µ〉s |
√
µ〉r ,

|1Z〉A′ = |−√µ〉s |
√
µ〉r ,

|0X〉A′ = |+i√µ〉s |
√
µ〉r ,

|1X〉A′ = |−i√µ〉s |
√
µ〉r ,

(5.1)

where we denote the signal pulse by a subscript s and the reference pulse by r.

We consider the measurements with an active basis choice. For a double-click event,
Bob randomly assigns the bit value 0 or 1. A squashing map exists for this protocol as
shown in Ref [1]. We model Bob’s measurements as qubit measurements with an additional
flag for the detection of vacuum. Then we can describe Alice and Bob’s joint state ρAB by
a 12 × 12 matrix.
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Figure 5.1: Schematics of the phase-encoding BB84 protocol: the attenuated laser source
emits a coherent state, which is split by the 50/50 beam splitter (BS) into a reference pulse
and a signal pulse. A phase modulator (PM) is used to encode the information about the
secret key in the signal pulse. Both the signal pulse and the reference pulse are transmitted
through the same fiber to Bob. One may use polarization rotators (PR) and polarizing
beam splitters (PBS) to pack the signal and reference pulses for transmission. (Or one can
apply adjustable time delay to the pulses such that they arrive at the same time at the
interferometer in Bob’s lab.) In Bob’s lab, he applies 0 or π

2
phase shift to the reference

pulse via a phase modulator (PM). This allows him to choose the measurement basis. The
signal pulse and the reference pulse will then interfere at the 50/50 beam splitter and
trigger one of the detectors.

75



Dark count rate (Pe) 8.5× 10−7

Error correction efficiency (fEC) 1.16
Detector efficiency (ηBob) 0.045

Detector error probability (ed) 0.033
Attenuation coefficient (α) 0.2 dB/km

Table 5.1: Simulation parameters for this BB84 protocol with phase-encoding using a
phase-coherent laser source.

In our data simulation, we characterize some imperfection of detectors. Specifically, we
adopt parameters from the experiment reported in Ref. [14]. We assume two detectors
have the same efficiency ηBob. In addition, we consider background noises, such as dark
count and stray light. Pe is the probability of an error count per clock cycle of a single
detector due to the background noise. For simplicity of our simulation, we use the same
background noise probability for both detectors. From the listed parameters, we can
simulate the joint probability distribution p(x, y) that we would observe from the test set
during the parameter estimation if we actually ran an experiment with these parameters.
Since the number of free variables in the first step of the primal problem approach is
the number of free variables in the operator space to describe a density matrix, the more
linearly independent constraints on the density matrix ρAB we have, the fewer free variables
we have and then the faster the first-step calculation will be. In reality, this corresponds to
Alice and Bob disclosing all available information about the test sets during the parameter
estimation and applying a fine-grained analysis.

For the error correction term, the error correction efficiency is assumed to be 1.16 for
all error rates. The cost of error correction is directly computed from observed statistics,
in particular, the observed error rate of the key-generating basis, Eµ. Therefore, leakEC =
fECh(Eµ) in our calculation.

We briefly mention some statistics from our simulation here. The total detection prob-
ability Qµ has two contributing factors, background noise and detection of signals. We use
Qµ = 2Pe + (1 − e−ηµ), where we ignore higher-order terms in Pe. η is the total trans-

mission probability for single-photons. For a distance L measured in km, η = 10−
αL
10 ηBob.

We assume the click due to the background noise is random so that the error rate for this

event is 1
2
. Then Eµ = Pe+(1−e−ηµ)ed

Qµ
.

Ref. [24] has analyzed this protocol based on the “GLLP” framework. The analytical
key rate formula is as follows:

R∞ = Qµ[1− fEC(Eµ)h(Eµ)− h(Eph
µ )], (5.2)
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where we take the sifting factor to be 1 and Eph
µ is the phase error rate given by the

following equations:

Eph
µ = Eµ + 4∆′(1−∆′)(1− 2Eµ) + 4(1− 2∆′)

√
∆′(1−∆′)Eµ(1− Eµ),

∆′ =
∆

Qµ

,

∆ =
1

2
[1− e−

µ
2 (cos

(µ
2

)
+ sin

(µ
2

)
)].

(5.3)

We will compare our numerical results with this anaytical key rate formula.

