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Abstract. A right ideal is a language L over an alphabet Σ that satisfies
the equation L = LΣ∗. We show that there exists a sequence (Rn | n > 3)
of regular right-ideal languages, where Rn has n left quotients and is most
complex among regular right ideals under the following measures of com-
plexity: the state complexities of the left quotients, the number of atoms
(intersections of complemented and uncomplemented left quotients), the
state complexities of the atoms, the size of the syntactic semigroup, the
state complexities of reversal, star, product, and all binary boolean oper-
ations that depend on both arguments. Thus (Rn | n > 3) is a universal
witness reaching the upper bounds for these measures.
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1 Introduction

Brzozowski [3] called a regular language most complex if it meets the upper
bounds for a large set of commonly used language properties and operations,
and found a single witness language of state complexity n for each n > 3 that
meets all these bounds. In particular, this language has the maximal number
of atoms and the state complexities of these atoms are maximal. Moreover, it
meets the upper bounds for the state complexities of all the basic operations:
reverse, Kleene star, boolean operations, product (also known as concatenation
or catenation), as well as a large number of combined operations. In view of this,
such a witness has been called universal.

If we restrict our attention to some subclass of regular languages, then the
universal witness mentioned above no longer works because it lacks the proper-
ties of the subclass. In this paper we ask whether the approach used for general
regular languages can be extended to subclasses. We answer this question posi-
tively for regular right ideals by presenting a universal right-ideal witness.
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For a further discussion of regular right ideals see [5, 8]. It was pointed out
in [5] that right ideals deserve to be studied for several reasons: They are fun-
damental objects in semigroup theory, they appear in the theoretical computer
science literature as early as 1965, and they continue to be of interest in the
present. Right ideal languages are complements of prefix-closed languages. Be-
sides being of theoretical interest, right ideals also play a role in algorithms for
pattern matching: When searching for all words beginning in a word from some
set L, one is looking for all the words of the right ideal LΣ∗.

2 Background

A deterministic finite automaton (DFA) D = (Q,Σ, δ, q1, F ) consists of a finite
non-empty set Q of states, a finite non-empty alphabet Σ, a transition function
δ : Q × Σ → Q, an initial state q1 ∈ Q, and a set F ⊆ Q of final states. The
transition function is extended to functions δ′ : Q×Σ∗ → Q and δ′′ : 2Q×Σ∗ →
2Q as usual, and these extensions are also denoted by δ. A state q of a DFA
is reachable if there is a word w ∈ Σ∗ such that δ(q1, w) = q. The language
accepted by D is L(D) = {w ∈ Σ∗ | δ(q1, w) ∈ F}. The language of a state
q is the language accepted by the DFA Dq = (Q,Σ, δ, q, F ). A state is empty
if its language is empty. Two DFAs are equivalent if their languages are the
same. Two states are equivalent if their languages are equal; otherwise, they are
distinguishable by some word that is in the language of one of the states, but
not of the other. If S ⊆ Q, two states p, q ∈ Q are distinguishable with respect to
S if there is a word w such that δ(p, w) ∈ S if and only if δ(q, w) 6∈ S. A DFA is
minimal if all of its states are reachable and no two states are equivalent.

A nondeterministic finite automaton (NFA) is a tuple N = (Q,Σ, η,Q1, F ),
where Q, Σ, and F are as in a DFA, η : Q × Σ → 2Q is the transition function
and Q1 ⊆ Q is the set of initial states. An ε-NFA has all the features of an
NFA but its transition function η : Q × (Σ ∪ {ε}) → 2Q allows also transitions
under the empty word ε. The language accepted by an NFA or an ε-NFA is the
set of words w for which there exists a sequence of transitions such that the
concatenation of the symbols inducing the transitions is w, and this sequence
leads from a state in Q1 to a state in F . Two NFAs are equivalent if they accept
the same language.

We use the following operations on automata:
1. The determinization operation D applied to an NFA N yields a DFA

ND obtained by the subset construction, where only subsets reachable from the
initial subset of ND are used and the empty subset, if present, is included.

2. The reversal operation R applied to an NFA N yields an NFA NR, where
sets of initial and final states of N are interchanged and transitions are reversed.

