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Abstract

Thermo-compression bonding (TCB) relies on uniform thermal distribution during 
microelectronic packaging processes to ensure reliable interconnects are formed. During 
any TCB processes, the thermal application must uniformly distribute heat in order to pro-
duce robust, thoroughly bonded packages without being damaged due to thermo-mechani-
cal effects. To better control and develop TCB processes, further insight through thermal 
analysis is required. Due to the form factors and complexity involved in TCB, it is diffi-
cult to accurately extract viable information such as temperature variation, lateral and ver-
tical gradients, or interfacial bonding temperatures.

To extract real time in-situ temperature and force signals, a microsensor array was 
used to observe any thermo-mechanical features recorded during emulated TCB pro-
cesses. Algorithms were developed to post-process the signals and produce quantifiable 
data. Finite element models were developed to verify the experimental thermal responses 
and subsequently post-analyze the numerical results. Models formed through hybridized 
contact resistance layers as well as surface contact models are also discussed. 

Several features were identified and quantified: maximum heating rates, location 
of maximum lateral thermal gradients, internal joint thermal distributions, knee-region 
slope analysis and joint to joint thermal variation. The experimental responses in combina-
tion with numerical analyses show evidence that thermal applications during TCB is 
robust. Low thermal variation was found with respect to joint to joint temperatures. Chip 
design was found to heavily influence cooling on the periphery edges of the bump array. 
The sensor chip temperatures were to found to be about ≈ 6 °C lower than the extracted 
bump temperatures, signifying the use of microsensor arrays could be developed as accu-
rate tools for thermal process control during TCB.
iv



Acknowledgements

This work was funded by Kulicke & Soffa Industries. Special recognition is given to Dr.
Alireza Rezvani, Dr. Ivy Qin, and Dr. Horst Clauberg for their invaluable contribution to
the development of the work discussed in this thesis. I would also like to express my grat-
itude to Ari Laor, Dr. Erick (Xu) Di, and Dr. Michael Hook for their technical insight and
support with all technical endeavors. Further appreciation is expressed towards my col-
leagues Gitanjali Shanbhag, Dr. Paola Russo and Emanuel Santos for their moral support
and encouragement throughout this degree. I am gracious to have had Professor Mustafa
Yavuz and Professor Richard Culham to provide invaluable feedback as readers during
the drafting of this thesis. 

Much appreciation is given to:

Neil Griffett, for helping setup the data acquisition system.
Mark Griffett, for always having the experimental setup and materials ready for
the lab sessions every Monday and Friday, even at a moment’s notice.
Matt Scott, for the training on the die bonder, plasma cleaner and for assisting with
any other issues while conducting research at IQC.
Allison Walker, Karen Schooley and all other administrative and support staff in
the MME department.

I would also like to express my overdue and undying appreciation towards the instructors
and staff at Woburn Collegiate Institute. Special recognition goes to Jonathan Shulman,
Judy Edwards, Tom Thompson, Rodica Iliescu, Todd Idenouye, Hanson Man, Rucsandra
Seuleanu, Kosta Moliotsias, and Janice Campbell-Houston. The special roles each of you
played have left me with lifelong lessons that have continued to resonate with me ever
since parting from WCI.

Finally, I would like to thank my supervisor, Dr. Michael Mayer, for fostering and honing
my abilities in areas ranging from technical aptitude to interpersonal skills. His patience,
guidance and awe-inspiring ability to provide a multitude of solutions for any issue that
arose during research made him an excellent supervisor that I will always be grateful for
having. Thank you for providing me with this invaluable opportunity to grow as a
researcher, an engineer, and as an individual.
v



Dedication

I dedicate this thesis to my parents, my family, my friends, and to all of those who
believed in my dreams. I would not have made it this far on my mission without the love,
support and encouragement from each and every one of you. Thank you for never losing
hope nor giving up on me. This is also for those who never had a chance. Despite all
obstacles, this process has been a privilege that I will never fail to acknowledge. Finally, I
dedicate this to those who could not be with us today, to those who have faced adversity
and hardship all throughout their lives, and to those, eternally fighting their inner demons.
May this thesis give hope, encouragement, and substantiation that resilience and perse-
verance can conquer all.
vi



Table of Contents

Author’s Declaration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Statement of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Dedication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

 1   Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 1.1  Microelectronic Packaging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

 1.1.1 Wire Bonding Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
 1.1.2 Flip Chip Technology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

 1.1.2.1 Thermo-Compression Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
 1.1.2.2 Reliability/Quality Testing Methods . . . . . . . . . . . . . . . . . . . . . . . . 10

 1.1.3 Future Trends of TCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
 1.2  CMOS-Based Microsensor Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

 1.2.1 Force Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
 1.2.2 RTD Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

 1.3  Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 1.3.1 Model Formulation Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 1.3.2 Heat Transfer Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 1.3.3 Thermal Contact Resistance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
 1.3.4 Current FE Thermal Analyses in Literature  . . . . . . . . . . . . . . . . . . . . . . . . 21

 1.3.4.1 Two-Dimensional Transient FE Model . . . . . . . . . . . . . . . . . . . . . . 21
 1.3.4.2 Three-Dimensional Transient FE Model. . . . . . . . . . . . . . . . . . . . . 22
 1.3.4.3 Three-Dimensional Transient Thermal Model with Contact Resis-

tance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 1.4  Goal of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

 2   Sensor Chip: Temperature Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
vii



 2.1  TCB Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
 2.2  Simple Extractions: MFT, MHR and FTRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
 2.3  Knee Point Region Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
 2.4  Thermal Gradient Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
 2.5  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

 3   Finite Element Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
 3.1  Strategy of Modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
 3.2  Model Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

 3.2.1 Geometries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
 3.2.2 Material Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
 3.2.3 Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
 3.2.4 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 3.2.5 Data Extraction from Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 3.2.6 Thermal Contact Resistance Layers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

 3.3  Model Fitting Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
 3.4  Matched Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

 3.4.1 Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
 3.4.2 Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

 3.5  Lateral Surface Thermal Distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
 3.6  Joint to Joint Thermal Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
 3.7  Internal Joint Thermal Variation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
 3.8  Sensitivity Study I: Effects of Heater Block Thickness. . . . . . . . . . . . . . . . . . . . 59
 3.9  Sensitivity Study II: Effects of Air Content in TCR Layers  . . . . . . . . . . . . . . . . 60
 3.10  Complex Thermal Model: CMY-Implementation . . . . . . . . . . . . . . . . . . . . . . . 60

 3.10.1 Modelling Methodology Adjustments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
 3.10.2 TCR Layer Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
 3.10.3 Fitting Procedure and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
 3.10.4 Sensitivity Study III: Effects of Asperity Heights. . . . . . . . . . . . . . . . . . . 65
 3.10.5 Sensitivity Study IV: Effects of Asperity Slopes. . . . . . . . . . . . . . . . . . . . 66
 3.10.6 Sensitivity Study V: Effects of Contact Pressure  . . . . . . . . . . . . . . . . . . . 67

 3.11  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

 4   Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
 4.1  Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

APPENDICES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A: Rate Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B: Knee-Point Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C: Thermal Gradient Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
viii



List of Figures

 1   Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Fig. 1-1 Microelectronic packaging hierarchy. Reproduced from [1].. . . . . . . . . . . 1

Fig. 1-2 Overview of the ball-wedge wire bonding process. Reproduced from [6]. 3

Fig. 1-3 Three-dimensional graphical representation of Au wire bonds. Adapted 
from [5].  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Fig. 1-4 (a) Typical C4 flip chip process; (b) under bump metallurgy (UBM) of a sol-
der bump; (c) Cross sectional view of a bonded C4 joint [13] . . . . . . . . . . 5

Fig. 1-5 (a) Stud bump formation process [6]; (b) SEM of a Au stud bump [14]; (c) 
Simplified process flow of solder capped Cu-pillar formation; (d) Cu-pillar 
array [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Fig. 1-6 Typical TCB process flow. (a) non-conductive film (NCF) is applied to the 
chip or non-conductive paste (NCP) is applied to the substrate; (c) chip is 
flipped and heated (c) bond head actuates downwards, curing the underfill 
and bonding the joints; (d) device packaged. Adapted from [16]. . . . . . . . 7

Fig. 1-7 An example product packaged via solder-capped Cu pillar TCB. The top-
middle image indicates the location of the cross sectional cut of Apple’s 
A10 processor with magnified images on left, right and bottom. Reproduced 
from [17,18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Fig. 1-8 Computerized representation of destructive (a) shear test and (b) pull test. 
Reproduced from [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Fig. 1-9 3D IC package fabricated through Amkor’s Double-POSSOM™ TCB tech-
nology [42]. Solder-capped Cu pillars are typically denoted as C2 bumps.    
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Fig. 1-10 Collective bonding process introduced by Toray in [30,43]. A four-layer die 
stack package has been produced through this process (middle-left). Image 
from [42].  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Fig. 1-11 (a) Z stress sensor orientation; (b) y-stress sensor orientation (x is 90° rota-
tion-equivalent); (c) Wheatstone bridge circuit; (d) Design of RTD element 
around bond bad; (e) micrograph of RTD sensor localized around a bond 
pad; (f) four wire resistance measurement circuit [34]  . . . . . . . . . . . . . . 15

Fig. 1-12 General FEA process used in engineering analysis. Reproduced from [51].  
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Fig. 1-13 Solid A in contact with Solid B. The peaks and troughs of each solid are 
ix



called surface asperities. “m” and “σ” are the root mean square (RMS) 
slopes and average heights of the asperities, accordingly. “u” and “l” denote 
upper and lower boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Fig. 1-14 Thermocouple attachment locations in experiment (left) and simplified 
model with two layer stack used in simulation model (right) [30].  . . . . . 21

Fig. 1-15 (a) The experimental setup and location of thermocouple attached (top); (b) 
Nominal heater, experimental and simulated thermal responses; (c) magni-
fied responses. Options #1-3 are the results of the varied homogenized layer 
trials tested in the simulated. For example, option # 1 homogenizes the pil-
lars, solder and NCP material as one layer with effective material properties. 
Option # 4 is a complete model with all components and materials modelled 
independently [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Fig. 1-16 (a) The locations of the three RTD sensors used (magenta circles); (b) the 
first and (c) second experimental TCB procedure conducted; (d) Simulated 
thermal responses from FE model of experimental (b); (e) FE model design 
[36]. PTCO is Packaging Test Chip Version O and PTCP is version P [36]. 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

 2   Sensor Chip: Temperature Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Fig. 2-1 (a) Bond head picks up the pressure plate and all components are heated to 
50 °C. Measurement begins; (b) bond head aligns the pressure plate with the 
bumps and moves downward; (c) a force and temperature ramp is applied 
and held steady; (d) the bond head lifts off, cools and measurement ends; (e) 
bond head thermal profile as measured. HTS and HTW denote high temper-
ature wire and solder, respectively. DAQ denotes the data acquisition sys-
tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Fig. 2-2 Measured experimental RTD signals and measured bond head profile. The 
thirds indicated on the bottom right are arbitrary divisions of the thermal re-
sponse from ramping to the MFT region  . . . . . . . . . . . . . . . . . . . . . . . . . 29

Fig. 2-3 KP algorithm example plots; (a) The first two linear interpolations made; (b) 
The intersection point. Note: this algorithm continues until all points have 
been considered, even if the intersection has been reached.. . . . . . . . . . . 32

Fig. 2-4 Arbitrary division system overlaid on the bump array area. The X, Y and Z’s 
denote the locations of types of each force sensor at that location. The star 
signifies the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Fig. 2-5 Progression of thermal distribution at key locations (a) before ramping; (b) 
at the MHR time; (c) at the time of greatest gradient experienced; (d) end of 
press near MFT time. The middle column contains plots of contours at the 
times indicated in the first column. The third column contains the gradient 
quiver plots.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Fig. 2-6 Transient curves of the thermal gradient magnitudes and temperature ranges 
between 6.1 s and 9.6 s.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
x



 3   Finite Element Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Fig. 3-1 FEA development modelling plan and thermal analysis procedure used for 
both simple thermal and complex model FE models [16]  . . . . . . . . . . . . 39

Fig. 3-2 (a) SEM image of the sensor chip die attached and wire bonded inside a Cer-
DIP cavity; (b) layout and values of sensor chip components as implement-
ed in the FE models [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Fig. 3-3 Partial views of the complete geometric layout used in the FE models [16]. 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Fig. 3-4 Boundary condition locations [16].  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Fig. 3-5 (a) Orthographic view of the complete meshed model; (b) top view; (c) 
translucent partial side view; (d) 1/4 section cut-out at pressure plate - sen-
sor chip interface; (e) magnified view of (d). . . . . . . . . . . . . . . . . . . . . . . 46

Fig. 3-6 (a) Magnified view of sensor chip geometry; (b) Magnified view of bump, 
TCR layer and RTD surface data node. The air gap is shown in (a), but not 
shown in (b). Both images are to scale [16].  . . . . . . . . . . . . . . . . . . . . . . 47

Fig. 3-7 Cross-section view of the “bonding interface” between pressure plate and 
sensor chip bump [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Fig. 3-8 Flowchart of the iterative 2 × 2 DOE procedure conducted to match FE 
model responses to experimental responses [16] . . . . . . . . . . . . . . . . . . . 51

Fig. 3-9 (a) Contour of the MHR values of the four trial parameters. The target MHR 
value can be reached by selecting any heater thickness and value on the red 
dashed line; (b) The response contour for the MFT values of the same four 
trial parameters. The intersection point is slightly below the x-axis in this 
image [16].  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Fig. 3-10 Signal overlap of Model B’s simulated response [16].. . . . . . . . . . . . . . . 53

Fig. 3-11 Signal overlap of Model A’s simulated response [16].  . . . . . . . . . . . . . . 53

Fig. 3-12 Comparison of experimental and simulated thermal distributions across the 
sensor chip surface. (a) Steady state; (b) average MHR time; (c) time of 
maximum thermal gradient; (d) average MFT time. The interpolated exper-
imental and FE-based contour plots exhibit similar results and verify the 
heat sink effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Fig. 3-13 Transient curves of the thermal gradient magnitudes and temperature ranges 
between 6.0 s and 10.0 s for Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Fig. 3-14 Z-X Contour plots of bumps from (a) pad 00 (b) pad 03 (c) pad 24 and (d) 
pad 27. The thermal distribution within the bumps at pads 00 and 27 are 
shown. Of these four, pad 27 has the bump with the highest temperature, and 
pad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Fig. 3-15 Heater block thickness variation and its effect on mean MHRs. The full sig-
nals for the three trials are averaged and the mean RTD temperature is plot-
ted for each heater block thickness. Air content percentage held at 91.7%. 
All other parameters held constant. Only the last four seconds shown for 
emphasis. Heater block thickness is linearly related to the average MHR. 
xi



[16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Fig. 3-16 Air content percentage variation and its effect on mean MFTs. [16] . . . . 60

Fig. 3-17 Top: RMS asperity slope variations; Bottom: RMS asperity height varia-
tions. Material A has a microhardness higher than Material B. Thus, the 
mathematical model assumes the asperities of Material B to plastically de-
form under mechanical contact. Note: these illustrations are simplified and 
exaggerated for clarity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Fig. 3-18 Locations of the three TCR boundaries defined under each “Thermal Con-
tact” option.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Fig. 3-19 Contour plots from the iterative DOE process used to fit the complex ther-
mal model.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Fig. 3-20 Signal overlap of Model C’s simulated response. Note: the signal gap, seen 
clearly in Models A and B, is not as definitive here. . . . . . . . . . . . . . . . . 64

