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1. Introduction

The state complexity of a regular language L is the number of states in the minimal

deterministic finite automaton (DFA) accepting L. An equivalent notion is quotient

complexity, which is the number of distinct left quotients of L. The syntactic com-

plexity of L is the cardinality of the syntactic semigroup of L. Since the syntactic

semigroup of L is isomorphic to the semigroup of transformations performed by the

minimal DFA of L, it is natural to consider the relation between syntactic complex-

ity and state complexity. The syntactic complexity of a subclass of regular languages

is the maximal syntactic complexity of languages in that class, taken as a function

of the state complexity of these languages.

Here we consider the classes of languages defined using the well-known Green

equivalence relations on semigroups [14]. Let M be a monoid, that is, a semigroup

with an identity, and let s, t ∈ M be any two elements of M . The Green equivalence

relations on M , denoted by L,R,J and H, are defined as follows: sLt⇔Ms = Mt,

s R t ⇔ sM = tM, s J t ⇔ MsM = MtM, and s H t ⇔ s L t and s R t. For

ρ ∈ {L,R,J ,H}, M is ρ-trivial if and only if (s, t) ∈ ρ implies s = t for all s, t ∈ M .

A language is ρ-trivial if and only if its syntactic monoid is ρ-trivial. In this paper

we consider only regular ρ-trivial languages. H-trivial regular languages are exactly

the star-free languages [14, 17], and L-, R-, and J -trivial regular languages are all
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subclasses of the class of star-free languages. The class of J -trivial languages is the

intersection of the classes of R-trivial and L-trivial languages.

A language L ⊆ Σ∗ is piecewise-testable if it is a finite boolean combination of

languages of the form Σ∗a1Σ
∗ · · ·Σ∗alΣ

∗, where ai ∈ Σ. Simon [18, 19] proved in

1972 that a language is piecewise-testable if and only if it is J -trivial. A biautomaton

is a finite automaton which can read the input word alternatively from left and right.

In 2011 Kĺıma and Polák [10] showed that a language is piecewise-testable if and

only if it is accepted by an acyclic biautomaton; here self-loops are allowed, as they

are not considered cycles.

In 1979 Brzozowski and Fich [1] proved that a regular language is R-trivial if

and only if its minimal DFA is partially ordered, that is, it is acyclic as above.

They also showed that R-trivial regular languages are finite boolean combinations

of languages Σ∗
1a1Σ

∗
2 · · ·Σ

∗
l alΣ

∗, where ai ∈ Σ and Σi ⊆ Σ\{ai}. Recently Jirásková

and Masopust proved a tight upper bound on the state complexity of reversal of R-

and J -trivial languages [8, 9].

In the past, the syntactic complexity of the following subclasses of regular lan-

guages was considered: In 1970 Maslov [12] noted that nn was a tight upper bound

on the number of transformations performed by a DFA of n states. In 2003–2004,

Holzer and König [7], and Krawetz, Lawrence and Shallit [11] studied unary and

binary languages. In 2010 Brzozowski and Ye [5] examined ideal and closed reg-

ular languages. In 2012 Brzozowski, Li and Ye studied prefix-, suffix-, bifix-, and

factor-free regular languages [4]. In 2013 Brzozowski, Li and Liu [3] considered six

subclasses of star-free languages including monotonic, partially monotonic, nearly

monotonic, finite/cofinite, definite, and reverse definite languages, where L is def-

inite (reverse-definite) if it can be decided whether a word w belongs to L by

examining the suffix (prefix) of w of some fixed length.

We state basic definitions and facts in Section 2. In Sections 3 and 4 we prove

tight upper bounds on the syntactic complexities of R- and J -trivial regular lan-

guages, respectively. Section 5 concludes the paper. A much shorter version of this

work appeared in [2]; many proofs that were omitted there are given in full in the

present paper.

2. Preliminaries

Let Q be a non-empty finite set with n elements, and assume without loss of gener-

ality that Q = {1, 2, . . . , n}. There is a linear order on Q, namely the natural order

< on integers. If X is a non-empty subset of Q, then the maximal element in X

is denoted by max(X). A partition π of Q is a collection π = {X1, X2, . . . , Xm} of

non-empty subsets of Q such that Q = X1 ∪ X2 ∪ · · · ∪ Xm, and Xi ∩Xj = ∅ for

all 1 6 i < j 6 m. We call each subset Xi a block of π. For any partition π of Q,

let Max(π) = {max(X) | X ∈ π}. The set of all partitions of Q is denoted by ΠQ.

We define a partial order � on ΠQ such that, for any π1, π2 ∈ ΠQ, π1 � π2 if and

only if each block of π1 is contained in some block of π2. We say π1 refines π2 if



February 23, 2015 12:12 WSPC/INSTRUCTION FILE RJtrivial˙ijfcs

Syntactic Complexity of R- and J -Trivial Regular Languages 3

π1 � π2. The poset (ΠQ,�) is a finite lattice: For any π1, π2 ∈ ΠQ, the meet π1∧π2

is the �-largest partition that refines both π1 and π2, and the join π1∨π2 is the

�-smallest partition that is refined by both π1 and π2. From now on, we refer to

the lattice (ΠQ,�) simply as ΠQ.

A transformation of a set Q is a mapping of Q into itself. We consider only

transformations t of a finite set Q. If j ∈ Q, then jt is the image of j under t.

