Tuning and Predicting Consistency
in Distributed Storage Systems

by

Shankha Subhra Chatterjee

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2017

(© Shankha Subhra Chatterjee 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Distributed storage systems are constrained by the finite speed of propagation of in-
formation. The CAP (which stands for consistency, availability, and partition tolerance)
theorem states that in the presence of network partitions, a choice has to be made in be-
tween availability and consistency. However, even in the absence of failures, a trade-off
between consistency and latency of operations (reads and writes) exists. Eventually consis-
tent storage systems often sacrifice consistency for high availability and low latencies. One
way to achieve fine-tuning in the consistency-latency trade-off space is to inject artificial
delays to each storage operation.

This thesis describes an adaptive tuning framework that is able to calculate the values of
artificial delay to be injected to each storage operation to meet a specific target consistency.
The framework is able to adapt nimbly to environmental changes in the storage system to
maintain target consistency levels. It consists of a feedback loop which uses a technique
called spectral shifting at each iteration to calculate the target value of artificial delay from
a history of operations. The tuning framework is able to converge to the target value of
artificial delay much faster than the state-of-art solution.

This thesis also presents a probabilistic analysis of inconsistencies in eventually consis-
tent distributed storage systems operating under weak (read one, write one) consistency
settings. The analysis takes into account symmetrical (same for reads and writes) artificial
delays which enable consistency-latency tuning. A mathematical formula for the percent-
age of inconsistent operations is derived from other environmental parameters pertaining
to the storage system. The formula’s predictions for the proportion of inconsistent oper-
ations match observations of the same from a stochastic simulator of the storage system
running 10° operations (per experiment), and from a widely used key-value store (Apache
Cassandra) closely.

111

Acknowledgements

I would like to thank my guide, Dr. Wojciech Golab for his keen insight and constant
motivation that made this thesis possible. I would also like to thank Dr. Lukasz Golab
and Dr. Ladan Tahvildari for reading my thesis and enhancing it with their inputs. Some
parts of chapter 2, and the entire of chapter 3 was written jointly by me and Dr. Golab
for a paper at PODC 2017[13]. Lastly, I would like to thank the anonymous referees from
PODC 2017 and SSS 2017[11] for their useful feedback.

v

Dedication

This thesis is dedicated to my family - my loving parents, my brother and Ananya.
Their love and encouragement kept me going.

Table of Contents

List of Figures ix
1 Introduction 1
1.1 Motivation 1
1.2 Problem statement Lo 2
1.3 Research contributionso 3
1.4 Document organization Lo 4
2 Background and Related Work 5
2.1 Trade-offs in distributed storage systems 5
2.2 Measuring consistencyo 6
2.3 Adaptive consistency-latency tuning 7
2.4 Mathematical models of consistency 8
2.5 SUMMATY e 10
3 Formal Model and Important Definitions 11
3.1 System model 11
3.2 Summary e 14
4 The SPECSHIFT Tuning Framework 15
4.1 Spectral shifting 15

vi

4.2 Inner-outer consistencyo 18
4.3 Adaptive tuning frameworko 19
4.4 Experimental evaluation 20
4.4.1 Hardware and software environment 20
4.4.2 Experimental setup L 21
4.4.3 Obtained results 22
4.4.4 Discussiono 25
4.5 Summary 25
A Probabilistic Analysis of Eventual Consistency 27
5.1 Notation and general assumptions L. 27
5.2 A simpler probabilistic model 29
5.3 Intuition and simplifying assumptions 30
5.4 Detailed analysis oo 31
541 Case A e 32
542 Case B 40
54.3 Case C e 43
544 CaseD e 46
545 Case E 49
54.6 CaseF 50
5.5 Evaluation 52
5.5.1 Experimental setup oL 52
5.5.2 Obtained resultso 53
5.5.3 Discussion 55
5.6 Summary e 55
Conclusion 56
6.1 Research contributions L oo 56
6.2 Learnings o7
6.3 Future work 58

vii

References

Viil

60

List of Figures

4.1

4.2
4.3

4.4

4.5

4.6

5.1
2.2
2.3
5.4
2.5
2.6
2.7
2.8
2.9
5.10

Histograms showing the distribution of consistency anomaly scores for two
different histories.

