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Abstract

This thesis consists of two main parts, part one addressing problems from nonlinear op-
timization and part two based on solving systems of time dependent differential equations,
with both parts describing strategies for accelerating the convergence of iterative methods.

In part one we present a nonlinear preconditioning framework for use with nonlinear
solvers applied to nonlinear optimization problems, motivated by a generalization of linear
left preconditioning and linear preconditioning via a change of variables for minimizing
quadratic objective functions. In the optimization context nonlinear preconditioning is
used to generate a preconditioner direction that either replaces or supplements the gra-
dient vector throughout the optimization algorithm. This framework is used to discuss
previously developed nonlinearly preconditioned nonlinear GMRES and nonlinear conju-
gate gradients (NCG) algorithms, as well as to develop two new nonlinearly preconditioned
quasi-Newton methods based on the limited memory Broyden and limited memory BFGS
(L-BFGS) updates. We show how all of the above methods can be implemented in a man-
ifold optimization context, with a particular emphasis on Grassmann matrix manifolds.

These methods are compared by solving the optimization problems defining the canon-
ical polyadic (CP) decomposition and Tucker higher order singular value decomposition
(HOSVD) for tensors, which are formulated as minimizing approximation error in the
Frobenius norm. Both of these decompositions have alternating least squares (ALS) type
fixed point iterations derived from their optimization problem definitions. While these
ALS type iterations may be slow to converge in practice, they can serve as efficient nonlin-
ear preconditioners for the other optimization methods. As the Tucker HOSVD problem
involves orthonormality constraints and lacks unique minimizers, the optimization algo-
rithms are extended from Euclidean space to the manifold setting, where optimization on
Grassmann manifolds can resolve both of the issues present in the HOSVD problem.

The nonlinearly preconditioned methods are compared to the ALS type preconditioners
and non-preconditioned NCG, L-BFGS, and a trust region algorithm using both synthetic
and real life tensor data with varying noise level, the real data arising from applications
in computer vision and handwritten digit recognition. Numerical results show that the
nonlinearly preconditioned methods offer substantial improvements in terms of time-to-
solution and robustness over state-of-the-art methods for large tensors, in cases where
there are significant amounts of noise in the data, and when high accuracy results are
required.

In part two we apply a multigrid reduction-in-time (MGRIT) algorithm to scalar one-
dimensional hyperbolic partial differential equations. This study is motivated by the obser-
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vation that sequential time-stepping is an obvious computational bottleneck when attempt-
ing to implement highly concurrent algorithms, thus parallel-in-time methods are partic-
ularly desirable. Existing parallel-in-time methods have produced significant speedups for
parabolic or sufficiently diffusive problems, but can have stability and convergence issues for
hyperbolic or advection dominated problems. Being a multigrid method, MGRIT primar-
ily uses temporal coarsening, but spatial coarsening can also be incorporated to produce
cheaper multigrid cycles and to ensure stability conditions are satisfied on all levels for
explicit time-stepping methods.

We compare convergence results for the linear advection and diffusion equations, which
illustrate the increased difficulty associated with solving hyperbolic problems via parallel-
in-time methods. A particular issue that we address is the fact that uniform factor-two
spatial coarsening may negatively affect the convergence rate for MGRIT, resulting in
extremely slow convergence when the wave speed is near zero, even if only locally. This
is due to a sort of anisotropy in the nodal connections, with small wave speeds resulting
in spatial connections being weaker than temporal connections. Through the use of semi-
algebraic mode analysis applied to the combined advection-diffusion equation we illustrate
how the norm of the iteration matrix, and hence an upper bound on the rate of convergence,
varies for different choices of wave speed, diffusivity coefficient, space-time grid spacing,
and the inclusion or exclusion of spatial coarsening.

The use of waveform relaxation multigrid on intermediate, temporally semi-coarsened
grids is identified as a potential remedy for the issues introduced by spatial coarsening,
with the downside of creating a more intrusive algorithm that cannot be easily combined
with existing time-stepping routines for different problems. As a second, less intrusive,
alternative we present an adaptive spatial coarsening strategy that prevents the slowdown
observed for small local wave speeds, which is applicable for solving the variable coefficient
linear advection equation and the inviscid Burgers equation using first-order explicit or
implicit time-stepping methods. Serial numerical results show this method offers significant
improvements over uniform coarsening and is convergent for inviscid Burgers’ equation
with and without shocks. Parallel scaling tests indicate that improvements over serial
time-stepping strategies are possible when spatial parallelism alone saturates, and that
scalability is robust for oscillatory solutions that change on the scale of the grid spacing.
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Introduction

This thesis is divided into two parts, with each part addressing a different problem in com-
putational mathematics. Part I, consisting of Chapters 1-3, considers the use of nonlinear
preconditioners for solving nonlinear optimization problems. Part II, consisting of Chap-
ters 4-6, discusses the use of a multigrid based parallel-in-time method for the solution of
hyperbolic partial differential equations.

Part 1

The use of linear preconditioning techniques in the iterative solution of large linear systems
and related matrix problems is ubiquitous in the literature [12|, and for good reason:
many problems are ill-conditioned and standard iterations either fail to converge entirely,
or fail to converge in a reasonable amount of time. Similarly, nonlinear preconditioning
strategies can be used to drastically improve the convergence of iterations solving nonlinear
systems g(x) = 0, such as those arising from discretized partial differential equations
[18]. In Part I of this thesis we discuss how nonlinear preconditioning can be applied to
optimization algorithms and show how these preconditioned algorithms can be adapted for
optimization over matrix manifolds. A nonlinear preconditioner in the optimization context
is a fully nonlinear transformation applied to the gradient equations, as opposed to linear
preconditioners that involve linear transformations encoded by matrix multiplications.

We consider two approaches for applying nonlinear preconditioning to optimization
methods for solving the nonlinear optimization problem

min  f(x) (1)

in manners that significantly speed up the convergence. Both of these approaches require
supplementing or replacing gradient information with vectors generated by a preconditioner



function. The proposed approaches can be situated in the context of the recent renaissance
in research on nonlinearly preconditioned nonlinear solvers [18]. Some of the ideas on
nonlinear preconditioning date back as far as the 1960s and 1970s [6, 10, 27|, but they
remain underexplored in theory and in practice [18|, especially in comparison to linear
preconditioning.

The first approach is based on the general idea of left preconditioning, which is com-
monly used when solving linear systems, and has been generalized to the case of nonlinear
preconditioners for nonlinear systems of equations, see, e.g., the review paper [18]. We
refer to this approach as the LP approach (for Left Preconditioning). The second ap-
proach is inspired by a linear change of variables x = Cz in optimization problem (1).
It is derived by applying the optimization method to J?(z) = f(Cz), and transforming
back to the x variables. The resulting linearly preconditioned methods are well-known in
the optimization community [54, 72|, but we generalize this approach to the case of fully
nonlinear preconditioners. We refer to this approach as the TP approach (for Transforma-
tion Preconditioning). We first illustrate the main ideas in the simplified context of linear
preconditioning for convex quadratic optimization problems that correspond to solving
symmetric positive definite linear systems. This allows us to explain and interpret the LP
and TP approaches in relation to well-known ideas for linear preconditioning. We then
extend the formalism to nonlinear preconditioning for general nonlinear objective functions
f(x), and provide extensive numerical tests illustrating and comparing the merits of the
two approaches.

In part I of this thesis we apply nonlinear preconditioning strategies to three different
optimization methods: (i) nonlinear GMRES (NGMRES) [33,34,105] (ii) nonlinear con-
jugate gradients (NCG) [77], and (iii) Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) and
limited memory Broyden (L-Broyden) quasi-Newton (QN) methods [20,35]. NGMRES is
an acceleration technique wherein a linear combination of past approximations is optimized
to produce an improved search direction. It has been presented in different forms under
different names, such as Anderson acceleration [6,45,104| and the direct inversion in the
iterative subspace method [81], and is equivalent to an inverse projected Broyden secant
method iteration [45]. The name NGMRES arose because it can be shown to be a general-
ization of GMRES for linear systems [86], see, e.g., [104,105]. Ideas of introducing a non-
linear preconditioner into NCG have been considered as early as the 1970s [10,27,73], but
have not been widely explored. Both the LP and TP approaches were explored implicitly
in previous work on NCG [34], and we now present a framework that explicitly formalizes
the LP and TP approaches for optimization, and apply this framework to nonlinearly pre-
condition the L-BFGS and L-Broyden methods, the most successful QN methods in the
optimization and nonlinear system contexts, respectively.



To demonstrate the efficacy of the proposed nonlinearly preconditioned algorithms we
compare them in the context of solving approximate tensor decomposition problems: de-
composition of a multidimensional array into a sum and/or product of multiple components
(for example, vector outer products) for the purpose of reducing storage costs and carrying
out data analysis. In the era of big data, tensors and tensor decompositions are com-
monly used when vast quantities of data are collected and need to be organized, stored,
and analyzed, such as in chemometrics [92], data mining [65], food science [17], numerical
linear algebra [9], numerical methods for elliptic partial differential equations (PDEs) [52],
pattern and image recognition [88,110], and signal processing [26]. Many more examples
are given in [64]. Such problems are typically cast as minimizing the approximation error
in a given norm. Specifically, we consider decompositions into canonical polyadic (CP) and
Tucker tensor formats, the former representing a tensor as a sum of rank-one terms and the
latter as a multilinear tensor-matrix product. Both of these tensor formats have standard
iterative algorithms for computing decompositions, which can be slow to converge when
used independently, but can be useful as nonlinear preconditioners, resulting in significant
acceleration.

Nonlinearly preconditioned optimization algorithms have previously been developed for
tensor decomposition problems. Nonlinearly preconditioned NGMRES [32] and NCG [34]
methods have been successfully used to accelerate iterations for the CP decomposition
problem, where they are among the fastest methods available for noisy problems and
when high accuracy is required. To these methods we add the L-BFGS and L-Broyden
nonlinearly preconditioned QN methods and show that these methods can offer even further
improvements. Many other approaches exist for computing a CP decomposition [64,97],
including optimization approaches such as standard NCG |[5].

We extend these nonlinearly preconditioned algorithms to decompose test tensors into
a particular subtype of Tucker tensor called the higher order singular value decomposition
(HOSVD), which introduces the challenges of large sets of matrix equality constraints
and lack of uniqueness due to non-isolated minima. These challenges can most easily be
handled by adapting these algorithms to use matrix manifold optimization techniques and
then optimize over a product of Grassmann manifolds, which describe equivalence classes of
matrices with orthonormal columns. Matrix manifold optimization for approximate Tucker
decompositions has been considered before: past publications have adapted a number of
popular optimization techniques to the manifold setting. Newton’s method was considered
by Eldén and Savas in [40], which was followed by adaptation of BFGS and L-BFGS by
Savas and Lim [89]. Manifold NCG [60], a Riemannian trust-region method incorporating
truncated conjugate gradient [61|, and a differential-geometric Newton’s method [62] in
the Grassmann framework have been developed by Ishteva et al.



Part I of this thesis is organized as follows. Chapter 1 contains (i) necessary tensor
definitions and operators, (ii) a description of tensor decomposition methods, (iii) a de-
scription of the optimization methods used, and (iv) an introduction to matrix manifold
optimization. Chapter 2 introduces left preconditioning and transformation precondition-
ing in general and then describes the preconditioned GMRES, CG, and QN methods, first
for linear problems, then for nonlinear problems, and finally for nonlinear problems defined
over matrix manifolds. Chapter 3 provides implementation details and numerical results
comparing nonlinearly preconditioned NGMRES, NCG, and QN methods over Euclidean
space by using the CP tensor decomposition problem and their matrix manifold variants
by using the Tucker HOSVD problem.

Part 11

Due to stagnating processor speeds and increasing core counts, the current paradigm of high
performance computing is to achieve shorter computing times by increasing the concurrency
of computations. Time integration represents an obvious bottleneck for achieving greater
speedup due to the sequential nature of many time integration schemes. While temporal
parallelism may seem counter-intuitive, the development of parallel-in-time methods is an
active area of research, with a history spanning several decades [48]. Variants include direct
methods and iterative methods based on deferred corrections [41], domain decomposition
[51], multigrid [58], multiple shooting [22], and waveform relaxation [101] approaches. For
instance, one of the most prominent parallel-in-time methods, parareal [71], is equivalent
to a two-level multigrid scheme [50]. These methods have resulted in significant speedup
for parabolic equations, or equations with significant diffusivity, but have had markedly
less success when the problem is hyperbolic or advection dominated [83].

In part II of this thesis we discuss the multigrid reduction-in-time (MGRIT) method
[42] and use XBraid [2|, an open-source implementation of MGRIT. A strength of the
MGRIT framework is its non-intrusive nature, which allows existing time-stepping routines
to be used within the MGRIT implementation. Thus far, MGRIT has been successfully
implemented using time-stepping routines for linear [42] and nonlinear [44] parabolic PDEs
in multiple dimensions, Navier-Stokes fluid dynamics problems [43], and power system
models [66]. We now consider applying MGRIT to the conservative hyperbolic PDE

Opu~+ 0, (f(u,z,t)) =0,

for the cases of variable coefficient linear advection, f(u,x,t) = a(z,t)u, and the inviscid
Burgers equation, f(u,z,t) = su’.



As a multigrid method, MGRIT primarily involves temporal coarsening, but spatial
coarsening is a suitable approach for explicit time integration to ensure that stability con-
ditions are satisfied on all levels of the grid hierarchy. Spatial coarsening may also be used
with implicit time integration to produce smaller coarse-grid problems and, hence, cheaper
multigrid cycles. However, it has been observed that spatial coarsening can result in signif-
icant deterioration in the rate of convergence. Furthermore, small local Courant numbers
induce a sort of anisotropy in the discrete equations, meaning that the nodal connections
in space are small compared to those in time. These so-called weak connections prevent
pointwise relaxation from smoothing the error in space, thus inhibiting the effectiveness
of spatial coarsening and leading to slow convergence. We investigate this phenomenon
through the use of numerical tests and a technique known as semi-algebraic mode analysis
(SAMA) [46], a generalized variant of Fourier analysis with improved predictive perfor-
mance for methods applied to time evolution problems.

Two methods for improving the results of MGRIT with spatial coarsening have been
identified. The first is the introduction of spatial relaxations, inspired by waveform relax-
ation multigrid (WRMG), on the intermediate grid (coarsening in time but not in space).
While this almost entirely ameliorates the negative side-effects of using spatial coarsening,
it results in a more intrusive algorithm that may not be easily combined with existing
time-stepping methods. The second approach, which prevents the extremely poor conver-
gence observed for small wave speeds, is an adaptive spatial coarsening strategy that locally
prevents coarsening in regions with near zero Courant numbers. This adaptive coarsening
strategy is compatible with pre-existing time-steppers (that are compatible with non-uni-
form spatial grids), and parallel scaling tests show that significant speedup is possible by
using MGRIT with adaptive coarsening.

Part II of this thesis is organized as follows. Chapter 4 covers the derivation and im-
plementation of the MGRIT parallel-in-time method, how it can be combined with spatial
coarsening, and a description of the hyperbolic PDE of interest. Chapter 5 investigates the
performance of MGRIT with and without spatial coarsening when applied to the linear
advection equation, analysis of the approach via the SAMA technique, and a description of
how to combine MGRIT with WRMG, along with corroborating numerical results. Chap-
ter 6 motivates and describes the proposed adaptive spatial coarsening method for variable
coefficient linear advection and the inviscid Burgers equation, illustrating the effectiveness
via serial numerical results, as well as illustrating the potential for speedup when spatial
parallelism alone saturates via parallel scaling tests.



Part 1

Nonlinear Preconditioning for
Optimization



Chapter 1

Preliminaries and Motivating
Application

This chapter serves as an introduction to (i) required tensor definitions and operations,
(ii) Canonical Polyadic (CP) and Tucker tensor decompositions, (iii) the optimization
methods considered, and (iv) the concept of matrix manifold optimization, which will be
used throughout the following two chapters.

1.1 Tensors

A tensor is a multidimensional array', and the number of dimensions (modes) of a tensor
is called the tensor order. Order-1 tensors are vectors and order-2 tensors are matrices.
For consistency, unless otherwise indicated vectors are indicated by bold lowercase letters
(x), matrices by bold uppercase letters (X), and tensors by Euler script letters (X). Tensor
elements are indicated by subindices or bracketed arguments: X, = X(i, 7, k). Tensors
are useful when large quantities of data need to be organized and analyzed, because each
dimension can represent a parameter and each element can represent an observation for
a particular parameter combination. As a result tensors have seen widespread use in
areas such as in chemometrics [92], data mining [65], food science [17], pattern and image
recognition [88,110], and signal processing [26].

More correctly, a tensor is an element of a tensor product space [57,70]. The coordinate representation
of a tensor, which is dependent on the choice of basis, is a hypermatrix. A hypermatrix is a multidimen-
sional array with well defined algebraic operations arising from the structure of the tensor product space.
For simplicity we follow the convention of referring to representative hypermatrices as tensors.
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1.1.1 Tensor Matricizations and Definitions of Rank

Tensor fibers are obtained by fixing all indices but one. Mode-n fibers are obtained by
fixing all indices but the n'*. The mode-n matricization of X, denoted X (n), has the mode-
n fibers of X as its columns. So long as the ordering of fibers is consistent throughout
calculations, the specific ordering used is unimportant in many applications. A rank-one
tensor X € RI1*IN is the outer product

e a®oa@o...0al
where a € R forn=1,..., N and

X — aWe? .. ~a(»fj) foralll1 <4, <1,.

2312...1N i1 2 7
The rank of X, denoted rank(X), is the minimum number of rank-one tensors required to
express X as a linear combination [64]. The n-rank of X is the dimension of the space
spanned by the mode-n fibers: rank,(X) = dim(Col(X(,)) [30]. The multilinear rank of
X is the N-tuple (rank; (X), ..., ranky(X)).

1.1.2 Tensor and Matrix Products

The mode-n contravariant product of X € R *IN and A € R/ is Y = (A), - X [40]:

I,
Y(irs -ty Jringts o in) = Y AQ )X (0, in).

in=1

Each mode-n fiber of X is multiplied by each row of A: Y, = AXy,. It follows that
(B)n - ((A), - X) = (BA), - X, and that multiplication in different modes is commutative.
The mode-n covariant product of X and A € R"*/ is Y = X - (A),, [40]:

I
Y(iv, ity Jyingts - in) = Y X(in, i) Alin, ).

in=1
Clearly, (AT),- X =X- (A),.

The outer product of an m-way tensor and an n-way tensor is an (m+n)-way tensor. To

illustrate, the outer product of X € R7*%*L and Y € RM*N js Z = X @Y € R/ FEXLXMxN,
where Zitimn = XjYmn. The inner product of X and Y € RV ig

(XY)y = o> X(ir,, .o in)Y(in, . in).

i1=1 in=1



The tensor Frobenius norm is ||X||, = 1/(X, X), and ||X||, = HX(k

is also invariant under orthogonal transformations A(:

|| for k=1,...,N. It

HxHF = H(A(l)a e 7A(N)) ) x“F

A contracted product is an outer product followed by contractions along specified pairs
of modes, and requires input tensors to have at least one mode of common length. The
contracted product of X and Y is denoted (X,Y);.;, contracting over the X modes I and
Y modes J. If X and Y are of equal size and corresponding modes are paired, only one
subscript is used. Negative subscripts, (X,Y)_;, indicate a contracted product over all
modes except those listed in J. To illustrate, given equal sized 3-way tensors A and B,
three possible contracted products are: € = (A, B);, D = (A, B)1.o, and e = (A, B)y.3:

Cikim = ZAAjkBAlvm Dj. = Zﬂxwﬁ,\uk; and e = Z A B
>\

At AV

The Hadamard (element-wise) product of equal sized tensors X and Y is denoted X Y.
The Kronecker product of A € R/ and B € RE*L is denoted by A @ B € RUK)*(L),
and the Khatri-Rao product of C € R/*K and D € R7*X is denoted by C ® D € RU/)*K.

a1 B apB -+ ayB
anB axpB - ay;B

A®B: . . . . s C@D:[c1®d1 C2®d2 CK®dK}.
anB apB - a;;B

These products are useful when computing tensor decompositions and matricizing tensor-
matrix products. For instance, using the (natural) fiber ordering of [40] we see that Y =

(AD .. AMY). X if and only if
Yoy = AMX (AV @ @ AP @ At @0 AN,

The ordering of fibers in matricization is important here: different orderings produce dif-
ferent orderings in the Kronecker products.

1.2 Tensor Decompositions

Tensor decompositions express tensors as sums or products of several components with
the goal of simplifying further work involving the tensor data. Tensor approximation
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problems involve seeking the best approximation of a tensor X by a tensor f)AC, commonly
having a specified decomposition, the components of which are determined by minimizing
| — X||. The remainder of this section provides an introduction to the CP and Tucker
tensor decompositions, including all necessary operations and definitions, which motivate
the nonlinearly preconditioned optimization methods developed and used in the remainder
of part 1.

1.2.1 Matrix Singular Value Decomposition (SVD)

A matrix M € R™*" has SVD M = UX VT, where U € R"™*™ 'V € R™" are orthogonal
and X € R™ " is diagonal with nonnegative real entries in decreasing order. The nonzero
entries of 3 are the singular values of M and the columns of U (V) are the left-singular
(right-singular) vectors. The rank of M is equal to the number of singular values, and by
the Eckhart-Young theorem, the best rank-r approximation of M in the Frobenius norm
is obtained by keeping the largest r singular values, setting the rest to zero [38|.

1.2.2 CP Decomposition

The CP decomposition, also known by the names CANDECOMP (canonical decompo-
sition) and PARAFAC (parallel factors), decomposes a tensor into a sum of rank-one
tensors [64]. The rank-R CP decomposition of X € Rt *Iv ig [64]

R
[AD AP AN = Zaf}) oa@o...0aM™, (1.1)
r=1
where A™ € R"*E for n =1,..., N. To compute a CP decomposition we solve
. 1 1 2 N2
Zn g |2 — [AM, A LA™ (1.2)

The standard approach for solving (1.2) is an alternating least squares (ALS) type iteration
[21,55], reproduced here as Algorithm 1. The mode-n matricization of a CP tensor is given
by

A (A(N) OXERIO) A (1) ® A1) @0 A(l))T.

By fixing all matrices except A(™ the problem becomes

rf(ir} HXpy —AMAM ©..o A g A D 6. 6 A(U)TH?) (1.3)
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a linear least squares problem with exact solution
AW = X ((A<N> O AP o AP o @A<1>)T>*7

where 1 denotes the Moore-Penrose pseudoinverse |74, 78|. Since the pseudoinverse of a
Khatri-Rao product satisfies the identity [64]

(A©B)! = ((ATA)  (BTB)) (A © B)",

this exact solution is typically implemented as

A — X(n) (A(N) @0 A (nt1) ® A1) @0 A(l))T (1“(”))T7

where
™ — (A(l)TA(l)) Kook (A(nfl)TA(nfl)) * (A(n+1)TA(n+1)) Koo (A(N)TA(N))
form=1,...,N.

Algorithm 1 CP-ALS

1: procedure CP-ALS(X, AW ... AM)

2 forn=1,...,N do

3 I = (AOTAM) 5.5 (APDTACD) 5 (AT AMHD) oy (ANTAI)
4 AW =X (AM @ 0 AT o APD o ..o AD)T (p(n))T
)

6

7

end for
return A®M, ... AW
end procedure

The CP-ALS iteration can be slow to converge in practice, thus alternative optimization
algorithms are desirable. Most optimization algorithms require the gradient of

F(x) =L — [AD, A AM|7

where x = (AW, A® . AW is the N-tuple of factor matrices. The partial derivative
of f with respect to A™ is [5]

8i{n) - _X(n) (A(N) OO A (1) ® A1) @0 A(l)) + Ap®)

Note that setting the gradient of f equal to zero gives
A — X () (A(N) -0 A o A o o A(l)) 7

from which the CP-ALS iteration immediately follows.
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1.2.3 The Tucker Format and the Higher Order SVD (HOSVD)

The Tucker format was introduced by Tucker in 1963 for 3-mode tensors [99], and has
since been extended to N-mode tensors; see, for example, [30,100]. A tensor X € RI1<~xIn
is expressed in Tucker format as (AM, ..., AM) .8 where § € RFf><*Ry and A ¢
RI»xFn  We must have R, < I,, and in practice often have R, < I,, resulting in a
significant reduction in storage. If R, > rank, (X) for all n, the decomposition is exact. If
R,, < rank,(X) for some n, this is an approximate Tucker decomposition (ATD). Tucker
decompositions are not unique: replacing 8 by (B), - 8§ and A™ by A®B~! produces an
equivalent tensor.

In [30] the authors introduce a Tucker decomposition called the HOSVD and prove all
tensors have such a decomposition. The HOSVD of X € RIt*~xIn ig

X =AY, . . AM).g,
where 8§ € RV %I each A(™ € R"*I» i orthogonal, and 8 satisfies

(i) all-orthogonality: for all possible n, a, and 3, a # B: (8;,—a,Si,=p) = 0;

(ii) the ordering: ||8;,=1llz > [18i,=2llp = -+ > [|8i,=1.||z = 0 for all n.

Given a target multilinear rank (Ri,...,Ry), a truncated HOSVD may be computed
in which A™ contains only R, orthonormal columns. The procedure is described in
Algorithm 2 [64]. In both exact and approximate cases, we call A™ a mode-n HOSVD
basis if it leads to a tensor 8 that satisfies points (i) and (ii) above.

Algorithm 2 HOSVD

1: procedure TRUNCATED HOSVD(X,Ry, ..., Ry)

2 forn=1,...,N do

3 A™ < R, leading left singular vectors of X(n)
4: end for
5
6
7

S X- (AW, AW
return 8, A, ... AW
end procedure
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1.2.4 The Best Tucker HOSVD Approximation Problem

An important difference between the matrix SVD and the HOSVD is that there is no
higher dimensional equivalent of the Eckhart-Young theorem: truncating a HOSVD does
not result in an optimal approximation [30]. To determine the best orthonormal ATD of a
given X, we minimize the approximation error in the Frobenius norm. The minimization
problem is
1
min = [|X - (A®, ... AN 8|
S{Am} 2
subject to 8§ € REV< xRy AW ¢ RInxBn gng AMTAM =T,

which is equivalent to [31]

1 2
I A A,

subject to AW € RI*Fn and AMWTAM =15 |
where 8 = X - (A(l), . ,A(N)).

Algorithm 3 HOOI

1: procedure HOOI(X, AM ... AM)

2 forn=1,...,N do

5 Yo (A, AGD T AGD AW
4 A™ < R, leading left singular vectors of Y
5: end for
6

7
8:

S (AT AT
return §, AW, ... AW)
end procedure

The most popular method for solving (1.4) is the higher-order orthogonal iteration
(HOOI), first proposed in [31] and reproduced here as Algorithm 3 [64]. If we use the
natural fiber ordering of [40] we see that the mode-n matricization of (A(l)T, NN A(N)T) - X
is

Fixing all factor matrices but A™ gives % HA(")TY(n)Hi, which is maximized by taking
the R, leading left singular vectors of Y ,) as the columns of A The HOOI Algorithm
implements this iteration. While simple to implement, HOOI may be slow to converge in
practice, hence alternative optimization methods are desired.
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1.3 Optimization Method Building Blocks

In this section we provide introductions to the generalized minimal residual method, the
conjugate gradients method, and the limited memory quasi-Newton method. Linearly and
nonlinearly preconditioned variants of these methods on both Euclidean space and matrix
manifolds are developed in chapter 2.

1.3.1 Generalized Minimal Residual Methods

The Generalized Minimal Residual (GMRES) method [86] is an iteration for solving Ax =
b for general invertible matrices A that minimizes ||ry|| = ||b — Ax|| over the Krylov sub-
space span {I‘O, Ar,. .. ,Akilro} at every step. One iteration of GMRES with a window
size of m is described in Algorithm 4, where e; is the first column of the (m+1) x (m+ 1)
identity matrix, and H,, is the (m + 1) x m matrix with nonzero elements h; ; computed
in the algorithm.

Algorithm 4 GMRES(m) Iteration

1: procedure GMRES(A, b, xg, m)

2 I‘Ozb—AXO,ﬁz||I'0||,V1:I'Q/5

3 for =1,2,...,mdo

4 hij =vI(Av;),i=1,2,...,]j

5: Gj—l—l = AVj — 23:1 hi,jvi

6 hivrg = IVjall

7 Vist = Vit1/hj

8 end for

9: X;m = Xg + VinYm, where y,, = argmin Hﬁel — ﬁmyH
10: return x,,

11: end procedure

Nonlinear GMRES (NGMRES) [32,33,105] is, in its simplest form, an algorithm that
accelerates the convergence of the gradient descent method for g(x) = 0: X1 = X —Vk8k-
NGMRES is closely related to Anderson acceleration (Anderson mixing) [6,18,45,104| and
the direct inversion in the iterative subspace (DIIS) method [81], and is equivalent to an
inverse projected Broyden secant method [45]. The name NGMRES is used because it can
be formulated as a generalization of GMRES for linear systems [86], see, e.g., [104,105].

NGMRES begins by computing a tentative iterate Xxi 1 = Xp — 8k; see [33] for
strategies to choose 7 (e.g. line-search). Given past iterates {x;}5_, , .,, we seek an
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accelerated iterate in the form of a linear combination of X;,; and the past values:

k

Xp+1 = Xppp1 + Z B (K41 — X;).
j=k—m+1

The ideal coefficients (; are those that minimize ||g(xx+1)|/,- However, this norm is a
nonlinear function of B, hence it is only approximately minimized in practice. By linearizing
g(Xk+1) about X1 we obtain

k
~ _ 0
8(Xk+1) ~ g(Xpt1) + Z e

with the second approximation eliminating the need for Hessian-vector products. This
simplifies the norm minimization to a least squares problem for B:

k

gX)+ Y Bi8Xen) —8(x)))

j=k—m+1

2

If we let (g(Xk11) —g(x;)) be the j™ column of A, b = g(Xk41), and B = (Be—ms1,-- -, 5T,
we may describe B as the solution to the normal equations, ATAS = —ATb, and can solve
for B via any method for the linear least-squares problem (e.g. QR decomposition, the
Moore-Penrose pseudoinverse). One iteration of NGMRES is described in Algorithm 5.

Algorithm 5 Nonlinear GMRES Iteration

1: procedure NGMRES(g, Xt i1, - -, Xk)
2: Xp+1 = Xp — M8(Xx)
3

Solve Hg(fkﬂ) + Z?Zk,mﬂ B; (8(Xkt1) — g(Xj)) ) for B
k —
Pt = D ki1 Bi (X1 — %)
X1 = Xk+1 + Pk > oy determined by line-search

4
5
6: return xj,
7: end procedure
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1.3.2 Conjugate Gradients Method

The conjugate gradients (CG) method [77,91] is an iterative solver for linear systems
Ax = b with symmetric positive definite (SPD) matrices A; or equivalently, a solver that
minimizes convex quadratic objective functions

f(x) = 3xTAx — b'x. (1.5)

Starting from (possibly arbitrary) xo with pg = ro = b — Axg, one step of the CG iteration
is described in Algorithm 6. This iteration is based on the conjugacy of the sequence of
search directions p, with respect to A, and generates an orthogonal sequence of residual
vectors ry [77]. In addition to the low storage requirements, we only require the means to
compute the matrix-vector product Apy; storage of A is unnecessary.

Algorithm 6 Conjugate Gradients Iteration

1: procedure CG(A, Xy, pi, ')

9 o = (rzrk)/(pLApk) > Exact minima for quadratic objective
3 Xg4+1 = Xg + Q. Pk

4 Ty =Ty + apApy

5 Br+1 = (v] 1 Tet1)/(rrE)

6 Pk+1 = —Tit1 + Bet1Pk

7 return Xx,1, Pry1, Tetl

8: end procedure

The nonlinear conjugate gradients (NCG) iteration arose as an adaptation of CG for
minimizing general nonlinear objective functions f(x) [77]. Three main changes are re-
quired: (i) we replace the residual ry with the gradient of the objective function, g(x) =
Vf(x), (ii) the step length ) must be determined by a line-search, and (iii) the search
direction update parameter S5, can be specified by a number of different formulas. Three
of the most successful are

gL 1Yk
Polak-Ribiére [79]:  BpT; = =E22, (1.6)
818k
]
Hestenes-Stiefel [56]: B2, = gk’TLIYk, (1.7)
PrYk
lyal®\'
Hager-Zhang [53]: BH%, = -2 Yk gk“, 1.8
g g [53] 5k+1 <Yk Pk pZyk pZyk (1.8)

where g1 = g(xx11) and yr = grr1 — 8- One iteration of NCG is described in Algorithm
7. Like the linear version, NCG enjoys the benefits of very low storage requirements.
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Algorithm 7 Nonlinear Conjugate Gradients Iteration

1: procedure NCG(g(-), Xk, Pr, 8k)

2 Xpi1 = Xi + QxPk > oy determined by line-search
3 8rt+1 = &(Xk+1)

4: Compute Si11 by one of (1.6-1.8)

5 Pr+1 = —8kt1 + Brr1Pk

6 return Xxi1, Pr+1, 8k+1

7: end procedure

1.3.3 Limited Memory Quasi-Newton (QIN) Methods

QN methods [35] are iterations based on the standard Newton-Raphson iteration for solving
nonlinear systems g(x) (or minimizing nonlinear functions f(x), depending on the context).
The expensive evaluation of the Jacobian (or Hessian) matrix at each iteration is replaced
with a low-rank update of a matrix approximation based on a secant condition. The
quadratic rate of convergence of Newton’s method is traded for super-linear convergence,
with the hope that the approximation results in a significantly lower per iteration cost.

Limited memory QN iterations aim for further savings in storage requirements and work
per iteration by expressing the matrix approximation in terms of an initial matrix (often
diagonal) and at most m vector pairs. In this way the full matrix approximation does not
need to be formed or stored to compute matrix-vector products. We describe two limited
memory QN methods in the remainder of this subsection: one based on the good Broyden
update for solving nonlinear systems (L-Broyden), and one based on the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update for minimizing nonlinear objective functions (L-BFGS).

The L-Broyden Update

We first describe the general good Broyden update for standard QN methods, then give
the limited memory variant. When considering a nonlinear system g(x) = 0, we denote an
approximation to the Jacobian matrix by Ay, and define the vectors s, = x;11 — X and
Vi = 8ri1 — 8 |35]. Broyden’s good update minimizes the change in the affine model

M1 (X) = Gr1 + Appr (X — Xpq1)

between iterations, subject to the secant equation
Ay 1Sk = Yi
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The resulting rank-one update is

(Yk - Aksk)S;

Appr = A+ T

) (1.9)

which, by applying the Sherman-Morrison-Woodbury formula [11,90,106], gives the inverse
matrix update

(sk — Ay 'yr)sf AL

A=A+ T (1.10)
An example of one QN iteration in this context is given in Algorithm 8.
Algorithm 8 Quasi-Newton Iteration for Nonlinear Systems
procedure QN(g,xk, A
pPr=—A, g(Xk)
Xpi1 = Xk + QxPk >y determined by line-search

1:
2:
3
4: Sk = Xp41 — Xk

B ¥k = 8(Xpk41) — 8(X%)
6: AL =UA s, v) > U update formula (1.10).
7 return x;, 1, A,;rl
8: end procedure

In the limited memory context, where only a window of m previous vector pairs are
retained, a compact, non-recursive representation of update (1.10) derived in [20] is

A7l = [Ag’“]_l . ([Aék)]_lYk - Sk) (Mk +8] [Agﬂ _lYk> B ST [Ag’“)]_l (1.11)

where

S = [Skfm \ Sk—m+1 ’ T |Sk71]7 (1-12)
Yi = [Yim | Yi-mir | o [ ¥e], (1.13)
and
—s] siq ifi>j
Mp)ij =14 . " : 1.14
(Me)i; {O otherwise ( )

For A[()k) we will typically use a scaled identity matrix. It is this representation that we
will use in the L-Broyden iteration.
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The L-BFGS Update

In the optimization context we use By to denote an approximation to the Hessian and
H,, for an approximation to the inverse of the Hessian. Arguably the most successful QN
update for nonlinear optimization is the BFGS update, that, in addition to enforcing the
secant equation, ensures that By is SPD provided s| ,yx—1 > 0 and Bj_; is SPD [35].