If X is a subset of Q, then Xt = {jt | j ∈ X}, and the restriction of t to X ,

denoted by t|X , is a mapping from X to Xt such that jt|X = jt for all j ∈ X . The

composition of transformations t1 and t2 of Q is a transformation t1 ◦ t2 such that

j(t1 ◦ t2) = (jt1)t2 for all j ∈ Q. We usually drop the operator “◦” and write t1t2
for short. An arbitrary transformation can be written in the form

t =

(

1 2 · · · n− 1 n

i1 i2 · · · in−1 in

)

,

where ik = kt, 1 6 k 6 n, and ik ∈ Q. We also use the notation t = [i1, i2, . . . , in] for

t above. The domain dom(t) of t is Q. The range rng(t) of t is the set rng(t) = Qt.

The rank rank(t) of t is the cardinality of rng(t), i.e., rank(t) = |rng(t)|. The binary

relation ωt on Q × Q is defined as follows: For any i, j ∈ Q, i ωt j if and only if

itk = jtl for some k, l > 0. This is an equivalence relation, and each equivalence

class is called an orbit of t. For any i ∈ Q, the orbit of t containing i is denoted by

ωt(i). The set of all orbits of t is denoted by Ω(t). Clearly, Ω(t) is a partition of Q.

A permutation of Q is a mapping of Q onto itself, so here rng(π) = Q. The

identity transformation 1 maps each element to itself. A transformation t is a cycle

of length k, where k > 2, if there exist pairwise different elements i1, . . . , ik such

that i1t = i2, i2t = i3, . . . , ik−1t = ik, and ikt = i1, and the remaining elements are

mapped to themselves. A cycle is denoted by (i1, i2, . . . , ik). For i < j, a transpo-

sition is the cycle (i, j). A unitary transformation, denoted by (j → i), has jt = i

and ht = h for all h 6= j. A constant transformation, denoted by (Q → i), has

jt = i for all j. A transformation t is an idempotent if t2 = t. The set TQ of all

transformations of Q is a finite semigroup, in fact, a monoid. We refer the reader

to the book of Ganyushkin and Mazorchuk [6] for a detailed discussion of finite

transformation semigroups.

For background about regular languages, we refer the reader to [20]. Let Σ be

a non-empty finite alphabet. Then Σ∗ is the free monoid generated by Σ, and Σ+

is the free semigroup generated by Σ. A word is any element of Σ∗, and the empty

word is ε. The length of a word w ∈ Σ∗ is |w|. A language over Σ is any subset

of Σ∗. The reverse of a word w is denoted by wR. For a language L, its reverse is

LR = {w | wR ∈ L}. The left quotient, or simply quotient, of a language L by a

word w is w−1L = {x ∈ Σ∗ | wx ∈ L}.

The Myhill congruence [13] ≈L of any language L is defined as follows:

x ≈L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗. This congruence is

also known as the syntactic congruence of L. The quotient set Σ+/≈L of equiv-

alence classes of the relation ≈L is a semigroup called the syntactic semigroup of
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L, and Σ∗/≈L is the syntactic monoid of L. The syntactic complexity σ(L) of L is

the cardinality of its syntactic semigroup. A language is regular if and only if its

syntactic semigroup is finite. We consider only regular languages, and so assume

that all syntactic semigroups and monoids are finite.

A DFA is denoted by A = (Q,Σ, δ, q1, F ), as usual. The DFA A accepts a word

w ∈ Σ∗ if δ(q1, w) ∈ F . The language accepted by A is denoted by L(A). If q

is a state of A, then the language Lq of q is the language accepted by the DFA

(Q,Σ, δ, q, F ). Two states p and q of A are equivalent if Lp = Lq. If L ⊆ Σ∗ is a

regular language, then its quotient DFA is A = (Q,Σ, δ, q1, F ), where Q = {w−1L |

w ∈ Σ∗}, δ(w−1L, a) = (wa)−1L, q1 = ε−1L = L, F = {w−1L | ε ∈ w−1L}. The

quotient complexity κ(L) of L is the number of distinct quotients of L. The quotient

DFA of L is the minimal DFA accepting L, and so quotient complexity is the same

as state complexity.

If A = (Q,Σ, δ, q1, F ) is a DFA, then its transition semigroup [14], denoted by

TA, consists of all transformations tw on Q performed by non-empty words w ∈ Σ+

such that jtw = δ(j, w) for all j ∈ Q. The syntactic semigroup TL of a regular

language L is isomorphic to the transition semigroup of the quotient DFA A of

L [14], and we represent elements of TL by transformations in TA. Given a set

G = {ta | a ∈ Σ} of transformations of Q, we can define the transition function δ

of some DFA A such that δ(j, a) = jta for all j ∈ Q. The transition semigroup of

such a DFA is the semigroup generated by G. When the context is clear, we write

a = t, to mean that the transformation performed by a ∈ Σ is t.

3. R-Trivial Regular Languages

Given DFA A = (Q,Σ, δ, q1, F ), we define the reachability relation → as follows.

For all p, q ∈ Q, p→ q if and only if δ(p, w) = q for some w ∈ Σ∗. We say that A is

partially ordered [1] if the relation → is a partial order on Q.

Consider the natural order < on Q. A transformation t of Q is non-decreasing

if p 6 pt for all p ∈ Q. The set FQ of all non-decreasing transformations of Q is

a semigroup, since the composition of two non-decreasing transformations is again

non-decreasing. It was shown in [1] that a language L is R-trivial if and only if its

quotient DFA is partially ordered. Equivalently, L is an R-trivial language if and

only if its syntactic semigroup contains only non-decreasing transformations.