Inner-outer operations with an AD ofd.

One experiment comparing three different tuning mechanisms, target pro-
portion = 0.05, no starting AD.

Another experiment comparing three different tuning mechanisms, target
proportion = 0.03, starting AD =75ms.

Boxplot showing range of iterations taken to converge by different tuning
mechanisms over 20 experiments.

Comparison of the techniques for a closed system, target proportion = 0.05,
starting AD = 0.

Anomaly cases between the writes of two values, v and z, and their reads.
Case A.

Subcase ALl.
Subcase A2. . . .
Case B. . . .

Case E. . . s,

Comparison between the new and a simpler mathematical model, AD = 5 ms.

Comparison of predicted proportion of positive scores between the mathe-
matical model, the simulator and Cassandra, AD =10ms

X

17
19

22

23

23

25

29
32
34
35
40
43
46
49
53

5.11 Comparison of predicted proportion of positive scores between the mathe-
matical model, the simulator and Cassandra, AD =20ms

Chapter 1

Introduction

1.1 Motivation

Distributed storage systems are used widely to support essential online services like web
search, e-mail, social networking and e-commerce. To protect against failures resulting
in permanent data loss, data is replicated across multiple storage servers. Usually, such
storage servers are located in different geographical locations to prevent the possibility of
all of them failing at once in face of a massive disaster like a natural catastrophe. Such
replicated systems are, however, constrained by the finite propagation speed of information.
This means that any storage system that is replicated across data centers in different
geographies may either guarantee that clients always see fresh data, or guarantee that
operation latencies are small relative to the inter-data-center latencies, but not both. It is
difficult for a business to measure the effects of clients observing stale data. The effects
of high latencies in completion of client requests is relatively easier to measure. Informal
online sources report that a 500ms latency leads to a 20% drop in traffic at Google, and a
100ms latency increase costs Amazon 1% in revenues.

The need for highly available storage systems that have the ability to sacrifice consis-
tency for lower latencies is met by eventually consistent systems which satisfy the property
that in the absence of updates and failures, all replicas of a given key eventually converge
to the same value. Examples of these systems include Dynamo-like quorum-based storage
systems (e.g., Cassandra [30]), and they are in widespread use by small startups and are
gaining attention in large enterprises. In this thesis, I conduct a study of such systems,
configured with latency-optimized settings that do not guarantee strong consistency, and
which can be formalized using Lamport’s correctness properties for read/write registers

[32]. Recent experimental analysis has shown that consistency actually observed by clients
is quite workload-dependent [20], and can be tuned against latency using techniques that
can be layered easily on top of existing storage systems [36]. In general, experimental
evidence points to the conclusion that a storage system configured for weak consistency
(and low latency) may satisfy strong consistency most of the time in a practical setting,
and that consistency anomalies are observed infrequently. However, the cost of eliminating
all consistency anomalies can be rather high, latency-wise.

1.2 Problem statement

The search for a meaningful compromise between consistency and latency is challenging.
Systems that enable application control over this trade-off mostly do so by implementing a
quorum-based replication protocol, and by allowing the programmer to choose the size of
the quorum for reading and writing, as in Amazon’s Dynamo [15] and its many open-source
descendants. The different behaviors achievable using this approach represent a collection
of discrete points in the trade-off space, which tends to be quite sparse in geo-replicated
systems where latencies for strongly and weakly consistent operations can differ by orders
of magnitude. Thus, applications whose requirements lie squarely in-between these discrete
points are not always served well by such systems. Recent research prototypes (e.g., [15])
have evaded this problem by allowing applications to declare their consistency and latency
targets precisely through service level agreements (SLAs), but these systems are not yet in
mainstream use, and moreover they tend to support only restricted forms of consistency,
such as deterministically bounded staleness.