Let D = (Q,Σ, δ, q1, F ) be a DFA. For each word w ∈ Σ∗, the transition

function induces a transformation tw of Q by w: for all q ∈ Q, qtw
def
= δ(q, w).

The set TD of all such transformations by non-empty words forms a semigroup
of transformations called the transition semigroup of D [11]. Conversely, we can
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use a set {ta | a ∈ Σ} of transformations to define δ, and so also the DFA D.
We also write a : t to mean that the transformation induced by a ∈ Σ is t.

The syntactic congruence ↔L of a language L ⊆ Σ∗ is defined on Σ+:
For x, y ∈ Σ+, x ↔L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈
Σ∗. The quotient set Σ+/ ↔L of equivalence classes of the relation ↔L is a
semigroup called the syntactic semigroup of L. If D is the minimal DFA of L,
then TD is isomorphic to the syntactic semigroup TL of L [11], and we represent
elements of TL by transformations in TD.

A permutation of Q is a mapping of Q onto itself. The identity transformation
1 maps each element to itself, that is, q1 = q for q ∈ Q. A transformation t is
a cycle of length k if there exist pairwise different elements p1, . . . , pk such that
p1t = p2, p2t = p3, . . . , pk−1t = pk, pkt = p1, and other elements of Q are mapped
to themselves. A cycle is denoted by (p1, p2, . . . , pk). A transposition is a cycle
(p, q). For p 6= q, a unitary transformation t : (p → q), has pt = q and rt = r for
all r 6= p.

The set of all permutations of a set Q of n elements is a group, called the
symmetric group of degree n. Without loss of generality, from now on we assume
that Q = {1, 2, . . . , n}. It is well known that the symmetric group of degree n
can be generated by any cyclic permutation of n elements together with any
transposition. In particular, it can be generated by (1, 2, . . . , n) and (1, 2).

The set of all transformations of a set Q, denoted by TQ, is a monoid with
1 as the identity. It is well known that the transformation monoid TQ of size
nn can be generated by any cyclic permutation of n elements together with any
transposition and any unitary transformation. In particular, TQ can be generated
by (1, 2, . . . , n), (1, 2) and (n → 1).

The state complexity [12] of a regular language L over an alphabet Σ is the
number of states in any minimal DFA recognizing L. An equivalent notion is
that of quotient complexity [2], which is the number of distinct left quotients
of L, where the left quotient of L ⊆ Σ∗ by a word w ∈ Σ∗ is the language
w−1L = {x ∈ Σ∗ | wx ∈ L}. This paper uses complexity for both of these
equivalent notions, and this term will not be used for any other property here.

The (state/quotient) complexity of an operation [12] on regular languages
is the maximal complexity of the language resulting from the operation as a
function of the complexities of the arguments. For example, for L ⊆ Σ∗, the
complexity of the reverse LR of L is 2n if the complexity of L is n, since a
minimal DFA for LR can have at most 2n states and there exist languages
meeting this bound [9].

There are two parts to the process of establishing the complexity of an op-
eration. First, one must find an upper bound on the complexity of the result of
the operation by using quotient computations or automaton constructions. Sec-
ond, one must find witnesses that meet this upper bound. One usually defines
a sequence (Ln | n > k) of languages, where k is some small positive integer.
This sequence will be called a stream. The languages in a stream differ only in
the parameter n. For example, one might study unary languages ({an}∗ | n > 1)
that have zero occurrences of the letter a modulo n. A unary operation takes its
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argument from a stream (Ln | n > k). For a binary operation, one adds a stream
(Kn | n > k) as the second argument. While the witness streams are normally
different for different operations, our main result shows that a single stream can
meet the complexity bounds for all operations in the case of right ideals.

Atoms of regular languages were studied in [7], and their complexities, in [6].
Let L be a regular language with quotients K = {K1, . . . ,Kn}. Each subset

S of K defines an atomic intersection AS = K̃1 ∩ · · · ∩ K̃n, where K̃i is Ki if
Ki ∈ S and Ki otherwise. An atom of L is a non-empty atomic intersection.
Since non-empty atomic intersections are pairwise disjoint, every atom A has a
unique atomic intersection associated with it, and this atomic intersection has
a unique subset S of K associated with it. This set S is called the basis of A
and is denoted by B(A). The cobasis of A is B(A) = K \ B(A). The basis of
an atom is the set of quotients of L that occur uncomplemented as terms of
the corresponding intersection, and the cobasis is the set of quotients that occur
complemented.