It is known [6] that FQ is generated by the following set

GFQ = {1} ∪ {t ∈ FQ | t2 = t and rank(t) = n− 1}.

For any transformation t of Q, let Fix(t) = {j ∈ Q | jt = j}. Then

Lemma 1. For any t ∈ GFQ, rng(t) = Fix(t).

Proof. Pick arbitrary t ∈ GFQ. The claim holds trivially for 1. Assume t 6= 1.

Clearly Fix(t) ⊆ rng(t). Suppose there exists j ∈ rng(t) but jt 6= j. Then ht = j for
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some h ∈ Q, and h 6= j. However, since ht2 = jt 6= j = ht, t is not an idempotent,

which is a contradiction. Therefore rng(t) = Fix(t).

If n = 1, then FQ contains only the identity transformation 1, and GFQ = FQ =

{1}. So |GFQ| = |FQ| = 1. Let
(

n

m

)

be the binomial coefficient. If n > 2, then we

have

Lemma 2. For n > 2, |GFQ| = 1 +
(

n
2

)

.

Proof. Pick t ∈ GFQ such that t 6= 1. Then rank(t) = n − 1, and, by Lemma 1,

|Fix(t)| = n−1. There is only one element j ∈ Q\Fix(t), and j < jt. Note that t is

fully determined by the pair (j, jt). Hence there are
(

n

2

)

different t. Together with

the identity 1, the cardinality of GFQ is 1 +
(

n

2

)

.

Lemma 3. If G ⊆ FQ and G generates FQ, then GFQ ⊆ G.

Proof. Suppose there exists t ∈ GFQ such that t 6∈ G. Since G generates FQ,

t can be written as t = g1 · · · gk for some g1, . . . , gk ∈ G, where k > 2. Then

rng(gk) ⊇ rng(gk−1gk) ⊇ · · · ⊇ rng(g1 · · · gk−1gk) = rng(t). Note that 1 is the only

element in FQ with range Q; so if t = 1, then g1 = · · · = gk = 1, a contradiction.

Assume t 6= 1, and gi 6= 1 for all i = 1, . . . , k. Then rank(t) = n − 1, and

rng(g1) = · · · = rng(gk) = rng(t). Since each gi is non-decreasing, for all p ∈ Fix(t),

we must have p ∈ Fix(gi) as well; so Fix(t) ⊆ Fix(gi). Moreover, since Fix(gi) ⊆

rng(gi) = rng(t) and rng(t) = Fix(t) by Lemma 1, Fix(gi) = Fix(t) = rng(t). Now,

let q be the unique element in Q \ Fix(t). Then qg1 6= q, and qg1 ∈ Fix(g2) = · · · =

Fix(gk). So q(g1 · · · gk) = qg1. However, since t = g1 · · · gk, q(g1 · · · gk) = qt and

qt = qg1. Hence t = g1, and we get a contradiction again. Therefore GFQ ⊆ G.

Consequently, GFQ is the unique minimal generator of FQ. We also have

Lemma 4. For n > 1, |FQ| = n!.

Proof. Pick an arbitrary t ∈ FQ. For each p ∈ Q, since p 6 pt, pt can be chosen

from {p, p+ 1, . . . , n}. Hence |FQ| = n!.

Using the lemmas, we obtain our first tight upper bound:

Theorem 5. If L ⊆ Σ∗ is an R-trivial regular language of quotient complexity

κ(L) = n > 1, then its syntactic complexity σ(L) satisfies σ(L) 6 n!, and this

bound is tight if |Σ| > 1 for n = 1 and if |Σ| > 1 +
(

n
2

)

for n > 2.

Proof. Let A be the quotient DFA of L, and let TL be its syntactic semigroup.

Then TL is a subset of FQ, and σ(L) 6 n!.

When n = 1, the only regular languages are Σ∗ or ∅, and they are both R-trivial

and meet the bound 1. To see the bound is tight for n > 2, let An = (Q,Σ, δ, 1, {n})
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be the DFA with alphabet Σ of size 1 +
(

n
2

)

and set of states Q = {1, . . . , n},

where each a ∈ Σ defines a distinct transformation in GFQ. For each p ∈ Q,

let tp = [p, n, . . . , n]. Since GFQ generates FQ and tp ∈ FQ, tp = e1 · · · ek for

some e1, . . . , ek ∈ GFQ, where k depends on p. Then there exist a1, . . . , ak ∈ Σ

such that each ai performs ei and state p is reached by w = a1 · · · ak. Moreover,

n is the only final state of An. Consider any non-final state q ∈ Q \ {n}. Since

t = [2, 3, . . . , n, n] ∈ FQ, there exist b1, . . . , bl ∈ Σ such that the word u = b1 · · · bl
performs t. State q can be distinguished from other non-final states by the word

un−q. Hence L = L(An) has quotient complexity κ(L) = n. The syntactic monoid

of L is FQ, and so σ(L) = n!. By Lemma 3, the alphabet of An is minimal.

Example 6. When n = 4, there are 4! = 24 non-decreasing transformations of

Q = {1, 2, 3, 4}. Among them, there are 11 transformations with rank n − 1 = 3.

The following 6 transformations from the 11 are idempotents: e1 = [1, 2, 4, 4], e2 =

[1, 3, 3, 4], e3 = [1, 4, 3, 4], e4 = [2, 2, 3, 4], e5 = [3, 2, 3, 4], e6 = [4, 2, 3, 4].