Fig. 3-21 RMS asperity slope variation and its effect on simulated signal responses. 
Note: the mean of all signals produces one averaged signal for each trial as 
shown. The average RMS slope is held at 0.9 for all trials. . . . . . . . . . . . 66

Fig. 3-22 Average RMS slope variation and its effect on simulated signal responses. 
The average RMS height is held at 0.85 µm for all trials. . . . . . . . . . . . . 67

Fig. 3-23 Contact pressure variation and its effect on simulated signal responses. The 
average RMS height and slope is held at 0.85 µm and 0.9 for all trials, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

 4   Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Fig. 4-1 Coarsely meshed translucent FE model sample of a stacked die configura-
tion. Units in µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
xii



List of Tables

 1   Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Table 1-1 General comparison of wire bonding and TCB technologies [10,23,24] . 99

 2   Sensor Chip: Temperature Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 2-1 Summary of experimental response quantifications . . . . . . . . . . . . . . . . . 30

Table 2-2 Summary of KP calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

 3   Finite Element Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 3-1 Factorial models to study effects of component additions. A total of 22 mod-
els resulted from this study ranging from M0 to M6f. The × denotes the 
components included for each model [16].. . . . . . . . . . . . . . . . . . . . . . . . 38

Table 3-2 Geometry of FE models [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 3-3 Thermal material property values (@ 20 °C) used in the FE models.  . . . 44

Table 3-4 Summary of Model A and B’s bump and RTD temperature variation. . . 57

Table 3-5 Summary of contact model parameter values for each TCR layer.  . . . . . 63

Table 3-6 Summary of Model C’s bump and RTD temperature variation . . . . . . . . 65
xiii



List of Acronyms

B
BGA Ball grid array

C

C2 Chip connect

C2W Chip-to-wafer

C4 Controlled collapsed chip connection

CerDIP Ceramic dual in-line package

CMOS Complementary metal oxide semiconductor

CMY Cooper-Mikic-Yovanovich

COB Chip-on-board

CTE Coefficient of thermal expansion

D

DAQ Data acquisition system

DC Direct current

DOE Design of experiment

E

EFO Electrical flame-off

F

fcTCB Flip chip TCB

fcVFBGA Flip chip very fine ball grid array

FE Finite element
xiv



FEA FE analysis

FEM FE methods

FTRS Final Third Region Slopes

H

HTS High temperature solder

HTW High temperature wire

I

IC Integrated circuit

IEEE Institute of Electrical and Electronics Engineers

I/O Input/output or interconnection

J

JEDEC Joint Electron Device Engineering Council 

K

K&S Kulicke and Soffa Industries

KP Knee point

M

MFT Maximum final temperatures

MHR Maximum heating rates

N

NASA National Aeronautics and Space Administration

NCF Non-conductive film

NCP Non-conductive paste
xv



P

PC Personal computer

PCB Printed circuit board

PDE Partial differential equation

PR Photoresist

PTCO Packaging test chip version O

PTCP Packaging test chip version P

PWB Printed wire board

R

R&D Research and development

RMS Root mean square

RTD Resistive temperature detector

S

SEM Scanning electron microscope

SMT Solder mount technology

T

TCB Thermo-compression bonding

TCR Thermal contact resistance

TSV Through-silicon-via

U

UBM Under-bump metallurgy

W

W2W Wafer-to-wafer
xvi



List of Symbols

St amplified signal force sensitivity, in V/N

ΔV measured excitation voltage, in V

F force applied that caused the excitation voltage, in mN 

SN normalized signal force sensitivity, in mV/V/N

t0 initial start time, in s

Fi(t) forces experienced at time t, by pad index i

i pad index ranging from 1 to 64

Vi(t0) initial, reference voltage, in V

Vi(t) excitation voltages experienced at time t

I bias current applied, in mA

RT,ref calibrated resistance at a reference temperature, in Ω

αT,ref
temperature coefficient of resistance for a reference tempera-
ture, in 1/K or 1/ºC

ρ density, in kg/m3

m mass, in kg

k isotropic thermal conductivity, in W/m•K

h heat transfer coefficient, in W/m2•K

T∞ 
temperature of the external fluid from a reasonable distance 
away from the surface, in K

n surface normal vector

Cp specific heat or heat capacity at constant pressure, in J/kg•K

th thickness of a surface element, in m

hc thermal contact constriction conductance, in W/m2•K

hg thermal contact gap conductance, in W/m2•K
xvii



masp average RMS surface asperity slope

σasp average RMS surface asperity height, in m

kcontact
sub-contrary or harmonic mean of thermal conductivity, in 
W/m•K 

Hc Vicker's microhardness, in Pa

p contact pressure, in Pa

Δtsteady
time until ramp of bond head to ascend to the nominally set 
process temperature, in s

Δtramp ramp duration of bond head press, in s

Δtpress duration of bond head press, in s

Δtcool lift off/cooling time, in s
xviii



“...But tomorrow I see change

A chance to build anew

Built on spirit, intent of heart

and ideals based on truth

And tomorrow I wake with second wind

and strong because of pride

To know I fought with all my heart to keep my dream alive”

– Tupac Amaru Shakur
xix



1 Introduction

1.1 Microelectronic Packaging

Microelectronic packaging provides the means to establish electrical connections

between an integrated circuit (IC) and the remaining components along the packaging hier-

archy. The three main levels are: primary levels connecting chips to packages; secondary

levels connecting packages to PCBs; and tertiary levels connecting PCBs to PCBs or other

higher-level assemblies (Fig. 1-1). Typical higher order packages beyond these three levels

are consumer products such as laptops, PCs or smart phones. Primary level packaging is

predominantly established by either wire bonding technologies or flip-chip technologies

[2,3]. Each of these packages serve four main functions: signal distribution, power distri-

bution, heat dissipation and mechanical support/protection. It must be able to distribute

power and communicate signals to other components while sufficiently being cooled and

Third Level Package
(Mother Board
or Backplane)

Second Level Package
(PWB)

First Level Package
(Multichip Module)

Wafer

Chip

Single Chip Module

 Fig. 1-1. Microelectronic packaging hierarchy. Reproduced from [1].
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physically protected [3]. Therefore, it is crucial that this first packaging step is robust and

reliable, regardless of its operating conditions or environment.

Package design considerations are driven by the ever-increasing industry needs of

low cost, low power, small form factor and high performance packages. These require-

ments lead to progressively complicated structures that demand vigorous engineering

methodologies to ensure they are electro-thermo-mechanically resilient.

1.1.1 Wire Bonding Technology

Wire bonding is a primary level solid state micro-welding technology, which estab-

lishes electrical connectivity through the use of metallic wires [2,3,4,5]. With trillions of

wire bonds made each year, wire bonding is currently the most dominant primary level

interconnection technology, representing about 85% of the total interconnections made as

of 2014 [6, 7]. There are two main categorizations of wire bonding: ball-wedge bonding

and wedge-wedge bonding. Phenomenal throughput is achieved with ball-wedge bonds,

attributed to the faster process times in comparison to wedge-wedge bonds. A generalized

flow diagram of a typical ball-wedge process is provided in Fig. 1-2. A computer-generated

image of a wire-bond packaged chip is shown in Fig. 1-3. The first bond is typically made

on the IC and the second to its package, substrate, or to a more recently common occurrence

another IC. 

Wire bonding technology remains dominant due to its process design producing

flexible bonds in low temperature conditions with high yield rates [8]. Due to the rapid rise

of gold prices following the recession of 2008, a significant market shift occurred leading

to the expeditious development of wire bonding with Cu wires. Prices have been noted to

be about 10x less for Cu wires compared to Au wires [9]. Mechanical and electrical prop-

erties of Cu such as high stiffness, tensile strength and electrical conductivity, as well as

better process features, such as longer loop profiles and reduced wire thicknesses, further

make it an appealing material choice over Au wires. This, of course, depends on the specific

application of the package. 

With an increased drive for reduced pitches and higher densities of interconnects as

well as a need for the miniaturization of packages, wire bonding faces certain limitations
2



Fig. 1-2. Overview of the ball-wedge wire bonding process. Reproduced from [6].

Fig. 1-3. Three-dimensional graphical representation of Au wire bonds. Adapted from [5].
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primarily due to geometric constraints, amongst other process-related and reliability issues

[8]. Several innovations and creative techniques have been developed to follow industry

trends such as stacked die wire-bonded packages, bond pad pitch reductions to ≈ 25 μm,

ultra low loop height profiles and nano-insulated wire materials. However, significant redi-

rection has shifted focus to flip chip thermo-compression bonding (fcTCB or TCB) as the

more viable solution to these issues [10]. 

1.1.2 Flip Chip Technology

The denotation of flip chip comes from the step where the chip faces the substrate,

whereas the opposite is the case in wire bonding. Flip chip technologies can be categorized

into three main types: solder ball with reflow, thermo-sonic bonding and thermo-compres-

sion bonding. Controlled collapsed chip connection (C4) is the original solder ball with

reflow technology, first introduced by IBM in 1964, is a pioneering primary level flip chip

packaging technology that catered to demands of high input/outputs (I/Os) required by

higher density applications [11]. Heat is applied through forms such as hot air, causing the

solder to melt and forming the interconnection joint. Electrically insulative adhesive or

underfills are then applied and cured [10,12]. It was able to provide high I/O counts by uti-

lizing a ball grid array (BGA) of solder bumps which were bonded with lower pitches than

wire bonding technologies at the time, while covering a fraction of the bonding area. It was

originally used for processors in the IBM System/360 mainframe computer systems.

Development of this technology and intellectual property related to it was kept protected

within the domains of IBM until the 1990s [12]. Seizing the opportunity needed to advance

development for their own interconnect solutions, major companies, such as AMD, Intel

and HP, licensed IBM’s technology. A surge of research followed the introduction of

solder-capped Cu pillar technologies leading to several concurrent advances in through-sil-

icon-via (TSV) technology, fine pitch bonding, die thickness reductions and pure Cu-Cu

interconnection technology [12]. 

 In thermosonic bonding, the gridded array of bumps are electroplated onto the IC.

The IC is then flipped such that the bumps are aligned downwards onto their respective sub-

strate traces or pads. The bond head has an ultrasonic transducer applying transversal vibra-

tion to collectively form ultrasonic welds at all bump to substrate interfaces. This type is
4
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Fig. 1-4. (a) Typical C4 flip chip process; (b) under bump metallurgy (UBM) of a solder bump; (c) Cross 

sectional view of a bonded C4 joint [13].

(a)

(b) (c)

 

}
Chip

Solder Bump

PadPassivation Layer

Oxidation Layer

Wetting Layer
Adhesive Layer

Must Have Perfect
Alignment
5



not used very often and limited to a relatively small number of I/Os. However, it allows for

high throughputs. 

 1.1.2.1. Thermo-Compression Bonding

Thermo-compression bonding has been shown to be applied with materials other

than just solder such as Au, Ag, and more currently of interest, solder-capped Cu pillar and

Cu-Cu pillar bonding. Au and Ag TCB bonds are usually bonded in stud bump form. A

comparison of the other two main forms of TCB bumps and their formation processes are

shown in Fig. 1-5. TCB differs from thermosonic bonding through its heating mechanisms

and application of forces. TCB also involves flipping the bumped/pillared chip, but applies

a downwards pressure with concurrent heating to bond all I/Os at once (Fig. 1-6). In many

cases, the underfill is applied prior to bonding, rather than after as seen in Fig. 1-4. The

formation
Stud bump

(a) (b)

(c)

50 μm

Wafer with Trace

Photoresist (PR)

Fig. 1-5. (a) Stud bump formation process [6]; (b) SEM of a Au stud bump [14]; (c) Simplified process flow 

of solder capped Cu-pillar formation; (d) Cu-pillar array [15]

UBM and seed layers

applied

PR exposure
and stripping

Cu and Solder
Electroplating

Etching + Solder
Reflow

(d)

20 μm

tail breaks
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Fig. 1-6. Typical TCB process flow. (a) non-conductive film (NCF) is applied to the chip or non-conductive 

paste (NCP) is applied to the substrate; (c) chip is flipped and heated (c) bond head actuates downwards, 

curing the underfill and bonding the joints; (d) device packaged. Adapted from [16].
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underfill improves reliability of flip chip packages through means such as mechanical rein-

forcement, induced stress relief and environmental protection. An Apple A10 processor

bonded using TCB processes is shown in Fig.1-7.

There are several advantages to using TCB over wire bonding and they are summarized in

Table 1-1.

Due to the nature of the TCB process, there is great complexity associated with

forming robust, reliable bonds. The concurrent application of heat and force onto a package

with low pitched, high density pillar array(s) requires several process parameters to be opti-

mized at once. Temperatures associated with TCB are typically beyond 200 °C ranging

from 240 °C to 300 °C [19,20,21,22]. Forces are also crucial as under-compression can

result incomplete bond formation and over-compression can result in issues such as solder

leakage. There are a few important process-related features that could be detrimental to reli-

able bonding such as [23,24]:

1. Substrate and/or die warpage due to coefficient of thermal expansion (CTE) mis-

match

2. Substrate and/or chip misalignment when bonding

3. Parallelism issues (tilt angle between normals of any of the package components)

Fig. 1-7. An example product packaged via solder-capped Cu pillar TCB. The top-middle image indicates 

the location of the cross sectional cut of Apple’s A10 processor with magnified images on left, right and 

bottom. Reproduced from [17,18]. 
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4. Force variation during bonding (i.e. due to non-uniformity across pillar/bump

heights)

5. Thermal variation during bonding (i.e. due to previous four factors) 

Chip misalignment can result in incomplete joint formation due to reduction of thermally

conductive pathways. If sufficient heat does not reach the bonding sites, the bonds may not

have sufficient process temperatures to bond, resulting in incomplete or partial bonds. As

the contact area between misaligned interconnects prior to bonding is reduced, there is a

greater chance of Other issues related to TCB include underfill leakage, process compati-

bility issues with solder mount technology (SMT), cracking of dies during handling and

last, but not least, bonding process windows that are currently too long for throughputs

required by high volume applications.

Other variations or applications of TCB include Chip-on-Board (COB), Chip-to-Wafer

(C2W) and Wafer-to-Wafer (W2W) bonding [25,26].

Table 1-1. General comparison of wire bonding and TCB technologies [10,23,24]

Wire Bonding TCB

Advantages

•Flexibility in positioning of I/Os and 
adaptive to different package types, 
orientations and die sizes

•Very inexpensive (≈ $0.0075 per bond)

•Highly established understanding of 
reliability and concerns

•Thoroughly understood process con-
trols and infrastructure

•Space saving: I/Os contained within 
chip perimeter (area array)

•More I/Os: several thousand common

•Bonding: gang or collective; all I/Os 
bonded at once

•Electrically sounder: better distribution 
of power and ground and reduced para-
sitic inductance 

•Significant higher improvements in 
speed/bandwidth applications

•Better thermal management: typically, 
no encapsulation of chip

•Shorter joints: I/O lengths comparable 
to diameters of wires

Disadvantages

•Number of I/Os limited to few 1000 
max

•Bonding: sequential; each I/O bonded 
one at a time

•Limited-to-nil flexibility in I/O position 
(accurate bonding placement crucial

•Price: costly (≈ $0.025 per bond)

•Reliability and post-bonding testing 
methods currently expensive or 
destructive
9



 1.1.2.2. Reliability/Quality Testing Methods

Wire bonding has well established bond quality tests conducted through destructive means

such as shear testing (Fig. 1-8a), pull testing (Fig. 1-8b), or cross-sectioning (Fig 1-7). Reli-

ability tests include humidity testing and high temperature storage (HTS) aging [27]. On

the other hand, standard testing methods offered through organizations such as JEDEC, are

still in development for flip chip TCB as process conditions can vary greatly. Considering

the smaller form factors associated with TCB in contrast to wire bonding, as well as nature

of the packages themselves having high densities of I/Os, it is difficult to effectively con-

duct quality and reliability testing. A solution to this could be through non-destructive test-

ing methods. Non-destructive testing methods leave the original package intact without any

exposure to external stresses or environmental factors, rendering them useful after testing.