This is a rank-two update given by

iy B Bysi(Bgsg)T

By = By +
" y;Sk SLBkSk

with inverse update

H,. —H, + (s — Hpyr)s +se(se — Hyyw)T (s — Hyyr, Yi)Ses),
+1 = - -

YiSk (Yisk)?

(1.15)

(1.16)

In the limited memory case, given initial Hessian approximation ng) (or H((Jk)) and at

most m vector pairs yy, sg, compact versions of (1.15) and (1.16) are [20]:

k k
B, =B - [B'S, Y] [SZB@ 'Si Ly 1 [SZBS )1

LZ -D; Y,Z
and

=T TE7(F) -1 _R-T ST
H, = H{ + |5, HY,] {R’f (D + ViBo YR Ry ] { : }

-R;' o | |yiHY

where S; and Yy, are as in (1.12) and (1.13), and

D, = diag[s]_, Yk—m,---+Sp_1Yk—1),
(Ly)i; = <Sk—m—1+i)T(Yk—m—1+j) ifi>7
s 0 otherwise

(Rk)i,j — {(Sk—m—1+i)T(yk—m—1+j) if ¢ < ]

0 otherwise

)

It is common to set H(()k = I, where

T
_ Sp1Yk—1
B e —
Yi-1Yk-1
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(1.20)
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v is a scaling factor which attempts to make the size of H(()k) similar to that of the
true Hessian inverse, V?f(x;_;)"!, along the most recent search direction. This helps
ensure the search direction p; is scaled so that a unit step length a4, is acceptable in more
iterations [77]. When working with the inverse L-BFGS update, the product Hygy. defining
the QN direction py, (similar to Algorithm 8) can be efficiently computed by a two-loop
recursion, described in Algorithm 9.

Algorithm 9 L-BFGS Two-Loop Recursion

1: procedure 2LOOP(H(()k), g, Sk, Yi)

2 q= 8k

3 fori=k—-—1,k—2,...,k—m do

4: pi = (yisi)~

5: a; = p;sidq

6: q=4q— &Yy,

7 end for

8 r= Hgk)q

9: fori=k—m,k—m+1,....k—1do
10: B = piyr

11: r=r+ (o — 0)s;

12: end for

13: return r > Contains Hyg;,

14: end procedure

In situations where s| ,yx—1 < 0, there is a damped BFGS variant that ensures the
updated Hessian is SPD [77] by defining

- 1 if sy > 0.1s] Bysy
(0.9s]Bysy)/(siBisk — siyr) if spyr < 0.1s Bysy,

and setting

Y& = Okyr + (1 — 0)Bysy,
which reduces to the standard update for s[y; > 0.1s;Bys;. We use this damping step in
our L-BFGS implementations.

Relationship of BFGS to CG

There are some noteworthy similarities between the CG and BFGS methods being consid-
ered, both for the convex quadratic objective function (1.5) and more general nonlinear
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objective functions. It has been shown for convex quadratic objective functions that the CG
and BFGS iterations are identical when exact line-searches are used [19,76]. Furthermore,
the “memory-less” BFGS method (L-BFGS with m = 1), in conjunction with an exact
line-search, applied to a general nonlinear objective function is equivalent to using NCG
with the Hestenes-Stiefel (HS) or Polak-Ribiére (PR) § formulas (which are equivalent
since g, ;pr = 0 by the exact line-search) [72,77].

1.4 Matrix Manifold Optimization

In this section we introduce the concepts from matrix manifold optimization that we use
to adapt nonlinearly preconditioned optimization methods to the manifold setting. As a
general reference for this section, see [4].

1.4.1 Motivation for Manifold Optimization

As previously noted, the tensor Frobenius norm is invariant under orthogonal transfor-
mations, meaning (1.4) does not have isolated maxima. Furthermore, the orthonormality
imposed on {A(") N_| introduces a large number of equality constraints. However, if we de-
fine the N-tuple of factor matrices to be a point on a Cartesian product of matrix manifolds,
we are able to eliminate both of these issues. We restrict our discussion to Riemannian
manifolds, which are those manifolds that have smoothly varying inner products.

The Stiefel manifold, St(n,p) = {X € R"*?|XTX =1,}, is the set of all n x p or-
thonormal matrices. The Grassmann manifold (Grassmannian), Gr(n,p), is the set of
p-dimensional linear subspaces of R" [39]. In both contexts p < nm. We can represent
Y € Gr(n,p) as the column space of some Y € St(n,p). This Y is not unique: the subset
of St(n,p) with the same column space as Y is YO, := {YM|M € O,}, where O, is
the set of p x p orthogonal matrices. Gr(n,p) is thus identified with the set of matrix
equivalence classes St(n,p)/O, = {YO,|YTY = I,} induced by X ~ Y if and only if
Col(X) = Col(Y). The inner product on these manifolds is (X,Y) = tr(XTY).

If (1.4) is solved over a Cartesian product of Grassmannians, the representative N-
tuples of factor matrices satisfy the orthonormality constraints by definition. Furthermore,
because these matrices represent equivalence classes, the result is an unconstrained problem
with isolated extrema:

max 1||DC-(A(l),...,A(N))H;, (1.23)



where A™ ¢ St(I,, R,) represents A™ € Gr(I,, R,). Expressions for the Riemannian
gradient and Hessian of this objective function can be obtained from their Euclidean equiv-
alents. We refer readers to [40,61|, where these expressions can be found. Once solved,
orthogonal transformation matrices that map representative matrices A to HOSVD bases
are obtained by applying Algorithm 2 to 8.

1.4.2 Directions and Movement on Manifolds

Let M denote an arbitrary manifold. A tangent vector at x € M, denoted ., describes
a possible direction of travel tangent to M at x. The tangent space, T, M, is the vector
space of all tangent vectors at z. A tangent vector at Y € St(n,p) is itself an n x p
matrix, and just as Y can represent ) € Gr(n,p), we can use elements of Ty St(n,p) to
represent elements of 7yGr(n,p). TySt(n,p) may be expressed as Vy @& Hy, where the
vertical space Vy contains directions for movement within the equivalence class ) and
the horizontal space Hy contains directions for movement into new equivalence classes.
Elements of Hy are used as unique representative tangent vectors for points on Gr(n, p):
Vy ={YM|M = -MT", M € RP*?} and Hy = {Z € R"*?|YTZ = 0, }, where the orthogo-
nal projection onto Hy is [4,39]

[Iv=I-YY". (1.24)

Movement along M in the direction of &, is described by a retraction mapping. On
Riemannian manifolds the exponential map describes motion along a geodesic, the curve
connecting two points with minimal length. The exponential map on St(n,p) starting at
Y in the direction &y is

Expy (t&y) = YV cos(Xt)VT 4 Usin(Xt) VT, (1.25)

where &y has compact SVD UXVT. This mapping is expensive to compute, requiring a
SVD and several matrix products. A cheaper, but less accurate retraction is

Ry (téy) = af(Y + t&y), (1.26)

where qf(Z) = Q factor of the thin QR decomposition of Z [4].

Tangent spaces T, M and T, M for x # y are generally different vector spaces, hence
linear combinations of &, € T, M and 7, € T,M are not well defined. By using a vector
transport mapping, we instead find a & € T, M to use in place of &,. Given X € St(n, p)
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and &£x, nx € TxSt(n, p), if & has compact SVD UX VT, the parallel transport of nx along
the geodesic of length ¢ starting at X in the direction of &x is [4]:

Txsex (M%) = <[XV U] {‘C(S):(lgt))t)] U™+ (I— UUT)) x. (1.27)

If &x = nx, this simplifies to

— sin(X¢)

Tx.iex (€x) = [XV U] [ cos(Xt)

} SV
As in the case of retractions, we may also use a cheaper, non-exact alternative. If X, Y €
St(n,p) and {x € TxSt(n,p) are given, a substitute vector in TySt(n,p) is determined
using (1.24) [4]:

Ty (€x) = Iyéx. (1.28)

The direction of travel from z to y cannot be described by a vector y —x: this operation
is not defined. Note, however, that Exp,(-) defines a diffeomorphism from a neighbourhood
U about the origin of T, M onto a neighbourhood U of x. If £, € U implies t&, € U for
t € [0,1], U is a normal neighbourhood of z [4,80]. Exp,(-) is invertible within a normal
neighbourhood of x, and when Exp,(-) is invertible, a tangent vector defining a geodesic
from x to y can be found via logarithmic map. Given X and Y, the tangent vector in
TxSt(n,p) for the geodesic from X to Y is

Logx(Y) = Uarctan(X)VT, (1.29)

where UXVT is the compact SVD of TIx Y (XTY) ™! [93].

For a manifold M = HkN:1 Gr(nk, pr), a Cartesian product of N Grassmannians, ele-
ments are N-tuples of linear subspaces y = ()4, ..., Yn)T, in turn represented by N-tuples
of matrices y = (Y1,...,Yyn)T. The tangent space at y € M is the Cartesian product
of tangent spaces Ty, Gr(ny, pi). The inner product on M is (x,y) = S0 (Xx, Yi). All
other required operations are performed component-wise using the operations defined for
Gr(nk, pr)-

23



Chapter 2

Linear and Nonlinear Preconditioning

We begin this chapter by considering the special case of linearly preconditioned optimiza-
tion methods applied to convex quadratic objective functions. Given the success of these
methods for the quadratic case we then generalize linear preconditioning strategies to in-
corporate nonlinear preconditioners for use in solving nonlinear optimization problems

min  f(x). (2.1)

Finally, we adapt these methods to work for optimization problems defined over matrix
manifolds.

2.1 Linearly Preconditioned Optimization Methods for
Convex Quadratics

In this section we discuss the use of linearly preconditioned iterations for the solution of
the convex quadratic minimization problem

min  3xTAx — b'x. (2.2)

X

The optimality equations of this problem are given by
g(x)=Ax—b=0.

We consider optimization methods that solve g(x) = 0 by some form of fixed-point itera-
tion. For example, one of the simplest choices for solving g(x) = Ax—b = 0 is Richardson
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iteration 63|
X1 = X — 8(Xx) = xx — (Axg — b),

which is equivalent to steepest descent with unit step length, and converges if ||[I — A|| < 1.

Two different preconditioning strategies are described in § 2.1.1 and 2.1.2: we may
either (i) apply a left-preconditioning matrix P to the optimality equations and solve the
left-preconditioned system PAx = Pb; or (ii) introduce a change of variables x = Cz and

~

solve the transformed optimization problem f(z). In § 2.1.3-2.1.5 we discuss how these
strategies define preconditioned GMRES, CG, L-BFGS, and L-Broyden iterations.

2.1.1 Linear Left Preconditioning (LP)

Instead of solving the optimality equations g(x) = 0, we can apply Richardson iteration
to the left-preconditioned optimality equations

Pg(x) =P(Ax—b) =0,

to obtain
Xkl = X — P(AXk — b) (23)

We take a step in direction Pg(x) instead of the gradient direction g(x), and we can
interpret Pg(x) as the preconditioned gradient direction. In the optimization context, this
form of left preconditioning works in general by replacing any occurrence of the gradient
g(x) in the fixed-point iteration (such as Richardson) by the preconditioned gradient Pg(x)
(i.e. we are applying the fixed-point iteration to Pg(x) = 0 instead of g(x) = 0).

Here P could be chosen to be the matrix from any of the stationary linear iterations
commonly used as preconditioners, such as Gauss-Seidel (GS); successive over-relaxation
(SOR); or, since we assume A to be SPD, symmetric GS (SGS) and symmetric SOR
(SSOR). Using the matrix splitting A = D + L 4+ U, SOR is equivalent to (2.3) with
preconditioner

P=w(D+wL)™"

where w € (0,2), with GS corresponding to the particular choice of w = 1. Similarly, the
preconditioner matrix for SSOR is

-1

! bty | (2.4)

w(2 —w)

P=|(D+wUT)
with w = 1 corresponding to SGS.
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2.1.2 Linear Transformation Preconditioning (TP)

By defining a linear change of variables x = Cz for some nonsingular matrix C, we may
rewrite the optimization problem (2.1) as

f(z) = f(Cz). (2.5)
We then apply our original optimization method (e.g., Richardson, CG or L-BFGS) to
(2.5), and transform back to the x variables. In doing so, we employ

V.f(2) = V,f(Ca) = CTVx ().
and observe that in the resulting iteration formula for x, matrices C and CT will appear
along with V, f(x) = g(x). In particular, any products g7(x)g(x) in the iteration formula
will be transformed to gT(x)CCTg(x).

For the specific example of the convex quadratic minimization problem (2.2) and
Richardson iteration, the transformed objective and gradient functions are

flz) = %ZTCTACZ —(C™)"z and g(z) = CTACz — CTb,
with corresponding iteration
Zp11 =z — (CTACz, — C™b),
which gives, upon transforming back to x,
Xpr1 = X — CCT (Ax), — b). (2.6)

If we call the SPD matrix CCT the preconditioner matrix P and take it to be the SGS or
SSOR matrix, we get, for Richardson, the same result as the LP formula (2.3). Given an
SPD preconditioner matrix P, such as for SSOR, we can similarly compute the factorization

P = CCT; in the case of SSOR:
C=w?2-w)D+wU) "DV

An important observation is that for more elaborate optimization methods such as
L-BFGS, the LP and TP approaches may give different results. For example, any scalar
product gT(x)g(x) in the iteration formula will be transformed to g7(x)Pg(x) in the TP
approach, whereas it will become gT(x)PTPg(x) in the LP approach. This difference may
appear subtle, and intuitively the TP approach may appear preferable since it is more
closely aligned with the original optimization problem, but we will see in the preliminary
numerical results for the convex quadratic case, and in the general results after extending
the approaches to nonlinear preconditioning, that both approaches may have their merits
(corresponding also to the findings for nonlinearly preconditioned NCG in [34]).
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2.1.3 Linearly Preconditioned GMRES

As described in [85], GMRES can be effectively combined with left, right or split precon-
ditioning, in each case by applying GMRES (Algorithm 4) to the preconditioned linear
system. Right preconditioning involves defining a change of variables x = Pz to obtain
the transformed system APz = b. When P = LU (linear TP being a specific example)
the split-preconditioned system is UALz = Ub, where x = Lz. There is generally little
difference between the three preconditioning methods, though the different residual formu-
lations may affect the stopping criteria, and when A is symmetric or nearly symmetric the
split preconditioner may produce better results.

2.1.4 Linearly Preconditioned CG

Given that CG would require the matrix PA to be SPD for defining the weighted norm
in which the error is minimized, in general the LP strategy is inappropriate, and thus we
only consider the use of TP for CG. This derivation is well documented in the literature;
see, for instance, [54]. Writing the CG iteration in terms of z,

Zit+1 = Zg + kP,
Pit1 = —8k+1 + Bet1Pr,  Po = —8o,
then converting back to x;, we obtain

Xg+1 = Xk + QpPk,

_ (2.7)
Pr+1 = —Pgri1 + Br1iPr,  Po = —Pgo,
as
~ ___ pig _ piCTClg g _
* " PJCTACP,  p,CTCTACC-'p,  pjAp;
and PN .
B  8r18k+1 81 P8
k+1 — T~ = .
T gl gl Pg;

2.1.5 Linearly Preconditioned QN
L-BFGS Update

LP L-BFGS requires the direct replacement of each gradient g, with the left-preconditioned
gradient Pgy in the components Yy, Dy, Ry, and 7 of (1.18), and in computing the QN
direction pg.
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To derive TP L-BFGS, we write (1.18) for f(z) as

e e RO TR B[ §
i :H(k)—i—[ H(k)Y} p Dk X pHy 7Yy, k|| Sk

where H¥) = 5,I. By examining definitions (1.12), (1.13), (1.19), (1.21), and (1.22), we
obtain the following relationships between original and transformed quantities:

§k = Cilska ?k = CTqu ﬁk = Dka ﬁk = Rlﬁ
and T
/'Y\ S 1Yk—1
k= T oo -
yiz71PYk—1
The transformed QN update equation

Zy = Zip—1 + akﬁk/g\(zkfl)

corresponds to R
Xp = Xp_1 + O./kCHkCTg(Xk_l).

Computing Hy, := CﬁkCT, we have

-7 T -1 _p-T T
H, =7%P + [Sk :Y\kPYk] R T(Di 3 Y PY3 )R, R, } [ Sy ]

“R;! o | |7YP (28)

-~

Solving the preconditioned problem f(z) using L-BFGS is equivalent to solving f(x) with L-

BFGS where H(()k) = 7P, which is essentially the same preconditioning strategy described
for BFGS in [72, § 10.7|, except they omit the scaling factor 7.

L-Broyden Update

Similar to L-BFGS, the LP L-Broyden update simply requires the replacement of each
gradient gy with the left-preconditioned gradient Pgy in the component Y of (1.11) and
in computing the QN direction pg.

To derive the TP L-Broyden update we write (1.10) in terms of z to obtain:

~ ~ -1 —~ -1 < ~ o~ —~ ~ —
A=A - ([Agﬂ Y, - sk) (Mk +81 A

1

P P PR |
%) siar]”
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-1
where [A(()k) } = 7kL. Recalling the definition (1.14) for i > j

(My);; = —8]18;-1 = =8, (CCT) 's;1 = gl_;s;-1,
where the last equality follows from (2.6). As before,
X = X1+ OékCKEICTg(kal)y

thus the inverse matrix update is

—~ o~ -1
ALl = CAL'CT =5,P — (5PY, — Sy) (My + iSTY) ) Sk (2.9)

~ 1
Compared to the L-BFGS case, this is not a full replacement of [A[()k)} by 7xP: only two

of the instances involve P, the remaining two only require 7.

2.1.6 Illustration of Linear LP and TP Methods

To illustrate the different preconditioning possibilities, we solve (2.2) corresponding to a
finite difference discretization of the 2D Poisson equation

Uy + 1y = 2[(1 = 62%)y*(1 — y*) + (1 = 6y*)2*(1 — %)), (z,y) €[0,1] x [0,1],

with homogeneous Dirichlet boundary conditions and mesh spacing dz = dy = 1072,
resulting in a problem with 9801 unknowns. We solve this problem using GMRES, CG,
L-BFGS, L-Broyden, and their preconditioned variants using SGS or SSOR, the latter with
w = 1.9. The QN methods use a window size of m = 5. For all methods but GMRES we use
the exact step length for quadratic problems from Algorithm 6. To precondition GMRES,
L-BFGS and L-Broyden we consider both LP and TP strategies. Residuals are scaled by
the number of unknowns, and preconditioned GMRES results are scaled to have the same
initial residual as the rest of the methods. These results are presented in Figure 2.1, the left
panel containing results for SGS preconditioning and the right for SSOR preconditioning.

Non-preconditioned CG and L-BFGS have essentially identical convergence histories,
as expected from the discussion of § 1.3.3, whereas L-Broyden in fact does not converge for
this problem, illustrated by the irregular oscillations of the scaled residual norm value. The
GMRES plots are slightly better than the CG and L-BFGS plots for both preconditioned
and non preconditioned variants, with very little difference between the TP and LP GMRES
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results. The TP-L-BFGS overlap the PCG plots for both SGS and SSOR. Larger differences
are observed for the LP-L-BFGS methods, more-so for SGS than SSOR, indicating that
preconditioning based on variable transformation is the more effective approach. For L-
Broyden it is interesting to observe that preconditioning enables the iterations to converge,
although the residual curve is still very oscillatory for SGS based preconditioning. When
using SGS the TP-BROY method is somewhat more effective than the LP version, whereas
for SSOR this is reversed, with LP-LBROY coming close to the PCG results. Finally,
echoing the fact that the SSOR convergence rate is provably better than the convergence
rate of SGS [108,109], we see that SSOR is clearly a better choice of preconditioner.

Ar Bl

Scaled Residual Norm
Scaled Residual Norm
&

—*—CG —x— CG

6 | |——PCG-SGS —+—PCG-SSOR
—— GMRES 7t —— GMRES
—4— TP-GMRES \ —o— TP-GMRES

7 | —e—LP-GMRES ol \E {EY —6— LP-GMRES
——LBFGS Q o, P —— LBFGS

g | |—— TP-LBFGS-SGS o Qg —o— TP-LBFGS-SSOR
—o— LP-LBFGS-SGS or o N o —6— LP-LBFGS-SSOR
——LBROY K 3 ——LBROY

9 |—o— TP-LBROY-SGS 0 %) R R —6— TP-LBROY-SSOR
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Figure 2.1: Results for GMRES, CG and QN methods using SGS (L) and SSOR (R) based

preconditioners.

2.2 Nonlinear Preconditioning Strategies

Having described linear preconditioning strategies for minimizing (2.2), we now consider
how to generalize the linear LP and TP strategies to nonlinear preconditioners for more
general nonlinear optimization problems (2.1). We first discuss nonlinear preconditioning in
general, before describing nonlinearly preconditioned NCG, NGMRES, and QN methods.
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2.2.1 Nonlinear Left Preconditioning (LP)

To generalize the linear LP approach to nonlinear preconditioning, we replace the optimal-
ity equation g(x) = 0 with a nonlinearly preconditioned optimality equation

P(g;x) =0.

We require solutions of g(x) = 0 to also be solutions of P(g;x) = 0. The notation
P(g;x) emphasizes that P is related to solving g(x) = 0. In the convex quadratic case,
P(g;x) = Pg(x) = P(Ax — b). In the nonlinear case P(g;x) is generally derived from a
nonlinear fixed-point equation x = Q(g;x), in which case we write

P(g;x) :=x — Q(g;x). (2.10)
Given an iteration xj1 = Q(g;xx) = X — P(g; Xx), we see that

P(g;Xk) = Xp — Xpy1

is the (negative) update direction provided by the iteration, and for a suitable Q(g;xy)
it should be an improvement on the direction provided by the gradient, g(x). In analogy
with the linear case where P(g;x) = Pg(x), we interpret P(g;x) as the preconditioned
gradient direction. By applying an optimization method with iteration xj ;3 = M(g;xx)
to P(g;x) = x — Q(g;x) = 0 instead of to g(x) = 0, we obtain the nonlinearly left-
preconditioned optimization update

Xpi1 = M(P(g;); x).

This means, in practice, that all occurrences of g(x) in M are replaced by P(g;x) in
the LP approach, as in the case of nonlinear left-preconditioning for nonlinear equation
systems [18]. An important difference in the optimization context, however, is that we
continue using the original f(x) and g(x) in determining the line-search step « for methods
like CG or L-BFGS, so the gradient g(x) used in the line-search is not replaced by P(g; x).

2.2.2 Nonlinear Transformation Preconditioning (TP)
To extend linear transformation preconditioning to nonlinear preconditioning, consider
the iteration formulas derived in § 2.1 using the linear change of variable x = Cz. All

occurrences of P = CCT in the resulting iteration formulas for x appear in front of g(x),
and we simply replace the linearly preconditioned gradients Pg(x) by the nonlinearly
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preconditioned gradients P(g;x). This is a natural extension of linear TP to the nonlinear
case, with the nonlinear extension reducing to the usual linear preconditioning for nonlinear
optimization when P(g;x) is chosen as CCTg(x) [54, 72|, and, in the specific case of the
NCG method, to the well-known formulas for linearly preconditioned CG for SPD linear
systems when the objective function is convex quadratic [34].

2.2.3 Multiplicative Composition

A third variant for nonlinear preconditioning, which applies to NGMRES, is the multi-
plicative composition of solvers, in which method N is used as a nonlinear accelerator of
the iteration xx11 = Q(g;xx). As discussed in [18], multiplicative composition of solvers
N and Q can be written as

Xp+1 = N(g; Q(g§Xk))-

An example of multiplicative composition is presented in the following subsection, where
NGMRES is used to accelerate a fixed-point iteration.

2.2.4 Nonlinearly Preconditioned NGMRES (NPNGMRES)

NGMRES, as described in Algorithm 5, can be written as xx.1 = N (g; Q(g;xx)), where
Q(g; xx) = X — 1kE(Xx) is the steepest descent preconditioner. Rather than generate the
tentative iterate Xj; by gradient descent, we can use a more general nonlinear precondi-
tioner @ and replace X1 = X, — apg(xy) with X;,1 = Q(g;xx). This is the approach
that has been used in [32,45,104,105,107|. As explained in [32,105], when g(x) = Ax—b
and Xz11 = x;, — P(Ax;, — b) (e, Q(g;xx) = xx — P(Ax;, — b)), NPNGMRES reduces
to right-preconditioned GMRES, i.e. GMRES applied to APy = b where Py = x. One
iteration of NPNGMRES is described in Algorithm 10.

2.2.5 Nonlinearly Preconditioned NCG (NPNCG)

Ideas of using a nonlinear preconditioner with NCG have been around since the 1970s
[10,27,73], but it has not been widely explored. The paper [34] systematically studied a
NPNCG iteration in the optimization context. In the nonlinear LP framework (as in [18]),
given the preconditioning iteration x;,1 = Q(g;Xy), we define

g, = P(g;xx) = xp — Q(g; Xx),
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Algorithm 10 Nonlinearly Preconditioned NGMRES

1: procedure NPNGMRES(g, Xt —m+1,-- -, Xk)
2 X = Qg xx)

— k —
3 Solve ||g(Res) + S s Ai(8(Rui1) — g(x;))|| for B
k _
Pr = Zj:k—m+1 B (X1 — ;)
Xpi1 = Xkt1 + QxPk >y determined by line-search

4
)
6: return x4
7: end procedure

and replace every instance of g; by g, to obtain the LP NPNCG iteration

X411 = Xk + 0Pk,

B _ B (2.11)
Pi+1 = —8j11 + Br+1Pr,  Po = —8o-
The corresponding 8 formulas are:
_T —
a 2.8
_T J—
SHS 8r11Yk
= 28R 2.13
k+1 y;pk ( )
AR
SHZ — Yi k41
= | ¥r — 2Pr— == 2.14
s ( g YIPK > Y Pk (2.14)

where ¥, = 811 — 8-

To obtain the TP NPNCG iteration, we replace each Pgy. in (2.7) with our precondi-
tioner direction g, obtaining (2.11) again. To obtain the TP [ formulas corresponding
to (1.6-1.8), we recall that the products of g'g transform to gTCCTg under the linear
transformation x = Cz. This becomes gTg when using the nonlinear TP preconditioner,
resulting in the following alternatives that incorporate both g; and g;:

gT Yk
Bty = ST (2.15)
k
gT Yk
B, = e (2.16)
k
T T T
1z  Sr+1Yk T YiYk
pHZ — — 2pT g1 . (2.17
LT yIps RN (yipr)? )
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The LP and TP versions of NPNCG have been considered previously in [34]. It was

observed there numerically that the TP B update formulas can give better results than the
LP B formulas obtained from nonlinear left-preconditioning.

2.2.6 Nonlinearly Preconditioned QN (NPQN)
L-BFGS Update

LP NPQN iterations are obtained by applying QN update formulas to P(g;x) = 0. For
L-BFGS we continue to use (1.18) as our inverse Hessian approximation, defining g, =
P(g;xx) and ¥, = 8,1 — 8- We replace each instance of g, with g, and each instance of
yr with ¥, (preserving the symmetry of Hy) to obtain

i = ~ w1 |Re D+ %Y YR, R, Sk
Hy = + [Sk %Yk] [ —I_{,Zl 0 %?Z ; (2.18)
where
?k = [yk—m ’yk—m—i—l | o |yk—1]7 (219>
Dk = diag[sz—myk—nw cee 752—1%@—1]7 (220>
= 1 8) Fpmrsy) <
(Rk>7,7j — (Sk 1+) (Yk 1+]> e .] (221>
0 otherwise
and —
~ Sp_1Yk—1
Y271Yk—1

If we instead start from the linear TP L-BFGS update (2.8) and replace each Pgy, with g,
and each Py with y,, we obtain for the TP NPQN iteration

R, "(Di + 3 Y[ Y1) R, —RET} [ Si

H =3 P(g;xi) + [Se AKY kole (223
k(gk) Y P(g: xx) [k Yk k} ”kaﬂ gk ( )

-R;! 0
where .
~ St _1Yk—1
Y= 2 (2.24)
Yi—1Yk—-1

The quasi-Newton search direction p; = —ﬁkgk for LP, and p; = —ﬁk(gk) for TP.
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L-Broyden Update

To simplify equations we assume the initial approximation of the inverse Jacobian has the
form [A((Jk)]_1 = 0,1, for some scaling factor ¢;. Similar to L-BFGS, the nonlinear LP
variant is obtained by replacing g with g, = P(g;xx) throughout (1.11) and Algorithm
8, resulting in

A=, (1 — (0. % — S) (M + 10, Y) s;) . (2.25)

The idea of applying Broyden’s method to a fixed point equation has previously been
discussed in [45], though in the context of nonlinear systems of equations rather than
optimization.

If we instead take the linear TP L-Broyden update (2.9) into consideration and replace
Pg;. with g, and Py, with y,,, we obtain the operator

A (gr) = 6k (P(gk§ Xpy1) — (0 Y — Si) (Mg + QkSZYk)_l SLgk> : (2.26)

where

M) = )
(M) 7 0 otherwise

As a final note, both (2.23) and (2.26) combine information from the gradient and
preconditioner directions, resulting in some additional storage and computational costs
when compared to the left-preconditioning approaches of (2.18) and (2.25).

2.3 Nonlinearly Preconditioned Optimization Methods
on Matrix Manifolds

Bold lowercase letters now represent n-tuples of matrices; e.g., x, = (A,E}), e ,A,(:))T. We
define the preconditioner direction to be g, = —Log, (Q(g;xx)) (see (1.29)), the negative
of the tangent vector at x;, defining the geodesic to Q(g; xx).
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Algorithm 11 Manifold NPNGMRES

1: procedure MANNPNGMRES(f,g, Xr—mi1,-- - Xg)
2 X = Qg xx)

3 Solve [[g(Ri) + h i Bi(8®01) = Tevua (86))) | for B
Pk = = Y5 k1 Bil08s, . (X))
Xpp1 = Rg, . (axpr) > ay, determined by line-search

4
)
6: return x4
7: end procedure

2.3.1 Manifold NPNGMRES

A number of changes are required to adapt NPNGMRES to the manifold context. To
linearize g(x) = grad f(x), the Riemannian gradient of f(x), we use [4,40]

k
g(Xit1) ~ g(Xir1) + Y BiHess f(Xe)[€)], (2.28)
j=k—m+1
where §; = —LogikH(xj). This requires a known expression for the Riemanning Hessian,

Hess f(x), as well as k + 1 evaluations of Hess f(x) applied to a tangent vector. We may
approximate the action of Hess f(x) by adapting the approach from [32]:

Hess f(Xk11)[65] = 8(Knt1) — Txin (8(%)), (2.29)

where vector transport (see (1.28)) is applied to the past gradient. The search direction
Pr+1 is computed as the linear combination of tangent vectors at X 1:

k
Pi+1 = — Z ﬁjLOgikH(Xj)'

j=k—m+1

The line search is carried out along a retraction starting at X;, ;1 in the direction of psy.
This process is described in Algorithm 11.

2.3.2 Manifold NPNCG

The manifold NPNCG iteration is
Xp4+1 = ka (apk)v

- _ (2.30)
Pi+1 = — 841 T+ ﬁk+17;ck+1(pk)a Po = —8o-
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The line search is carried out along the retraction curve Ry, (-) (see (1.26)), and py41

requires vector transport of p, using ’ﬁk ., (-). The § formulas become

(8ri1> Vi)
— —, 2.31
B = e 20, T @) (231)
2HS <§k+1’yk>
= ) 2.32
e = G T o)) (2:32)
SHZ (Vi 8rs1) 2 (&hi1s Txpsr (Pr))
= —— , 2.33
= G T T S T oy (233)
where y, = ;.1 — Tx,,,(8;)- Similarly,
(8kt1,Y5)
= ) 2.34
P = 80 T @) (234)
SHS (8k+1, )
_ 7 2.35
6k+1 <Yk7 7;k+1 (pk» ( )
/3k+1 o <gk+l>yk> <7;k+1(pk)7gk+1><yk7yk> (2.36)

<Yk7 7;k+1(pk’)>

where yr = gr11

i T (PR))?

— Txx.1(8k). The manifold NPNCG algorithm is given in Algorithm 12.

Algorithm 12 Manifold NPNCG

procedure MANNPNCG(g(+), Xk, Pk, &)

Ry, (0xPr)
—Log,, ,, (Q(g; Xk+1))

Xk4+1 =
i1 =

Pr+1 = —8pp1 + B T (PE)
return Xyi1, Pr+1, 8k+1
end procedure

1:
2:
3:
4: Compute 8, by one of (2.31-2.36)
5
6
7

>y determined by line-search

2.3.3 Manifold NPQN

As in the previous two cases, the line-search is carried out along the curve defined by
the retraction Ry, (-) (see (1.25)). Furthermore, the vectors sy, yi and ¥, require vector

transport (the parallel transport variant (1.27) is used here).

NPQN is described in Algorithm 13.
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Algorithm 13 NPQN on Manifolds

1: procedure MANNPQN(f, g, %, Sk, Y, Yi)

2: g < 8(xx)

5 g, —Log, (Q(x)

4: compute p;, by (2.23) or (2.26)

5: Xp1 < Rx, (ouPy) >y determined by line-search
6

7

8

9

gri1 = g(Xk41)
[ _Logka(Q(XkJrl))
Sk = ﬂk’akﬁk (O‘kﬁk)
C Ve = 8kt — Txpanp, (81)
10: Yi = gk+1 - 7;1@7041@@6 (gk) . .
11: update Si to Sgi1, Y to Y1, and Yi to Yiy
12: return Xy 1, Spt1, Yist, Ykt
13: end procedure

In most of this algorithm we work with tangent vectors as N-tuples of matrices. Two
exceptions are in line 4, where we compute the search direction, and line 11, where we
update the storage matrices. To use (2.23) or (2.26) the tangent vectors g, and g, are
converted into 1D arrays by vectorizing each factor matrix column-wise and vertically
concatenating the results. Once the search direction is computed this process is reversed
to produce the tangent vector p; for use in the retraction. Similarly, before the updates in
line 11 the tangent vectors s, yx, and y, must also be vectorized. When updating S, Y
and Y, in the manifold context, the proper approach is to parallel transport these matrices
to Xj41 before appending the new column, as described in (89, § 7.1]. However, transport
of these matrices can be computationally expensive, and the savings of omitting this step
may significantly outweigh the cost of an increase in iteration count resulting from this
change.
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Chapter 3

Numerical Results

In this chapter we present numerical results that illustrate the efficacy of the nonlin-
early preconditioned optimization methods developed in Chapter 2. § 3.1 uses the Tucker
HOSVD ATD problem to compare (i) manifold NPNGMRES with exact and linearized
Hess f operators, and (ii) manifold NPNCG with different 8 parameters. Tests for Eu-
clidean NPNCG and NPNGMRES using the CP ATD problem have previously been per-
formed by other authors in [32,34], hence these tests are not repeated here. Next, in § 3.2
we compare the best variants of NPNGMRES and NPNCG to the L-BFGS and L-Broyden
NPQN methods, using the CP ATD problem for optimization over standard Euclidean
space and the Tucker HOSVD ATD problem for optimization over matrix manifolds. In
both contexts we consider multiple choices of line-search, window size, and nonlinear pre-
conditioner for the NPQN methods.

3.1 Comparison of Manifold NPNCG and NPGMRES
Methods

All tests within this section were implemented using Matlab R2010a on an Intel Core
17-2630QM computer with 8GB of RAM, using the Tensor Toolbox (V2.5) [7,8] and the
ManOpt Toolbox (V1.0.7) [14] for tensor and manifold computations, respectively. Man-
ifold NPNCG and NPNGMRE, were used to compute Tucker HOSVD ATDs for order-3
tensors by minimizing

%HDC-(A(”,...,A(N))HQF (3.1)
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on a Cartesian product of three Grassmannians. These methods were nonlinearly precon-
ditioned by using a forward HOOI sweep (Algorithm 3) as Q(g;x). As matrices returned
by @ have orthonormal columns, they correctly define a point on the manifold.