5.1.2 Numerical results

In Fig. 5.2, we plot the asymptotic key rate versus the intensity µ of the signal pulse for the
parameters in Table 5.1. In this figure, we show two transmission distances L = 0 km and
L = 5 km for illustration. If we look at the highest key rate value in the plot corresponding
to an optimal µ, our numerical results give roughly three times higher key rate than
analytical results. Also, for each distance plotted here, the optimal µ from our numerical
results is larger than the optimal value given by the analytical result. For example, for
L = 0 (η = 0.045), the optimal intensity µ from the numerical result is roughly 0.008,
while with the same intensity, the analytical key rate is zero. We believe this discrepancy
is due to pessimistic estimation in the analytical formula. We notice that the analytical
key rate formula in Eq. (5.2) requires an estimation of the phase error rate, which cannot
be observed directly from the experiments. The phase error rate expression in Eq. (5.3)
is an upper bound estimation of the actual phase error rate. To have a sense of those
numbers, with µ = 0.008 and η = 0.045, we observe that ∆ ≈ 8× 10−6, Qµ ≈ 3.62× 10−4

and Eµ ≈ 0.035. This gives us ∆′ ≈ 0.022. Then the estimation of the phase error rate by
Eq. (5.3) is roughly 21.8%. From our numerical results, we believe this phase error rate
estimation is too loose when the transmission probability is low.
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Figure 5.2: The asymptotic key rate versus the intensity µ of the signal pulse for this
phase-encoding BB84 protocol using phase-coherent laser source for different transmission
probabilities η = 0.045 (L = 0 km) and η = 0.0357 (L = 5 km) for the parameters listed
in Table 5.1. The phase information is assumed to be known by Eve. Solid dots are our
numerical results and lines are given by the analytical expression in Ref. [24].

We remark that the non-smoothness of the curve in Fig. 5.2 is due to the numerical
instability. This figure was generated using the primal problem approach with CVX and
the Mosek solver. As we discussed in Section 3.6, the gap between our lower bound and
the optimal value depends on how close the suboptimal point from the first step is to the
optimal point. Potentially, the curve can be smoothed by an improved first step calculation
of the primal problem approach to obtain a better ρAB that is closer to the optimal ρ∗AB
for each point. Nevertheless, we have seen that the numerical method gives a tighter key
rate bound than the analytical bound.

We also consider some ideal parameters by setting the dark count rate to zero, detector
efficiency to 100% and the detector error rate to 0. In Fig. 5.3, we plot the asymptotic
key rate versus the intensity µ of the signal for η = 1 and η = 0.8. We notice that in this
ideal parameter region, the difference between the analytical results and numerical results
is less dramatic. We do not observe a region of intensities where the analytical result is
zero, but the numerical result is significantly non-zero.
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Figure 5.3: The asymptotic key rate versus the intensity µ of the signal pulse for this
phase-encoding BB84 protocol using phase-coherent laser source for two values of total
transmission probability η = 1 and η = 0.8. The phase information is assumed to be known
by Eve. Other simulation parameters, such as dark count rate, are ideal as described in
the main text. Solid dots are our numerical results and lines are given by the analytical
expression in Ref. [24].

5.2 Discrete phase randomization

We notice that if the phase is known by Eve, the key rate is significantly lower than
the key rate with phase-randomized coherent states. It is important to verify this phase
randomization assumption in the realistic QKD devices. The phase randomization in some
setups is assumed to be done passively. For the passive phase randomization, it is usually
believed that after each switch on and off of the laser, the phase coherence is destroyed.
However, there is no rigorous argument to prove this phase is actually random and to show
that there is no residual correlation between the phases of two consecutive pulses. Any
residual correlation may leak some information to Eve. In this section, we focus on the
active phase randomization scenario. The active phase randomization uses an additional
phase modulator to change the phase of coherent states. It is inserted immediately after
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the laser source as shown in Fig. 5.4. By actively modulating the phase of the coherent
state from the source before it is split into a reference and a signal pulse, both pulses
acquire the same global phase. A realistic phase modulator cannot create an infinitely
many choices of phase to be applied to the coherent pulses from the source. With the
active phase modulation, we cannot achieve the continuous phase randomization. Instead,
we need to consider the number of possible random phases is finite. Also, to be more
practical, these random phases are chosen from a prescribed finite set of phases. Since
adding more phases into the settings of the phase modulator imposes higher demand on
the precision and control of the phase modulator, it is more desired to use a small number
of phases. In this section, I apply the numerical methods, in particular, the primal problem
approach, to study the effects of discrete phase randomization.