Together with the identity transformation 1, we have the generating set GFQ for

FQ with 7 transformations. We can then define the DFA A4 with 7 inputs as in the

proof of Theorem 5; A4 is shown in Fig. 1. The quotient complexity of L = L(A4)

is 4, and the syntactic complexity of L is 24. �

1 2 3 4

e2, . . . , e6 e1, . . . , e6e1, e2, e3 e1, e4, e5, e6

e6

e3
e5

e4 e2 e1

Fig. 1. DFA A4 with κ(L(A4)) = 4 and σ(L(A4)) = 24; the input performing the identity trans-
formation is not shown.

4. J -Trivial Regular Languages

For any m > 1, we define an equivalence relation ↔m on Σ∗ as follows. For any

u, v ∈ Σ∗, u ↔m v if and only if for every x ∈ Σ∗ with |x| 6 m, x is a subword

of u if and only if x is a subword of v. Let L be any language over Σ. Then L

is piecewise-testable if there exists m > 1 such that, for every u, v ∈ Σ∗, u ↔m v

implies that u ∈ L⇔v ∈ L. Let A = (Q,Σ, δ, q1, F ) be a DFA. If Γ is a subset of Σ,

a component of A restricted to Γ is a minimal subset P of Q such that, for all p ∈ Q

and w ∈ Γ∗, δ(p, w) ∈ P if and only if p ∈ P . A state q of A is maximal if δ(q, a) = q



February 23, 2015 12:12 WSPC/INSTRUCTION FILE RJtrivial˙ijfcs

Syntactic Complexity of R- and J -Trivial Regular Languages 7

for all a ∈ Σ. Simon [19] proved the following characterization of piecewise-testable

languages.

Theorem 7 (Simon) Let L be a regular language over Σ, let A be its quotient

DFA, and let TL be its syntactic monoid. Then the following are equivalent:

(1) L is piecewise-testable.

(2) A is partially ordered, and for every non-empty subset Γ of Σ, each com-

ponent of A restricted to Γ has exactly one maximal state.

(3) TL is J -trivial.

Consequently, a regular language is piecewise-testable if and only if it is J -

trivial. The following characterization of J -trivial monoids is due to Saito [16].

Theorem 8 (Saito) Let S be a monoid of transformations of Q. Then the follow-

ing are equivalent:

(1) S is J -trivial.

(2) S is a subset of FQ and Ω(ts) = Ω(t)∨Ω(s) for all t, s ∈ S.

Let L be a J -trivial language with quotient DFA A = (Q,Σ, δ, q1, F ) and syn-

tactic monoid TL. Since TL ⊆ FQ, an upper bound on the cardinality of J -trivial

submonoids of FQ is an upper bound on the syntactic complexity of L.

Lemma 9. If t, s ∈ FQ, then

(1) Fix(t) = Max(Ω(t)).

(2) Ω(t) � Ω(s) implies Fix(t) ⊇ Fix(s), where Fix(t) = Fix(s) if and only if

Ω(t) = Ω(s).

Proof. 1. First, for each j ∈ Max(Ω(t)), since t ∈ FQ, we have jt = j, and

j ∈ Fix(t). So Max(Ω(t)) ⊆ Fix(t). On the other hand, if there exists j ∈ Fix(t) \

Max(Ω(t)), then jt = j, and j < max(ωt(j)). Let i = max(ωt(j)); then it = i and,

for any k, l > 0, jtk = j < i = itl. So i 6∈ ωt(j), which is a contradiction. Hence

Fix(t) = Max(Ω(t)).

2. Assume Ω(t) � Ω(s). By definition, we have Max(Ω(t)) ⊇ Max(Ω(s)). Then,

by 1, Fix(t) ⊇ Fix(s). Furthermore, Ω(t) = Ω(s) if and only if Max(Ω(t)) =

Max(Ω(s)), and if and only if Fix(t) = Fix(s).

Example 10. Consider non-decreasing transformation t = [1, 3, 3, 5, 6, 6], as

shown in Fig. 2 (a). The orbit set Ω(t) has three blocks: {1}, {2, 3}, and {4, 5, 6}.

Note that Fix(t) = {1, 3, 6} = Max(Ω(t)), as expected.

Let s = [4, 3, 3, 6, 6, 6] be another non-decreasing transformation, as shown in

Fig. 2 (b). The orbit set Ω(s) has two blocks: {1, 4, 5, 6} and {2, 3}. Note that Ω(t) ≺

Ω(s) and Fix(t) ⊃ Fix(s). �
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1 2 3 4 5 6(b)

(a) 1 2 3 4 5 6

Fig. 2. Non-decreasing transformations t = [1, 3, 3, 5, 6, 6] and s = [4, 3, 3, 6, 6, 6].

Define the transformation tmax = [2, 3, . . . , n, n]. The subscript “max” is chosen

because Ω(tmax) = {Q} is the maximal element in the lattice ΠQ. Clearly tmax ∈ FQ

and Fix(tmax) = {n}. For any submonoid S of FQ, let S[tmax] be the smallest

monoid containing tmax and all elements of S.

Lemma 11. Let S be a J -trivial submonoid of FQ. Then

(1) S[tmax] is J -trivial.

(2) Let A = (Q,Σ, δ, 1, {n}) be the DFA in which each a ∈ Σ defines a distinct

transformation in S[tmax]. Then A is minimal.

