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Abstract

Recent years have been marked by a significant increase in interest in green technologies,

which have led to radical changes in the way electric power is generated and utilized. These

changes have been accompanied by greater utilization of DC-based distributed generators

(DGs), such as photovoltaic (PV) panels and fuel cells, as well as DC-based load demands,

such as electric vehicles (EVs) and modern electronic loads. In addition to accommodating

these technologies, future distribution systems (DSs) will also need to support the inte-

gration of additional battery storage systems with renewable DGs. A further factor is

the number of policies that have been implemented in Ontario, Canada, with the goal of

encouraging the use of clean energy. The first, the feed-in-tariff (FIT) program, was intro-

duced to promote the application of renewable DGs, including PV panels and wind DGs,

and a second, new program that offers incentives for switching to EVs has been announced

recently. The result is that future DSs must include additional DC loads and DC-based

DGs along with their present AC loads and energy resources. Future DSs should thus

become AC-DC hybrids if they are to provide optimal accommodation of all types of AC

and DC loads and DGs. These considerations accentuate the need for reliable techniques

appropriate for the planning and operation of future hybrid DSs.

This thesis presents new directions for the planning and operation of AC-DC hybrid

DSs. The main target of the research presented in this thesis is to optimally accommodate

the expected high penetration of DC loads and DC-based DGs in future DSs. Achieving

this target entailed the completion of four consecutive parts: 1) developing a unified load

flow (LF) model for AC-DC hybrid DSs, 2) introducing an energy management scheme

(EMS) for the optimal operation of AC-DC hybrid DSs, 3) introducing a planning model

to determine the optimal AC-DC network configuration that minimizes the costs of the

hybrid DS, and 4) developing a reliability-based planning technique for the simultaneous

optimization of the DS costs and reliability.

The first part of this research introduces a novel unified LF model for AC-DC hybrid

DSs. The LF model can be applied in hybrid DSs with a variety of configurations for

AC/DC buses and AC/DC lines. A new classification of DS buses is introduced for LF

analysis. Three binary matrices, which are used as a means of describing the configuration

of the AC and DC buses and lines, have been employed in the construction of the unified

power equations. The LF model is generic and can be used for both grid-connected and

isolated hybrid DSs. The new model has been tested using several case studies of hybrid

DSs that include different operational modes for the AC and DC DGs. The effectiveness
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and accuracy of the developed LF model has been verified against the steady-state solution

produced by PSCAD/EMTDC software.

The second part presents a two-stage EMS that can achieve optimal and reliable opera-

tion for AC-DC hybrid DSs. The first stage introduces a network reconfiguration algorithm

to determine the optimal day-ahead reconfiguration schedule for a hybrid DS, while con-

sidering the forecasted data for load demands and renewable DGs. The objective of the

reconfiguration algorithm is the minimization of DS energy losses. The second stage intro-

duces a real-time optimal power flow (OPF) algorithm that minimizes the DS operation

costs. In addition, a load-curtailment-management (LCM) technique is integrated with

the OPF algorithm in order to guarantee optimal and reliable DS operation in the case of

abnormal operating conditions.

The third part presents a novel stochastic planning model for AC-DC hybrid DSs. Tak-

ing into account the possibility of each line/bus being AC or DC, the model finds the opti-

mal AC-DC hybrid configuration of buses and lines in the DS. It incorporates consideration

of the stochastic behavior of load demands and renewable DGs. The stochastic variations

are addressed using a Monte-Carlo simulation (MCS). The objective of the planning model

is the minimization of DS investment and operation costs. The developed planning model

has been employed for finding the optimal configuration for a suggested case study that

included PV panels, wind DGs, and EV charging stations. The same case study was also

solved using a traditional AC planning technique in order to evaluate the effectiveness of

the hybrid planning model and the associated cost-savings.

The last part of this research introduces a stochastic multi-objective optimization model

for the planning of AC-DC hybrid DSs. The introduced model determines the optimal

AC-DC network configuration that achieves two objectives: 1) minimizing system costs,

and 2) maximizing system reliability. Network buses and lines can become either AC or

DC in order to achieve the planning objectives. The model features an MCS technique

for addressing stochastic variations related to load demands and renewable DGs. The

developed model has been tested using a case study involving a hybrid DS that included

a variety of types of loads and DGs. Solving the same case study using a traditional AC

planning technique provided verification of the benefits offered by the developed model,

whose efficacy was confirmed through a comparison of the AC and hybrid Pareto fronts.

The developed planning framework represents an effective technique that can be used by

DS operators to identify the optimal AC-DC network configuration of future hybrid DSs.
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connected at that bus.

Qnm Reactive power transmitted from busn to busm.

RC Running cost of the DS.

Sc Apparent power of the VSC (c).

Snm Apparent power transmitted from busn to busm.

Uf,bus-n Unavailability of electric power at bus n, in h/year.

Unm Binary element of line nm in the connection matrix U .

Vn Voltage magnitude at bus n, in kV or p.u.
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Chapter 1

Introduction

1.1 Preface

The electric energy debate between AC (alternating current) and DC (direct current) was

started in New York in the 19th century [1]. The battle was won by AC, which has been

the main type of the electric power generation, transmission, and distribution. The AC

power became the dominant because of different reasons, including the utilization of power

transformers that can be used to step the AC voltage up for lower transmission losses and

step it down for power distribution purposes. Since the beginning of the 21st century,

the manner in which electric power is generated and utilized has changed significantly.

Heightened environmental concerns have led many countries to be interested in green

technologies, such as electric vehicles (EVs), photovoltaic (PV) energy, and other renewable

distributed generators (DGs). The DC power is therefore making a comeback to satisfy the

needs of the present and future power networks. The DC system can offer several benefits

for the electric grid, such as greater power line capacity, higher efficiency, lower system

costs, and less design complexity [2–4]. However, the benefits of both AC and DC power

systems can be gained by integrating them into an AC-DC hybrid structure [5–8].

1.2 Motivation

Increased exploration of the use of DC architectures in distribution systems (DSs) has been

prompted by the growing trend toward greater utilization of DC-based energy resources,
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such as PV panels and battery storage systems [9], as well as the expanded DC-based load

demand related to components such as EVs and modern home appliances. On one hand,

the global installed capacity of solar PV energy increases dramatically every year, and is

expected to reach more than 600 GW by 2020, as shown in Figure 1.1 [10]. In Canada,

solar PV energy has grown substantially, reaching 1210 MW in 2013 [11]. The significant

increase started in 2009 with the installation of 62 MW of solar PV energy and continued

with 186 MW in 2010, 216 MW in 2011, 268 MW in 2012, and 445 MW in 2013 [11]. The

vast majority of this growth occurred in the province of Ontario. Canadian solar industries

association expects that Canada’s solar PV capacity will reach 6300 MW by 2020 [12]. On

the other hand, the worldwide market sales of EVs increased by 70% between 2014 and

2015, and are expected to reach 20 million cars by 2020 [13]. Figure 1.2 shows that the

global EV sales are significantly increased over the years [13]. A further factor is the number

of energy policies directed at encouraging the use of green technologies. Examples of these

policies in Ontario, Canada, include 1) the feed-in-tariff (FIT) program that was developed

to increase the installation of renewable-based DGs (e.g., PV and wind DGs) [14], and 2)

the incentive program that promotes the use of EVs [15].
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Figure 1.1: Global growth of solar PV electric energy.
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Based on the aforementioned discussion, it is obvious that the current and future DSs

include additional DC loads and DC-based DGs along with the traditional AC loads and

generators [2]. Future DSs should thus become AC-DC hybrids if they are to provide

optimal accommodation of all types (AC and DC) of loads and DGs. However, there

is a lack of research conducted in the area of AC-DC hybrid DSs, where many points

related to the planning and operation of such hybrid DSs are not well covered in the

literature. Therefore, the work presented in this thesis aims to fill gaps evident in the

available literature through the development of effective techniques appropriate for the

planning and operation of future hybrid DSs.

1.3 Research Objectives

The primary goal of this research is to optimally accommodate the expected high penetra-

tion of DC loads and DC-based DGs in future DSs. To achieve this goal, new methodologies

for the planning and operation of AC-DC hybrid DSs are developed in this thesis. The

objectives of the research presented in this thesis are shown in Figure 1.3, and can be

summarized as follows:

1. The development of a unified load flow (LF) model that is flexible, versatile, and

suitable for the planning and operation of AC-DC hybrid DSs.
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2. The development of an energy management scheme (EMS) that can be used for

guaranteeing optimal and reliable operation of AC-DC hybrid DSs.

3. The development of a stochastic planning model for AC-DC hybrid DSs. The model

must be capable of determining the optimal AC-DC network configuration that min-

imizes the DS investment and operation costs. The model should incorporate con-

sideration of the stochastic behavior of load demands and renewable DGs.

4. The development of a reliability-based stochastic planning model for AC-DC hybrid

DSs. The proposed model should be formulated to achieve two objectives: 1) mini-

mizing system costs, and 2) maximizing system reliability. The stochastic variations

related to load demands and renewable DGs should be addressed in the model.

Objective (1)

Developing a unified load flow model 

for AC-DC hybrid DSs.

Objective (2)

Achieving optimal and reliable operation 

of AC-DC hybrid DSs.

Objective (3)

Developing a stochastic planning model for the 

network configuration of AC-DC hybrid DSs.

Objective (4)

Developing a reliability-based stochastic 

planning model for AC-DC hybrid DSs.

Optimal accommodation of AC and DC loads and DGs in future DSs

Figure 1.3: Research objectives.
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1.4 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 provides the required background and literature survey on the previous work

conducted in the area of AC-DC hybrid systems, including AC-DC LF analysis as

well as the planning and operation of AC-DC hybrid power systems.

Chapter 3 introduces a unified model for solving the LF problem of AC-DC hybrid DSs.

The proposed model is generic and can be used for the planning and operation of

different hybrid power systems. The proposed model can be applied in hybrid DSs

with mixed configurations for AC/DC buses and AC/DC lines. A set of generic LF

equations has been derived based on comprehensive analysis of the possible AC-DC

hybrid system configurations.

Chapter 4 presents a two-stage EMS for the optimal operation of AC-DC hybrid DSs. In

the first stage, a proposed network reconfiguration algorithm determines the optimal

day-ahead reconfiguration schedule that includes consideration of the forecasted data

for load demands and renewable DGs. In the second stage, a proposed real-time

OPF-LCM algorithm guarantees reliable and optimal operation of the hybrid DS.

Chapter 5 presents a novel stochastic planning model for AC-DC hybrid DSs. A connec-

tivity profile has been introduced as a means of representing possible AC-DC hybrid

bus and line configurations. The model searches for the optimal AC-DC network

configuration that minimizes the DS costs. The model incorporates consideration of

the stochastic behavior of load demands and renewable DGs.

Chapter 6 introduces a reliability-based stochastic planning model for AC-DC hybrid DSs.

The proposed model is formulated as a multi-objective optimization problem that has

two objectives: 1) minimizing system costs, and 2) maximizing system reliability.

The second objective is achieved through the minimization of the expected energy

not supplied (EENS) in the system. Network buses and lines can become either AC

or DC in order to achieve the planning objectives.

Chapter 7 sets out the thesis conclusions and contributions as well as recommendations

for future research studies.
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Chapter 2

Background and Literature Survey

2.1 Introduction

As mentioned in Chapter 1, future DSs should become AC-DC hybrids if they are to

provide optimal accommodation of all types (AC and DC) of the anticipated loads and

DGs. This belief accentuates the need for reliable techniques appropriate for the planning

and operation of future hybrid DSs, as highlighted in the research objectives in the previous

chapter. This chapter presents the required background and literature survey pertaining

to the objectives of this thesis. The first section, Section 2.2, presents an overview of

the different types of the AC-DC hybrid power systems that have been discussed in the

literature. Section 2.3 discusses the AC-DC hybrid LF methods presented in previous

research studies. A review of the operation and planning techniques used for AC-DC

hybrid power systems is introduced in Sections 2.4 and 2.5. Finally, the conclusions and

discussions of this chapter are presented in Section 2.6.

2.2 AC-DC Hybrid Power Systems

Different types of AC-DC hybrid power systems are discussed in the literature, such as

high-voltage direct current (HVDC) systems, AC-DC hybrid microgrids, and low voltage
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direct current (LVDC) systems. An overview of the network topologies of those hybrid

systems is presented in the following subsections.

2.2.1 HVDC Transmission Systems

HVDC transmission system is a well-known application of AC-DC hybrid power systems

because it has been proven that transmitting DC power for very long distances can achieve

more benefits compared to the conventional AC transmission [16]. As shown in Figure 2.1,

two types of HVDC connections are presented in the literature: two-terminal and multi-

terminal DC transmission systems [17,18].

AC

DC Line

Converter Converter

AC

AC

DC Line

Converter Converter

AC

Converter

AC
D

C
 L

in
eD

C
 L

ine

(b)(a)

Figure 2.1: HVDC connections: (a) two-terminal HVDC, (b) multi-terminal HVDC.

2.2.2 AC-DC Hybrid Microgrids

AC-DC Hybrid microgrids represent one of the future distribution networks to achieve the

merits of both AC and DC power. Several research studies have discussed the technology

and power management strategies of AC-DC hybrid microgrids [19–21]. In the general

architecture of the hybrid microgrid, all system components are clustered into AC and DC

subgrids, which are interconnected by an interlinking converter, as shown in Figure 2.2.

These components include AC/DC loads, AC/DC renewable-based DGs, dispatchable DGs,

and energy storage systems.
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AC Bus

Interlinking 

Converter

DC Bus

DC-based 

DGs

DC Loads

PV panels
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Storage 
Systems

Electric Vehicles

AC Loads

Main 

AC Grid

AC-based 

DGs

Wind

 DG

DC 

Network

AC 

Network

AC Subgrid DC Subgrid

Figure 2.2: General architecture of AC-DC hybrid microgrids.

The clustering topology of the hybrid microgrid is suitable for special applications

(e.g. small and remote areas). From the network connection perspective, AC-DC hybrid

microgrids represent the most obvious way to interlink different types (AC and DC) of

system components. However, this approach does not represent the most economical hybrid

connection for large power systems, such as the typical distribution systems.

2.2.3 LVDC Distribution Systems

The techno-economic analysis of LVDC systems has been discussed in [3, 4, 22]. With

respect to the location of the DC links and DC/AC converters, two main topologies are in-

vestigated in [22]: 1) LVDC link style (Figure 2.3-a), and 2) wide LVDC distribution district

style (Figure 2.3-b), in which the DC/AC converters are installed at the customer ends.

The results in [3, 4, 22] showed that although the operation and protection of LVDC

distribution network are more complex compared to the conventional AC grid, the LVDC

system can provide higher transmission capacity, better power quality, and lower power
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losses compared to the AC system. However, there are some demerits of the DC distribution

system are mentioned in [3]. These demerits are related to the lifetime, power losses, and

voltage harmonics of the AC-DC converters.

Converter
Converter

Converter

Converter

Converter

Main AC Grid
AC

AC

AC

AC

DC

ConverterConverter

Main AC Grid

ACDC

(a)

(b)

Distribution 

Transformer

Distribution 

Transformer

AC

AC

Converter
Main 

AC Grid

DC
(c)

Distribution 

Transformer

AC

LVAC

LVDC

Figure 2.3: LVDC topologies presented in [22] - (a) LVDC link style, and (b) wide LVDC
distribution district.

An AC-DC bilayer DS was introduced in another research study [7]. The bilayer DS

is based on installing a DC layer parallel to the conventional AC layer, as shown in Fig-

ure 2.4. The two layers plus an interlinking converter are integrated to supply the electric

power to the system AC loads as well as to accommodate the presence of plug-in hybrid

electric vehicles and PV arrays. A case study revealed that the bilayer DS can reduce the

overloading of the secondary distribution transformer, and avoid distribution transformer

upgrades as a consequence.

Other researchers [23–26] have also demonstrated the benefits of using DC power in

residential and commercial buildings. For example, a new energy management strategy
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Figure 2.4: The bilayer DS proposed in [7].

for a DC DS in buildings is proposed in [23] to minimize the building energy costs and to

provide benefits to EV owners. In another research [24], a DC nanogrid has been presented

as a means of integrating the residential electronic loads with the renewable-based DGs

and energy storage batteries. The study in [25] proposes an LVDC DS to supply sensitive

electronic loads in buildings. The laboratory measurements showed that the use of the

suggested DC system led to lower power losses than occur in a purely AC system. The

feasibility of using DC power in commercial facilities was discussed in [26]. A techno-

economic comparison was carried out between the traditional AC system and the proposed

DC architecture. The study revealed that the DC system can achieve less voltage drop,

less power losses, and less installation and operation costs compared to the AC system.

Although the aforementioned research studies have investigated the benefits associated

with the use of DC power alongside AC power in DSs, the determination of the optimal

AC-DC hybrid DS configuration considering all possible combinations of AC and DC buses

and lines has not been addressed before in the literature.

2.3 AC-DC Hybrid Load Flow Analysis

The load flow (or power flow) problem is the problem of computing the steady-state flow

of electrical power in the power networks. The LF analysis represents the most important

network computation in power systems. The LF problem arises in many power system

applications, and has been extensively discussed in the literature [27, 28]. The main pa-

rameters obtained from the LF study are the magnitude and phase angle of the voltage
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at each bus, as well as the active and reactive power flowing in each line in the network.

The LF study is important for planning of future power systems as well as for the optimal

operation of existing systems.

2.3.1 AC Load Flow

In AC LF analysis, there are four parameters associated with any AC bus in the power

network. These parameters are: the active power (P ), the reactive power (Q), the voltage

magnitude (V ), and the voltage angle (θ). For the AC power network shown in Figure 2.5,

the AC power flow can be calculated for the AC bus i using (2.1) and (2.2) [29].

Gi

AC 

Power Network

Bus i
AC Load

Vi ∟θi

AC Generator
+ j Q i 

ac
GP i 

ac
G

acac+ j Q i LP i L

Figure 2.5: Typical AC-bus representation for power flow analysis.

P ac
Gi
− P ac

Li
=

Nac
b∑

j=1

Vi Vj

(
G8ij cos(θi − θj) +B8ij sin(θi − θj)

)
(2.1)

Qac
Gi
−Qac

Li
=

Nac
b∑

j=1

Vi Vj

(
G8ij sin(θi − θj)−B8ij cos(θi − θj)

)
(2.2)

where Nac
b is the number of AC buses in the system; P ac

Gi
and Qac

Gi
are the active and

reactive power of the AC generator at bus i, respectively; P ac
Li

and Qac
Li

are the active and

reactive power demand for the AC load at bus i, respectively; Vi and θi are the magnitude

and angle of the bus i voltage, respectively; and (G8ij + j B8ij) is the complex element (i, j)

in the bus admittance matrix Ybus.
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One of the most well-known LF methods discussed in the literature is the Newton

Raphson (NR) method. The NR method uses the active and reactive power equations

described in (2.1) and (2.2). The NR method is based on the solving of the matrix equation

(2.3) in each iteration until a convergence criterion is satisfied [30].

[
∆P

∆Q

]
= [J ]

[
∆θ

∆V

]
=


∂P

∂θ

∂P

∂V

∂Q

∂θ

∂Q

∂V


[

∆θ

∆V

]
(2.3)

where ∆P and ∆Q are the active and reactive power mismatches, respectively; and ∆V and

∆θ are the variation in the voltage magnitude and angle at each iteration, respectively. The

Jacopian matrix [J ] represents the matrix of partial derivatives, which must be constructed

at each iteration.

Due to its quadratic convergence characteristics, the NR method is considered as an

efficient algorithm for solving the LF problem of highly meshed power systems (e.g., power

transmission systems) [31, 32]. However, the NR method may diverge in the case of DSs

due to the high R/X ratio [33]. In addition, the Jacobian matrix in the NR method has

to be constructed and inverted in each iteration. Therefore, the NR method may take a

huge amount of computational time in the case of large DSs.