Figure 5.4: The schematics of Alice’s device. Compared with Fig. 5.1, an additional
phase modulator (PM1) is inserted immediately after the source to randomize the phase
of coherent states. This phase modulator randomly applies one of the N possible choices
of phase to each coherent state before it is split into a reference pulse and a signal pulse.
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5.2.1 Problem setup

If the source is only discretely phase-randomized, it deviates from the behaviors of a con-
tinuous phase-randomized source. This deviation may leak some information to Eve. We
need to quantify the information leakage and to see how the key rate is affected. Suppose
the phase modulator PM1 in the Fig. 5.4 has N possible settings. Then the laser source
and this phase modulator together effectively create a discrete-phase-randomized source.
This discrete-phase-randomized source emits a coherent state whose phase is chosen uni-
formly randomly from N possible choices. A natural choice of those N possible phases is to
let these N phases be evenly distributed in [0, 2π). Each phase is chosen with a probability
1
N

. For our concrete discussion, we assume the phase is an integer multiple of 2π
N

between
0 and 2π. We remark here that other choices are possible and for each different choice, we
simply rerun our calculation with the simple modification of the signal states. However,
an inappropriate choice may leak more information to Eve and thus results in a lower key
rate.

For my calculation, I take the signal states to have the following general structure∣∣√µei(θ+φ)
〉
s

∣∣√µeiθ〉
r

(5.4)

where φ ∈ {0, π
2
, π, 3π

2
} and θ = 2πk

N
for k = 0, 1, . . . , N−1. φ encodes the secret information

and the four choices correspond to four BB84 signal states. θ is the introduced random
phase for both the signal pulse and the reference pulse. In the case of N choices of phases,
we see Alice prepares 4N different signal states.

The data simulation for observed statistics is done with the same parameters listed
in Table 5.1. This is also the set of parameters used in Ref. [5]. Using the same set
of parameters allows us to directly compare our results with the existing semi-analytical
results. We briefly summarize the analysis in Ref. [5]. In the case of discrete phase
randomization, since we cannot think the signal states in terms of the Fock states, Ref.
[5] considers approximated Fock states with N phases. When N goes to infinity, these
approximated Fock states become the actual Fock states. It then quantifies the information
leakage from the source due to imbalance of Z-basis signals and X-basis signals, and applies
the “GLLP” approach to calculate the key rate. It performs a minimization of the key rate
formula subject to a few parameters, such as, the single-photon error rate and the single-
photon yield since the observed statistics can only constrain the range of those parameters.
Due to the combination of the analytical analysis and the numerical optimization, we refer
the results in Ref. [5] as semi-analytical results. We also want to point out that when N
is small, these approximated Fock states deviate significantly from the Fock states.

81



5.2.2 Numerical results

For our calculation, we use the fine-grained constraints. It is important to notice that in
the parameter estimation step, Alice can also disclose the information about the value of
θ for each pulse since she can record this information. By doing so, Alice and Bob can
perform a refined analysis. They can obtain a probability distribution for each phase and
then use all the information together to bound Eve’s information.

In Fig. 5.5, we plot our numerical results for N = 1, 2, 3 and 4 along with the results
reported in Ref. [5]. The key rate is plotted in the logarithmic scale. This figure was
generated using the primal problem approach with CVX. The first-step calculation in the
primal problem approach was done with the SDPT3 solver and the second-step was done
with the Mosek solver. We show how the key rate changes with the transmission distance.
By comparing the curves for N = 1 and N = 2, our results show that there is a big jump
in the key rate when the number of phases is increased to two. This is in contrast to
the previous result. We believe that two phases should have a significant impact on the
key rate. The intuition behind this is that if the phase is known to Eve, then Eve can
launch more powerful attacks, like unambiguous state discrimination in conjunction with
intercept and resend attacks. One possibility is that Eve tries to discriminate these four
BB84 signal states for the signal pulse. Another possibility is that for each transmission,
for the signal pulse, Eve tries to discriminate the Z-basis states from the X-basis states
and upon the successful discrimination, Eve can measure the signal pulse in the correct
basis as it is prepared by Alice. Another less favorable situation is that since those signals
will be mapped to 0’s and 1’s, Eve may try to discriminate the signal states that will be
mapped to 0 from the signal states that will be mapped to 1. In all these scenarios, Eve
can attack on the signal pulse only. If the channel loss is high enough, whenever she fails
to discriminate, she can block the transmission, and hide her attacks by the channel loss.
In the case that she successfully discriminates, she can then prepare corresponding states
to Bob.

|0Z , θ = 0〉 = |+√µ〉s |
√
µ〉r

|1Z , θ = 0〉 = |−√µ〉s |
√
µ〉r

|0X , θ = 0〉 = |+i√µ〉s |
√
µ〉r

|1X , θ = 0〉 = |−i√µ〉s |
√
µ〉r

(5.5)
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|0Z , θ = π〉 = |−√µ〉s |−
√
µ〉r

|1Z , θ = π〉 = |+√µ〉s |−
√
µ〉r

|0X , θ = π〉 = |−i√µ〉s |−
√
µ〉r

|1Xθ = π〉 = |+i√µ〉s |−
√
µ〉r

(5.6)