It was proven in [7] that each regular language L defines a unique set of
atoms, that every quotient of L (including L itself) is a union of atoms, and that
every quotient of every atom of L is a union of atoms. Thus the atoms of L are
its basic building blocks. It was argued in [3] that the complexity of the atoms
of a language should be considered when searching for “most complex” regular
languages, since a complex language should have complex building blocks. We
shall show that – as was the case for arbitrary regular languages – for right ideals
there is a tight upper bound on the complexity of any atom with a basis of a
given size.

3 Main Results

The stream of right ideals that turns out to be most complex is defined as follows:

Definition 1. For n > 3, let Rn = Rn(a, b, c, d) = (Q,Σ, δ, 1, {n}), where
Q = {1, . . . , n} is the set of states3, Σ = {a, b, c, d} is the alphabet, the trans-
formations defined by δ are a : (1, . . . , n − 1), b : (2, . . . , n − 1), c : (n− 1 → 1)
and d : (n− 1 → n), 1 is the initial state, and {n} is the set of final states. Let
Rn = Rn(a, b, c, d) be the language accepted by Rn.

The structure of the DFA Rn(a, b, c, d) is shown in Figure 1. Note that input
b induces the identity transformation in Rn for n = 3.

The stream of languages of Definition 1 is very similar to the stream (Ln |
n > 2) shown to be a universal witness for regular languages in [3, 6]. In that
stream, Ln is defined by the DFA Dn = Dn(a, b, c) = (Q,Σ, δ, 1, {n}), where
Q = {1, . . . , n}, Σ = {a, b, c}, and δ is defined by a : (1, . . . , n), b : (1, 2), and
c : (n → 1). The automatonRn can be constructed by taking Dn−1, adding a new

3 Although Q and δ depend on n, this dependence is usually not shown to keep the
notation as simple as possible.
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n − 2

c, d c, d c, d a, b, c, d

· · ·
da, b a, b a, b a, b

a, c

b

b, c, d

Fig. 1. Automaton Rn of a most complex right ideal Rn.

state n and a new input d : (n−1 → n), making n the only final state, and having
b induce the cyclic permutation (2, . . . , n−1), rather than the transposition (1, 2).
The new state and input are necessary to ensure that Rn is a right ideal for all n.
Changing the transformation induced by b is necessary since, if b induces (1, 2)
in Rn, then Rn does not meet the bound for product.

We can generalize this definition to a stream (Rn | n > 1) by noting that when
n = 1, all four inputs induce the identity transformation, and when n = 2, a, b
and c induce the identity transformation, while d induces (1 → 2). Hence R1 =
{a, b, c, d}∗ and R2 = {a, b, c}∗d{a, b, c, d}∗. However, the complexity bound for
star is not reached by R1, and the complexity bounds for boolean operations are
not reached when one of the operands is R1 or R2. Thus we require n > 3.

In some cases, the complexity bounds can be reached even when the alphabet
size is reduced. If c is not needed, let Rn(a, b, d) be the DFA of Definition 1
restricted to inputs a, b and d, and let Rn(a, b, d) be the language recognized by
this DFA. If both b and c are not needed, we use Rn(a, d) and Rn(a, d). We also
define Rn(b, a, d) to be the DFA obtained from Rn(a, b, d) by interchanging the
roles of the inputs a and b, and let Rn(b, a, d) be the corresponding language.

Theorem 1 (Main Results). The language Rn = Rn(a, b, c, d) has the prop-
erties listed below. Moreover, all the complexities of Rn are the maximal possible
for right ideals. The results hold for all n > 1 unless otherwise specified.