Non-destructive methods of evaluating post-process residual stress using Raman spectros-

copy is discussed [29] and strain distribution using moiré interferometry in [12]. Other

post-process methods are also used but are limited in their inability to provide real-time

information of stress and thermal distribution during TCB processes. A technique of mea-

suring temperatures using thermocouples have been demonstrated by Toray Engineering in

[30], by Kulicke and Soffa Industries in [26], Daily et al., in [31], and Jeong et al. in [32].

While these are good for approximations of layer temperatures in a flip chip package, they

are unable to provide a complete picture of the interfacial bonding temperatures. Geometric

constraints such as very short die to die thicknesses, known as bond lines, limit the use of

Fig. 1-8. Computerized representation of destructive (a) shear test and (b) pull test. Reproduced from [28]. 

(a) (b)
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thermocouples. All in all, these methods can be costly, time-intensive, inaccurate and can

lead to misleading results. A possible alternative to these methods is the use of microsen-

sors placed close to bonding sites to provide real time in-situ temperatures. A prototype

microsensor array has been developed by a previous MASc. student in our group, Ari Laor,

based on previous wire bonding microsensor designs as discussed in [2,23,33, 34,35]. Real

time in-situ microsensors were also recently used by Bex et al. but is limited to three sensor

measurements per test [36]. 

1.1.3 Future Trends of TCB

TCB has significantly developed over the past few decades shifting towards higher

dimensional integration of IC chips. Packages are becoming denser with IC’s having higher

I/O counts through reduced pillar and pitch size reductions. It is common to find chip sizes

greater than 10 mm × 10 mm, with sizes emerging in 2017 as large as 15 mm × 15 mm

[37,38,39,40,41]. IC’s are being stacked alongside and/or on top of multiple other IC’s

forming three-dimensional (3D) IC packages as seen in Fig. 1-9. It is predicted that by the

year 2020, there could be up to 50,000 I/Os per IC [42]. With process throughput being a

major bottle-neck of mass TCB adoption, chip stack packages produced via collective

Fig. 1-9. 3D IC package fabricated through Amkor’s Double-POSSOM™ TCB technology [42]. Solder-

capped Cu pillars are typically denoted as C2 bumps.
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bonding processes (Fig. 1-10) have gained interest. Through this form of TCB, ICs are first

stacked on top of each other using low forces and temperatures. Once completed, the entire

stack is bonded at once, having the potential to significantly improve throughput. These 3D

integrated packages are becoming more popular due to form factor advantages through

reduced lateral area footprints, and electrical advantages via interconnection length reduc-

tion. Power savings, reduced parasitics and noise, and faster performance capabilities make

this type of stacking a logical direction for the microelectronic packaging industry. 

1.2 CMOS-Based Microsensor Array

A thorough description of theories, development, and operation of the microsensor

array chip is provided in [23]. The microsensor array is a gridded array of stress and tem-

perature sensors designed for a multitude of possible applications during TCB processes.

The sensor chip was fabricated through a complementary metal oxide semiconductor

(CMOS) technology, with both types of sensors deposited as n+ and p+ diffusions during

Fig. 1-10. Collective bonding process introduced by Toray in [30,43]. A four-layer die stack package has 

been produced through this process (middle-left). Image from [42]. 
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a single-stage process. 95 μm square bond pads are placed in an 8 × 8 array with each bond

pad localized by one of an X, Y or Z-orientated stress sensors and a resistive temperature

detector (RTD) element. The sensor chip also has an on-board multiplexer, controlling the

logic flow and pad switching sequence while reading measurements. The sensor chip was

die-attached into a ceramic dual in-line package (CerDIP) and wire bonded using 25 μm 4N

Au wire for electrical connectivity. For earlier stage experimentation, the bond pads were

stud bumped with Au and coined.

1.2.1 Force Sensors

Each of the 64 stress sensors are arranged and connected in a Wheatstone bridge

configuration in order to exploit the piezoresistive properties of the diffusions and measure

stresses induced by force applications during TCB (Figs. 1-11a and 1-11b). Each Wheat-

stone bridge circuit (Fig. 1-11c) measures an excitation voltage caused by the compression

or expansion of the piezoresistive force elements experiencing resistance changes. These

resistance changes cause voltage changes which can then be converted to a force using a

conversion factor extracted during calibration as follows:

(1-1)

where St is the amplified signal force sensitivity, ΔV is the measured excitation voltage in

[V], and F, is the force applied in [N] that caused the excitation voltage. With the data acqui-

sition system set to operate the sensor chip at a bias voltage of 3.3 V alongside a force signal

amplifier of 250×, normalization must be implemented as:

(1-2)

The Z-stress sensor calibration procedure described in [23] resulted in St to equal

1.149 V/N ± 48.5 mV/N. This corresponds to a SN of 1.39 mV/V/N ± 58 μV/V/N. Since the

signals are captured on a transient basis, the time-dependence of the Z force experienced is

calculated as:

St
V
F

-------=

SN

St

3.3V
----------- 1

250
---------=
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(1-3)

where i is the pad index ranging from 1 to 64, Fi(t) and Vi(t) are the forces and excitation

voltages experienced at time t, respectively, and Vi(t0) is the initial, reference voltage when

measurement begins. The ability of a sensor to detect X, Y or Z force changes, depends on

the orientation of each Wheatstone bridge circuit and its applied dopant diffusion. 

1.2.2 RTD Sensors

Top metal Al is wound around each bond pad in a serpentine shape (Figs. 1-11d and

1-11e) and wired in a Kelvin probe or four-wire measurement setup (Fig. 1-11f). As a bias

DC current is applied to the terminals of each RTD element, resistance changes are mea-

sured as the temperatures experienced by the element are varied. These sensors provide

absolute temperature measurements. While RTDs typically have the poorest response time

of temperature measurement devices such as thermistors or thermocouples, the micron-

sized RTDs used in our sensor chip exhibit virtually negligible response delays, in the range

of micro-seconds. Due to the low mass of each micro-RTD sensor in the sensor chip, the

localized temperature rises around the bonding sites can be readily captured, without a sig-

nificant delay in response time. Therefore, these types of temperature sensors are better

suited for our measurement purposes. Each sensor provides an average of the temperature

experienced around the bond pad periphery within the perimeter of the RTD area. The

RTDs were calibrated using customized minioven racks discussed in [44,45]. Starting with

the relationship of the temperature coefficient of resistance α, and Ohm’s law, V = IR, the

formulation for the temperature experienced by each RTD at time t, is as follows:

(1-4)

here Vi(T,t) is the excitation voltage read for a pad index at a given time, I is the bias current

applied, Ri(T,t) is the resistance read, and RT,ref is the calibrated reference resistance at a

predefined temperature. The time-dependant temperature can be then be re-formulated and

simplified as:

Fi t 
Vi t 

St
----------------

Vi t  Vi t0 –

St
------------------------------= =

Vi T t 

I
------------------ Ri= T t  Ri TRef  1 Tref Ti t  Tref– + =
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(1-5)

For a reference temperature of 50 °C, α50 °C is 0.00277 1/°C and R50 °C is 186.94 Ω ±

0.89 Ω. 

Upon assembly and characterization of sensor chips, TCB emulation events were con-

ducted using a TCB bonder, available at the K&S Fort Washington R&D facility. Real-time

responses were recorded. Thermo-mechanical features such as warpage and thermal expan-

sion were identified [23]. Further thermal analysis was conducted, priming the results for a

comparative finite element (FE) verification study. 
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1.3 Finite Element Methods

Finite element methods are first and foremost a means to numerically solve mathe-

matical formulations describing the governing physics of a system of interest. These math-

ematical descriptions are usually constructed in the form of partial differential equations

(PDEs), most of which are impossible to solve analytically [46]. They are tools crucial to

the engineering design process for benefits such as cost savings, expeditious turnover rates

and ease of access. 

The foundation of original finite element methods (FEM) or analysis (FEA) can be

attributed to Ritz for his work of using approximation methods to solve the mechanics of

deformable solids, in 1909 [47]. Development continued with Courant in 1943, who

expanded on Ritz’s work, followed by many others such as Turner [48], Szmelter [49], and

Clough [50], who was also the first to coin the term “finite element method”. The abrupt

development of “modern day” computers, alongside drive for FEM in civil and aircraft

applications in the 1960s, led to vast developments in FEM. FEA software for structural

analysis was first publicized and released in collaboration with National Aeronautics and

Space Administration (NASA), aptly naming it NASTRAN [51,52]. About $701 million

was saved by NASA between 1971 to 1984 from the sole introduction of this software [53].

FEM applications were eventually generalized to be applied to a variety of engineering

problems involving heat transfer, fluid dynamics, and electromagnetics-related physics.

Many software packages are now available for commercial and open access use including:

ANSYS, ABAQUS, COMSOL, HyperMesh, LS-DYNA and COSMOS [47,54].

1.3.1 Model Formulation Process

The process of conducting FEA for a given physical phenomena can be divided into

5 main steps: physical problem definition, mathematical modelling assumptions, FE model

parameters, error analysis and post-processing of results. Additional steps include analysis

refining, mathematical model improvement, re-assessment of physical problem, model

design improvement or optimization and refinement of mesh or FE model parameters

[47,51,52,54]. A process flow of these 10 steps is provided in Fig. 1-12. The most important
16



step, prior to any actual modelling, is the problem definition. This must be thoroughly

understood to ensure all possible factors are accounted for. This could include identifying

the appropriate physics involved, any coupled-interactions between these physics, physical

constraints, materials of components, and geometric specifications. Due to the complexity

of many structures, several assumptions may need to be made to simplify mathematical

modelling. Typically, one or more of the following simplifications are made:

Physical problem

Mathematical model
Governed by differential equations
Assumptions on:

• Geometry
• Kinematics
• Material law
• Loading
• Boundary conditions, etc...

Finite element solution
Choice of:

• Finite elements
• Mesh density
• Solution parameters

Representation of
• Loading
• Boundary Conditions, etc...

Assessment of accuracy of finite ele-
ment solution of mathematical model

Interpretation of results Refine analysis

Design improvements
Structural optimization

Refine mesh, 
solution 

parameters, 
etc...

Improve 
mathematical 

model

Change of 
physical 
problem

Fig. 1-12. General FEA process used in engineering analysis. Reproduced from [51].
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• Partial component modelling (most important/relevant components only) 
[2,7,8,16,51 54]

• Symmetry modelling (fractional slice of full model used) [2, 54] 

• Geometric simplification (minor components merged into larger domains) 
[55,56,57]

• Material property simplification (temperature-dependant to room temperature val-
ues) [2,16,33,58]

Once the problem has been clearly defined and any important mathematical assumptions

have been made, the parameters can be inputted into the FEA software. Here, the geometry

is constructed, material parameters are inputted and assigned to components, boundary

conditions are implemented, study conditions are applied and finally, mesh is applied. The

mesh is crucial for accuracy, convergence and is an important factor in computation time.

Meshing refers to the discretization of components into several elements with nodes. This

is where the numerical methods, built on those developed by Ritz et al., play a role in the

solution of the governing PDEs. Solutions to the mathematical equations governing the

physics of the system are numerically approximated through linear combinations of basis

functions. These equations are applied to each element. The approximations to these equa-

tions are made by combining the values assigned to each variable at each node with the

basis functions applied to each element. Therefore, the greater the number of nodes, the

closer the approximations get to the actual solution. The software assembles the localized

basis functions at each element and iteratively solves them until a converged, continuous

solution is resolved. Several errors could arise in this calculation and therefore, special care

should be taken when analyzing post-processed results. The aforementioned additional

steps are conducted if the accuracy of the results is not within acceptable limits. 

1.3.2 Heat Transfer Analysis

Heat transfer is the motion of thermal energy caused by thermal gradients within or

between media. These temperature differences result in three main modes of heat transfer:

1. Conduction - heat transfer within a medium; thermal energy is transferred through

collisions or vibrations in fluids and solids

2. Convection - heat transfer between a surface and a fluid in motion
18



3. Radiation - heat transfer via electromagnetic waves (photons produced by scatter-

ing, emission or absorption)

In TCB, the dominant mode of heat transfer is conduction. Conduction is fundamental to

the process as heat from the bond head propagates throughout the solid components to the

joints, in order to form bonds. Ambient (air) convection plays a role in package and bond

head cooling as heat reaches the surfaces of the components and should be considered in

all TCB heat transfer analyses [12, 32]. 

1.3.3 Thermal Contact Resistance

Two solid objects in thermal contact with each other typically experience a temper-

ature drop across their interfacial boundary. As heat is conducted from one object to the

other, resistance is experienced at the boundary, resulting in a drop in heat flow, and corre-

spondingly, a drop in temperature. There are several factors that be attributed to affecting

thermal conductance such as surface topography, material microhardness, contact pressure

and interstitial fluid properties [59,60,61,62]. An example of resistance could be due to

pockets of interstitial fluid that are found between the surfaces of each boundary as thermal

contact is made (Fig. 1-13). These pockets can exhibit poor thermal conductivity and can

reduce heat flow across their interfacial boundary. On the microscopic level, every surface,

regardless of how smooth or “planar” it may optically appear, can have peaks and troughs

masp,u

masp,l

Solid A

Solid B

Gap with Air/Fluid

σasp,u

σasp,l

Fig. 1-13.Solid A in contact with Solid B. The peaks and troughs of each solid are called surface asperities. 

“m” and “σ” are the root mean square (RMS) slopes and average heights of the asperities, accordingly. “u” 

and “l” denote upper and lower boundaries.
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called surface asperities. The study of these types of surfaces is called surface microtopog-

raphy. Ignoring the effects of thermal friction, the mathematical relation to describe the

heat flux across the upper boundary is

(1-6)

and, 

(1-7)

.for the lower boundary. The thermal conductance at the interface h, is the summation of

three forms of conductances: the constriction conductance, the gap conductance and radia-

tive conductance. Conductance describes the quantity of heat transferred through a surface

of area A, with thickness th, for a given unit of time assuming there is a temperature differ-

ence between the two objects. For our purposes, the key terms are the constriction conduc-

tance, hc and gap conductance, hg. These are the conductances that corresponds to

conductive flow between asperity-asperity contacts, and the conductive flow across the air

gaps between thermal contacts. The most used and widely accepted formulation for thermal

contact conductance considering the surface roughness model is the Cooper-Mikic-Yova-

novich (CMY) correlation,

(1-8)

which includes the sub-contrary mean of thermal conductivity as kcontact in W/m•K, contact

pressure p, in Pa, and Vicker's microhardness Hc, in Pa [62,63,64]. 

With respect to TCB, thermal contact is typically made between the ICs and their

substrates, during bonding processes. As the chip is lowered and pressed down onto the

receiving traces or pads, poor conductive heat flow could arise in the earliest stages of

bonding. This is especially true for solder-capped Cu pillar processes where good thermal

contact is required for reflow. Thermal contact resistances could also be observed between

other components, such as the bond head assembly or between other non-adhered compo-

nents in the package. These resistances could consequently slow down processes and lead

nl kl Tl– – h Tu Tl– –=

nu ku Tu– – h Tl Tu– –=

hc 1.25kcontact

masp

asp
------------ p

Hc
------ 
  0.95

=
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to reduced throughput. Consequently, thermal contact resistances are important to imple-

ment in FEA of TCB processes to observe their effects and understand their role in thermal

processes. 