Another method that can be used in DS is the Forward/Backward (F/B) method [34,

35]. The F/B method is based on two steps: 1) The backward sweep, in which Kirchhoff’s

current law (KCL) is applied for the calculation of the branch currents, starting from the

last branches in the DS, and 2) The forward sweep, in which the Kirchhoff’s voltage law

(KVL) is applied for the calculation of the bus voltages, using the source bus voltage and

the calculated branch currents. This process is iteratively repeated until a convergence

criterion is satisfied. The convergence criterion is satisfied if the active and reactive power

mismatches at all system buses become less than a selected small tolerance. The KCL and

KVL equations for the line portion shown in Figure 2.6 are expressed in (2.4) and (2.5),

respectively.

I12 = IL2 + I23 (2.4)

V2 = V1 − Z12 I12 (2.5)
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where I12 and I23 are the branch currents of lines 1-2 and 2-3, respectively; V1 and V2 are

the voltages of bus 1 and bus 2, respectively; Z12 is the impedance of line 1-2; and IL2 is

the current of the load connected at bus 2.

Bus 1 Bus 2

Z12 I12 I23 

IL1 IL2 

= V1 ∟θ1 = V2 ∟θ2

Figure 2.6: Line section in a radial DS.

The F/B method has two main advantages: simple calculation procedures and high-

speed convergence. However, the method is not suitable for meshed distribution networks.

2.3.2 DC Load Flow

In DC LF analysis, the two parameters associated with any DC bus in the power network

are the DC power and the DC voltage. For the DC power network shown in Figure 2.7,

the DC power flow can be calculated for the DC bus k using (2.6) [36].

Gk

Bus k
DC Load

Vk 

DC 
Generator

P k
dc

G

P k
dc

L

DC 

Power Network

Figure 2.7: Typical DC-bus representation for power flow analysis.

P dc
Gk
− P dc

Lk
=

Ndc
b∑

j=1

Vk Vj G
8
kj (2.6)
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where Ndc
b is the number of DC buses in the network; P dc

Gk
is the output power of the DC

generator at bus k; P dc
Lk

is the power demand of the DC load at bus k; Vk is the bus k

voltage; and G8kj is the element (k, j) in the bus conductance matrix Gbus.

2.3.3 AC-DC Hybrid Load Flow

Several researchers [36–40] have discussed LF analysis for AC-DC hybrid power systems,

and most have focused on HVDC systems. For example, the authors of [37] provide a

detailed analysis of a VSC-based HVDC model and introduce an equivalent injected power

approach for calculating the AC-DC power flow. In [36] and [38], the LF calculation for

AC-DC hybrid power systems is performed using a sequential approach, in which the AC

and DC LF equations are solved independently at each iteration until the convergence

criteria in the AC and DC subnetworks are satisfied, as shown in Figure 2.8. Because

the sequential method is complicated and time-consuming [39], an integrated approach

is presented in two further studies [39, 40]. In the integrated method, both AC and DC

LF equations are solved together at each iteration in order to overcome the drawbacks

associated with the sequential method. However, both the sequential and integrated LF

methods presented in [36–40] are based on decoupled analysis; i.e., the AC and DC networks

have separate power equations. In this type of analysis, the main hybrid grid is divided

into several AC and DC subgrids that have to be solved iteratively until convergence is

reached. Traditionally, these methods are suitable for HVDC systems, in which the number

of DC nodes is limited. The authors of [41–44] have presented hybrid LF equations in the

formulation of the OPF problem. However, their models are limited only for HVDC system

configurations, and in an effort to simplify the LF calculations, most of them [42–44] have

ignored the power losses of the AC-DC converters.

From the aforementioned discussion, it is obvious that the results of the research re-

lated to AC-DC hybrid LF analysis are still inconclusive and address very limited AC-DC

network configurations. The hybrid LF methods presented in [36–44] have focused on grid-

connected systems. These methods cannot deal with isolated hybrid DSs, since they do

not include consideration of the unavailability of a slack bus or the frequency variation in

the AC subnetworks. In addition, the AC-DC LF algorithms presented in the literature

(e.g., [36–40]) are based on decoupled LF analysis, in which the main hybrid network is
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Figure 2.8: Procedures of the sequential load flow analysis.

divided into several AC and DC subnetworks that have to be solved iteratively. In the

smart grid era, future hybrid DSs are expected to include i) a variety of types of AC and

DC loads and DGs, and ii) huge numbers of AC and DC buses and lines that are merging

together and cannot be easily clustered to fit the LF methods discussed in the literature.

Such methods are expected to suffer from computational complexity and numerical solu-

tion instability if they are used for large highly-coupled hybrid DSs. Other studies have

introduced LF methods for AC-DC hybrid microgrids [45–47]. These methods, however,

are designed for hybrid microgrid topologies and are also based on decoupled LF analysis.

In addition, the decoupled-analysis-based methods can only be used for predetermined net-

work configurations. These methods therefore cannot be used in hybrid planning studies

to determine the optimal network configurations of future hybrid DSs.

15



CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

2.4 Optimal Operation of AC-DC Hybrid Smart DSs

Hybrid smart DSs are characterized by the availability of information and communication

technologies that allow intelligent energy management techniques to be used for the optimal

operation scheduling of such hybrid systems. Hybrid smart DSs will host a variety of

types of loads and DGs, including modern controllable loads and renewable-based DGs.

Although renewable DGs can provide economic and environmental benefits for the DS,

their intermittent nature also adds greater complexity to DS operation. Robust and reliable

forecasting techniques are therefore needed in order to reduce the stochastic risk associated

with renewable DGs. A lower level of stochastic risk can also be guaranteed if fast OPF

algorithms are used for the online operation of smart DSs. Hybrid smart DSs will also

include bidirectional relays and remotely controlled switches, both of which will enable

the application of network-reconfiguration techniques. In this context, the characteristics

and components that will accompany hybrid smart DSs in the future have accentuated

the need for effective energy management techniques that can guarantee the reliable and

optimal operation of AC-DC hybrid smart DSs.

2.4.1 Network Reconfiguration

Network reconfiguration is the process of controlling the open/closed status of the sec-

tionalized (or tie) switches in order to achieve an optimal DS operation schedule. Several

studies have involved the examination of DS reconfiguration techniques for traditional AC

DSs. For example, the authors of [48] proposed an operational planning strategy for smart

active DSs. The objective of the strategy was to minimize day-ahead operation costs based

on consideration of the hourly reconfiguration capability of the DS network. In two further

studies [49,50], the authors proposed reconfiguration algorithms for distribution networks.

These studies revealed that the use of a reconfiguration strategy provides a number of

benefits, including a reduction in DS power losses and improvement in the DS voltage

profile. In [51] and [52], simultaneous reconfiguration and DG allocation algorithms were

proposed as a means of minimizing DS power losses and improving the voltage profile. The

authors of [53–55] also proposed optimal reconfiguration strategies for minimizing power

losses in distribution networks. Although these studies [48–55] introduced reconfiguration

techniques for traditional AC DSs, the AC-DC hybrid reconfiguration problem has yet to

16



CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

be tackled. Reconfiguration of an AC-DC hybrid network will be more complicated than

the traditional AC version.

2.4.2 Demand-Side Management

Demand-side management (DSM) includes load-curtailment management (LCM) and other

demand response programs. Taken together, they represent an important practice avail-

able for efficient DS operation because they can lower operating costs and provide an

appropriate degree of system reliability [56,57]. Several studies have investigated the ben-

efits associated with the application of DSM programs. For example, the authors of [58]

proposed a demand-response strategy that includes hourly load shifting and curtailment

techniques. The proposed strategy allows better scheduling of the energy resources avail-

able in the system. In [48], an optimal energy management framework was presented as

a means of minimizing the day-ahead operation costs of smart DSs, taking into account

reconfiguration and load control techniques. To achieve optimal scheduling of transmission

outages and to maintain system security and reliability, the authors of [59] introduced a

security-constrained optimal scheduling model that uses a load shedding technique. In

another study [60], dynamic contracts for load curtailment were designed to guarantee

suitable benefits for both the utility operator and the customers. However, all of these

techniques [48,58–60] were applied on traditional AC DSs.

2.4.3 Energy Management of AC-DC Hybrid Systems

Few researchers have discussed the energy management of AC-DC hybrid systems. For

example, the authors of [61] suggested a stochastic centralized dispatch technique for an

AC-DC hybrid smart grid. The objective of the proposed technique was to minimize the

day-ahead operation costs, while taking into consideration different stochastic scenarios

that could occur during the next day. In [6], a power management strategy was proposed

for controlling the active and reactive power exchange between the converters and the AC

feeders in an AC DS with DC-grid interconnections. The objective of the strategy was

to increase power handling capacity and improve the voltage profile of the DS feeders.

Another study [62] described a management strategy for the optimal operation of an AC-
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DC hybrid grid composed of two clustered subgrids: AC and DC. The proposed strategy

was based on two levels of operation: system level and device level. In the system level, a

mixed-integer optimization model was proposed to minimize the day-ahead operation costs

of the AC-DC hybrid grid considering the uncertainties associated with load demands and

renewable DGs. In the device level, the voltage variations were controlled in both AC and

DC subgrids through the controlling of the DG converters.

However, to the best of the author’s knowledge, no studies have proposed network

reconfiguration and LCM techniques for the energy management of AC-DC hybrid DSs.

2.5 Planning of AC-DC Hybrid DSs

The primary purpose of DS planning is to ensure reliable and optimal satisfaction of the

growing electricity demand. To achieve this goal, several methods have been targeted at the

formulation of the AC planning problem, as discussed in [63–71]. With respect to planning

stages, two approaches are presented in the literature: 1) stage-by-stage planning; in which

the planning periods are optimized separately [63–65], and 2) Multi-stage planning; in

which all planning stages are integrated and considered simultaneously [66–70]. With

respect to planning objectives, two main objectives have been adopted: 1) minimizing

investment and operation costs [65–67], and 2) maximizing system reliability. DS planners

currently consider these two objectives simultaneously by formulating the planning problem

as a multi-objective optimization problem [69–71]. For future smart DSs, an AC-DC

hybrid structure constitutes the most likely optimal solution for supplying AC/DC loads

from available AC/DC energy resources [5–8]. Because the new hybrid structure will

encompass additional DS components, such as AC/DC buses, AC/DC lines, and AC-DC

converters, consideration of their installation costs and failure rates must be included in the

planning problem. Further factors that should also be taken into account are the stochastic

variations associated with the different types (AC and DC) of load demands and renewable-

based DGs. The hybrid planning problem is consequently much more complicated than

the traditional AC version. DS planners will therefore require suitable techniques for the

planning of these new hybrid systems. However, research in the area of AC-DC hybrid

DSs is in the infant stage and still lacks an effective methodology for the planning of such

hybrid DSs.

18



CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

Recent papers [17,72–75] have examined the optimal planning of AC-DC hybrid power

systems in general: most have focused on HVDC systems. For example, an algorithm for

the expansion planning of AC-DC hybrid transmission systems was proposed in [17]. The

algorithm selects the optimal combination of AC-DC transmission links from a predefined

set of candidates. The model has two main disadvantages: 1) it is based on the solving

of a specific number of scenarios; 2) it ignores the power losses associated with AC-DC

converters and DC lines. In [72], a smart targeted planning algorithm was introduced as a

means of improving the economic dispatch efficiency of an HVDC system that incorporates

VSCs. The algorithm prioritizes potential DC line locations in an existing transmission

system in order to establish which of the scenarios solved provides the optimal solution.

In [73], a multi-objective optimization algorithm was proposed to solve the transmission

expansion planning problem, considering candidate AC/DC lines to minimize two objective

functions: the total investment costs and the active power losses. In another study [74],

the authors proposed an OPF method that incorporates a VSC-based multi-terminal DC

(VSC-MTDC) model. The model was used for solving a number of scenarios related to the

installation of MTDC in an existing AC network, and then for determining which scenario

is the optimal one.

Since, the studies reported in [17,72–74] are based on the solving of specific predefined

scenarios, only a limited number of candidate DC links are examined. This approach does

not allow the inclusion of all possible AC-DC configurations, thereby limiting the chances

of finding superior solutions. The hybrid planning methods presented in the literature are

unsuitable for use with complicated hybrid DSs, which include a variety of types of AC

and DC loads and DGs. These methods do not have the flexibility required for including

consideration of all possible AC-DC configuration scenarios or of the variety of conditions

encountered in the operation of future hybrid DSs.

2.6 Conclusions and Discussions

According to the surveyed literature in this chapter, the idea of hybrid DSs represents a

promising technique to incorporate the benefits of both AC and DC power. Due to the

increased penetration rate of DC loads and DC-based DGs, the current belief is that the

future DSs will be AC-DC hybrid systems. Therefore, more research works in the area of
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AC-DC hybrid DSs are required to face all challenges associated with the planning and

operation of such hybrid systems. The gaps in the literature can be addressed from many

perspectives. From the LF perspective, most researchers have solved the LF problem of

hybrid power systems based on decoupled LF analysis (i.e. DC LF analysis and AC LF

analysis have separate power equations). However, a unified hybrid LF model is needed

for the planning of AC-DC hybrid DSs. In order to address this requirement, Chapter 3

introduces a unified AC-DC LF model that can solve the AC and DC portions of the

hybrid network simultaneously based on generic AC-DC power equations. In addition, no

studies have been conducted for the optimal operation of AC-DC hybrid DSs considering

the network reconfiguration capabilities. To fill this gap, a two-stage EMS is presented

in Chapter 4 for determining the optimal day-ahead reconfiguration schedule as well as

for guaranteeing reliable and optimal online operation for AC-DC hybrid DSs. From the

hybrid planning perspective, most hybrid planning methods presented in the literature have

focused on HVDC systems. These methods are dependent on prioritization of the solutions

of a limited number of candidate scenarios. This approach does not allow the inclusion of all

possible AC-DC configurations, thereby limiting the chances of finding superior solutions.

Therefore, a novel planning model is proposed in Chapter 5 to determine the optimal AC-

DC network configuration that minimizes the DS investment and operation costs. In order

to incorporate the DS reliability in the planning problem, a reliability-based stochastic

planning model is introduced in Chapter 6. The model aims to optimize the DS costs

and reliability, considering the stochastic variations associated with load demands and

renewable-based DGs.
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Chapter 3

A Generalized Approach for the Load

Flow Analysis of AC-DC Hybrid DSs

3.1 Introduction

This chapter presents a unified LF model that can be applied to hybrid DSs with varied

AC-DC configurations. A new classification of hybrid DS buses is also introduced for LF

analysis. Unified AC-DC power equations are constructed based on comprehensive analysis

of the possible hybrid DS configurations. The proposed LF model employs three binary

matrices to describe the AC-DC configuration of any hybrid DS. These matrices enable

a single configuration at a time to be activated in the unified power equations. VSCs

are used in the proposed model for AC-DC power conversions. In this model, the AC

and DC portions of the hybrid network are solved simultaneously considering different

operational modes for system DGs. The proposed model can be applied to i) radial or

meshed; ii) isolated or grid-connected; and iii) easily clustered or highly-coupled hybrid

DSs. The new model has been used for solving the LF problem of several case studies

of grid-connected and isolated hybrid systems. As a means of evaluating the effectiveness

and the accuracy of the proposed model, the LF solution was compared to the solution

produced by PSCAD/EMTDC. A comparison of the results reveals the efficacy of the

proposed LF model. The developed LF model is flexible, versatile, and suitable for the

planning of AC-DC hybrid DSs, as discussed in Chapters 5 and 6.
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This chapter is organized as follows: Section 3.2 details the modeling and analysis

of power equations for an AC-DC hybrid system that incorporates a VSC model. The

formulation of the proposed LF model, including the unified AC-DC power equations, is

explained in Section 3.3. The case studies as well as the validation of the proposed LF

model are described in Section 3.4. The final section presents the summary and conclusion

of this chapter.

3.2 Modeling and Analysis of AC-DC Hybrid DSs

Hybrid DSs consist of a variety of AC and DC components, including loads, generating

units, lines, and buses. These components can be interconnected in different hybrid config-

urations. This section explains the classification of AC/DC buses and discusses the VSC

steady-state model used in the proposed LF model. The proposed classification of the AC-

DC hybrid configurations that was used for deriving the unified AC-DC power equations

is also presented and analyzed.

3.2.1 Classification of AC and DC Buses

As depicted in Figure 3.1, hybrid DS buses can be either AC or DC. Hybrid DSs include

DC loads and DC DGs alongside the conventional AC loads and AC generators. Examples

of DC DGs include PV panels and fuel cells. EVs and modern elevators represent examples

of DC loads. In the case of AC buses, AC-DC converters are necessary for connecting DC

loads and DC DGs to an AC bus, as shown in Figure 3.1(a). This arrangement is reversed

in the case of DC buses, as shown in Figure 3.1(b).

In the proposed LF model, AC buses are classified as follows [76]:

1. AC slack (or reference) bus: The voltage magnitude and voltage angle of the bus are

known, while the active and reactive powers generated at the bus are unknown.

2. AC load (or P-Q) bus: The active and reactive powers of the loads connected at

the bus are known, while the voltage magnitude and voltage angle of the bus are

unknown.
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Figure 3.1: Connection of loads and DGs to (a) an AC bus and (b) a DC bus.

3. AC voltage-controlled (or P-V) bus: The active power generated at the bus and

the voltage magnitude of the bus are known, while the bus voltage angle and the

generated reactive power are unknown. In this case, if the generated reactive power

violates the minimum or maximum limits, the bus would be converted to a P-Q bus,

with the reactive power then being set to equal the limit that was violated.

4. AC droop-based DG bus: This type is used in isolated hybrid DSs for power sharing

among AC DGs [77]. The frequency and the voltage magnitude of the AC DG are

regulated based on the generated active and reactive powers, respectively.

The two main parameters for each DC bus are the DC voltage and the DC power,

and there is only one DC power balance equation that can be defined for each DC bus.

Therefore, the following classification of DC buses is introduced:

1. DC load (or Pdc) bus: The net DC power (from the loads and/or DGs) injected into

the bus is known, while the DC bus voltage is unknown.

2. DC voltage-controlled (or Vdc) bus: The DC bus voltage is known, and the power

generated at the bus is unknown. However, if the generated power violates the

minimum or maximum limits, the bus would be converted to a Pdc bus, with the

power then being set to equal the limit that was violated.

3. DC droop-based DG bus: This type is used in isolated hybrid DSs for power sharing

among DC DGs [77]. The DC voltage is regulated based on the generated DC power.
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For the LF analysis proposed in this study, the specified parameters and the unknown

variables for each type of the hybrid DS buses are presented in Section 3.3 – Table 3.1.

3.2.2 AC-DC Converter Model

VSCs can be used in hybrid DSs for two reasons: 1) VSCs can provide fast and independent

control of the active and reactive power, and 2) the power flow can be easily reversed by

reversing the direction of the current [39]. These two features are suitable for use in active

DSs, in which the power flow can be controlled in both directions. VSCs are therefore

employed for AC-DC power conversions in the proposed LF model. The DC side of the

VSC is a unipolar circuit that has two DC lines, as shown in Figure 3.2. The converter

impedance Zc shown in Figure 3.2 includes the elements connected between the point of

common coupling (PCC) and the AC bus of the VSC, such as power transformers, phase

reactors, or low pass filters. Since Zc is connected between two AC buses, it can be modeled

as described in Case 1 discussed in Section 3.2.3.