Proof. 1. By Theorem 8, it is sufficient to prove that for any t ∈ S, Ω(t)∨Ω(tmax) =

Ω(ttmax) and Ω(tmax)∨Ω(t) = Ω(tmaxt). Note that Ω(tmax) = {Q}; so we have

Ω(t)∨Ω(tmax) = Ω(tmax)∨Ω(t) = {Q}. On the other hand, since S ⊆ FQ and

tmax ∈ FQ, both ttmax and tmaxt are non-decreasing as well. Suppose j ∈ Fix(ttmax);

then j(ttmax) = (jt)tmax = j. Since tmax is non-decreasing, jt 6 j; and since t is

also non-decreasing, j 6 jt. Hence jt = j, and jtmax = j, which implies that

j ∈ Fix(tmax) and j = n. Then Fix(ttmax) = {n} and Ω(ttmax) = {Q}. Similarly,

Fix(tmaxt) = {n} and Ω(tmaxt) = {Q}. Therefore S[tmax] is also J -trivial.

2. Suppose a0 ∈ Σ performs the transformation tmax. Each state p ∈ Q can

be reached from the initial state 1 by the word u = ap−1
0 , and p accepts the word

v = an−p
0 , while all other states reject v. So A is minimal.

For any J -trivial submonoid S of FQ, we denote by A(S, tmax) the DFA in

Lemma 11. Then A(S, tmax) is the quotient DFA of some J -trivial regular lan-

guage L. Next, we have

Lemma 12. Let S be a J -trivial submonoid of FQ. For any t, s ∈ S, if Fix(t) =

Fix(s), then Ω(t) = Ω(s).

Proof. Pick any t, s ∈ S such that Fix(t) = Fix(s). If t = s, then it is trivial that

Ω(t) = Ω(s). Assume t 6= s, and Ω(t) 6= Ω(s). By Part 2 of Lemma 9, we have

Ω(t) 6≺ Ω(s) and Ω(s) 6≺ Ω(t). Then there exists i ∈ Q such that ωt(i) 6⊆ ωs(i).

Let p = max(ωt(i)). We define q ∈ Q as follows. If max(ωt(i)) 6= max(ωs(i)),

then let q = max(ωs(i)); so q 6= p. Otherwise max(ωt(i)) = max(ωs(i)), and there

exists j ∈ ωt(i) such that j 6∈ ωs(i); let q = max(ωs(j)). Now p = max(ωt(j)) =
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max(ωt(i)) = max(ωs(i)), and since j 6∈ ωs(i), we have q 6= p as well. Note that

p, q ∈ Fix(t) = Fix(s) in both cases. Consider the DFA A(S, tmax) with alphabet

Σ, and suppose that a ∈ Σ performs t and b ∈ Σ performs s. Let B be the DFA

A(S, tmax) restricted to {a, b}. Since p ∈ ωt(i) and q ∈ ωs(i), p, q are in the same

component P of B. However, p and q are two distinct maximal states in P , which

contradicts Theorem 7. Therefore Ω(t) = Ω(s).

Example 13. To illustrate one usage of Lemma 12, we consider two non-

decreasing transformations t = [2, 2, 4, 4] and s = [3, 2, 4, 4]. They have the same

set of fixed points Fix(t) = Fix(s) = {2, 4}. However, Ω(t) = {{1, 2}, {3, 4}} and

Ω(s) = {{2}, {1, 3, 4}}. By Lemma 12, t and s cannot appear together in a J -trivial

monoid. Indeed, consider any minimal DFA A having at least two inputs a, b such

that a performs t and b performs s. The DFA B of A restricted to the alphabet {a, b}

is shown in Fig. 3. There is only one component in B, but there are two maximal

states 2 and 4. By Theorem 7, the syntactic monoid of A is not J -trivial. �

1 2 3 4
a

b

a, b a, b

a, b

Fig. 3. DFA B with two inputs a and b, where ta = [2, 2, 4, 4] and tb = [3, 2, 4, 4].

Let π be any partition of Q. A block X of π is trivial if it contains only one

element; otherwise it is non-trivial. We define the set E(π) = {t ∈ FQ | Ω(t) = π}.

Then

Lemma 14. If π is a partition of Q with r blocks, where 1 6 r 6 n, then |E(π)| 6

(n − r)!. Moreover, when r 6= n, equality holds if and only if π has exactly one

non-trivial block.

Proof. Suppose π = {X1, . . . , Xr}, and |Xi| = ki for each i, 1 6 i 6 r. Without

loss of generality, we can rearrange blocks Xi so that k1 6 · · · 6 kr. Let t ∈ E(π)

be any transformation. Then t ∈ FQ, and hence Fix(t) = Max(Ω(t)) = Max(π).

Consider each block Xi, and suppose Xi = {j1, . . . , jki
} with j1 < · · · < jki

. Since

jki
= max(Xi), we have jki

∈ Fix(t) and jki
t = jki

. On the other hand, if 1 6 l < ki,

then jl 6∈ Max(π), and since t ∈ FQ, we have jlt > jl; since jlt ∈ ωt(jl) = Xi,

jlt ∈ {jl+1, . . . , jki
}. So there are (ki−1)! different t|Xi

, and there are
∏r

i=1(ki−1)!

different transformations t in E(π).