The gradient of (3.1) can be written as a matrix triplet. All computations in NPNCG
are well defined using matrix triplet vectors. NPNGMRES requires vectorization when
forming the least squares system: to vectorize a matrix triplet each component matrix is
vectorized and then concatenated vertically. Truncated HOSVD (Algorithm 2) was used
to generate initial matrix triplets. NPNGMRES used a maximum window of m = 25
past iterates. These algorithms used a version of the Moré-Thuente line-search from the
Poblano Toolbox (v1.0) [37,75] modified to carry out the search along a retraction curve.
We provide functions for the cost and Riemannian gradient, as well as for the retraction,
inner product, and norm. The MT line-search is designed to compute a step that satisfies

Sufficient Decrease:  f(x) + stp - px) < f(xx) + ftol-stp- (glpk), (3.2)
Curvature: |gT(x), + stp - pr)Pr)| <= gtol - |g]pk|. (3.3)

We use the same line-search parameters as in [32,34], which we record in Table 3.1.

Parameter Description Value
ftol Tolerance for (3.2) | 107
gtol Tolerance for (3.3) | 1072

max_it Maximum iterations 20
init_stp | Initial step length 1.0

Table 3.1: Moré-Thuente Line-Search Parameters

Successful termination occurred when ||gg || » < tol-|f(xy)|, where tol = 10~". Note that
NCG and NPNCG convergence stalls when ||g||,» /|f(x)] &~ 1077, which is a well known
phenomenon that can be explained by a loss of accuracy in the linesearch step, where
the Wolfe sufficient decrease condition (3.2) is checked [53]. When recording computation
time, we omitted time spent checking the termination condition for all methods because
less expensive stopping criteria may be used in practice. If NPNGMRES produced an
ascent search direction, we restarted by discarding all past iterates and using the negative
of the ascent direction. NPNCG methods are restarted by setting 8 = 0 every 50 iterations.

We considered three test problems. Each problem compared manifold NPNGMRES
and NPNCG to four existing methods: HOOI [30], manifold NCG [60], manifold L-BFGS
(non-preconditioned) [89], and the manifold trust region (TR) solver from the Manopt
toolbox (V1.0.7) [3,14,61]. For L-BFGS we used the same termination conditions and
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set m = 5. The TR solver used the default finite difference Hessian approximation [13],
due to the computational cost of evaluating the exact Hessian, and the default parameters
prescribed by the code’s authors, which are summarized in Table 3.2.

Parameter Description Value
A Maximum trust-region radius (>, rank, (X))'/2
Ao Initial trust-region radius A/8
K tCG linear convergence target rate 0.1
0 tCG superlinear convergence target rate 1.0
o Accept/reject threshold 0.1

Table 3.2: Trust Region Parameters

Problem 1.

For the first problem, we generated synthetic tensor data with specified size, multilinear
rank, and level of noise. Similar tests have been considered in [23,40,61,102|. Given a
Tucker tensor X € RI*! with multilinear rank (R, R, R), such that 8§ has standard normal
distributed entries and each A(™ has orthonormal columns, test tensors are obtained by
adding noise to X. As in [34], given N; and N, with entries from the standard normal
distribution, N (0, 1), homoskedastic and heteroskedastic noise were added according to

X' =X+ b X[l N; and X' =X+ b X'l

Ny x X' (3.4
100 — £, [Ny 100 — €5 [No + X2 34

respectively, with final test tensor X”. Parameters ¢; and {5 control noise levels: ¢; = 0
corresponding to no noise and ¢; = 50 corresponding to noise of the same magnitude as X.

We considered the two parameter combinations (I, R,/;,¢;) = (60,20,10,10) and
(120,40, 10, 10), running 10 trials for each combination. Each trial involved computing
rank (R, R, R) ATDs for an X" obtained from X and new noise tensors N; and Na. Re-
sults from HOOI, L-BFGS, TR, and NCG are compared to NPNGMRES using (2.28) or
(2.29) and NPNCG using one of the six § formulas (2.31-2.36). Upper limits of 2000 iter-
ations and 1500 seconds computation time ensured all algorithms eventually terminated.

The minimum, median, maximum, and mean times-to-solution and iteration counts are
recorded in Tables 3.3 and 3.4. For the smaller test tensor (Table 3.3) we see that, with
the exception of L-BFGS and NPNGMRES using (2.28), all methods outperformed HOOI
in terms of time required. L-BFGS mean and median times are approximately the same
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Time Tterations
Min | Med | Max | Mean | Min | Med | Max | Mean

HOOI 3.13 | 519 | 952 | 5.62 | 106 | 172 | 310 186
L-BFGS 3.84 | 532 | 9.12 | 540 | 79 98 | 181 105
TR 1.73 | 2.39 | 486 | 2.74 14 19 27 20

pPE 1174 | 225 | 3.74 | 239 | 74 86 | 181 101

NCG pHS | 157 | 2.09 | 3.75 | 2.33 | T4 86 | 181 101

pHZ | 154 | 219 | 4.03 | 2.36 | T4 86 181 101

BPR 1191 | 290 | 323 | 280 | 35 | 46 | 56 | 47
BHS | 193 | 291 | 354 | 288 | 35 | 46 | 56 | 47
NPNCG | 87 | 192 | 2.85 | 355 | 2.85 | 35 | 47 | 56 | 48
BPE 1 175 | 262 | 317 [ 261 | 31 | 43 | 53 | 44
BHS | 179 | 276 | 342 | 270 | 32 | 44 | 55 | 45
BHZ | 254 | 3.67 | 19.99 | 5.79 | 49 | 65 | 395 | 107

(2.28) | 10.42 | 16.56 | 29.89 | 16.93 | 25 33 45 33
(2.29) | 1.68 | 2.51 | 3.70 | 2.52 | 21 30 45 30

NPNGMRES

Table 3.3: Problem I. Results for test case 1: (I, R, ¢1,¢3) = (60,20, 10,10). (Bold entries
indicate the lowest time to solution for the existing and newly proposed methods.)

as HOOI, whereas NPNGMRES times were approximately three times larger than those
for HOOI. The slowness of NPNGMRES using (2.28) is unsurprising, as the evaluation
of Hessian-vector products is computationally expensive. Among the methods faster than
HOOI, TR was second only to NCG in terms of time required. The three NCG variations
gave near identical results in terms of time and iteration count. These were followed by
NPNGMRES using (2.29) and NPNCG using 3% or 459 all of which significantly reduced
the HOOI iterations required for convergence (viewing these methods as accelerators for
HOOI). An interesting observation is that NPNCG using ﬁH Z exhibited significantly worse
performance than the other two ﬁ methods, whereas the three 6 variants exhibited very
similar results.

For the larger test tensor (Table 3.4), once again NPNGMRES using (2.28) and L-BFGS
are the slowest non-HOOI methods. While L-BFGS is faster than HOOI in this case, it
still lags behind the other methods significantly. TR significantly outperformed the other
methods in terms of time-to-solution. It is followed by NPNCG, where the § formulas
produce fairly similar results, with the exception of $#%, which exhibited significantly
slower convergence. NPNGMRES using (2.29) was slower than NPNCG, except when 377
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Time Iterations
Min Med Max Mean | Min | Med | Max | Mean

HOOI 20.99 | 3691 | 95.68 | 40.54 | 287 | 506 | 1322 | 5358
L-BFGS 25,77 | 32.84 | 41.03 | 32.71 | 139 | 180 | 222 180
TR 6.85 | 11.99 | 18.11 | 11.99 | 21 33 20 33

pPE | 11.52 | 18.20 | 23.46 | 17.82 | 130 | 210 | 253 198

NCG pHS | 11.61 | 18.43 | 24.66 | 18.01 | 130 | 209 | 266 199

pHZ | 1152 | 18.39 | 25.70 | 18.06 | 130 | 209 | 272 | 200

BPR T 1114 [ 1581 | 1949 [15.43 [ 58 [ 90 | 114 | 87
BHS | 10.88 | 16.28 | 19.94 | 1570 | 57 | 90 | 114 | 87
NPNCG | 8771091 | 1615 | 19.29 | 1573 | 56 | 91 | 113 | 88
GPR 11197 [ 15.23 | 21.02 | 1579 | 64 | 86 | 125 | 89
BHS | 12,60 | 15.46 | 22.16 | 16.13 | 66 | 87 | 130 | 90
GH7 | 17.53 | 23.48 | 37.33 | 25.17 | 98 | 139 | 243 | 152

(2.28) | 295.01 | 391.00 | 573.67 | 406.35 | 64 79 122 82
(2.29) | 1349 | 16.98 | 25.23 | 18.38 | 52 68 102 71

NPNGMRES

Table 3.4: Problem I. Results for test case 2: (I, R, (1, {5) = (120, 40,10, 10). (Bold entries
indicate the lowest time to solution for the existing and newly proposed methods.)

was used. For this problem NCG, while still significantly faster than HOOI, lagged behind
the preconditioned methods.

Overall, the results for this synthetic test problem are promising: the best of the new
manifold NPNCG and NPNGMRES methods outperform the existing HOOI and L-BFGS
methods, and are competitive with the existing TR and NCG methods, which can be
somewhat faster. In the following tests we will see that for more difficult test tensors
(noisy and of larger size) accurate results can be obtained by NPNCG and NPNGMRES
methods much faster and more robustly than for all other existing methods considered.

Problem I1I.

The second problem used the AT&T Database of Faces [87], a collection of 400 images (40
subjects with 10 images each) that has been previously used as test data in [23,103,110].
Images for a given subject feature varying lighting, facial expressions and facial details.
10 images from a single subject, each 92x112 pixels with 256 grey levels, were used to
create a 92 x 112 x 10 tensor X with entries scaled to lie within [0, 1]. Noise was then
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Figure 3.1: Problem II. Sample convergence histories based on AT&T face input data:
noise-free (left) and noisy (right).

added according to X' = X + 0.2%3\(, where the entries of N were drawn from A(0,1).
We computed rank-(30,35,8) HOSVD ATDs of both X and X’ using the six algorithms
from Problem I, restricting NCG and NPNCG to %5 formulas and NPNGMRES to (2.29).
Upper limits of 250 iterations and 1500 seconds were enforced. Sample convergence histories

in terms of time required are presented in Figure 3.1.

A striking result is that NCG, L-BFGS, and TR all failed to converge within a rea-
sonable amount of time, compared to the other methods. One potential explanation is
that initial points from truncated HOSVD may have been too far from the minima for fast
convergence. In [89] the authors used 5 to 50 iterations of HOOI to refine initial points
before using their BFGS QN methods. To test this hypothesis the experiment was repeated
ten times for different X', using 20 iterations of HOOI to provide a refined initial point
for NCG, L-BFGS, and TR. The time (including the 20 refining HOOI), iteration count
(excluding the 20 refining HOOI), and scaled gradient norm for each trial are recorded
in Table 3.5. These results show that, in spite of the improved initial point, NCG and
L-BFGS both failed to converge within 250 iterations for all recorded attempts. Indeed,
the oscillations present in the NCG and L-BFGS plots of Figure 3.1 still occur, only at
lower scaled gradient norm values. While TR does converge, it much longer than HOOI, let
alone the newly proposed methods. However, as the Manopt trust region method is generic
in scope, we may be able to obtain significant improvements in efficiency by adapting it
and its parameters specifically to the HOSVD ATD problem. However, we expect that an
efficiency-minded implementation is not likely to eliminate the gap observed between TR
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Trial

1 2 3 4 5 6 7 8 9 10
Time 5.85 6.17 3.12 10.70 | 7.42 | 13.49 9.31 10.50 | 6.91 9.88
HOOI Iter 121 131 55 215 149 250%* 193 225 145 210

S. Grad | 9.7e-8 | 9.9e-8 | 9.6e-8 | 9.9e-8 | 9.7e-8 | 5.0e-7 | 9.7e-8 | 9.9e-8 | 9.9e-8 | 9.9e-8
Time 3.02 3.53 2.19 3.94 4.02 7.49 3.87 4.65 2.96 4.83
NPNGMRES Tter 24 27 15 32 29 53 32 35 25 36
S. Grad | 6.9e-8 | 5.6e-8 | 9.4e-8 | 8.5e-8 | 5.1e-8 | 7.4e-8 | 5.4e-8 | 7.7e-8 | 7.9¢-8 | 8.8e-8
Time 2.97 3.00 2.30 3.52 3.79 6.10 3.38 4.22 2.99 4.25
EHS NPNCG Tter 34 35 21 39 40 66 38 48 34 47
S. Grad | 8.8¢-8 | 7.5e-8 | 2.6e-8 | 9.7e-8 | 8.4e-8 | 3.6e-8 | 7.8e-8 | 7.9e-8 | 9.2e-8 | 9.0e-8
Time 2.82 2.99 2.22 2.85 3.46 4.90 2.87 3.74 2.64 4.02
BHS NPNCG | Iter 32 32 20 32 34 48 32 42 30 45
S. Grad | 8.5e-8 | 9.0e-8 | 8.3e-8 | 9.7e-8 | 7.9e-8 | 6.2e-8 | 6.3e-8 | 1.0e-7 | 6.9¢-8 | 8.9e-8
Time 8.33 8.91 9.11 9.15 8.95 9.57 8.25 8.30 8.38 8.31
BHS NCG Iter 250% | 250* 250* 250% | 250* | 250%* 250%* 250% | 250* | 250%*
S. Grad | 1.7e-5 | 5.6e-5 | 2.2e-6 | 1.4e-5 | 1.6e-5 | 3.3e-5 | 2.0e-5 | 9.4e-6 | 7.2e-6 | 2.2e-5
Time 17.51 | 21.10 19.09 20.26 | 18.75 | 18.11 17.96 17.43 | 17.75 | 18.87
L-BFGS Iter 250*% | 250* 250* 250% | 250* | 250%* 250* 250% | 250* | 250%*
S. Grad | 4.5e-5 | 7.2¢-5 | 1.5e-5 | 2.5e-5 | 4.1e-5 | 1.4e-4 | 5.0e-5 | 4.4e-5 | 6.4e-5 | 5.0e-5
Time | 28.94 | 33.13 | 21.76 | 47.53 | 40.64 | 77.78 | 40.78 | 48.05 | 28.53 | 50.94
TR ITter 11 8 3 8 15 21 9 18 9 18
S. Grad | 4.2e-9 | 8.5e-9 | 4.3e-10 | 2.3e-9 | 6.6e-9 | 2.1e-9 | 3.3e-10 | 2.7e-8 | 6.0e-8 | 2.3e-9

Table 3.5: Problem II. Results for noisy AT&T face data. (Asterisks denote runs which did
not converge within iteration or time limits. Initial 20 HOOI iterations for NCG, L-BFGS
and TR not included in iteration count, but included in total time.)

and the newly proposed methods.

In the noise-free case (not included in the table), the NPNCG and NPNGMRES itera-
tions converge in roughly the same amount of time, with HOOI being slightly faster. Once
noise was introduced in X', the situation was reversed, with NPNGMRES and NPNCG
converging significantly faster than HOOI and the other methods. In this particular case,
NPNCG using 6HS was the fastest in nine of ten cases, followed by BHS and NPNGM-
RES, which generally required similar amounts of time. To quantify how well the ATD X
represents X, we use the ratio R

X[ = 112 = K e
[1X]| ’

where values near 1 indicate close agreement. For the noise free input tensor, X, the ATD
of X had a fit of 0.9492. The fit relative to X dropped to 0.9312 for the ATD of X,

indicating that while a portion of the noise can be removed, a loss of accuracy still occurs.
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Figure 3.2: Problem II. From top to bottom: input tensor image, image from the ATD,
input noisy tensor image, and image from the ATD of noisy tensor.

This is illustrated in Figure 3.2, where we show, from left to right, the 10 different facial
expressions corresponding to, from top to bottom, X, the ATD of X, X', and the ATD of
X'. Approximations from X are somewhat blurred, reflecting a loss of fine detail, but facial
features are quite well represented.

Problem III.

The final test problem used the MNIST Database of Handwritten Digits [67], previously
used in [88,103]. This is a collection of 70,000 images, each of a digit centered in a 28 x 28
image. We formed a tensor X € R2*28x3000 consisting of 5000 images of the digit 5. ATDs
with multilinear rank (14, 14, 100) were computed by the same methods considered in the
previous example. The experiment was then repeated using X' = X + 2.5%7\[, where N
has entries uniformly distributed in [0, 1]. Upper limits of 250 iterations and 1500 seconds
were imposed. Sample convergence histories are presented in Figure 3.3. As in Problem
IT, we repeated the experiment on ten different noisy tensors, now using 50 iterations of
HOOI to refine initial points for NCG, L-BFGS, and TR. Table 3.6 reports the total times
(including the 50 refining HOOI), numbers of iterations (excluding the 50 refining HOOI),
and scaled gradient norms for each trial.

As in the previous problem, we observed that NCG and L-BFGS failed to converge for
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Figure 3.3: Problem III. Sample convergence histories based on MNIST digit input data:
noise-free (left) and noisy (right). (Without any initial HOOI iterations.)

all trials. In the noise-free case (not included in table), HOOI converges the fastest, fol-
lowed by NPNGMRES and then NPNCG. TR did converge, but not as quickly as the other
convergent methods, hence it is not observable in the plot. Once noise is introduced, we
observe that NPNGMRES and the two NPNCG methods all outperform HOOI, typically
satisfying the tolerance in one third of the time. For this problem NPNCG using 3% 5~Was
the fastest method across the board, followed by NPNGMRES and NPNCG using pHS,
The success of NPNCG using $° may be due to nonlinear transformation precondition-
ing incorporating both gradient and preconditioner direction information into 5. Finally,
while TR required the fewest iterations, it required significantly more time than the newly
proposed methods, failing to outperform HOOI on three occasions.

The ATD of X had a fit of 0.7884, and the ATDs of each X’ had an average fit of 0.6200
relative to X. The first ten approximation images are shown in Figure 3.4. The main
discrepancies in the ATD of X’ are image artifacts in the form of dark blotches surrounding
the digits. In spite of the extent to which the noise visually obfuscated the data, the ATD
was able to successfully identify and recognizably display the correct digits. These results
suggest there are significant benefits to nonlinearly preconditioning NGMRES and NCG
using HOOI, and that the advantages of these nonlinearly preconditioned methods over
NCG, L-BFGS, and TR are significant in terms of convergence speed and robustness, as
becomes apparent when moving to larger, more noisy, and more realistic data sets.
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Trial

1 2 3 4 5 6 7 8 9 10
Time 797 423 755 544 713 460 273 538 739 634
HOOI Iter 193 103 182 132 172 112 65 128 174 146

S. Grad | 9.7¢-8 | 1.0e-7 | 9.8¢-8 | 9.8e-8 | 9.6e-8 | 1.0e-7 | 9.6e-8 | 9.7¢-8 | 9.8¢-8 | 9.8¢-8
Time 288 221 271 242 297 304 170 218 288 235
NPNGMRES Tter 24 19 24 20 25 23 15 19 25 21
S. Grad | 8.1e-8 | 5.7e-8 | 5.9e-8 | 6.7e-8 | 6.2e-8 | 7.6e-8 | 9.8e-8 | 8.5e-8 | 7.5e-8 | 7.3e-8
Time 267 218 251 390 290 | 1501* | 168 263 436 299
EHS NPNCG Iter 31 27 32 48 34 116 20 32 55 38
S. Grad | 9.1e-8 | 6.9e-8 | 9.7e-8 | 9.8e-8 | 7.6e-8 | 3.0e-7 | 3.6e-8 | 2.6e-8 | 9.6e-8 | 7.4e-8
Time 258 177 228 206 236 246 164 204 232 217
BHS NPNCG Iter 30 22 28 24 28 27 19 23 28 26
S. Grad | 7.9e-8 | 7.8¢-8 | 6.7e-8 | 7.7e-8 | 8.4e-8 | 9.8e-8 | 9.0e-8 | 9.1e-8 | 9.4e-8 | 7.5e-8
Time 1045 | 1120 | 1066 | 1075 | 1052 | 1221 | 1719 | 1108 | 1095 | 1072
BTS NCG Iter 250% | 250*% | 250*% | 250* | 250*% | 250* | 250*% | 250*% | 250* | 250*
S. Grad | 8.2e-6 | 3.7e-7 | 1.8e-6 | 1.4e-6 | 7.2e-6 | 3.8e-7 | 1.2e-7 | 1.7e-6 | 4.8e-6 | 1.1e-6
Time | 1712*% | 1712*% | 1718* | 1715* | 1717% | 1731*% | 1719* | 1716* | 1715* | 1712*
L-BFGS Iter 121 123 122 123 122 119 118 118 119 120
S. Grad | 4.1e-5 | 2.2e-6 | 8.3e-6 | 5.7e-6 | 3.3e-5 | 3.9e-6 | 4.3e-7 | 5.4e-6 | 1.9e-5 | 5.2e-6
Time 621 445 495 418 637 464 298 408 629 395
TR Tter 6 2 3 2 6 2 1 2 3 2
S. Grad | 2.3e-8 | 1.2e-8 | 1.4e-8 | 7.7e-8 | 3.1e-8 | 1.6e-8 | 3.4e-8 | 6.1e-8 | 3.4e-8 | 1.0e-7

Table 3.6: Problem III. Results for noisy MNIST digit data. (Asterisks denote runs which
did not converge within iteration or time limits. Initial 50 HOOI iterations for NCG,
L-BFGS and TR not included in iteration count, but included in total time.)

v 3 3
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Figure 3.4: Problem III. From top to bottom: input tensor image, image from the ATD,
input noisy tensor image, and image from the ATD of noisy tensor.
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3.2 Comparison to NPQN Methods

We now compare the L-BFGS and L-Broyden NPQN methods to NPNCG using BHS or
BHS and NPNGMRES using (2.29), the best choices for these methods as identified in the
previous subsection. We again consider problems based on computing ATDs, comparing
standard nonlinearly preconditioned methods using the approximate CP decomposition
problem and comparing the manifold methods again in terms of the Tucker HOSVD ATD
problem. All of the following experiments were implemented on a MacBook Pro (2.5
GHz Intel Core i7-4770HQ, 16 GB 1600 MHz DDR3 RAM) using MATLAB R2017a with
the Tensor Toolbox (V2.6) |7, 8] to handle tensor computations and the ManOpt toolbox
(V3.0) [14] for manifold operations.

3.2.1 Optimization over Euclidean Space

We consider L-BFGS and L-Broyden, their left preconditioning (LP) variants (2.18) and
(2.25), and their variable transformation preconditioning (TP) variants (2.23) and (2.26).
As discussed in [32,34], the CP-ALS fixed point iteration can serve as an effective precon-
ditioner for NPNCG and NPNGMRES, and we shall show this is also the case for NPQN
methods. Specifically, for the preconditioner Q we use either one forward sweep (F) or
one forward-backward sweep (FB) of Algorithm 1, lines 2-5 with either n = 1,..., N or
n=12...,.N—1,N,N —1,...,2,1. For the CP ATD problem we set #;,, = 1 for precon-
ditioned L-Broyden methods and 6, = 74 as prescribed in (1.22) for non-preconditioned
L-Broyden, as these were observed to give the best results (not included here).

We first test to determine the best window size m € {1,...,10} and line-search method
for subsequent experiments. Two line-searches are considered. The first is the MT algo-
rithm from the Poblano Toolbox (v1.1) [37,75], using the same default parameters recorded
in Table 3.1. The second, which we refer to as modified backtracking (modBT), is an
attempt at imposing a ‘relaxed” line-search condition on the QN step, based on the ob-
servation that in certain cases the NPQN methods (and also some of the other methods
we compare with) converged faster with a fixed unit step length instead of a line-search.
In such cases the sequence of objective values was not monotonic, hence modBT does not
require the objective value to decrease at every iteration, but only not to increase too
much, with the increase tolerated decreasing as iteration count increases. Step lengths of
1, 1/2, and 1/4 are considered, accepting the step as soon as growth is small enough; and
if all three are rejected, it takes a step of length 1/8 in the preconditioner direction. This
is a feasible approach if methods work with unit step length close to convergence, such as
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QN, but not for those requiring an accurate line-search, such as NCG. This algorithm is
summarized in Algorithm 14. The while statement condition assumes our objective values
will be non-negative, which is the case for the CP decomposition problem.

Algorithm 14 Modified Backtracking Line-Search

procedure MODBT (xg, fx,8,Pk,iter)
ap =1, flag=10
X+1 = X + QkPk

1:
2
3
4: fer1 = f(Xni1)

5. while fi > (14 e 21 f, && flag < 4 do
6

7

8

9

flag = flag + 1
if flag == 3 then
Sk =11, Yy =]
Pr = —8
10: else
11: oy = 0.5qy
12: end if
13: X1 < Xi + QxPk
14: Jes1 < f(Xnt1)
15: end while
16: return X1, fri1, Qg

17: end procedure

Both line-searches have a reset condition to recover from bad steps. If the search fails
to reduce the objective value sufficiently the QN approximation is reset by clearing S; and
Y., following which we either take a unit length step in the preconditioner direction or, if
no preconditioning is used, take a step in the steepest descent direction. For MT we repeat
the search in this new direction, whereas for modBT we simply take a step of length 1/s.

To compare these algorithms we compute CP decompositions of an order-3 tensor,
as in [5,32,97], a standard test problem. We form a pseudo-random test tensor of size
(I x I x 1) for I =100, with known rank R = 5 and specify the colinearity C' of the factors
in each mode to be 0.9, meaning that

a, Tag
(n)

) (n) ‘as

ar
forr #s,r,s=1,...,R, and n = 1,2,3. Highly colinear columns in the factor matrices
indicates an ill-conditioned problem, with slow convergence for ALS and other methods.

(n)7,(n)
—C (3.5)
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Window Size (m)

1 2 3 4 5 6 7 ] 9 10

LBFGS Time | 5.2 4.9 4.6 4.7 3.9 4.3 4.1 4.2 3.9 4.0
- Iter | 941 835 824 821 675 745 699 708 658 664
Time | 2.2 1.3 1.3 1.8 1.7 1.6 2.0 1.7 1.9 1.8

L-BFGS-LP-F Tter 156 88 87 116 114 100 127 106 119 112
Time | 3.6 1.5 2.7 3.3 2.3 3.5 3.8 7.3 4.8 4.4

L-BFGS-LP-FB Iter | 183 77 124 144 124 151 162 294 195 185
Time | 1.2 1.1 1.1 1.2 1.4 1.4 1.5 1.6 1.9 1.8

L-BFGS-TP-F Tter 102 84 83 88 99 98 102 107 124 124
Time | 1.0 1.2 1.3 1.3 1.4 1.5 1.6 1.8 1.8 1.8

L-BFGS-TP-FB Tter 57 71 77 80 83 87 95 101 103 107
LBROY Time | 5.5% | 6.8% | 6.2% 6.3 6.1 6.0 5.8 6.0 5.9 6.0
Iter | 1000 | 1000 | 1000 | 989 953 925 906 929 906 933

Time | 1.8 1.9 1.7 14 2.4 2.1 2.5 2.2 1.7 2.6

L-BROY-LP-F Tter 142 140 127 102 164 150 168 157 126 183
Time | 3.1 2.9 3.1 2.4 3.5 2.0 2.2 2.5 2.7 2.2

L-BROY-LP-FB Tter 188 126 183 140 198 116 128 139 153 129
Time | 1.9 1.5 1.5 15 1.4 1.6 1.5 1.6 1.7 1.7

L-BROY-TP-F Tter 164 115 120 120 105 123 118 123 134 131
Time | 2.7 1.6 1.6 1.4 1.6 1.6 1.7 1.6 1.7 1.6

L-BROY-TP-FB Tter 185 101 101 87 103 102 107 100 104 104

Independent of Window Size

ALS Time | 58.5% | 58.5% [ 58.5% [ 58.5% | 58.5% [ 58.5% [ 58.5% | 58.5% | 58.5% | 58.5%
Tter | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000

Time | 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6

NPNGMRES Iter | 100 100 100 100 100 100 100 100 100 100
~ Time | 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
NPNCG fs Tter | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144
~ Time | 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
NPNCG Pus Tter | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107

Table 3.7: Results for MT line-search for CP decomposition. (Asterisks denote runs which

failed to converge. Bold entries indicate the best two times for a given value of m.)

The methodology for creating such a tensor is described in [97]. To this tensor of
known rank we then add homoskedastic and heteroskedastic noise as described in (3.4).
For each combination of window size m, solver, and line-search we ran ten trials, each
corresponding to a different random initial guess for the same random tensor, recording
the mean time-to-solution and number of iterations required. The same set of ten initial
guesses were used for all test combinations. The iterations ran until a maximum of 1,000
iterations was reached, 10,000 function evaluations had been computed, or ||gg|| / numel(x)
decreased below a tolerance of 1077, where numel(x) = 3/ R is the number of unknowns in
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Window Size (m)

1 7 3 1 5 G 7 8 9 10
LBRGS Time | 3.1% | 3.0F | 3.0 | 3.0° | 3.0% | 3.0° | 3.0 | 3.1% | 3.0% | 3.2°
Tter | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000

Time | 0.7 | 09 | 0.8 | 0.8 | 0.8 | 08 | 08 | 0.8 | 0.8 | 0.8

L-BFGS-LP-F Tter 67 85 70 72 75 71 7 72 75 72
Time | 00 | 0.8 | 13 | 0.8 | 0.8 | 08 | 12 | 0.9 | 0.8 | 0.8

L-BFGS-LP-FB 1y 1 65 | 62 | sa | 62 | 58 | 62 | s2 | 64 | 59 | 61
Time | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 08 | 08 | 0.8 | 0.8 | 0.8

LBEGSTP-F el 29 | 77 | 70 | 5 | 71| 70 | 72| 0 | 11| 74
Time | 0.8 | 09 | 09 | 0.8 | 09 | 0.9 | 09 | 0.8 | 0.9 | 0.9

L-BEGSTP-FB 1 1 62 | 65 | 65 | 60 | 65 | 64 | 67 | 63 | 65 | 64
LBROY Time | 3.3% | 4.7F | 4.3% | 45% | 4.6° | 4.6° | 4.65 | 4.6° | 45% | 4.6°
Tter | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000

Time | 07 | 0.7 | 0.8 | 0.9 | 1.0 | 0.9 | 0.9 | 1.0 | 1.0 | L0

L-BROY-LP-F |y 1 68 | 68 | 78 | ss | o7 | ss | 86 | 92 | 94 | 95
Time | 0.8 | 09 | 1.0 | 1.0 | Lo | 10 | 10 | Lo | 1.0 | Lo

L-BROY-LP-FB | 1 63 | 60 | 77 | 73 | 70 | 78 | 78 | 77 | 77 | 76
Time | 0.7 | 0.8 | 0.9 | 0.0 | 0.9 | 09 | 0.9 | 0.9 | 0.9 | 0.9

LBROY-TP-F el 72 | 83 | 85 | s6 | 85 | 85 | 84 | s4 | s4 | s4
Time | 0.8 | 11 | 1.0 | 12 | 11 | 11 | 11 | 11 | 11 | 11
L-BROY-TP-FB |y 1 68 | s2 | 76 | s6 | s4 | 85 | 83 | 83 | 83 | 85

Independent of Window Size

ALS Time | 58.5% | 58.5% | 58.5% | 53.5% | 58.5% | 58.5% | 58.5% | 58.5 | 53.5% | 58.5"
Tter | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000

Time | 80 | 89 | 80 | 89 | 89 | 89 | 89 | 89 | 89 | 89

NPNGMRES Tter | 452 | 452 | 452 | 452 | 452 | 452 | 452 | 452 | 452 | 452
~ Time | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50
NPNCG fs Tter | 612 | 612 | 612 | 612 | 612 | 612 | 612 | 612 | 612 | 612
= Time | 59 | 59 | 59 | 59 | 59 | 59 | 59 | 59 | 59 | 59
NPNCG fs Tter | 708 | 708 | 708 | 708 | 708 | 708 | 708 | 708 | 708 | 708

Table 3.8: Results for modBT line-search for CP decomposition. (Asterisks denote runs
which failed to converge. Bold entries indicate the best two times for a given value of m.)

our decomposition. Results for this test are recorded in Tables 3.7 and 3.8, corresponding
to MT and modBT, respectively. Entries in bold indicate one of the two lowest times for

a given value of m, and entries with asterisks denote a method that failed to converge to
the stated tolerance.

First, it is clear that standard L-BFGS and L-Broyden fail to converge within the limits
imposed in the vast majority of cases. This agrees with previous experiments which ob-
served that L-BFGS and NCG without preconditioning do not improve upon ALS in terms
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of time-to-solution [5]. In comparison, NCG, NGMRES, and L-BFGS methods nonlinearly
preconditioned by CP-ALS perform much better when accurate solutions are desired. A
general trend observed is that NPQN methods using MT tend to require more time to con-
verge compared to those using modBT, whereas the existing NPNCG and NPNGMRES
iterations perform better with the MT line-search. Restricting our attention to the NPQN
results in Table 3.8, we see that methods using the forward CP-ALS sweep preconditioner
may be slightly faster than the forward-backward variant, though the difference is small
enough that we consider both variants for further tests. Increasing window size m may
also result in a small increase in computation time. Based on these observations, we will
restrict further consideration to NPQN methods using the modBT line-search, NPNCG
and NPNGMRES using MT, and window sizes of m = 1, m = 2, and m = 10.