1. Rn(a, d) has n quotients, that is, its (state/quotient) complexity is n.
2. The syntactic semigroup of Rn(a, b, c, d) has cardinality nn−1.
3. Quotients of Rn(a, d) have complexity n, except for the quotient {a, d}∗,

which has complexity 1.
4. Rn(a, b, c, d) has 2n−1 atoms.
5. The atom of Rn(a, b, c, d) with the empty cobasis has complexity 2n−1. If an

atom of Rn(a, b, c, d) has a cobasis of size r, 1 6 r 6 n− 1, its complexity is

1 +

r∑

k=1

k+n−r∑

h=k+1

(
n− 1

h− 1

)(
h− 1

k

)
.

6. The reverse of Rn(a, d) has complexity 2n−1.
7. For n > 2, the star of Rn(a, d) has complexity n+ 1.
8. For m,n > 3, the complexity of Rm(a, b, d) ∩Rn(b, a, d) is mn.
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9. For m,n > 3, the complexity of Rm(a, b, d)⊕Rn(b, a, d) is mn.
10. For m,n > 3, the complexity of Rm(a, b, d) \Rn(b, a, d) is mn− (m− 1).
11. For m,n > 3, the complexity of Rm(a, b, d)∪Rn(b, a, d) is mn− (m+n− 2).
12. For m,n > 3, since any binary boolean operation can be expressed as a

combination of the four operations above (and complement, which does not
affect complexity), the complexity of Rm(a, b, d) ◦ Rn(b, a, d) is maximal for
all binary boolean operations ◦.

13. For m,n > 3, if m 6= n, then the complexity of Rm(a, b, d) ◦ Rn(a, b, d) is
maximal for all binary boolean operations ◦.

14. The complexity of Rm(a, b, d) ·Rn(a, b, d) is m+ 2n−2.

The proof of Theorem 1 is the topic of the remainder of the paper.

4 Conditions for the Complexity of Right Ideals

1. Complexity of the Language: Rn(a, d) has n quotients because the DFA
Rn(a, d) is minimal. This holds since the non-final state i accepts an−1−id and
no other non-final state accepts this word, for 1 6 i 6 n − 1, and all non-final
states are distinguishable from the final state n by the empty word.

2. Cardinality of the Syntactic Semigroup: It was proved in [8] that the
syntactic semigroup of a right ideal of complexity n has cardinality at most nn−1.
To show Rn(a, b, c, d) meets this bound, one first verifies the following:

Remark 1. For n > 3, the transposition (1, 2) in Rn is induced by an−2b.

Theorem 1 (2) The syntactic semigroup of Rn(a, b, c, d) has cardinality nn−1.

Proof. The cases n 6 3 are easily checked. For n > 4, let the DFA Pn be
Pn = (Q,Σ, δ, 1, {n}), where Q = {1, . . . , n}, Σ = {a, b, c, d}, and a : (1, . . . , n−
1), b : (1, 2), c : (n− 1 → 1) and d : (n− 1 → n). It was proved in [8] that the
syntactic semigroup of Pn(a, b, c, d) has cardinality nn−1. Since words in Σ∗ can
induce all the transformations of Pn in Rn(a, b, c, d), the claim follows. ⊓⊔

3. Complexity of Quotients: Each quotient of Rn(a, d), except the quotient
{a, d}∗, has complexity n, since states 1, . . . , n − 1 are strongly connected. So
the complexities of the quotients are maximal for right ideals.

4. Number of Atoms: It was proved in [6] that the number of atoms of L is
precisely the complexity of the reverse of L. It was shown in [5] that the maximal
complexity of LR for right ideals is 2n−1. For n 6 3 it is easily checked that our
witness meets this bound. For n > 3, it was proved in [8] that the reverse of
Rn(a, d), and hence also of Rn(a, b, c, d), reaches this bound.

5. Complexity of Atoms: This is the topic of Section 5.

6. Reversal: See 4. Number of Atoms.

7. Star: The complexity of the star of a right ideal is at most n + 1 [5]. This
follows because, if ε 6∈ L, we need to add ε to L = LΣ∗ to obtain L∗. Our witness
meets this bound, as one can easily verify:

Remark 2 (Star). For n > 2, the complexity of (Rn(a, d))
∗ is n+ 1.