Clearly, if r = 1, then kr = n and |E(π)| = (n − 1)!. Assume r > 2. Note

that ki > 1 for all i, 1 6 i 6 r, and
∑r

i=1 ki = n. If k1 = · · · = kr−1 = 1, then
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kr = n − r + 1, and |E(π)| = (kr − 1)!
∏r−1

i=1 0! = (n − r)!. Otherwise, let h be the

smallest index such that kh > 1. For all i, h 6 i 6 r − 1, since ki 6 kr, we have

(ki − 1)! < (ki − 1)ki−1 6 (kr − 1)ki−1. Then

|E(π)| = (kr − 1)!

h−1
∏

i=1

0!

r−1
∏

i=h

(ki − 1)! < (kr − 1)!

r−1
∏

i=h

(kr − 1)ki−1

= (kr − 1)! · (kr − 1)
∑

r−1

i=h
(ki−1)

< (kr − 1)! · kr(kr + 1) · · · (kr − 1 +

r−1
∑

i=h

(ki − 1))

= (kr − 1)! · kr(kr + 1) · · · (n− r) = (n− r)!

Therefore the lemma holds.

Example 15. Suppose n = 10, r = 3, and consider the partition π = {X1, X2, X3},

where X1 = {1, 2, 5}, X2 = {3, 7}, and X3 = {4, 6, 8, 9, 10}. Then k1 = |X1| = 3,

k2 = |X2| = 2, and k3 = |X3| = 5. Let t ∈ E(π) be an arbitrary transformation; then

Fix(t) = {5, 7, 10}. For any j ∈ X1, if j = 1, then jt could be 2 or 5; otherwise j = 2

or 5, and jt must be 5. So there are (k1−1)! = 2! different t|X1
. Similarly, there are

(k2−1)! = 1! different t|X2
and (k3−1)! = 4! different t|X3

. So |E(π)| = 2!1!4! = 48.

Consider another partition π′ = {X ′
1, X

′
2, X

′
3} with three blocks, where X ′

1 = {5},

X ′
2 = {7}, and X ′

3 = {1, 2, 3, 4, 6, 8, 9, 10}. Now k1 = |X ′
1| = 1, k2 = |X ′

2| = 1, and

k3 = |X ′
3| = 8. We have Max(π′) = Max(π) = {5, 7, 10}. Then, for any t ∈ E(π′),

Fix(t) = {5, 7, 10} as well. Since k1 = k2 = 1, both t|X1
and t|X2

are unique. There

are (k3−1)! = 7! different t|X3
. Together we have |E(π′)| = 1!1!7! = (10−3)! = 5040,

which is the upper bound in Lemma 14 for n = 10 and r = 3. �

Note that, for any t ∈ FQ, we have n ∈ Fix(t). Let Pn(Q) be the set of all

subsets Z of Q such that n ∈ Z. Then we obtain the following upper bound.

Proposition 16. For n > 1, if S is a J -trivial submonoid of FQ, then

|S| 6
n
∑

r=1

(

n− 1

r − 1

)

(n− r)! = ⌊e(n− 1)!⌋.

Proof. Assume S is a J -trivial submonoid of FQ. For any Z ∈ Pn(Q), let SZ =

{t ∈ S | Fix(t) = Z}. Then S =
⋃

Z∈Pn(Q) SZ , and for any Z1, Z2 ∈ Pn(Q) with

Z1 6= Z2, SZ1
∩ SZ2

= ∅.

Pick any Z ∈ Pn(Q). By Lemma 12, for any t, s ∈ SZ , since Fix(t) = Fix(s) = Z,

we have Ω(t) = Ω(s) = π for some partition π ∈ ΠQ. Then SZ ⊆ E(π). Suppose

r = |Z|. By Lemma 14, |SZ | 6 |E(π)| 6 (n− r)!. Since n ∈ Z, 1 6 r 6 n; and since

there are
(

n−1
r−1

)

different Z ∈ Pn(Q), we have

|S| =
∑

Z∈Pn(Q)

|SZ | 6
n
∑

r=1

(

n− 1

r − 1

)

(n− r)! =

n
∑

r=1

(n− 1)!

(r − 1)!
= ⌊e(n− 1)!⌋.
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The last equality is a well-known identity in combinatorics [15].

The above upper bound is met by the following monoid Sn. For any Z ∈ Pn(Q),

suppose Z = {j1, . . . , jr, n} such that j1 < · · · < jr < n for some r > 0; then we

define partition πZ = {Q} if Z = {n}, and πZ = {{j1}, . . . , {jr}, Q \ {j1, . . . , jr}}

otherwise. Let

Sn =
⋃

Z∈Pn(Q)

E(πZ).

Example 17. Suppose n = 4; then |P4(Q)| = 23 = 8. First consider Z =

{1, 3, 4} ∈ P4(Q). By definition, πZ = {{1}, {3}, {2, 4}}. There is only one trans-

formation t1 = [1, 4, 3, 4] in E(πZ). If Z
′ = {3, 4}, then πZ′ = {{3}, {1, 2, 4}. There

are two transformations t2 = [2, 4, 3, 4] and t3 = [4, 4, 3, 4] in E(πZ′ ). Table 1 sum-

marizes the number of transformations in E(πZ) for each Z ∈ P4(Q). Note that the

set S4 contains 16 transformations in total. �

Table 1. Number of transformations in E(πZ ) for each Z ∈ P4(Q).