Trial
1 2 3 4 5 6 7 8 9 10 | Mean
CPALS Time | 122.0% | 122.7% | 122.4% | 122.8% | 123.1% | 123.0F | 123.2% | 130.2% | 125.3% | 124.6* | 123.0%
Tter | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000
= Time | 7.5 71 3.0 5.1 41 1.2 1.6 10.0 4.0 5.0 5.5
NPNCG Bus Tter | 106 | 106 | 67 | 94 | 86 78 88 | 126 | 80 79 | o1
= Time | 115.5% | 3.4 35 11.3 42 35 |106.0F| 4.2 3.0 10.7 | 26.5
NPNCG Bus Tter | 775 | 81 76 | 142 | 92 73 | 603 | 93 | 69 | 117 | 212
Time | 4.5 5.0 41 5.6 34 3.8 6.4 41 3.6 2.8 43
NPNGMRES Tter 91 92 74 108 62 72 118 71 62 52 80
L-BFGS Time | 14.2% | 11.6% | 11.7% | 12.4¥ | 11.4 | * 11.0%| 10.9F | 11.3% | 12.4% | 11.5* | 11.8*
- Tter | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000
Time | 2.1 1.8 1.6 2.0 2.3 15 2.1 2.4 2.4 1.8 2.0
L-BFGS-LP-F Tter 71 66 52 67 7 58 72 75 86 60 68
Time | 2.1 2.4 2.6 2.2 2.0 2.3 2.2 1.9 2.1 1.6 2.1
L-BFGS-LP-FB Tter 56 55 62 53 51 59 49 49 51 41 53
Time | 2.2 1.9 1.7 2.2 2.1 1.6 2.4 2.3 1.6 1.4 1.9
L-BFGS-TP-F Tter 78 67 61 73 80 58 79 il 59 44 68
Time | 2.3 2.6 2.9 2.5 1.9 2.0 2.5 1.8 2.3 1.4 2.2
S L-BFGS-TP-FB | 1 61 63 72 61 54 58 58 45 60 33 57
- L.BROY Time | 15.8% | 12.5% | 12.6% | 13.0F | 11.9¥ 75 46 | 12.2% | 13.3% [ 12.1F | 115
Tter | 1000 | 1000 | 1000 | 1000 | 1000 | 644 359 | 1000 | 1000 | 1000 | 900
Time | 1.7 1.7 1.6 1.8 1.7 1.3 2.1 1.6 1.6 1.5 1.7
L-BROY-LP-F | 59 59 59 61 56 48 69 60 56 51 58
Time | 2.4 2.3 2.5 1.9 2.0 2.0 2.8 2.3 1.9 1.2 2.1
L-BROY-LP-FB Tter 63 58 65 51 53 54 65 55 48 32 54
Time | 2.1 1.4 1.5 1.7 1.7 1.2 1.7 1.5 1.7 1.5 1.6
L-BROY-TP-F | " 68 56 55 63 65 46 63 58 64 51 59
Time | 2.2 2.6 3.0 2.3 1.8 2.1 2.8 2.4 2.6 1.4 2.3
L-BROY-TP-FB Tter 61 68 67 63 53 63 69 58 73 38 61

Table 3.9: Results for computing CP decomposition of a synthetic (200 x 200 x 200)
rank-5 tensor with high colinearity (C' = 0.9) with significant heteroskedastic (¢; = 20)
and homoskedastic (¢, = 10) noise. Each trial corresponds to a different initial guess.
(Asterisks denote runs which failed to converge. Vertical pairs of cells comparing F and
FB results are: green, if FB is faster than F; yellow, if they have the same time-to-solution;

and red, if F is faster than FB.)
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1 2 3 4 5 6 7 8 9 10 | Mean

L BFGS Time | 12.8% | 11.1% | 11.8% | 13.0% | 11.1¥ | 11.2% | 11.0F | 11.2¥ | 13.1F | 10.8% | 11.7%
Iter | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000

Time | 2.5 2.9 2.3 2.4 2.8 2.2 2.3 2.2 1.8 1.6 2.3

L-BFGS-LP-F Tter 78 89 67 73 85 73 73 68 57 53 72
Time | 2.8 2.6 2.8 2.5 2.2 2.2 2.7 2.2 2.4 1.8 2.4

L-BFGS-LP-FB | 66 61 65 60 53 55 61 49 61 44 58
Time | 2.1 1.6 1.7 2.6 1.6 1.5 2.4 1.8 2.0 1.7 1.9

L-BFGS-TP-F Tter 68 55 57 7 55 51 67 60 66 45 60
Time | 2.8 3.7 3.3 2.1 1.7 2.2 2.6 2.0 2.3 1.9 2.5

_, |[PPPOSTPTE e | 65 | 76 | 70 | 53 | 45 | 58 | 59 | 46 | 60 | 45 | o8
m= L-BROY Time | 18.1F | 18.2% | 18.2%¥ | 18.2F | 19.6F 9.2 11.5 | 17.6% | 18.5F | 17.8% | 16.7
- Tter | 1000 | 1000 | 1000 | 1000 | 1000 | 526 642 | 1000 | 1000 | 1000 | 917
Time | 2.0 1.8 1.6 2.2 1.8 1.4 2.1 1.8 1.9 1.5 1.8

L-BROY-LP-F Tter 65 63 54 74 56 48 66 66 61 50 60
Time | 2.3 2.8 2.8 2.3 2.0 2.3 3.1 2.4 2.4 1.4 2.4
L-BROY-LP-FB Tter 58 68 71 58 55 61 75 55 58 35 59
Time | 2.2 2.3 2.9 2.3 2.6 1.6 2.9 2.2 2.7 1.8 2.4

L-BROY-TP-F Tter 69 76 74 75 88 56 88 7 83 57 74
Time | 2.8 2.8 3.9 2.5 2.4 2.7 3.1 2.3 2.9 1.7 2.7
L-BROY-TP-FB | 73 72 70 62 60 72 72 55 ird 39 65
L-BFGS Time | 11.9% | 11.4% | 11.5% | 12.6* | 16.9% | 10.7* | 11.2% | 11.2* | 10.8* | 11.1* | 11.9%
- Tter | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000
Time | 2.1 2.0 2.4 2.0 2.3 1.8 2.8 2.7 2.0 1.6 2.2

L-BFGS-LP-F Tter 62 63 69 64 70 51 81 78 57 54 65
Time | 2.4 2.1 2.7 2.4 2.2 2.3 2.4 2.4 1.9 1.8 2.3

L-BFGS-LP-FB Tter 58 52 62 55 53 56 52 56 46 44 53
Time | 2.0 1.9 2.5 2.3 2.3 1.6 2.1 1.9 2.0 1.8 2.0

LA i Tter 65 62 74 69 75 53 58 59 61 49 63
Time | 2.7 2.8 3.5 2.4 2.6 2.0 3.7 2.2 2.6 1.5 2.6

m— 10 L-BFGS-TP-FB | 61 65 80 59 64 55 62 48 64 34 59
- L.BROY Time | 18.4% | 18.2% | 18.2% | 18.3% | 18.3% | 17.7% | 17.6% | 17.2% | 17.9F | 18.7% | 18.1%
Iter | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000

Time | 2.4 1.9 1.9 2.0 2.3 2.4 5.5 2.0 2.2 1.4 2.4

L-BROY-LP-F "ol 79 | 66 | 66 | 65 | 77 | 79 | 107 | 69 | 72 | 48 | 73
Time | 2.6 2.7 2.6 2.6 2.3 2.4 3.8 2.7 2.3 1.7 2.6

L-BROY-LP-FB | ") 67 | 69 | 67 | 65 | 58 | 62 76 | 63 | 60 | 43 | 63
Time | 2.5 2.1 2.7 2.0 2.5 1.9 2.8 2.3 2.5 2.0 2.3

L-BROY-TP-F | " 75 67 89 63 79 66 78 81 81 60 74
Time | 3.0 3.3 3.2 2.9 2.7 2.2 3.9 2.8 3.0 2.2 2.9
L-BROY-TP-FB Tter 73 86 74 71 69 58 89 64 78 49 71

Table 3.9: continued

As a basis of comparison we again use the previous method to form a test tensor with
specified colinearity and noise levels. We decompose an order-3 tensor of size (I x I x I)
for I = 200 with known rank R = 5, colinearity C' = 0.9, and set noise parameters ¢; = 20
and ¢5 = 10. For this problem we run ten trials, with each trial corresponding to a different
random initial guess. The results for this test are recorded in Table 3.9. For this problem
we observe that the CP-ALS algorithm fails to converge for each trial, and that NPNCG
fails twice for . Outside of the NPQN methods, NPNGMRES converged consistently
and in most cases exhibited the quickest time-to-solution. However, we observed that all
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Trial
1 2 3 4 5 6 7 8 9 10 | Mean
Lp Time | 21 | 1.8 |16 | 2023 |15 |21|24 |24 |18 2.0
L.BFGS I‘Fer 71| 66 | 52 | 67 | 77 | 58 | 72 | 75 | 8 | 60 68
TP Time | 22 | 19| 1712221 |16|24|23|1.6|1.4| 19
1 Iter | 78 | 67 | 61 | 73 | 80 | B8 | 79 | 77 | 59 | 44 68
LpP Time |1.7 | 1716 |18 17|13 |21|16 |16 1.5 1.7
L.BROY IFer 59 | 59 | 59 | 61 | 56 | 48 | 69 | 60 | 56 | 51 58
TP Time | 21 |14 |15 |17 |17 |1.2|1.7|1.5| 17|15 ]| 1.6
Iter | 68 | 56 | 55 | 63 | 65 | 46 | 63 | 58 | 64 | 51 59
Lp Time | 251292324 (28 |122(23]22]18 |16 2.3
L.BFGS I'ter 78 | 89 | 67 | 73 | 8 | 73 | 73 | 68 | 57 | 53 72
TP Time | 21 | 1.6 | 1.7 |26 | 1.6 | 1.5 | 24| 1.8 | 2.0 | 1.7 1.9
m— 9 Iter | 68 | 55 | 57 | 77 | 55 | 51 | 67 | 60 | 66 | 45 60
Lp Time | 20 | 1.8 |16 |22 |18 |14 |21 |18 |19 |15 1.8
L.BROY Itcer 65 | 63 | 54 | 74 | 56 | 48 | 66 | 66 | 61 | 50 60
TP Time | 22 12312923126 |16 29|22 |27 |18 2.4
Iter | 69 | 76 | 74 | 75 | 88 | 56 | 88 | 77 | 83 | 57 74
Lp Time | 21 | 20|24 |20 (23|18 |28 (27|20 1.6 2.2
L.BFGS I.ter 62 | 63 | 69 | 64 | 70 | 51 | 81 | 78 | 57 | b4 65
TP Time | 20 192523123 |16 |21(19 |20/ 1.8 2.0
m— 10 Itcer 65 | 62 | 74 | 69 | 75 | 53 | 58 | 59 | 61 | 49 63
Lp Time | 24 119192012324 |55(20|22 |14 2.4
L.BROY I‘Fer 79 | 66 | 66 | 65 | 77 | 79 | 107 | 69 | 72 | 48 73
TP Time | 25 | 212712025 |19]28|23]25 |20 2.3
Iter | 75 | 67 | 89 | 63 | 79 | 66 | 78 | 81 | 81 | 60 74

Table 3.10: Excerpt of Table 3.9 showing only NPQN results which used the forward
CP-ALS sweep as preconditioner. (Bold entries indicate the best time for a given trial.)

NPQN methods tested outperformed the remaining methods in terms of solution time in
nearly all cases, with improvements of more than 50% for the best new method.

To compare the forward and forward-backward CP-ALS preconditioners for a given
method, we color the pair of cells red if the forward sweep is faster, yellow if the times are
equal (when rounded to the nearest 0.1 second), and green if the forward-backward sweep
is faster. By doing so we can see at a glance that the forward sweep ALS preconditioner is
the best option in the majority of cases. For further examination we turn to Table 3.10,
which contains only the results for forward CP-ALS preconditioned NPQN methods. Here
the best time for each trial is indicated in bold. The results indicate increasing window size
generally increases the time-to-solution, though there are some exceptions. Overall, the
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lowest times for the majority of trials are for m = 1. It is interesting to observe that the
L-Broyden iterations typically gave the best performance in this case, rather than L-BFGS.

3.2.2 Optimization over Matrix Manifolds

We performed three sets of tests focused on NPQN methods: the first to determine what
combinations of methods, line-searches, and parameters worked best, and the remaining
two to compare NPQN L-BFGS and L-Broyden to NPNGMRES and NPNCG for synthetic
and real-life data tensors of different sizes and noise levels.

We first considered all possible combinations of L-BFGS and L-Broyden with left pre-
conditioning, transformation preconditioning, or no preconditioning; this time using a for-
ward or forward-backward HOOI sweep (Algorithm 3, lines 2-5 with either n = 1,... N
orn=1,2... NJN—1,...,1) as Q(g;x). For L-Broyden we set 0 to use the ~; formula
corresponding to the equivalent L-BFGS variant because this gave the best results. To nar-
row down the set of variants we (i) compared all methods in terms of choice of line-search,
and (ii) compared the L-BFGS and L-Broyden methods in terms of window parameter
m € {1,...,10} and whether or not vector transport is used when updating the Hessian
approximations.

We again consider M'T and modBT, using the same parameters as for the CP problem.
The same reset conditions are used for MT, and for modBT the while condition now uses
Jri1 > (1 —e72i%r) fi - as objective values are negative for the Tucker HOSVD problem. In
both cases the QN approximation is reset by clearing S, and Y. The NPNGMRES system
grows to a maximum of w = 25. If NPNGMRES produces an ascent search direction py,
we discard all past iterates and search in the direction —pi. NPNCG methods are restarted
every 50 iterations. We again use the two HS  update parameters from (2.13) and (2.16).
Successful termination occurs when ||g |l /| f(xx)| < 107"

The tests involved decomposing a large order-3 tensor formed using a subset of the
MNIST Database of Handwritten Digits [67]. Our test consisted of computing a rank
(14,14,100) approximation of a tensor representing 2500 images of the digit 5 with sig-
nificant additive noise from a uniform distribution over [0,1]: X' = X + 2.5”%”3\(. Ten
trials were ran for each combination, with each trial corresponding to a different tensor
N. TIterations continued until reaching a maximum of 250 iterations, a total execution
time greater than 1500 seconds, or ||gx|| /|f(xx)| < 1077. The mean time-to-solution and
iterations required for each test case are recorded in Tables 3.11 and 3.12. Entries in bold
denote one of the two lowest times for a given window size, and asterisks indicate runs that

did not converge.
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Window Size (m)
1l213l4l516171819110
Hessian Update without Vector Transport
Time | 155.0% | 193.6* | 243.9% | 267.9* | 275.7* | 297.1* | 309.4* | 320.0* | 331.8* | 332.3*

L-BFGS Tter | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251
Time| 98.7 | 133.1 | 132.1 | 128.6 | 145.5 | 145.3 | 147.8 | 149.1 | 138.3 | 149.0
L-BFGS-LP-F Tter | 67 95 100 101 111 108 112 114 101 118
Time| 72.9 | 111.6 | 124.0 | 113.0 | 135.1 | 139.9 | 143.0 | 126.9 | 138.0 | 127.8
L-BFGS-LP-FB Tter | 45 74 85 81 101 98 107 90 96 94
Time| 85.1 | 93.8 | 95.3 [ 111.3 | 824 | 86.8 | 85.2 | 84.8 | 87.4 | 85.6
L-BFGS-TP-F Iter | 54 50 52 58 51 52 54 55 56 57
Time| 75.6 | 87.4 | 86.6 | 82.3 | 83.6 | 80.8 | 88.0 | 73.1 | 82.1 | 84.3
L-BFGS-TP-FB Tter | 46 46 47 47 48 50 51 49 54 56
L.BROY Time [ 250.1% [ 270.3% [ 281.1% | 277.4% | 288.3% [ 291.7* | 295.8% | 294.9% [ 293.7* [ 297.8*
- Iter | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251
L.BROY.LP.F Time| 113.0 | 123.6 | 125.7 | 120.0 | 134.1 | 138.8 | 120.5 | 132.5 | 132.5 | 129.7

Tter 7 94 92 95 98 105 95 103 100 99
Time| 108.3 | 104.1 | 131.1 | 124.9 | 115.9 | 130.1 | 128.9 | 129.8 | 138.5 | 129.0
Iter 70 79 94 92 84 99 94 97 99 97
Time| 96.3 | 100.0 | 119.2 | 110.6 | 101.1 | 113.0 | 107.5 | 103.7 | 104.0 | 104.9
Tter 60 51 58 55 53 56 54 53 55 53
Time| 75.1 | 93.5 | 91.2 | 98.3 | 98.3 | 89.1 | 96.9 | 104.6 | 97.3 | 96.9
Iter 46 48 46 47 49 46 50 50 48 49
Hessian Update with Vector Transport
Time| 117.0 | 161.5 | 183.1 | 176.9 | 208.6 | 188.1 | 193.9 | 211.9 | 200.5 | 196.5

L-BROY-LP-FB

L-BROY-TP-F

L-BROY-TP-FB

L-BFGS-LP-¥ ITter 67 92 108 96 119 106 106 119 110 107
I-BFGS-LP-FB TI}EI;e 8256 12688.5 14;;.3 1’;’20 1’;’;6 1183i7 189?8.8 1(;2'55.1 18927.8 1’;83.8
L-BFGS-TP-F 'lizr(:lre 9581.13 11531.9 1%5%.8 11512.9 11552.3 1152.5 1(;&?)).0 1%4(1).6 1154;9 1%5;.9
L-BFGS-TP-FB TI}Er;e 8169 111(;.7 9;52 12576.5 1(315!;.4 1(3158.8 1%%).4 115(1.3 105823 1%5?1.4
L-BROY-LP-F TIlrer;e 13747.1 1%%3 1@?;9 1%2.2 15;5;8 118345 118540 1;59.9 18;;3 1?340
L-BROY-LP-FB 'II’E;e 127%.4 1%61.8 145[.8 158%.5 11;33.3 118(1.15 16;(17 li)g%ﬁ 1?(())(.)2 15;56.6
L-BROY-TP-F Time | 113.9 | 116.5 | 126.7 | 118.5 | 122.9 | 118.6 | 119.6 | 118.9 | 123.3 | 117.5

Iter 60 53 54 53 55 54 54 53 54 53
Time| 89.3 | 113.3 | 109.9 | 102.8 | 107.7 | 109.1 | 106.4 | 110.7 | 111.5 | 105.4
ITter 46 49 48 46 48 48 47 47 48 46

L-BROY-TP-FB

Table 3.11: Tucker decomposition results for MT line-search with varying m. (Asterisks
denote runs which failed to converge. Bold entries indicate the best two times for a given
value of m.)
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Window Size (m)
1 [ 2 [ 3 ] 45 [ 6 ] 7 1 8 9 [ 10
Independent of Window Size
HOOI Time| 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8
Iter 210 210 210 210 210 210 210 210 210 210
Time| 44.9 | 44.9 | 44.9 | 44.9 | 44.9 | 44.9 | 44.9 | 44.9 | 44.9 | 44.9
NPNGMRES Iter 35 35 35 35 35 35 35 35 35 35
~ Time| 33.0 | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 | 33.0
NPNCG Bus |\ per | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37
~ Time| 67.2 67.2 67.2 67.2 67.2 | 667.2 | 67.2 67.2 67.2 67.2
NPNCG Brs Iter 72 72 72 72 72 72 72 72 72 72
Table 3.11: continued
Window Size (m)
1 [ 2 [ 3 ] 4 5 [ 6 ] 7 8 9 [ 10
Hessian Update without Vector Transport
L-BFGS Time | 61.7% | 65.2% | 65.8% | 65.7* | 66.4* | 66.9* | 66.3* | 66.2* | 66.1* | 66.3*
Iter 251 251 251 251 251 251 251 251 251 251
Time | 31.6 33.2 38.0 35.3 36.2 34.1 34.3 34.3 34.3 33.7
L-BFGS-LP-F Iter 50 51 58 54 54 51 51 51 51 50
Time | 30.9 33.6 34.1 31.8 32.0 33.2 32.5 32.8 31.8 | 31.3
L-BFGS-LP-FB Tter 45 48 49 45 45 46 45 46 44 43
Time | 28.0 31.0 31.6 31.2 32.7 | 32.7 | 31.5 33.6 32.6 33.2
L-BFGS-TP-F Tter 39 42 43 41 43 42 41 43 41 42
Time | 29.1 | 28.5 | 28.8 | 26.8 | 30.4 | 31.0 | 31.7 | 30.5 33.0 33.7
L-BFGS-TP-FB Iter 38 37 37 33 38 38 39 37 40 41
L-BROY Time | 60.4*% | 62.7% | 63.0% | 64.1*% | 63.4*% | 63.8*% | 64.3% | 63.6* | 63.7* | 64.0*
Iter 251 251 251 251 251 251 251 251 251 251
Time | 45.8 53.8 45.7 48.6 49.8 44.1 35.9 50.1 52.9 47.6
L-BROY-LP-F Iter 71 81 69 72 75 66 54 75 79 71
Time | 32.7 38.0 42.2 31.3 40.0 39.4 33.7 35.5 35.3 33.2
L-BROY-LP-FB Iter 48 55 60 44 57 55 48 50 50 47
Time | 40.5 34.3 32.8 36.2 45.2 37.7 37.3 37.1 37.3 38.0
L-BROY-TP-F Iter 57 47 44 48 60 49 49 48 49 49
Time | 36.6 29.1 | 29.5 32.1 34.5 33.4 34.9 32.7 | 33.5 32.9
L-BROY-TP-FB Tter 48 38 37 40 43 41 43 40 41 40

Table 3.12: Tucker decomposition results for modBT line-search with varying m. (Asterisks
denote runs which failed to converge. Bold entries indicate the best two times for a given

value of m.)
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Window Size (m)

1 L 2 l 3 l 4 l 5 L 6 L 7 L 8 L 9 l 10
Hessian Update with Vector Transport

Time | 46.4 | 52.8 | 53.9 | 54.4 | 54.5 | 54.5 | 53.4 | 52.2 | 57.3 | 60.5

L-BFGS-LP-F Tter 50 52 52 53 52 51 48 48 51 54
Time | 44.3 | 51.5 | 49.3 | 47.2 | 47.1 | 47.6 | 49.8 | 48.6 | 52.8 | 52.3

L-BFGS-LP-FB Tter 45 49 45 44 42 42 44 42 46 45
Time | 44.8 | 55.7 | 54.8 | 55.3 | 58.2 | 58.5 | 61.2 | 623 | 61.5 | 63.4

L-BFGS-TP-F Iter | 39 43 40 42 42 42 42 43 41 43
Time | 45.6 | 49.5 | 52.3 | 46.7 | 54.8 | 56.8 | 58.8 | 56.6 | 62.4 | 61.6

L-BFGS-TP-FB Tter 38 37 38 34 38 39 39 37 41 40
Time | 63.0 | 58.6 | 52.5 | 57.9 | 68.5 | 67.9 | 54.5 | 53.9 | 63.7 | 60.8

L-BROY-LP-F Tter 72 64 53 60 72 72 53 54 67 60
Time | 53.8 | 61.1 | 53.3 | 48.0 | 52.8 | 58.1 | 52.7 | 49.5 | 47.9 | 49.9

L-BROY-LP-FB Tter 56 63 52 47 53 55 50 46 44 45
Time | 62.9 | 60.5 | 62.2 | 65.3 | 64.0 | 60.8 | 65.2 | 64.0 | 62.7 | 61.5

L-BROY-TP-F Tter 55 48 47 56 49 47 50 51 51 50
Time | 60.3 | 48.5 | 53.6 | 56.5 | 54.6 | 59.0 | 59.6 | 59.2 | 57.5 | 57.1

L-BROY-TP-FB Tter 50 37 40 44 41 44 43 43 42 42

Independent of Window Size

HOOI Time | 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8 | 112.8
Tter 210 210 210 210 210 210 210 210 210 210

Time | 35.8 | 35.8 | 35.8 | 358 | 35.8 | 35.8 | 35.8 | 35.8 | 35.8 | 35.8

NPNGMRES Tter 33 33 33 33 33 33 33 33 33 33
NPNCG 3 Time | 146.0 | 146.0 | 146.0 | 146.0 | 146.0 | 146.0 | 146.0 | 146.0 | 146.0 | 146.0
Pus Tter 210 210 210 210 210 210 210 210 210 210
NPNCG 3 Time | 130.1 | 130.1 | 130.1 | 130.1 | 130.1 | 130.1 | 130.1 | 130.1 | 130.1 | 130.1
Pus Tter 210 210 210 210 210 210 210 210 210 210

Table 3.12: continued

When working in a manifold framework, we may or may not use a vector transport
operation when updating the Hessian approximation between iterations (details are pro-
vided in § 1.4). These tables contain results for both of these possibilities, from which it
is clear that omitting this vector transport step results in faster methods, in particular
when the modBT line-search is used. Because of this, we exclude the vector transport
option from further consideration. Next, note that the non-preconditioned methods again
failed to converge within the maximum number of steps in every case, which was expected
based on the CP results. When comparing the line-search methods, MT results in slower
convergence for all but the NPNCG algorithms. With respect to window size m, while the
results are often quite good for all values considered, it is clear that smaller values of m
typically produce better results. As such, we only consider the values of m =1 and m = 2
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for subsequent tests, and use the modBT line-search for all methods except NPNCG.

For our second test we computed rank-(20,20,20) HOSVDs of rank-(40, 40, 40) syn-
thetic tensors of size (120, 120, 120), using noise parameters ¢; = ¢, = 10 and noise tensors
N1, Ny with elements from N (0, 1); see (3.4). Ten trials using different noise tensors N;
and Ny were carried out for each method. The results, recorded in Table 3.13, indicate
that HOOI is the slowest of the pre-existing methods, typically followed by NPNGMRES
and then NPNCG, with no clear winner between the 5 and [ variants. For this problem
the forward HOOI sweep is by far the best preconditioner for NPQN iterations. The ma-
jority of L-BFGS results are competitive with or improve upon the existing solvers. The
L-Broyden iterations are less effective, though many are still competitive with the NPNCG
and NPNGMRES results.

Referring to the subset of data in Table 3.14, which includes only the NPQN methods
using the forward HOOI preconditioner, we see that the fastest results are for nonlinearly
left-preconditioned L-BFGS in all but one case, which is a narrow loss. More generally,
from the average times we see that all of the proposed methods using this preconditioner
generally perform at least as well as the best pre-existing methods, with an improvement
of more than 50% for the best new method.

Trial
1 2 3 4 5 6 7 8 9 10 | Mean
. Time| 161 | 42.8 | 53.8 | 352 [ 104 24.7 | 15.8 | 17.0 [19.8[10.8| 24.7
Tter | 398 | 1138 | 1436 | 933 | 283 | 650 | 421 | 470 | 508 | 284 | 652
= Time| 92 [ 156 | 128 | 11.4 | 58 | 97 | 65 | 84 |95 66 95
NPNCG Bus | [yer | 101 | 161 | 135 | 118 | 62 | 100 | 68 | 86 |101| 64 | 100
~ Time| 91 [ 193 | 14.0 [ 12.0 [ 6.0 [ 95 | 81 | 7.6 [ 8965 | 10.1
NPNCG Bus Tter | 91 | 193 | 151 | 124 | 63 | 101 | 70 | 78 | 95 | 62 | 103
Time| 114 [ 13.3 | 13.4 | 21.0 | 5.8 [ 125 | 8.0 | 100 [ 81 7.8 [ 11.2
NPNGMRES 101 99 | 114 | 107 | 171 | 48 | 103 | 66 | 79 | 68 | 60 | o1

Table 3.13: Results for decomposing a noisy (120 x 120 x 120) tensor into a rank-(20, 20, 20)
Tucker HOSVD ATD. (Each trial corresponds to different noise tensors with entries from
the standard normal distribution. Asterisks denote runs which failed to converge. Vertical
pairs of cells comparing F and FB results are: green, if FB is faster than F; and red, if F
is faster than FB.)
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Trial

1 2 3 4 5 6 7 ] 9 [ 10 [Mean

L_BFGS Time| 63 | 69 | 94 [134[83 [ 99 | 7.7 [150]64 66| 9.0
; Tter | 163 | 220 | 303 | 402 | 261 | 304 | 250 | 479 | 202|198 | 278
Time| 56 | 50 | 50 | 6.7 | 33| 42 | 2.8 | 41 | 41|30 | 44

L-BFGS-LP-F Tter | 113 | 103 | 104 | 135 | 66 | 87 | 58 | 79 | 83 | 59 | 89
Time| 5.5 | 7.3 [ 11.2 [ 103 | 44 | 65 | 46 | 81 | 47|56 | 6.8

L-BFGS-LP-FB Tter | 74 | 97 | 149 | 130 | 58 | 84 | 60 | 95 | 62 | 73 | 88
Time| 63 | 57 | 6.0 | 6.6 | 4.7 | 6.1 | 47 | 6.5 | 49|44 | 56

L-BFGS-TP-F Tter | 93 | 84 | 87 | 92 | 68 | 87 | 67 | 8 | 69 | 63 | 80
Time| 7.6 | 9.0 | 16.0 | 11.5| 55 | 85 | 6.1 | 7.8 | 6.7 | 7.4 | 8.6

_ L-BFGS-TP-FB Iter | 80 | 88 | 159 | 114 | 57 | 84 | 61 74 | 69 | 77T | 86
m= L.BROY Time| 13.2 | 13.6 | 12.1 | 106 [11.3] 9.1 | 104 | 7.9 [202] 7.3 | 11.6
: Tter | 397 | 424 | 380 | 300 | 298 | 245 | 302 | 238 | 617 | 212 | 341
Time| 52 | 6.9 [ 159 [ 108 | 45 | 62 | 55 | 6.4 | 45|43 | 7.0

L-BROY-LP-F Tter | 105 | 121 | 285 | 192 | 90 | 122 | 103 | 113 | 89 | 86 | 131
Time| 83 | 92 | 188 [ 123 | 55 | 88 | 7.0 | 13.2 | 7.5 [10.0| 10.1
L-BROY-LP-FB Tter | 109 | 122 | 233 | 160 | 66 | 114 | 86 | 158 | 94 | 129 | 127
Time| 7.9 | 181 ] 9.5 | 133 | 6.8 | 102 | 73 | 95 | 6.6 | 6.8 | 9.6

L-BROY-TP-F Tter | 114 | 261 | 128 | 185 | 96 | 132 | 104 | 128 | 92 | 97 | 134
Time| 10.7 | 13.0 | 24.7 | 13.8 | 7.0 | 12.3 | 84 | 18.0 | 8.3 | 9.8 | 12.6
L-BROY-TP-FB Tter | 111 | 136 | 242 | 142 | 72 | 118 | 85 | 186 | 85 | 102 | 128
L_BFGS Time| 6.7 | 86 | 6.5 | 7.5 [13.7| 70 [ 9.7 [ 82 | 76| 7.0 83
: Tter | 182 | 266 | 210 | 243 | 375 | 201 | 283 | 265 | 237|227 | 249
Time| 42 | 45 | 50 | 6.8 | 3.0 | 46 | 29 | 57 | 37|32 43

L-BFGS-LP-F Tter | 87 | 90 | 104 | 141 | 61 | 92 | 59 | 112 | 76 | 65 | 89
Time| 5.0 | 7.5 [ 11.2 101 | 43 | 76 | 47 | 83 | 57|65 | 7.1

L-BFGS-LP-FB Tter | 66 | 96 | 147 | 132 | 55 | 99 | 58 | 110 | 75 | 86 | 92
Time| 68 | 6.2 | 59 [ 114 | 44 | 63 | 52 | 6.7 | 4.8 | 43| 6.2

L-BFGS-TP-F Tter | 95 | 90 | 85 | 154 | 61 | 91 | 69 | 95 | 68 | 63 | 87
Time| 83 | 7.0 | 1511129 | 57| 97 | 6.8 | 7.1 | 68| 75| 87

5 L-BFGS-TP-FB Tter | 80 | 72 | 156 | 130 | 58 | 99 | 63 | 72 | 70 | 77 | 88
m= L BROY Time | 71.4% [ 67.6% | 72.5% | 70.9% [ 36.3 [ 71.1% | 70.4¥ [ 69.0% | 16.1 [ 11.6 | 55.7
; Tter | 2000 | 2000 | 2000 | 2000 | 1029 | 2000 | 2000 | 2000 | 440 | 348 | 1581
Time| 5.8 | 10.1 | 155 | 11.5 | 3.9 | 6.1 | 4.7 | 47 |48 |37 | 7.1

L-BROY-LP-F Tter | 109 | 188 | 278 | 197 | 72 | 114 | 89 | 89 | 88 | 72 | 130
Time| 7.5 | 10.6 | 15.6 | 10.3 | 4.7 | 129 | 6.6 | 139 | 57|92 | 9.7
L-BROY-LP-FB Tter | 91 | 124 | 192 | 129 | 59 | 154 | 80 | 167 | 70 | 113 | 118
Time| 81 | 145 (194 [ 127 | 50 | 82 | 55 | 76 | 56| 6.2 | 9.3

L-BROY-TP-F Tter | 112 | 199 | 254 | 175 | 67 | 116 | 76 | 104 | 78 | 84 | 127
Time| 99 | 112|169 | 172 | 64 | 116 | 79 | 85 | 81 |134] 11.1
L-BROY-TP-FB Tter | 99 | 113 | 170 | 171 | 61 | 117 | 70 | 81 | 80 | 126 | 109

Table 3.13: continued
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Trial
1 2 3 4 5 6 7 8 9 10 | Mean
Lp Time | 56 | 5.0 | 5.0 | 6.7 | 3.3 | 4.2 | 2.8 | 4.1 |41 |3.0| 44
L.BFGS Iicer 113 | 103 | 104 | 135 | 66 | 87 | 58 | 79 | 83 | 59 89
TP Time | 6.3 | 5.7 | 6.0 | 6.6 | 4.7 | 6.1 | 47 | 6.5 |49 | 44 5.6
m— 1 Iter | 93 | 84 87 92 | 68 | 87 | 67 | 8 | 69 | 63 80
LP Time | 52 | 69 | 159|108 | 45| 6.2 | 55 | 6.4 | 45 | 4.3 7.0
L.BROY I‘.cer 105 | 121 | 285 | 192 | 90 | 122 | 103 | 113 | 89 | 86 131
TP Time | 79 | 181 95 | 133 6.8 | 102 | 7.3 | 9.5 | 6.6 | 6.8 9.6
Tter | 114 | 261 | 128 | 185 | 96 | 132 | 104 | 128 | 92 | 97 134
LP Time | 4.2 | 45 | 5.0 | 6.8 |3.0| 46 | 29 |57 |3.7]| 32| 4.3
L.BFGS I‘Fer 87 | 90 | 104 | 141 | 61 92 59 | 112 | 76 | 65 89
P Time | 6.8 | 6.2 | 59 |11.4 | 44| 6.3 | 5.2 | 6.7 | 4.8 | 4.3 6.2
m— 9 Iter | 95 90 85 | 154 | 61 91 69 | 95 | 68 | 63 87
LP Time | 5.8 | 10.1 | 155 | 11.5| 3.9 | 6.1 | 4.7 | 4.7 | 48 | 3.7 | 7.1
L.BROY IFer 109 | 188 | 278 | 197 | 72 | 114 | 89 | 89 | 88 | 72 130
TP Time | 8.1 | 145|194 | 127 |50 | 82 | 55 | 7.6 | 5.6 | 6.2 9.3
Iter | 112 | 199 | 254 | 175 | 67 | 116 | 76 | 104 | 78 | 84 127

Table 3.14: Excerpt of Table 3.13 showing only NPQN results which used the forward
HOOI sweep as preconditioner. (Bold entries indicate the best time for a given trial.)
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Figure 3.5: Convergence histories showing scaled gradient norms for rank-(14, 14, 100)
Tucker HOSVD decompositions of the (28 x 28 x 5000) digit tensor without noise (left)

and with added noise (right).
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Trial
1 2 3 4 5 6 7 8 9 10 Mean
Time | 534.8 | 332.9 | 383.3 | 408.8 | 405.0 | 387.5 | 263.3 [666.3%¥ | 434.3 | 666.4% | 448.3

HOOI Tter | 187 125 144 153 152 145 99 250 163 250 167
NPNCG B Time | 105.4 | 924 | 97.7 | 96.7 | 134.8 | 105.9 | 83.7 | 151.7 | 118.2 | 170.6 | 115.7
Pus Tter 25 23 24 24 33 26 21 37 29 43 29
NPNCG . Time | 146.4 | 123.1 | 108.8 | 126.9 | 287.7 | 349.2 | 91.1 | 999.9 | 155.8 | 211.0 | 260.0
Pus Tter 35 31 27 32 70 85 23 218 39 54 61

Time | 114.8 | 96.7 | 102.4 | 102.5 | 141.2 | 137.8 | 85.3 | 172.1 | 1135 | 150.6 | 121.7

NPNGMRES Tter 22 20 21 21 29 27 18 36 23 32 25
L-BFGS Time | 207.4% [ 197.3% [ 213.8% [ 206.5% | 218.6* | 194.6* | 200.0% | 197.1% | 189.2% [ 191.7* | 201.6*
- Iter | 250 250 250 250 250 250 250 250 250 250 250
Time | 120.2 | 98.3 | 91.6 | 92.0 | 183.4 | 131.0 | 78.7 | 136.4 | 91.8 | 167.9 | 119.1

L-BFGS-LP-F Tter 36 31 29 29 57 41 25 43 29 53 37
Time | 127.5 | 78.3 | 81.6 | 114.2 | 152.1 | 131.3 | 65.3 | 124.5 | 110.8 | 134.2 | 112.0

L-BFGS-LP-FB Tter 32 24 25 35 46 40 20 38 34 41 34

Time | 127.2 | 98.8 88.5 959 | 119.3 | 109.0 | 78.5 | 132.6 | 109.1 | 159.6 | 111.9
Iter 30 29 26 28 35 32 23 39 32 47 32
Time | 90.9 84.4 87.8 91.1 | 1229 | 87.8 73.7 | 122.6 | 95.0 | 154.1 | 101.0
Iter 24 24 25 26 35 25 21 35 27 44 29

L-BFGS-TP-F

L-BFGS-TP-FB

m=1 L-BROY Time | 197.2* [ 195.2% [ 206.4* | 200.2* | 185.6* | 209.8* | 195.2* [ 191.5* [ 189.8* | 189.5* | 196.0*
B Iter 250 250 250 250 250 250 250 250 250 250 250
L-BROY-LP-F Time | 113.6 | 113.8 | 129.5 | 142.3 | 182.0 | 104.0 | 78.9 | 222.9 | 122.4 | 180.1 | 138.9

Iter 34 36 41 45 57 33 25 70 39 57 44
Time | 119.2 | 97.3 | 130.1 | 110.5 | 216.9 | 118.1 | 87.9 | 190.0 | 136.5 | 185.6 | 139.2
Iter 35 30 40 34 66 36 27 58 42 57 43
Time | 194.2 | 122.6 | 142.9 | 136.2 | 146.7 | 160.0 | 115.5 | 203.3 | 163.4 | 190.0 | 157.5
Iter 53 36 42 40 43 47 34 60 48 56 46
Time | 144.8 | 119.5 | 108.6 | 136.4 | 105.2 | 129.1 | 101.9 | 178.2 | 143.4 | 167.8 | 133.5
Iter 39 34 31 39 30 37 29 51 41 48 38
Time | 201.9* | 213.4* | 208.2* | 197.0* | 202.2* | 219.5% | 209.4* | 199.3* | 194.0* | 201.6* | 204.7*
Iter 250 250 250 250 250 250 250 250 250 250 250
Time | 120.6 | 82.4 94.8 | 101.6 | 287.8 | 112.5 | 88.9 | 160.1 | 102.0 | 201.6 | 135.2
Iter 37 26 30 32 89 35 28 50 32 63 42
Time | 101.4 | 86.0 85.3 84.9 | 208.8 | 91.8 72.3 | 151.3 | 101.3 | 144.1 | 112.7

L-BROY-LP-FB

L-BROY-TP-F

L-BROY-TP-FB

L-BFGS

L-BFGS-LP-F

L-BFGS-LP-FB

Iter 31 26 26 26 63 28 22 46 31 44 34

L-BFGS-TP-F '1;irer;e 15;(;.2 922’.78 1(:]3%).6 1(:]3(;.8 15;4;0 1%51.8 7;20 151%.9 9;){.)3 1218.0 1;%.7
orosmes [ Tie| 7 | o8 | s67 | ted o7 | sy | nés |uso | a6 | e | o
m=2 L-BROY Time | 198.5% [ 213.2% [ 208.3% | 197.4% | 204.0% | 205.3% [ 209.2* [ 197.6* | 196.8% [ 196.9% | 202.7*
Tter 250 250 250 250 250 250 250 250 250 250 250

L-BROY-LP-F 'I;;r:re 123;.2 1235;).5 938i9 1225.0 2%%1 16;(()).0 7;)58 15:;.5 1'3:111.1 21678.7 1%51.2
L-BROY-LP-FB ’Il‘lzne 12;5;1 113%.0 921é9 9;1.)2 15:5;.4 1217.5 722;) 1%%,8 1(:)))11.3 1(;%.1 12337.0
wovrer | o [T | Wi g Tus s (R 9 (R e e T
omovree T | 6 | #e3 | a2 | o | wr (M ero |HH) e | s | e

Table 3.15: Results corresponding to decomposing a noisy (5000 x 28 x 28) tensor into a
rank-(100, 14, 14) Tucker HOSVD ATD. (Each trial corresponds to a different noise tensor.
Asterisks denote runs which failed to converge. Vertical pairs of cells comparing F and FB
results are: green, if FB is faster than F; and red, if F is faster than FB.)
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For the final test we again used the MNIST Database from the initial test, doubling
the number of images to form a tensor X € R28x28x5000 consisting of 5000 images of the

digit 5. We add uniformly distributed noise to obtain X' = X + 2.5%3%, where N has

entries in [0, 1]. Convergence histories in Figure 3.5 compare the performance of HOOI,
NPNCG, NGMRES, and NPQN methods for a test tensor without (left) and with (right)
noise. L-BFGS and L-Broyden without preconditioning are not convergent for these kinds
of problems, and hence plots for these solvers are omitted. These plots show that, in
the easier noise-free case, there is, unsurprisingly, only a small benefit to accelerating
HOOI, with NPNGMRES and the NPQN methods all performing slightly better than
HOOI, and the NPNCG methods performing slightly worse. Once noise is introduced,
however, the convergence of HOOI slows down significantly, and there are clear benefits to
using nonlinearly preconditioned methods. In general: nonlinear preconditioning is useful
for difficult problems when high accuracy is required, and the low amount of overhead
required means it does not harm convergence in other circumstances, improving the overall
robustness of solvers.