8.–14. Boolean Operations and Product: See Sections 6 and 7.
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Table 1. Maximal complexity of atoms of right ideals.

n 1 2 3 4 5 6 7 · · ·

r=0 1/1 2/3 4/7 8/15 16/31 32/63 64/127 · · ·

r=1 2/3 5/10 13/29 33/76 81/187 193/442 · · ·

r=2 ∗/3 4/10 16/43 53/141 156/406 427/1, 086 · · ·

r=3 ∗/7 8/29 43/141 166/501 542/1, 548 · · ·

r=4 ∗/15 16/76 106/406 462/1, 548 · · ·

r=5 ∗/31 32/187 249/1, 086 · · ·

r=6 ∗/63 64/442 · · ·

max 1/1 2/3 5/10 16/43 53/141 166/501 542/1, 548 · · ·

ratio − 2/3 2.50/3.33 3.20/4.30 3.31/3.28 3.13/3.55 3.27/3.09 · · ·

5 Complexity of Atoms

In [6], for the language stream (Ln | n > 2) described after Definition 1, it
was proved that the atoms of Ln have maximal complexity amongst all regular
languages of complexity n. We want to prove that the atoms of Rn(a, b, c, d)
have maximal complexity amongst all right ideals of complexity n. We only give
a high-level outline following the approach of [6].

1. Derive upper bounds for the complexities of atoms of right ideals.
The cobasis of an atom cannot contain Σ∗; if it did, then Σ∗ = ∅ would be
a term in the corresponding atomic intersection and the intersection would be
empty. Since all right ideals have Σ∗ as a quotient, every atom of a right ideal
must contain Σ∗ in its basis. It follows the cobasis of an atom of a right ideal
is either empty or contains r quotients, where 1 6 r 6 n− 1. Knowing this, we
can derive the upper bounds by the same method as in [6].

2. Describe the transition function of the átomaton of Rn(a, b, c, d).
Let A = {A1, . . . , Am} be the set of atoms of L. The átomaton4 of L is the NFA
A = (A, Σ, η,AI , Af ), where the initial atoms are AI = {Ai | L ∈ B(Ai)}, the
final atom Af is the unique atom such that Ki ∈ B(Af ) if and only if ε ∈ Ki,
and Aj ∈ η(Ai, a) if and only if aAj ⊆ Ai. In the átomaton the language of state
A of A is the atom A of L. Since each regular language defines a unique set of
atoms, each regular language also defines a unique átomaton.

3. nectedness and reachability results hold for states of minimal DFAs of
atoms of Rn(a, b, c, d).

4. Prove that the complexity of each atom of Rn(a, b, c, d) meets the estab-
lished bound.

Many steps of this proof are similar or identical to the proof for Ln given
in [6]; for the details see [4]. Table 1 shows the bounds for right ideals (first
entry) and compares them to those of regular languages (second entry). An
asterisk indicates the case is impossible for right ideals. The ratio row shows the
ratio mn/mn−1 for n > 2, where mi is the ith entry in the max row.

4 The accent in átomaton avoids confusion with automaton, and suggests that the
stress should be on the first syllable, since the word comes from atom.
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6 Boolean Operations

Tight upper bounds for boolean operations on right ideals [5] aremn for intersec-
tion and symmetric difference, mn−(m+n) for difference, and mn−(m+n−2)
for union. Since Ln ∪ Ln = Ln ∩ Ln = Ln, and Ln \ Ln = Ln ⊕ Ln = ∅,
two different languages must be used to reach the bounds if m = n. We use
Rm = Rm(a, b, d) and Rn = Rn(b, a, d), shown in Figure 2 for m = 4 and n = 5.

Let Rm,n = Rm × Rn = (Qm × Qn, Σ, δ, (1, 1), Fm,n) with δ((i, j), σ) =
(δm(i, σ), δn(j, σ)), where δm (δn) is the transition function of Rm (Rn). De-
pending on Fm,n, this DFA recognizes different boolean operations on Rm and
Rn. The direct product of R4(a, b, d) and R5(b, a, d) is in Figure 3.

In our proof that the bounds for boolean operations are reached, we use a
result of Bell, Brzozowski, Moreira and Reis [1]. A binary boolean operation ◦
on regular languages is a mapping ◦ : 2Σ

∗

×2Σ
∗

→ 2Σ
∗

. If L,L′ ⊆ Σ∗, the result
of the operation ◦ is denoted by L ◦L′. We say that such a boolean operation is
proper if ◦ is not a constant, and not a function of one variable only, that is, it
is not the identity or the complement of one of the variables.