 Pc 

 Qc j ki
Zc

PCC

M

VSC

VPCC
ac Vi

ac Vk
dc

Vj
dc R 

dc

I 
dc

Vk
dc

Vj
dc

I 
dc

I 
dc

r 
dc

r 
dc

         = 2  r 
dcdcR

Figure 3.2: Model of a voltage source converter.

The steady-state model of the VSC can be represented by the following equations.

First, the AC-side voltage V ac
i is related to the DC-side voltage V dc

j as follows [78]:

V ac
i,LLrms

= Kc M V dc
j (3.1)

where M is the modulation index of the VSC. The value of the converter constant Kc
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is dependent on the type of the VSC as well as the type of the pulse width modulation

(PWM) strategy. For the three-phase sinusoidal PWM converter used in this study, the

value of Kc is equal to (
√

3/2
√

2 ) [78].

The relation between the AC voltage base and the DC voltage base is given by

V ac
base = Kc V

dc
base (3.2)

Accordingly, a 1 p.u. AC voltage is equivalent to a 1 p.u. DC voltage at a unity modulation

index, as expressed in (3.3).

V ac
i,p.u. = M V dc

j,p.u. (3.3)

The relation between the DC power and the AC active power is a function of the

efficiency ηc of the converter, as follows:

Pc = P dc
c /ηc = (V dc

j Idc)/ηc (3.4)

where the DC current Idc is given by

Idc = Gdc
(
V dc
j − V dc

k

)
(3.5)

Substituting (3.3) and (3.5) in (3.4) gives

Pc =
Gdc
p.u.

ηc

(
M−2 (V ac

i,p.u.)
2 −M−1 V ac

i,p.u. V
dc
k,p.u.

)
(3.6)

The reactive power Qc at the AC side of the VSC can be either controlled using a direct

set point or calculated as follows:

Qc = Pc tanϕc (3.7)

Regarding the operation of the VSC, two parameters need to be specified. The first

parameter can be the AC active power, the DC power, the modulation index, or the DC-

side voltage. The second parameter can be the converter reactive power, the AC-side

voltage, or the power factor angle. For isolated DSs (e.g., AC-DC hybrid microgrids), the
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VSC can be controlled autonomously to achieve power sharing between the AC and DC

subgrids without the need to specify the aforementioned two parameters. In this case, the

frequency ω and the DC voltage V dc are used as loading indicators for the AC and DC

subgrids, respectively. In order to equalize the loading of the AC and DC subgrids, the

active power flow between the two subgrids can be determined using (3.8) [77]. The VSC

in an isolated DS can also support the reactive power when the active power flows from the

DC side to the AC side [77]. The converter reactive power can then be controlled using the

same reactive power droop of an AC DG (equation (3.32) in Section 3.3) unless the capacity

limit of the VSC is reached [47]. It should be noted that the upper and lower limits of the

modulation index should be taken into consideration in order to avoid overmodulation and

excessive harmonics [36].

ω̂ = V̂ dc (3.8)

where

ω̂ =
ω − 0.5 (ωmax + ωmin)

0.5 (ωmax − ωmin)
(3.9)

V̂ dc =
V dc − 0.5 (V dc,max + V dc,min)

0.5 (V dc,max − V dc,min)
(3.10)

3.2.3 Classification of AC-DC Hybrid Configurations

This subsection presents the proposed classification and the comprehensive analysis of the

possible cases of AC-DC connections. AC/DC buses can be interconnected via AC/DC

lines and AC-DC converters according to one of the following cases:

3.2.3.1 Connection between Two AC Buses

A connection between two AC buses can be achieved using the method exemplified by

either Case 1 or Case 2. In Case 1, two AC buses are connected via an AC line, as shown

in Figure 3.3(a). In this case, the active and reactive power equations are given by

P (a)
nm = V 2

nGnm − VnVm (Gnm cos θnm +Bnm sin θnm) (3.11)

Q(a)
nm = −V 2

nBnm − VnVm (Gnm sin θnm −Bnm cos θnm) (3.12)
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Figure 3.3: Possible cases of AC-DC connections.

In Case 2, a DC line connects the two AC buses via two AC-DC converters, as shown in

Figure 3.3(b). The active and reactive power equations are expressed as (3.13) and (3.14),

respectively. The values of a1 and b1, obtained from (3.15) and (3.16), respectively, are

dependent on the direction of the power flow. If the power flows from bus n to bus m, the

VSC at bus n functions as a rectifier, while the VSC at bus m functions as an inverter. In

this case, the values of a1 and b1 become 1 and 0, respectively. In contrast, if the power

flows from bus m to bus n, the values of a1 and b1 become 0 and 1, respectively.
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P (b)
nm =Gdc

nm

(
M−2

nmV
2
n −M−1

nmVnM
−1
mnVm

)( a1
ηc-nm-r

+ b1 ηc-nm-i

)
(3.13)

Q(b)
c-nm = P (b)

nm tanϕc-nm (3.14)

where

a1 = 0.5(1 + sign(M−1
nmVn −M−1

mnVm)) (3.15)

b1 = 0.5(1− sign(M−1
nmVn −M−1

mnVm)) (3.16)

sign(x) =


1 if x > 0 ,

−1 if x < 0 ,

0 if x = 0 .

(3.17)

3.2.3.2 Connection between AC and DC Buses

The connection between two different types of buses (AC and DC) can be accomplished

through the installation of a DC line and a VSC. Since this case involves two different

types of buses (AC and DC), the formulation of the power flow equations at one side

differs from that at the other side. Consideration of the following two cases facilitates the

formulation of the power flow equations: 1) Case 3a entails the study of the power flow

from the AC side, and 2) Case 3b involves the examination of the power flow from the

DC side. Cases 3a and 3b are illustrated in Figure 3.3(c) and Figure 3.3(d), respectively.

In Case 3a, the power equations (3.18)-(3.21) for the AC bus are formulated in the same

manner as in Case 2.

P (c)
nm = Gdc

nm

(
M−2

nmV
2
n −M−1

nmVnVm
) ( a2

ηc-nm-r

+ b2 ηc-nm-i

)
(3.18)

a2 = 0.5(1 + sign(M−1
nmVn − Vm)) (3.19)

b2 = 0.5(1− sign(M−1
nmVn − Vm)) (3.20)

Q(c)
c-nm = P (c)

nm tanϕc-nm (3.21)

For Case 3b, the power equation at the DC-bus side is expressed as follows:
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P (d)
nm = Gdc

nm(V 2
n − VnM−1

mnVm) (3.22)

3.2.3.3 Connection between Two DC Buses

Case 4 represents a connection between two DC buses via a DC line, as depicted in Fig-

ure 3.3(e). In this case, the DC power equation is given by

P (e)
nm = Gdc

nm(V 2
n − VnVm) (3.23)

3.3 Formulation of the Unified LF Model

Implementation of the LF model in any generic hybrid DS requires that the system con-

figuration and parameters be described in a matrix format. The following matrices have

been defined and are used as input for the LF model.

1. Configuration matrices: The following three binary matrices are defined based on the

given hybrid DS configuration:

(a) Bus-type vector W (Nb×1): This vector describes the type (AC or DC) of each

bus in the hybrid DS:

i. Wn = 0 , if bus n is AC.

ii. Wn = 1 , if bus n is DC.

(b) Connection matrix U (Nb×Nb): This matrix describes the connection of the

hybrid distribution network:

i. Unm = 0 , if no line connects buses n and m.

ii. Unm = 1 , if a line connects buses n and m.

(c) Line-type matrix D (Nb×Nb): This matrix describes the type (AC or DC) of

each line in the hybrid DS:

i. Dnm = 0 , if the line connecting buses n and m is AC.

ii. Dnm = 1 , if the line connecting buses n and m is DC.
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2. AC admittance matrix Y (Nb×Nb): The element Ynm in this matrix is the admittance

of the AC line connecting bus n to bus m, and can be expressed as follows:

Ynm(ω) = Gnm(ω) + j Bnm(ω) =
1

Rnm + j ω Lnm
(3.24)

where (ω=ω∗= 2π×60 Hz) for grid-connected systems.

3. DC conductance matrix Gdc (Nb×Nb): The element Gdc
nm in this matrix is the con-

ductance of the DC line connecting bus n to bus m.

3.3.1 Power Balance Equations

The unified active and reactive power balance equations for the AC-DC hybrid system are

given by

P inj
n = P cal

n , ∀ n = 1, 2, ..., Nb (3.25)

Qinj
n = Qcal

n , ∀ n = 1, 2, ..., Nb (3.26)

The equations for P inj
n , P cal

n , Qinj
n , and Qcal

n are expressed as (3.27)-(3.30), respectively.

P inj
n and Qinj

n represent the net active and reactive power injected into bus n and are

dependent on the loads and DGs connected at that bus. The respective equations for

P inj
n and Qinj

n , expressed as (3.27) and (3.29), are derived based on the AC and DC buses

classified as indicated in Figure 3.1. P cal
n and Qcal

n represent the calculated active and

reactive power transmitted through the lines connected to bus n. The respective equations

for P cal
n andQcal

n , given as (3.28) and (3.30), are derived based on 1) the hybrid configuration

cases classified according to Section 3.2.3, and 2) the configuration matrices (W , U , and

D). For a given set of elements for the matrices (W , U , and D), only one configuration is

activated at a time in the equations (3.27)-(3.30).

P inj
n = Wn

(
P ac
Gn − P

ac
Ln + ηc-n-i P

dc
Gn − η

−1
c-n-r P

dc
Ln

)
+Wn

(
P dc
Gn − P

dc
Ln + ηc-n-r P

ac
Gn − η

−1
c-n-i P

ac
Ln

)
, ∀ n ∈ Nb (3.27)
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P cal
n =

Nb∑
m=1
m 6=n

Unm

[
Wn Wm Dnm

(
V 2
n Gnm(ω)− Vn Vm (Gnm(ω) cos θnm +Bnm(ω) sin θnm)

)
+Wn Wm Dnm

(
Gdc
nm (M−2

nm V
2
n −M−1

nm VnM
−1
mn Vm)

) (
a1 η

−1
c-nm-r + b1 ηc-nm-i

)
+Wn Wm Dnm

(
Gdc
nm (M−2

nm V
2
n −M−1

nm Vn Vm)
) (
a2 η

−1
c-nm-r + b2 ηc-nm-i

)
+Wn Wm Dnm

(
Gdc
nm (V 2

n − VnM−1
mn Vm)

)
+Wn Wm Dnm

(
Gdc
nm (V 2

n − Vn Vm)
)]

, ∀ n ∈ Nb (3.28)

Qinj
n = Wn

(
Qac
Gn −Q

ac
Ln +Qdc

Gn-c −Q
dc
Ln-c

)
, ∀ n ∈ Nb (3.29)

Qcal
n =

Nb∑
m=1
m 6=n

Unm

[
Wn Wm Dnm

(
−V 2

n Bnm(ω)−Vn Vm (Gnm(ω) sin θnm−Bnm(ω) cos θnm)
)

+Wn Wm Dnm Pnm tanϕc-nm

+Wn Wm Dnm Pnm tanϕc-nm

]
, ∀ n ∈ Nb (3.30)

For isolated AC-DC hybrid DSs, the droop-based control can be used to achieve pro-

portional power sharing for AC and DC DGs [77]. In this case, the AC droop equations

(3.31)-(3.32) as well as the DC droop equation (3.33) are then combined with (3.27)-(3.30).

P ac
G = (ω0 − ω) /ψacp (3.31)

Qac
G = (V ac

0 − V ac) /ψacq (3.32)

P dc
G = (V dc

0 − V dc) /ψdcp (3.33)

where

ψacp = (ωmax − ωmin) /P ac,max
G (3.34)

ψacq = (V ac,max − V ac,min) /Qac,max
G (3.35)

ψdcp = (V dc,max − V dc,min) /P dc,max
G (3.36)
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3.3.2 Parameters and Variables for AC and DC Buses

Table 3.1 summarizes the known parameters and unknown variables for all types of system

buses. The known parameters at each bus are considered to be equality constraints, while

the unknown variables constitute the output of the LF model.

Table 3.1: Parameters and Variables for AC and DC Buses

Bus (n) Type Vn θn P inj
n Qinj

n

AC

Slack Bus∗ Known 0.0◦ Variable Variable

Load (P-Q) Bus Variable Variable Known Known

(P-V)
Bus

Qmin
G ≤QG≤Qmax

G Known Variable Known Variable

QG > Qmax
G Variable Variable Known QG=Qmax

G

QG < Qmin
G Variable Variable Known QG=Qmin

G

Droop-based DG Bus∗∗ Variable Variable Variable Variable

DC

Load (or Pdc) Bus Variable – Known –

(Vdc)
Bus

Pmin
G ≤PG≤Pmax

G Known – Variable –

PG > Pmax
G Variable – PG=Pmax

G –

PG < Pmin
G Variable – PG=Pmin

G –

Droop-based DG Bus∗∗ Variable – Variable –
∗ Connected to a stiff AC source (e.g., the distribution substation).
∗∗ Used in isolated systems (e.g., AC-DC hybrid microgrids).

3.3.3 Solution Procedures

The hybrid LF problem is defined by a system of equations that are solved simultaneously.

In order to find the LF solution in this study, a generalized reduced gradient (GRG)

method [79,80] is used for solving the optimization problem described below.

min ‖F (x)‖2 , x ∈ Rnv (3.37)
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where

F (x) =



P inj
i − P cal

i , ∀ i ∈ Nb

Qinj
i −Qcal

i , ∀ i ∈ Nb

P ac
Gi
− 1

ψac
p,i

(ω0 − ω) , ∀ i ∈ Nac
G-dr

Qac
Gi
− 1

ψac
q,i

(V ac
i,0 − V ac

i ) , ∀ i ∈ Nac
G-dr

P dc
Gi
− 1

ψdc
p,i

(V dc
i,0 − V dc

i ) , ∀ i ∈ Ndc
G-dr

V̂ dc
i − ω̂ , ∀ i ∈ Nc-iso

Qc-i − 1
ψac
q,c-i

(V ac
c-i,0 − V ac

c-i ) , ∀ i ∈ Nc-iso

(3.38)

F (x) is the set of the system equations that include the power balance equations, the droop

equations, and the VSC equations; (Nac
G-dr and Ndc

G-dr) are the number of the droop-based

AC and DC DGs, respectively; Nc-iso is the number of VSCs in an isolated DS; and nv is

the number of the system unknown variables x.

The first step in the solution procedures is to define the type, the given parameters,

and the unknown variables for each bus in the hybrid DS, as presented in Table 3.1. In

the second step, the configuration matrices (W , U , and D) as well as the AC admittance

matrix Y and the DC conductance matrix Gdc are constructed. In the third step, the

system parameters are converted to per-unit values, and a flat start (V (0) = 1.0 p.u. and

θ(0) = 0.0◦) is assumed for the unknown system voltages. Finally, the data prepared in the

previous steps are then used as input to the LF model described by (3.25)-(3.38).

3.4 Case Studies

This section presents the case studies that were used for evaluating the effectiveness and

accuracy of the proposed LF model. In the case studies, the proposed LF model was

implemented in a general algebraic modeling system (GAMS) and executed on a desktop

computer with the following specifications: Intel Core i7 2600 @ 3.4 GHz, 64 bit, and 8 GB
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RAM. In the first case study, the accuracy of the proposed model was verified against

the steady-state solution produced by PSCAD/EMTDC. The PSCAD/EMTDC is a time-

domain software that can accurately model power system components using differential

equations, and thus can be used for validating LF algorithms [40, 45, 81]. Such software

takes a huge amount of computational time compared to the algebraic LF methods that

can perform steady-state analyses in very short time.

3.4.1 Thirteen-Bus Test System

As shown in Figure 3.4, the hybrid DS used for the first case study was a 13-bus network.

The data related to the loads and generators at each bus are presented in Figure 3.4. Ta-

ble 3.2 summarizes the impedances of the network under study. The base values for the per-

unit conversion in this system are Sbase= 10 MVA, V ac
base= 4.16 kV, and V dc

base= 6.8 kV. The

efficiency and the power factor of the VSCs are given as 98 % and 95 %, respectively. Re-

garding the bus classifications, bus 1 represents a slack bus, buses (3 and 8) are P-V buses,

bus 5 is a Vdc bus, and the remaining buses are considered as load buses. The results ob-

tained from the proposed LF model and the steady-state solution provided by the PSCAD

software are listed in Tables 3.3 and 3.4. The LF model converged with a system total power

mismatch of 6.9×10-10 p.u., which is equal to
(
‖P inj

n −P cal
n ‖2 + ‖Qinj

n −Qcal
n ‖2 , ∀n∈Nb

)
,

and the computational time was found to be 124 ms.

Table 3.2: Impedances of the 13-Bus Test System

From To Resistance Reactance From To Resistance Reactance
Bus Bus (Ω) (Ω) Bus Bus (Ω) (Ω)

1 2 0.2218 0.3630 5 6 0.2208∗ –
1 9 0.2218 0.3630 6 13 0.4415∗ –
2 3 0.8870 1.4520 7 8 0.4435 0.7260
3 10 0.0500 0.7540 7 12 0.0500 0.7540
3 11 0.0500 0.7540 7 13 0.0500 0.7540
4 5 0.2208∗ – 8 9 0.4435 0.7260
4 11 0.4415∗ – 10 12 0.8830∗ –

∗ DC resistances.
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Figure 3.4: Thirteen-bus test system.

To evaluate the accuracy of the proposed LF model, the percentage errors between the

PSCAD solution and the LF model solution were calculated for the system variables. As

can be seen in Table 3.3, the maximum error for the voltage magnitudes at the system

buses is as low as 0.04 %, while the maximum errors for the generated active and reactive

powers are no greater than 0.03 % and 0.028 %, respectively. Using the data in Table 3.4,

the percentage errors were also calculated for the line flows. The maximum errors for the

active and reactive line flows are only 0.032 % and 0.033 %, respectively. The comparison

of the results obtained from the proposed LF model and those produced by the PSCAD

software therefore demonstrates the effectiveness and accuracy of the proposed model.
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Table 3.3: LF Solution and PSCAD Results for the 13-Bus Test System: Bus Voltages
and Generators’ Data

LF Model Results PSCAD Results

Bus No. Bus Vn θn Vn θn
(n) Type (p.u.) (deg.) (p.u.) (deg.)

1 AC , Slack Bus 1.0500 0.0000 1.05000 0.00000
2 AC , Load Bus 1.0130 -2.0627 1.01300 -2.0772
3 AC , P-V Bus 1.0000 -2.4637 1.00000 -2.4637
4 DC , Load Bus 0.9970 – 0.99738 –
5 DC , Vdc Bus 1.0000 – 1.00000 –
6 DC , Load Bus 0.9940 – 0.99380 –
7 AC , Load Bus 0.9460 -6.6463 0.94560 -6.6396
8 AC , P-V Bus 1.0000 -2.9794 1.00000 -2.9794
9 AC , Load Bus 1.0040 -2.6356 1.00400 -2.6560
10 AC , Load Bus 0.9880 -4.0680 0.98780 -4.1068
11 AC , Load Bus 0.9920 -3.6096 0.99188 -3.6274
12 AC , Load Bus 0.9560 -4.9847 0.95610 -4.9876
13 AC , Load Bus 0.9510 -5.7869 0.95080 -5.8398

Bus No. Bus PGn QGn PGn QGn

(n) Type (MW) (MVAr) (MW) (MVAr)

1 AC , Slack Bus 4.9210 1.2399 4.9240 1.2390
3 AC , P-V Bus 2.5000 0.5300 2.5000 0.5305
5 DC , Vdc Bus 1.8701 – 1.8726 –
8 AC , P-V Bus 2.5000 0.4238 2.5000 0.4266

3.4.2 Modified IEEE 33-Bus Test System

The modified IEEE 33-bus DS was used for the second case study, as shown in Figure 3.5.