Trial

1 2 3 4 5 6 7 8 9 10 Mean
LP Time | 1275 | 78.3 | 81.6 | 114.2 | 152.1 | 131.3 | 65.3 | 124.5 | 110.8 | 134.2 | 112.0

L-BFGS I.ter 32 24 25 35 46 40 20 38 34 41 34
TP Time | 90.9 | 84.4 | 87.8 | 91.1 | 1229 | 87.8 | 73.7 | 122.6 | 95.0 | 154.1 | 101.0

m—1 Iter 24 24 25 26 35 25 21 35 27 44 29
LP Time | 119.2 | 97.3 | 130.1 | 110.5 | 216.9 | 118.1 | 87.9 | 190.0 | 136.5 | 185.6 | 139.2

L-BROY I.ter 35 30 40 34 66 36 27 58 42 57 43
TP Time | 144.8 | 119.5 | 108.6 | 136.4 | 105.2 | 129.1 | 101.9 | 178.2 | 143.4 | 167.8 | 133.5

Iter 39 34 31 39 30 37 29 51 41 48 38
LpP Time | 101.4 | 86.0 | 85.3 | 84.9 | 208.8 | 91.8 | 72.3 | 151.3 | 101.3 | 144.1 | 112.7

L-BFGS I.ter 31 26 26 26 63 28 22 46 31 44 34
TP Time | 98.7 | 84.8 | 98.7 | 88.4 | 123.7 | 985 | 74.3 | 113.0 | 98.6 | 115.7 | 99.5

m—2 I.ter 28 24 28 25 35 28 21 32 28 33 28
LP Time | 115.1 | 119.0 | 91.9 95.2 | 1584 | 121.5 | 72.0 | 190.8 | 101.3 | 164.1 | 123.0

L-BROY I.ter 35 36 28 29 48 37 22 58 31 50 37
TP Time | 105.4 | 88.2 | 88.2 | 84.6 | 123.7 | 109.1 | 81.0 | 154.4 | 98.7 | 158.6 | 109.2

Iter 30 25 25 24 35 31 23 44 28 45 31

Table 3.16: Excerpt of Table 3.15 showing only NPQN results which used the forward-
backward HOOI sweep as preconditioner. (Bold entries indicate the best time for a given
trial.)

This test is repeated 10 times for different N, with the results recorded in Table 3.15.
The fastest time for each trial is indicated in bold. For existing methods, the general trend
is NPNCG using fys gives the fastest convergence, followed by NPNGMRES, then NPNCG
using Pus, and finally HOOI, being the slowest iteration considered by far. As in Table
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3.9, we see that NPNCG using EHS exhibits slower convergence than the EHS variant, in
the worst cases more than doubling the iteration count and requiring at least twice as long
to converge. This is one example where the benefit of basing nonlinear preconditioning on
analogous linear problems is clear.

The fastest result for every trial corresponds to one of the NPQN iterations, with one of
the L-BFGS variants typically being the best. Nearly all proposed methods outperform at
least one of the NPNCG or NPNGMRES algorithms in each trial. From the cell coloring,
we see that using the forward-backward sweep can result in significant reductions in time
to solution in the majority of cases. This suggests that this preconditioning strategy may
be the better choice for larger, more noisy problems.

For a clearer comparison we refer to Table 3.16 which contains the results for NPQN
methods using forward-backward HOOI as preconditioner. Here the entries in bold indicate
the best time for a given trial. In the majority of cases the L-BFGS results in faster
convergence, and by looking at the mean time-to-solution, we see that in general the use
of mixed preconditioning strategies results in approximately a 10% decrease in the time
required for both window sizes. For L-Broyden we note that increasing window size from
m = 1 to m = 2 results in noticeably faster methods, whereas the difference between mean
values for different window sizes is very small for L-BFGS.
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Part 11

Parallel-In-Time Methods for Linear
Advection
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Chapter 4

Introduction to Multigrid Reduction in
Time

Since modern high performance computing resources are massively parallel in scope, with
systems potentially consisting of thousands of nodes and hundreds of thousands of cores,
algorithms need to exhibit similar levels of concurrency in order to effectively make use
of these resources. Domain decomposition in the spatial dimensions is an effective and
commonly used way of introducing concurrency at the algorithmic level, but there is a
point at which the additional communication costs outweigh the benefits of further spatial
parallelism.

In order to increase the amount of concurrency possible, a wide variety of parallel-
in-time methods have been developed with the aim of reducing/removing computational
bottlenecks due to time integration. Variants include direct methods and iterative meth-
ods based on deferred corrections [41], domain decomposition [51], multigrid [58], multiple
shooting [22], and waveform relaxation [101] approaches. These methods have had sig-
nificant success in providing further speedup in the solution of parabolic equations, or
equations with significant diffusivity, but have had markedly less success with hyperbolic
or advection dominated problems [83].

For example, one of the most influential parallel-in-time methods is parareal [71], an
iterative predictor-corrector method that combines the use of a coarse time integrator in
serial and a fine time integrator in parallel. Parareal has been shown to have stability
issues for the constant coefficient linear advection equation [50]. A number of variants
and modifications have been proposed, and analysis has identified that issues arise when
solutions lack regularity [28] due to phase errors in the coarse propagator [83]. A number of
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variants have been proposed to stabilize and improve the convergence of parareal for such
problems [24,28,49,84], but with increased memory requirements or other restrictions. As
a result, parallel-in-time methods that can be effectively applied to hyperbolic or advection
dominated problems are still highly sought after.

4.1 Multigrid Reduction in Time

In this section we introduce the multigrid reduction-in-time (MGRIT) [42] approach for
parallelizing time integration, which we will adapt to solve one-dimensional scalar hyper-
bolic PDEs over the following two chapters. A key strength of the MGRIT framework is its
non-intrusive nature, which allows existing time-stepping routines to be easily used within
the MGRIT implementation. MGRIT has been successfully implemented using time-step-
ping routines for linear [42| and nonlinear [44] parabolic PDEs in multiple dimensions,
Navier-Stokes fluid dynamics problems [43], and power system models [66].

Consider a system of ordinary differential equations of the form
u'(t) = f(t,u(t)), u(0)=nuy, ¢el0,T1],

which can represent, for example, a system obtained from a method-of-lines discretization
of a hyperbolic or parabolic PDE. This system is discretized on a uniform temporal mesh
ti = iAt, i = 0,1...,N;,, At = T/N;, with u; =~ u(t;). A general one-step iteration for
computing the discrete solution is

Uy = Lo,
u; = Qi,Aa},At(ui—l) + i, 1= 17 2a s 7Nta

where ®; A, ¢ Is a time-stepping function that depends on ¢; and the spatial and temporal
resolutions Az and At. The right-hand side g; contains solution-independent terms. We
write this as the equivalent matrix equation (abusing notation in the nonlinear case)

I ug 20
—®P; As I u
Auz | nams | =] = (4.1)
_¢Nt,AI,At I uNt gNt

Note that applying block forward substitution to this matrix corresponds to sequential
time-stepping.
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MGRIT is an iterative solver based on approximating an exact cyclic reduction strategy
applied to system (4.1). For cyclic reduction we choose a constant temporal coarsening
factor m and define a coarse time grid T;, = i. AT, i. = 0,1,..., Np = N;/m, AT = mAt,
as pictured in Figure 4.1 [42, original]. The T;, = t,,;, are coarse time points (C-points)
and the remaining ¢; are fine time points (F-points).

TO T1 AT = mot

I L L L L I L L L L I L L L L I L L L L I

I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I
to t1 ta 13 tm ot tn,

Figure 4.1: Fine and coarse temporal grids.

To illustrate the case m = 2, we first make the simplifying assumption that ®; o, o+ =
D, ar fori=1,..., N;. Next, we partition the matrix A from (4.1) into C and F blocks:

C F C e F
In, C
_(I)A;t,At IN;L F

A= —Pa e Iy, C,

—Prznt In,l F

that, when permuted to separate the F and C blocks (each set of blocks arranged in
increasing order), results in the 2 x 2 block matrix

Ag Ag
Acf Acc

where
INI - QAm,At

AH:ACCI 5 Afc: )
—Pry A

—®Przne O
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The Schur complement for this partitioned matrix is

INI
— P2 I
Sa=Aw — AgA;lA, = | SoA T
_QQA(E,At INZE

and the resulting Schur complement coarse-grid system Saxua = ga is:

INx 110 go
—®%, A Ly, u | g2 + (P'Aac,Atgl (4.2)
_QQAJ},At INz unN, gn, + (I)Az,Atht—l

The coarse-grid right hand side is computed using ideal restriction, ga = Reag, and
the fine-grid solution u is recovered using ideal interpolation, u = Pgua (“ideal” as they
generate the Schur complement as the Petrov-Galerkin coarse-grid operator), where

Iy, Iy, ®T T

d Iy
R@ = ) . and P(} -
. INw o7

P INx INw

Solving (4.2) will return the exact solution in one iteration, and it is just as expensive
to solve as the original fine-grid problem due to the use of @2&7 A Instead, we replace
the coarse-grid Schur complement matrix Sp with the rediscretization of the underlying
equation on the coarse time grid, Aa:

In, ua o gA0
—®pzone Iy, ua 1 ga1 (4.3)
—®pzont In, | |uanN/2 AN, /2

As a result of the rediscretization, the coarse-grid solution will only approximate the fine-
grid solution, and hence will not give the exact solution in one iteration. This is the
coarse-grid problem corresponding to fine-grid problem (4.1), that we may now solve via a
multigrid approach, i.e., MGRIT. In two-level MGRIT, this coarse-grid problem is solved
exactly, whereas multilevel MGRIT applies this process recursively.
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Figure 4.2: Illustration of F- and C-relaxation on a 9-point temporal grid with coarsening
factor 4.

Two fundamental types of temporal relaxation are used in MGRIT: F-relazation and C-
relazation. F-relaxation updates the F-point values u; in the interval (T}, T; 1) by starting
with the C-point value u,,;, and then applying each ®; 5; in sequence. Since each interval is
updated independently, the intervals can be processed in parallel. Similarly, C-relaxation
updates C-point values u,,;, based on current F-point values u,,;, 1, which can also be
done in parallel. These relaxation strategies are illustrated in Figure 4.2 [42, original|. In
particular, note that two-level MGRIT with F-relaxation is equivalent to parareal [42,50].
These sweeps can also be combined into FCF-relaxation: F-relaxation followed by C-
relaxation followed by a second F-relaxation. We note here that ideal restriction and
prolongation are equivalent to particular combinations of injection and F-relaxation: ideal
restriction is injection Ry preceded by an F-relaxation, and ideal prolongation is injection
P; followed by an F-relaxation [42], where

Iy,

0 I

0 Iy,

MGRIT uses the Full Approximation Storage (FAS) framework [15] for solving both
linear and nonlinear problems, which involves computing the coarse-grid correction by
solving a coarsened version of the residual equation A(u + e) — A(u) = r, where A is the
(potentially nonlinear) operator to be inverted. The two-grid MGRIT FAS algorithm first
appeared in [43]. We include the variant from [44] instead (see Algorithm 15), as it accounts
for the possibility of spatial coarsening (with restriction and prolongation operators Ry and
P;), described in the next section. In the case of A being a matrix A this reduces to the
standard multigrid algorithm. This is easily extended to more than two levels by replacing
the exact coarse-grid solve on line 5 with a recursive call.
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Algorithm 15 FAS-MGRIT

1: procedure FAS-MGRIT (A, u,g)
2: Apply F- or FCF-relaxation to A(u) =g

3: Inject the fine-grid approximation and residual to the coarse grid
upr = Ri(u), ra=Rji(g— A(u))
4: If using spatial coarsening then:

ua = Ry(ua), ra=Ry(ra)
5 Solve Ax(va) = Aa(ua) +ra
6 Compute the coarse-grid error approximation: ex = va — ua
7: If using spatial coarsening then: en = Pg(ena)
8: Correct using ideal interpolation: u = u+ Pg(ea)
9: end procedure

4.2 MGRIT with Spatial Coarsening

As a multigrid method, MGRIT primarily involves temporal coarsening, but spatial coars-
ening may be necessary for explicit time integration to ensure that stability conditions are
satisfied on all levels of the grid hierarchy. Spatial coarsening may also be used with im-
plicit time integration to produce smaller coarse-grid problems and hence cheaper multigrid
cycles. There are many choices of possible spatial restriction and prolongation operators
that have been developed for multigrid [98]. We use a standard choice of full weighting
restriction and linear interpolation operators, which are defined by

uop () = 0.25[up(x — h) + 2up(z) + up(z + h)),
up(z) = %[Uzh(ﬂf — h) + ugn (v + h)],

and have matrix representations

1 1 21 1
RSZ— :_PT7
4 2 °

1 21

which correspond to the case of periodic boundary conditions being enforced on the spatial
interval of interest.

For temporal coarsening, the coarse-grid time-stepper ®;_ azma: Was obtained by mul-
tiplying the time step At by the temporal coarsening factor m. For spatial coarsening
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we handle the explicit and implicit cases in different ways. For explicit time-stepping we
rediscretize on the fully coarsened grid, obtaining ®;, oazmat, & Ny/2 X N, /2 matrix. For
implicit time-stepping we instead use a Galerkin definition involving ®;, Ay ma¢. Galerkin-
type discretizations lead to optimal results in the A-norm for SPD problems [16], and they
have also been used for nonsymmetric matrices, for example, in [94]. We use a Galerkin
approach in this paper for implicit timestepping, because we find it leads to better results
than rediscretization.

To describe this method, we first note that the MGRIT matrix equation described in
(4.1) typically corresponds to cases where ® is a sparse matrix. If ® is the inverse of a
sparse matrix, as is the case for many implicit time-stepping methods, we may instead
write —I on the first block subdiagonal and ®; im, A; on the block main diagonal:

-1 -1
‘I'O,Ax,m . Ug ‘I’o,le,Ath
~ Iy, q)l,Am,At U 1,Az,At81 ~
u= = , =g (44
_I (P_l u q)—l
N Ni, Az, At N Ny, Az, At8N:

In this case, applying ®; az.a+ is a linear solve and @i—ix Az 18 the matrix to be inverted.

Working with (4.4) on the temporally coarsened grid (assuming m = 2 for simplicity)
and defining spatial restriction R,; and prolongation P,; to correspond to time ¢;, we
multiply each block row by R, and replace each u; with P, u,; to obtain

1 ~
R 0Py ar2atPs0 X U, 0 R, 080
_RS71PS7O RS>1¢1,AI,2AtP571 u871 o Rs,lgl
-1 ~

_RS,Nt/QPS,Nt/Qfl RS,Nt/2¢Nt/2,AJ;’2AtPS,Nt/2 U Ny /2 R87Nt/2gNt/2

Each block row of this matrix equation (except the first) can be written as
—R,;Psi1us,1 + Rs7i<bi_7ix7mAtPs,ius,i =R,,8i,
thus we compute
U, = (Rs,i‘pi_,ix,mmps,i)_l [RsiPsi1usi 1+ Rygil . (4.5)

For linear time-steppers the matrix R, ;®; A, arPsi is computed as the product of the three
sparse matrices R ;, (IDZ i% At and Py ;. which is then factored and stored for future use. In
the nonlinear case we first prolong the coarse-grid vector to the previous intermediate grid
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(coarse-in-time, fine-in-space), evaluate and compute the Jacobian for ®; A, Ap(Ps ;) —
P, 1u,;1 — gi = 0, then restrict both and solve the resulting coarse-grid linear system.
Compared to rediscretization we find this definition can result in cheaper overall algorithms,
both in terms of iterations required and overall time to solution.

We do not consider defining an explicit time-stepping coarse-grid operator in this way
for two reasons. First, it would result in a stricter stability condition when compared to
the rediscretized coarse-grid operator. Second, compared to the implicit case, where this
definition adds a matrix-vector product to the computational cost of the iteration, in the
explicit case the Galerkin definition adds a linear system solve (computing the product as
above for the explicit formulation results in a matrix R, ;P;; multiplying u,; that will need
to be inverted), which is not as parallelizable as the initial matrix-vector product required,
becoming a significant bottleneck as spatial parallelism is added.

4.3 Problem of Interest

In this thesis we are primarily interested in the conservative hyperbolic PDE

ou  O(f(u,x,t
— + —(f( ) =0, (4.6)
ot ox

In particular, we consider the variable coefficient linear advection equation, f(u,x,t) =
a(z,t)u, and the inviscid Burgers equation, f(u,z,t) = su?.

We consider the numerical solution of (4.6) on a finite spatial interval [a, b] and assume
periodic boundary conditions in all that follows. We use the vertex-centered approach to
construct spatial grids [59, § II1.4]: a grid is defined by points {z; };V:_Ol and has cells Q; =
(%172, Tj11p5], where @11/, = 5(2j+xj41); Le., the vertices (boundaries/cell interfaces) are
centered between x; and x;+;. When performing spatial coarsening, the vertex-centered
approach allows us to use a subset of {z; }éV:_OI to describe the grid on each level: no new
reference points are required. Dividing [a,b] into N, cells of equal width, the fine-grid
points {z,} are

xj=a+Ni(b—a) (247),7=01,...,N, — 1,

T

Defining 6z; = (241 — x;_1), (4.6) is semi-discretized in space as [59)]

8uj n f]%-i-l/g(t) - f;_l/z(t)
at 5.1']‘

~0, (4.7)
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where f7,,,(¢) is chosen as the local Lax-Friedrichs flux approximation:

f(uj-i-l (t)> Tjt1/2, t) + f(u] (t)7 Tjq1/2, t)

fiap(t) = 5 (4.8)
B %Wuf(ujﬂ(t)v Tjt1/z; t)’; |Ouf (u;(t), 541y, )] (0 (8) — us(8)).
For variable coefficient linear advection, this reduces to
Fip(t) = 5 [al@je, ) (Wi (8) +ui () = la(@joye, )] (wi (t) — u;(t))] (4.9)
and for Burgers’ equation
Fip(®) = § [ (1)) + (w5(1)* = (Juja (O] + [y (D)) (i (8) —wy(t))] . (4.10)

This conservative discretization was chosen to make our approach applicable to nonlinear
conservation laws dyu + 0, f(u) = 0, where (4.8) guarantees correct shock speeds. In this
paper we consider the forward and backward Euler time discretizations, which result in
the fully discrete equations (space index j, time index 17)

(@jrje + |afs]) ﬁ“j—l = (@540 = [a511p]) nguﬂ”rl

i 5t » (4.11)
+ {1 - (aj+1/2 - 3—1/2 + |aj+1/2| + ‘0’3—1/2}) 281+ } u =Y
and
i+1
j=1/2

i+1
J+1/2

Q

ot i
) 25x-uj+1

ot ,
+1 1
) 20x; } A
for linear advection, and the fully discrete equations

ot . ) . ) ot .
Mu;fl - (U;Jrl - ‘u;+1| - ‘uﬂ) M%‘H

6t z+1 i+1
) 20, 1 < Gjtye

i+1
J+1/2

- (a;.fll/z + |a
(4.12)
i1

¢ i1/

a

_|_

i+1 i+1
+ [1 + (ajil/2 — a]+1/2 +

(o + |uj] + | ])
| o » (4.13)
1= il 2+ o) g | 05 =

and

_( i+l ‘uz+1| X |uz+1 )45 z+1 +( ;ill_ |u;111 ’ z+1}) ot u;ill

[ Q2o i) 2 }“Z“ =)

(4.14)

for Burgers’ equation.
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Chapter 5

MGRIT For Hyperbolic Problems

In this chapter we use MGRIT to solve the 1D constant coefficient linear advection equation
both with and without spatial coarsening. In the case of implicit time-stepping we compare
these results to those for the 1D diffusion equation over the same space-time domain to
illustrate the increase in difficulty when considering non-diffusive problems. We apply a
variant of Fourier analysis called semi-algebraic mode analysis (SAMA) [46] to further
elucidate the differences between implicit MGRIT applied to advection and diffusion and
the effect of introducing spatial coarsening to these methods. We then introduce the idea
of combining MGRIT with waveform relaxation multigrid (WRMG) [95] and show how
this can offer improved convergence at the cost of being a more intrusive approach.

For the sake of brevity in this and the following chapter, we define “Explicit (Implicit)
MGRIT” to mean “MGRIT using an explicit (implicit) time-stepping function ®a, a¢".
Furthermore, for the analysis we use the advection-diffusion equation

ou ou 9%u
E -+ aa—x = 5@ (51)

so that both pure advection and pure diffusion cases can be considered by setting € or a
equal to zero, respectively.

5.1 The Effect of Spatial Coarsening

To begin this section we wish to illustrate how the choices between (i) multigrid V-cycles
or F-cycles, (ii) temporal F-relaxation or FCF-relaxation, and (iii) spatial coarsening or
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no spatial coarsening can affect the performance of MGRIT. To do so we consider the
simplest hyperbolic problem possible: the linear advection equation with unit wave speed
((5.1) with a = 1, € = 0): us + u, = 0. We solve this problem for (z,t) € [-2,2] x [0, 4]
with periodic boundary conditions and initial condition (5.2), taking us = 2 and ug = 1.

UA T e [_27_]—]7
~ Jup —x(ua — up) x € (—1,0],
ule) = up z € (0,1], (5:2)
ug+ (x — 1) (ug —up) =z € (1,2].

We let MGRIT iterate until the residual norm decreases below 107!°. For simplicity we use
the coarse-grid operators obtained by rediscretization rather than the Galerkin definition.
For implicit MGRIT we set N, = N; and for explicit MGRIT we set 2N, = N;, which
ensures the Courant-Friedrichs-Lewy (CFL) stability condition [69]

At

— <1
aAa:_

is satisfied on all levels of the grid hierarchy when uniform spatial coarsening is used.

N, x N, 27 x 28 2829 29 210 9l0 oIl oll 5 ol2

2-level 100%* 100* 100* 100* 100*

No SC | V-cycle | 100%* 100* 100* 100* 100*

F F-cycle | 100* 100%* 100* 100%* 100%*

2-level 100* 100* 100%* 100%* 100%*

SC-2 | V-cycle 100%* 100* 100%* 100* 100%*

F-cycle 100%* 100* 100* 100* 100*

2-level 51 96 100%* 100%* 100%*

No SC | V-cycle | 100%* 100* 100* 100* 100*

FCF F-cycle 100%* 100* 100* 100* 100*
2-level 36 37 38 39 40

SC-2 | V-cycle 49 65 89 100%* 100%*
F-cycle 39 45 52 61 73

Table 5.1: Results for explicit MGRIT applied to the linear advection equation. No SC:
no spatial coarsening; SC-2: factor-two spatial coarsening. Asterisks denote tests which
failed to converge within 100 iterations.

Tables 5.1 and 5.2 record the iteration count for each test completed using explicit and
implicit MGRIT, respectively. From these results we can draw some clear conclusions.
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N, x N, 27 x 27 28 28 29 %29 210210 oll ol
2-level 18 19 20 21 21
No SC | V-cycle 30 45 70 100* 100*
P F-cycle 20 24 29 37 49
2-level 100* 100* 100* 100* 100*
SC-2 | V-cycle | 100* 100%* 100* 100%* 100*
F-cycle | 100* 100* 100* 100* 100*
2-level 15 17 18 19 19
No SC | V-cycle 17 23 31 45 65
F-cycle 15 18 21 25 30
FCF 2-level 21 25 28 29 30
SC-2 | V-cycle 23 32 45 64 95
F-cycle 21 27 33 40 50

Table 5.2: Results for implicit MGRIT applied to the linear advection equation. No SC:
no spatial coarsening; SC-2: factor-two spatial coarsening. Asterisks denote tests which
failed to converge within 100 iterations.

We see that FCF-relaxation is necessary for MGRIT with spatial coarsening to converge,
as error modes in the null-space of the spatial restriction operator are damped solely
by FCF-relaxation [44]. Furthermore, FCF-relaxation produces better scaling than F-
relaxation for MGRIT without spatial coarsening, which has previously been noted in [42].
As expected, spatial coarsening is necessary for explicit MGRIT to converge because of
stability requirements. Finally, while neither V-cycles nor F-cycles exhibit the desired
multigrid optimality, the number of MGRIT iterations required increasing with problem
size, we see that F-cycles scale better than V-cycles. Based on these results we will restrict
our consideration to FCF-relaxation and F-cycles in subsequent tests for the advection
equation, as these consistently produce the best results out of all the cases considered.

As an example of the type of results we would ideally like to achieve, Table 5.3 records
the iterations and time required for convergence when implicit MGRIT is applied to the
1D diffusion equation ((5.1) with a =0, € = 1), u; = g, for the same space-time domain
and initial condition as the advection equation. Explicit MGRIT tests are omitted due the
more strict stability condition for the diffusion equation in this case. From these results it is
clear that MGRIT exhibits the desired multigrid optimality for FCF-relaxation, and spatial
coarsening does not result in an increased iteration count. Comparing these results to those
of Table 5.2 leads to the obvious conclusion that the hyperbolic problem is significantly
more difficult, in most cases requiring at least twice as many iterations for convergence.
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N, x N, 27 x 27 28 28 29 %29 210210 oll ol
2-level 10 11 11 11 11
No SC | V-cycle 18 21 25 29 32
r F-cycle 10 11 11 11 11
2-level 100* 100* 100* 100* 100*
SC-2 | V-cycle | 100* 100%* 100* 100%* 100*
F-cycle | 100* 100* 100* 100* 100*
2-level 7 7 8 8 8
No SC | V-cycle 8 9 9 10 10
F-cycle 7 7 8 8 8
FCF 2-level 7 7 8 8 8
SC-2 | V-cycle 8 9 9 10 10
F-cycle 7 7 8 8 8

Table 5.3: Results for implicit MGRIT applied to the diffusion equation. No SC: no
spatial coarsening; SC-2: factor-two spatial coarsening. Asterisks denote tests which failed
to converge within 100 iterations.

5.2 Semi-Algebraic Mode Analysis

In this section we use the SAMA method described in [46] to analyze the implicit MGRIT
iteration matrix and better understand how convergence is affected by parameters Ax
and At, as well as the inclusion of spatial coarsening. It has been observed that local
Fourier analysis (LFA) may fail to accurately predict convergence behaviour for methods
applied to parabolic or hyperbolic problems [47]. SAMA was designed to take into account
the structure of the matrices being analyzed, using LFA to handle circulant or Toeplitz
blocks/matrices and algebraic computation to handle those with different structure [46].

We can obtain a worst-case convergence estimate for two-level MGRIT by computing
the 2-norm of the iteration matrix. The iteration matrix for MGRIT without spatial
coarsening is

TI(\/IIé)RIT - (I - PAERA) SyS:'St.
and the iteration matrix for MGRIT with spatial coarsening is
Tiiorirse = (I - PPLATIR.RA) STSCSE.
The SAMA methodology uses the matrix W of N, discretized spatial Fourier modes,

—= T k‘:——+1,,

_ iOpx/Azx -z
¢<x70k> € ) Hk Nx ) 2 9 )




to diagonalize the circulant blocks of the iteration matrix by computing F!TF, where
F =1y, ® ¥ and we omit subscripts and superscripts for clarity. The resulting matrix is
then permuted to obtain a block diagonal structure, with different blocks corresponding to
the error reduction in different Fourier modes: T = P~*F 'TFP. In order to transform
and block diagonalize the overall iteration matrix we apply these transformations to each
individual matrix in the product that defines it.

The matrices Ax and A, are the analogues of A on semi-coarsened (time only) and
fully coarsened (both time and space) grids: Aa is a N;/m x N;/m block matrix with
blocks of size N, x N,, the subdiagonal blocks being —®a, mas; and A is a Ny /m x Ny/m
block matrix with blocks of size N, /2 x N, /2, the subdiagonal blocks being —®on; mat-
The eigenvalues of ®a; A, corresponding to (5.1) are

alt Lo 26t !
A\ = (1 +—[1—e ]+ N 11— cos@k]> :

Ax

The eigenvalues of ®a, ,a; are obtained by replacing At by mAt in the above equation;
the eigenvalues of ®9a, ma; are obtained by further replacing Az by 2Az and 6, by 20.
The transformed matrix F~!AF is permuted to have N, x N, blocks, each of size N; x Ny,
with diagonal blocks corresponding to the evolution of one spatial Fourier mode over time:

~ 1

A,y
N —Ar 1
’P_lf-'_lA./_"'P — , where Ak = .

AN” _)\k 1

Analogous expressions can be found for A Ak and _/A&s,k.
SF and S¢ are the error propagation matrices for temporal F and C-relaxations:
I 0
F ¢ C 1.m I
St :INt/m® . y St :KNt/m®ETr’L ®@+1Nt/m® . P
ot I

where Ky, /, € RO/mx(Ne/m) and ELm € R™™ are defined by

o 1 ifi—j5=1 . 1 ifi=1,5=m
Ky, /m(t,7) = ’ EL™(i, §) = ' ’
wim(i ) {0 otherwise, w (J) {O otherwise.
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We note that an alternate (but computationally equivalent) description of these matrices
is provided in [36,46], which corresponds to reordering the fine-grid operator A to first
consider all F points, then all C points. These are N; x N; block matrices with blocks of
size N, x N, that are transformed and then permuted into N, x N, block matrices with
blocks of size N, x Ny, the resulting N, x N; blocks themselves being block bidiagonal
matrices with blocks of size m x m:

S S
PIFTIS[FP = and P'FISYFP = ,
Sfh, SEw,
where
Zr Zy,
N VA N \.ejel  ZC
S, = ’“ and SC, = |0 TF ,
VA Arerel, Zj
with
[ 1 i [0 ] 1] 0]
M O 1 0 0
Zz = )\z 0 ) Zg = 1 9 e = ) a’nd em -
: - . 0 0
_A;"—l 0] I 1 0] 1

The ideal prolongation operator P, a N; x N;/m block matrix with blocks of size
N, x N, becomes a N, x N, block matrix with blocks of size N; x N;/m:

~

Py
PlFIPEP, = ,
Py,
where P, = Ingm @ v and v = [1, A\, AL, ..., AT, The injection restriction operator,

R, a N;/m x N; block matrix with blocks of size N, x N,, becomes a N, x N, block matrix
with blocks of size Ny/m x Ni:

~

R,
Pl F,'RFP = :
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where f{k(z, l+m(i—1))=1fori=1,...,N;/m, and is zero otherwise.

Spatial prolongation and restriction operators become N, /2 x N, /2 diagonal block ma-
trices with blocks of size 2N;/m x N;/m and N;/m x 2N;/m, respectively. The diagonal
blocks of P, (R,) are formed by concatenating two N,/m x N,/m identity matrices verti-
cally (horizontally), each identity matrix scaled by the corresponding entry of the Fourier
symbol for the prolongation (restriction) operator. These Fourier symbols are 2 x 1 and
1 x 2 matrices, respectively, with entries depending on 6. For full weighting and linear
interpolation these symbols are 0.5[1 4 cos 0, 1 — cos 0|7 and 0.5[1 4 cos 6, 1 — cos ], thus

(1 + cosby) (1 — cosby) ~
Rs,k = = Pl,k
2(1+ cosby) 1(1 = cosby)

Spatial coarsening couples together the Fourier harmonics 6, and 6 = 6, — sign(0x)m,
represented by the coupling of fine-grid operator blocks by spatial restriction and prolon-
gation blocks. Let a final permutation place 6 blocks immediately before 64 blocks along
the block diagonals. We replace a pair of blocks from A' (left) with a single, larger block

from f’y&s‘lﬁs (right):

Ay, 0

A-1
0 Axw
Having transformed all component matrices, we compute the norm of the transformed
iteration matrix, HTHz, which serves as an upper bound for error reduction after one
MGRIT iteration. As T has diagonal blocks Bk, k=1,2,..., N, the task of computing

its norm simplifies as follows:

1T [Bixa|® + - + By, X, || Bl _

T2 = sup = sup = max sup
o X2 w0 Il 4+ a2 B Xkl

Ps kAs ]iRs k Ps k:AS ]iRs k'
Ps k’A 1Rs k Ps k’As kRs K’

max | By

The third equality follows from the fact that we can compute the SVD of T blockwise from
the SVDs of each By,. Thus to compute |T"|| we maximize ||B}| over the set of Fourier
frequencies. For time-only coarsening, Bk is

(1- AL RAL) ST,

and for space-time coarsening, By, is

(0 9-[ alEam Rl [ 2] |3 2] P o]
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5.3 Analysis of MGRIT With Spatial Coarsening

In this section we compare the results of SAMA for implicit MGRIT with and without
spatial coarsening, solving (5.1) over a 128 x 128 space-time grid for different combinations
of the parameters a, €, A,, and A,;. In the case of spatial coarsening we consider both
rediscretized and Galerkin definitions for the fully coarsened operator A,. To do so we plot
the iteration matrix block norm after 1 iteration (||By||2, left panels) and after 5 iterations
(||]§2||27 right panels) as a function of Fourier frequency 6. As the plots are symmetric in
the y-axis, for clarity we only show the results for 6 € [0,7]. In each panel the red plots
correspond to (primarily) advection and the blue plots to (primarily) diffusion. The six
parameter combinations considered are recorded in Table 5.4.