Let Sn denote the symmetric group of degree n. A basis [10] of Sn is an
ordered pair (s, t) of distinct transformations of Qn = {1, . . . , n} that generate
Sn. Two bases (s, t) and (s′, t′) of Sn are conjugate if there exists a transformation
r ∈ Sn such that rsr−1 = s′, and rtr−1 = t′. A DFA has a basis (ta, tb) for Sn

if it has letters a, b ∈ Σ such that a induces ta and b induces tb.

Proposition 1 (Symmetric Groups and Boolean Operations [1]). Sup-
pose that m,n > 1, Lm and L′

n are regular languages of complexity m and n
respectively, and Dm = (Qm, Σ, δ, 1, F ) and D′

n = (Qm, Σ, δ′, 1, F ′) are minimal
DFAs for Lm and L′

n, where ∅ ( F ( Qm and ∅ ( F ′ ( Qn. Suppose further
that Dm has a basis B = (ta, tb) for Sm and D′

n has a basis B′ = (t′a, t
′
b) for Sn.

Let ◦ be a proper binary boolean operation. Then the following hold:
1. In the direct product Dm × D′

n, all mn states are reachable if and only if
m 6= n, or m = n and the bases B and B′ are not conjugate.

2. For m,n > 2, (m,n) 6∈ {(2, 2), (3, 4), (4, 3), (4, 4)}, Lm ◦L′
n has complexity

mn if and only if m 6= n, or m = n and the bases B and B′ are not conjugate.

a, b, d

1 2 3 4 52 41

a, b, d

a, b

a

b, d d
a

d
3b

b
d

a, b a, b

a

R5(b, a, d)R4(a, b, d)

b

d da, d

Fig. 2. Right-ideal witnesses for boolean operations.
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a

2, 1 2, 2 2, 3 2, 4 2, 5

3, 1 3, 2 3, 3 3, 4 3, 5

4, 1 4, 2 4, 3 4, 4 4, 5

1, 1 1, 2 1, 3 1, 4 1, 5
b

b

d

d

d dd

d

a

b

a

b

a

a

dd

b

b

a

Fig. 3. Direct-product automaton for boolean operations, m = 4, n = 5. Transitions
under a and d are in solid lines and under b, in dotted lines. Unlabelled solid transitions
are under a. Self-loops are omitted.

This implies that if the conditions of the proposition hold, then no matter
how we choose the sets F and F ′, as long as ∅ ( F ( Qm and ∅ ( F ′ ( Qn,
and the boolean function ◦ is proper, the direct product DFA Dm ×Dn has mn
states and is minimal.

In the case of our right ideal Rm (Rn), the transitions ta and tb (t′a and
t′b) restricted to {1, . . . , n− 1}, constitute a basis for Sm−1 (Sn−1). This implies
that in the direct product Rm,n, all states in the set S = {(i, j) | 1 6 i 6

m−1, 1 6 j 6 n−1} are reachable by words in {a, b}∗. Furthermore, if m,n > 3
and (m,n) 6∈ {(3, 3), (4, 5), (5, 4), (5, 5)}, then every pair of states in S is distin-
guishable with respect to F ◦ F ′, the set of final states of the direct product.

Theorem 1 (8–11) (Boolean Operations) If m,n > 3, then
• The complexity of Rm(a, b, d) ∩Rn(b, a, d) is mn.
• The complexity of Rm(a, b, d)⊕Rn(b, a, d) is mn.
• The complexity of Rm(a, b, d) \Rn(b, a, d) is mn− (m− 1).
• The complexity of Rm(a, b, d) ∪Rn(b, a, d) is mn− (m+ n− 2).

Proof. In the cases where (m,n) ∈ {(3, 3), (4, 5), (5, 4), (5, 5)}, we cannot apply
Proposition 1, but we have verified computationally that the bounds are met.
For the remainder of the proof we assume (m,n) 6∈ {(3, 3), (4, 5), (5, 4), (5, 5)}.