Probabilistic models of eventually consistent storage systems have been inadequately
explored in literature. Bailis et al. study expected bounds on staleness for Dynamo-style
systems operating under partial quorums [8]. However, as stated before, partial quorums
provide discrete levels of consistency-latency tuning, especially in geo-replicated systems.
Such systems typically span over multiple continents and have one-way nework delays
between servers in excess of 50 ms. It is in geo-replicated systems that the problem of
consistency-latency tuning is of special importance - due to an increased probability of
users observing stale reads under weak consistency settings, compared to single-location
clusters. Quantifying the consistency-latency trade-off and defining the currency of ex-
change between consistency and latency in the form of a mathematical equation is still an
open research problem. The problem has been approached experimentally in the form of a
feedback control loop in [10], but the tuning mechanism used is slow and unsophisticated.

1.3 Research contributions

In this thesis, I quantify the consistency latency trade-off using a combination of experi-
mental measurement and mathematical analysis. The technical contribution is two-fold:

1. Responding to a real world need for flexible performance tuning in distributed storage
systems, a technique for automated control over a probabilistic consistency-latency
trade-off is proposed. The proposed technique builds on top of a similar idea intro-
duced by Golab and Wylie [27]. The framework can be layered on top of any key-value
storage system that provides read and write operations, and supports eventual con-
sistency. Given a target consistency threshold expressed as the proportion of the
workload that participates in consistency anomalies, and a system that is unable to
meet this threshold, the framework boosts consistency by injecting delays artificially
into read and write operations. A novel technique called spectral shifting is introduced
for calculating the duration of the optimal delay (i.e., one that meets the consistency
threshold while minimizing latency), which allows the framework to adapt nimbly
to changing network conditions and workload characteristics. A software tool called
WatCA [19] (co-developed by me, Dr. Golab and Hua Fan) that analyzes operation
histories is used to implement the framework, SPECSHIFT [11]. Microbenchmark
experiments using a widely used key-value store (Apache Cassandra) show that the
framework achieves superior convergence as compared to a state-of-the-art solution

[10].

2. A probabilistic analysis of consistency in an abstract model of Amazon’s Dynamo
operating under weak client-side consistency settings (read-one and write-one) is
performed. Reads and writes are modeled in these systems with equal (symmetric)
amounts of injected artificial delays. Specifically, a mathematical expression is de-
rived for the probability that a given value read from or written to the storage system
participates in a consistency anomaly, which captures precisely the relationship be-
tween the workload (characterized by the arrival rates of read and write operations),
the environment (characterized by the network latency), and consistency. The analy-
sis extends a similar one performed by Dr. Golab [13] by capturing the effect of delays
in operations on the observed consistency. The probability of observing an anomaly
calculated from my model is compared to the proportion of inconsistent operations
observed in a) a stochastic simulation of my storage system, and b) a widely used
key-value store (Apache Cassandra). The numbers from the mathematical model,
the stochastic simulation and from Cassandra trace each other closely.

1.4 Document organization

The rest of the document is organized as follows. Chapter 2 reviews related literature in
the field. Chapter 3 introduces the model used in the rest of the work formally and defines
terminology which is used in the later chapters. Chapter 4 describes SPECSHIFT, a novel
adaptive tuning framework to tune consistency-latency rapidly. Chapter 5 describes a
probabilistic model to connect environment parameters of a distributed storage system to
the expected staleness, where each storage operation is injected with a constant artificial
delay. Chapter 6 summarizes the thesis and the learnings from the conducted research,
and points to potential future work.