Intuitively, we expect that those attack strategies become less possible when an addi-
tional phase is introduced. To see this, we observe that in the case N = 2, Alice effectively
prepares these two sets of signals given in Eq. (5.5) and Eq. (5.6).If Eve only tries to
discriminate from the signal pulse, then without knowing the global phase, even if she
successfully discriminates the four states for the signal pulse, she cannot determine the
bit value. This is because without the information about θ, for example,

∣∣+√µ〉
s

can be
mapped to 0 if the phase θ is 0 and it can also mapped to 1 if θ is π. Therefore, by only
discriminating the signal pulse, she is equally likely to guess 0 and 1 for each round. In
order to learn the bit information, she may also need to discriminate the reference pulse
in order to determine whether she is in the first scenario given by Eq. (5.5) or in the
second scenario given by Eq. (5.6). Then the success probability for the unambiguous
state discrimination decreases significantly once a second phase is introduced. While the
success probability continues to decrease with the introduction of the third phase or more,
we do not expect the decrease is as significant as the case from N = 1 to N = 2. From
this intuition, we expect there is a significant improvement from N = 1 to N = 2 and
small improvement from N = 2 to N = 3 or more. Our numerical results match with this
intuition.

We observe the significant increase in the key rate from N = 1 to N = 2. Our numerical
results show a marginal improvement from 2 to 3 phases and from 3 to 4 phases. The results
with 3 and 4 phases basically reproduce the key rate of a continuously phase-randomized
source. We also notice that for long distances (above 35 km), our numerical results give
loose bound. We expect the discrepancy for long distances between our numerical results
and the results reported in Ref. [5] can be explained by the numerical instability. We may
be able to improve our numerical results for those points with better numerical solvers. In
this study, we do not consider the decoy-state methods. In the future work, we want to
also include decoy states.
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Figure 5.5: The asymptotic key rate versus the transmission distance in the case of discrete
phase randomization without decoy states. The key rate is plotted in the logarithmic scale.
Solid dots are our numerical results in the case N = 1, 2, 3, 4. We compare our numerical
results with the results (lines) reported in Ref. [5]. Red curves and dots are for N = 1;
yellow for N = 2; purple for N = 3 and green for N = 4. The blue dashed line is the key
rate with a continuous phase-randomized source.
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Chapter 6

Concluding remarks and future work

QKD in theory comes with the unconditional security. However, the physical implementa-
tions of QKD open up a lot of loopholes. The gap between the theory and implementations
makes QKD vulnerable to quantum hacking. In order to remedy, we need to bridge the
gap between the theory and experiments. From the theory side, we need to revise our
security proofs by removing unrealistic assumptions subject to current technology.

It is usually difficult to prove the security analytically. Also, analytical proofs may
involve some approximation in order to proceed, which in turns makes the key rate bound
loose. On the other hand, since the key rate calculation problem can be stated as a convex
optimization problem, we can resort to numerical tools. We have demonstrated how to
apply numerical methods to study the security of QKD protocols. Since the numerical
methods we discuss here produce reliable lower bounds of the asymptotic key generation
rate per channel use under the assumptions of collective attacks, each of our calculation
can turn into a security proof, with appropriate justifications.

Nevertheless, the numerical approaches we have so far are still limited in several aspects.
First, we want to extend our study to decoy-state methods. Second, we cannot deal
with infinite-dimensional spaces directly. To be applicable to protocols like continuous-
variable (CV) QKD, we need analytical tools to reduce the dimension of the space and
measurements. It may also require some modification of the numerical approaches to work
with CV QKD. Third, these two methods discussed in this thesis do not consider finite-
size effects. An extension of those numerical approaches to finite-key scenario is desirable.
Finally, we want to make our implementation of numerical methods stable and reliable
such that we can make the gap between our lower bound and the optimal value small
enough.
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Appendix A

Key map with post-selection

In Section 3.5.2, we mentioned that the post-selection step corresponds to a CP map G
acting on the density matrix ρABC . Then the key rate formula in the Eq. (3.11) becomes

r∞coll = min
ρABC∈C

D(G(ρABC)||
∑
j

Zj
AG(ρABC)Zj

A)−H(ZA|ZB). (A.1)

However, in the dual problem framework, we deal with Lagrange multipliers λ’s rather
than the density matrix ρABC directly. It is more complicated to relate this CP map to
λ’s. Instead, we can choose the key map POVM in a clever way to effectively perform the
desired post-selection. This allows us to apply the dual problem approach directly without
modification of the objective function or constraints. In this appendix, we will show why
the choice of key map in Eq. (3.19) is able to accomplish the post-selection in the MDI
B92 example. This idea can be generalized to many other examples, and is not restricted
to the dual problem framework, as we will see.