1.3.4 Current FE Thermal Analyses in Literature

 1.3.4.1. Two-Dimensional Transient FE Model

Thermal modelling analysis is not new to the field of microelectronic packaging.

Nor is it new to the area of flip chip TCB either [66, 67]. Asahi et al. [30] modelled a four-

layer die stack package for collective bonding TCB with thermocouples attached to NCF

layers using transient thermal analysis. They employed numerical methods to measure the

simulated temperatures at the locations of the thermocouples in their test package (Fig. 1-

14). To extract more from their model, they reduced the thermal conductivity of the stage

from 1.7 W/m•K to 0.3 W/m•K, making it significantly more insulative. The result was that

the simulated temperature signals between the two bondlines reduced the temperature dif-

ference between the two layers, reducing vertical thermal gradients within the stack. While

this paper is unique for its insight on the effects of stage conductivity, it does not provide a

complete thermal analysis. It is limited in its model by the several assumptions made: the

analysis is two-dimensional, several components are missing such as pillars and vias, lat-

eral thermal distributions are not presented and the boundary condition on the heater is

unrealistic (step function). While these assumptions are acceptable for this specific analy-

sis, many important features are not implemented in this model. This model was extended

in 2016 to observe the effects of die thicknesses and air cooling on lateral thermal distribu-

Thermocouple

Calculation
points 

Stage temperature 80 ºC

280 ºC

Boundary Condition

Fig. 1-14. Thermocouple attachment locations in experiment (left) and simplified model with two layer 

stack used in simulation model (right) [30].
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tions across the substrate, but did not further address any other limitations [65].

 1.3.4.2. Three-Dimensional Transient FE Model

Another interesting study which addresses some of these neglections was con-

ducted by Jeong, Choi et al. [32]. They used experimental and FE methods optimize pro-

cess bonding temperatures. Using a flip chip very fine ball grid array (fcVFBGA) test

vehicle with a 11 mm × 11 mm × 100 μm chip attached as a test vehicle, temperatures were

measured in the NCP layer close to periphery pillar locations indicated in Fig. 1-15 Once

again, the use of thermocouple measurements in the bondline layer was used to approxi-

mate bonding temperatures. FE models were developed to verify these response using vari-

ations of component simplifications denoted options #1-4. These models are significant

Fig. 1-15.  (a) The experimental setup and location of thermocouple attached (top); (b) Nominal heater, 

experimental and simulated thermal responses; (c) magnified responses. Options #1-3 are the results of the 

varied homogenized layer trials tested in the simulated. For example, option # 1 homogenizes the pillars, 

solder and NCP material as one layer with effective material properties. Option # 4 is a complete model 

with all components and materials modelled independently [32].

(a)

(b)

(c)
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because they are three-dimensional, include various configurations of simulation geome-

tries ranging from over-simplified to thoroughly complete and show reasonably good

match with experimental responses. They are an improvement over the previous model dis-

cussed, drawing a more complete thermal analysis of bonding in TCB. They conclude that

thermal control of die, bondline and substrate components are key to optimized bonding

processes. Once again, these models are limited due to lack of insight on lateral thermal dis-

tributions, effects of thermal contact resistances and most importantly, pillar temperature

variation. Anisotropic material properties for the substrate, which are important due to their

significantly different in-plane thermal conductivities, are also assumed negligible. The

experimental measurements were only taken at one location and this thermocouple was

embedded in the NCP at the die periphery. 

 1.3.4.3. Three-Dimensional Transient Thermal Model with Contact Resistance

The study of the greatest interest and relevance to this thesis was recently published

by Bex. et al. [36]. One of the goals of this paper was to measure interfacial bonding tem-

peratures and compare this to the results of FE models to better understand heat transfer

mechanisms during TCB reflow processes. Using RTDs in a similar manner to those men-

tioned previously, in-situ thermal measurements were measured during experimental TCB

processes. A total of three RTDs were situated at the locations indicated in Figs. 1-16a, 1-

16b and 1-16c. Two main types of experimental TCB procedures were conducted to extract

process temperatures: one which measured chip and substrate temperatures (Fig. 1-16b)

and another which measured lateral temperature distribution across the substrate (Fig. 1-

16c). The test vehicles also had about 128 microbumps that were bonded during these

experimental TCB processes. The 3D thermal transient model responses deviated from the

experimental responses in terms of differences in temperatures measured. Nonetheless, the

models provided further insight on thermal variation due to I/O orientations and counts as

well as vertical and lateral distribution across substrate and chips. Areas with no I/Os

resulted in colder regions than those with I/Os due to heat sink effects caused by the Si. A

temperature difference between centers and corners of the PTCP chips is also attributed to

this effect. Thermal contact resistance was accounted for between bottom heater and
23



bottom chuck. It is unclear how the formulation was implemented, but it is believed that

predefined default settings were used in the FEA software, MSC Mark™.

Of the three FEA types discussed, this is the most relevant to this thesis. The work of this

thesis intends to help close the gap to form a more complete understanding of thermal flow

in TCB processes by adding on to studies such as these in a thorough, methodological man-

ner. 

1.4 Goal of this Thesis

In general, the goal is to better understand thermal distribution and heat transfer mecha-

nisms within TCB processes. Post-processing thermal responses measured via the micro-

sensor array during TCB emulations will be combined with the use of FE models. This

combination is to be used to observe and identify any factors affecting uniform heat flow

(a)

(b)

(c)

(e)

(d)

Fig. 1-16.  (a) The locations of the three RTD sensors used (magenta circles); (b) the first and (c) second 

experimental TCB procedure conducted; (d) Simulated thermal responses from FE model of experimental 

(b); (e) FE model design [36]. PTCO is Packaging Test Chip Version O and PTCP is version P [36].

RTD
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during TCB processes as well as suggest any recommendations to improve thermal unifor-

mity. 

In particular, the objectives of this thesis are:

• To develop a FE model that fits the experimental data

• To identify model parameters or components that significantly affect thermal uni-
formity or rate of heat flow

• To develop an advanced FE model based on surface roughness thermal contact 
resistance theories

• To quantify any thermal variation data and analyze the causes

• To learn which design options engineers have to improve TCB for stacks of large 
chips with many bumps

• To provide a process for numerical-experimental analyses that can be extended for 
package and process-specific applications
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2 Sensor Chip: Temperature Signal Analysis

This Chapter provides an overview of the experimental procedure conducted, and

provides the results extracted from post-processing of the thermal measurements. It is

included to show the pre-FEA work from which values were derived and later used in the

development of FE models. It is important to illustrate and clearly define the steps taken in

order to effectively reduce the physical problem into more understandable domains and

ensure accuracy of the models. Moreover, the inclusion of these steps is intended to provide

readers the necessary background to replicate the FE models, in hopes of enhancing their

FEA abilities, and expediting further development of TCB processes. All post-processing

of experimental data are conducted in MATLAB®.

The research reported in this Chapter has been published in parts in Microelectronic Reli-

ability [34] and in the Proceedings of 67th IEEE Electronics Components and Technology

Conference [16].

2.1 TCB Experimental Setup

The experimental procedure of focus in this study is an emulated TCB process con-

ducted using a K&S TCB bonder. Since bonding is not a focus of this study and did not

occur in our experimental procedure, we are only partially replicating the TCB process.

Furthermore, the IC (sensor chip) with the bumps is attached to the substrate facing

upwards, whereas it would typically be the flipped-chip bonded downwards in the actual

process. Therefore, this is an inverted TCB emulation. Nonetheless, the procedure can pro-

vide representative measurements of in-situ temperatures experienced during similar TCB

processes, particularly in the case of Au stud bump bonding. 

The full experimental procedure is illustrated in Fig. 2-1. During this procedure, a

square prime Si die was used distribute uniform pressure amongst the bumps. The TCB
26
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Fig. 2-1.  (a) Bond head picks up the pressure plate and all components are heated to 50 °C. Measurement 

begins; (b) bond head aligns the pressure plate with the bumps and moves downward; (c) a force and 

temperature ramp is applied and held steady; (d) the bond head lifts off, cools and measurement ends; (e) 

bond head thermal profile as measured. HTS and HTW denote high temperature wire and solder, 

respectively. DAQ denotes the data acquisition system.

(a)

(b)

(c)

(d)

(e)

Bond Head Assembly

Pressure 

Coined Au Bumps
Sensor Chip
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Macor® HTS
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}
Plate

Lateral Translation

Vertical Translation
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(a), (b) (c) (d)
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bonder picked up and redundantly flipped this die, preheating it to a steady temperature of

50 °C. The substrate assembly was also held steady at 50 °C and the stage remains at this

temperature throughout the duration of the trial. The DAQ powered the sensor chip and

began recording the measurements. After the pressure plate was aligned with the bump

array area using the bonder’s vision system, the bond head applied a nominal ramp of

350 °C/s, to reach a steady “bonding” temperature of 200 °C from 50 °C. While, this ther-

mal ramp was applied, a 80 N force profile was also applied. These process conditions were

held for up to 3 s prior to lift off. A three-factor factorial study was conducted by varying

forces applied, bond head heating rates and nominal “bonding” temperatures. This resulted

in twelve total trials conducted. However, several process issues, such as excessive tilt and

measurement faults, resulted in responses inadequate for thermal transient analysis. For

example, excessive tilt lead to non-compliant contact where many bumps either lacked con-

tact or experienced non-uniform force distribution. Consequently, temperature signals from

these types of trials were insufficient and inaccurate for this particular study. Therefore,

only the responses from the final trial are considered in the remainder of this thesis. Due to

unforeseen constraints, these trials were unable to be repeated at the K&S, Fort Washington

R&D facility.

The raw RTD signals were converted into temperatures using Eqn. 1-5, via the algorithm

in Appendix A. The measured RTD responses from the last trial conducted could be divided

into four main regions of interest as indicated in Fig. 2-2.

These four regions/points are denoted the following:

1. MFT - Maximum Final Temperatures

2. MHR - Maximum Heating Rates

3. FTRS - Final Third Region Slopes

4. KP - Knee Point

Additional regions are indicated for the bond head profile including the time until ramp

Δtsteady, ramp duration Δtramp, duration of bond head press Δtpress, and lift off/cooling time

Δtcool. 
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2.2 Simple Extractions: MFT, MHR and FTRS

The MFT is simply the mean of the highest temperatures experienced by each RTD

sensor. Ideally, this temperature should be as close to the nominal temperature as possible.

If processes can be optimized to reduce the temperature difference between set process

temperatures and IC temperatures, the set temperatures can possibly be reduced. In turn,

this would improve throughput and reduce power consumption in TCB processes. The

MHR is the average of the maximum thermal rates experienced during ramping (1st Third).

The average MHR of all signals can be defined as:

(2-1)

As seen in Eqn. 1-13, the heating rate is inversely proportional to the specific heat capacity

Cp, and proportional to the thermal conductivity k. The rapid heating of the RTD sensors

Δtsteady Δtramp Δtpress Δtcool

2. MHR

1. MFT

3. FTRS
{4. KP

1st Third 2nd Third  FinalThird

ΔtBHRTD ΔtBHKP

Fig. 2-2.  Measured experimental RTD signals and measured bond head profile. The thirds indicated on the 

bottom right are arbitrary divisions of the thermal response from ramping to the MFT region. 

MHR

td
dT

i max
i 1=

n


 
 
 
 
 

n
------------------------------------------
29



can be attributed to the high conductivities and low heat capacities of the bond head com-

ponents, pressure plate and Au bumps. Finally, the FTRS is the average of the linearly inter-

polated slopes of each signal between 8.5 s and 9.5 s. The generalized code for rate

calculations is in Appendix A. Table 2-1 summarizes the results from these calculations.

The values for the temporal divisions in Fig. 2-2 are extracted as follows:

1.  s

2.  s

3.  s

4.  s

These compose the ≈ 10 s total recording time. The RTD measurements and bond head pro-

file are also analyzed to observe thermal delays and features that could be relevant to TCB

processes. The measured (calculated) bond head heating rate is 348 °C/s. The thermal delay

between the start of the bond head ramp and the start of the RTD ramp  is about

230 ms, indicating it took about a quarter of second before heat from the bond head reached

the sensor chip. This time could be an important parameter in TCB processes, particularly

for stacked die packages as throughput can be improved by reducing the required time to

reach process temperatures. Typically, faster higher ramping rates, reduced die thicknesses

and material improvements are being implemented to reduce this time. 

tsteady 6.45=

tramp 7.34 6.45–  0.89= =

tpress 9.59 7.34–  2.25= =

tcool 9.99 7.34–  0.40= =

Table 2-1. Summary of experimental response quantifications

Response Feature Mean Standard Deviation Min Max Range

MFT [°C] 147.47 3.20 140.54 152.54 12.0

MFT Times [s] 9.49 0.17 9.09 9.6 0.51

MHR [°C/s] 92.06 6.91 80.82 108.1 27.27

MHR Times [s] 7.06 0.03 6.98 7.1 0.12

FTRS [°C/s] 7.94 2.55 2.66 12.76 10.1

tBHRTD
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2.3 Knee Point Region Extraction

An additional region of interest is the knee point (KP) region. The KP is defined as

the point where the rapid primary ramping region slows into a secondary, steadier-ramping

region. Physically, this region is due to thermal saturation of heat from the bond head as the

heat is rapidly drawn down through the sensor chip and substrate assembly. Initially, the

low heat capacities and high thermal conductivities of the bond head, pressure plate, sensor

chip, and Au bumps lead to swift temperature rises. As this heat is further drawn down into

the substrate assembly with components that have very low thermal conductivities and high

heat capacities, the heating rate slows. Thus, a sluggish rise in temperature is experienced

after this transition zone or knee point. The generalized knee point algorithm for a curve is

provided in Appendix B.

The procedure to calculate the knee point temperature and time starts by selecting

a starting point with a time situated reasonably before the KP region. This point initiates

the process by forming the first linear interpolation with the point to the right of it. Concur-

rently, a second linear interpolation is made with all of the points on the right of the first

point up to the end of the curve. Iteratively, one data point on the right is added to the first

linear interpolation while one on the outmost-left is removed from the second interpolation.

This is looped until an intersection occurs between the two slopes where the intersection

point defines the KP. An example of an intersection found during this procedure is illus-

trated in Fig. 2-3. Table 2-2 summarizes the result of the KP extractions. 

The temperatures of the RTDs reached 59.3% of the mean MFT at the mean MHR point,

and 83% of the mean MFT at the mean KP. This tells us that 1.14 s after the bond head

Table 2-2. Summary of KP calculations.

KP Feature Mean Standard Deviation Min Max Range

Knee Temperature 
[°C]

122.15 3.63 113.43 129.30 15.87

Knee Temperature 
Times [s]

7.60 0.09 7.45 7.79 0.34

 [s] 1.14 s 0.09 0.99 1.34 0.34tBHKP
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starts ramping to 200 °C, the sensor chip is heavily saturated with heat energy. It also tells

us that most of the heating occurs during this ramp, as the temperature of the sensor chip

only rises a further 17% in the last 2 s of the press. The KP is important because it charac-

terizes the heating curve by providing an approximation of when a heat energy saturation

point is reached and the corresponding temperature at this point. Processes can possibly be

optimized to reduce the time until the KP is reached while maximizing the temperature

reached at this point. This would produce a thermal profile that would more closely resem-

ble the shape of the nominal bond head profile. Hence, improvements can be made to the

throughput of TCB processes. 