Our first task is to show that all mn states of Rm,n are reachable. By Propo-
sition 1, all states in the set S = {(i, j) | 1 6 i 6 m − 1, 1 6 j 6 n − 1} are
reachable. The remaining states are the ones in the last row or last column (that
is, row m or column n) of the direct product.

For 1 6 j 6 n− 2, from state (m− 1, j) we can reach (m, j) by d. From state
(m,n− 2) we can reach (m,n− 1) by a. From state (m− 1, n− 1) we can reach
(m,n) by d. Hence all states in row m are reachable.
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For 1 6 i 6 m − 2, from state (i, n − 1) we can reach (i, n) by d. From
state (m− 2, n) we can reach (m− 1, n) by a. Hence all states in column n are
reachable, and thus all mn states are reachable.

We now count the number of distinguishable states for each operation. Let
H = {(m, j) | 1 6 j 6 n} be the set of states in the last row and let V =
{(i, n) | 1 6 i 6 m} be the set of states in the last column. If ◦ ∈ {∩,⊕, \,∪},
then Rm(a, b, d) ◦Rn(b, a, d) is recognized by Rm,n, where the set of final states
is taken to be H ◦ V .

Let H ′ = {(m − 1, j) | 1 6 j 6 n − 1} and let V ′ = {(i, n − 1) | 1 6 i 6
m − 1}. By Proposition 1, all states in S are distinguishable with respect to
H ′ ∩ V ′ = {(m − 1, n − 1)}. We claim that they are also distinguishable with
respect to H ◦ V for ◦ ∈ {∩,⊕, \,∪}.

Distinguishability with respect to H ′ ∩ V ′ implies that for all pairs of states
(i, j), (k, ℓ) ∈ S, there exists a word w that sends (i, j) to (m − 1, n − 1) and
sends (k, ℓ) to some other state in S. It follows that the word wd sends (i, j) to
(m,n) (which is in H ∩V ), while (k, ℓ) is sent to a state outside of H ∩V . Hence
all states in S are distinguishable with respect to H ∩ V . The same argument
works for H ⊕ V , H \ V , and H ∪ V .

Thus for each boolean operation ◦, all (m − 1)(n − 1) = mn − m − n + 1
states in S are distinguishable with respect to the final state set H ◦V . To show
that the complexity bounds are reached by Rm(a, b, d) ◦Rn(b, a, d), it suffices to
consider how many of the m + n − 1 states in H ∪ V are distinguishable with
respect to H ◦ V .

Intersection: Here the set of final states is H ∩ V = {(m,n)}. State (m,n) is
the only final state and hence is distinguishable from all the other states. Any
two states in H (V ) are distinguished by words in b∗d (a∗d). State (m, 1) accepts
bn−2d, while (1, n) rejects it. For 2 6 i 6 n−1, (m, i) is sent to (m, 1) by bn−1−i,
while state (1, n) is not changed by that word. Hence (m, i) is distinguishable
from (1, n). By a symmetric argument, (j, n) is distinguishable from (m, 1) for
2 6 j 6 m − 1. For 2 6 i 6 n − 1 and 2 6 j 6 m − 1, (m, i) is distinguished
from (j, n) because bn−i sends the former to (m, 1) and the latter to a state of
the form (k, n), where 2 6 k 6 m− 1. Hence all pairs of states from H ∪ V are
distinguishable. Siince there are m+ n− 1 states in H ∪ V , it follows there are
(mn−m− n+ 1) + (m+ n− 1) = mn distinguishable states.

Symmetric Difference: Here the set of final states is H ⊕V , that is, all states
in the last row and column except (m,n), which is the only empty state. This
situation is complementary to that for intersection. Thus every two states from
H ∪ V are distinguishable by the same word as for intersection. Hence there are
mn distinguishable states.

Difference: Here the set of final states is H \ V , that is, all states in the last
row H except (m,n), which is empty. All other states in the last column V are
also empty. The m empty states in V are all equivalent, and the n − 1 final
states in H \ V are distinguished in the same way as for intersection. Hence
there are (n − 1) + 1 = n distinguishable states in H \ V . It follows there are
(mn−m− n+ 1) + n = mn− (m− 1) distinguishable states.
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Fig. 4. Right-ideal witnesses for product.