The original IEEE 33-bus DS presented in [82] has been modified to include DC buses and

lines. The DC buses were selected where the majority of loads and DGs are DC. The net-

work impedances and the load data are listed in Table 3.5 and Table 3.6, respectively. The

base values used for this test system are Sbase= 10 MVA, V ac
base= 12.66 kV, ω∗= 2π×60 Hz,

and V dc
base= 20.67 kV. The efficiency of all AC-DC converters used in this case study is given

as 95 %, and the power factor of the VSCs installed in the network lines is given as 95 %.
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Table 3.4: LF Solution and PSCAD Results for the 13-Bus Test System: Line Flows

From To LF Model Results PSCAD Results

Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr)

1 2 2.183000 0.573300 2.186000 0.571600
1 9 2.738000 0.666600 2.737000 0.667000
2 1 -2.123800 -0.476400 -2.127000 -0.474400
2 3 0.123800 0.076400 0.126900 0.074420
3 2 -0.122700 -0.074600 -0.125800 -0.072650
3 10 0.656400 0.236500 0.657200 0.238000
3 11 0.466300 0.163700 0.467600 0.165100
4 5 -0.545700 – -0.547900 –
4 11dc -0.454300 – -0.452100 –
5 4 0.547100 – 0.549341 –
5 6 1.323000 – 1.323260 –
6 5 -1.314700 – -1.314900 –
6 13dc 0.314700 – 0.314900 –
7 8 -1.572900 -0.220100 -1.575000 -0.223000
7 12 -0.620000 -0.183800 -0.619200 -0.182600
7 13 -0.307100 -0.096000 -0.306100 -0.094400
8 7 1.645200 0.338500 1.647000 0.341700
8 9 -0.145200 -0.014700 -0.144300 -0.015090
9 1 -2.645700 -0.515600 -2.645000 -0.516000
9 8 0.145700 0.015600 0.144900 0.015974
10 3 -0.655000 -0.215300 -0.652000 -0.212000
10dc 12dc 0.641900 – 0.641950 –
11 3 -0.465600 -0.153000 -0.463000 -0.150300
11dc 4 0.456288 – 0.454060 –
12 7 0.621300 0.204200 0.623600 0.207500
12dc 10dc -0.633980 – -0.634100 –
13dc 6 -0.313670 – -0.314000 –
13 7 0.307400 0.101100 0.310600 0.104000

Regarding the bus classifications, bus 1 represents a slack bus, buses (5, 24, and 29) are

P-V buses, and the remaining buses are considered as load buses. The results obtained

from the proposed LF model are listed in Tables 3.7, 3.8, and 3.9. The LF model con-

verged with a system total power mismatch of 1.2×10-10 p.u., and the computational time

was found to be 207 ms.
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Figure 3.5: 33-bus hybrid distribution system.
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Table 3.5: Impedances of the 33-Bus Test System, (ω= 1.0 p.u.)

From To Resistance Reactance From To Resistance Reactance
Bus Bus (Ω) (Ω) Bus Bus (Ω) (Ω)

1 2 0.0922 0.0470 15 31 2.0000 2.0000
2 3 0.4930 0.2511 16 17 2.5780∗ –
2 19 0.1640 0.1565 16 22 4.0000∗ –
3 4 0.3660 0.1864 17 18 1.4640∗ –
3 23 0.4512 0.3083 18 33 1.0000∗ –
4 5 0.3811 0.1941 19 20 1.5042 1.3554
5 6 0.8190 0.7070 20 21 0.8190∗ –
6 7 0.1872 0.6188 21 22 1.4178∗ –
6 26 0.4060∗ – 23 24 0.8980 0.7091
7 8 1.4228∗ – 24 25 0.8960 0.7011
8 9 2.0600∗ – 25 29 0.5000 0.5000
8 21 4.0000∗ – 26 27 0.5684∗ –
9 10 2.0880∗ – 27 28 2.1180∗ –
10 11 0.3932∗ – 28 29 1.6084∗ –
11 12 0.7488∗ – 29 30 0.5075 0.2585
12 13 1.4680 1.1550 30 31 0.9744 0.9630
13 14 0.5416 0.7129 31 32 0.3105 0.3619
14 15 0.5910 0.5260 32 33 0.3410 0.5302
15 16 1.4926∗ –

∗ DC resistances.

3.4.3 Isolated AC-DC Hybrid Test System

For the third case study, it is assumed that the shaded area (Test System # 3) in Figure 3.5

has been islanded. Two more DGs were added to this isolated system: 1) AC DG at

bus 31, and 2) DC DG at bus 16. The two AC DGs as well as the two DC DGs are

operated as droop-controlled DGs. Because the system frequency is considered as an

additional variable, the voltage angle of one of the system AC buses (e.g., bus 31) is

taken as a reference (i.e., θ31 = 0.0◦) in order to equalize the number of variables and the

number of system equations. Taking the limits of the frequency and the AC/DC voltages

as ± 1% and ± 5% [83], respectively, the droop gains for the AC and DC DGs can then

39



CHAPTER 3. LOAD FLOW MODEL FOR AC-DC HYBRID DSs

Table 3.6: Load Data of the 33-Bus Test System

Bus P ac
L Qac

L P dc
L Bus P ac

L Qac
L P dc

L Bus P ac
L Qac

L P dc
L

No. (kW) (kVAr) (kW) No. (kW) (kVAr) (kW) No. (kW) (kVAr) (kW)

1 – – – 12 120 70 – 23 180 100 –
2 200 120 – 13 60 15 60 24 115 60 –
3 180 80 – 14 400 200 – 25 300 100 300
4 240 160 – 15 260 105 – 26 60 35 60
5 125 60 – 16 – – 60 27 – – 200
6 200 100 – 17 – – 60 28 – – 120
7 200 100 – 18 45 20 45 29 85 35 –
8 120 70 120 19 180 80 – 30 100 60 100
9 – – 120 20 180 80 – 31 170 50 –
10 – – 120 21 – – 300 32 145 70 145
11 – – 300 22 90 45 90 33 240 160 –

Table 3.7: LF Solution for the 33-Bus Test System: Voltage Magnitudes and Angles

Bus Vn θn Bus Vn θn Bus Vn θn
No. (p.u.) (deg.) No. (p.u.) (deg.) No. (p.u.) (deg.)

1 1.05000 0.00000 12 0.99317 -0.62317 23 1.03477 -0.05338
2 1.04709 -0.00972 13 0.99215 -0.66568 24 1.03000 -0.11852
3 1.03776 -0.02781 14 0.99225 -0.66363 25 1.02238 -0.21870
4 1.03360 -0.03683 15 0.99449 -0.62944 26 1.04951 –
5 1.03000 -0.05114 16 1.03692 – 27 1.04808 –
6 1.01912 -0.27694 17 1.03884 – 28 1.04371 –
7 1.01869 -0.29890 18 1.03930 – 29 1.02000 -0.22492
8 1.02923 – 19 1.04503 -0.05930 30 1.01404 -0.24914
9 1.02674 – 20 1.02871 -0.43950 31 1.00228 -0.50558
10 1.02479 – 21 1.03702 – 32 1.00006 -0.57217
11 1.02430 – 22 1.03715 – 33 0.99823 -0.63485

Table 3.8: LF Solution for the 33-Bus Test System: Generators’ Data

G1 G2 G3 G4 G5 G6 G7

PG (MW) 4.3435 0.5000 0.2500 0.2500 0.2500 0.5000 0.5000
QG (MVAr) 1.8900 0.1400 – – – 0.2435 0.0819
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Table 3.9: LF Solution for the 33-Bus Test System: Line Flows

Bus Bus Pnm Qnm Bus Bus Pnm Qnm

n m (kW) (kVAr) n m (kW) (kVAr)

1 2 4343.5 1890.0 16 22 -25.421∗ –
2 3 2566.4 1195.6 17 18 -140.03∗ –
2 19 1565.4 568.38 18 33 -232.46∗ –
3 4 1533.3 706.90 19 20 1382.8 485.91
3 23 830.65 397.28 20 21 1184.3 389.28
4 5 1287.2 543.82 21 8 862.72∗ –
5 6 1657.9 621.60 21 20 -1122.9∗ –
6 7 125.96 75.735 21 22 -39.831∗ –
6 26 1316.8 432.82 22 16 25.427∗ –
7 8 -74.069 -24.345 23 24 648.43 295.77
8 7 77.986∗ – 24 25 1030.8 477.22
8 9 531.93∗ – 25 29 408.19 371.90
8 21 -856.24∗ – 26 6 -1249.6∗ –
9 10 410.65∗ – 26 27 1126.5∗ –
10 11 539.86∗ – 27 28 924.95∗ –
11 12 239.61∗ – 28 29 801.09∗ –
12 11 -227.54 -74.788 29 28 -758.93 -249.45
12 13 107.54 4.7880 29 30 1581.2 667.32
13 14 -15.728 -10.297 30 31 1367.0 602.75
14 15 -415.73 -210.30 31 15 399.33 226.67
15 16 -279.83 -91.975 31 32 784.45 313.04
15 31 -396.71 -224.05 32 33 485.44 241.44
16 15 294.84∗ – 33 18 244.82 80.467
16 17 -329.42∗ –

∗ DC power.

be calculated using (3.34)-(3.36), as shown in Table 3.10. The active and reactive powers

of the two converters (VSC15-16 and VSC33-18) are controlled autonomously using the last

two equations in (3.38). The capacity and the maximum reactive power of each VSC are

given as 400 kVA and 100 kVAr, respectively. The upper and lower limits of the modulation

index are given as 1.0 and 0.77, respectively [83]. The results obtained from the proposed

LF model are listed in Tables 3.10 and 3.11, and the modulation indices of the VSCs were

found to be M15-16 = 0.991 and M33-18 = 0.996. The LF model converged with a system total

power mismatch of 0.9×10-10 p.u., and the computational time was found to be 167 ms.
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Table 3.10: Test System # 3: Input Data and LF Solution for the System DGs

Input Data Droop Gains LF Solution

Bus DG Pmax
G Qmax

G ψacp ψacq ψdcp PG QG

No. No. (MW) (MVAr) (p.u.) (p.u.) (p.u.) (MW) (MVAr)

29 G7 0.50 0.25 0.40 4.0 – 0.3473 0.1740
31 G8 1.25 0.50 0.16 2.0 – 0.8683 0.3576
17 G4∗ 0.25 – – – 4.000 0.1715 –
16 G9∗ 0.75 – – – 1.333 0.5109 –

∗ DC DGs.

Table 3.11: LF Solution for the Test System # 3: Voltage Magnitudes, Voltage Angles,
and Line Flows. (ω= 0.9961 p.u.)

Bus Voltages Active and Reactive Power Flows

Bus Vn θn Bus Bus Pnm Qnm Bus Bus Pnm Qnm

(n) (p.u.) (deg.) (n) (m) (kW) (kVAr) (n) (m) (kW) (kVAr)

14 0.9695 -0.0916 14 15 -400.00 -200.00 29 30 262.31 139.05
15 0.9717 -0.0569 15 14 400.79 200.70 30 29 -262.02 -138.90
16 0.9819 – 15 16 -356.56 -78.345 30 31 56.757 78.901
17 0.9814 – 15 31 -304.23 -227.35 31 15 306.13 229.25
18 0.9808 – 16 15 375.84∗ – 31 30 -56.697 -78.842
29 0.9804 -0.0095 16 17 75.102∗ – 31 32 448.84 157.24
30 0.9793 -0.0084 17 16 -75.067∗ – 32 31 -448.38 -156.71
31 0.9785 0.0000 17 18 186.53∗ – 32 33 150.75 86.705
32 0.9772 -0.0422 18 17 -186.41∗ – 33 18 -89.318 -73.399
33 0.9766 -0.0610 18 33 94.040∗ – 33 32 -150.68 -86.601

∗ DC power.

3.4.4 Discussion on Scalability

To assess the effect of the system size on the execution time and accuracy of the proposed

LF model, the LF problem of a 132-bus AC-DC hybrid system was solved using the pro-
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posed model. The 132-bus hybrid DS shown in Figure 3.6 includes one main distribution

substation (DSS) and four subsystems, each representing a 33-bus network identical to

the network in Figure 3.5. The proposed LF model successfully converged with a system

total power mismatch of 3.84×10-13 p.u., and the computational time was found to be

936 ms. These results demonstrate that the proposed model can be efficiently applied to

large hybrid DSs.

DSS

Figure 3.6: 132-bus hybrid distribution system.

For each case study, the proposed model successfully reached convergence, and the LF

solution was found without the need to divide the main hybrid network into several AC

and DC subgrids. In addition, the obtained results reflect the computational efficiency of

the proposed model, where the model has provided accurate LF solutions in a time frame

suitable for real-time applications. Based on the update rate of the smart grid meters, the
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execution time of the LF algorithms used for real-time operation should be in the range of

several seconds to a few minutes [84]. The proposed LF model can therefore be used for

the online applications in future smart DSs.

3.5 Conclusion

This chapter proposes a novel AC-DC LF model for hybrid DSs. The detailed analysis

presented includes consideration of the possible AC-DC hybrid DS configurations. In the

proposed LF model, VSCs are employed for AC-DC power conversions. The proposed

model can solve the LF problem for the AC and DC portions of the hybrid DS simultane-

ously based on the integration of the AC and DC power equations into one unified model.

Employing three binary matrices in the unified power equations allows any configuration

of AC-DC hybrid DSs to be described, which introduces a high degree of flexibility into the

proposed LF model. The proposed model was applied for solving the LF problem of grid-

connected and isolated hybrid DSs that included a variety of types of loads, DGs, buses,

and lines. The effectiveness and accuracy of the proposed model was verified against the

steady-state solution produced by PSCAD/EMTDC software. The results demonstrate

that the proposed LF model can provide an accurate solution while also offering the flexi-

bility and speed required for online smart-grid applications. The proposed model is generic

and can be integrated in a variety of applications in power systems. Therefore, based on the

mathematical formulation of this LF model, new techniques for the planning, operation,

and reconfiguration of AC-DC hybrid DSs are presented in the following chapters.
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Chapter 4

An Energy Management Scheme for

AC-DC Hybrid DSs Considering the

Network-Reconfiguration Capability

4.1 Introduction

This chapter presents an EMS for AC-DC hybrid DSs. The proposed EMS includes two

stages: 1) the day-ahead stage, in which a proposed reconfiguration technique is employed

to determine the most efficient configuration for each hour of the following day, and 2) the

real-time stage, in which a proposed OPF-based LCM technique (OPF-LCM) is used for

guaranteeing a reliable and optimal operating schedule for a hybrid DS. The proposed two-

stage EMS was successfully tested on a case study of a hybrid DS that included different

types of loads and DGs, such as PV panels, wind DGs, and EV charging stations (EVSs).

The benefits provided by the proposed EMS were verified through a comparison of the

EMS solution and the base-case solution.

This chapter is organized as follows: Section 4.2 describes the structure of AC-DC

hybrid DSs and introduces the concept of the proposed two-stage EMS. Section 4.3 presents

the formulation and procedures of the proposed reconfiguration algorithm. The formulation

of the proposed OPF-LCM technique is explained in Section 4.4. The case study used for
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evaluating the benefits provided by the proposed two-stage EMS is described in Section 4.5.

The final section summarizes the conclusions of this chapter.

4.2 Description of the AC-DC Hybrid DSs and the

Proposed Two-Stage EMS

As discussed earlier in Chapter 1, future smart DSs will include different types of AC and

DC loads and DGs. For the optimal accommodation of these loads and DGs, the current

belief is that DS networks should be AC-DC hybrid systems [5–8] that include AC/DC

buses, AC/DC lines, and AC-DC converters, as illustrated in Figure 4.1. In this study,

VSCs are installed in the network lines for AC-DC power conversions. Figure 4.1 also

shows the possible types of hybrid DS buses and lines, as well as the connection of the

system loads and DGs to the AC and DC buses [83].

Electric Vehicles

PV
DG

Storage
Systems

DC Loads

Wind
 DG

AC 
Grid

DC DGs

AC Loads

AC DGs

Hybrid DS Buses

DC Bus AC Bus

AC 
DG

DC 
DG

DC 
load

AC 
load

AC 
DG

DC 
DG

DC 
load

AC 
load

AC AC

AC AC

AC DC

DC DC

AC

DC

DC

DC

VSC VSC

VSC

Hybrid DS Lines

AC-DC Hybrid Network

Figure 4.1: Structure and components of AC-DC hybrid DSs.
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Achieving reliable and optimal operation of future hybrid DSs will require efficient

energy management techniques. This study proposes an EMS that includes two stages.

In Stage 1, the day-ahead stage, a network reconfiguration technique proposed for AC-DC

hybrid DSs determines the most efficient network topologies for the next 24 hours. The

objective of the proposed technique is to minimize day-ahead energy losses. Day-ahead

forecasted data related to load demands and renewable-based DGs are assumed to be

available and are used as input to the Stage-1 reconfiguration technique.

In Stage 2, the real-time stage, an OPF-LCM technique is employed as a means of guar-

anteeing the reliable and optimal operation of the hybrid DS. In this stage, the optimal

online operation of the hybrid DS is achieved through the minimization of DS operation

costs. An LCM is also applied in order to maintain system reliability and the continuity of

the supply in the case of abnormal conditions [85]. According to the reliability standards

provided by the North American Electric Reliability Corporation (NERC), the LCM is

considered as one of the contingency reserve services [85]. Customers in LCM programs

sign contracts with the utility operator, agreeing to reduce their demands when requested

in order to guarantee system reliability and the continuity of supply. Each customer par-

ticipating in a program benefits from the incentives specified in the contract as well as

from reduced energy consumption bills [86].

For reliable and optimal real-time operation, the update rate of a DS operational sched-

ule should be in the range of several seconds to a few minutes. This rate is dependent on

the speed of the available forecasting and metering systems that can provide highly ac-

curate data to the utility operator. In this study, the proposed OPF-LCM is assumed to

be executed every 5 min under normal operating conditions [84]. However, the proposed

OPF-LCM can also be executed in a very short time in the case of abnormal operating

scenarios, as set out in Section 4.5.4.

4.3 Stage 1: The Reconfiguration Algorithm

The primary goal of the proposed reconfiguration algorithm is to determine the optimal

day-ahead reconfiguration schedule that minimizes DS energy losses. The network configu-

ration is described by the connection matrix U(Nb×Nb). The elements of U represent the

binary decision variables of the reconfiguration algorithm. The element Unm is equal to 0
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if the line connecting buses n and m is open, and equal to 1 if the line connecting buses n

and m is closed. The AC-DC hybrid reconfiguration problem presented in this study is a

mixed-integer nonlinear programming problem with discontinuous derivatives, and it has

been divided into two nested optimization problems: a master problem and a subproblem.

The formulation of the reconfiguration algorithm is explained in the following subsections.

4.3.1 Formulation of the Master Problem

The master problem is a mixed-integer optimization problem that is formulated using a

genetic algorithm (GA) [87]. The master problem constraints apply only to independent

integer variables, whose values are used as input to the subproblem. The following are the

objective function and the constraints of the master problem.

4.3.1.1 Objective Function

The objective function is to minimize the day-ahead energy losses, as follows:

min Fmaster =
T∑
t=1

(
Ploss,t ∆t

)
(4.1)

4.3.1.2 Network Topology Constraints

The network topology constraints are divided into 1) the integer constraint (4.2) for the

binary variables of the connection matrix U and 2) the radiality constraints (4.3)-(4.4) for

maintaining the radial operation of the DS.