Recall that the post-selection CP map is

G(ρABC) = |1〉〈1|C ρABC |1〉〈1|C + |2〉〈2|C ρABC |2〉〈2|C . (A.2)

Appendix B discusses how to handle post-selection steps in general and how we obtain
such a CP map.

Recall that the choice of key map given in Eq. (3.19) is

Z0
ABC = |0〉〈0|A ⊗ 1B ⊗ (|1〉〈1|C + |2〉〈2|C),

Z1
ABC = |1〉〈1|A ⊗ 1B ⊗ (|1〉〈1|C + |2〉〈2|C),

Z2
ABC = 1AB ⊗ |3〉〈3|C .

(A.3)
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For the ease of notation, we write Z(ρABC) =
∑

j Z
j
ABCρABCZ

j
ABC .

We want to show

D(ρABC ||Z(ρABC)) = D(G(ρABC)||Z̃(G(ρABC)), (A.4)

where Z̃(ρ) =
∑1

k=0 Z̃
k
AρZ̃

k
A and Z̃0

A = |0〉〈0|A , Z̃1
A = |1〉〈1|A.

The first observation is that since the register C is classical, ρABC has a block diagonal
structure with respect to the classical register C. This observation allows us to rewrite
ρABC as

ρABC = p1ρ
1
AB ⊗ |1〉〈1|C + p2ρ

2
AB ⊗ |2〉〈2|C + p3ρ

3
AB ⊗ |3〉〈3|C , (A.5)

where ρiAB is the corresponding block with respect to |i〉〈i|C , and p1 = p(“+”), p2 = p(“−”),
p3 = p(“?”).

Due to the block diagonal structure of ρABC , we can find eigenvalues λik and eigenvectors
|vik〉 for each ρiAB such that |vik〉⊗ |i〉C form an eigenbasis of ρABC and piλ

i
k are eigenvalues

of ρABC . Then,

Tr(ρABC log(ρABC)) =
∑
i

pi
∑
k

λik log
(
piλ

i
k

)
=
∑
i

pi Tr
(
ρiAB log

(
ρiAB

))
−H({pi})

(A.6)

The second observation is

log(Z(ρABC)) = Z(log(Z(ρABC))). (A.7)

since Zj
ABC commutes with Z(ρABC). This observation allows us to rewrite the term

Tr(ρABC log(Z(ρABC))) as

Tr(ρABC log(Z(ρABC))) = Tr(ρABCZ(log(Z(ρABC))))

= Tr[Z(ρABC) log(Z(ρABC))]

= p1 Tr
(
Z̃(ρ1

AB) log
(
Z̃(ρ1

AB)
))

+ p2 Tr
(
Z̃(ρ2

AB) log
(
Z̃(ρ2

AB)
))

+ p3 Tr
(
ρ3
AB log

(
ρ3
AB

))
−H({pi}),

(A.8)
where we slightly abuse the notation of Z̃.1

1Recall Z̃(ρ) =
∑1
k=0 Z̃

k
AρZ̃

k
A. Since Z̃kA only acts on the register A, we allow ρ to be a density operator

of registers A and B or a density operator of registers A, B and C. By doing so, we implicitly add the
appropriate identity operators to Z̃kA.
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Then,

D(ρABC ||Z(ρABC)) = Tr(ρABC log(ρABC))− Tr(ρABCZ(ρABC))

=
3∑
i=1

pi Tr
(
ρiAB log

(
ρiAB

))
−H({pi})

− p1 Tr
(
Z̃(ρ1

AB) log
(
Z̃(ρ1

AB)
))
− p2 Tr

(
Z̃(ρ2

AB) log
(
Z̃(ρ2

AB)
))

− p3 Tr
(
ρ3
AB log

(
ρ3
AB

))
+H({pi})

=
2∑
i=1

pi

[
Tr
(
ρiAB log

(
ρiAB

))
− Tr

(
Z̃(ρiAB) log

(
Z̃(ρiAB)

))]

=
2∑
i=1

pi

[
Tr
(
ρiAB log

(
ρiAB

))
− Tr

(
ρiAB log

(
Z̃(ρiAB)

))]

=
2∑
i=1

piD(ρiAB||Z̃(ρiAB)).