2.4 Thermal Gradient Analysis

Thermal gradients describe the change of temperature over a distance, written in its

differential form along the x-direction, in Eqn. 1-8. For this case, the thermal gradient mag-

nitudes across the sensor chip surface are considered to determine the locations and times

Linear Interpolation # 1 Linear Interpolation # 2

Single Thermal Curve

KP Intersection

Fig. 2-3.  KP algorithm example plots; (a) The first two linear interpolations made; (b) The intersection 

point. Note: this algorithm continues until all points have been considered, even if the intersection has been 

reached.

(b)

(a)
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of the greatest thermal gradient magnitudes. The goal is to measure, observe and under-

stand what causes the temperature spread or range amongst the sensors.

The code implemented to determine the gradients and produce the following visuals is in

Appendix C. The sensor chip’s bump array area is arbitrarily divided, producing an XY

Cartesian plane where each sensor assumes a coordinate position (x,y) as seen in Fig. 2-4.

Bilinear interpolation techniques are then used to calculate the temperatures within the pre-

defined grid and then differentiated over distance to extract the thermal gradients in each x

and y directions. The magnitude of each gradient vector, assuming no changes in elevation

or height z, can be simply calculated as:

(2-2)

Figure. 2-5 captures thermal contours and gradients prior to ramping, at the MHR

region, at the maximum gradient experienced time, and at the MFT region. The top-right

corner of each quiver gradient plot indicates the location of the greatest thermal gradient

magnitude experienced. During prior experimental trials, the Au bump in this location

became overly deformed, remaining colder due to lack of contact with the pressure plate.

Therefore, this location always experienced the highest thermal gradient magnitude. 

Fig. 2-4.  Arbitrary division system overlaid on the bump array area. The X, Y and Z’s denote the locations 

of types of each force sensor at that location. The star signifies the origin. 
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Fig. 2-5.  Progression of thermal distribution at key locations (a) before ramping; (b) at the MHR time; (c) at 

the time of greatest gradient experienced; (d) end of press near MFT time. The middle column contains plots 

of contours at the times indicated in the first column. The third column contains the gradient quiver plots.

t = 6143 ms

Max Gradient:
6.79 °C/mm
Min Gradient:
3.25 °C/mm

t = 7103 ms 

(≈ MHR)

Max Gradient:
13.7 °C/mm
Min Gradient:
1.36 °C/mm

t = 7807 ms 

Max Gradient:
25.2 °C/mm
Min Gradient:
1.72 °C/mm

t = 9535 ms 

(≈ MFT)Max Gradient:
13.9 °C/mm
Min Gradient:
1.11 °C/mm

Max Gradient

Max Gradient

Max Gradient

Min. Gradient (d)

(b)

(a)

(c)
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The left-most and right-most regions of the contour and quiver plots show lower tempera-

tures while exhibiting relatively large thermal gradients. The left-most regions experienced

the following highest maximum gradients, measured up to 15.2 °C/mm. This is due to the

Si in the sensor chip around the bump array periphery drawing heat away from the RTDs.

The time of the maximum thermal gradient magnitude experienced is about 200 ms from

the mean KP point, 800 ms from the mean MHR time, and about 1.36 s from the beginning

of the bond head ramp. This time and thermal feature is particularly important when cou-

pled with mechanical effects due to thermal expansion. Thermal gradients result in non-

uniform strains which can further lead to reliability issues if these effects manifest as cracks

or voids. The ranges of RTD temperatures and maximum thermal gradient magnitudes are

shown in Fig. 2-6. 

2.5 Summary

The experimental thermal results of a temperature microsensor array subjected to

TCB emulation process is post-processed to analyze sensor surface temperatures, heating

rates, knee point regions, thermal gradients and bond head profile characterization. A mean

thermal delay of 230 ms is calculated between the start of the bond head ramp and the start

of the RTD ramps. The maximum final temperatures experienced is calculated to be 147.47

Fig. 2-6.  Transient curves of the thermal gradient magnitudes and temperature ranges between 6.1 s and 9.6 

s.

Fig. 2-5(a) Fig. 2-5(b) Fig. 2-5(c) Fig. 2-5(d)
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± 3.2 °C, about 53.5 °C lower than the set process temperature. The maximum heating rates

of the RTDs is 26.3% of the nominal heating rate, with a mean of 92.06 ± 6.91 °C/s, occur-

ring at 7.06 ± 0.03 s. At this time, 59.3% of the maximum final temperatures were reached.

The knee point, which occurs at 7.6 ± 0.09 s or about 500 ms after the maximum heating

rates, indicates that 83% of the maximum final temperatures is reached after about 1 s of

heating due to saturation of thermal energy. A maximum thermal gradient magnitude of

25.2 °C/mm is calculated to occur about 200 ms after the mean knee point. Throughout the

duration of the trial, the periphery RTD regions experienced greater thermal gradients due

to the sensor chip acting as a heat sink, effectively reducing the local temperatures around

each bump. This heat sink effect also causes the spread in the temperature signals. 
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3 Finite Element Modelling

This Chapter reports on FE modelling strategies, formulation, implementation and

post-processing of thermal transient 3D models. FE models are developed to investigate the

effects of material property parameters and component inclusions on thermal responses. An

iterative design of experiment (DOE) procedure to match FE models to experimental

results, presented in Chapter 2, is discussed. The effects of heater thickness and air content

in thermal contact resistance layers, on thermal responses, are investigated for the simple

thermal models. The effects of surface asperity slopes and mean heights are investigated

for the complex thermal model. Finally, both lateral and vertical thermal distributions

determined from the models, are presented. The following FE modelling work, including

all pre-processing, meshing, and post-processing was conducted in COMSOL Multiphysics

5.0®. The computer used to conduct the simulations has the following specifications:

1. Processor: Intel® Core™ i7-4770K CPU

2. Clock Speed: 3.50 GHz

3. Installed Memory: 32 GB (31.7 usable)

4. System type: 64-bit Operation System (Windows 7 Enterprise)

The research reported in this Chapter has been published in parts in the Proceedings of 67th

IEEE Electronics Components and Technology Conference [16] and Microelectronics

Reliability [34].

3.1 Strategy of Modelling

A sequential modelling process is employed to abide to the typical FEA process

procedure illustrated in Fig. 1-12. The key experimental responses of comparison are pro-

vided in Chapter 2. Using these responses, the goal is to match FE models to have good

agreement in terms of MFT, MHR, FTRS, and/or the KP. As discussed in Chapter 1, it is
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important to first simplify the physical problem in order to simplify the mathematical

models and hence, the computational complexity. To address this issue, the FE models can

be classified under one of two domains, each with a specific set of assumptions: simple

thermal and complex thermal. The chief difference between the two is the method of ther-

mal contact resistance (TCR) implementation between components in mechanical contact.

The remainder of the modelling process, in addition to model parameters such as material

properties and boundary conditions, is identical for both domains. The simple thermal TCR

implementation is discussed in Section 3.2.6, and Section 3.10 for the complex thermal

TCR. 

With respect to the remainder of the modelling plan, Fig. 3-1 illustrates the

sequence of steps and summarizes the assumptions made in the development of FE models,

for both domains. The iterative DOE procedure is described in Section 3.3. The physical

problem is resolved such that all components are assumed stationary and unified. The bond

head assembly is assumed to be initially in contact with the Au bumps on the sensor chip,

and any modelling of bond head translation is not included. During the preliminary math-

ematical modelling stage, a factorial variation of model geometries are simulated to under-

stand the effects that each component has on the thermal responses. An overview of this

Table 3-1. Factorial models to study effects of component additions. A total of 22 models resulted from this 
study ranging from M0 to M6f. The × denotes the components included for each model [16].

Model # / Components M0 M1 M2a M2b M3a . . . . M6f

Base Components: Bond Head Assem-
bly, Air Gap, Sensor Chip

× × × × × . . . . ×

Air Holes in Bond Head and Place Tool × × . . . . ×

Bumps × × . . . . ×

TCR Layers (Bond Head/Place Tool and 
Place Tool/Pressure Plate)

× . . . ×

Bumps + TCR Layers (Pressure 
Plate/Bumps)

. . . ×

Substrate . ×

Die Attach ×
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factorial study is summarized in Table 3-1. Starting from the base model M0, components

are added sequentially, isolating the effects of each variation on any of the four response

features of interest (MHR, MFT, etc...). Important findings from this study is discussed

Physical problem: 
emulated TCB procedure

Finite element solution
Software: 

COMSOL Multiphysics 5.0® 
• Mesh density: initially 

coarse
• Solution parameters: time 

interval, mesh element size

Assessment of accuracy of finite ele-
ment solution of mathematical models:
Solution convergence data (in software)

Interpretation of results:
Thermal response analysis 
(post-process algorithms 

for T(x,y,z,t))

Iterative DOE 
Procedure

FE temperatures sig-
nificantly deviate 

from experimental?

Improve 
mathematical 

model

Mathematical model:
• Geometry: 3D; partial com-

ponents of bonder, full compo-
nents of sensor and assembly
• Kinematics: all components 

stationary 
• Material law: room-temper-

ature values; isotropic materials
• BCs: transient thermal pro-

files on bond head and under 
stage; ambient air convection

Post-thermal 
analysis:
Thermal 

distribution

Refine mesh, 
solution 

parameters, 

Yes

No

Parametric 
Analyses

Next phase 
of modelling 

plan

Fig. 3-1. FEA development modelling plan and thermal analysis procedure used for both simple thermal and 

complex model FE models [16].
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throughout Section 3.2. 

3.2 Model Initialization

The remainder of the mathematical model is discussed in this section. The Heat

Transfer Module, part of the COMSOL Multiphysics software package, is used. 

3.2.1 Geometries

All modeled geometries are three-dimensional to more accurately gauge the physi-

cal model. The geometries of the components were extracted from their datasheets, or

through manual measurements via optical micrographs and scanning electron microscope

(SEM) images. The geometries of the true boundaries of the sensor chip are extracted from

Fig. 3-2a. The measured pitches between the bond pads and sensors accurately agree to

Table 3-2. Geometry of FE models [16].

Division Component
Dimensions
(X × Y× Z)

(L × W × H)
Units

Bond Heat Assembly

Air Hole (Heater) Radius = 0.6; Height = 5.48a/8b mm

Heater Block 25 × 23 × 5.48a/8b mm

Place Tool (Upper) 22 × 22 × 0.3 mm

Place Tool (Lower) 3.5 × 3.5 × 0.5 mm

Air Holes (Place Tool) Radius = 0.2; Height = 0.8 mm

Pressure Plate 4.68 × 3.31 × 0.5 mm

Intermediate Layer Air Gap 4.68 × 3.31 × 0.04 mm

Sensor Chip/Substrate Assem-
bly

Sensor Chip 4.68 × 3.31 × 0.5 mm

Die Attach 4.88 × 3.41 × 0.03 mm

CerDIP 1.4 × 0.595 × 0.05 in

Macor® Sheet 2 × 2 × 1/16 in

Stage 310 × 70 × 7.59 mm

aHeater block thickness used in Model A
bHeater block thickness used in Model B

(Discussed in Section 3.4)
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those designed in the layout for the CMOS process. Thus, this layout is programmed as the

geometry for the sensor chip and data extraction nodes. The dimensions of the epoxy are

approximated and assumed to extend equally from each edge of the sensor chip in the x-y

plane. The features of the digital logic region that occupy the arbitrarily assigned West end

S
WE

N

Fig. 3-2. (a) SEM image of the sensor chip die attached and wire bonded inside a CerDIP cavity; (b) layout 

and values of sensor chip components as implemented in the FE models [16].

N

S

EW

(a)

(b)
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of the chip are excluded from the model and are assumed to be part of the sensor chip vol-

ume. The wire bonds and bond pads are also excluded from the model, for simplification

purposes. The bump geometries are approximated by taking the average diameters and

heights from optical images, such as the micrograph in Fig. 1-11e. Due to the proprietary

design of the bond head, only partial geometries are available. The remainder of the geom-

etries are currently confidential. 

These sources provide sufficient quantitative data to form the complete geometry

illustrated in Fig. 3-3. An arbitrary division to reference components is made by splitting

the entire geometric model into two main divisions: components above the sensor chip and

components below. The sensor chip, Au bumps, chip substrate, die attach, electrical insu-

lation layer, and a stage comprise the substrate assembly. The pressure plate, a place tool

with four air holes, and a heater block with one air hole comprise the bond head assembly.

The air holes are modelled to represent the vacuum holes in the true bond head. An inter-

mediate air gap layer is modelled between the sensor chip, pressure plate, and between the

bumps. The dimensions of each component are summarized in Table 3-2. The positions of

component features are also provided in Fig. 3-3. 

3.2.2 Material Parameters

Materials subjected to thermal gradients, such as those involved in TCB processes,

experience changes in material properties. Thus, each of the three thermal material proper-

ties of interest; density, heat capacity and thermal conductivity, are temperature-dependant

properties. However, modelling temperature-dependant effects increase computation times

as they introduce additional complexity to the mathematical formulations. For simplicity,

it is more convenient to use the room-temperature values during earlier stage FE develop-

ment. Table 3-3 summarizes the materials used in each model and the inputted values for
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Fig. 3-3. Partial views of the complete geometric layout used in the FE models [16].
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each property, excluding the TCR layers.

3.2.3 Boundary Conditions

There are two main boundary conditions (BCs) applied to the model. A transient

thermal profile, nearly identical to that in Fig. 2-2, is applied to the top surface of the heater

block. A constant, steady temperature of 55 °C is applied to the bottom surface of the stage.

5 °C is added to both BCs in order to better match the experimentally measured steady state

temperatures of ≈55 °C. The initial temperatures of all components are set to 55 °C on the

assumption that they have reached steady state temperatures prior to ramping. The heater

thermal profile is implemented by formulating a ramp function in COMSOL, which holds

a constant temperature of 55 °C for 6.45 s, until ramping to 200 °C at a rate of 350 °C/s.

This is then held until 9.59 s, where it is then cooled. Ambient air convection was applied

to all other surfaces of the model components, with heat transfer coefficients h, of 5 W/m2K

Table 3-3. Thermal material property values (@ 20 °C) used in the FE models. 

Components Material ρ k Cp Reference

Air Hole (All)
Air 1.204 0.026 1005.42 ×

Air Gap

Heater Block

AlN 3300 180 719.47 ×Place Tool (Upper)

Place Tool (Lower)

Pressure Plate
Si 2330 152.9 702.2 [33]

Sensor Chip

Bumps Au 19290 319 129 [33]

Die Attach Ag-filled Epoxy 35 2.5 240 [68]

CerDIP Al2O3 3900 27 900 ×

Macor® Sheet Macor® 2520 1.6 600 [33]

Stage Invar 8080 13.86 477.7 ×

× - Comsol built-in values
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and 10 W/m2K, and external temperatures T∞, set to room temperature, 20 °C. This bound-

ary condition is later removed during modelling due to the negligible effects its inclusion

has on the simulated thermal responses. The locations of the two boundary conditions are

indicated in Fig. 3-4. 

3.2.4 Meshing

A total of ≈ 2.2 million tetrahedron-shaped mesh elements are applied to the models

through the available meshing feature in COMSOL. The majority of the model has rectan-

gular-based components, tetrahedron-shaped elements are the default option in COMSOL.

Therefore, this is the most time-effective and convenient option to apply. Overviews of the

model are provided in Fig. 3-5.