Unm,t ∈ {0 , 1} if Unm ∈ S
Unm,,t = 1 if Unm ∈ Sc
Unm,t = 0 otherwise

, ∀ n,m ∈ Nb , t ∈ T (4.2)

Nb∑
n=1

Nb∑
m=1
m>n

Unm,t = Nb − 1 , ∀ t ∈ T (4.3)
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Nb∑
m=1

Unm,t ≥ 1 , ∀ n ∈ Nb , t ∈ T (4.4)

4.3.1.3 Switching Constraints

The switching constraints (4.5)-(4.6) are used for guaranteeing that the number of switching

actions will not violate the maximum allowable limits. The constraint expressed in (4.5)

limits the number of daily switching actions for each controlled switch, while the constraint

defined in (4.6) limits the number of switching actions per hour.

T∑
t=1

| Unm,t − Unm,t−1 | ≤ Nmax
SW,s , ∀ Unm ∈ S (4.5)

Nb∑
n=1

Nb∑
m=1
m>n

| Unm,t − Unm,t−1 | ≤ Nmax
SW,t , ∀ t ∈ T (4.6)

4.3.2 Formulation of the Subproblem

The subproblem is designed to solve the OPF problem for each GA chromosome at each

hour t. The problem is implemented in GAMS as a nonlinear programming problem with

discontinuous derivatives (DNLP) and is solved using a GRG method [80]. The constraints

of the subproblem are on dependent variables, whose values are determined based on the

values selected for the independent variables in the master problem. The following are the

objective function and the constraints of the subproblem.

4.3.2.1 Objective Function

The objective function is to minimize the power losses for each GA chromosome at each

hour t, as follows:

min Fsub = Ploss =
[
PTG − PTD

]
(4.7)
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where

PTG =

Bac
G∑

j=1

P ac
Gj

+

Bdc
G∑

l=1

P dc
Gl

(4.8)

PTD =

Nb∑
n=1

(
P ac
Ln + P dc

Ln

)
(4.9)

4.3.2.2 Power Balance Constraints

The active and reactive power balance constraints at each bus are given by

P inj
n = P cal

n , ∀ n ∈ Nb (4.10)

Qinj
n = Qcal

n , ∀ n ∈ Nb (4.11)

The equations for P inj
n , P cal

n , Qinj
n , and Qcal

n are as expressed in (4.12)-(4.15), respec-

tively. The values of a1, b1, a2, and b2 are dependent on the direction of the power flow

and are defined as (3.15), (3.16), (3.19), and (3.20), respectively. In the reconfiguration

algorithm, the LCM technique is not activated; i.e., the terms related to the curtailed

active and reactive powers in equations (4.12) and (4.14) are zeros. The LCM variables

(∆P ac
Ln

, ∆P dc
Ln

, and ∆Qac
Ln

) are used only in the OPF-LCM algorithm.

P inj
n = Wn

(
P ac
Gn − (P ac

Ln −∆P ac
Ln) + ηc-n-i P

dc
Gn − η

−1
c-n-r (P dc

Ln −∆P dc
Ln)
)

+Wn

(
P dc
Gn − (P dc

Ln −∆P dc
Ln) + ηc-n-r P

ac
Gn − η

−1
c-n-i (P

ac
Ln −∆P ac

Ln)
)
, ∀ n ∈ Nb (4.12)

P cal
n =

Nb∑
m=1
m 6=n

Unm

[
Wn Wm Dnm

(
V 2
n Gnm − Vn Vm (Gnm cos θnm +Bnm sin θnm)

)
+Wn Wm Dnm

(
Gdc
nm (M−2

nm V
2
n −M−1

nm VnM
−1
mn Vm)

) (
a1 η

−1
c-nm-r + b1 ηc-nm-i

)
+Wn Wm Dnm

(
Gdc
nm (M−2

nm V
2
n −M−1

nm Vn Vm)
) (
a2 η

−1
c-nm-r + b2 ηc-nm-i

)
+Wn Wm Dnm

(
Gdc
nm (V 2

n − VnM−1
mn Vm)

)
+Wn Wm Dnm

(
Gdc
nm (V 2

n − Vn Vm)
)]
, ∀ n ∈ Nb (4.13)
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Qinj
n = Wn

(
Qac
Gn − (Qac

Ln −∆Qac
Ln) +Qdc

Gn-c −Q
dc
Ln-c

)
, ∀ n ∈ Nb (4.14)

Qcal
n =

Nb∑
m=1
m 6=n

Unm

[
Wn Wm Dnm

(
− V 2

n Bnm − Vn Vm (Gnm sin θnm −Bnm cos θnm)
)

+Wn Wm Dnm Qc-nm +Wn Wm Dnm Qc-nm

]
, ∀ n ∈ Nb (4.15)

4.3.2.3 Network Security Constraints

The network security constraints given by (4.16)-(4.18) include the limits for voltage mag-

nitudes, voltage angles, and line capacities.

V min
n ≤ Vn ≤ V max

n , ∀ n ∈ Nb (4.16)

θminn ≤ θn ≤ θmaxn , ∀ n ∈ Nb (4.17)√
P 2
nm +Q2

nm ≤ Smaxnm , ∀ n,m ∈ Nb (4.18)

4.3.2.4 Converter Constraints

The converter constraints include the capacity limits and modulation index limits for each

converter in the system. These constraints are expressed as follows:√
P 2
c +Q2

c ≤ Smaxc , ∀ c ∈ Nc (4.19)

Mmin
nm ≤Mnm ≤Mmax

nm , ∀ n,m ∈ Nb (4.20)

4.3.2.5 Generator Constraints

The active and reactive power limits for the system generators are expressed as follows:

P ac−min
Gj

≤ P ac
Gj
≤ P ac−max

Gj
, ∀ j ∈ Bac

G (4.21)

P dc−min
Gl

≤ P dc
Gl
≤ P dc−max

Gl
, ∀ l ∈ Bdc

G (4.22)

Qac−min
Gj

≤ Qac
Gj
≤ Qac−max

Gj
, ∀ j ∈ Bac

G (4.23)
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4.3.3 The Methodology of the Reconfiguration Algorithm

The reconfiguration algorithm is aimed at finding the optimal network configuration de-

scribed by the binary connection matrix U at each hour during the next day. Accordingly,

the output of the reconfiguration algorithm at each hour t is represented by the optimal

GA chromosome that consists of the elements of U . The procedures that comprise the

proposed reconfiguration algorithm are illustrated in Figure 4.2.

4.4 Stage 2: The OPF-LCM Algorithm

The main goal of the OPF-LCM algorithm is to minimize DS operation costs, including

load-curtailment costs, as indicated in (4.24). The optimization constraints include the

OPF constraints (4.10)-(4.23) as well as the LCM constraints (4.25)-(4.27). It is worth

mentioning that the power factor for each AC load participating in the LCM program is

assumed to be kept constant. Therefore, any curtailed active power from any AC load will

be associated with curtailed reactive power. According to the NERC reliability standards

[85], an LCM technique represents a contingency reserve service that can be used in the case

of abnormal operating conditions. In this study, the LCM algorithm is accordingly used

mainly to guarantee the reliable and optimal satisfaction of DS operational constraints.

The load-curtailment cost is selected to be higher than the marginal costs at all system

buses for two reasons: 1) to encourage customers to participate in LCM programs, and 2)

to ensure that loads will not be curtailed under normal operating conditions. This feature

guarantees that the financial profitability of the utility operator will be unaffected. The

proposed OPF-LCM algorithm is implemented in GAMS as a DNLP problem and is then

solved using a GRG method [80]. The formulation of the OPF-LCM algorithm is as follows:

min COPF =

[ Bac
G∑

j=1

Cac
Gj
P ac
Gj

+

Bdc
G∑

l=1

Cdc
Gl
P dc
Gl

+

Nac
LCM∑
i=1

λLi,ac
∆P ac

Li
+

N dc
LCM∑
k=1

λLk,dc
∆P dc

Lk

]
(4.24)
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Figure 4.2: Flowchart for the proposed reconfiguration algorithm.
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Subject to:

(4.10)− (4.23)

0.0 ≤ ∆P ac
Li
≤ αLi,ac

P ac
Li

, ∀ i ∈ N ac
LCM (4.25)

0.0 ≤ ∆P dc
Lk
≤ αLk,dc

P dc
Lk

, ∀ k ∈ N dc
LCM (4.26)

∆Qac
Li

= ∆P ac
Li

tan
(

cos−1(PFLi,ac
)
)
, ∀ i ∈ N ac

LCM (4.27)

4.5 Case Study

This section presents the case study that was used for evaluating the effectiveness of the

proposed two-stage EMS. The proposed EMS was executed on a PC with the following

specifications: Intel Core i7 2600 @ 3.4 GHz, 64 bit, and 8 GB RAM. The system description

and the simulation results are provided in the following subsections.

4.5.1 Description of the Case-Study System

The modified IEEE 33-bus DS shown in Figure 4.3 was used for the case study. The basic

IEEE 33-bus DS presented in [82] has been modified to include DC sections. These DC

sections were selected so that the majority of loads and DGs would be DC. The network

impedances are shown in Table 4.1. The data given for the energy resources and load

demands are listed in Tables 4.2 and 4.3, respectively. The base values used for this

test system are Sbase= 10 MVA, V ac
base= 12.66 kV, and V dc

base= 20.67 kV. The upper and lower

limits for the voltage magnitudes and angles are given as V max
n = 1.05 p.u., V min

n = 0.95 p.u.,

θmaxn =π/4 rad, and θminn =−π/4 rad, respectively. The efficiency of the AC-DC converters

is given as 95 %. The upper and lower modulation-index limits for the VSCs are given as

1.0 and 0.77, respectively [83]. The hybrid DS under study includes 37 sections; each can

be open or closed. The line capacities are given as 5.0 MVA for section S1, 3.5 MVA for

sections S2 and S18, and 2.5 MVA for the remaining sections in the network. Each section

is equipped with two controlled switches (i.e., one switch at each section-end). These

permit the isolation of the section in the case of a contingency, maintenance, or network

reconfiguration. For the purposes of network reconfiguration, the maximum switching

limits are given as Nmax
SW,t = 6 and Nmax

SW,s = 4 [48].
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Figure 4.3: 33-bus AC-DC hybrid distribution system.
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Table 4.1: Impedances of the 33-Bus Hybrid Distribution System

Line From To Resistance Reactance Line From To Resistance Reactance
No. Bus Bus (Ω) (Ω) No. Bus Bus (Ω) (Ω)

S01 1 2 0.0922 0.0470 S20∗ 20 21 0.8190 –
S02 2 3 0.4930 0.2511 S21∗ 21 22 1.4178 –
S03 3 4 0.3660 0.1864 S22 3 23 0.4512 0.3083
S04 4 5 0.3811 0.1941 S23 23 24 0.8980 0.7091
S05 5 6 0.8190 0.7070 S24 24 25 0.8960 0.7011
S06 6 7 0.1872 0.6188 S25∗ 6 26 0.4060 –
S07∗ 7 8 1.4228 – S26∗ 26 27 0.5684 –
S08∗ 8 9 2.0600 – S27∗ 27 28 2.1180 –
S09∗ 9 10 2.0880 – S28∗ 28 29 1.6084 –
S10∗ 10 11 0.3932 – S29 29 30 0.5075 0.2585
S11∗ 11 12 0.7488 – S30 30 31 0.9744 0.9630
S12 12 13 1.4680 1.1550 S31 31 32 0.3105 0.3619
S13 13 14 0.5416 0.7129 S32 32 33 0.3410 0.5302
S14 14 15 0.5910 0.5260 S331,∗ 8 21 4.0000 –
S15∗ 15 16 1.4926 – S341 15 31 2.0000 2.0000
S16∗ 16 17 2.5780 – S351,∗ 16 22 4.0000 –
S17∗ 17 18 1.4640 – S361,∗ 18 33 1.0000 –
S18 2 19 0.1640 0.1565 S371 25 29 0.5000 0.5000
S19 19 20 1.5042 1.3554

1 Tie lines (i.e., normally open sections).
∗ DC lines.

Table 4.2: Data for the Energy Resources in the Case-Study System

Resource Resource Pmax
G Pmin

G Qmax
G Qmin

G

No. Type (MW) (MW) (MVAr) (MVAr)

G1 DSS, (AC power) 10.0 0.80 5.00 0.50
G2 Wind DG, (AC power) 0.50 – – –
G3 Solar PV, (DC power) 0.25 – – –
G4 Solar PV, (DC power) 0.25 – – –
G5 Solar PV, (DC power) 0.25 – – –
G6 Wind DG, (AC power) 0.50 – – –
G7 Diesel DG, (AC power) 0.50 0.05 0.25 0.05
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Table 4.3: Load Data for the 33-Bus Hybrid Distribution System

Bus P ac
L Qac

L P dc
L Bus P ac

L Qac
L P dc

L Bus P ac
L Qac

L P dc
L

No. (kW) (kVAr) (kW) No. (kW) (kVAr) (kW) No. (kW) (kVAr) (kW)

1 – – – 12 60 35 – 23 90 50 –
2 100 60 – 13 60 35 60 24 420 200 –
3 90 40 – 14 120 80 – 25 420 200 200
4 120 80 – 15 60 10 – 26 60 25 60
5 60 30 – 16 – – 60 27 – – 60
6 60 20 – 17 – – 60 28 – – 60
7 200 100 – 18 90 40 90 29 120 70 –
8 200 100 200 19 90 40 – 30 200 600 200
9 – – 60 20 90 40 – 31 150 70 –
10 – – 60 21 – – 200 32 210 100 210
11 – – 45 22 90 40 80 33 60 40 –

4.5.2 Day-Ahead Forecasted Data for the Stochastic Variables

Figure 4.4 shows the day-ahead forecasted values for the stochastic variables: Load de-

mands, PV DGs, Wind DGs, and EVS demands [8]. The forecasted data are given as

percentages of the maximum value of each stochastic variable.

4.5.3 Results from the Day-Ahead Reconfiguration Algorithm

Table 4.4 shows a comparison of the results obtained from the proposed reconfiguration

algorithm and those obtained from the base-case system. The base-case system has five

normally open sections: S33, S34, S35, S36, and S37. The value of the day-ahead energy

losses was found to be 6203.389 kWh for the base-case system. This amount was reduced to

4188.960 kWh when the proposed reconfiguration algorithm was employed. The compar-

ison therefore revealed that, for the DS under study, the proposed algorithm successfully

achieved a significant reduction of 2014.429 kWh (i.e., 32.47 %) in day-ahead energy losses.

It is also important to mention that the execution time of the proposed reconfiguration

algorithm was found to be 3.59 h, which is suitable for day-ahead studies.
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Figure 4.4: Day-ahead forecasted data for (a) load demand, (b) PV-DG output power, (c)
wind-DG output power, and (d) EVS demand.
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Table 4.4: Results from the Reconfiguration Algorithm

Hour
Base Case Proposed Algorithm

Power Losses Opened Power Losses
(kW) Sections (kW)

1 148.5933 12, 33, 34, 36, 37 116.3084
2 132.4126 12, 33, 34, 36, 37 103.5316
3 124.5572 12, 27, 33, 34, 36 93.8902
4 119.8076 12, 15, 27, 33, 36 75.2494
5 133.4649 12, 15, 27, 33, 36 84.6155
6 155.1893 12, 15, 27, 33, 36 98.6335
7 198.9151 12, 15, 27, 33, 36 127.9448
8 256.9839 11, 15, 27, 33, 36 167.6322
9 291.4380 11, 15, 27, 33, 36 197.9775
10 304.5958 09, 15, 27, 33, 36 199.9063
11 313.0286 12, 15, 27, 33, 36 225.3547
12 304.0452 12, 15, 26, 33, 36 225.3549
13 304.7966 12, 15, 16, 26, 33 221.6607
14 288.6735 12, 15, 27, 33, 36 208.6887
15 310.2004 12, 15, 27, 33, 36 222.1661
16 329.4775 12, 15, 27, 33, 36 230.7330
17 346.9587 09, 15, 27, 33, 36 225.7921
18 361.2525 09, 15, 27, 33, 36 243.5978
19 336.1397 11, 15, 27, 33, 36 216.0136
20 325.4578 11, 15, 27, 33, 36 205.4842
21 316.4762 11, 15, 27, 32, 33 199.3346
22 318.8711 11, 15, 27, 32, 33 200.6130
23 279.9771 11, 15, 27, 32, 33 173.9948
24 202.0767 11, 15, 27, 32, 33 124.4827

Total Losses 6203.389 kWh 4188.960 kWh

4.5.4 Results from the OPF-LCM Algorithm

The DS network, including the distribution substation, is owned by the utility. The renew-

able DGs are assumed to be owned by customers and are operated according to the FIT

program [14]. The FIT program was introduced to promote the application of renewable
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DGs, including PV panels and wind DGs. The cost of the electric energy supplied from

the DSS and G7 is given as 92.2 $/MWh [88]. Under the FIT program, the tariff costs

paid to the owners of the PV and wind DGs are given as 209 $/MWh and 128 $/MWh,

respectively [89]. The maximum allowable curtailment ratios for the AC and DC system

loads are given as αLac = 15 % and αLdc
= 15 %, respectively. The load-curtailment cost was

selected to be 115 $/MWh [48]. Table 4.5 shows the results for a number of abnormal op-

erating scenarios, including 1) forecast errors in the forecasted data for load demands and

renewable DGs, 2) unavailability of one or more of the system DGs, and 3) combinations

of 1 and 2. For the system’s stochastic variables (load demands and renewable DGs), the

forecast error is represented by the percentage difference between the actual value and the

forecasted value, as follows:

% FE =
AV − FV

FV
× 100 (4.28)

where FE is the percentage forecast error, AV is the actual value of a stochastic variable,

and FV is the day-ahead forecasted value of a stochastic variable.

The results listed in Table 4.5 demonstrate that the proposed OPF-LCM successfully

guaranteed reliable and optimal operation under a variety of abnormal operating scenarios.

For scenarios (S6−S13), the OPF algorithm failed to find the feasible solutions that can

satisfy the operational and security constraints (4.10)-(4.23). However, employing the

OPF-LCM algorithm successfully achieved optimal and feasible solutions and guaranteed

reliable operation of the system. In this study, the reliable operation means that the system

operational and security constraints are satisfied under abnormal operating conditions.

For the other abnormal scenarios (S1−S5, S14, and S15), the OPF-LCM algorithm was

capable of finding optimal solutions without the need to curtail any load demand (i.e., the

curtailed load is equal to zero). These results prove that the proposed OPF-LCM algorithm

will not curtail the system loads unless the system security constraints are violated. It is

also important to mention that the execution time of the OPF-LCM algorithm was found

to be 358 ms, which is suitable for real-time applications.
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4.6 Conclusion

In this chapter, a two-stage EMS is proposed to achieve reliable and optimal operation for

AC-DC hybrid DSs. In Stage 1, a proposed network reconfiguration algorithm determines

the optimal day-ahead reconfiguration schedule for the hybrid DS. The objective of the

proposed reconfiguration algorithm is to minimize DS energy losses based on consideration

of the day-ahead forecasted data for load demands and renewable DGs. The reconfigura-

tion algorithm takes into account the maximum number of daily switching actions for each

controlled switch, as well as the maximum number of switching actions at each hour during

the next day. In Stage 2, a proposed real-time OPF-LCM algorithm minimizes the opera-

tion costs of the hybrid DS and guarantees reliable DS operation in the case of abnormal

conditions. The proposed two-stage EMS was successfully applied to a hybrid DS with

different types of loads and DGs. With respect to the day-ahead stage, the reconfiguration

algorithm successfully produced an optimal 24 h reconfiguration schedule for the DS under

study. The effectiveness of the proposed reconfiguration algorithm was verified through a

comparison of the results obtained from the reconfiguration algorithm and those obtained

from the base-case system. The comparison demonstrated that the proposed algorithm

successfully achieved a significant reduction in DS energy losses. In the real-time stage,

the proposed OPF-LCM algorithm effectively achieved reliable and optimal DS operation

under different abnormal operating conditions.
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Chapter 5

A Planning Approach for the Network

Configuration of AC-DC Hybrid DSs

5.1 Introduction

This chapter presents a novel planning model that can be used for determining an optimal

network configuration for future hybrid DSs. The proposed planning model takes into

account the stochastic behavior of load demands and renewable-based DGs. The stochastic

variations are addressed in the model using an MCS technique. The three binary matrices

that are used for describing the AC-DC configuration of a hybrid DS are employed as the

decision variables of the planning model. All bus and line selections are interchangeable and

can be either AC or DC as needed for the minimization of DS investment and operation

costs. The proposed model was tested on a case study of a hybrid DS that included

PV panels, wind DGs, and EV charging stations. The solution derived by the model

was then compared with the solution obtained using a traditional AC planning technique

in order to evaluate the effectiveness of the proposed model. This chapter is organized

as follows: Section 5.2 describes the hybrid planning problem. Section 5.3 explains the

problem formulation and provides a detailed analysis of the optimization models used for

solving the hybrid planning problem. The planning procedures are outlined in Section 5.4.