(A.9)

Similarly, we want to show D(G(ρABC)||Z̃(G(ρABC)) =
∑2

i=1 piD(ρiAB||Z̃(ρiAB)).

First, we notice

G(ρABC) = |1〉〈1|C ρABC |1〉〈1|C + |2〉〈2|C ρABC |2〉〈2|C
= p1ρ

1
AB ⊗ |1〉〈1|C + p2ρ

2
AB ⊗ |2〉〈2|C .

(A.10)

This allows us to rewrite two terms in the expression of D(G(ρABC)||Z̃(G(ρABC)) as

Tr(G(ρABC) log(G(ρABC))) =p1 Tr
(
ρ1
AB log

(
ρ1
AB

))
+ p2 Tr

(
ρ2
AB log

(
ρ2
AB

))
+ p1 log(p1) + p2 log(p2),

(A.11)

and

Tr

[
G(ρABC) log

(
Z̃(G(ρABC))

)]
= Tr

[
Z̃(G(ρABC)) log

(
Z̃(G(ρABC))

)]
= p1 Tr

(
Z̃(ρ1

AB) log
(
Z̃(ρ1

AB)
))

+ p2 Tr
(
Z̃(ρ2

AB) log
(
Z̃(ρ2

AB)
))

+ p1 log(p1) + p2 log(p2).
(A.12)
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Then

D(G(ρABC)||Z̃(G(ρABC)) = Tr(G(ρABC) log(G(ρABC)))− Tr

[
G(ρABC) log

(
Z̃(G(ρABC))

)]
= p1 Tr

(
ρ1
AB log

(
ρ1
AB

))
+ p2 Tr

(
ρ2
AB log

(
ρ2
AB

))
+ p1 log(p1) + p2 log(p2)

− p1 Tr
(
Z̃(ρ1

AB) log
(
Z̃(ρ1

AB)
))
− p2 Tr

(
Z̃(ρ2

AB) log
(
Z̃(ρ2

AB)
))

− p1 log(p1)− p2 log(p2)

=
2∑
i=1

piD(ρiAB||Z̃(ρiAB)).

(A.13)

From Eq. (A.9) and Eq. (A.13), we have shown that Eq. (A.4) holds. Therefore, we
have shown that this choice of key map effectively does the post-selection since the block
corresponding to the announcement “?” does not contribute to the objective function.

This idea can be generalized to other protocols with a specific type of post-selection.
In the post-selection step, if Bob announces “keep” or “discard” for each round, where
Alice and Bob will only distill secret keys from the “keep” events, then we can introduce a
classical register C to store the announcement outcomes. By doing so, we transform Alice
and Bob’s joint state ρAB to ρABC . Since C is a classical register, we can apply this clever
choice of key map to perform the post-selection.
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Appendix B

Post-selection

In this appendix, we will discuss how to deal with the post-selection in the numerical frame-
work. We will start with the general procedure and then discuss possible simplifications.

In the first section, we will discuss the general procedure without any assumptions
on Alice’s and Bob’ POVMs. We remark that the general procedure we describe here is a
slight variation of the procedure described in Ref. [41]. Here, we try to follow the steps in a
generic QKD protocol and show how we can transform the density operator in each step. In
the second section, we will present a simplified version if POVMs are actually PVMs. The
simplified version allows us to speed up the numerical calculation since the dimension of the
density matrix in the optimization problem is made as small as possible. In the protocols
discussed in this thesis, when we combine the ideas of source-replacement schemes and
squashing models, we happen to have PVMs that allows us to do this simplification.

B.1 General framework

In a QKD protocol, Alice has a POVM {Mx
A}mx=1 for her measurements1 and Bob has a

POVM {My
B}ky=1.

After parameter estimation, Alice and Bob constrain the set C of ρAB compatible with
their observations. For each ρAB, as we notice before, the worse-case scenario is that Eve
holds a purification of ρAB. We will construct a CP map for post-processing of ρAB (in

1For prepare-and-measure protocols, we will use the source-replacement scheme, and Alice’s POVM is
the projective measurements onto the basis of her system A.
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particular, steps that lead to a raw key). Since Eve can listen to the classical communication
during the classical post-processing, Eve should have all information leaked during the
classical communication. This means, if we have a classical register to store announcements,
Eve should have a copy of that register as well.