Advection Diffusion
Case (a,€) (a,€) (A, A
1 (1,0) (0,1) (27°,279)
2 (0.1,0)  (0,0.1) (279,279
3 (10,0) (0,10)  (275,279)
4 | (Lo1)  (01,1) (277,279
5 (1,0) (0,1) (275,27%)
6 (1,0) (0,1) (278,279)

Table 5.4: Parameter combinations for SAMA tests illustrated in Figures 5.1-5.6.

Figure 5.1 is used as the basis of comparison, as it considers pure advection and diffusion
with unit parameters. The maximum value attained by a given curve is the value of ||T||
for this case, representing the worst-case estimate of the MGRIT convergence factor. As
we observe for MGRIT with spatial coarsening applied to pure linear advection, several
iterations may be required for this to be less than one, which is due to the non-normality of
the matrices considered [16]. From this we see that MGRIT performance for the advective
case is much worse than in the diffusive case, which agrees with the numerical results from
§ 5.1. The replacement of the rediscretized coarse-grid operator with the Galerkin operator
results in some moderate improvements to spatial coarsening: but it is still significantly
worse than no spatial coarsening for the advection problem; for the diffusion problem with
spatial coarsening the norm is significantly larger for 6 € [0.5,2.5], but it still results in a
matrix norm smaller than 10 after five iterations.

Figures 5.2, 5.3, and 5.4 illustrate how varying a and ¢ can affect convergence. In
Figure 5.2 we see that, for advection with a = 0.1, MGRIT with no spatial coarsening
has a much lower matrix norm value compared to Figure 5.1 except for # near zero or T,
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Two Grid Iteration Matrix Block Norm - After 1 Iteration
T

Two Grid Iteration Matrix Block Norm - After 5 Iterations
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Figure 5.1: Implicit MGRIT: iteration matrix norm dependence on Fourier frequency.
Advection: a =1, e = 0, Diffusion: a =0, e =1, A, = A,.
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Figure 5.2: Implicit MGRIT: iteration matrix norm dependence on Fourier frequency.
Advection: a = 0.1, ¢ = 0, Diffusion: a =0, e = 0.1, A, = A,.

corresponding to much faster convergence. In contrast, MGRIT with spatial coarsening
performs incredibly poorly, showing almost no decrease in norm value even after 5 itera-
tions. These observations are both due to the fact that as a — 0 the spatial connections
become weaker, meaning that MGRIT without SC is more like an exact solver (which is
the case for a = 0), and the spatial restriction/prolongation operations of MGRIT with SC
become increasingly ineffective. In the case of diffusion with e = 0.1 we see that the matrix
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norm values increase, being nearly on par with those for the no SC advection case. In-
cluding spatial coarsening results in noticeable deterioration, but the difference is nowhere
near as large as that in the advection case.

Two Grid Iteration Matrix Block Norm - After 1 Tteration Two Grid Iteration Matrix Block Norm - After 5 Iterations
T T T T T T T T T T T T

10'10
10158

1020 F

[[By]
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?| —o— Diffusion: No SC
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..... < —#— Diffusion: SC-G

—O— Advection: No SC
—&— Advection: SC

J| —#— Advection: SC-G
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—&— Diffusion: SC
—#— Diffusion: SC-G

103 [

1040 [

108 L L L L L L 107 I I I I L L
0 0.5 1 15 2 25 3 35 0 0.5 1 15 2 25 3 35

[ O
Figure 5.3: Implicit MGRIT: iteration matrix norm dependence on Fourier frequency.
Advection: a = 10, ¢ = 0, Diffusion: a =0, ¢ = 10, A, = A,.

As observed in 5.3, increasing either a or ¢ to 10 while keeping the other fixed at 0
results in across the board improvements for all cases, with the only exceptions being for 6
values near 0 or 7. While MGRIT with spatial coarsening is still less effective than MGRIT
without, in such cases the benefits of cheaper iterations will far outweigh the slightly worse
rate of convergence indicated.

In Figure 5.4 we consider the inclusion of both spatial derivative terms of (5.1) with
the coefficient of the dominant term being an order of magnitude larger than the other. In
the advection dominated case (with a = 1.0 and € = 0.1) we see substantial improvements
over the results of Figure 5.1, suggesting that advection dominated problems with small to
moderate amounts of diffusion can be effectively solved by MGRIT both with or without
spatial coarsening. For the diffusion dominated problem (with a = 0.1 and € = 1.0) we see
minimal difference between these results and those from Figure 5.1, which suggests that
small to moderate amounts of advection will not negatively impact MGRIT convergence
for diffusion dominated problems.

In Figures 5.5 and 5.6 we examine the effects of having a significant difference in the sizes
of A, and A; (which can be obtained by varying the space-time domain or the number of
grid points used in each dimension; the two approaches generate similar results). In Figure
5.5 we have A, = 8A,, which produces results extremely similar to those in Figure 5.2,
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Figure 5.4: Implicit MGRIT: iteration matrix norm dependence on Fourier frequency.
Advection: a =1, e = 0.1, Diffusion: a = 0.1, e =1, A, = A,.
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Figure 5.5: Implicit MGRIT: iteration matrix norm dependence on Fourier frequency.
Advection: a =1, e = 0, Diffusion: a =0, e =1, A, = 8A,.

which is not unexpected, as this has the same effect on spatial connections as choosing a or
€ to be 0.125. Similarly, the results of 5.6, corresponding to 8A, = A;, are extremely close
to those of Figure 5.3, as this had the same effect as taking a or € to be 8. The conclusion
to be drawn from these tests is that coarsening in space without coarsening in time can
lead to significant convergence issues, whereas coarsening in time without coarsening in
space can lead to improved MGRIT convergence, though one has to be mindful of the CFL
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Figure 5.6: Implicit MGRIT: iteration matrix norm dependence on Fourier frequency.
Advection: a =1, e = 0, Diffusion: a =0, e =1, 8A, = A,.

condition for explicit MGRIT. These principles will be revisited when discussing adaptive
spatial coarsening in the following chapter.

5.4 MGRIT and Waveform Relaxation Multigrid

In this section we discuss how MGRIT with spatial coarsening can be improved by in-
troducing a spatial relaxation on the intermediate grid (coarse-in-time only) based on
WRMG [95,96]. As before, we do this for both the linear advection and the heat equation
to illustrate the additional difficulties in the hyperbolic case.

5.4.1 For Implicit MGRIT

To combine WRMG with implicit MGRIT we work with the system for sparse @ZL At
matrices to carry out spatial relaxations:

-1 -1
(I)Ax,At ) Ug (I)Aic,Ath
—Iy, (I)Aa:,At u ‘I’Ax,mgl e
. = . =g. (5.3)
—1 —1
—Iy, (I)A:):,At un, ‘I’Ax,Atht



For time-then-space coarsening this necessitates (i) applying @Ziy A¢ to the right-hand-
side vector before carrying out spatial relaxations, and (ii) applying ®a, a: to the spatial
residual once computed. For coarsening in space-then-time we instead work with (5.3) by
default, converting to the ®-on-subdiagonal form to carry out temporal relaxations.

By permuting (5.3) so that blocks correspond to spatial slices rather than time slices,
with blocks ordered from 0 to /N, — 1 and variables within blocks in increasing temporal
order, we obtain

Q R P U 2o
P Q R u; _ g1
R P Q| [un, 1 gN,—1
where . T
ﬁk = U’Ilc ’U,i e ullcvt/Q and /g\k: = ’g/l}; jg% e givt/2 .

For convenience we recall that K,, is the matrix with ones along the first subdiagonal:

000 --00
100 - 00
K,—[010 00
000 1 0]

The matrices P, Q, and R are

P=oly;, Q=1+78)1In:—Kn/ R=9Iy,

where o, # and 7 are the coefficients of u;_1, ug, and ug,, for the discretized spatial
derivative term of the differential equation. In particular:

(@.6.7) ‘Z_Axt (—1,1,0) for linear advection,
«, O, = : :
" Z#zg (—=1,2,—1) for diffusion.

For any three point discretization in space an exact cyclic reduction solve is carried out by

(i) Spatial F-relaxation via timeline solves on F points,
(ii) Residual evaluation at C points,
(iii) Exact solution of the Schur complement coarse-grid system, and
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(iv) F-relaxation to propagate correction to F points,

where the spatial relaxation mentioned above is
U, = Q (8 — Pl — RUpq1).

The exact cyclic reduction is just as expensive as a linear solve due to the dense Schur
complement. To avoid the cost associated with forming and inverting the Schur com-
plement, WRMG replaces it with the matrix corresponding to the differential equation
rediscretized on the coarse spatial grid. One step of the WRMG algorithm [95,96] consists
of the following steps:

(i) Spatial CF pre-relaxation via timeline solves on C points, then F points,
(ii) Residual evaluation at C points,
(iii) Full weighting restriction (equivalent to half injection for the residuals)
(iv) Exact solution of the rediscretized coarse-grid system,

(v) linear interpolation of coarse-grid correction,
(vi)

In Table 5.5 we record the number of iterations required for the two level WRMG
algorithm to reach a residual error of 107!° when applied to the advection and diffusion
equations. We consider the cases of N, = Ny, N, = 2N;, and 2N, = N, for varying
problem sizes. In these cases the results for the diffusion equation are independent of
problem size, whereas those for advection slightly improve with problem size when N, >
N;. Furthermore, advection generally requires approximately twice as many iterations as
diffusion, providing further evidence that this problem is intrinsically harder.

Spatial FC post-relaxation via solves on F points, then C points.

We now use this two-level WRMG algorithm as a component of our overall MGRIT
iteration. We can either coarsen in time or in space first; in the former case WRMG is
applied on intermediate grids (coarse in time only), and in the latter it is applied on the
fine and fully coarsened grids, with temporal FCF relaxation occurring on the intermediate
grids. We consider both coarsening orderings for advection and diffusion, with results for
time-then-space in Table 5.6 and for space-then-time in Table 5.7.

These results are very similar, with the iteration counts for time-then-space coarsening
being slightly better, in part due to how residuals are computed on different levels. For
advection, while F-cycles exhibit significantly better iteration counts compared to V-cycles,
in both cases the iteration count increases with problem size and number of levels, with
the combined effects approximately quadrupling the iteration count for the largest V-cycle
cases and doubling for the largest F-cycle cases. In contrast, for the diffusion equation both
V-cycles and F-cycles scale well with problem size, and F-cycles exhibit no growth as the
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(foﬂ Nt) (277 27) (287 28) (297 29) (2107 210) (2117 211)
Advection 21 21 19 19 18
Diffusion 11 11 11 11 11%*

(Nﬂﬂﬁ Nt) (26, 27) (277 28) (287 29) (297 210) (2107 211)
Advection 21 21 21 22 22
Diffusion 10 11 11 11 11

(thﬂ Nt) (277 26) (287 27) (297 28) (2107 29) (2117 210)
Advection 21 21 19 17 16
Diffusion 11 11 11 11 11

Table 5.5: Iteration counts for two-level WRMG applied to the linear advection and diffu-
sion equations. Asterisks denote stalled convergence at 1.7509e-10.

(Naca Nt)
levels (277 27) (287 28) (297 29) (2107 210) (2117 211) (212’ 212)
2 19 23 26 28 29 29
V-cycles 3 20 28 38 50 60 66
4 20 28 39 55 78 111
Advection : 20 28 39 59 80 119
2 19 23 26 28 29 29
Focycles | © 19 24 29 34 38 41
4 19 24 29 36 43 59
5 19 24 29 36 44 54
2 7 7 g 8 g 3
3 8 8 8 9 9 9
V-cycles 4 g 0 0 ) ) .
iffusi 5 8 9 9 9 10 10
Diffusion 5 - - X N . .
F-cycles 3 7 7 8 8 8 8
4 7 7 8 8 8 ]

Table 5.6: Iteration counts for implicit MGRIT combined with WRMG applied to the
linear advection and diffusion equations. Time-then-space coarsening.

number of levels in the multigrid hierarchy is increased. Comparing the time-then-space
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coarsening results of Tables 5.2, 5.3 and 5.6, we see a significant improvement in iteration
counts for advection, with the diffusion results being essentially unchanged.

(Nﬂcv Nt)
levels (277 27) (28’ 28) (29, 29) (2107 210) (211’ 211) (212’ 212)

2 24 24 26 28 29 30

V-cycles 3 24 31 40 ol 61 66

4 24 31 42 58 82 114

Advection b 24 31 42 59 85 127
2 24 24 26 28 29 30

F-cycles 3 24 25 30 35 39 41

4 24 25 30 37 44 92

5 24 25 30 37 45 26

2 11 11 12 12 12 12

V-cycles 3 11 12 12 12 13 13

4 12 12 12 13 13 13

Diffusion 5 12 12 12 13 13 13
2 11 11 12 12 12 12

F-cycles 3 11 11 12 12 12 12

4 11 11 12 12 12 12

5 11 11 12 12 12 12

Table 5.7: Iteration counts for implicit MGRIT combined with WRMG applied to the
linear advection and diffusion equations. Space-then-time coarsening.

(nyNt)
lovels [(27.27) (.2 (&%) (@029 (27,20
5 50 % o7 29 30
Veeyeles | 3 21 30 A1 55 65
1 21 30 12 61 90
. 5 21 30 12 61 90
Advection 7 20 % 27 29 30
Poyeles | 3 20 2% 31 37 A1
1 20 26 31 39 A7
5 20 2 31 39 48

Table 5.8: Iteration counts for implicit MGRIT combined with WRMG applied to the
linear advection equation for (z,t) € [—2,2] x [0, 32]. Time-then-space coarsening.
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(Nx7Nt)
lovels | (21%,27) (25, 25) (2'2,2%) (2'%,210) (2 21)
2 20 2% 28 29 30
Veeveles | 3 21 30 A1 55 65
4 21 30 12 61 90
. 5 21 30 12 61 91
Advection 7 20 % 73 29 30
Proyeles | 3 20 25 31 36 A1
4 20 2% 32 39 A7
5 20 25 32 39 48

Table 5.9: Iteration counts for implicit MGRIT combined with WRMG applied to the
linear advection equation for (z,t) € [—2,2] x [0,4]. Time-then-space coarsening.

As we are using implicit MGRIT, setting At = Az does not take advantage of the
relaxed stability condition on At. We now consider the case of At = 8Axz, which can
correspond to either (i) keeping N; = N, and taking Ty — T; = 8(xy — x;), or (ii) taking
N; = 8N, while keeping Ty —T; = s — x;. In fact, as illustrated in Tables 5.8 and 5.9, we
obtain essentially the same results for cases (i) and (ii) in terms of iteration counts, which
suggests that the deterioration in convergence with increasing problem size is linked to the
number of time points, N;, rather than the spatial problem size, N,. Furthermore, when
comparing results for problems of equal size (Tables 5.6 and 5.8), we see that the iteration
count exhibits an increase of up to 15% for V-cycles and up to 10% for F-cycles when a
ratio of At/Ax 8 times larger.

5.4.2 For Explicit MGRIT

The same method can be used with explicit MGRIT, where the ®a, a;-on-subdiagonal
system (4.1) is used on all levels, hence there is no need to adjust g by ®az a¢ or <I>Z; At
when implementing spatial relaxations on the intermediate grid.

Using the same permutation as before, we again obtain a block tridiagonal system
composed of matrices P, Q, and R, that are now given by

P=0oKy, 2, Q=1Iy,—(1-05)Kn/p, R=9Ky,,

where «, § and v are the same coefficients of u;_1, ug, and ug,; as before. We consider
both time-then-space coarsening and space-then-time coarsening, but in contrast to implicit
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MGRIT there are significant differences in results for these two orderings. For a basis of
comparison an expanded set of results for FCF-relaxation are presented in Table 5.10,
which illustrates how iteration counts grow with the number of levels.

(va Nt)
levels (26’ 27) (277 28) (287 29) (29, 210) (210’ 211) (2117 212) (2127 213)
2 33 36 37 38 39 40 42
3 37 49 62 70 74 7 79
V-cycles 4 37 49 65 89 118 137 148
5 37 49 65 89 122 173 234
Advection MAX 38 49 65 89 122 173 242
2 33 36 37 38 39 40 42
3 34 39 44 47 49 51 53
F-cycles 4 34 39 45 92 60 65 68
5 34 39 45 52 61 73 88
MAX 34 39 45 52 61 73 90

Table 5.10: Results for explicit MGRIT with time-then-space coarsening.

Let (v, 1) denote v spatial CF pre-relaxations and v, spatial FC post-relaxations. We
consider FCF temporal relaxation with (1,0), (0,1), (1,1), and (2,0) spatial relaxations,
recording the results in Table 5.11. We first note that pre-relaxations can be used without
post-relaxations, but not vice versa. Doing more spatial than temporal relaxations on all
levels can lead to increased iteration counts for smaller problems and/or fewer levels in
the grid hierarchy, which may be a result of information propagating “faster” in the spatial
direction than in the temporal direction, violating the CFL condition. Note, however, that
results are somewhat improved for the largest problem size and maximum level V-cycles
in the (2,0) case and for F-cycles in the (1, 1) case.

Inspired by the previous results, we considered the possibility of varying the number
of spatial relaxations performed as we coarsen. For instance, assuming that ¢ = 1 is the
finest level, Table 5.12 contains results for (i) (1,0) (ii) (min(¢,2),0), (iii) (min(¢,3),0),
and (iv) (¢,0) spatial relaxations on level ¢, the first case being a repeat of the top half
of Table 5.11. Comparing the bottom row for each of the V- or F-cycle sections we see
clear improvements as we move down the table, with the results for min(¢, 3) being nearly
as good as those in the most extreme expensive case of ¢ spatial relaxations on level /.
The exact reason for why results improve to such an extent is still unclear. Furthermore,
while no post-relaxations produced the best results observed for unit wave speeds, as will
be seen in § 5.4.3, this is not necessarily the case for small or variable wave speeds, for
which including post-relaxation produces significant improvements.
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] (N‘L7 Nt)
levels (267 27) (27’ 28) (28’ 29) (297 210) (210’ 211) (2117 212) (212’ 213)

5 23 % 2% o7 28 29 29
3 24 25 28 38 18 56 61

Veeycles | 4 24 25 28 39 55 75 08

(1.0) Spatial 5 24 25 28 39 54 76 108
L 0) Spatia MAX | 24 25 28 39 54 77 107
Rolaxation; 3 3 % % 97 73 29 29
3 23 25 26 29 33 37 39

Focycles | 4 23 25 2% 29 35 42 49

5 23 25 2% 29 35 42 52

MAX | 23 25 2 29 35 42 52

D 29 37 16 51 60 63 66

3 29 16 71 99 141 187 227

Veeycles | 4 29 16 72 113 172 270 400*

, 5 29 16 72 114 182 200 400*

(f{’e %ixii’iff MAX | 29 16 72 114 182 206 400%
dolaxations 7 29 37 16 51 60 63 66
3 29 a1 53 72 95 117 135

F-cycles 4 29 42 56 76 108 153 213

5 29 42 56 7 108 159 237

MAX | 29 42 56 77 109 159 233

) 2% 36 33 39 10 a1 12

3 2% 36 A7 71 84 86 89

V-cycles 4 26 36 47 72 96 99 101

(1.1) Spatil 5 2 36 A7 72 96 99 101
1 1) Spatia MAX | 26 36 A7 72 96 99 101
olaxations 3 % 36 33 39 10 a1 D)
3 2% 36 39 43 14 15 16

Focycles | 4 2 36 39 44 15 A7 48

5 2% 36 39 44 16 A7 48

MAX | 26 36 39 44 15 a7 48

p 73 i1 52 55 57 53 64

3 28 14 52 55 56 58 59

Veeycles | 4 28 44 52 55 57 53 60

_ 5 28 44 52 55 57 58 72

(1?{’ (1)) Slt).a“al MAX | 28 44 52 55 57 58 64
On Tovel £ 2 28 a4 52 54 56 58 59
3 28 44 52 54 56 58 59

Focycles | 4 28 44 52 54 56 58 59

5 28 44 52 54 56 58 59

MAX | 28 44 52 54 56 58 59

Table 5.11: Results for explicit MGRIT combined with WRMG applied to the linear
advection equation. Time-then-space coarsening. Asterisks denote tests which failed to
converge within 400 iterations.
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(Nﬂﬁ Nt)
levels (26’ 27) (277 2 ) (287 29) (297 210) (2107 211) (2117 212) (2127 213)
5 23 2% 2% 97 23 29 29
3 24 2 23 33 48 56 61
Veeycles | 4 2 2 28 39 55 75 08
(1.0) Spatial 5 24 2 23 39 54 76 108
R’elaxaiion MAX | 24 25 28 39 54 7 107
Relaxation 7 %3 % % 97 2 79 29
3 23 2 2% 29 33 37 39
Fecycles | 4 23 2 2% 29 35 42 49
5 23 25 2% 29 35 12 52
MAX | 23 2% 2% 29 35 12 52
P 23 % % 57 23 29 29
3 2 2 28 38 48 56 61
Veeycles | 4 2 2% 2% 32 13 60 82
5 24 2 2% 32 40 53 74
(min(?, 2), 0) Spatial MAX | 23 25 2% 29 34 47 66
Relaxations 2 23 2% % 97 2 29 29
3 23 2 2% 29 33 37 39
Focycles | 4 23 2% 2% 23 32 37 14
5 23 2 2% 28 32 36 42
MAX | 23 2% 2% 27 29 33 40
D 23 2% % o7 23 29 29
3 23 2 2% 30 39 49 57
Veeycles | 4 23 2 2% 23 33 44 65
, , 5 23 25 2% 23 34 37 53
(min(¢, 3),0) Spatial MAX | 23 2 2% 23 34 37 51
Gu'lovel > [ 3 25 2% 2 % 2 2
3 23 2 2% 23 30 33 37
Focycles | 4 23 2 2% 97 29 33 39
5 23 2 2% 27 29 31 36
MAX | 23 2% 2% 27 29 31 35
P 23 % % 57 23 29 29
3 23 2 2% 30 39 49 57
Veeycles | 4 23 2 2% 23 33 14 65
. 5 23 2 2% 28 34 40 48
(é (1]) ng?‘“al MAX | 23 2 2% 28 34 40 15
Oenafgvﬁr? 2 23 25 26 27 28 29 29
3 23 2 2% 28 30 33 37
Focycles | 4 23 2 2% 27 29 33 39
5 23 2 2% 97 29 30 34
MAX | 23 2 2% 27 29 30 33

Table 5.12: Results for explicit MGRIT combined with WRMG applied to the linear
advection equation. Time-then-space coarsening. Use the indicated number of spatial CF
pre-relaxations on level /.
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For space-then-time coarsening we have found that both pre-relaxations and post-re-
laxations are necessary for convergence of the method, and that iteration counts improve
as the number of spatial CF relaxations increase, as illustrated in Table 5.13, which shows
the results for 1 and 2 sets of spatial pre- and post-relaxations. Furthermore, varying
the number of spatial or temporal relaxations with the level does not offer any additional
acceleration as for time-then-space coarsening. Using ¢ temporal CF relaxations on level
¢ results in much worse convergence than normal, and doing (¢, ¢) spatial relaxations on
level ¢ is better than the (1,1) results but worse than the (2,2) results.

(Nm Nt)
levels (26’ 27) (277 28) (287 29) (297 210) (2107 211) (2117 212) (2127 213)
3 27 30 32 33 34 35 36
3 27 33 42 53 59 64 67
Veeycles | 4 27 33 42 56 74 97 115
. 5 27 33 42 56 74 102 143
. ) Spetial MAX | 27 33 42 56 7 102 143
On Tavel 0 2 27 30 32 33 34 35 36
3 27 30 33 37 40 12 14
Focycles | 4 27 30 33 38 44 51 56
5 27 30 33 38 44 52 63
MAX | 27 30 33 38 44 52 63
3 14 20 2 25 27 2 29
3 14 20 24 32 42 50 57
Vecycles | 4 14 20 24 32 43 60 80
. 5 14 20 24 32 43 59 82
(2,2) Spatial MAX | 14 20 24 32 43 59 82
Relaxations > | 1w 2 % 27 28 29
3 14 20 22 2% 31 35 37
Focycles | 4 14 20 22 2 31 37 14
5 14 20 22 2% 31 37 14
MAX | 14 20 22 2% 31 37 44

Table 5.13: Results for explicit MGRIT combined with WRMG, with space-then-time
coarsening.

5.4.3 For Small or Variable Wave Speeds
As illustrated by the SAMA results in Figure 5.2, MGRIT with spatial coarsening can

suffer from extremely slow convergence when the wave speed is near zero. However, this
can be remedied through the inclusion of spatial relaxations on the intermediate grid, as
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(Na:; Nt)
levels (277 27) (28’ 28) (297 29) (2107 210) (2117 211) (212’ 212)
2 64 100* 100* 100* 100* 100*
V-cycles 3 64 100* 100* 100* 100* 100*
4 64 100* 100* 100* 100* 100*
5 64 100* 100* 100* 100* 100*
No WRMG 2 64 100* 100* 100* 100* 100*
F-cycles 3 64 100* 100* 100* 100* 100*
4 64 100* 100* 100* 100* 100%*
5 64 100* 100* 100* 100* 100*
2 14 17 20 24 26 28
V-cycles 3 14 17 21 27 37 48
4 14 17 21 27 36 50
5 14 17 21 27 36 50
(1,1) WRMG 2 14 17 20 24 26 28
F-cycles 3 14 17 20 23 28 32
4 14 17 20 23 27 33
5 14 17 20 23 27 33

Table 5.14: Iteration counts for implicit MGRIT with and without WRMG applied to the
linear advection equation with small wave speed a = 0.1. Coarsening in time-then-space.
Asterisks denote tests which failed to converge within 100 iterations.

illustrated by the contents of Tables 5.14 and 5.15, which contain results for (5.1) with
(a,e) = (0.1,0) solved by implicit and explicit MGRIT using spatial coarsening with or
without spatial relaxations on the intermediate grid. In the implicit case we use (1,1)
spatial relaxations, and for explicit we use (min(3,¢),1) relaxations, with the inclusion
of the post-relaxation in the explicit case making a significant difference in performance.
These results show that the inclusion of spatial relaxations can have a large impact on the
convergence of MGRIT with spatial coarsening. The remaining growth in iteration counts
observed is likely related to the choice of temporal relaxation scheme or the coarse-grid
time-stepping operator, both of which remain active areas of investigation.

This strategy also works for variable wave speeds, as illustrated in Tables 5.16 and 5.17,
which contain results for the linear advection equation with a wave speed a(z, t) that varies
both in space and time. Both implicit and explicit MGRIT exhibit typical convergence
for the hyperbolic case, whereas without these spatial relaxations they would not converge
within a reasonable number of iterations, similar to the top case in Tables 5.14 and 5.15.

Unfortunately, the introduction of the spatial relaxations results in MGRIT becoming
a more intrusive algorithm: instead of being able to use an existing time-stepping code the
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(Nz7 Nt)
levels (27728) (28729) (297210) (2107211) (2117212) (2127213)
2 64 100* 100* 100* 100* 100*
V-cycles 3 64 100* 100* 100* 100* 100*
o 4 64 100* 100* 100* 100* 100*
5 64 100* 100* 100* 100* 100*
No WRMG 2 64 100* 100* 100* 100* 100*
F-cycles 3 64 100* 100* 100* 100* 100*
4 64 100* 100* 100* 100* 100*
5 64 100* 100* 100* 100* 100*
2 13 15 19 22 25 27
V-cycles 3 13 15 18 22 28 37
4 13 15 18 22 28 36
(min(3, £), 1) WRMG 2 = - o
F-cycles 3 13 15 19 22 25 28
4 13 15 19 22 25 28
) 13 15 19 22 25 28

Table 5.15: Iteration counts for explicit MGRIT with and without WRMG applied to the
linear advection equation with small wave speed a = 0.1. Coarsening in time-then-space.
Asterisks denote tests which failed to converge due to instability.

(Nm Nt)
levels (277 27) (287 28) (297 29) (2107 210) (2117 211) (2127 212)
2 16 20 24 27 28 30
V-cycles 3 17 22 29 40 51 61
4 17 22 29 41 58 83
a(z,t) = —sin?(r(z — 1)) 5 17 22 29 41 58 84
(1,1) WRMG 2 16 20 24 27 28 30
F-cycles 3 16 20 24 30 34 38
4 16 20 24 30 36 44
5 16 20 24 30 36 44
2 18 19 22 24 26 27
Vecycles 3 19 23 29 36 44 51
4 19 23 29 39 52 68
a(z,t) = —sin(2.57t) sin(rx) 5 19 23 29 39 53 72
(1,1) WRMG 2 18 19 22 24 26 27
F-cycles 3 18 20 23 27 31 34
4 18 20 23 28 33 38
5 18 20 23 28 33 39

Table 5.16: Iteration counts for implicit MGRIT with WRMG applied to the linear advec-
tion equation with variable wave speed. Coarsening in time-then-space.
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(Nz-, Nt)

levels (27728) (28729) (297210) (2107211) (2117212) (2127213)
2 19 21 23 25 32 37
Veeyeles 3 19 21 25 27 37 46
4 19 21 24 25 33 45
a(x,t) = —sin®(7(x — 1)) 5 19 21 24 25 32 42
(min(3,¢),1) WRMG 2 19 21 23 25 32 37
F-cycles 3 19 21 23 25 32 37
4 19 21 23 25 32 37
5 19 21 23 25 32 37
2 18 20 22 24 31 36
Veeycles 3 19 23 26 30 38 47
4 19 23 26 27 34 48
a(z,t) = —sin(2.57t) sin(nz) 5 19 23 26 27 33 44
(min(3,£),1) WRMG 2 I8 20 2 21 31 36
F-eycles 3 18 20 22 25 31 36
4 18 20 22 25 31 36
5 18 20 22 25 31 36

Table 5.17: Iteration counts for explicit MGRIT with WRMG applied to the linear advec-

tion equation with variable wave speed. Coarsening in time-then-space.

user will now need to provide spatial relaxation routines, which may be extremely difficult
to implement depending on the complexity of the problem being solved, whether it results
in a linear or nonlinear system, and the time-stepping method being used. An alternative
to using WRMG to improve convergence in these cases is adaptive spatial coarsening,

which is explored in the following chapter.
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Chapter 6

MGRIT with Adaptive Coarsening For
Hyperbolic Problems

In this chapter we further explore the use of spatial coarsening in MGRIT and consider local
wave speeds (a(z,t) for linear advection, u(x,t) for Burgers’ equation) that are close (or
equal) to zero on part of the spatial domain, which can result in severe convergence issues.
The wave speed for a hyperbolic PDE is the derivative of the flux function: A(u,x,t) :=
Ouf(u,z,t), the characteristic speed with which small-amplitude perturbations propagate.
For linear advection we have A(u,z,t) = a(x,t), and for the inviscid Burgers equation
AMu, z,t) = u.

In § 6.1, we provide some motivating examples that illustrate both why spatial coarsen-
ing is desirable, and why adaptive spatial coarsening is necessary in certain cases. In § 6.2,
we propose a criterion for determining if spatial coarsening should occur, and provide some
examples of the meshes generated by following it. In § 6.3, we describe the cell selection
strategies used with explicit and implicit MGRIT and outline a method for moving vectors
between grids, which is required for restriction, prolongation, and time-stepping on spatial
grids that vary in time. In § 6.4, we provide serial numerical results that demonstrate
improved convergence thanks to adaptive coarsening strategy, and in § 6.5, we carry out
parallel scaling tests for the linear advection equation which demonstrate that speedups
are possible through the use of MGRIT. To perform the numerical tests we use XBraid [2],
an open-source implementation of MGRIT.
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6.1 Motivating Examples

To illustrate the need for adaptive coarsening we solve both the linear advection problem
and Burgers’ equation for (z,t) € [-2,2] x [0,4] using explicit and implicit MGRIT with
FCF-relaxation, factor-two temporal coarsening, and either no spatial coarsening (No SC)
or uniform factor-two spatial coarsening (SC-2), which employs full weighting restriction
and linear interpolation. The stopping condition is based on the size of the 5 norm of
the residual vector, which uses a halting tolerance of 1071° scaled by the domain size:

tol = (2.5 x 10711)\/N, V.

To solve linear advection we impose the initial condition uy(z) = sin(0.57x) and con-
sider the constant wave speeds

Al. a(z,t) = 1.0, and
A2. a(z,t) = 0.1,

for which (4.11) and (4.12) reduce to simple upwinding. The results for these tests are pre-
sented in Table 6.1, which records iteration count, time to solution, and time per iteration
(TPI). For explicit MGRIT we see the importance of maintaining stability on all levels of
the grid hierarchy. For Case A1l the Courant number \dt/dx for SC-2 is 0.5 on all levels,
with temporal coarsening terminating when further spatial coarsening is impossible. Thus,
time-stepping is stable on all levels and MGRIT terminates successfully. In contrast, the
Courant number for No SC is 2! on level £, where ¢ = 0 is the finest grid, indicating that
time-stepping will be unstable on all coarse levels, hence the majority of 2-level and F-cycle
tests failing to converge. However, blindly applying spatial coarsening is not the answer, as
illustrated by Case A2, which features a small wave speed that causes weak connections in
space in (4.11) and (4.12). Here the Courant number for SC-2 remains fixed at 0.05, hence
time-stepping is certainly stable on all levels, but the convergence is extremely poor due
to the weak connections. The Courant number for No SC is 0.05(2°), hence time-stepping
is stable on the first four coarse grids, and thus while the F-cycles become worse as the
problem size grows, the two-level method works well.

For implicit MGRIT the No SC and SC-2 methods produce similar results for Case
A1l in terms of iteration count, and there can be substantial savings of approximately 30%
in terms of time to solution by using spatial coarsening. For Case A2, however, both the
iteration count and time to solution for SC-2 are many times larger than the corresponding
values for No SC, making uniform spatial coarsening a non-starter due to the small wave
speed.

For Burgers’ equation we consider the two different initial conditions
Bl. ug(x) = 0.75 + 0.25sin(0.57z), and
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N, x N, 27 x 28 28 % 29 29 x 210 210 5 o1 oM % 212
It 50 92 100* 100* 100*
2-level .
No SC Time (TPI) | 0.20 (.004) | 0.97 (.01) | 3.69 (.03) | 16.57 (.16) 59.62 (.59)
It 100* 100* 100* 100* 100*
F-cycle .
Case Al Time (TPI) | 1.19 (.012) | 4.39 (.04) | 14.23 (.14) | 51.49 (.51) | 327.21 (3.27)
It 30 30 31 31 31
2-level .
—_ Time (TPI) | 0.13 (.004) | 0.42 (.01) | 1.53 (.04) | 6.30 (.20) | 22.18 (.71)
Fevele It 34 37 41 47 54
Explicit vee Time (TPI) | 0.30 (.009) | 0.96 (.02) | 3.77 (.09) | 14.73 (.31) | 63.31 (1.17)
It 7 7 7 7 7
2-level )
No SC Time (TPI) | 0.08 (.011) | 0.25 (.03) | 0.86 (.12) | 3.24 (46) | 11.19 (1.59)
It 8 9 34 100* 100*
F-cycle . .
Time (TPI) | 0.15 (.019) | 0.49 (.05) | 5.48 (.16) | 53.44 (.53) | 199.39 (1.99)
Case A2 * * * . .
9 Jevel It 100 100 100 100 100
. " | Time (TPI) | 0.34 (.003) | 1.17 (.01) | 4.72 (.04) | 16.15 (.16) | 54.83 (.54)
It 100* 100* 100* 100* 100*
F-cycle .
Time (TPI) | 0.77 (.008) | 2.27 (.02) | 7.38 (.07) | 25.62 (.25) 95.90 (.95)
N, x N, 27 x 27 28 % 28 29 % 29 210 5 210 oM x o1
It 14 14 15 15 15
2-level )
No SC Time (TPI) | 0.12 (.009) | 0.35 (.02) | 1.31 (.08) 5.16 (.34) 26.99 (1.79)
It 14 15 17 20 22
F-cycle .
Case Al Time (TPI) | 0.23 (.016) | 0.91 (.06) | 4.04 (.23) 19.90 (.99) | 91.15 (4.14)
i It 15 15 15 16 16
2-level . .
SCL2 Time (TPI) | 0.09 (.006) | 0.32 (.02) | 1.18 (.07) 5.01 (.31) 23.72 (1.48)
Focvele It 15 17 20 24 28
Implicit YO Time (TPI) | 0.15 (.010) | 0.58 (.03) | 2.40 (.12) | 10.56 (.44) | 56.84 (2.03)
It 8 8 8 8 8
2-level )
No SC Time (TPI) | 0.06 (.008) | 0.23 (.02) | 0.90 (.11) 3.44 (.43) 13.54 (1.69)
Fevele It 8 8 9 9 10
Case A2 Y Time (TPI) | 0.15 (.019) | 0.51 (.06) | 2.14 (.23) | 8.51 (.94) | 37.73 (3.77)
) It 64 90 92 92 92
2-level .
SCL2 Time (TPI) | 0.21 (.003) | 1.05 (.01) | 4.09 (.04) 16.26 (.17) 61.18 (.66)
It 64 92 94 95 95
F-cycle .
Time (TPI) | 0.53 (.008) | 2.12 (.02) | 7.88 (.08) | 30.70 (.32) | 114.37 (1.20)

Table 6.1: Linear advection results for Cases A1 and A2. No SC: no spatial coarsening; SC-
2: factor-two uniform spatial coarsening. For each problem, the fastest F-cycle results are
shown in bold. Asterisks denote tests which failed to converge due to instability (Explicit
- No SC) or exceeded 100 iterations.