3.2.5 Data Extraction from Model

The 64 RTD sensors are modelled to capture the average temperature experienced

within the confines of the area covered by each serpentine winding. Replications of these

RTD sensors are made by applying data nodes on the sensor chip surface, through the

boundary probe option in COMSOL. These surface data nodes are implemented around

each bump, covering the area as replicated from CMOS designs and confirmed from micro-

graphs. These nodes do not have an associate thickness, and use surface mesh element

nodes to calculate average temperatures. For each time interval solved during computation,

Fig. 3-4. Boundary condition locations [16].
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Fig. 3-5. (a) Orthographic view of the complete meshed model; (b) top view; (c) translucent partial side 

view; (d) 1/4 section cut-out at pressure plate - sensor chip interface; (e) magnified view of (d).
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an average of the temperature within each node is calculated and stored for post-processing.

In our models, the time resolution is 15 ms. Ultimately, these nodes are used to extract the

numerical data from which the simulated temperatures are derived from. Fig. 3-6 shows

one of the 64 surface data nodes used in the models. 

3.2.6 Thermal Contact Resistance Layers

Unlike the TCR formulations from theory in Section 1.3, the simple thermal model

uses volumetric boundary layers between two components in mechanical contact, to simu-

late thermal resistance. These layers incorporate the effects of air content between compo-

Fig. 3-6. (a) Magnified view of sensor chip geometry; (b) Magnified view of bump, TCR layer and RTD 

surface data node. The air gap is shown in (a), but not shown in (b). Both images are to scale [16].

Heat from bond head
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nents by applying hybridized material properties of air and the material of the component

below the contact boundary. While these boundary layers neglect the effects of contact

pressure in the thermal model, as well as add more elements to the mesh density, they sim-

plify mathematical formulations in the earlier stages of FEA. They do this by reducing the

number of input parameters involved in multi-dimensional contact models. 

A total of three TCR layers are added: one between the heater block and place tool

(P1); a second between the place tool and pressure plate (P2); and the third between the

pressure plate and bumps. Each boundary or TCR layer is 10 μm thick and assumes the

length and width of the component contact pair with the lowest surface area. For example,

the P1 layer assumes a width and length equal to the width and length of the upper part of

the place tool. There are total of 64 P3 layers: one for each bump and pressure plate inter-

face. An example of a P3 TCR layer is seen in Figs. 3-6b and 3-7.TCR layers between the

CerDIP and the Macor sheet, and between the Macor sheet and stage, are excluded from

models as they have shown to have negligible effects on simulated sensor signals. This is

due to the proximity and relative sizes these components have with respect to the sensor

chip. They are farther away from the bond head and are fairly insulative, thus having little

effect on the temperatures in the sensor chip. Furthermore, the thickness ratio of the TCR

layer to the substrate assembly components is significantly low. 

Fig. 3-7. Cross-section view of the “bonding interface” between pressure plate and sensor chip bump [16].
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To implement hybridized material properties, weighted averages of the thermal properties

are applied for each TCR layer. These averages are implemented as:

(3-1)

(3-2)

(3-3)

where the three contact materials of interest are AlN (P1), Si (P2) and Au (P3), and P is the

percentage or fraction of air content in the TCR layer. Trial studies independently varying

the percentages of air in each layer conclude that each layer more or less has the same

effects on simulated thermal responses. Therefore, to minimize the number of model

parameters further, the percentages of air content for P1, P2, and P3 are all held constant

such that a change in P affects all three TCR layers and their corresponding material prop-

erties, respectively. Therefore, this consolidated TCR model describes the average thermal

contact quality.

3.3 Model Fitting Process

Based on the findings from preliminary modelling trials, such as those conducted in

Table. 3-1, three of four experimental responses have been found be effectively matched

varied using model parameters. Despite testing several different fitting parameters via mul-

tiple regression analysis, only two partially orthogonal input parameters have been found

to be directly proportional to the MHR or FTRS, and MFT regions. Since the KP is depen-

dant on all three of three regions, it is determined that it is not a suitable response to be

matched via parameter variation. Since there are only two input parameters that correlate

to the three responses, only two regions can be intentionally matched at once. Hence, two

models named “Model A” and “Model B” have been developed: Model A best matches the

MHR and MFT regions/values and Model B best matches the FTRS and MFT regions/val-

ues. The heater block thickness and the air content percentage in the TCR layers are the two

orthogonal input parameters. The heater block thickness introduces a thermal delay in the

sensor signals as the BC heat source is on top of the heater block surface. Thus, the rate of

heat transfer from the heater block to the sensor chip surface is directly proportional to the

 P  air  100 P–   material +=

k P k air  100 P–  k material +=

Cp P Cp air  100 P–  Cp material +=
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thickness of the heater block. As mentioned earlier, only partial geometries and dimensions

were provided for the bond head heater. Therefore, the heater block thickness makes sense

as the most appropriate parameter to be varied to fit the FE models to experimental

responses. As the thermal conductivity of the heater block is not dependant on its geometry,

and is physically defined as the rate that heat energy can pass through a material (Eqn. 1-

9), the MFT does not get affected. On the other hand, air content in TCR layer introduce

thermal resistance due to air’s very low thermal conductivity and high heat capacity. As the

thickness of these TCR layers are relatively small compared to the other components, the

MHR is negligibly affected for percentages less than ~97%. However, the high heat capac-

ity, which is inversely proportional to the thermal gradient (Eqn. 1-13), strongly affects the

MFT. As heat passes from the bond head down through the components, the TCR layers

absorb heat and subsequently pass less heat energy down to the bumps. This resistance

results in temperature drops during heating and thus, a reduced MFT within the given pro-

cess time frame.

With two input parameters and two responses that can be matched at once, an iterative 2 ×

2 DOE procedure can be conducted, as illustrated in Fig. 3-8. In this procedure, two trial

heater thickness values and two trial air content percentage values are inputted into the sim-

ulation model, one combination at a time. The simulated sensor signals from each trial are

stored as “.csv” files and then loaded processed by the post-processing algorithms. These

algorithms produce the MHR, MFT, FTRS, and the remainder of the relevant thermal data.

After the four initial combinations are simulated, target response curves are plotted on con-

tour plot interpolations of the data in order to observe whether an intersection of the two

targets occur. If an intersection does occur, the intersection point values, which are the

heater thickness and air content percentage, are inputted into the model. If the simulated

response values from this intersection point trial are within 2% of the experimental target

values, then a suitable match is found. If not, the DOE is refined such that 2 more combi-

nations are conducted, forming a 2 × 3 partial DOE or 5 more combinations to form a 3 ×

3 trial DOE. This iterative process continues until the simulated responses are within

acceptable limits. If the intersection points do not converge to values within acceptable

limits after the DOE refining process, a new 2 × 2 DOE is initialized using a broader range

of input values. Alternatively, a justifiable change to the model formulation itself is made
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through either problem redefinition, geometric changes, boundary condition changes or

material property value changes. This process is repeated for both Model A and Model B

with the target values of each corresponding to their target responses. 

3.4 Matched Models

3.4.1 Model A

The goal of Model A is to produce simulated sensor responses that best match the

MHR and MFT values. Through the iterative DOE procedure, the intersected heater thick-

ness and air content percentage values are 5.48 mm and 91.7%, respectively. The intersec-

tion point on the response contour plot can be seen in Fig. 3-9. The values from the

simulated MHR and MFT regions differ from the experimental values by 0.09% and

Fig. 3-8. Flowchart of the iterative 2 × 2 DOE procedure conducted to match FE model responses to 

experimental responses [16]. 
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0.04%, respectively, indicating a very good numerical match is found for these two values.

The FTRS, however, deviates 41.6% below the experimental value. The KP temperature is

5.3% below the experimental mean and within 1% of the mean experimental KP time.

Nonetheless, the signal overlap in Fig. 3-11 confirms a good optical and numerical match

is achieved. The gap identified is discussed in Section 3.5. 

3.4.2 Model B

Model B’s target response regions and values are matched with intersection values

of 8.0 mm and 91.5% for the heater thickness and air content percentage, respectively. This

presents a negligible difference in air content percentage compared to Model A, but a sig-

nificant difference of 45.9% in heater thickness. This is because the heater block thickness

significantly affects the MHR and FTRS, as does the air content percentage, but to a lesser

extent. This is why the air content percentage remains relatively constant between the two

models, while the heater thickness is varied. While Model B’s MFT and FTRS values differ

from the experimental values by 0.04% and 1.3% respectively, the signal overlaps indicate

Model B to be a weaker match overall. As seen in Fig. 3-10, Model B appears to be an opti-

Fig. 3-9. (a) Contour of the MHR values of the four trial parameters. The target MHR value can be reached 

by selecting any heater thickness and value on the red dashed line; (b) The response contour for the MFT 

values of the same four trial parameters. The intersection point is slightly below the x-axis in this image 

[16]. 
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Fig. 3-10. Signal overlap of Model B’s simulated response [16].

Signal Gap
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Fig. 3-11. Signal overlap of Model A’s simulated response [16].
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Experimental
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cally weaker fit than Model A in terms of signal overlap differences. This is primarily due

to the 22.5% lower average MHR of Model B compared to the experimental mean, as evi-

dent in its shallower slope. 

3.5 Lateral Surface Thermal Distribution

With matched FE models fitted based on reasonable assumptions about the experi-

mental conditions, further analysis can be conducted to better understand heat flow during

TCB. The first interesting feature of the simulated model results is the signal gap identified

in Figs. 3-11 and 3-10. This gap insinuates that some of the RTD sensor locations experi-

ence a significant deviation from the mean of the RTD temperatures. Using post-processing

analysis in the FE software itself, Fig. 3-12 is produced, illustrating the source of this gap.

Backed by numerical and graphical evidence, the signal spread and gap is physically caused

by the area on the left of the bump array, below the air gap. The relatively large volume of

silicon mass acts as a heat sink, drawing heat away from the left-most region of the bump

array. Consequently, the signal gap arises from the left-most bumps experiencing the most

cooling due to the heat sink effect. The remaining peripheries of the bump array also expe-

rience this heat sink effect, but to a more moderate extent. By the end of the heating period,

, the sensor chip experienced localized maximum temperatures up to ≈155 °C at

the center of the bump array, and temperatures as low as ≈129 °C to the left of the bump

array. 

The range of temperatures amongst the RTDs, as well as the maximum thermal gra-

dients experienced over time, is shown in Fig. 3-13. The maximum thermal gradient expe-

rienced occurs at almost the same time measured from experimental responses, even

though its magnitude is a fraction of the experimental maximum magnitude. The simulated

maximum thermal gradient of Model A is 7.42 °C/mm which is about half of the second

highest experimental thermal gradient magnitude of ≈15 °C/mm. The locations of the max-

imum gradients experienced occur at the same bottom left and top left corners identified

from in the experimental data. Similarly, Model B’s maximum thermal gradient magnitude

experienced is ≈7.03 °C/mm. However, due to the slower primary heating ramp of the RTD

sensors, this magnitude is reached at ≈8.34 s. This magnitude is reached within 0.3 s of the

knee point. The timing coincidence is particularly interesting as the findings suggest the

tpress
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Fig. 3-12.  Comparison of experimental and simulated thermal distributions across the sensor chip surface. 

(a) Steady state; (b) average MHR time; (c) time of maximum thermal gradient; (d) average MFT time. The 

interpolated experimental and FE-based contour plots exhibit similar results and verify the heat sink effect.
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greatest thermal non-uniformity occurs approximately after the KP region of the heating

curve. 

The large thermal gradients can pose as problematic as it can lead to thermo-

mechanically induced strains, possibly affecting the quality and/or reliability of bonds

made. However, any conclusions about the effects of these gradients, with respect to these

assumptions, is premature and would require thermo-mechanical analysis. 

3.6 Joint to Joint Thermal Variation

The variation between the temperatures of each bump is calculated by first extract-

ing the volumetric averages of the bumps. With the use of FEA software, this is an easy feat

to accomplish. The variation can be described as the range or temperature difference

between the highest bump temperature and the lowest bump temperature. These averages

are taken at 9.53 s, slightly before the bond head cools, to account the effects of data

smoothing algorithms on the number of useful data points, caused by smoothing algo-

rithms. The comparisons of thermal responses for both models is summarized in Table 3-

4. It is further clear that Model A and B exhibit nearly identical responses. 

The corner bumps at pads 00, 07, 56 and 63 experience the lowest bump tempera-

tures of ≈151 °C. The left two corner bumps (00 and 56) are ≈1.5 °C lower in temperature

than the right two bumps (07 and 63). However, the left two pads are ≈3.3 °C lower in tem-

perature than the right two. These differences can be explained by the heat sink effect. With

Fig. 3-13.  Transient curves of the thermal gradient magnitudes and temperature ranges between 6.0 s and 

10.0 s for Model A. 

Fig. 3-11(a)

Fig. 3-11(b)

Fig. 3-11(c)
Fig. 3-11(d)
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no bumps in the West region of the sensor chip, there are a lack of thermally conductive

pathways for the heat to travel to the sensor chip, resulting in cooler surface temperatures.

Due to the lack of conductive pathways, the bottom surface of the pressure plate remains

hotter, explaining the greater temperature gradient across the air gap on the left of the

sensor chip. The cooler Si mass in the West region draws more heat down through the left-

most bumps to compensate for this effect, but the surface remains cooler. This is why the

difference between the bumps are lower than the difference between the RTDs. 

The central bumps at pads 27, 28, 35, and 36 experience the greatest temperatures,

up to ≈156 °C. These bumps have the greatest number of neighboring interconnects and the

lowest area of periphery Si around them. Thus, these bumps experience the greatest thermal

uniformity, posing the least concern in TCB processes.

Despite wide thermal ranges across the sensor chip, both models indicate robust-

ness in thermal application during TCB. The temperature range amongst the bumps at

9.53 s is ≈5.7 °C. This low range indicates that thermal distribution for this specific setup

can be acceptably uniform. Temperature differences of ≈7.3 °C between bumps and RTD

data nodes indicate that microsensor arrays can be accurate thermal measurement tools in

TCB processes. 

3.7 Internal Joint Thermal Variation

Due to the strong similarities of Model A and Model B, the following results pre-

sented are mainly extracted from Model A, to reduce redundancy. Findings from the

Table 3-4. Summary of Model A and B’s bump and RTD temperature variation [16].

Mean St. Dev Min. Max. Range

Model A
°C

Bump 154.63 1.55 150.63 156.3 5.67

RTD 147.33 1.68 142.47 148.98 6.51

ΔT 7.3 0.13 8.16 7.32 0.84

Model B
°C

Bump 154.60 1.56 150.56 156.2 5.66

RTD 147.41 1.68 142.55 149.07 6.52

ΔT 7.19 0.12 8.01 7.13 0.86
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models indicate that bumps not only experience thermal variation depending on location,

but they also experience temperature drops within the confines of their geometry, as seen

in Fig. 3-14. As expected, the bumps are hotter on their top surface, than on their bottom.

The average temperature of the top surfaces of all bumps is ≈156.6 °C and ≈151.8 °C on

the bottom. This results in an average temperature drop of ≈4.8 °C within the bump vol-

umes. As each bump has a P3 TCR layer above it, a temperature drop also occurs from the

top of each TCR layer on the bottom surface of the pressure plate, to the top of each bump
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Fig. 3-14.  Z-X Contour plots of bumps from (a) pad 00 (b) pad 03 (c) pad 24 and (d) pad 27. The thermal 

distribution within the bumps at pads 00 and 27 are shown. Of these four, pad 27 has the bump with the 
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surface. The average temperature on the top of each P3 TCR layer is ≈175.7 °C, which is

an average temperature drop of ≈19.1 °C within the 10 µm thick layer. This is due to the

high air content of ≈91.7% (91.5% in Model B) of each layer. This percentage equates to a

thermal conductivity of ≈26.5 W/m/K and heat capacity of ≈932.7 J/kg/K in each P3 layer.