Before we start to discuss how to make announcements, it is convenient to introduce
extra registers X and Y to Alice and Bob, respectively, such that their POVMs become
PVMs on these extra registers. We want to transform ρAB to ρ′XY AB in such a way
that doing projective measurements |x〉〈x|X or |y〉〈y|Y on the state ρ′XY AB recovers the
probabilities Tr(Mx

AρAB) or Tr(My
BρAB), respectively. The transformation from ρAB to

ρ′XY AB can be done via an isometry V1 by Naimark’s Theorem (Theorem 2.10). That is,
V1 =

∑
x,y

|x〉X ⊗ |y〉Y ⊗
√
Mx

A ⊗
√
My

B. Then since

Tr(ρABM
x
A ⊗M

y
B) = Tr

[
ρAB(V †1 |x〉〈x|X ⊗ |y〉〈y|Y V1)

]
= Tr

[
(V1ρABV

†
1 ) |x〉〈x|X ⊗ |y〉〈y|Y

]
,

(B.1)

we can define ρ′XY AB = V1ρABV
†

1 such that Tr(ρABM
x
A ⊗M

y
B) = Tr[ρ′XY AB |x〉〈x|X ⊗ |y〉〈y|Y ].

In the classical phase, Alice and Bob will communicate through the classical channel
to post-process their local data stored in registers X and Y . Let X = {1, . . . ,m} denote
possible outcomes for the register X and Y = {1, . . . , k} for the register Y . Based on their
local data, Alice and Bob choose announcement strategies. For simplicity, we will only
consider announcement strategies that are deterministic functions of their local data. Any
probabilistic announcement strategy is then just a statistical combination of those deter-
ministic functions. Under the assumption of the deterministic functions, all announcements
they made (including any data they will discard later) in this step correspond to a parti-
tion of all possible combinations of their data in X and Y , that is, a partition of the set
(X, Y) := X× Y = {1, . . . ,m}× {1, . . . , k}.

Let S be the set of all announcements they made. Each s ∈ S corresponds to a set
γs ⊆ (X, Y). We define Es =

∑
(x,y)∈γs |x〉〈x|X ⊗ |y〉〈y|Y . Notice that

∑
s∈SEs = 1XY AB

and Es � 0 for each s ∈ S. This means that {Es} is a POVM. We want to store the
announcement results in a register S such that by measuring this register S, we recover
the desired probabilities. This can be accomplished by an isometry V2 =

∑
s

√
Es ⊗ |s〉S

from Naimark’s Theorem. However, since the announcements are public, we want to make
this register classical such that the purifying system has a copy of this register. Therefore,
we decohere S as well. We now have

ρannXY ABS =
∑
s∈S

|s〉〈s|S V2ρ
′
XY ABV

†
2 |s〉〈s|S . (B.2)
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Then Alice and Bob will decide which parts of data to discard after announcements
S. Let Skeep denote the set of announcements they will keep. This sifting procedure
corresponds to a projection onto the subspace of HS spanned by {|s〉 : s ∈ Skeep} for the
register S. We define the projector Π =

∑
s∈Skeep |s〉〈s|S. The post-processed state is then

ρsiftXY ABS =
ΠρannXY ABSΠ

ppass
, (B.3)

where ppass = Tr(ΠρannXY ABS).

After sifting, Alice will apply a key map to map her data to key symbols X =
{0, 1, . . . , N − 1}.2 Let g : X × Skeep → X represent such a mapping. We define Gi =∑

(x,s):g(x,s)=i |x〉〈x|X ⊗|s〉〈s|S . The results of the key map are stored in the register R. The

isometry V3 in this case is V3 =
∑

i |i〉R ⊗
√
Gi. Then we have the state

ρkeyRXY ABS = V3ρ
sift
XY ABSV

†
3 . (B.4)

By doing a projective measurement {|j〉〈j|R}
N−1
j=0 on the register R, Alice obtains the result

of key map.

Now, we define one CP map G that transforms ρAB to ρkeyRXY ABS by putting everything
together. We notice

ρkeyRXY ABS = V3ρ
sift
XY ABSV

†
3

=
1

ppass
V3ΠρannXY ABSΠV †3

=
1

ppass
V3Π

∑
s∈S

|s〉〈s|S V2ρ
′
XY ABV

†
2 |s〉〈s|S ΠV †3

=
1

ppass

∑
s∈S

V3Π |s〉〈s|S V2V1ρABV
†

1 V
†

2 |s〉〈s|S ΠV †3

(B.5)

Therefore, we define a Kraus operator Ks = V3Π |s〉〈s|S V2V1. This CP map is defined as

G(ρAB) :=
∑

s∈SKsρABK
†
s = ppassρ

key
RXY ABS.