B2. ug(x) = sin(0.57z),

which result in moving and stationary shocks, respectively. The results for these tests are
recorded in Table 6.2 (as mentioned in § 4.2, there are significant additional costs when
using the Galerkin coarse-grid operator for nonlinear problems, resulting in the much higher
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computation times recorded for implicit MGRIT). We see that explicit MGRIT without
spatial coarsening fails for both problems, as the maximum local Courant number will
be greater than or equal to one on all coarse grids, causing instability. Explicit MGRIT
with spatial coarsening has a maximum local Courant number of 0.5 on all levels, ensuring
stability, and it successfully terminates when the initial condition is bounded away from
zero (Case B1), but fails to converge within 100 iterations when the initial condition has
values near zero (Case B2). Implicit MGRIT without spatial coarsening has good iteration
counts for both cases, whereas implicit MGRIT with spatial coarsening can offer significant
savings in terms of time in Case B1, in spite of the increased iteration count, but fails to
converge within 100 iterations in the majority of tests for Case B2.

Combined, these results indicate why spatial coarsening may be desirable for implicit
MGRIT and necessary for explicit MGRIT. For explicit MGRIT, No SC will break down
once the coarse-grid time step becomes sufficiently large, though it can work for grid
hierarchies with few levels where the maximum wave speed is small enough to ensure
stability throughout. In contrast, SC-2 ensures stability on all levels. For both explicit
and implicit MGRIT, uniform spatial coarsening (SC-2) can work can work well when the
wave speed is bounded away from zero, but can exhibit extremely poor convergence when
the wave speed is small due to the weak spatial connections. This is analogous to the case
of multigrid using Gauss-Seidel or weighted Jacobi applied to strongly anisotropic elliptic
problems [16]. For implicit time stepping, SC-2 beats No SC in total time-to-solution when
the wave speed is bounded away from zero due to the lower work per cycle.

6.2 Adaptive Spatial Coarsening

The 1D factor-two restriction strategy for a periodic domain is illustrated for four levels
and sixteen cells in Figure 6.1. The numerical labels on each level serve as global cell
indices, recording which fine-grid reference points are used on coarser levels. Rather than
aggregating pairs of adjacent cells when moving from level ¢ to ¢ + 1, we instead remove
every second cell, with remaining cells expanding to cover the removed cells’ portion of the
domain.

Considering the discretizations (4.11-4.14) and the results of the previous section, we see
that a wave speed A(u, x,t) near zero can result in weak couplings in the spatial direction,
meaning high frequency errors are not reduced effectively by relaxation. Thus, the error
after relaxation cannot be represented properly on coarse spatial grids, drastically reducing
the efficiency of a multigrid iteration. Thus, if the wave speed within cell €2, is relatively
small, we wish to retain {2; for the next level, as coarsening in this region will not benefit
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Nz X Nt 27 X 28 28 X 29 29 X 210 21() X 211 211 X 212
9 level It 2% 2% 2% 2% 2%
~ | Time (TPI) | 0.00 (.000) 0.02 (.01) 0.12 (.06) 0.46 (.23) 1.75 (.87)
No SC
Fecevele It 2% 2% 2% 2% 2%
Case Bl Y Time (TPI) | 0.02 (.010) 0.09 (.04) 0.39 (.19) 1.55 (.77) 6.54 (3.27)
9 level It 32 33 33 33 33
SC2 "~ | Time (TPI) | 0.11 (.003) 0.42 (.01) 1.60 (.04) 6.27 (.19) 24.44 (.74)
Fcvele It 35 40 45 49 58
Explicit - Time (TPI) | 0.27 (.008) 1.04 (.02) 4.23 (.09) 16.30 (.33) 75.84 (1.30)
9 level It 4* 2% 2% 2% 2%
"~ | Time (TPI) | 0.01 (.003) 0.03 (.01) 0.12 (.06) 0.48 (.24) 1.90 (.95)
No SC
Focvele It 2% 2% 2% 2% 2%
¥ Time (TPI) | 0.02 (.005) 0.10 (.05) 0.42 (.21) 1.67 (.83) 6.41 (3.20)
Case B2
9 level It 100%* 100%* 100%* 100%* 100%*
SC2 ~ 7| Time (TPI) | 0.35 (.004) 1.30 (.01) 4.92 (.04) 17.91 (.17) 69.07 (.69)
Fecvele It 100%* 100%* 100* 100%* 100%*
77| Time (TPI) | 0.79 (.008) 2.31 (.02) 8.31 (.08) 31.04 (.31) 128.77 (1.28)
N, x N, 27 x 27 28 x 28 29 % 29 210 5 910 2 % o1t
9 level It 12 13 13 14 14
No SC ) Time (TPI) | 1.65 (.138) 6.78 (.52) 25.44 (1.95) 106.08 (7.57) 427.33 (30.52)
i It 13 14 16 18 20
F-cycle .
Case Bl Time (TPI) | 5.56 (.428) | 24.14 (1.72) | 105.91 (6.61) | 490.18 (27.23) | 2118.34 (105.91)
It 17 18 18 18 18
2-level .
SC2 Time (TPI) | 2.13 (.125) 8.31 (.46) 30.97 (1.72) 130.59 (7.25) 502.90 (27.93)
Fcevele It 17 18 20 23 29
Tmplicit yee Time (TPI) | 4.56 (.268) | 17.25 (.95) | 69.04 (3.45) | 292.73 (12.72) | 1418.22 (48.90)
9 level It 11 12 12 13 13
No SC ’ Time (TPI) | 1.42 (.129) 5.66 (.47) 20.82 (1.73) 87.56 (6.73) 350.96 (26.99)
: It 11 12 14 15 17
F-cycle . .
Case B2 Time (TPI) | 4.57 (.412) | 19.63 (1.63) | 84.80 (6.05) | 354.06 (23.60) | 1575.60 (92.68)
It 64 100* 100* 100* 100%*
2-level .
SC2 Time (TPI) | 7.90 (.123) 46.52 (.46) | 178.77 (1.78) | 713.44 (7.13) 2734.99 (27.34)
It 64 100%* 100* 100%* 100%*
F-cycle .
Time (TPI) | 16.84 (.263) | 97.58 (.97) | 364.91 (3.64) | 1379.71 (13.79) | 5411.11 (54.11)

Table 6.2: Burgers’ equation results for Cases B1 and B2. No SC: no spatial coarsening; SC-
2: factor-two uniform spatial coarsening. For each problem, the fastest F-cycle results are
shown in bold. Asterisks denote tests which failed to converge due to instability (Explicit
- No SC) or exceeded 100 iterations.

the solution process. Experiments (not included here) suggest that it is unnecessary to fix
the width of ;; it is sufficient to ensure 2; is not removed. To determine if €2; is to be
kept, we propose the following conditions:

ot
Advection: If m})n |A(u, z,t)|— < tol.: keep 2;; else: coarsen normally. (6.1)
zell; i

0z,

Since A(u,z,t)0t/dx; appears in the coeflicients of the equations (4.11-4.14), this is an
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15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
. . . . . . . . . =1
0 2 4 6 8 10 12 14 0
. S * L2 A4 (=2
0 4 8 12 0
. . * (=3

Figure 6.1: Factor-two coarsening in 1D with periodic BCs. The ) symbols represent cell
boundaries.

appropriate measure to identify small matrix elements that indicate weak coupling and
may lead to degraded multigrid performance if spatial coarsening is used. This approach
has similarities to algebraic multigrid [82], where coarsening is operator dependent, based
on the strength of different nodal connections. To implement this in XBraid, we create a
grid_info structure that contains

1. int *fidx: array of global cell indices.
2. double *xref: array of cell reference points x;.

The values in fidx are global cell indices: for example, level 2 in Figure 6.2 contains 6
cells, which have local indices {0,...,5} and global indices {0, 3,4,8,9,12}. An array of
grid_info structures serves as a grid hierarchy for a given time point ¢;. Descriptions of
the cell selection strategies employed for implicit and explicit MGRIT are described in the
following section.

15 0 1 2 3 4 5 [ 7 8 9 10 11 12 13 14 15 0

0 2 3 4 6 8 9 10 12 14 0

. . . . . . - =2
0 3 4 8 9 12 0

. . . . . (=3
0 3 8

Figure 6.2: Adaptive coarsening in 1D with periodic BCs.

An example of this coarsening process is shown in Figure 6.2 for the same fine grid as
in Figure 6.1 at a fixed time point, where (6.1) happened to be satisfied on all levels in
cells 3 and 9. The labeled reference points are used to compute cell boundaries as per the
definition of vertex-centered grids. It is worth noting that this strategy is easily adapted
to non-periodic spatial domains by ensuring that the final cell is retained on all levels. An
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2% + 1 for some k € N, which ensures that the final

cell is always part of the uniformly coarsened grid, and hence will also always be part of

the adaptively coarsened grid.

easy way of doing so is to take N,
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Figure 6.3: Linear advection, a(x,t) = —sin?(7(z — t)) (Case A4): space-time meshes

obtained from adaptive spatial coarsening over 4 levels, starting with N,

N; = 64. The

color map indicates the value of a(z,t). Spatial coarsening is inhibited where |a| is small.

In Figures 6.3-6.7 we show adaptive grid hierarchies generated by three rounds of

coarsening, starting from a fine 64 x 64 space-time grid. In all three cases the black vertices
indicate reference points for cells only present on level 0, red dots indicate reference points
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bottom-right quadrant.

for cells present on levels 0 through 1, blue dots indicate cells present on levels 0 through
2, and green dots indicate cells present on levels 0 through 3. It will be shown in § 6.4
that these grids lead to good MGRIT convergence, and thus adaptive coarsening solves
the problem of small local wave speeds.

The first two grids are based on solving the linear advection equation with implicit
MGRIT on [-2,2] x [0,4] for a(z,t) = — sin®(7(z—1)) and a(z,t) = 3(1—sin(27t)) sin(7z),
respectively (these are Cases A4 and A5 defined in § 6.4.1). Due to the periodicity of a(z, t)
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obtained from adaptive spatial coarsening over 4 levels, starting with N,

Figure 6.5: Linear advection, a(z,t)

the grid in each quadrant is identical, so we may restrict our discussion to the bottom-

right quadrant of each grid, corresponding to (z,t) € [0,2] x [0,2] (pictured in Figures

6.4 and 6.6).

For Case A4 we see that adaptation results in additional cells being kept

along the lines t = x + b for b € Z, corresponding to the solution of a(x,t) = 0. Similarly,
for Case Ab we see adaptivity keeps cells along vertical lines defined by integer values of

x and horizontal lines defined by multiples of 0.4 for t. Furthermore, by coarsening in
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remaining iterations. Due to the initial lack of periodicity in the local wave speed (which is

the solution u(z,t), pictured in Figure 6.8) we show the entire domain. Once more we see
is near zero, and the location and size of these regions change in response to the evolution

that adaptivity results in more grid cells being retained in regions where the wave speed
of the solution.

These meshes were fixed once the residual norm decreased below 102 and then used for all
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color map indicates the value of u(x,t). Spatial coarsening is inhibited where |u| is small.

obtained from adaptive spatial coarsening over 4 levels, starting with N,

Figure 6.7: Burgers’ equation, u(z)
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time

4 -3 -2 -1 0 1 2 3 4
space

Figure 6.8: Burgers’ equation, ug(x) = 0.25 — sin(7z/16) (Case B3): solution on [—4,4] x
[0, 8].

6.3 Cell Selection Strategies

The following algorithms are intended as proof of concept for first-order time-stepping rou-
tines applied to the linear advection equation and Burgers’ equation: further modifications
may be required to handle other equations or time-stepping routines. For linear PDEs
such as variable coefficient linear advection, the adaptive grid hierarchies generated will
not change between MGRIT iterations, so the grids and associated transfer operators need
only be computed once and then stored for reuse. In contrast, for nonlinear PDEs such as
Burgers’ equation the grids can change as the solution approximation is refined, and hence
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the adaptive grid hierarchy and the transfer operators will need to be recomputed until a
certain MGRIT residual tolerance is reached.

6.3.1 Implicit MGRIT

In our adaptive coarsening strategy we begin with the grid hierarchy generated by uniform
factor-two coarsening, meaning that on level ¢ all cells with global indices that are multiples
of 2¢ are retained. For implicit time-stepping we then use condition (6.1) to identify other
cells which should be retained due to small local Courant numbers. Note that, for implicit
MGRIT, we do not need to worry about violating a stability constraint when retaining
spatial cells while increasing 6t. Thus when restricting from level ¢ to ¢ + 1, we keep Qf if

(i) fidx[j] mod 2¢ =0, or
(ii) (6.1) holds.

For implicit MGRIT we specify the tolerance in the second condition to be tol, = 0.25.
This cell selection strategy is local in scope, so it can be used in both serial and parallel
implementations.

6.3.2 Explicit MGRIT - Linear Advection

To solve linear advection using explicit MGRIT we must ensure |a(z,t)|0t/dz; < 1 for
numerical stability, which necessitates computing the local Courant number for all cells
not part of the uniform coarsening grid hierarchy on each level. We need to find the right
balance between removing cells as required for stability, and keeping cells to maintain good
multigrid convergence corresponding to (6.1). If we consider each cell independently, we
may inadvertently end up deleting more cells than necessary for stability, leading to poorer
MGRIT convergence. Instead, we collectively consider all cells between each subsequent
pair of cells that belong to the uniform grid on the current level and decide which of these
non-uniform grid cells must be removed for stability and which should be kept for better
convergence.

If there is only one cell between two uniform grid cells, we compute

g O e 12 010

test_ =
(ij_1/2 5$j+1/2

and keep the cell if doing so is beneficial for convergence and is not detrimental for stability:

min(test_, test,) < tol, and max(test_, test;) < max,,
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where we use max, = 0.95 and set tol, to be 0.25 if / = 0, 0.4 if / = 1, and 0.49 for
¢ > 2. The values for tol, were tuned by repeated experimentation and are based on the
observation that we can afford, from a computational cost perspective, to keep more spatial
cells on coarser grids. Otherwise, for each of the cell interfaces we compute

a1 D15t

testj| = T
j4+1/2

and based on the value of test|j| the interface is labeled as K (keep), N (neutral), or D
(delete). Specifically, if test|j| < tol, we label this as K, if test[j] < max, we label this as
N, and otherwise we label it as D. If the sequence of labels is:

(i) X-D-D—--—D-X: delete every second cell between D-interfaces (X = K or N)
(ii) N-D-N: delete both cells.
(iii) K-D-N: delete the right cell.
(iv) N-D-K: delete the left cell.
(v) K-D-K: further consideration is required.

In the last case we compute

05y i) O 105G+ a00), 1)1

test_ =
61']‘ 5!L‘j+1

which are the coarse-grid local Courant numbers that would result from deleting the left
or right cells, respectively. We then perform a sequence of comparisons that is designed
to remove both cells if the predicted coarse-grid values are both greater than max,, delete
the opposite cell if only one of the test values is greater than max,, and otherwise keep the
cell with the largest Courant value to maintain good MGRIT convergence.

(i) if min(test_, testy) > max,
Delete both cells

(ii) else if test_ > max,
Delete right cell

(iii) else if test; > max,
Delete left cell

(iv) else if min(test_, testy) > tol, and test_ > test,
Delete right cell

(v) else if min(test_, test,) > tol, and test_ < test
Delete left cell

(vi) else if test_ > tol, and test, < tol,
Delete right cell
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(vii) else if test_ < tol, and testy > tol,
Delete left cell

(viil) else if max(test_,test;) < tol, and test_ > test,
Delete right cell

(ix) else if max(test_,test; ) < tol, and test_ < test,
Delete left cell

This process is repeated until no D-labeled interfaces remain. If there are multiple adjacent
N-interfaces, we next delete every second cell defined by these interfaces. At the end of this
process we are left with the cells that are to be kept to ensure effective MGRIT coarse-grid
corrections while maintaining stability.

To adapt this process to allow spatial parallelism we only have to make adjustments to
account for how the grid is partitioned over the set of processors. If the first (respectively,
last) cell on a given processor is not part of the uniform coarsening grid, then we assume
that the final cell on the previous processor (respectively, first cell on the next processor)
belongs to the uniform coarsening grid, and perform the previously described sequence of
tests.

6.3.3 Explicit MGRIT - Burgers’ Equation

For Burgers’ equation we use a more stringent version of the strategy for linear advection
because of the greater likelihood of stability related issues arising in the nonlinear case.
As before we keep all cells that are part of the uniform grid, and make use of (6.1) to
determine which of the remaining cells will be retained to improve convergence.

If there is only one cell between two uniform grid cells, we compute

max (|u; 1], |u;])ot max(|u;l, [ujs1])0t

test_ =

and test, =

61‘]‘71/2 5xj+1/2

and keep the cell if

max(test_, test; ) < tol,,

where we set tol, to be 0.25if £ =0, 0.35if / = 1, and 0.45 for £ > 2. Otherwise, for each
of the cell interfaces we compute

|uj|ot

test|j| = 52ren
j+1/2

114



and if test[j| < tol, we label this as K, otherwise labeling it as D. If there are multiple
adjacent D-interfaces we delete every second cell that they define, and for isolated D-

interfaces we compute

1|0t |0t
test, = 110t and test_ = ]
(S,I'j_;,_l 5[L’j

and perform the following sequence of tests.

(i) if min(test_, test;) > tol,
Delete both cells

(i) else if test_ > tol, and test; < tol,
Delete right cell

(iii) else if test_ < tol, and test, > tol,
Delete left cell

(iv) else if max(test_, test;) < tol, and test_ > test,
Delete right cell

(v) else if max(test_,testy) < tol, and test_ < test,
Delete left cell

This process is repeated until no D-labeled interfaces remain, at which point the remaining
cells are those to be kept to ensure effective MGRIT coarse-grid corrections.

6.3.4 Movement Between Grids

In addition to restriction and prolongation of solutions between levels, we also need to
transfer solution approximations between time points on a fixed level. For adaptive grid
refinement, the grid on a given level may vary with time. This means that a representation
of u; must be computed on the spatial grid for time ¢, before u;,; can be computed by
time marching.

To map an arbitrary vector v from grid A to grid B we use the following strategy. For
each cell Qf on grid B, we first identify the cells on grid A that contain its left boundary
(€4) and right boundary (Q7). We compute the cell average v2 on QF as a weighted

average of the cell values from a to w, scaled by the width of Qf:

1 w
B E B Al A
J k=a

For periodic boundary conditions, the first cell on both source and target grids may appear
as a pair of disconnected intervals: one at the start and one at the end of the domain. To

115



simplify this case, we treat the disconnected portions as separate cells before merging their
results.

For factor-two coarsening, this reduces to full weighting restriction and linear interpo-
lation prolongation, which were our initial choices; and if no spatial coarsening is carried

out this reduces to vf“ = vf . In all cases this approach is conservative.

6.4 Serial Numerical Results

Numerical results within this section were generated using the XBraid parallel-in-time soft-
ware package [2|, and the CHOLMOD |[25] and UMFPACK [29] packages from SuiteSparse
for sparse matrix multiplication and factorization, respectively.

u(z, t) for a(z,t) = —sin®(r(z — t)) and uo(z) = sin(0.57z)

u(z,t) for a(z,t) = —sin(2.57t) sin(rx) and ug(z) = sin(0.57x)

4.0

3.5

3.0

—0.25

—0.50
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T T

Figure 6.9: Numerical solutions for a(x,t) = —sin®(w(x —t)) (Case A4, left) and a(x,t) =
—sin(2.57t) sin(7z) (Case Ab, right).

6.4.1 Linear Advection

We first revisit the linear advection equation with initial condition wg(z) = sin(0.57z)
solved over [—2,2] x [0,4] and consider three different variable wave speeds:

A3. a(z) = —(0.1 + 0.9 cos?(0.257(x + 2)))  (a varies in space only),
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A4. a(x,t) = —sin®(7(x —t)), and
A5. a(z,t) = —sin(2.57t) sin(7z).

We refer to these as Cases A3, A4, and A5, respectively, and note cases A4 and A5 were
previously used to produce the example grids in Figures 6.3 and 6.5 and have the solutions
illustrated in Figure 6.9. We solve these problems using MGRIT with factor-two temporal
coarsening and one of (i) no spatial coarsening, (ii) factor-two spatial coarsening (for Case
A3 only), or (iii) adaptive spatial coarsening. All tests again use a halting tolerance of
tol = (2.5 x 1071)y/N,N,. Tables 6.3 and 6.4 summarize the results for implicit and
explicit MGRIT, respectively.

For implicit Case A3, we see that small a(x) in part of the domain causes significant
deterioration for SC-2, and that the adaptive coarsening scheme SC-A recovers good con-
vergence, offering a 33% improvement in total time to solution on the No SC F-cycle results
in spite of the increased iterations required. For explicit MGRIT applied to Case A3 we
see that SC-A is the only method with convergent F-cycles, as SC-2 once again fails to
converge, even for two-level methods. Note that, when comparing the entries of Tables 6.3
and 6.4, we are not concerned with the increased serial time to solution for F-cycles over
2-level cycles, because F-cycles parallelize better. We are instead looking for algorithmic
scalability of the F-cycles in terms of iteration count, which we see for both implicit and
explicit MGRIT in this case.

For both implicit and explicit MGRIT the additional complexity in Cases A4 and A5
of grid hierarchies that vary in time results in a more costly set-up phase and a greater
per-iteration cost when compared to spatial variation only.

For Cases A4 and A5, for both types of time integration the additional complexity
of having grid hierarchies that vary in time results in a more costly set-up phase and a
greater per-iteration cost when compared to spatial variation only. As in Case A3, SC-2
leads to convergence degradation for implicit integration and outright failure for explicit
integration (not shown). We see a benefit to using SC-A over No SC for implicit time-
stepping in all test problems once the problem size is large enough. The iterations show a
moderate increase as a function of problem size. The near scalability for both implicit and
explicit results are promising for very large parallel machines, where gains can be expected
over sequential time-stepping due to the vastly increased parallelism in MGRIT. Future
work will explore eliminating the growth in iteration count for SC-A compared to No SC,
while maintaining a similar time per iteration, thus bringing the iteration counts closer to
those for No SC implicit timestepping. Such a result would yield significant savings for
both implicit and explicit schemes.
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N, x N, 27 x 27 28 x 28 29 x 29 210 » 210 21 x o1t
It 12 14 14 14 14
2-level .
No SC Time (TPI) | 0.03 (.003) | 0.13 (.009) | 0.49 (.03) | 2.26 (.16) | 8.18 (.58)
Foevele It 12 14 16 18 20
Y Time (TPI) | 0.11 (.009) | 0.49 (.035) | 248 (.15) | 12.46 (.69) | 56.12 (2.80)
It 64 78 83 84 85
level | e (TPT) | 015 (002) | 0.70 (.002) | 2.82 (.03) | 11.54 (13) | 46.31 (54
Case A3 | SC-2 ime (TPI) | 0.15 (.002) | 0.70 (.002) | 2.82 (.03) 54 (.13) 31 (.54)
Foevele It 64 80 85 36 87
Y Time (TPI) | 0.38 (.006) | 1.53 (.019) | 6.42 (.07) | 25.94 (.30) | 95.85 (1.10)
It 26 27 28 29 29
2-level .
SCA Time (TPI) | 0.06 (.002) | 0.25 (.009) | 0.99 (.03) | 4.17 (.14) | 16.51 (.56)
Fevele It 27 27 28 29 30
Y Time (TPI) | 0.19 (.007) | 0.60 (.022) | 2.35 (.08) | 9.45 (.32) | 37.52 (1.25)
It 12 12 13 13 13
2-level .
No SC Time (TPI) | 0.06 (.005) | 0.23 (.019) | 0.94 (.07) | 3.82 (.29) | 15.07 (1.15)
Foevele It 12 13 15 16 18
Case Ad YEE! Time (TPI) | 0.14 (.012) | 0.62 (.048) | 2.94 (.19) | 13.05 (.81) | 60.88 (3.38)
It 16 15 17 19 22
2-level .
SCA Time (TPI) | 0.08 (.005) | 0.26 (.017) | 1.13 (.06) | 4.70 (.24) | 20.16 (.91)
Foevele It 16 18 20 23 28
Y Time (TPI) | 0.16 (.010) | 0.64 (.036) | 2.54 (.12) | 11.01 (.47) | 51.61 (1.84)
It 13 12 12 12 13
2-level .
No SC Time (TPI) | 0.06 (.005) | 0.23 (.019) | 0.92 (.07) | 3.54 (.29) | 15.03 (1.15)
Foevele It 13 14 14 16 17
Case A5 Y Time (TPI) | 0.15 (.012) | 0.64 (.046) | 2.62 (.18) | 11.86 (.74) | 51.02 (3.00)
It 19 19 20 24 26
2-level .
SCA Time (TPI) | 0.09 (.005) | 0.31 (.016) | 1.23 (.06) | 5.31 (.22) | 22.98 (.88)
Foevele It 20 20 22 24 28
Y Time (TPI) | 0.20 (.010) | 0.71 (.036) | 2.77 (.12) | 11.52 (.48) | 49.69 (1.77)

Table 6.3: Linear advection: implicit time-stepping results for Cases A3, A4, and A5. No
SC: no spatial coarsening; SC-2: factor-two uniform spatial coarsening, SC-A: adaptive
spatial coarsening. For each test problem, the fastest F-cycle results are shown in bold.

6.4.2 Burgers’ Equation

We solve Burgers’ equation for Case B3 on the spatial domain [—4,4]. As ug(z) < 0 at
some point in the domain, the wave will break and a shock will occur. The time at which
characteristics cross and a shock forms is called the breaking time, Ty, and for the inviscid
Burgers equation this time is given exactly as [6§]

T, =
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N, x N, 27 x 28 28 x 29 29 x 210 210 % 11 211 % 212
It 30 47 100* 100* 100*
2-level .
No SC Time (TPI) | 0.08 (.003) | 0.40 (.009) | 3.12 (.03) | 12.36 (.12) 49.58 (.49)
It 100* 100* 100%* 100%* 100*
F-cycle .
Time (TPI) | 1.03 (.010) | 3.40 (.034) | 12.35 (.12) | 48.25 (.48) | 192.37 (1.92)
It 100%* 100%* 100%* 100%* 100%*
2-level .
Time (TPI) | 0.28 (.003) | 0.85 (.009) | 3.06 (.03) | 11.79 (.11) 46.19 (.46)
Case A3 | SC-2
It 100%* 100* 100* 100* 100*
F-cycle .
Time (TPI) | 0.71 (.007) | 1.98 (.020) | 6.23 (.06) | 22.65 (.22) 82.90 (.82)
It 30 30 31 31 32
2-level .
SCA Time (TPI) | 0.09 (.003) | 0.30 (.010) | 1.12 (.03) 4.20 (.13) 17.27 (.53)
It 32 33 35 36 37
F-cycle .
Time (TPI) | 0.30 (.009) | 0.95 (.029) | 3.35 (.09) | 12.61 (.35) | 50.70 (1.37)
It 20 25 31 38 48
2-level .
No SC Time (TPI) | 0.06 (.003) | 0.26 (.010) | 1.21 (.03) 5.78 (.15) 25.59 (.53)
It 100* 100* 100%* 100* 100*
F-cycle .
Case Ad Time (TPI) | 0.96 (.010) | 3.28 (.033) | 12.16 (.12) | 46.98 (.46) | 190.90 (1.90)
It 21 23 27 30 30
2-level .
SCA Time (TPI) | 0.09 (.004) | 0.33 (.014) | 1.39 (.05) 5.79 (.19) 21.01 (.70)
Feevele It 21 23 28 31 33
4 Time (TPI) | 0.31 (.015) | 1.09 (.047) | 4.47 (.15) | 16.76 (.54) | 67.13 (2.03)
It 29 42 70 100* 100*
2-level .
No SC Time (TPI) | 0.08 (.003) | 0.38 (.009) | 2.33 (.03) | 13.19 (.13) 49.91 (.49)
Foevele It 100%* 100%* 100%* 100%* 100%*
Case A5 v Time (TPI) | 1.02 (.010) | 3.50 (.035) | 12.76 (.12) | 48.36 (.48) | 186.78 (1.86)
It 26 26 27 29 30
2-level .
SCA Time (TPI) | 0.09 (.004) | 0.32 (.012) | 1.18 (.04) 4.68 (.16) 18.95 (.63)
Fevele It 27 27 28 30 31
v Time (TPI) | 0.36 (.013) | 1.21 (.045) | 4.02 (.14) | 15.61 (.52) | 59.36 (1.91)

Table 6.4: Linear advection: explicit time-stepping results for Cases A3, A4, and A5. No
SC: no spatial coarsening; SC-2: factor-two uniform spatial coarsening, SC-A: adaptive
spatial coarsening. For each test problem, the fastest F-cycle results are shown in bold.
Asterisks denote tests which failed to converge due to instability.

For this particular example we see that the breaking time is 7, = 16/7 ~ 5.09, which
matches the solution for the problem illustrated in Figure 6.8. Based on this observation
we solve this problem on both [—4,4] x [0,4] and [—4,4] x [0, 8] to consider solutions with
and without shock. Test results for the half- and full-domain problems are recorded in
Tables 6.5 and 6.6, respectively.

For implicit MGRIT the adaptive coarsening method fails to outperform no spatial
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N, x N, 27 x 27 28 x 28 29 x 29 210 210 2 o1
% level It 10 11 11 11 11
Time (TPI) 1.30 (.13) 5.28 (.48) 19.79 (1.79) 76.80 (6.98) 296.21 (26.92)
Implicit No SC
It 11 12 12 14 16
Case B3 F-cycle | .
[—4,4] x [0,4] Time (TPI) | 4.58 (41) | 21.18 (1.76) | 78.39 (6.53) | 332.34 (23.73) | 1496.17 (93.51)
Max fine grid CFL: 9-level It 25 27 28 28 29
(1+2v32)/4 sc.G Time (TPI) | 3.12 (12) | 12.62 (46) | 46.62 (1.66) | 180.30 (6.43) | 733.46 (25.29)
F-cvele It 26 27 28 29 31
i Time (TPI) | 7.88 (.30) 30.73 (1.13) | 113.13 (4.04) | 426.53 (14.70) | 1714.89 (55.31)
N, x N, 27 x 27 28 x 28 29 x 29 210 210 2 o1
o Jovel It 25 2% 2% 2% 2%
" | Time (TPI) | 0.04 (.0001) | 0.01 (.005) | 0.06 (.03) 0.23 (.11) 0.90 (.45)
Explicit No SC It ok ok ok ok ok
Case B3 F-cycle .
[—4,4] x [0,4] Time (TPI) | 0.01 (.005) | 0.05(.025) | 0.20 (.10) 0.80 (.40) 3.17 (1.58)
Max fine grid CFL: 9-level It 29 31 32 32 32
(1+2v2)/8 S Time (TPI) | 0.09 (.003) | 0.33 (.011) | 1.25 (.03) 4.94 (.15) 19.44 (.60)
Focvele It 30 34 36 38 42
""" | Time (TPI) | 0.24 (.008) | 0.95 (.028) | 3.71 (.10) 13.96 (.36) 60.56 (1.44)
N, x N, 27 x 28 28 x 20 29 x 210 210 x oM 2 x 212
92 level It 14 15 15 16 16
" | Time (TPI) | 0.05 (.004) | 0.20 (.013) | 0.80 (.05) 3.35 (.20) 13.56 (.84)
Explicit No SC It oF oF ok ok oF
Case B3 F-cycle .
[—a.4] x [0,4] Time (TPI) | 0.02 (.010) | 0.09 (.045) | 0.39 (.19) 1.62 (.81) 6.50 (3.25)
Max fine grid CFL: 9 level It 19 21 21 22 22
1+ 2\/5)/16 SC.D Time (TPI) | 0.12 (.006) 0.45 (.021) 1.82 (.08) 7.29 (.33) 28.40 (1.29)
Frovele It 19 20 21 24 27
“7" | Time (TPI) | 0.38 (.020) | 1.33 (.067) | 5.32 (.25) 22.62 (.94) 97.29 (3.60)

Table 6.5: Burgers’ equation results for Case B3: no shock formation. No SC: no spatial
coarsening; SC-D: adaptive spatial coarsening with rediscretized coarse-grid operator; SC-
G: adaptive spatial coarsening with Galerkin coarse-grid operator. The fastest F-cycle
results are shown in bold. Asterisks denote tests which failed due to instability.

coarsening in the short domain results due to approximately doubling the iterations re-
quired for convergence. Better performance for large grid sizes is observed in the long
domain results, due to a relative increase in the no spatial coarsening iteration count and
a better time per iteration for the adaptive results (only 46% of the no spatial coarsen-
ing time per iteration for the largest test, compared to 59% in the short domain case).
Furthermore, the current implementation of the Galerkin definition requires a return to
the previous fine grid for each iteration, resulting in an increased time per iteration for
adaptive spatial coarsening. This is generally an issue in FAS-style algorithms, which we
intend to be a focus of future research.

For explicit MGRIT we note that the results for both the half and full domain tests are
very similar, with the main difference being that those in Table 6.6 correspond to using
twice as many time steps as those in 6.5 (to maintain the same fine-grid At in both cases),
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N, x N, 27 x 27 28 x 28 29 x 29 210 210 21 x ol
9 level It 12 13 13 14 14
Y| Time (TPI) | 1.85 (15) | 7.57 (58) | 28.72 (2.20) | 115.34 (8.23) | 444.03 (31.71)
Tmplicit No 8C It 12 14 15 17 20
Case B3 F-cycle °
(—4.4] % [0.8] Y7 Time (TPI) | 6.40 (53) | 30.87 (2.20) | 135.21 (9.01) | 606.01 (35.64) | 2846.20 (142.31)
Max fine grid CFL: 2 level It 26 27 28 28 29
(1+2v2)/4 s Time (TPI) | 3.86 (.14) | 14.98 (55) | 57.18 (2.04) | 219.74 (7.84) | 905.99 (31.24)
R 26 27 28 29 30
YOO ! Time (TPI) | 8.54 (:32) | 32.62 (1.20) | 133.85 (4.78) | 514.33 (17.73) | 1961.20 (65.37)
N, x N, 27 % 28 28 % 29 29 210 210 5 911 91T x 212
o lovel It 35 2% 2% 2+ 2+
Time (TPI) | 0.11 (.003) | 0.02 (.010) | 0.11 (.05) 0.44 (.22) 1.74 (.87)
Explicit No 5C
Case B3 F-cycle It 2 2z 2 2 2
(4 4]  [0.9] Y| Time (TPI) | 0.02 (010) | 0.10 (050) | 0.40 (.20) 1.56 (.78) 5.99 (2.99)
Max fine grid CFL: 2 Jevel It 31 32 33 33 33
(1+2v3)/8 D Time (TPI) | 0.18 (.006) | 0.64 (.020) | 2.42 (.07) 9.13 (.27) 36.93 (1.11)
rovele It 32 35 37 42 49
Y Time (TPI) | 0.50 (.016) | 2.11 (.060) | 7.21 (.19) | 31.75 (.75) | 142.96 (2.91)
N, x Ny 27 x 29 28 x 210 29 x 21 210 x 212 2 % 213
92 level It 14 15 16 16 17
V| Time (TPI) | 0.10 (.007) | 0.39 (.026) | 1.66 (.10) 6.41 (.40) 27.61 (1.62)
Explicit No 5C * * * * *
Case B3 F-cycle It 2 2 2 2 2
(4 4]  [0.9] YN Time (TPI) | 0.05 (.025) | 0.19 (.095) | 0.85 (42) 2.93 (1.46) 11.54 (5.77)
Max fine grid CFL: 9 level It 20 21 22 22 22
(1+2V9)/16 | gep Time (TPI) | 0.22 (.011) | 0.83 (.040) | 3.57 (.16) 14.13 (.64) 52.82 (2.40)
Focvele It 20 20 21 26 31
Y| Time (TPI) | 0.78 (.030) | 2.78 (.139) | 9.90 (47) | 45.71 (1.75) | 217.47 (7.01)

Table 6.6: Burgers’ equation results for Case B3: with shock formation. No SC: no spatial
coarsening; SC-D: adaptive spatial coarsening with rediscretized coarse-grid operator; SC-

G: adaptive spatial coarsening with Galerkin coarse-grid operator.