Union: Here the set of final states is H ∪ V . From a state in H ∪ V it is only
possible to reach other states in H ∪ V , and all these states are final; so every
state in H ∪ V accepts Σ∗. Thus all the states in H ∪ V are equivalent, and so
there are (mn−m− n+ 1) + 1 = mn− (m+ n− 2) distinguishable states. ⊓⊔

Although it is impossible for the stream (Rn(a, b, d) | n > 3) to meet the
bound for boolean operations when m = n, this stream is as complex as it could
possibly be in view of the following theorem proved in [4]:

Theorem 1 (13) (Boolean Operations, m 6= n) If m,n > 3 and m 6= n,
• The complexity of Rm(a, b, d) ∩Rn(a, b, d) is mn.
• The complexity of Rm(a, b, d)⊕Rn(a, b, d) is mn.
• The complexity of Rm(a, b, d) \Rn(a, b, d) is mn− (m− 1).
• The complexity of Rm(a, b, d) ∪Rn(a, b, d) is mn− (m+ n− 2).

7 Product

We show that the complexity of the product of Rm(a, b, d) with Rn(a, b, d)
reaches the maximum possible bound derived in [5]. To avoid confusing states
of the two DFAs, we label their states differently. Let Rm = Rm(a, b, d) =
(Q′

m, Σ, δ′, q1, {qm}), where Q′
m = {q1, . . . , qm}, and let Rn = Rn(a, b, d), as in

Definition 1. Define the ε-NFA P = (Q′
m∪Qn, Σ, δP , {q1}, {n}), where δP(q, a) =

{δ′(q, a)} if q ∈ Q′
m, a ∈ Σ, δP(q, a) = {δ(q, a)} if q ∈ Qn, a ∈ Σ, and

δP(qm, ε) = {1}. This ε-NFA accepts RmRn, and is illustrated in Figure 4.
Theorem 1 (14) (Product) For m > 1, n > 2, the complexity of the product
Rm(a, b, d) ·Rn(a, b, d) is m+ 2n−2.

Proof. It was shown in [5] that m+2n−2 is an upper bound on the complexity of
the product of two right ideals. To prove this bound is met, we apply the subset
construction to P to obtain a DFA D for RmRn. The states of D are subsets
of Q′

m ∪ Qn. We prove that all states of the form {qi}, i = 1, . . . ,m− 1 and all
states of the form {qm, 1} ∪ S, where S ⊆ Qn \ {1, n}, and state {qm, 1, n} are
reachable, for a total of m+ 2n−2 states.

State {q1} is the initial state, and {qi} is reached by ai−1 for i = 2, . . . ,m−1.
Also, {qm, 1} is reached by am−2d, and states qm and 1 are present in every subset
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reachable from {qm, 1}. By applying abj−1 to {qm, 1} we reach {qm, 1, j}; hence
all subsets {qm, 1}∪S with |S| = 1 are reachable. Assume now that we can reach
all sets {qm, 1}∪S with |S| = k, and suppose that we want to reach {qm, 1}∪T
with T = {i0, i1, . . . , ik} with 2 6 i0 < i1 < · · · < ik 6 n− 1. This can be done
by starting with S = {i1 − i0 + 1, . . . , ik − i0 + 1} and applying abi0−2. Finally,
to reach {qm, 1, n}, start with {qm, 1, n− 1} and apply d.

If 1 6 i < j 6 m − 1, then state {qi} is distinguishable from {qj} by
am−1−jdan−1d. Also, state i ∈ Qn with 2 6 i 6 n − 1 accepts an−1−id and
no other state j ∈ Qn with 2 6 j 6 n − 1 accepts this word. Hence, if S, T ⊆
Qn \ {1, n} and S 6= T , then {qm, 1} ∪ S and {qm, 1} ∪ T are distinguishable.
State {qk} with 2 6 k 6 m− 1 is distinguishable from state {qm, 1}∪S because
there is a word with a single d that is accepted from {qm, 1} ∪ S but no such
word is accepted by {qk}. Hence all the non-final states are distinguishable, and
{qm, 1, n} is the only final state. ⊓⊔

8 Conclusion

Our stream of right ideals is a universal witness for all common operations.
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