B.2 Simplification in special cases

We now consider some special cases where we are able to simplify the general procedure
of post-selection without introducing many extra registers. In many protocols, especially

2Usually, the set of key symbols is {0, 1}.
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in the protocols considered in this thesis, sifting is usually performed. In the sifting step,
Alice and Bob will discard rounds where they measure in different bases and rounds where
Bob fails to detect a signal. Here, we restrict our attention to the situation where the
post-selection step only involves basis announcements and sifting. More specifically, we
consider a prepare-and-measure BB84 protocol.

For prepare-and-measure protocols, after applying the source-replacement scheme, Al-
ice’s measurements become projections onto the standard basis of her register A. We
now consider the case that Alice’s POVM is actually projective measurements. On Bob’s
side, we know if there exists a squashing model, then we can think of Bob’s measure-
ments in terms of target qubit measurements with an additional flag that indicates the
detection of vacuum. For the measurements in BB84, Bob has the following POVM
MB = {pz |0〉〈0| , pz |1〉〈1| , (1 − pz) |+〉〈+| , (1 − pz) |−〉〈−| , |2〉〈2|}, where |0〉 , |1〉 are qubit
Z-basis states, |+〉 , |−〉 are qubit X-basis states, and |2〉 represents detection of vacuum
(no detection).3 These POVM elements are projection onto four BB84 signal states or
the no-detection flag up to some normalization factor. pz is the probability of measuring
Z-basis.

We define
Ezz = (|0〉〈0|A + |1〉〈1|A)⊗ (|0〉〈0|B + |1〉〈1|B)

Ezx = (|0〉〈0|A + |1〉〈1|A)⊗ (|+〉〈+|B + |−〉〈−|B)

Exz = (|2〉〈2|A + |3〉〈3|A)⊗ (|0〉〈0|B + |1〉〈1|B)

Exx = (|2〉〈2|A + |3〉〈3|A)⊗ (|+〉〈+|B + |−〉〈−|B)

E∅ = 1A ⊗ |2〉〈2|B

(B.6)

We notice that registers X and Y are redundant in this situation since the informa-
tion is in registers A and B and measuring registers A and B after basis announcements
can recover the desired probabilities. Without introducing registers X and Y , the ba-
sis announcements are realized by the following Kraus operators according to the general
framework in the previous section:

Kzz =
√
pzEzz ⊗ |zz〉S ,

Kzx =
√

(1− pz)Ezx ⊗ |zx〉S ,
Kxz =

√
pzExz ⊗ |xz〉S ,

Kxx =
√

(1− pz)Exx ⊗ |xx〉S ,
K∅ =

√
E∅ ⊗ |∅〉S ,

(B.7)

3|0〉 , |1〉 and |2〉 form an orthonormal basis for Bob’s 3-dimensional space. |±〉 = 1√
2
|0〉 ± |1〉 .
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where |zz〉 , |zx〉 , |xz〉 , |xx〉 and |∅〉 denote five orthonormal basis states for the register S,
indicating the basis choices for Alice and Bob or the no-detection event.

The post-announcement state is then

ρann
ABS = KzzρABK

†
zz +KzxρABK

†
zx +KxzρABK

†
xz +KxxρABK

†
xx +K∅ρABK

†
∅

= pzEzzρABEzz ⊗ |zz〉〈zz|S
+ (1− pz)EzxρABEzx ⊗ |zx〉〈zx|S
+ pzExzρABExz ⊗ |xz〉〈xz|S
+ (1− pz)ExxρABExx ⊗ |xx〉〈xx|S
+ E∅ρABE∅ ⊗ |∅〉〈∅|S

(B.8)

Bob’s POVM becomes two sets of POVMs: Z-basis measurements {|0〉〈0| , |1〉〈1| , |2〉〈2|}
and X-basis measurements {|+〉〈+| , |−〉〈−| , |2〉〈2|}.

Then the sifting step corresponds to a projection Π = |zz〉〈zz|S + |xx〉〈xx|S since only
rounds where Alice and Bob measure in the same basis and Bob detects a signal will be
kept.

ρsift
ABS =

1

ppass

Πρann
ABSΠ

=
1

ppass

(pzEzzρABEzz ⊗ |zz〉〈zz|S + (1− pz)ExxρABExx ⊗ |xx〉〈xx|S),
(B.9)

where ppass = (p2
z + (1− pz)2)Pdet, and Pdet is the probability of detection.

Due to the projective measurements for Alice, we do not need to introduce an additional
register R to store the result of key map. In the end, we only need to introduce a two-
dimensional register S that stores the announcement results kept after sifting.
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