The fastest F-cycle

results are shown in bold. Asterisks denote tests which failed due to instability.

which results in times that are approximately doubled. Much like for linear advection,
spatial coarsening is necessary for convergence. Adaptive coarsening also greatly improves
convergence, but, like in the case of linear advection, we observe modest growth in iteration
count with problem size and number of levels in the multigrid cycle. Yet, these results are
significant, as we have a convergent method for the inviscid Burgers equation with a shock
wave, a difficult problem for parallel-in-time methods, and furthermore the presence of the
shock does not lead to convergence degradation compared to the smooth solution.
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6.5 Parallel Scaling Results

In this section we present strong and weak parallel scaling results for MGRIT applied
to the linear advection equation for (x,t) € [—2,2] x [0,4] and wy(z) = sin(0.57x) using
a(z,t) = —sin*(7(z —t)) (Case A4). The results for a(x,t) = —sin(2.57t) sin(rx) (Case
Ab) are similar, hence are relegated to Appendices A.1 and A.2. Results for explicit MGRIT
are presented in 6.5.1, followed by results for implicit MGRIT in 6.5.2. We consider different
combinations of spatial and temporal parallelism, with spatial parallelism implemented
using the hypre package [1] and temporal parallelism implemented using XBraid [2]. These
tests were implemented on Vulcan, an IBM Blue Gene/Q machine at Lawrence Livermore
National Laboratory consisting of 24,576 nodes, with sixteen 1.6GHz PowerPC A2 cores
per node and a 5D Torus interconnect, utilizing up to 2! = 131072 cores across 8192
nodes.

6.5.1 Explicit Time-stepping
Strong Scaling

For strong scaling tests we use a fine space-time mesh specified by (N,, N;) = (27, 2"*1)
for n = 14, 15, or 16. We compare MGRIT F-cycles with factor-two temporal coarsening,
adaptive spatial coarsening (coarsening n — 1 times) and space-time parallelism to serial
time-stepping with spatial parallelism. Forward Euler time-stepping requires a matrix-
vector multiplication, which is easily parallelized using hypre. For each problem size we
set the minimum number of processors in each dimension to be (p,,p;) = (2%,2°) for fixed
a and b. Processors are allocated to spatial and temporal dimensions in three ways:

L. (pe,pe) = (207K 22%K) for k =0,1,2, . ..
2. (pzype) = (24, 2°HF) for k =0,1,2,...
3. (Pa,pr) = (2975 2%) for k=0,1,2, ...

When tabulating results we also consider a fourth combination, where we fix the maximum
number of processors at 2F and consider (p,,p;) = (2¥,2F7%) for k =a,a+1,...,P —b.

While algorithms for serial time-stepping with only spatial parallelism could be opti-
mized differently from algorithms for MGRIT, we choose to use the same framework in both
cases with the intent to provide fair, representative comparisons that would remain con-
sistent for more spatial dimensions and increased problem complexity. Specifically, we use
hypre to form and store the sparse matrix used in the matrix-vector product representing
a time step.
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Strong Scaling for MGRIT with Explicit Timestepping

10°F
Timestepping: (p.,p;) = (2°7%,1)
MGRIT (SC,FCF): (p,, py) = (20, 20+k)
MGRIT (SC,FCF): (py, p) = (2¢, 25F)
MGRIT (SC,FCF): (p,, pr) = (20+F, 20)
10 ¢

Time-to-solution (s)
w
T
%
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‘%
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log, (p.) + log, (p:)

Figure 6.10: Comparison of serial time-stepping with spatial parallelism to explicit MGRIT
with different combinations of space-time parallelism for three different problem sizes on
up to 131072 cores, (N, N;) = (2", 2"*1). These results correspond to Tables 6.8-6.11.
O:n=14,a=2,b=3. x:n=15,a=3,b=4. [ n=16,a=4,b=0>5.

(a,b,n)
(2,3,14) (3,4,15) (4,5,16)
: ) <2a+k’2b+k) 291 2.31 2.06
Pz, Pt (20,’ 2b+k) 1.97 2.85 4.15

Table 6.7: Best speedup achieved for explicit MGRIT strong scaling presented in Figure
6.10, (N, N;) = (27, 2"1).

In Figure 6.10 we compare serial time-stepping and MGRIT using FCF relaxations for
three different problem sizes: (N, N;) = (2",2"!) for n = 14,15,16. As the basis of
comparison we use strong scaling results for serial time-stepping with spatial parallelism.
The results for the three different fine grids considered are recorded in Table 6.8, and are
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(logy(Nz), logy(Nt))
log,(pe) | (14,15) (15,16) (16,17)
2 831.35 — —
3 434.53 1670.53 —
4 227.82 864.64 3353.94
5 125.45  448.79 1738.12
6 74.32 253.04  910.10
7 50.15 149.25  511.78
8 39.59 102.02  305.50
9 34.83 83.72 218.12
10 34.23 74.67  178.47
11 35.82 73.98 161.25
12 38.04 77.72 162.20

Table 6.8: Strong scaling for serial explicit time-stepping with increasing amounts of spatial
parallelism for fixed problem size.

log,(pt) | logy(px) 2 3 4 5 6 7 8
3 iter 37 37 37 37 37 37 37
time 2698.98 1878.07 1343.52 1050.28 847.13 745.30 685.69
4 iter 37 37 37 —
time 1353.76  943.93 378.78 —
5 iter 37 — 37 37 —
time 678.54 — 356.30 219.17 —
6 iter 37 — 37 —
time 350.12 — 136.98 —
7 iter 37 — 37 37 —
time 177.02 — 93.50 57.69 —
8 iter 37 37 37 —
time 105.31 88.72 27.56 —
9 iter 37 — 37
time 58.28 — 15.49

Table 6.9: Original Size: Strong scaling for explicit MGRIT, (N, N;) = (2!, 215).

shown as the black curves in Figure 6.10. For smaller amounts of parallelism, doubling
the problem size in both dimensions roughly quadruples the time to solution, and at the
limit of effective parallelism the time to solution approximately doubles as the problem
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log,(pt) | log,(px) 3 4 5 6 7 8 9
4 iter 39 39 39 39 39 39 39
time 3374.07 2271.85 1496.64 1151.49 932.99 822.80 758.01
5 iter 39 39 — — — 39 —
time 1784.16 1135.81 — — — 417.14 —
6 iter 39 — 39 — 39 — —
time 909.66 — 395.43 — 240.30 — —
7 iter 39 — — 39 — — —
time 458.25 — — 150.03 — — —
3 iter 39 39 39
time 237.21 — 104.18 — 63.86 — —
9 iter 39 39 — — — 39 —
time 123.08 81.64 31.99
10 i'ter 39 — — — — — —
time 66.88 — — — — — —

Table 6.10: Doubled Size: Strong scaling for explicit MGRIT, (N,, N;) = (215, 216).

log,(pt) | logy(px) 4 5 6 7 8 9

5 iter 44 44 44 44 44 44
time 4395.27 2702.93 1838.73 1362.48 1098.43 983.13

6 iter 44 44 — — 44 —

time 2243.41 1359.52 — — 569.38 —

7 iter 44 — 44 44 — —

time 1148.06 — 464.86  349.17 — —

8 iter 44 — 44 44 — —

time 578.08 — 237.94  177.53 — —

9 iter 44 44 — — 44 —

time 295.32  184.29 — — 78.33 —

10 i.ter 44 — — — — —

time 156.64 — — — — —

Table 6.11: Quadrupled Size: Strong scaling for explicit MGRIT, (N,, N;) = (2'¢,2'7).

size is increased. The results in Figure 6.10 are similar for each problem size, where we
see that, given enough resources, we are able to improve upon the time-stepping run-times
using MGRIT. For a fixed number of processors, the best use of resources is to use the
majority for temporal parallelism (green curve) rather than have proportional amounts
of temporal and spatial parallelism (red curve). However, when the green curves begin
to flatten out there is still potential for more scalability, as indicated by the red curves,
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suggesting spatial parallelism should be increased when temporal parallelism approaches
the saturation point. The best speed-up observed for the cases of (p,,p;) = (207F, 207F)
(red curve) and (p,, p;) = (29, 2°7%) (green curve) compared to time-stepping (black curve)
are recorded in Table 6.7. The results presented in Tables 6.9, 6.10 and 6.11 illustrate that
the iteration count increases modestly with problem size from 37 to 39 to 44, but we do
obtain the largest overall parallel speedup for the largest problem size.

Weak Scaling

For weak scaling we increase problem size and processor count while keeping the ratios
N; : py and N, : p, fixed at 2'° : 1 and the space-time domain fixed at [—2,2] x [0, 4].
In addition to the original initial condition ug(x) = sin(mwx/2) we also consider the high
frequency initial condition ug(x) = sin(2w&x) where ¢ is chosen so that there are 16 spatial
cells per wavelength. Strong scaling tests were also considered for this initial condition,
but the run-times observed were within a few percent of those for the low frequency initial
condition, hence they are omitted.

Original Oscillatory
Trial | logy(N,) logy(Ny) logy(pr) logo(py) | € Tter Time | &  Iter Time
1 10 11 0 1 Yy 31 184.83 | 16 31 183.20
2 11 12 1 2 /4 33 23481 | 32 33 234.19
3 12 13 2 3 Vg 34 24717 | 64 34  246.70
4 13 14 3 4 /4 36 310.55 | 128 36 309.92
5 14 15 4 ) 4 39 359.84 | 256 39 376.04

Table 6.12: Weak scaling for explicit MGRIT with ug(x) = sin(27&x).

We start with a grid of size (N,, Ny) = (2'° 2!1) and either double both N, and N;
at each step (Table 6.12) or double N; while leaving N, fixed (Table 6.13); we cannot
increase N, while leaving NV, fixed due to the CFL condition. If N, and N; are increased
simultaneously, while increasing core counts from 2 to 512, and problem size from 2M to
512M degrees of freedom, we see only a factor 2 increase in solution time, indicating ex-
cellent weak parallel scaling of the MGRIT algorithm. If we increase N; while N, remains
fixed, we observe decreases in the iteration count and time to solution due to the increas-
ingly weak couplings in space bringing MGRIT closer to an exact solver (when a(x,t) =0
MGRIT with no spatial coarsening converges in one iteration, and in this case the adaptive
coarsening forces all spatial cells to be kept on all levels). It is interesting to observe that
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Original Oscillatory
Trial | logy(N,) logy(N;) logs(pz) logs(pe) | € Tter  Time | & Iter Time
1 10 11 0 1 /g 31 184.84 |16 31 183.20
2 10 12 0 2 4 14 11047 | 16 14  109.81
3 10 13 0 3 Vg 11 9835 |16 12  104.09
4 10 14 0 4 Va9 88.08 |16 10 94.11
5 10 15 0 5 Vg 7 76.70 | 16 8 82.96
6 10 16 0 6 Vs 6 7193 |16 6 71.68
7 10 17 0 7 Vs 5 68.24 |16 5 68.06

Table 6.13: Weak scaling for explicit MGRIT with ug(z) = sin(27€x) and fixed N,.

the results for the different initial conditions are extremely similar, suggesting that the
scalability is robust for oscillatory solutions, where the solution is changing at the scale of
the grid spacing.

6.5.2 Implicit Results

Strong Scaling

For implicit time-stepping we use a fine space-time mesh with equal resolution in both
dimensions specified by (N,, N;) = (24, 2!1) and set the tolerance in our coarsening con-
dition (6.1) to be tol, = 0.25. Serial time-stepping with spatial parallelism is compared
to MGRIT F-cycles with factor two temporal coarsening, either no spatial coarsening or
adaptive spatial coarsening (coarsening n — 1 times), and space-time parallelism. Back-
ward Euler time-stepping requires tridiagonal solves which are parallelized by using the
hypre 1D cyclic reduction solver. Processors are allocated as in § 6.5.1 for the explicit case,
except that we start with a = b = 2.

No SC  SC
oy | @27 6TT AT
PoP ) 01 ok | 543 5.08

Table 6.14: Best speedup achieved for implicit MGRIT strong scaling presented in Figure
6.11, (N, Ny) = (214, 214).

In Figure 6.11 we compare the results of serial implicit time-stepping to MGRIT with
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Strong Scaling for MGRIT with Implicit Timestepping
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Figure 6.11: Comparison of serial time-stepping with spatial parallelism to MGRIT with
or without spatial coarsening for different combinations of space-time parallelism on up to
65536 cores, (N, N;) = (2!, 2'). These results correspond to Tables 6.15-6.17.

FCF temporal relaxation and either with or without spatial coarsening. As the basis of
comparison we use strong scaling results for serial time-stepping with spatial parallelism
(black curves), as recorded in Table 6.15. We see that the combination of communication
costs and the lower amount of concurrency possible for the cyclic reduction spatial solve
result in methods quickly reaching the effective limit of spatial parallelism. In contrast,
significant improvements on the serial time-stepping results are possible once enough tem-
poral parallelism has been introduced. Similar to the explicit case, we see that for up to
24 processors the best results are obtained by investing the majority into temporal paral-
lelism, though further scalability is possible if spatial parallelism is increased as temporal
parallelism approaches the saturation point, which would offer improved results for 2'2 or
more processors. The difference between SC and no SC is most pronounced in the cases
where p, > p;, with the difference between the SC and no SC curves remaining nearly
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constant as the processor count increases. The best speedup for the No SC and SC cases

are recorded in Table 6.14.

(logy(Nz), logy(Nt))

log

[\
—

Pa)

(14,14)

O O Ot = W N

782.02
518.83
394.58
357.26
336.55
348.35
359.36

Table 6.15: Strong scaling for serial implicit time-stepping with increasing spatial paral-
lelism, (N, N;) = (21, 21).

In Tables 6.16 and 6.17 we tabulate the results from the previous figure. Comparing
the SC and no SC results, we see that the SC iteration counts are approximately 1.5 times
as large as the iteration counts for no SC (increasing from 26 to 40), indicating that if
this increase can be ameliorated we could see significant improvements in the SC time to

solution.
log,(pt) | logy(px) 2 3 4 5 6 7 8

9 iter 46 46 46 46 46 46 46
time 8230.19 6686.69 5728.51 5202.09 4745.97 4498.12 4386.64

3 iter 46 46 — — — 46 —
time 4106.38 3342.14 — — — 2260.45 —

4 iter 46 — 46 — 46 — —
time 2071.04 — 1496.78 — 1203.23 — —

5 iter 46 — — 46 — — —
time 1075.52 — — 669.24 — — —

6 iter 46 — 46 — 46 — —
time 546.51 — 398.02 — 313.18 — —

7 iter 46 46 — — — 46 —
time 312.58  277.75 — — — 157.05 —

8 iter 46 — — — — — 46
time 180.42 — — — — — 86.90

Table 6.16: Spatial Coarsening: Strong scaling for implicit MGRIT, N, = N, = 2!,
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log,(pt) | log,(px) 2 3 4 5 6 7 8
9 iter 30 30 30 230 30 29 30
time 6531.90 4547.23 3524.90 3104.28 2833.67 2599.01 2596.10
3 iter 30 30 — — — 30 —
time 3261.04 2274.50 — — — 1348.17 —
4 iter 30 — 29 — 30 — —
time 1638.08 — 888.57 — 716.87 — —
. iter 30 — — 30 — — —
? time | 844.48  — 40095 — —
6 iter 30 — 30 — 30 — —
time 436.60 — 241.86 — 186.06 — —
7 iter 30 30 — — — 30 —
time 244.24  176.49 — — — 93.29 —
8 iter 30 — — — — — 29
time 145.93 — — — — — 49.69

Table 6.17: No Spatial Coarsening: Strong scaling for implicit MGRIT, N, = N, = 2!4.

Weak Scaling

Original Oscillatory
Trial | logy(N,) logy(Ny) logy(pz) logy(pr) | € Iter  Time ¢ Iter Time
1 10 10 0 0 g 21 23923 | 16 23  276.81
2 11 11 1 1 14 25 554.72 | 32 25  596.79
3 12 12 2 2 /429 808.77 | 64 29 859.19
4 13 13 3 3 14 37 1167.96 | 128 37 1245.90
) 14 14 4 4 Uy 45 1401.77 | 256 46  1489.30

Table 6.18: Weak scaling for implicit MGRIT with wuy(z) = sin(27éx).

For weak scaling tests we again consider the original initial condition uy(z) = sin(wz/2)
and the high frequency initial condition ug(z) = sin(27€z), keeping the ratios V; : p; and
N, : p, fixed at 2'° : 1 while solving over the fixed domain [—2,2] x [0,4]. We start
with a grid of size (N, N;) = (2'°,2!%) and (i) double both dimensions at each step,
(ii) double Ny, leaving N, fixed, or (iii) double N,, leaving N; fixed; results for these
cases are recorded in Tables 6.18, 6.19, and 6.20, respectively. The results for the first
two cases are similar to those for explicit MGRIT, though the results of Table 6.18 show
a nearly sixfold increase in the time-to-solution from the smallest to largest test cases,
compared to times approximately doubling in the explicit case. This is likely due to the
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Original Oscillatory
Trial | logy(N,) logy(Ny) logy(pe) logs(py) | € Iter Time | & Iter Time
1 10 10 0 0 /4 21 24045 |16 23 276.54
2 10 11 0 1 /4 25 306.88 |16 25 328.86
3 10 12 0 2 4 13 208.58 | 16 15  250.45
4 10 13 0 3 Vg 10 17735 |16 12 217.68
5 10 14 0 4 Yy 9 166.21 | 16 10 191.35
6 10 15 0 ) Vo 7 13922 |16 8 162.35
7 10 16 0 6 4 5 11263 |16 7 148.56
8 10 17 0 7 4 5 11446 |16 5  120.30
9 10 18 0 8 /4 4 10310 |16 4  107.93
Table 6.19: Weak scaling for implicit MGRIT with wu(z) = sin(27éx) and fixed N,.
Original Oscillatory

Trial | logy(N,) logy(NVy) logy(pe) logs(p:) | € Iter Time ¢ ITter Time
1 10 10 0 0 /4 21 25854 | 16 23 276.77
2 11 10 1 0 Uy 22 45075 | 32 22 451.55
3 12 10 2 0 Yy 24 59295 | 64 24 591.35
4 13 10 3 0 Yy 24 640.04 | 128 24  636.20
5 14 10 4 0 Yy 25 713.46 | 256 25 709.57
6 15 10 5 0 Yy 25 76992 | 512 25 766.19
7 16 10 6 0 14 25 82791 | 1024 25 823.27
8 17 10 7 0 14 24 872.87 | 2048 24 867.65
9 18 10 8 0 14 24 959.04 | 4096 24 953.32

Table 6.20: Weak scaling for implicit MGRIT with wuy(z) = sin(27éx) and fixed N;.

fact that the exact cyclic reduction linear solve used in implicit MGRIT has less potential
for spatial parallelism compared to the matrix-vector product required for explicit MGRIT.
The third case, unique to the implicit timestepping context, shows that increasing /N, while
N,; remains fixed results in a nearly constant iteration count and an increasing time to
solution. Considering the results for all three cases, it appears that the growth in iteration
count due to increasing problem size is primarily a result of increasing N; while maintaining
a fixed ratio for At : Ax.
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Conclusion

Part 1

Nonlinear preconditioning strategies are an effective way to improve the convergence of
iterative solvers for nonlinear systems and nonlinear optimization problems. In particu-
lar, when the problem formulation naturally suggests a fixed-point iteration that is more
effective than steepest descent, such iterations can be greatly accelerated through use as
nonlinear preconditioners. Nonlinearly preconditioned methods can be based on nonlinear
left-preconditioning, nonlinear acceleration strategies, or by drawing comparisons to linear
preconditioning for iterations solving linear systems or quadratic optimization problems.

In part I of this thesis we developed NPQN methods based on the L-Broyden and L-
BFGS update equations and extended the NPNGMRES, NPNCG and NPQN nonlinearly
preconditioned optimization methods to the matrix manifold setting, which can be useful
for solving problems where the unknowns have some constraints, such as underlying sym-
metry or orthogonal structure. These iterations were applied to the problems of computing
two popular tensor decompositions: the CP decomposition and the Tucker HOSVD. These
decompositions remain commonly used tools in data compression and multilinear statistical
analysis, hence improved computational algorithms will continue to be in demand.

Numerical results provide evidence that: (i) manifold NPNGMRES approximating the
Hessian by a difference of gradients and NPNCG using the Polak-Ribiére or Hestenes-
Stiefel # formulas significantly outperformed HOOI, manifold NCG, manifold L-BFGS,
and a tCG based manifold trust region algorithm for the Tucker HOSVD; and (ii) NPQN
methods are effectively combined with CP-ALS iteration for the CP decomposition, being
much faster than the individual QN method or fixed point iteration for difficult problems
or when high accuracy is required. Furthermore, our results show that the proposed NPQN
methods may significantly outperform NPNCG and NPNGMRES, being up to 50% faster
is some cases. These results strongly suggest that nonlinearly preconditioned methods are
leading contenders for efficient tensor decomposition algorithms.
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There are a number of directions to carry out future work based on these results.
At this point we have established the effectiveness of nonlinearly preconditioned versions
of the popular NCG, NGMRES, L-BFGS and L-Broyden methods in Euclidean space
and on Grassmann matrix manifolds. These methods can be applied to other systems of
equations or optimization problems for matrix or tensor problems that have associated
fixed point iterations that are more effective than steepest descent. We can also consider
the development of preconditioned versions of other algorithms, such as those based on
trust region strategies.

Part 11

Parallel-in-time integration methods are a novel, if somewhat counter-intuitive, way to in-
crease the amount of concurrency possible when solving a system of equations that evolve
in time, and in the future such methods may be necessary to obtain further clock time
speedups and to make use of the most recent massively parallel computing systems, espe-
cially with the continuing push towards exascale computing. However, in order for this to
become a reality substantial improvements in the performance of parallel-in-time methods
for hyperbolic and advection dominated problems are necessary.

In part II of this thesis we explored how the addition of spatial coarsening can affect
the convergence of the MGRIT parallel-in-time method applied to the linear advection
and inviscid Burgers equations in one spatial dimension. When using explicit time-stepping
methods spatial coarsening is necessary to ensure the the CFL stability condition is satisfied
on all levels of the grid hierarchy, and it is beneficial for both explicit and implicit methods
as it produces smaller coarse-grid problems, and hence cheaper multigrid cycles. However,
the introduction of spatial coarsening can result in a deteriorated convergence rate, and
small local wave speeds can result in extremely poor convergence due to weak spatial
connections.

We identified two potential ways of improving convergence when spatial coarsening is
used: one intrusive and one non-intrusive. The intrusive method involves the introduction
of spatial relaxations on the temporally coarsened intermediate grids, which brings MGRIT
closer to a full space-time multigrid method with alternating temporal and spatial relax-
ation and coarsening. While effective in improving the convergence rate and handling near
zero wave speeds, this method requires algorithms to handle the spatial relaxations, which
may be difficult to implement (it was nontrivial even for the variable coefficient linear ad-
vection case), and hence it may not be easily combined with existing time-steppers, which
is one of the key strengths of MGRIT. The non-intrusive approach is an adaptive spatial
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coarsening strategy that prevents coarsening in regions where the local Courant number is
small. This method, while not addressing the deterioration generally observed when spa-
tial coarsening is included, is successful in ensuring reasonable convergence rates in cases
where the wave speed is near or equal to zero at different points in the spatial domain.
[teration counts are obtained that show reasonable scalability as a function of problem
size. To our best knowledge, we obtain the first convergent parallel-in-time method for the
inviscid Burgers equation, and solutions with shocks do not exhibit convergence deterio-
ration. Parallel results on up to 131072 cores illustrate robustness and scalability of the
approach for very large problem sizes, and its potential to achieve run-time speedups when
spatial parallelism alone saturates. Weak scaling results show that the scalability is robust
for solutions with oscillations on the scale of the grid spacing.

As parallel-in-time integration is a developing field, there are many different directions
to be explored moving forward. Perhaps the most pressing issue related to the work
presented here is the lack of multigrid optimality: there is growth in iteration counts both
with problem size and with the number of levels in the multigrid hierarchy. Reducing
or preventing this growth would make MGRIT substantially more competitive and even
greater parallel speedups would be possible. A second area is improving the Galerkin type
coarse-grid operators for Burgers’ equation, or for problems handled via a FAS approach,
so that revisiting the fine grid is avoided. As the adaptive coarsening strategy is extensible,
in principle, to both 2D and 3D, a third possibility would be to implement adaptive spatial
coarsening for problems in two or more spatial dimensions and /or for systems of hyperbolic
equations.
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Appendix A

Supplementary Parallel Scaling Results

A.1 Explicit Time-stepping for Case A5

(logy (Na), 1ogy (Vi)
log,(p.) | (14,15) (15,16) (16,17)
2 846.33 — —
3 441.81  1699.65 —
4 232.14  880.60 3419.02
S 127.19 45645 1769.27
6 75.44  257.11  926.55
7 50.81  151.31  519.89
8 40.13  103.31  309.69
9 35.19 84.62  220.80
10 34.63 75.39  180.07
11 36.10 74.48  162.61
12 38.36 78.33  163.74

Table A.1: Strong scaling for serial explicit time-stepping with increasing amounts of spatial
parallelism and no temporal parallelism for fixed problem size.
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log,(pt) | log,(px) 2 3 4 5 6 7 8

3 iter 36 36 36 36 36 36 36
time 2836.37 1691.60 1207.62 986.34 809.76 714.02 647.39
iter 36 36 — — — 36 —

4 time 1484.32  880.73 — — — 365.42 —

- iter 36 — 36 — 36 — —

7 time | 81817  — 33645 — 21060 —  —

6 iter 36 — — 36 — — —
time 440.94 — — 132.10 — — —

7 iter 36 — 36 — 36 — —
time 231.56 — 91.40 — 55.70 — —

8 iter 36 36 36
time 137.10 90.40 — — — 26.92 —

9 iter 36 — — — — — 36
time 78.75 15.08

Table A.2: Original Size: Strong scaling for explicit MGRIT, (N,, N;) = (21,219).

log,(pt) | log,(px) 3 4 5 6 7 8 9
N iter 42 41 41 42 41 42 41
time 3455.59 2216.87 1493.09 1209.49 973.17 875.18 784.65
5 iter 41 41 — — — 41 —
time 1860.44 1150.40 — — — 438.65 —
6 iter 41 — 42 — 42 — —
time 976.22 — 417.92 — 258.22 — —
7 iter 42 — — 41 — — —
time 515.44 — — 159.37 — — —
3 iter 41 — 41 — 41 — —
time 272.32 110.88 67.64
9 iter 42 42 — — — 42 —
time 151.43 91.31 — — — 34.59 —
10 i.tor 41
time 86.61 — — — — — —

Table A.3: Doubled Size: Strong scaling for explicit MGRIT, (N,, N;) = (2'%,21°).
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log,(pt) | log,(px) 4 5 6 7 8 9
5 iter 51 52 50 51 50 50
time 4846.38 3999.70 3592.11 3410.69 3301.74 3500.35
6 iter 50 51 — — 51 —
time 2811.06 1526.86 — — 1735.72 —
7 iter 50 — 50 51 — —
time 1271.31 — 526.61  409.13 — —
3 iter 51 — 51 51 — —
time 666.09 — 278.37  211.18 — —
9 iter 51 51 — — 50 —
time 350.51  215.74 — — 90.34 —
10 i'ter 50 — — — — —
time 191.07

Table A.4: Quadrupled Size: Strong scaling for explicit MGRIT, (N, N;) = (26, 217).

Time-to-solution (s)

Figure A.1: Comparison of serial time-stepping with spatial parallelism to explicit MGRIT
with different combinations of space-time parallelism for three different problem sizes on
up to 131072 cores, (N, N;) = (2", 2"*1). These results correspond to Tables A.1-A 4.

Strong Scaling for MGRIT with Explicit Timestepping

Timestepping: (p.,p) = (295, 1)
MGRIT (SC,FCF): (p,, py) = (205, 20+%)
MGRIT (SC,FCF): (p, pr) = (2%, 2"+F)
MGRIT (SC,FCF): (p,, p;) = (2°+*,2%)

=~

T~

O:n=14,a=2,b=3.

x:nmn=15,a=3,b=4.

Il
6 8 10 12 14 16 18
log, (p.) + logy (pr)
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(a,b,n)
(2,3,14) (3,4,15) (4,5,16)
(20FF 25FFY [ 2.30 2.15 1.78
(20,204F) | 117 1.75 2.55

(pma pt)

Table A.5: Best speedup achieved for explicit MGRIT strong scaling presented in Figure
A1, (N, Ny) = (2", 27F1).

Original Oscillatory
Trial | logy(N,) logy(Ny) logy(p.) logs(pr) | €  Iter Time | £  Iter Time
1 10 11 0 1 /4 30 184.86 | 16 30 184.98
2 11 12 1 2 Vg 31 22312 32 31 22295
3 12 13 2 3 /4 33 24539 | 64 33 245.68
4 13 14 3 4 /4 35 291.70 | 128 35 291.61
5 14 15 4 5 /4 36  339.98 | 256 36 339.53

Table A.6: Weak scaling for explicit MGRIT with ug(z) = sin(27€z).

Original Oscillatory
Trial | logy(N,) logy(Ny) logy(pe) logy(p) | € Iter Time | & Iter Time
1 10 11 0 1 4 30 184.63 |16 30 185.09
2 10 12 0 2 Yy 14 11116 | 16 15 117.20
3 10 13 0 3 /413 11060 | 16 14 116.89
4 10 14 0 4 Yy 10 9461 |16 11 101.02
) 10 15 0 ) sy 8 8349 |16 9 90.12
6 10 16 0 6 Vs 6 72.14 |16 6 72.20
7 10 17 0 7 Vg 7 82.17 |16 7 82.09

Table A.7: Weak scaling for explicit MGRIT with uy(z) = sin(27éx) and fixed N,.
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A.2 Implicit Time-stepping for Case A5

(10g2(Nz)7 1Og2<Nt))
(14, 14)
801.46
536.29
415.51
371.04
350.20
353.65
369.76

—
@]
o
[N}
—~
3
8
~—

O 3 O O = W N

Table A.8: Strong scaling results for serial implicit time-stepping with increasing amounts
of spatial parallelism, (N,, N;) = (2'4,214).

log, (pt) | log,(px) 2 3 4 5 6 7 8

9 iter 27 26 27 27 27 26 27
time 5937.06 3991.70 3210.82 2825.08 2578.00 2357.61 2364.47

3 iter 27 26 — — — 26 —
time 2964.59 1997.37 — — — 1184.73 —

4 iter 27 — 27 — 26 — —
time 1488.67 — 832.33 — 629.40 — —

5 iter 27 — — 27 — — —
time 767.72 — — 364.10 — — —

6 iter 26 — 26 — 27 — —
time 382.61 211.93 169.23

7 iter 27 27 — — — 27 —
time 221.78  160.31 — — — 84.93 —

3 iter 27 — — — — — 27
time 132.43 46.83

Table A.9: No Spatial Coarsening: Strong scaling for implicit MGRIT, N, = N, = 2!4.
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log,(pt) | log,(px) 2 3 4 5 6 7 8
9 iter 40 40 41 40 40 40 40
time 7329.11 5463.71 4666.86 4374.57 4068.72 3883.04 3824.27
3 iter 40 40 — — — 40 —
time 3740.71 2786.03 — — — 1964.83 —
4 iter 41 — 40 — 40 — —
time 1996.01 — 1297.06 — 1054.42 — —
5 iter 40 — — 40 — — —
time 1129.15 — — 591.32 — — —
6 iter 40 — 40 — 40 — —
time 634.29 — 354.25 — 276.62 — —
7 iter 40 40 — — — 40 —
time 361.17  264.02 — — — 138.59 —
3 iter 40 — — — — — 40
time 206.53 — — — — — 75.87

Table A.10: Spatial Coarsening: Strong scaling for implicit MGRIT, N, = N, = 24,

Strong Scaling for MGRIT with Implicit Timestepping

Time-to-solution (s)

—O— Timestepping: (p.,p:) = (2,1)
102 H{ —©— MGRIT (No SC): (p.,p:) = (2, 2F)
[ | —6— MGRIT (No SC): (p.,pi) = (4 2F)
[ | —©—MGRIT (No SC): (p.,p:) = (2%,4)
| | == MGRIT (SC): (p,,p:) = (2",2F)
| ——MGRIT (SC): (ps, 1) = (4,2")
| | ——MGRIT (SC): (ps, 1) = (2",4)
101 1 1 1 1 1 1 |
2 4 6 8 10 12 14 16

logy (p.) + log, (p:)

Figure A.2: Comparison of serial time-stepping with spatial parallelism to MGRIT with
or without spatial coarsening for different combinations of space-time parallelism on up to
65536 cores, (N,, N;) = (2! 2'). These results correspond to Tables A.8-A.10.
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No SC  SC
( ) (2k,2F) | 748  4.62
PoPU 91 oky | 627 475

Table A.11: Best speedup achieved for implicit time-stepping strong scaling presented in
Figure A.2, (N,, N;) = (24 21).

Original Oscillatory
Trial | logy(N,) logy(Ny) logy(pr) logy(py) | € Iter  Time ¢ Iter Time
1 10 10 0 0 Vg 24 29532 | 16 24 296.61
2 11 11 1 1 4 26 626.30 | 32 26  624.78
3 12 12 2 2 g 29 87147 | 64 29  869.50
4 13 13 3 3 Yy 34 112493 | 128 33 1091.52
) 14 14 4 4 g 41 1309.98 | 256 41 1295.42

Table A.12: Weak scaling for implicit MGRIT with ug(x) = sin(27&x).

Original Oscillatory
Trial | logy(N,) logy(Ny) loge(pr) logy(pe) | € Iter Time | & Iter Time
1 10 10 0 0 Uy 24 297.03 | 16 24 296.59
2 10 11 0 1 Vg 27 36788 |16 27 367.27
3 10 12 0 2 Uy 13 22439 | 16 14 238.11
4 10 13 0 3 Vg 11 20374 |16 11 203.43
5 10 14 0 4 Yy 9 17665 |16 9 176.33
6 10 15 0 ) s 8 16244 |16 8 162.16
7 10 16 0 6 Va6 13352 |16 7 14848
8 10 17 0 7 Yy 5 1204516 5  120.26
9 10 18 0 8 Yo 4 10793 |16 4 107.84

Table A.13: Weak scaling for implicit MGRIT with ug(x) = sin(27&zx) and fixed N,.
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Original Oscillatory
Trial | logy(N.) logy(N;) logy(pr) logy(pe) | € Iter Time ¢ Iter Time
1 10 10 0 0 a4 24 297.05| 16 24 294.81
2 11 10 1 0 /4 23 465.06 | 32 23 465.20
3 12 10 2 0 /423 559.13 | 64 23 558.23
4 13 10 3 0 Uy 23 59461 | 128 23 593.32
) 14 10 4 0 Uy 23 64239 | 256 23 641.37
6 15 10 5 0 /4 23 68246 | 512 23  679.69
7 16 10 6 0 1y 22 696.81 | 1024 23 721.51
8 17 10 7 0 /422 750.16 | 2048 23  775.58
9 18 10 8 0 /4 22 816.76 | 4096 22 812.83

Table A.14: Weak scaling for implicit MGRIT with ug(x) = sin(27€z) and fixed N;.
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