Section 5.5 discusses the stochastic models of load demands and renewable DGs. Section 5.6

describes the case study that was employed for evaluating the effectiveness of the proposed

planning model. The final section presents the conclusions of this chapter.
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5.2 Problem Description

Figure 5.1 shows a multi-zone DS that includes different types of AC and DC loads and

generators. The objective is to plan an AC-DC hybrid system that optimally accommodates

all system resources: loads and generators. The optimal solution for the hybrid planning

problem is determined based on three main decisions: 1) the type (AC or DC) of system

buses, 2) the specific connections between system buses (i.e., the network connections),

and 3) the type (AC or DC) of network lines. Each bus in the hybrid DS can be either AC

or DC, as shown in Figure 3.1. In addition, the possible cases for the connection between

AC/DC buses via AC/DC lines and VSCs are illustrated in Figure 3.3. The network

configuration is described by the three binary matrices (W , U , and D). These matrices,

which are defined in Section 3.3, represent the binary decision variables in the proposed

planning model.

?
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Figure 5.1: Planning problem.
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5.3 Formulation of the Planning Model

The planning goal is to find the optimal system configuration that achieves the minimum

planning costs, which include the DS investment and operation costs. In its entirety,

the planning problem comprises mixed-integer nonlinear programming with discontinuous

derivatives and so cannot be formulated in one optimization model. In this study, two

optimization models are therefore integrated in order to achieve the planning objective.

The first solves the master problem, and the second solves the subproblem. The two

problems are described below.

5.3.1 The Master Problem

The master problem is formulated using a GA and is solved as a mixed-integer programming

problem. The master problem constraints are only on the independent variables (W , U ,

and D), whose values are used as input to the subproblem. The objective function and

the optimization constraints are as specified in the following explanations.

5.3.1.1 Objective Function

The objective function is to minimize the total present cost value (CNPV ), which includes

the DS investment and operation costs, as follows:

minZmaster = CNPV (5.1)

where

CNPV = IC +RC (5.2)

RC =

TP∑
t=1

CAOM,t

(1 + d)t
(5.3)

CAOM,t = 8760× E(COPF ,s,t) + βm × IC , ∀ t ∈ TP (5.4)
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5.3.1.2 Integer Constraints

The integer constraints for the binary variables of the configuration matrices are expressed

as follows:

Wn ∈ {0, 1} , ∀ n ∈ Nb (5.5)

Unm ∈ {0, 1} , ∀ n,m ∈ Nb (5.6)

Dnm ∈ {0, 1} , ∀ n,m ∈ Nb (5.7)

5.3.1.3 Bus Connectivity Constraints

These constraints are employed as a means of avoiding isolation and/or over-connectivity

for each bus in the system, as follows:

Nb∑
m=1

Unm ≥ Nmin
l,n , 1 ≤ Nmin

l,n ≤ Nmax
l,n , ∀ n ∈ Nb (5.8)

Nb∑
m=1

Unm ≤ Nmax
l,n , Nmin

l,n ≤ Nmax
l,n ≤ Nb−1 , ∀ n ∈ Nb (5.9)

where Nmin
l,n and Nmax

l,n represent the respective minimum and maximum number of lines

that can be connected to each bus in the DS network. The selection of Nmin
l,n and Nmax

l,n is

dependent on the type of system configuration and level of network reliability required. If

a radial DS is needed, the value of Nmin
l,n is set to be 1 for all n ∈ Nb, and the constraint

(5.10) is added to the formulation of the master problem.

Nb∑
n=1

Nb∑
m=1
m>n

Unm = Nb − 1 (5.10)
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5.3.2 The Subproblem

The subproblem is employed to determine the optimal operation cost for each individual

scenario of the network configuration. The problem is formulated in GAMS as a DNLP

problem and is solved using a GRG method [80]. The objective function (5.11) is to

minimize the summation of the AC and DC generation costs. The constraints can be

classified into four groups: 1) the active and reactive power balance constraints (5.12)-

(5.13), 2) the network constraints (5.14)-(5.16), 3) the AC-DC converter constraints (5.17)-

(5.18), and 4) the generator constraints (5.19)-(5.21). The constraints of the subproblem

are on dependent variables, whose values are determined based on the values selected for

the independent variables in the master problem. The formulation of the subproblem is as

follows:

min Zsub =

Bac
G∑

j=1

Cac
Gj
P ac
Gj

+

Bdc
G∑

l=1

Cdc
Gl
P dc
Gl

(5.11)

Subject to:

P inj
n = P cal

n , ∀ n ∈ Nb (5.12)

Qinj
n = Qcal

n , ∀ n ∈ Nb (5.13)

V min
n ≤ Vn ≤ V max

n , ∀ n ∈ Nb (5.14)

θminn ≤ θn ≤ θmaxn , ∀ n ∈ Nb (5.15)√
P 2
nm +Q2

nm ≤ Smaxnm , ∀ n,m ∈ Nb (5.16)√
P 2
c +Q2

c ≤ Smaxc , ∀ c ∈ Nc (5.17)

Mmin
nm ≤Mnm ≤Mmax

nm , ∀ n,m ∈ Nb (5.18)

P ac−min
Gj

≤ P ac
Gj
≤ P ac−max

Gj
, ∀ j ∈ Bac

G (5.19)

P dc−min
Gl

≤ P dc
Gl
≤ P dc−max

Gl
, ∀ l ∈ Bdc

G (5.20)

Qac−min
Gj

≤ Qac
Gj
≤ Qac−max

Gj
, ∀ j ∈ Bac

G (5.21)
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The equations for P inj
n , P cal

n , Qinj
n , and Qcal

n are as expressed in (5.22)-(5.25), respec-

tively. The values of a1, b1, a2, and b2 are dependent on the direction of the power flow

and are given in (3.15), (3.16), (3.19), and (3.20), respectively.

P inj
n = Wn

(
P ac
Gn − P

ac
Ln + ηc-n-i P

dc
Gn − η

−1
c-n-r P

dc
Ln

)
+Wn

(
P dc
Gn − P

dc
Ln + ηc-n-r P

ac
Gn − η

−1
c-n-i P

ac
Ln

)
, ∀ n ∈ Nb (5.22)

P cal
n =

Nb∑
m=1
m 6=n

Unm

[
Wn Wm Dnm

(
V 2
n Gnm − Vn Vm (Gnm cos θnm +Bnm sin θnm)

)
+Wn Wm Dnm

(
Gdc
nm (M−2

nm V
2
n −M−1

nm VnM
−1
mn Vm)

) (
a1 η

−1
c-nm-r + b1 ηc-nm-i

)
+Wn Wm Dnm

(
Gdc
nm (M−2

nm V
2
n −M−1

nm Vn Vm)
) (
a2 η

−1
c-nm-r + b2 ηc-nm-i

)
+Wn Wm Dnm

(
Gdc
nm (V 2

n − VnM−1
mn Vm)

)
+Wn Wm Dnm

(
Gdc
nm (V 2

n − Vn Vm)
)]
, ∀ n ∈ Nb (5.23)

Qinj
n = Wn

(
Qac
Gn −Q

ac
Ln +Qdc

Gn-c −Q
dc
Ln-c

)
, ∀ n ∈ Nb (5.24)

Qcal
n =

Nb∑
m=1
m 6=n

Unm

[
Wn Wm Dnm

(
− V 2

n Bnm − Vn Vm (Gnm sin θnm −Bnm cos θnm)
)

+Wn Wm Dnm Qc-nm +Wn Wm Dnm Qc-nm

]
, ∀ n ∈ Nb (5.25)

5.4 Planning Methodology

The primary planning objective is to minimize the total system costs, including invest-

ment and operation costs. The planning model input includes stochastic models for the

AC/DC loads and DGs in the system. The planning model output comprises the binary

configuration matrices (W , U , and D), which provide decisions about the optimal hybrid

configuration. Each bus in the hybrid DS is flexible and can be either AC or DC as needed

for optimizing the planning objective. Accordingly, the proposed planning strategy facil-
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itates the connection of renewable DGs to AC or DC buses based on equal opportunities

for the DG owners. The use of the MCS technique enables consideration of the stochastic

variations associated with renewable DGs and load demands.

5.4.1 Planning Model Procedures

The flowchart of the proposed planning model is presented in Figure 5.2. The procedures

can be described as follows:

1. Initialize a GA population that consists of GA chromosomes, each representing one

combination of the possible AC-DC configurations. Steps 2 to 6 are performed for

each chromosome in the current GA generation.

2. Generate an MCS scenario that includes random values for the stochastic variables:

load demands and renewable DGs.

3. Solve the subproblem (i.e., the OPF problem) using (5.11)-(5.25) to find the optimal

operation cost of the MCS scenario selected.

4. Examine the MCS stopping criterion. The OPF solution for different MCS scenarios

is represented by a stochastic variable COPF ,s. The MCS process can be terminated

using either a fixed number of iterations [90] or the stopping criterion described in

(5.26) [91]. Steps 2 to 4 are repeated until the MCS stopping criterion is satisfied.

σ(COPF ,s)

E(COPF ,s)
≤ ε (5.26)

5. The minimum permissible number of feasible OPF solutions as a percentage of the

total number of solutions for different MCS scenarios is defined as αminf . To maintain

an acceptable stochastic risk level, the value of αminf is chosen to be 95 %. The higher

the value of αminf , the lower the stochastic risk level. For any configuration, if αminf

is achieved, the operation cost of this configuration is then represented by E(COPF ,s);

otherwise, this configuration is discarded.

6. For the current configuration, calculate the investment cost (IC) of the network lines

and converters, and then calculate the running cost (RC) using (5.3) and (5.4).
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7. For all chromosomes in the current GA generation, calculate the cost function using

(5.2), and then evaluate the GA objective function and constraints.

8. Check the GA stopping criterion; if it is not satisfied, update the GA generation by

applying the GA operations (reproduction, crossover, and mutation). Then repeat

Steps 2 to 8 until the GA stopping criterion is satisfied.

   Initialize a GA population of candidate chromosomes.

 Solve the subproblem (i.e., the OPF problem).

 (equations (5.11)-(5.25))

Is the GA stopping 
criterion satisfied?

No

Yes

Start

End

For each chromosome in the current 

GA generation, select an MCS scenario.

Is the MCS stopping 
criterion satisfied?

Yes

No

For all the current generation chromosomes, 

evaluate the GA objective function and constraints.

Select 
another MCS 

scenario.

1

2

3

4

8

    For the current chromosome, if         is achieved, 

calculate IC, and then calculate RC using (5.3)-(5.4).
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Figure 5.2: Flowchart for the proposed stochastic planning model.
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5.4.2 Optimization Techniques

The proposed planning strategy uses two optimization platforms: GA and GAMS. In

the first, the GA generates all possible AC-DC configurations. GA can find an optimal

solution of any objective function, even if this function is discrete or if its derivatives are

not defined. GA is a population-based algorithm that depends on iterative process and

uses probabilistic transition rules. Initially, the population is randomly generated, and each

individual in the population represents a candidate solution, which is ranked by means of

a fitness function to measure its goodness with respect to the given problem [92]. The

search procedure in GAs is based on three main operators: reproduction, crossover, and

mutation. These operators are used to search for the best solution among a number of

candidate solutions. In the proposed planning model, the GA chromosome describes the

system configuration based on the previously mentioned binary matrices (W , U , and D),

as shown in Figure 5.3. GAMS is used for solving the OPF problem for each configuration

generated by the GA. The OPF problem is solved by a CONOPT solver, which applies a

generalized reduced gradient (GRG) method [80].
 Number of variables = Nb  Number of variables = k

where Nb is the number of system buses, and  k = 0.5×Nb×(Nb-1)

W1 W2 W WNbNb -1 U12 U13 UXY D12 D13 DXY

X,Y    Nb 
and  X < Y

Number of variables = k 

X,Y    Nb 
and  X < Y

Figure 5.3: Structure of the GA chromosome in the proposed planning model.

5.5 Stochastic Models

This section discusses the stochastic variables presented in hybrid DSs. These variables

include: the power demand associated with the AC/DC loads, the output power of wind

DGs, the output power of PV DGs, and the power demand of EV charging stations.
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5.5.1 AC and DC Load Demands

The annual variation in demand can be incorporated by dividing the year into four seasons,

and then representing each season by a typical day. The load profile of a representative

day for each season is shown in Figure 5.4(a), based on the data provided in [93]. The

hourly demand of each representative is given as a percentage of the annual peak demand.

These four load profiles are then used for deriving the cumulative distribution functions

(CDFs) presented in Figure 5.4(b).
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Figure 5.4: Variations in the AC and DC loads: (a) demand for a typical day in each
season; (b) CDF for each typical day.

5.5.2 Wind DG Output Power

The seasonal data provided in [93] were used for modeling the electrical output power from

the wind DG, as shown in Figure 5.5(a). The hourly power generated during a typical day
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for each of the four seasons is given as a percentage of the annual maximum output power

of the wind DG. These four daily profiles were then used for deriving the CDFs presented

in Figure 5.5(b).
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Figure 5.5: Variations in the wind DG output power: (a) power generated during a typical
day in each season; (b) CDF for each typical day.

5.5.3 PV DG Output Power

Figure 5.6(a) shows the seasonal hourly variations in the PV output power, based on the

historical data for three successive years provided in [94]. The hourly PV power generated

during a typical day for each season is given as a percentage of the annual maximum

output power. These four daily profiles were then used for deriving the CDFs presented in

Figure 5.6(b).
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Figure 5.6: Variations in the PV output power: (a) power generated during a typical day
in each season; (b) CDF for each typical day.

5.5.4 EV Charging Station Demand

The hourly load variation for an EV charging station for a typical day is illustrated in

Figure 5.7(a), based on the 15-pole station model described in [95]. The hourly load

demand of this typical day is given as a percentage of the peak demand of the station.

This load profile was then used for deriving the CDF presented in Figure 5.7(b).

5.5.5 Best Fitting Distributions for the Stochastic Models

The aforementioned stochastic models are analyzed in order to generate the best fitting dis-

tributions. Table 5.1 shows the parameters of the best fitting distributions for the stochastic

variables associated with load demands and renewable DGs. The Johnson SB distribution,
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Figure 5.7: Variations in the EV charging station demand: (a) demand for a typical day;
(b) CDF for the typical day.

expressed as (5.27) [96], was found to be the best fit for representing the stochastic models

of PV-DG output power, wind-DG output power, and EV station demand.

F1(x) = Φ
(
γ + δ ln

( z

1− z
))

(5.27)

where F1(x) is the CDF of the Johnson SB distribution; z = x−ζ
λ

; δ, γ are shape parameters;

ζ is a location parameter; λ is a scale parameter; and Φ(u) is the Laplace integral (i.e., the

CDF of the standard normal distribution), which is given by

Φ(x) =
1√
2π

∫ x

0

e−0.5 t
2

dt (5.28)

The generalized Pareto distribution, expressed as (5.29) [96], was found to be the best

fit for representing the stochastic models of load demands.
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F2(x) = 1−
(

1 + k
(x− µ)

σ

)− 1
k

, k 6= 0 (5.29)

where F2(x) is the CDF of the generalized Pareto distribution, k is a shape parameter, µ is

a location parameter, and σ is a scale parameter. The CDF parameters for the stochastic

variables are shown in Table 5.1. For each stochastic variable, the parameters listed in

Table 5.1 provide the stochastic variations of the variable as a percentage of its annual

maximum value.

Table 5.1: CDF Parameters for the Stochastic Variables

Stochastic
Seasons CDF Parameters

Variables

Winter γ= 0.6561, δ= 0.1853, λ= 30.5430, ζ= -0.4102
PV-DG Spring γ= 0.4549, δ= 0.2182, λ= 81.8414, ζ= -1.3103
Power Summer γ= 0.4199, δ= 0.2332, λ= 96.1342, ζ= -1.6687

Fall γ= 0.6052, δ= 0.2301, λ= 59.0836, ζ= -1.0902

Winter γ= 1.4584, δ= 1.6624, λ= 32.9295, ζ= 80.6751
Wind-DG Spring γ= 0.1402, δ= 0.6340, λ= 25.9017, ζ= 30.9977

Power Summer γ= 0.3993, δ= 0.3682, λ= 28.1423, ζ= 13.8442
Fall γ= 0.7441, δ= 1.6674, λ= 43.7649, ζ= 7.0870

EV Station All γ= -0.1555, δ= 0.4199, λ= 94.1582, ζ= -4.1414

Winter k= -2.0498, σ= 76.5706, µ= 33.8229
Load Spring k= -2.0299, σ= 64.7435, µ= 30.9216

Demand Summer k= -2.1535, σ= 123.2435, µ= 43.8349
Fall k= -2.0299, σ= 60.6328, µ= 28.9583

5.6 Case Study

The system examined in the case study includes 13 zones, each including generally different

types of elements: AC and/or DC loads and/or DGs. The zones are clustered according

to the geographical location of each element in the system. Each zone can be represented

by a bus, which has the flexibility to become either AC or DC, as shown in Figure 5.8.
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The distribution substation (DSS) of the utility grid is connected at bus (1). The goal

is to determine a suitable DS that can optimally accommodate all of the loads and DGs

represented in the case study.

Utility 

DSS

AC

AC

AC

AC

DC

DC

AC

AC

Bus (1)

(2) (3)

(4) (5) (6)

(9) (10) (11)

(7) (8)

(12) (13)

DG9

DG4

DG7

DG11

DG13

AC

DC

AC DC

DC

EV Station

DC

EV Station

DC

EV Station

DC 
AC 

Figure 5.8: Thirteen-bus case study system.

5.6.1 System Parameters

Different types of loads and generators are represented in the system under study. Table 5.2

lists the generator data, including the active power limits, the reactive power limits, and
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the energy costs for electric power in Ontario, Canada [88, 89]. It is assumed that all

renewable-based DGs are owned by private customers and are operated according to the

FIT program [89]. The operation costs of these renewable DGs represent the tariff paid by

the utility to the DG owners.

Table 5.2: Data for the System Generators

DG DG Pmax
G Pmin

G Qmax
G Qmin

G Energy Cost
No. Type (MW) (MW) (MVAr) (MVAr) ($/MWh)

G1 DSS, AC 10.0 1.0 4.80 0.80 92.20
DG4 Solar PV, DC 1.50 – – – 209.0
DG7 Solar PV, DC 1.50 – – – 209.0
DG9 Wind DG, AC 1.00 – – – 128.0
DG11 Solar PV, DC 1.50 – – – 209.0
DG13 Diesel DG, AC 2.00 0.2 0.96 0.10 92.20

The peak demands of the AC and DC loads at each bus are given in Table 5.3. The

demand data are for the planning horizon year (year #15). A 0.7 % annual rate of growth

in Canadian energy demand [97] was used for this case study.