This explains the high thermal resistance exhibited by the layer. As air content percentages

are reduced, thermal contact conductance improves and higher temperatures are experi-

enced by the bumps. This is discussed in further detail in Section 3.9. 

These internal variations could once again present problems in the thermo-mechanical

domain. Thermal gradients within the bumps could possibly manifest as voids, defects or

cracks if the magnitudes of induced stresses are significant enough. This could present as a

potential source of reliability issues and could be studied to understand whether it has any

implications during bonding. 

3.8 Sensitivity Study I: Effects of Heater Block Thickness

A sensitivity analysis of the effects of the heater block thickness on simulated tem-

peratures, is conducted. As seen with the differences between Model A and Model B, the

heater block thickness affects the rate at the sensor chip heats up and consequently, the rate

at which RTDs do. Using Model A’s heater thickness as the base value, the thickness is

varied by ±25% and the results of this study is plotted in Fig. 3-15 

Fig. 3-15.  Heater block thickness variation and its effect on mean MHRs. The full signals for the three trials 

are averaged and the mean RTD temperature is plotted for each heater block thickness. Air content 

percentage held at 91.7%. All other parameters held constant. Only the last four seconds shown for 

emphasis. Heater block thickness is linearly related to the average MHR. [16]

4.11 mm
5.48 mm
6.85 mm
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As the heater block thickness is increased, there is a greater mass through which the heat

from the bond head BC must propagate through, resulting in a delayed transference of heat

to the sensor chip.

3.9 Sensitivity Study II: Effects of Air Content in TCR Layers

A similar sensitivity analysis is conducted for the percentage of air content in the

TCR layers. Using Model A as a reference once again, the air content is varied by adding

or removing 5% to the matched air content value of 91.7%. The responses from this anal-

ysis is shown in Fig. 3-16. It is visibly apparent that this input parameter most greatly

affects the MFT, while maintaining fairly constant MHRs and FTRSs. At air content per-

centages higher than ~97%, the trends significantly deviate from these presented, because

the TCR layer material properties essentially converge to those of air. 

3.10 Complex Thermal Model: CMY-Implementation

The simple complex model uses hybridized boundary blocks inserted between two

contact components. To convert the simple complex model to the complex thermal model,

these blocks are first removed and geometric adjustments are made. By removing these lay-

ers, air content percentages are no longer applicable and a new system of fitting the model

Fig. 3-16.  Air content percentage variation and its effect on mean MFTs. [16]

86.7%
91.7%
96.7%
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to experimental data is required. To shift dependence to theoretical contact parameters, the

heater block thickness is also disregarded as a fitting variation parameter. 

3.10.1 Modelling Methodology Adjustments

To systematically approach this problem, the thermal conductance between layers

is considered. Equation 1-8, which provides the conductance correlation, asserts that heat

flux across the boundaries of two solids is proportional to the average RMS slope and con-

tact pressure at the interface, and inversely proportional to the RMS height and microhard-

ness. Given that the microhardness is a material property and contact pressure can be

assumed to be the pressure applied during the emulated TCB procedure, only two parame-

ters remain. Hypothetically, these parameters should provide similar effects on the simu-

lated thermal responses as the heater block and air content did for the simple thermal

models. This assertion is backed by the illustration in Fig. 3-17. The CMY correlation

assumes that the surface asperities, of the material with the lower microhardness, plasti-

cally deform. Since these plastic deformations are not stored in the governing equations,

the same thermal conductance is experienced, despite whether cyclic mechanical loading

is applied or not. As the RMS slope of the asperities is linearly proportional to the constric-

tion conductance, an increase of the slope leads to an increased conductance. Conversely,

an increased height leads to a reduced thermal conductance. Asides from the asperity-

asperity conductances, the slopes and heights are factors in the amount and volumes of air

gaps between the two contact components. These air gaps introduce thermal gradients, just

as the hybridized TCR layers do. Therefore, it is expected that these two parameters have

similar effects on both MFTs and MHRs regions, with limited orthogonality between the

two. 

3.10.2 TCR Layer Application

To implement this thermal contact formulation in COMSOL, the “Thermal Con-

tact” option under the Heat Transfer in Solids module is created for each type of layer. The

boundaries of contact are defined by selecting the surfaces of interest, identified in Fig 3-

18. The remaining contact parameters, listed in Table. 3-5, are also entered under the
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“Thermal Contact” option. The remaining other model parameters are held constant. The

heater block thickness is also held constant at 5.48 mm.

m = 0

m ≈ 0.5

m = 1

σsmall σmedium σlarge

Contact Pressure
Material A

Material B

Plastic Deformation Assumed

Conductive Pathways

Fig. 3-17.  Top: RMS asperity slope variations; Bottom: RMS asperity height variations. Material A has a 

microhardness higher than Material B. Thus, the mathematical model assumes the asperities of Material B to 

plastically deform under mechanical contact. Note: these illustrations are simplified and exaggerated for 

clarity. 

Increasing A
sperity C

ontact A
rea 

Before Loading After Loading
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3.10.3 Fitting Procedure and Results

These two parameters are tested by inputting four trial values into the iterative DOE

process, as discussed in Section 3.3. A contour response is seen in Fig. 3-19. This matched

model can be denoted as Model C. The signal overlap of Model C’s matched response over

experimental responses is seen in Fig. 3-20. This model’s results appear to be a decent

Fig. 3-18.  Locations of the three TCR boundaries defined under each “Thermal Contact” option. 

TCR (P1)

TCR (P2)

TCR (P3)

Table 3-5. Summary of contact model parameter values for each TCR layer.

Contact Model Parameter TCR P1 TCR P2 TCR P3

Contact Pressure 
(80 N Equivalent)

165.3 [kPa] 5.16 [MPa] 324.8 [MPa]

Vickers Microhardness 11.49 [GPa] 11.27 [GPa] 882 [MPa]

Reference [69] [70] [71]
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match to the experimental, but not as optically apparent as Model A’s results. The signal

gap identified in Figs. 3-11 and 3-10 is practically non-existent in Model C’s temperature

spread. Although Model C’s thermal contour slice on the sensor chip surface is nearly iden-

tical to that of Models A and B (Fig. 3-12), the left periphery bumps in Model C are slightly

hotter by ≈2 °C. As summarized in Table 3-6, the numerical data proves the range of bump

T
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Intersection
PointTar

ge
t M

FT

Fig. 3-19.  Contour plots from the iterative DOE process used to fit the complex thermal model. 

Fig. 3-20. Signal overlap of Model C’s simulated response. Note: the signal gap, seen clearly in Models A 

and B, is not as definitive here 
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Experimental
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temperatures in Model C are lower than those of Models A and B by about ≈1.2 °C. Inter-

estingly, the RTD thermal range is only ≈0.24 °C higher than the bump range, whereas it is

≈0.85 °C higher than the bump range in Models A and B. While the temperature difference

between simulated RTD temperatures and extracted bump temperatures of Model C are

slightly higher than those of Models A, the range is still less than 8 °C. Although, this does

not explain the lack of a visibly wide signal gap, it is believed that greater conductance of

the P3 bump layers have improved thermal distribution on the sensor chip surface and

amongst the bumps. This conductance increase is due to the inclusion of mechanical load-

ing. Furthermore, the reduction of the air gap thickness by 10 µm, results in a slightly

reduced thermal drop and thus, the surface temperatures on the sensor chip are closer to the

temperatures on the bottom surface of the pressure plate. This explains the reduced spread

amongst the simulated signals and the lack of the signal gap. 

Consistency between the simple thermal and complex thermal models are further

observed when comparing their internal thermal bump distributions. The average surface

temperature of the top surfaces of the bumps is ≈157.9 °C, and ≈152.5 °C on the bottom.

This represents a drop of about 5.4 °C, which is about the same as the average internal drop

of Model A. The complex thermal model provides affirmative results on the findings of the

simple thermal model. 

3.10.4 Sensitivity Study III: Effects of Asperity Heights

The results of a sensitivity analysis, varying the matched average RMS asperity

height of 0.85 µm by ± 25%, is plotted in Fig. 3-21. For thoroughness, average RMS asper-

Table 3-6. Summary of Model C’s bump and RTD temperature variation

Mean St. Dev Min. Max. Range

Model C
[°C]

Bump 155.17 1.24 152.18 156.65 4.47

RTD 147.24 1.35 143.91 148.62 4.71

ΔT 7.93 0.11 8.27 8.03 0.24
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ity heights of 2.00 µm and 5.00 µm are also tested, to observe if trends continue as

expected. As predicted, the asperity heights affect both MFT and MHR regions without any

of the orthogonality seen with air content percentages and heater block thickness variations. 

3.10.5 Sensitivity Study IV: Effects of Asperity Slopes

Varying the average asperity RMS slopes results in similar responses to simulated

temperatures to those seen with the average RMS heights. The limitation with slopes is that

they can only range between 0 and 1. Therefore, its effects on response parameters is lim-

ited, and requires the variation of RMS heights to fit the model to experimental results. As

seen in Fig. 3-22, slopes greater than 0.5 bear fairly minimal effects on the simulated

responses. As the slope approaches 0, the MHR and MFT region become shallower and

lower, respectively. 

Fig. 3-21.  RMS asperity slope variation and its effect on simulated signal responses. Note: the mean of all 

signals produces one averaged signal for each trial as shown. The average RMS slope is held at 0.9 for all 

trials. 

0.64 µm
0.85 µm (matched)
1.07 µm
2.00 µm
5.00 µm
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3.10.6 Sensitivity Study V: Effects of Contact Pressure

To further confirm proper implementation of the model formulation, the effects of

contact pressure on the signal responses are also examined. As the contact pressure is pro-

portional to the constriction conductances, an increase of this pressure results should result

in faster heating and smaller thermal gradients. Figure 3-23 confirms this proportionality.

Physically, an increased contact pressure results in greater plastic deformation of the sur-

face asperities. This results in better thermal contact and hence, reduced thermal resistance

and hence, a better thermal contact. 

3.11 Summary

A unique FEA procedure for fitting numerical models to experimental responses is

presented. Two simple thermal models are fitted to match two of three average MFT, MHR

or FTRS experimental response values, producing simulated signals closely resembling the

experimental signals. Both models exhibit nearly identical thermal responses in terms of

thermal distribution and heat flow. Model B differs mainly in terms of the rate of heating

of the sensor chip. Heating rates are mainly affected by the distance of the heater block

boundary condition via the heater block thickness parameter. Vertical thermal gradients are

Fig. 3-22.  Average RMS slope variation and its effect on simulated signal responses. The average RMS 

height is held at 0.85 µm for all trials. 

1 
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0.8 

0.1 
0.5
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most greatly affected by the air content percentages in the simple thermal models. The

periphery bumps always experience the least heat due to cooling, heat sink effects by the

sensor chip. The center of the bump array experiences the least thermal variation amongst

neighboring bumps as well as on the sensor chip surface. The development and results of

Model C, a complex thermal model, are also presented. Model C is fit to experimental mea-

surements using average RMS surface asperity heights and slopes. The findings of this

model align closely with those from the simple thermal models. With bump temperature

ranges representing about 3.4% of the mean MFT values, the thermal variation amongst

bumps can be considered low, which is ideal for TCB processes. 

Fig. 3-23.  Contact pressure variation and its effect on simulated signal responses. The average RMS height 

and slope is held at 0.85 µm and 0.9 for all trials, respectively. 
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4 Conclusions and Outlook

An experimental thermo-compression bonding procedure has been conducted and

in-situ temperatures have been successfully captured and analyzed. The temperature sig-

nals are characterized by four main regions: maximum heating rates, temperatures reached

at the end of the press, the steady rise heating rate in the final third of the heating ramp, and

lastly, knee points. The RTDs heated fastest, immediately after the bond head applied heat,

at a rate up to 108.1 ºC/s, and slowed to an average of 8 ºC/s, nearing the end of the press

cycle. Heat energy saturating throughout the sensor chip and substrate components slowed

the heating rates from the earlier rapid rises, producing a characteristic KP region in their

temperature curves. Thermal gradient analysis across the sensor chip surface determined

the greatest thermal gradient magnitudes to occur at the bump array peripheries due to heat

sink effects. The peak magnitudes occur immediately after the KP region, which could be

further investigated to understand if these thermal gradients result in thermo-mechanical

stresses, and if so, how detrimental they are on TCB processes and bond reliability. The

corner bumps experience the greatest thermal gradient magnitudes across the sensor chip

surfaces as they have the least number of neighbouring conductive pathways. The spread

in the temperatures is mainly attributed to these heat sink effects as heat is drawn away from

the hot bumps into the cooler, unoccupied silicon mass. Finite element models have been

developed in both simple thermal and complex thermal domains, using a formal FEA meth-

odology and a unique, iterative DOE procedure to fit models to experimental responses. For

simple thermal models, hybridized material properties are implemented between compo-

nents in contact to simulate thermal contact resistance. Complex thermal models are devel-

oped using surface roughness parameters, based on the Cooper-Mikic-Yovanovich

correlation. Both modelling domains have produced considerably successful models; sim-

ulated temperature responses show great agreement with experimental responses. In fact,

simplified models developed during earlier stages of modelling produced very similar

response curves to the experimental response curves, prior to any TCR layer implementa-
69



tion. Furthermore, very similar responses in terms of lateral thermal distribution, bump to

bump temperature variation, and internal thermal bump variation have been extracted, ana-

lyzed, and observed between both modelling domains. 

Thermal variation of both the bumps and sensor chip are attributed to the heat sink

effect as the colder, non-bumped region draws heat away from the bump array region. This

issue is specific to chip design and can be mediated through more uniform interconnect dis-

tribution, which is typically what is found in commercial TCB packages. Greater numbers

of interconnections should also result in more uniform lateral thermal distribution and a

reduction in interconnect variation. Finally, pitch reductions between interconnects should

also result in desired reductions. Parametric analysis of models revealed the following

results:

1. Thermal delays from bond head to bumps are sensitive to bond head geometries —

thinner heater element blocks can increase heating rates due to the reduction in

mass that needs to be heated, and the thickness through which the heat must propa-

gate through to achieve thermal equilibrium. 

2. Air content fractions in hybridized TCR layers strongly affect vertical thermal gra-

dients and the bump temperatures — an increase of the percentage of air’s highly

insulative thermal properties resulted in thermal gradients forming within the

hybridized layers, averaging a temperature drop of about 19 ºC from the top of the

pressure plate to the top of each bump. The insulative properties also slow the rates

at which the heat travels to the bumps, as the TCR layers are all above the bumps,

and below the main heat source. 

3. Surface asperity heights and slopes both equally affect heating rates of the bumps,

and vertical thermal gradients — their linear and inversely linear proportionality to

constriction conductance in the CMY correlation result in similar effects on the

rates at which bumps heat. These heights and slopes simulate the effects increasing

the volumes of insulative microscopic air gaps between two surfaces in thermal

contact.
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4. Higher contact pressure can improve thermal contact — due to the nature of the

CMY correlation, to which it models plastically deformable surface asperities, an

increased contact pressure increases the temperature experienced by the bumps.