Chapter 2

Background and Related Work

2.1 Trade-offs in distributed storage systems

Recent research on consistency in distributed storage systems has addressed the classifi-
cation of consistency models and consistency measurement. There has been research to
design storage systems that provide precise consistency guarantees. This work is influenced
greatly by Brewer’s CAP principle, which states that a distributed storage system must
make a trade-off between consistency (C) and availability (A) in the presence of a net-
work partition (P) [10]. However, this work focuses on the trade-off between consistency
and latency in the absence of network partitions. This trade-off often has a more direct
influence on several well-known distributed storage systems compared to the one stated
in the CAP principle. A better representation of such trade-offs involved in distributed
storage systems compared to CAP has been proposed in the form of PACELC [I]. In the
presence of network partitions (P), the trade-off a storage system has to make is between
availability (A) and consistency (C). Else (E), the trade-off is between latency (L) and
consistency (C).

Distributed storage systems have different designs in place to achieve the above men-
tioned trade-offs. Amazon’s highly available key-value store, Dynamo [8] uses a quorum-
based replication scheme [7, 22]. A read collects a quorum of r votes and a write collects a
quorum of w votes. To ensure serial consistency, there has to be a non-null intersection in
the two sets of votes which is guaranteed if r +w is greater than the total number of votes.
Dynamo and its derivatives (e.g., Cassandra [30], Voldemort and Riak) provide client-side
consistency settings which determine the values of » and w. This enables tuning of consis-
tency to create either CP (i.e., strongly consistent but sacrificing availability) or AP (i.e.,

5

highly available but eventually consistent) systems. Other designs lack such tuning knobs
and instead guarantee various forms of strong consistency, like Yahoo’s PNUTS, Google’s
Bigtable etc. [12, 15, 17, 34]. A few systems allow users to declare requirements with
respect to consistency, and adjust parameters internally to fulfill these requirements when
possible [0, 29, 45, 50].

2.2 Measuring consistency

Measuring consistency precisely is difficult because consistency anomalies arise from the
interplay between multiple storage operations. In the case of data-stores on the cloud, a
customer may not have access to logs from the storage system and often sees the storage
system as a black-box. Under these circumstances, some experimental studies measured
the convergence time of the replication protocol by measuring how long it takes from issuing
an update to still being able to read the old version. This is easier to quantify, rather than
consistency actually observed by client applications (e.g., [9, 49]). Other works quantify
the observed consistency by counting cycles in a dependency graph that represents the
interaction of read and write operations, which is less intuitive than expressing staleness
in units of time [, 51].

This difficulty can be overcome by defining staleness precisely in terms of the addi-
tional amount of latency that must be added to storage operations to resolve consistency
anomalies [21], which makes it possible to capture in a natural way the consistency actually
observed by client applications. The algorithms defined by Golab et al. can be used for
online monitoring of a live storage system or for offline analysis from operation histories.
Aiyer et al. propose the notion of version-based staleness where inconsistency is measured
in terms of the number of intervening writes [2]. A history of operations is defined to be
k-atomic iff there exists a valid total order of the operations such that every read obtains
the value of one of the k latest writes before it in the total order. A k-quorum protocol is
proposed and it is proved to achieve k-atomic semantics.

Lamport defines three consistency semantics for communicating processes, namely
safety, regularity and atomicity. Safety is the weakest of the three providing arbitrary
synchronization, followed by regularity and atomicity as stronger forms of synchroniza-
tion [32]. The consistency metric used in this paper is an adaptation of the technique
described in [24] whereby consistency is defined relative to Lamport’s regularity property.
The generalization of regularity to multiple writers used in this paper resembles closely
the “MWRegWO” property introduced by Shao et al. in [12]. This work studies the re-

lationships between different definitions of multi-writer regularity, which are motivated by
differences in quorum-based algorithms for implementing them.

2.3 Adaptive consistency-latency tuning

In this work, we achieve consistency-latency tuning by injecting artificial delays into every
read and write operation, which has an effect of improving the overall observed consis-
tency at the cost of increased operation latencies. Adaptive consistency-latency tuning
using artificial delays is proposed in two prior projects. Golab and Wylie propose consis-
tency amplification, a feedback control mechanism for supporting probabilistic consistency
guarantees by injecting artificial client-side or server-side delays whose duration is deter-
mined using consistency measurements [27]. This framework specifies concrete consistency
metrics (based on [21]) for quantifying the consistency-latency trade-off, but does not state
precisely how the delay should be calculated.