Table 5.3: Load Demands at System Buses

AC Loads DC Loads

Bus No. P ac
L (MW) Qac

L (MVAR) P dc
L (MW)

1 – – –
2 1.00 0.45 –
3 – – 1.25
4 0.50 0.25 –
5 0.50 0.25 0.50
6 0.75 0.35 0.75
7 0.50 0.25 –
8 0.50 0.25 1.25
9 – – 0.85
10 0.50 0.25 0.50
11 – – –
12 – – 1.25
13 0.75 0.35 –
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The determination of the geographical distances between each network bus and its

neighbors is a key design feature. The following matrix (X) indicates the distances (in

miles) between system buses and was used as input to the planning model.

X =



0.0 1.0 1.0 2.0 1.4 2.0 2.4 2.4 3.4 2.8 3.4 3.8 3.8

1.0 0.0 1.4 1.0 1.0 2.4 1.4 2.0 2.4 2.4 3.0 2.8 3.4

1.0 1.4 0.0 2.4 1.0 1.0 2.0 1.4 3.0 2.4 2.4 3.4 2.8

2.0 1.0 2.4 0.0 1.4 2.8 1.0 2.8 1.4 2.0 3.4 2.4 3.0

1.4 1.0 1.0 1.4 0.0 1.4 1.0 1.0 2.0 1.4 2.0 2.4 2.4

2.0 2.4 1.0 2.8 1.4 0.0 2.4 1.0 3.4 2.0 1.4 3.0 2.4

2.4 1.4 2.0 1.0 1.0 2.4 0.0 1.4 1.0 1.0 2.4 1.4 2.0

2.4 2.0 1.4 2.4 1.0 1.0 1.4 0.0 2.4 1.0 1.0 2.0 1.4

3.4 2.4 3.0 1.4 2.0 3.4 1.0 2.4 0.0 1.4 2.8 1.0 2.4

2.8 2.4 2.4 2.0 1.4 2.0 1.0 1.0 1.4 0.0 1.4 1.0 1.0

3.4 3.0 2.4 3.4 2.0 1.4 2.4 1.0 2.8 1.4 0.0 2.4 1.0

3.8 2.8 3.4 2.4 2.4 3.0 1.4 2.0 1.0 1.0 2.4 0.0 1.4

3.8 3.4 2.8 3.0 2.4 2.4 2.0 1.4 2.4 1.0 1.0 1.4 0.0


Table 5.4 indicates other input parameters employed in the case study. AWG#4/0

aluminum conductor steel-reinforced (ACSR) cables were used for the AC and DC network

lines. The DC resistance of this type of cable is (0.4415 Ω/mile), while the AC impedance

is (0.4435 + j0.726 Ω/mile) [98]. Table 5.5 shows the candidate capacities for the AC-DC

converters that can be used to connect the system loads and DGs to the network buses.

5.6.2 Simulation Results

To evaluate the effectiveness of the proposed planning strategy, the problem for the DS

under study was solved using two planning models. The first employs traditional AC

planning, with buses and lines assumed to be AC, so that all binary elements of the bus and

line matrices (W and D) are zeros, while the binary elements of the connection matrix (U)

are variables [103]. In the second method, the proposed hybrid planning model, all buses

and lines can become either AC or DC, so that the binary elements of all configuration

matrices (W , U , and D) are variables. The solutions provided by the AC and hybrid

planning models are presented in Figure 5.9 and Figure 5.10, respectively.
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Table 5.4: Input Parameters for the Planning Model

Base values (Sbase,V
ac
base,V

dc
base) 10 MVA, 4.16 kV, 6.8 kV, respectively.

Voltage magnitude limits, p.u. V min
n = 0.95 , V max

n = 1.05
Voltage angle limits, in rad θminn = −π/4 , θmaxn = π/4
Capacity of the lines, in MVA Smaxnm = 2.0
Modulation index limits [99] Mmin

nm = 0.77 , Mmax
nm = 1.0

Efficiency of the AC-DC converters 95 %
Bus connectivity constraints Nmin

l,n = 1 , Nmax
l,n = 4

Number of MCS scenarios 10, 000 [90]
Type of the DC system Unipolar
Cost of lines, in k$/mile 28.0 per single conductor [100]
Cost of converters, in $/kVA 170 [101]
Annual maintenance cost (βm) 5 % of the investment cost (IC)
Planning period (TP ), in years 15
Discount rate (d) 7.5 % [102]

Table 5.5: Capacities of the Candidate AC-DC Converters Used for the Connection of the
Loads and Generators at the System Buses (in MVA)

D
C

L
oad

s

D
C

D
G

s

A
C

L
oad

s

A
C

D
G

s
If Bus (n) is AC If Bus (n) is DC

Bus Converters Converters Converters Converters
No. for for for for
(n) DC loads DC DGs AC loads AC DGs

1∗ � � � �X – – – 11.50
2 � � �X � – – 1.20 –
3 �X � � � 1.50 – – –
4 � �X �X � – 1.50 0.60 –
5 �X � �X � 0.60 – 0.60 –
6 �X � �X � 0.85 – 0.85 –
7 � �X �X � – 1.50 0.60 –
8 �X � �X � 1.50 – 0.60 –
9 �X � � �X 1.00 – – 1.00
10 �X � �X � 0.60 – 0.60 –
11 � �X � � – 1.50 – –
12 �X � � � 1.50 – – –
13 � � �X �X – – 0.85 2.25

∗ The AC source at this bus is the DSS.
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Figure 5.9: AC planning solution.

Table 5.6 summarizes the cost comparison between the AC solution and the hybrid

solution. Figure 5.11 shows three cash flows: (a) the hybrid planning cash flow, in which

the present cost value is 45.66 M$; (b) the AC planning cash flow, in which the present cost

value is 47.36 M$; and (c) the differential cash flow, which represents the difference between

(a) and (b). The present worth value of the cash flow in Figure 5.11(c) is calculated as

1.70 M$. For the DS under study, the hybrid planning method can thus clearly provide a

cost saving of approximately 3.6 % of the total cost.
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Figure 5.10: Hybrid planning solution.

Table 5.6: Comparison between the AC Solution and the Hybrid Solution

Costs AC Solution Hybrid Solution

Annual operation cost at year #15 5.0004 M$ 4.9135 M$
Cost of network lines 1.7136 M$ 1.2264 M$
Cost of system converters 2.0485 M$ 1.7595 M$
Total investment cost 3.7621 M$ 2.9859 M$
Total present cost value 47.360 M$ 45.660 M$
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Figure 5.11: Cash flows: (a) cash flow for the hybrid solution; (b) cash flow for the AC
solution; (c) differential cash flow (i.e., difference between (a) and (b)).

5.7 Conclusion

This chapter presents a novel stochastic planning model for AC-DC hybrid DSs. A con-

nectivity profile has been introduced as a means of representing possible AC-DC hybrid

bus and line configurations. Three binary matrices, proposed for describing the hybrid

DS configuration, constitute the decision variables in the model. These matrices facilitate

the flexibility to treat all buses and lines as either AC or DC in order to determine the

optimal hybrid configuration that minimizes the DS investment and operation costs. The

proposed model uses an MCS technique to enable consideration of the stochastic variations

associated with the loads and renewable DGs. The hybrid planning problem presented in

this chapter is formulated as two nested optimization problems: 1) the master problem is
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formulated using a GA to search for the optimal hybrid configuration, and 2) the subprob-

lem is used for determining the OPF solution for each configuration generated by the GA.

The proposed planning model was tested on a 13-bus network that included different types

of loads and DGs. The efficacy of the proposed model was verified through a comparison

of its hybrid solution with the AC planning solution for the same case study. The proposed

planning technique represents an efficient tool for the design of a truly AC-DC hybrid DS.

The next chapter aims to incorporate the DS reliability as part of the formulation of the

optimization problem, considering the failure rates of DS components.
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Chapter 6

Reliability-Based Stochastic Planning

for AC-DC Hybrid DSs

6.1 Introduction

This chapter completes the work presented in Chapter 5 through the development of a

reliability-based stochastic planning model for the network configuration of AC-DC hybrid

DSs. The new model presented in this chapter is formulated as a multi-objective optimiza-

tion problem with two objectives: 1) minimize the investment and operation costs of the

DS, and 2) maximize DS reliability, which can be achieved through minimization of the

expected energy not supplied (EENS). The model input includes the failure rate data for

hybrid DS components as well as the stochastic variations associated with load demands

and renewable DGs. Consideration of these stochastic variations is included in the model

through the use of an MCS technique. The model output comprises decisions about the

optimal AC-DC network configuration that achieves the planning objectives. The model

was applied for solving the DS planning problem of a case study. As a means of evaluating

the effectiveness of the proposed model, the AC-DC hybrid solution provided by the model

was compared with a purely AC solution for the same case study. For each of the two so-

lutions, AC and hybrid, the relationship between system cost and reliability was explored

through an examination of the Pareto front for the two objective functions.
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This chapter is organized as follows: Section 6.2 describes the structure of the AC

and DC buses and lines in hybrid DSs. Section 6.3 presents the formulation of the multi-

objective optimization problem used for solving the hybrid planning problem. The planning

procedures and methodology are introduced in Section 6.4. The case study used for eval-

uating the benefits provided by the proposed planning model is presented in Section 6.5,

and the conclusions are summarized in Section 6.6.

6.2 Description of AC and DC Buses and Lines

As mentioned earlier in the previous chapters, hybrid DS buses and lines can be classified

as shown in Figure 6.1 and Figure 6.2, respectively. Figure 6.1 shows the two possible

types of buses (AC and DC) as well as the system load and DG connections to these buses.

Figure 6.2 illustrates the possibilities for connecting AC/DC buses using AC/DC lines and

VSCs. For the purposes of the study presented in this chapter, the primary goal of hybrid

DS planning is to find the optimal network configuration that optimizes the DS costs and

reliability. The network configuration is described by the binary matrices (W , U , and D),

which are defined in Section 3.3. These matrices represent the planning decision variables.

AC Bus DC Bus

(a) (b)

ACBDCB

ACBDCB

ACB

ACB

DC Load

AC Load

AC DG

DC DG

ACBDCB

ACBDCB

DC Load

AC Load

AC DG

DC DG
DCB

DCB

ACB = AC Breaker
DCB = DC Breaker

Figure 6.1: Hybrid DS buses: (a) AC bus; (b) DC bus.
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AC AC

AC AC

AC DC

DC DC

AC

DC

DC

DC

Case (1)

Case (2)

Case (3)

Case (4)

VSC VSC

VSC

DCB DCB

DCBDCB

DCB DCB

ACBACB

ACB

ACB

ACB

Figure 6.2: Possible AC-DC connections.

6.3 Modeling of the Hybrid Planning Problem

The planning model aims to simultaneously optimize the system costs and reliability in

order to find the optimal AC-DC network configuration. The planning problem in this

chapter is a multi-objective mixed-integer nonlinear programming problem with discontin-

uous derivatives, and it has been divided into two nested optimization problems: a master

problem and a subproblem. The two problems are described in the following subsections.

6.3.1 Formulation of the Master Problem

The master problem is formulated using a multi-objective GA [87]. The first objective

is to minimize the net present value of the system costs, while the second objective is to

minimize the expected energy not supplied, as expressed in (6.1). The constraints can be

classified into two groups: 1) integer constraints (5.5)-(5.7) for the binary variables of the

configuration matrices, and 2) bus connectivity constraints (5.8)-(5.9), which are used for
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identifying the minimum and maximum number of lines that can be connected to each bus

in the DS network. The constraints of the master problem are on the independent variables

(W , U , and D), whose values are used as input to the subproblem. The formulation of the

master problem is as follows:

min Fmaster = [ CNPV EENS ] (6.1)

Subject to:

(5.5)− (5.9)

where

CNPV = CINV +

TP∑
t=1

CAOM,t

(1 + d)t
(6.2)

CAOM,t = 8760 E(COPF ,s,t) + βm CINV , ∀ t ∈ TP (6.3)

EENS =

TP∑
t=1

E(ENSs,t) (6.4)

The equations for CINV and ENSs,t are as expressed in (6.5) and (6.6), respectively.

As previously mentioned in Chapter 5, if a radial DS is needed, the value of Nmin
l,n in (5.8)

is set to be 1 for all n ∈ Nb, and the constraint (5.10) is added to the formulation of the

master problem.

CINV =

Nb∑
n=1

Nb∑
m=1
m>n

Unm

[
Wn Wm Dnm (Cdcl Xnm + 2 Cvsc-nm + 2 Cacb-nm + 2 Cdcb-nm)

+Wn Wm Dnm (Cacl Xnm + 2 Cacb-nm) +Wn Wm Dnm (Cdcl Xnm + 2 Cdcb-nm)

+ (Wn Wm Dnm +Wn Wm Dnm) (Cdcl Xnm + Cvsc-nm + Cacb-nm + 2 Cdcb-nm)
]

+

Nb∑
n=1

[
Wn

(
Ci-Gdc

n
+Cacb-n-i +Cr-Ldc

n
+Cacb-n-r +Cacb-Gac

n
+Cacb-Lac

n
+Cdcb-Gdc

n
+Cdcb-Ldc

n

)
+Wn

(
Cr-Gac

n
+ Cdcb-n-r + Ci-Lac

n
+ Cdcb-n-i + Cacb-Gac

n
+ Cacb-Lac

n
+ Cdcb-Gdc

n
+ Cdcb-Ldc

n

)]
(6.5)

88



CHAPTER 6. RELIABILITY-BASED PLANNING FOR AC-DC HYBRID DSs

ENSs,t =

Nb∑
n=1

[
Wn

(
P dc
Ln,s,t(Uf,bus-n + Uf,acb,Ldc

n
+ Uf,c-r,Ldc

n
+ Uf,dcb,Ldc

n
)

+ P ac
Ln,s,t(Uf,bus-n + Uf,acb,Lac

n
)
)

+Wn

(
P ac
Ln,s,t(Uf,bus-n + Uf,dcb,Lac

n
+ Uf,c-i,Lac

n
+ Uf,acb,Lac

n
)

+ P dc
Ln,s,t(Uf,bus-n + Uf,dcb,Ldc

n
)
)]

, ∀s ∈ NMCS, t ∈ TP (6.6)

6.3.2 Formulation of the Subproblem

The subproblem is designed to solve the OPF problem for each MCS scenario for each

GA chromosome. The subproblem constraints are on dependent variables, whose values

are determined based on the values selected for the independent variables in the master

problem. The objective function and the optimization constraints are identical to those of

the subproblem in Chapter 5. The formulation of the subproblem can then be expressed

as follows:

min

( Bac
G∑

j=1

Cac
Gj
P ac
Gj

+

Bdc
G∑

l=1

Cdc
Gl
P dc
Gl

)
Subject to:

(5.12)− (5.25)

(6.7)

6.3.3 Calculations of the Probability of Failure at the System

Buses

The probabilities of failure at the DS buses can be calculated based on the failure rate

data for the distribution network components: AC/DC lines, AC/DC breakers, and AC-

DC converters. For any DS component, the unavailability and the probability of failure

can be calculated using (6.8) and (6.9), respectively.

Uf = λf tf (6.8)

Prf = Uf / 8760 (6.9)
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The probability of failure can be calculated for a number (Ks) of series components

using (6.10), and can be calculated for a number (Kp) of parallel independent components

using (6.11).

Prf =
Ks∑
k=1

Prf,k (6.10)

Prf =

Kp∏
k=1

Prf,k (6.11)

The six-bus network illustrated in Figure 6.3 provides an explanation of the way in

which the unavailability Uf,bus-n at the system buses can be calculated. Based on consid-

eration of all possible paths from the source node to each load point, the unavailability at

each bus can be calculated as shown in Table 6.1.

Power 
Source

Bus (1)

(2) (3)

(4)

(6)

l1 l2

l3

l4

l6

(5)

l5 Load

Load Load

Load Load

Figure 6.3: Example illustrating the calculation of unavailability at the system buses.

Each line in the hybrid DS network can be one of the four cases designated in Figure 6.2.

For any line lx with a length Lline, the probability of failure can be calculated as shown in

Table 6.2.
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Table 6.1: Unavailability at the System Buses

Bus No. Unavailability (Uf,bus-n)
(n) (h/year)

2 Uf,bus-2 = 8760 [Prf,l1]

3 Uf,bus-3 = 8760 [Prf,l2 (Prf,l3 + Prf,l6 + Prf,l4)]

4 Uf,bus-4 = 8760 [Prf,l3 (Prf,l2 + Prf,l4 + Prf,l6)]

5 Uf,bus-5 = 8760 [Prf,l3 (Prf,l2 + Prf,l4 + Prf,l6) + Prf,l5]

6 Uf,bus-6 = 8760 [(Prf,l2 + Prf,l4) (Prf,l3 + Prf,l6)]

Table 6.2: Probability of Failure for the Four Cases of AC-DC Connections

Case No. Probability of Failure (Prf,lx)

(1) [ 2Prf,acb + Prf,acl1 Lline ]

(2) [ 2Prf,dcb + 2Prf,acb + 2Prf,vsc + Prf,dcl1 Lline ]

(3) [ 2Prf,dcb + Prf,acb + Prf,vsc + Prf,dcl1 Lline ]

(4) [ 2Prf,dcb + Prf,dcl1 Lline ]

1 The failure rate data for the AC and DC lines are per circuit mile.

6.4 Planning Strategy and Procedures

The determination of the optimal AC-DC network configuration described by the matrices

(W , U , and D) is the main goal of the proposed planning model. The planning model is

formulated as a multi-objective optimization problem that has two objectives: 1) minimiz-

ing system costs, and 2) maximizing system reliability. The second objective is achieved

through the minimization of the EENS in the system. The use of an MCS technique

addresses the uncertainties related to the loads and renewable DGs. In this study, the

Pareto optimality concept is used for the multi-objective optimization. A non-dominated

sorting genetic algorithm (NSGA) is employed as a means of generating the optimal non-

dominated Pareto front [104]. The solution sets for each GA generation are ranked based

on an elitist genetic algorithm, which favors the individuals that have better fitness values

and preserves diversity in the final Pareto front solutions [104]. The strategy underlying the
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proposed planning model is shown in Figure 6.4, and the steps involved can be summarized

as follows:

1. Select suitable GA chromosomes to form the initial GA population. Each chromo-

some represents a candidate AC-DC network configuration and consists of the binary

elements of the configuration matrices (W , U , and D), as shown in Figure 5.3.

2. Perform Steps 3 to 7 for each chromosome in the current GA generation.

3. For the current chromosome, calculate the investment cost (CINV ) as well as the

unavailability (Uf,bus-n) at each bus in the system.

4. Generate an MCS scenario that includes random values for the stochastic variables

in the system. These stochastic variables include AC and DC load demands as well

as renewable-based DGs.

5. Solve the subproblem to find the optimal operation cost of the current scenario. The

OPF solution for different MCS scenarios is represented by the stochastic variable

COPF ,s.

6. Check the MCS stopping criterion, which can be determined by a) using a predefined

number of MCS scenarios, or b) terminating the MCS process if the ratio between

the standard deviation of COPF ,s and the mean of COPF ,s is less than a selected small

tolerance ε [91]. If the MCS stopping criterion is satisfied, go to Step 7; otherwise,

generate another MCS scenario and repeat Steps 5 and 6.

7. The minimum allowable number of feasible OPF solutions as a percentage of the

total number of solutions for different MCS scenarios is defined as αminf . In this

study, αminf is chosen to be 95 % in order to guarantee a lower level of stochastic risk.

For any configuration, if αminf is achieved, the operation cost of this configuration is

then represented by E(COPF ,s); otherwise, this configuration is rejected.