It is clear that thermal contact resistance plays a significant role in thermal pro-

cesses, affecting the rate at which heat flows to interconnects and the amount of heat that

reaches them. Surface finish quality and higher loading pressures could improve thermal

conductance and thus, throughput in TCB processes. Moreover, thermal contact resistance

is undeniably the most influential parameter for thermal flow modelling in the FE models

presented. The success is limited by the fact that the model was not able to reproduce

responses that fit both the MHR and FTRS slopes at the same time. It is currently unknown

why the agreement was not nearly as perfect as it could be, and it is possible that another

physical mechanism, asides from the tested implementation of ambient air convection, is

responsible for “shaping” the characteristic temperature curves. Better agreement between

experimental and simulated temperatures can also be possibly made by fine tuning TCR

layer values between components in contact, under both the simple thermal and complex

thermal domains. This could further improve the accuracy of the simulated temperatures

from the FE models, such as at the interconnect regions and throughout the substrate com-

ponents. 

Several other limitations were also discovered in the FE modelling process. Due to

the high aspect ratios of the bond head and substrate component geometries with respect to

the bump geometries, mesh elements are increasingly difficult to apply. Further refining of

the bumps and surrounding regions, required for mesh quality improvement, results in an

even greater number of mesh elements which in turn requires significantly greater compu-

tational power. This issue amplifies for cases involving several thousand bumps per IC die

as well as with cases modelling stacked die configurations. In terms of FEA software, there

are perhaps other modelling packages available that could better resolve these issues. With-

out simplification of models, via means such as anisotropically conductive material

homogenization, this problem is currently better suited for higher performance computers,

or for parallel computing setups, rather than standalone desktop computers.
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Nonetheless, this work has proved useful for not only providing quantitative data

from a specific TCB process, but for also shedding light on the dynamics of how heat tra-

verses, depending on the type of TCB setup. Preliminary work from an FE model of a four-

layer stacked die setup (Fig. 4-1) has shown that periphery bumps get heated faster than

central bumps. This is an interesting result that opposingly contradicts the dynamics of heat

flow in the sensor chip FE model configuration where the central bumps were heated first.

Further examination revealed that the periphery bumps were heated faster than the central

bumps in the stacked die configuration because of the place tool’s geometry. Heat around

the edges of the upper place tool region travels through the edges of the low place tool fast-

est, resulted in heat being drawn faster around the edges of the die stack. Consequently, this

heat leads to a faster rise in periphery bump temperatures, rather than central temperatures.

Fig. 4-1.  Coarsely meshed translucent FE model sample of a stacked die configuration. Units in µm
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The low temperature range of about 7ºC between the RTD temperatures and simu-

lated bump temperatures, suggests the use of microsensor arrays to be potentially highly

accurate in-situ measurement tools, valuable for further understanding of TCB processes.

They can also be viable as tools for process feedback control purposes, once a full setup has

been thoroughly developed, and possibly made portable. Experimental in-situ sensors used

in tandem with FE models have been demonstrated to provide very unique insight on tem-

peratures and thermal features during TCB processes. 

4.1 Future Direction

 More work can be done to better calibrate the models to the experimental

responses, in order to better match all regions. Possible ideas for model refinement include: 

1. Surface roughness parameters or thermal conductance measurements extracted

through experimental means.

2. Thermo-mechanical transient analysis to include effects of warpage, thermal

expansion and bump compression. Thermo-mechanical effects, such as warpage

and thermal expansion, may result in higher variations between joints due to possi-

bly reduced contact areas. However, it could also result in even lower variations as

mechanical loading can improve thermal processes.

3. Temperature-dependent material properties for completeness.

With respect to the direction of this research, stacked die models for collective bonding pro-

cesses currently present the greatest thermal challenge of interest. Some of these dimen-

sions, that should be considered in optimizing thermal flow during stacked die TCB

processes are:

• Interconnects: sizes, positioning, pitch, periphery vs. area array, C2 vs. C4

• ICs: thicknesses, number of die layers, through-silicon vias (TSVs)

• Underfill: thermal conductivity, thermal expansion

• Substrates: anisotropy, vias, layering, surround ICs

This type of TCB setup presents several challenges due to the multi-dimensional nature of

the heat transfer problem. The models and modelling methodology presented can be

extended to study thermal processes in multi-layer die configurations.
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Using the experimental and numerical methods presented, the effects of each of these com-

ponents on overall process parameters can be a valuable tool for packaging engineers. Opti-

mizing packages for efficient heat flow during TCB can improve throughput of processes,

improve joint reliability, and effectively reduce cost. With the increasingly complex and

diverse TCB configurations in development today, it could be highly advantageous to have

FE models that could be tuned and adjusted to package design parameters, in order to effec-

tively approximate thermal flow during prototyping and testing.
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Appendix A: Rate Algorithm

%file_name = “heatingrate.m”

% The following code is used to calculate the maximum heating rates. It can be applied to other 
problems requiring points of the greatest rates of change in a quantity.

maxvals= []; t_maxvals= []; %initialize empty matrices for max rate value storage
[m,i1]=min(abs(x-6)); %time value and index of 6 s
[m,i2]=min(abs(x-9.5)); %time value and its index of 9.5 s
x1=x(i1:i2); %x values are the times between index i1 and i2
figure; %open a new figure to plot the rates

for j=1:length(y(:,1)); % y-matrix contains the temperatures for each pad for all times
y1=y(j,i1:i2)'; %transpose of temperatures between pre-defined times
dx=diff(x1);dy=diff(y1); %difference between adjacent x or y values
d=smooth(dy./dx,10); %takes the differential and smooths each signal
xx=(x1(2:end)+x1(1:end-1))/2;%takes the average of the time values to plot
plot(xx,d); hold on; %plot the resulting rates 
[ma,ima]=max(d); finds the maximum heating rate for each curve and its time index
maxvals=[maxvals ma];t_maxvals=[t_maxvals x1(ima)]; %stores max, heating rates ad 
times for each rate.

end
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Appendix B: Knee-Point Algorithm

%file_name = “kpregion.m”
% this code is used to calculate the knee-points of each of the heating curves. 

maslo=[ ];%max slope
t_knee=[ ];%time of knee point 
T_knee=[ ]; %temp of knee point
T_B_s = [ ]; %max temps 

% find times when bond head temps rise and when they drop
[Tmi,imi]=min(y_BHD);tmi=x_BHD(imi);iri=imi; % index where it starts to rise
while y_BHD(iri)<Tmi+0.5;iri=iri+1; % adjust based on signal 

if iri==length(y_BHD);asdfasdf;end;
end;
[Tma,ima]=max(y_BHD);tma=x_BHD(ima);idr=ima; % index where it starts to drop
while y_BHD(idr)>Tma-1;idr=idr+1;

if idr==length(y_BHD);asdfasdf;end;
end

figure(1); hold off;

t_B=x_BHD(idr); %time corresponding to imi index value
t_C=x_BHD(iri); %time corresponding to ima index value

figure(2);
plot(x_RTD,y_RTD,'b');hold on
xlabel('Time [s]');ylabel('Temperature [C]')
 

for sig=1:length(y_RTD(:,1)); % loop over all signals
x=x_RTD;y=y_RTD(sig,:); 
% 1) find max slope
dx=diff(x);dy=diff(y');figure(3);
hold off;subplot(2,1,1);plot(x,y);hold on
d_=smooth(dy./dx,10);xx_=(x(2:end)+x(1:end-1))/2;
[m,i1]=min(abs(xx_-6));[m,i2]=min(abs(xx_-9.5));
x1=xx_(i1:i2); y1=d_(i1:i2);
[ma,ima]=max(y1);t_ma=x1(ima);a=axis;axis([a(1:2) -ma/20 ma*1.05])
plot(t_ma,mean(y(ima+i1-1:ima+i1)),'.');hold on
xlabel('Time (s)');ylabel('Temperature (C)');
T_ma=mean(y(ima+i1-1:ima+i1));
maslo=[maslo ma];T_maslo=[T_maslo T_ma];t_maslo=[t_maslo t_ma];
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% 2) find pt A 
d=T_ma-ma*t_ma; %y intercept
t_A=(50-d)/ma; % A time where max slope hits 50 deg C
t_A_s=[t_A_s t_A]; %times of point A

T_B_s = [T_B_s max(y(x<t_B))]; %Temps for where RTDs meet max before t_B bond

head temp drops)
% 5) do the method of “maximum slope difference” to find the knee-point:
x_em=[]; % slope difference and ends meet methods
figure(8); hold off

for j=2:length(x)-1;
    x1=x(1:j);y1=y(1:j);x2=x(j:end);y2=y(j:end);
    [p1,S1]=polyfit(x1,y1',1);yf1=polyval(p1,x1,S1); %linear fit 1
    [p2,S2]=polyfit(x2,y2',1);yf2=polyval(p2,x2,S2); %linear fit 2

title(num2str(sig))
    plot(x1,y1,x2,y2,x1,yf1,x2,yf2); drawnow; 
    em=[em max(yf1)-min(yf2)];x_em=[x_em x(j)]; %difference 

between maximum of the first linear fit and the minimum of the 
second fit. Intersection is when this value is zero

end
[masd,i]=max(sd);
x_em1=interp1(em,x_em,0);
subplot(2,1,1);hold on
plot(x_em1,interp1(x,y,x_em1),'g*')
t_knee=[t_knee x_em1];T_knee=[T_knee interp1(x,y,x_em1)];
figure(9);
plot(t_knee(end),T_knee(end),'y.',t_maslo(end),T_maslo(end),'g.');
title(num2str(sig))

end
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Appendix C: Thermal Gradient Code

%file_name = “thermgradientmag.m”

temp2_rtd = y_RTD0; %temperature values measured
time_vector_target = x_RTD0; % time values measured
max_rtd = max(max(temp2_rtd(:,:))); %maximum temp. value experienced for all pads of interest
min_rtd = min(min(temp2_rtd(:,:)));  %minimum temp. value 
grid_x = 
[0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,
1,2,3,4,5,6,7]; %grid for the x values of contour plot 
grid_y = 
[7,7,7,7,7,7,7,7,6,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0]; %grid for the y-values of the contour plot
grid_x2 = [ -1400, -1000, -600, -200, 200, 600, 1000, 1400, -1400, -1000, -600, -200, 200, 600, 1000, 1400, 
-1400, -1000, -600, -200, 200, 600, 1000, 1400, -1400, -1000, -600, -200, 200, 600, 1000, 1400, -1400, -
1000, -600, -200, 200, 600, 1000, 1400, -1400, -1000, -600, -200, 200, 600, 1000, 1400, -1400, -1000, -600, 
-200, 200, 600, 1000, 1400, -1400, -1000, -600, -200, 200, 600, 1000, 1400]; %x-axis values of the pad 
locations
grid_y2 = 
[1400,1400,1400,1400,1400,1400,1400,1400,1000,1000,1000,1000,1000,1000,1000,1000,600,600,600,600
,600,600,600,600,200,200,200,200,200,200,200,200,-200,-200,-200,-200,-200,-200,-200,-200,-600,-600,-
600,-600,-600,-600,-600,-600,-1000,-1000,-1000,-1000,-1000,-1000,-1000,-1000,-1400,-1400,-1400,-
1400,-1400,-1400,-1400,-1400]; %y axis values of the pad locations
num_lines = 25; %25 was previous default value; red_line = 1.0;
max_T =[];min_T =[]; maxGradient = []; TempRange = [];%initialization of variables

for i = 1:length(time_vector_target) %sweep through all of the time points
figure(3);
pitch = 400; %400 um pitch
grid_x3 = [-1200,-800,-400,0,400,800,1200,-1200,-800,-400,0,400,800,1200,-1200,-800,-
400,0,400,800,1200,-1200,-800,-400,0,400,800,1200,-1200,-800,-400,0,400,800,1200,-
1200,-800,-400,0,400,800,1200,-1200,-800,-400,0,400,800,1200]; %x-axis values for 
interpolated central locations
grid_y3 = 
[1200,1200,1200,1200,1200,1200,1200,800,800,800,800,800,800,800,400,400,400,400,4
00,400,400,0,0,0,0,0,0,0,-400,-400,-400,-400,-400,-400,-400,-800,-800,-800,-800,-800,-
800,-800,-1200,-1200,-1200,-1200,-1200,-1200,-1200]; %y-axis value for the interpolated 
central locations
tempgrid = reshape(temp2_rtd(:,i),[8 8])'; %reshape into 8 x 8 matrix - transpose for pad 
numbering (1,1) = 0, (8,8) = 63
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tempx = grid_x3; tempx = tempx'; %transpose both grids 
tempy = grid_y3; tempy = tempy';
subplot(1,3,1); 
plot(time_vector_target(:),temp2_rtd(:,:));
xlabel([num2str(time_vector_target(i)*1000),' ms'],'fontSize', font_size);
line([time_vector_target(i),time_vector_target(i)],[min_rtd,max_rtd],'LineWidth',red_line
'color','r');hold off;
ylabel('Degrees Celsius');
title ('RTD Temp.');
axis square;
subplot(1,3,2);

set(gca,'FontSize',axis_font); %contour plot produced here
g = gridfit(grid_x,grid_y,temp2_rtd(:,i),0:1:7,0:1:7,'regularizer','diffusion');
contourf([1:8],[1:8],g,num_lines); xlim([1,8]);ylim([1,8]);hold on;%     colorbar;
colorbar('Location','southoutside')
max_T = [max_T max(temp2_rtd(:,i))];
min_T = [min_T min(temp2_rtd(:,i))];
title([num2str(max_T(end)-min_T(end),'%0.4f [°C]'),' range', ],'fontSize', font_size);
set(gca,'XTickLabel','');set(gca,'YTickLabel','');set(gca,'XTick',[1:8]);grid;
axis square;
hold off;
subplot(1,3,3); %gradient quiver plot produced here
hold on;
F = scatteredInterpolant(grid_x2',grid_y2',temp2_rtd(:,i),'natural');
FF = F(tempx,tempy);
FFF = (reshape(FF,7,7))';
[DX,DY] = gradient(FFF,400,-400);
DXY = sqrt(DX.^2 + DY.^2);
DX = DX'; DY = DY';
DDX = reshape(DX,49,1);
DDY = reshape(DY,49,1);
quiver(tempx,tempy,DDX,DDY)
scatter3(grid_x3,grid_y3,F(grid_x3,grid_y3),[],F(grid_x3,grid_y3),'filled')
scatter3(grid_x2,grid_y2,temp2_rtd(:,i),[],'k','filled');
set(gca, 'CLim', [min(min((F(grid_x3,grid_y3)))), max(max(F(grid_x3,grid_y3)))+1])
colorbar('Location','southoutside')
view(0,90)
set(gca,'YTick',[-1400,-1000,-600,-200,0,200,600,1000,1400] ); % y axis labels
set(gca,'XTick',[-1400,-1000,-600,-200,0,200,600,1000,1400] ); % x axis labels
padnum = num2str((1:1:64)');
padlabel = cellstr(padnum);
dx = 50; dy = 0.1; % displacement so the text does not overlay the data points
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text(grid_x2+dx,grid_y2+dy,padlabel);
xlabel({['Distance from Origin {\mu}m]'],['Time = 
',num2str(time_vector_target(i)*1000),' ms']}) % x-axis 
ylabel('Distance from Origin {\mu}m'); title({['Max Temperature Gradient = 
',num2str(max(max(DXY))), '{\circ}C/{\mu}m'],['Min Temperature Gradient = 
',num2str(min(min(DXY))), '{\circ}C/{\mu}m']})
axis square;
hold off;
maxGradient = [maxGradient max(max(DXY))];

end;
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