Z Blocks of πZ |E(πZ )|

{1, 2, 3, 4} {1}, {2}, {3}, {4} 1

{1, 2, 4} {1}, {2}, {3, 4} 1

{1, 3, 4} {1}, {3}, {2, 4} 1

{2, 3, 4} {2}, {3}, {1, 4} 1

{1, 4} {1}, {2, 3, 4} 2

{2, 4} {2}, {1, 3, 4} 2

{3, 4} {3}, {1, 2, 4} 2

{4} {1, 2, 3, 4} 6

Proposition 18. For n > 1, the set Sn is a J -trivial submonoid of FQ with car-

dinality

|Sn| =
n
∑

r=1

(

n− 1

r − 1

)

(n− r)! = ⌊e(n− 1)!⌋.

Proof. First we prove the following claim:

Claim: For any t, s ∈ Sn, Ω(ts) = πZ for some Z ∈ Pn(Q).

Let t ∈ E(πZ1
) and s ∈ E(πZ2

) for some Z1, Z2 ∈ Pn(Q). Suppose Ω(ts) 6= πZ

for any Z ∈ Pn(Q). Then there exists a block X0 ∈ Ω(ts) such that n 6∈ X0 and

|X0| > 2. Let h = max(X0); then h(ts) = h, and since both t and s are non-

decreasing, ht = h and hs = h. Since h 6= n, both ωt(h) and ωs(h) are trivial

blocks. Now let j ∈ X0 such that j(ts) = h and j 6= h. If jt 6= h, then jt ∈ ωs(h)
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and ωs(h) is a non-trivial block, a contradiction. Otherwise jt = h, then ωt(h) is a

non-trivial block, a contradiction again. So the claim holds.

By the claim, for any t, s ∈ Sn, since Ω(ts) = πZ for some Z ∈ Pn(Q), ts ∈

E(πZ) ⊆ Sn. Hence Sn is a submonoid of FQ.

Next we show that Sn is J -trivial. Pick any t, s ∈ Sn, and suppose t ∈ E(πZ1
)

and s ∈ E(πZ2
) for some Z1, Z2 ∈ Pn(Q). Suppose Max(Z1) ∩ Max(Z2) =

{j1, . . . , jr, n}, for some r > 0. Then we have Z1∨Z2 = {{j1}, . . . , {jr}, X},

where X = Q \ {j1, . . . , jr} and n ∈ X . On the other hand, by the claim,

Ω(ts) = {{p1}, . . . , {pk}, Y } for some p1, . . . , pk ∈ Q, where Y = Q \ {p1, . . . , pk}

and n ∈ Y . Note that, since Sn ⊆ FQ, Max(Ω(ts)) = Fix(ts) = Fix(t) ∩

Fix(s) = Max(Z1) ∩Max(Z2). Then r = k and {j1, . . . , jr} = {p1, . . . , pk}. Hence

Ω(t)∨Ω(s) = Z1∨Z2 = Ω(ts). By Theorem 8, Sn is J -trivial.

For any Z ∈ Pn(Q) with |Z| = r, where 1 6 r 6 n, we have πZ = {X1, . . . , Xr}

with ki = |Xi| = 1 for 1 6 i < r, and kr = |Xr|. By Lemma 14, |E(πZ )| = (n− r)!.

Moreover, if Z1 6= Z2, then E(πZ1
) ∩ E(πZ2

) = ∅. Since n ∈ Z is fixed, there are
(

n−1
r−1

)

different Z. Therefore |Sn| =
∑n

r=1

(

n−1
r−1

)

(n− r)! = ⌊e(n− 1)!⌋.

We now define a generating set of the monoid Sn. Suppose n > 1. For any

Z ∈ Pn(Q), if Z = Q, then let tZ = 1. Otherwise, let hZ = max(Q \ Z), and let tZ
be a transformation of Q defined by: For all j ∈ Q,

jtZ
def
=















j if j ∈ Z,

n if j = hZ ,

hZ otherwise.

Let GSn = {tZ | Z ∈ Pn(Q)}.

Proposition 19. For n > 1, the monoid Sn can be generated by the set GSn of

2n−1 transformations of Q.

Proof. First, for any tZ ∈ GSn, where Z ∈ Pn(Q), we have Ω(tZ) = πZ ; hence tZ ∈

E(πZ) ⊆ Sn. So GSn ⊆ Sn and 〈GSn〉 ⊆ Sn, where 〈GSn〉 denotes the semigroup

generated by GSn.

Fix arbitrary Z ∈ Pn(Q), and suppose U = Q \ Z. If U = ∅, then πZ =

{{1}, . . . , {n}} and E(πZ) = {1} ⊆ 〈GSn〉. Assume U 6= ∅ in the following. Let Y

be the only non-trivial block in πZ . Note that Y = U ∪ {n} and hZ = max(U). For

any t ∈ E(πZ ), since Fix(t) = Z and hZ 6∈ Z, hZt > hZ ; and since Y is an orbit

of t, hZt = n. We prove by induction on |U | = |Q \ Z| that E(πZ ) ⊆ 〈GSn〉.

(1) If U = {hZ}, then Y = {hZ , n}. So t = (hZ → n) = tZ ⊆ 〈GSn〉.

(2) Otherwise U = {h1, . . . , hl, hZ} for some h1 < · · · < hl < hZ < n and l > 1.

Assume that, for any Z ′ ∈ Pn(Q) with |Q\Z ′| 6 l, we have E(πZ′ ) ⊆ 〈GSn〉.