8. For all the current generation chromosomes, calculate CNPV and EENS using (6.2)

and (6.4), respectively, and then evaluate the GA objective functions and constraints.

9. Examine the GA stopping criterion; if it is not satisfied, perform the GA operations

(reproduction, crossover, and mutation) to update the GA generation.

92



CHAPTER 6. RELIABILITY-BASED PLANNING FOR AC-DC HYBRID DSs

   Calculate          using (6.5), 

and then calculate           using (6.2) and (6.3).

   Calculate          using (6.5), 

and then calculate           using (6.2) and (6.3).

CINV

CNPV

Are all-  
current-generation 

chromosomes solved 
(i.e.,            )?

Are all-  
current-generation 

chromosomes solved 
(i.e.,            )?i i max

=

Is         achieved?Is         achieved?α min
f

Initialize   bbbb         

( first chromosome in the current GA generation ).

Initialize   bbbb         

( first chromosome in the current GA generation ).

i 1=

Set the values of 
         and EENS to be 
very large numbers.

Set the values of 
         and EENS to be 
very large numbers.
CNPV

i i= 1+

· Reproduction
· Crossover
· Mutation

Apply 
GA operators

EndEnd

Apply the decision-making technique to select 

the best configuration from the generated Pareto front.

Apply the decision-making technique to select 

the best configuration from the generated Pareto front.

Is the GA stopping 
criterion satisfied?

Is the GA stopping 
criterion satisfied?

For all current-generation chromosomes, 

evaluate the GA objective functions and constraints.

For all current-generation chromosomes, 

evaluate the GA objective functions and constraints.

   Calculate the unavailability at the system buses, 

and then calculate EENS using (6.4) and (6.6).

   Calculate the unavailability at the system buses, 

and then calculate EENS using (6.4) and (6.6).

Generate another 
MCS scenario.

Generate another 
MCS scenario.

Is the MCS stopping 
criterion satisfied?

Is the MCS stopping 
criterion satisfied?

 Solve the OPF problem using (6.7). Solve the OPF problem using (6.7).

For chromosome # i , generate a random MCS scenario.For chromosome # i , generate a random MCS scenario.

Select candidate chromosomes 

to form the initial GA population.

Select candidate chromosomes 

to form the initial GA population.

StartStart

No

Yes

Yes

No

No

Yes

No

Yes

Figure 6.4: Flowchart for the reliability-based stochastic planning model.
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10. Repeat Steps 2 to 9 until the GA stopping criterion is satisfied, following which, the

non-dominated Pareto front is obtained.

11. Apply the decision-making technique expressed in (6.12) [91] to determine the best

configuration from the generated Pareto front.

min Zp(x) =

[ K∑
k=1

wpk

∣∣∣∣fk(x)− f 0
k

fmaxk − f 0
k

∣∣∣∣p ]1/p (6.12)

where K is the total number of objectives (K = 2 in this study); f 0
k is the value of

objective k at the ideal point; fk(x) is the value of objective k at point x ∈ X; X is

the total number of points in the Pareto front; fmaxk is the maximum value obtained

for objective k; wk is the weight assigned to objective k; and p defines the type of

distance measure used.

The decision-making technique mentioned in Step 11 measures how close each solution

in the Pareto front is to the ideal point. In a minimization problem, the ideal point is a

fictitious point at which the value of each objective function is the minimum possible one.

The DS planner can select the parameters (p, w1, and w2) according to his/her preferences.

For example, in the case study presented in Section 6.5, the group dissatisfaction criterion

was used (i.e., p= 1), which indicates that all deviations from the ideal point are directly

proportional to their magnitude [91]. In addition, the two objectives were assumed to have

equal priorities, so the weights were selected as (w1 =w2 = 0.5).

6.5 Case Study

This section presents the case study that was used for evaluating the effectiveness of the

proposed planning model.

6.5.1 Description of the Case-Study System

Figure 6.5 shows a 14-zone case-study system that includes different types of AC and DC

loads and DGs. Each zone in the system can be represented by a bus, which can be either

AC or DC as needed for optimizing the planning objectives. The data given for the system

loads and generators are listed in Table 6.3. The generator data include the active and
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reactive power limits as well as the energy costs [88,89] for each generator. The costs of the

renewable DGs represent the tariff paid to the DG owners [89]. The load data given in the

table are the peak demands at the planning horizon year. The best-fitting distributions

shown in Table 5.1 are used for representing the stochastic variables in the case-study

system. These variables include: the demand associated with AC/DC loads, the output

power of wind DGs, the output power of PV DGs, and the power demand of EV charging

stations. The base values used in this case study are Sbase = 10 MVA, V ac
base = 4.16 kV, and

V dc
base = 6.8 kV. Table 6.4 shows the failure data for hybrid DS components [105–107]. Other

input parameters for the planning model are listed in Table 6.5.
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Figure 6.5: Fourteen-zone case-study system.
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Table 6.3: Data for the System Loads and Generators

System Loads System Generators

Zone P ac
L Qac

L P dc
L Pmax

G Pmin
G Qmax

G Qmin
G Energy Cost

No. (MW) (MVAR) (MW) (MW) (MW) (MVAr) (MVAr) ($/MWh)

1∗ – – – 10.0 1.00 4.80 0.80 92.20
2 1.00 0.45 – – – – – –
3 – – 1.25 – – – – –
4 0.50 0.25 – 1.75 – – – 209.0
5 0.50 0.25 0.50 – – – – –
6 0.75 0.35 0.75 – – – – –
7 0.50 0.25 – 1.75 – – – 209.0
8 0.50 0.25 1.25 – – – – –
9 – – 0.85 1.00 – – – 128.0
10 0.50 0.25 0.50 – – – – –
11 – – – 1.75 – – – 209.0
12 – – 1.25 – – – – –
13 0.75 0.35 – 2.25 0.20 1.00 0.10 92.20
14 0.50 0.25 0.50 – – – – –

∗ The energy source at this zone is the DSS.

Table 6.4: Failure Rates and Durations for Hybrid DS Components

Hybrid DS Failure Rate Mean Down Time Unavailability
Components λf (f/year) tf (h/f) Uf (h/year)

AC Lines∗ 0.251330 4.000 Uf,acl = 1.0053
DC Lines∗ 0.335107 4.000 Uf,dcl = 1.3404
AC Breakers 0.018000 18.00 Uf,acb = 0.3240
DC Breakers 0.075000 3.000 Uf,dcb = 0.2250
Inverters 0.660515 5.321 Uf,c-i = 3.5146
Rectifiers 2.591962 3.471 Uf,c-r = 8.9967
VSCs 1.400000 4.100 Uf,vsc = 5.7400

∗ The failure rates for the AC and DC lines are per circuit mile.
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Table 6.5: Input Parameters for the Planning Model

Voltage magnitude limits, p.u. V min
n = 0.95 , V max

n = 1.05
Voltage angle limits, in rad θminn = −π/4 , θmaxn = π/4
Capacity of the lines Smaxnm = 2.0 MVA
Efficiency of AC-DC converters 95 %
Modulation index limits [99] Mmin

nm = 0.77 , Mmax
nm = 1.0

Bus connectivity constraints Nmin
l,1-14 = 1 , Nmax

l,1 = 4 , Nmax
l,2-14 = 3

Type of DC system Unipolar
Type of AC/DC network lines AWG #4/0 ACSR
AC impedance of AWG #4/0 ACSR 0.4435 + j 0.726 Ω/mile [98]
DC resistance of AWG #4/0 ACSR 0.4415 Ω/mile [98]
Number of MCS scenarios (NMCS) 10,000 [90]
Planning period (TP ) 15 years
Annual rate of load growth 0.7 % [97]
Discount rate (d) 7.5 % [102]
Cost of lines 28.0 k$/mile per single conductor [100]
Cost of AC-DC converters 170.0 $/kVA [101]
Cost of 1200 A AC/DC breakers 24.0 k$/unit [108]
Cost of 2000 A AC/DC breakers 26.0 k$/unit [108]
Annual maintenance cost (βm) 5 % of the investment cost (CINV )

6.5.2 Results and Discussion

In order to assess the benefits provided by the proposed planning model, the AC-DC hybrid

solution obtained from the proposed model was compared with a purely AC solution for the

same case study. The AC solution was obtained using traditional AC planning, in which

all buses and lines are assumed to be AC (i.e., the elements of the binary matrices W and

D are zeros). The resultant Pareto fronts for the AC and hybrid solutions are shown in

Figure 6.6. The decision-making technique presented in equation (6.12) was applied with

the following parameters (p= 1, w1 = 0.5, and w2 = 0.5) in order to find the best solutions

(i.e., the best compromises) provided by the AC and the hybrid planning models from the

generated Pareto fronts. The best AC and hybrid systems are presented in Figure 6.7 and
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Figure 6.6: Pareto fronts for (a) the AC solution and (b) the hybrid solution.

Figure 6.8, respectively. The two objectives obtained for the AC system were found to be

(CNPV = 60.69 M$ and EENS= 475.4 MWh), while the two objectives obtained for the

hybrid system were found to be (CNPV = 57.63 M$ and EENS= 255.4 MWh). The results

obtained demonstrate that, for the case under study, the proposed hybrid planning model

has provided cost savings of 5.04 % as well as a significant 46.3 % reduction in the EENS.

Additional comparisons presented in Table 6.6 further substantiate the superiority of the

hybrid solution.
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Figure 6.7: Best compromise solution obtained from the AC planning model.
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Table 6.6: Comparison of the AC and Hybrid Solutions

AC Solution Hybrid Solution

CAOM at planning horizon year 6.4662 M$ 6.3231 M$
Cost of network lines 1.7556 M$ 1.4056 M$
Cost of system converters 2.2780 M$ 2.0570 M$
Cost of breakers 1.5860 M$ 1.5380 M$
Total investment cost (CINV ) 5.6196 M$ 5.0006 M$
Net present cost (CNPV ) 60.690 M$ 57.630 M$
EENS at planning horizon year 32.757 MWh 18.002 MWh
Total EENS 475.40 MWh 255.40 MWh

It is worth mentioning that the Pareto fronts obtained from the proposed planning

framework provide a general solution for the case under study, and the DS planner can

select the suitable system according to his/her preferences. For example, if the goal of

the DS planner is to only minimize the DS costs, the weights can then be selected as

(w1 = 1.0 and w2 = 0.0), and the optimal solution obtained from the Pareto fronts will be

(CNPV = 60.18 M$ and EENS= 502.7 MWh) for the AC system and (CNPV = 56.39 M$

and EENS= 312.2 MWh) for the hybrid system. On the other hand, if the goal of

the DS planner is to only minimize the EENS, the weights can then be selected as

(w1 = 0.0 and w2 = 1.0), and the optimal solution obtained from the Pareto fronts will

be (CNPV = 61.85 M$ and EENS= 469.1 MWh) for the AC system and (CNPV = 59.11 M$

and EENS= 208.5 MWh) for the hybrid system.

6.6 Conclusion

In this chapter, a stochastic multi-objective planning model has been proposed for deter-

mining the optimal network configuration of AC-DC hybrid DSs. The planning model goal

is the simultaneous optimization of system costs and reliability. The model employs an

MCS technique as a means of including consideration of the stochastic behavior of load

demands and renewable DGs. The planning problem has been decomposed into a master
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problem and a subproblem. The master problem is formulated using a multi-objective GA

that generates different AC-DC configuration scenarios. The subproblem is formulated to

solve the OPF problem for each MCS scenario for each GA chromosome. The trade-off

between the DS costs and reliability is evaluated using the Pareto optimality concept, and

an NSGA is used for generating the non-dominated Pareto front. The proposed model

was employed for finding the optimal AC-DC network configuration for a 14-zone DS that

included different types of AC and DC loads and DGs. The purely AC solution was ob-

tained for the same case study and was compared with the AC-DC hybrid solution. A

comparison of the Pareto fronts for the AC and hybrid solutions demonstrated that the

hybrid solution resulted in a reduction in both the system costs and the EENS, which

confirms the effectiveness of the proposed planning model. The investigation presented in

this chapter proves that traditional AC systems may no longer be the best option for the

design of future smart DSs.
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Chapter 7

Summary, Contributions, and

Directions for Future Work

7.1 Summary and Conclusions

The primary goal of the research presented in this thesis is to optimally accommodate

the high penetration of DC loads and DC-based DGs in the current and future DSs. To

achieve this goal, this thesis presents new approaches and techniques for the optimal plan-

ning and operation of AC-DC hybrid DSs. The research presented in this thesis includes

four consecutive parts: 1) developing a unified AC-DC LF model to facilitate formulating

the planning and operation algorithms for AC-DC hybrid DSs, 2) developing a two-stage

EMS to guarantee optimal and reliable operation of AC-DC hybrid DSs, 3) developing a

planning technique to determine the optimal AC-DC network configuration that minimizes

the DS costs, and 4) developing a reliability-based planning framework for simultaneously

optimizing the DS costs and reliability. A detailed summary of the four parts conducted

in this thesis is highlighted below.

In the first part of this research, a unified LF model for AC-DC hybrid DSs was devel-

oped. Detailed analysis of this model was presented in Chapter 3. The developed model

can solve the LF problem for the AC and DC portions of the hybrid DS simultaneously

based on the integration of the AC and DC power equations into one unified model. VSCs

103



CHAPTER 7. SUMMARY, CONTRIBUTIONS, AND FUTURE WORK

are used in the LF model for AC-DC power conversions. The LF model employs three

binary matrices to describe the AC-DC configuration of any hybrid DS. These matrices

enable a single configuration at a time to be activated in the unified power equations. In

Chapter 3, the developed model was applied for solving the LF problem of grid-connected

and isolated hybrid DSs that included a variety of types of loads, DGs, buses, and lines.

As a means of evaluating the effectiveness and accuracy of the developed model, the LF

solution was compared to the steady-state solution produced by PSCAD/EMTDC. The

results demonstrate that the LF model can provide an accurate solution while also offering

the flexibility and speed required for online smart-grid applications. The developed LF

model is generic, flexible, and can be integrated in a variety of hybrid DS applications.

Based on this unified LF model, a new EMS for hybrid DSs was developed in Chapter 4,

and two novel planning techniques for the network configuration of AC-DC hybrid DSs

were introduced in Chapters 5 and 6.

In the second part, a two-stage EMS is developed for achieving reliable and optimal

operation of AC-DC hybrid DSs. In Stage 1 (i.e., the day-ahead stage), a reconfigura-

tion algorithm is employed to determine the most efficient network configuration for each

hour during the next day. The objective of the reconfiguration algorithm is to minimize

DS energy losses, while considering the day-ahead forecasted data for load demands and

renewable DGs. In Stage 2 (i.e., the real-time stage), an OPF-LCM technique is used to

guarantee optimal operational schedule for the hybrid DS. The objective of the OPF-LCM

technique is to minimize the DS operation costs and to guarantee reliable DS operation in

the case of abnormal operating conditions. The proposed two-stage EMS was successfully

tested on a case study of a hybrid DS that included different types of loads and DGs. The

benefits provided by the proposed EMS were verified through a comparison of the EMS

solution and the solution obtained from the base-case system.

Based on the unified LF model presented in Chapter 3, a novel planning approach

for the network configuration of AC-DC hybrid DSs was developed in Chapter 5, which

represents the third part of this research. The planning objective is to find the optimal

network configuration of AC and DC buses and lines for the minimization of DS investment

and operation costs. The developed planning model employs an MCS technique as a means

of including consideration of the stochastic behavior of load demands and renewable DGs.

The three binary matrices, which are used in Chapter 3 for describing the AC-DC hybrid
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DS configuration, are employed as the decision variables of the planning model. These

matrices facilitate the flexibility to treat all buses and lines as either AC or DC in order to

achieve the planning objective. The developed planning model was tested on a case study

of a hybrid DS that included different types of AC and DC loads and DGs. The solution

derived by the model was then compared with the solution obtained using a traditional

AC planning technique in order to evaluate the effectiveness of the developed model and

the associated cost-savings.

The last part was directed to incorporate the DS reliability in the formulation of the

planning problem, with the goal of determining the optimal network configuration of AC-

DC hybrid DSs. The reliability-based planning model developed in Chapter 6 is formulated

as a multi-objective optimization problem with two objectives: 1) minimizing the DS

investment and operation costs, and 2) maximizing DS reliability, which can be achieved

through minimization of the EENS. The model input includes the failure rate data for

hybrid DS components as well as the stochastic variations associated with load demands

and renewable DGs. Consideration of these stochastic variations is included in the model

through the use of an MCS technique. The planning problem has been divided into two

nested optimization problems: 1) the master problem is formulated using a multi-objective

GA that generates different AC-DC configuration scenarios, and 2) the subproblem is

formulated to solve the OPF problem for each MCS scenario for each GA chromosome.

In the developed model, the Pareto optimality concept is applied, and an NSGA is used

for generating the non-dominated Pareto front. The model was applied for solving the DS

planning problem of a case study of a hybrid DS that included different types of AC and

DC loads and DGs. As a means of evaluating the effectiveness of the proposed model, the

AC-DC hybrid solution provided by the model was compared with a purely AC solution

for the same case study. A comparison of the Pareto fronts for the AC and hybrid solutions

demonstrated that the hybrid solution resulted in a reduction in both the system costs and

the EENS, which confirms the effectiveness of the developed planning model.

The developed planning model provides a systematic approach for the design of a truly

AC-DC hybrid DS and represents a powerful tool for DS planners that will enable them

to identify the optimal AC-DC network configuration of future hybrid DSs.
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7.2 Contributions

The main contributions of the work presented in this thesis can be highlighted as follows:

1. The development of a unified LF model for solving the LF problem of AC-DC hybrid

DSs. The developed model can be applied in hybrid DSs with mixed configurations

for AC/DC buses and AC/DC lines. The developed model is generic, versatile, and

can be readily used for the planning and operation of AC-DC hybrid DSs.

2. The development of a two-stage EMS for the optimal operation of AC-DC hybrid

DSs. In the first stage, a network reconfiguration algorithm is developed to determine

the optimal day-ahead reconfiguration schedule for a hybrid DS. In the second stage,

an OPF-LCM technique is employed for guaranteeing a reliable and optimal real-time

operation of a hybrid DS.

3. The development of a novel stochastic planning model for the network configuration

of AC-DC hybrid DSs. A connectivity profile has been introduced as a means of

representing possible AC-DC hybrid bus and line configurations. The model searches

for the optimal AC-DC network configuration that minimizes the DS investment and

operation costs. The model incorporates consideration of the stochastic behavior of

load demands and renewable DGs.

4. The development of a reliability-based stochastic planning model for AC-DC hybrid

DSs. The developed model is formulated as a multi-objective optimization problem

that has two objectives: 1) minimizing system costs, and 2) maximizing system

reliability. The second objective is achieved through the minimization of the EENS

in the system. Network buses and lines can become either AC or DC in order to

achieve the planning objectives. The model features a Monte-Carlo simulation for

addressing stochastic variations related to load demands and renewable DGs.

7.3 Directions for Future Work

Based on the work presented in this thesis, the following topics are suggested for future

exploration:
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1. Investigating and assessing the techno-economic impacts of battery storage systems

on the planning and operation of AC-DC hybrid DSs. In this case, the planning and

operation models should be developed to enable consideration of the charging and

discharging cycles of battery storage systems.

2. The application of the reliability-based planning model for the design of isolated

power systems (e.g., AC-DC hybrid microgrids).

3. The application of the developed planning model for the expansion of existing DSs

using AC/DC interconnections.

4. The development of the introduced EMS to include consideration of different abnor-

mal scenarios related to the failure of network lines and converters.

5. The development of the introduced EMS to include consideration of additional tools

and techniques related to DSM programs as well as deregulated electricity markets

(e.g., energy bidding and dynamic pricing).
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