Rahman et al. present a similar system called PCAP, where delays are calculated us-
ing known techniques: multiplicative and proportional-integral-derivative (PID) feedback
control [10]. In a single data-center setup, the multiplicative loop is used for tuning read
delays which serve as the primary control knob for tuning. Other tuning knobs like read
repair rate and discrete client-side consistency settings (e.g one, quorum and all) are also
used in the adaptive control loop. Read repair works by updating the values of stale
replicas in a read-quorum, which improves consistency while sacrificing latency. A pa-
rameter controlling the proportion of reads that are repaired serves as a tuning knob for
consistency-latency tuning. However, both read repair rate and discrete client-side consis-
tency settings are less effective for fine-tuning consistency compared to artificial delays. In
a geo-replicated environment, their feedback control uses a PID-based approach to avoid
increased oscillations of the values of latency and consistency. The consistency metric used
by them ignores write latency and assumes that writes take effect in the order of invocation,
hence lacks a precise connection to Lamport’s formalism [32]. An earlier thesis by Nguyen
demonstrates that the multiplicative control loop used in PCAP is prone to oscillations,
and fails to converge at all in some runs even if the optimal delay duration is constant [35].

Another technique to achieve consistency-latency called Continuous Partial Quorums
(CPQs) has been suggested in [30]. This technique involves assigning consistency levels
on a per-operation basis. Every read and write chooses between a strong and a weak
consistency setting with a tunable probability parameter. It is shown that in a single data-
center setup, using the CPQ tuning technique gives a better consistency-latency trade-
off compared to artificial delays. However, for a geo-replicated setup, the technique of

7

injecting artificial delays for tuning results in slightly lower and more predictable values of
latency compared to latencies achieved using CP(Q for similar values of consistency. The
consistency-latency trade-off in key-value stores is amplified in geo-replicated environments
with one-way network latencies in excess of 50 ms between data centers. We explore these
environments in this work and so we use artificial delays for consistency-latency tuning.

The experiments for the automated adaptive tuning framework presented in this work
were carried out using a geo-replicated cluster of servers on Amazon EC2 running Apache
Cassandra. A software tool called the Waterloo Consistency Analyzer (WatCA) [19] was
used to run these experiments and analyze operation histories. WatCA was developed
with online and offline analysis of distributed key-value stores (like Apache Cassandra and
Riak) in mind. It contains an implementation of a consistency metric based on Lamport’s
regularity property (see definition 4). This metric enables developers to detect the pres-
ence of and measure the magnitude of consistency anomalies from histories of operations.
These histories can be obtained offline, or as a stream from running storage servers. It
is also equipped with a number of client-side settings that help define the environment
of the storage servers and include parameters like client-side consistency settings, peak
throughput of servers, distribution of workloads, read and write percentage, values of read
and write artificial delays, etc. The WatCA source is publicly accessible on Github.

The adaptive tuning framework presented in this thesis is described in a paper which is
currently accepted for publication in the 19th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS 2017) [11].

2.4 Mathematical models of consistency

Mathematical models of consistency are generally rooted in the notion of probabilistic
quorums [33, 35]. The basic model assumes that each read and write operation accesses
a quorum chosen according to a randomized strategy, and no attempt is made to push
updates to replicas outside of a write quorum. The performance of a system implemented
with such probabilistic quorums can be strengthened using a well-defined diffusion mecha-
nism or a gossip protocol, as is used by Dynamo-style storage systems. When updates are
rare, the probability of inconsistency expected to be observed in such systems approaches
zero. The probability that a read quorum intersects with the quorum of a past write
operation depends only on the chosen strategy and the number of other write operations
applied subsequently.