Then Y = {h1, . . . , hl, hZ , n}, and tZ = (hZ → n)(hl → hZ) · · · (h1 →

hZ). For any t ∈ E(πZ ), since Y is an orbit of t and Q \ Y ⊆ Fix(t), t



February 23, 2015 12:12 WSPC/INSTRUCTION FILE RJtrivial˙ijfcs

Syntactic Complexity of R- and J -Trivial Regular Languages 13

must have the form t = (hZ → n)(hl → jl) · · · (h1 → j1), where ji ∈

{hi+1, . . . , hl, hZ , n} for i = 1, . . . , l. Let {h1, . . . , hl} = V ∪ W such that

hi ∈ V if and only if ji = hit = hZ . Suppose V = {hp1
, . . . , hpk

} and W =

{hq1 , . . . , hqm}, where hp1
< · · · < hpk

, hq1 < · · · < hqm , 0 6 k,m 6 l and

l = k +m. Let t1 = (hZ → n), t2 = (hZ → n)(hp1
→ hZ) · · · (hpk

→ hZ),

and t3 = (hp1
→ n) · · · (hpk

→ n)(hqm → jqm) · · · (hq1 → jq1). Note that

t1 = tZ′ for Z ′ = Q \ {hZ}, and t2 = tZ′′ for Z ′′ = Q \ {hp1
, . . . , hpk

, hZ}.

Also note that Fix(t3) = Fix(t) ∪ {hZ}, and since jqi = hqit ∈ U \ {hZ}

for all hqi ∈ W , we have t3 ∈ E(πZ′′′ ) for Z ′′′ = Z ∪ {hZ}. By assumption,

t3 ∈ 〈GSn〉. Now

t1t2t3 = (hZ → n) ◦ (hZ → n)(hp1
→ hZ) · · · (hpk

→ hZ)

◦ (hp1
→ n) · · · (hpk

→ n)(hqm → jqm) · · · (hq1 → jq1)

= (hZ → n)(hp1
→ hZ) · · · (hpk

→ hZ)(hqm → jqm) · · · (hq1 → jq1)

= t.

Thus t ∈ 〈GSn〉 and E(πZ) ⊆ 〈GSn〉.

By induction, Sn =
⋃

Z∈Pn(Q) E(πZ) ⊆ 〈GSn〉. Therefore Sn = 〈GSn〉. Since there

are 2n−1 different Z ∈ Pn(Q), there are 2n−1 transformations in GSn.

Example 20. Suppose n = 5. Consider Z = {3, 5} ∈ P5(Q), and t = [2, 4, 3, 5, 5] ∈

E(πZ). The transition graph of t is shown in Fig. 4 (a). As in Proposition 19, we

have U = {1, 2, 4} and hZ = 4. To show that t ∈ 〈GS5〉, we find V = {2} and W =

{1}. Then let t1 = (4 → 5), t2 = (4 → 5)(2 → 4), and t3 = (2 → 5)(1 → 2). We

assume that t3 ∈ 〈GS5〉; in fact, t3 = tZ′′′ for Z ′′′ = {3, 4, 5} in this example. The

transition graphs of t1, t2, and t3 are shown in Fig. 4 (b), (c), and (d), respectively.

One can verify that t = t1t2t3, and hence t ∈ 〈GS5〉. �

1

1

1

1

2 3 4 5(a)

2 3 4 5

2 3 4 5

(b)

(c)

2 3 4 5(d)

Fig. 4. Transition graphs of t = [2, 4, 3, 5, 5], t′ = [1, 4, 3, 5, 5], and tZ′′ = [2, 5, 3, 4, 5].
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Now, by Propositions 16, 18, and 19, we have

Theorem 21. Let L ⊆ Σ∗ be a J -trivial regular language with quotient complexity

n > 1. Then its syntactic complexity σ(L) satisfies σ(L) 6 ⌊e(n − 1)!⌋, and this

bound is tight if |Σ| > 2n−1.

It was shown by Saito [16] that, if S is a J -trivial submonoid of FQ, then

Ω(S) = {Ω(t) | t ∈ S} ⊆ ΠQ forms a ∨-semilattice, called a J -∨-semilattice,

such that Max(Ω(t)∨Ω(s)) = Fix(t) ∩ Fix(s). Let P∨(ΠQ) be the set of all J -

∨-semilattices that are subsets of ΠQ. A maximal J -trivial submonoid S of FQ

corresponds to a maximal element P in P∨(ΠQ), with respect to set inclusion,

such that S =
⋃

π∈P E(π). P ∈ P∨(ΠQ) is called full if {Max(π) | π ∈ P} =

Pn(Q), which is an maximal element in P∨(ΠQ) with respect to set inclusion. The

monoid Sn then corresponds to a full J -∨-semilattice, and hence it is maximal.

Saito described all maximal J -trivial submonoid of FQ and those corresponding

to full J -∨-semilattices. However, here we consider the J -trivial submonoid of FQ

with maximum cardinality.

5. Conclusion

We proved that n! and ⌊e(n − 1)!⌋ are the tight upper bounds on the syntactic

complexities ofR- and J -trivial languages with n quotients, respectively. For n > 2,

the upper bound for R-trivial languages can be met using 1 +
(

n

2

)

letters, and the

upper bound for J -trivial languages, using 2n−1 letters. It remains open whether

the upper bound for J -trivial languages can be met with fewer than 2n−1 letters.

The syntactic complexity of L-trivial languages is also open.
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