The probabilistically bounded staleness (PBS) model of Bailis et al. matches more
closely the behavior of a Dynamo-style storage system. Reasoning about probabilistic

quorums, the model predicts t-visibility, which is the probability of reading a stale value ¢
time units after a single write operation is applied. It also predicts k-staleness which is the
probability of reading a value which is k versions stale from the latest committed version
when the read starts. A combination of these two measures of staleness, < k,t >-staleness
is predicted similarly and models the probability that a read returns a value that is k
versions stale ¢ time units after the corresponding write operation is applied. Though the
predictions can be made simply when expanding partial quorums due to anti-entropy are
not taken into account, a closed-form solution when considering the same is not achieved.
A model WARS is proposed to model this behavior which reasons about the interplay
between the events of a write (W), its acknowledgment (A), a read (R) to the same key
and the corresponding response (S). Predictions for t-visibility and k-staleness are made in
the WARS model using Monte Carlo simulations. It is observed that eventually consistent
systems often exhibit fairly consistent behavior (t-visibility in tens of milliseconds) due to
the resilience of Dynamo-style protocols.

In this body of work, we reason about consistency observed in a Dynamo-style storage
system and make predictions about the percentage of inconsistent operations expected to
be observed in a cluster of distributed key-value storage systems based on probabilistic cal-
culations, similar to PBS. However, we investigate the technique of injecting artificial delays
to individual operations under a weak client-side consistency setting (read-one write-one)
to control consistency, instead of partial quorums. This technique enables a finer tuning
of the consistency latency trade-off compared to discrete client-side consistency settings
which are available in Dynamo-style storage systems [36]. We adapt a purely mathematical
approach to achieve the predictions instead of simulations, which provides insight into the
mechanism of interplay between read and write events at different replicas giving rise to
consistency anomalies. PBS does not distinguish between local and remote storage opera-
tions. In contrast, our model predicts the probability of observing a consistency anomaly
in the broader context of a stochastic workload.

A brief announcement based on my joint work with Dr. Golab [13] describes a simple
probabilistic model of inconsistency in distributed storage systems under weak consistency
settings. The model described there is largely similar to the model presented in this thesis,
except that it does not account for injected artificial delays. The predictions for percentage
of values participating in anomalies obtained with the simple model, compared with a
custom-built simulator of the storage system, were accurate to 0.001. The percentage of
inconsistent values obtained from the model also closely represented the actual percentage
of inconsistent operations observed in a real-world storage system (Apache Cassandra),
when the overall throughput was low. However, for high throughputs, the processing
delays of operations become non-negligible and the predictions for percentages of values

participating in anomalies were pessimistic when compared to a similar percentage observed
from the Cassandra cluster.

2.5 Summary

The literature around eventually consistent systems is dense and a number of approaches
have been suggested to quantify and measure consistency in such systems. Though the
trade-off between availability and consistency in the presence of partitions, as stated by
the famous CAP theorem [10], is widely accepted - the trade-off between consistency and
latency in the absence of partition is often overlooked [1]. Experimental approaches to
consistency-latency tuning have been explored in [10], but the prediction model used is
rudimentary and tuning is slow. Mathematical models of inconsistency in partial quorums
have been explored in [3]. However, partial quorums are often inadequate for fine-tuning
consistency [30] in geo-replicated distributed storage systems. Probabilistic models around
the techniques to fine-tune consistency-latency are still unexplored.

10

Chapter 3

Formal Model and Important
Definitions

3.1 System model

I model a distributed storage system abstractly as a collection of processes that communi-
cate by exchanging messages over point-to-point communication channels. The processes
simulate a collection of shared read/write register objects, each identified by a unique key,
using a distributed protocol. The processes and the network are asynchronous, and may
suffer benign failures: processes may fail by crashing, and communication channels may
drop messages but cannot corrupt or reorder them. The possibility of failure necessitates
data redundancy (e.g., replication) to prevent loss of data, but the focus in this thesis is on
the behavior of the system in failure-free executions where processing and network delays
are bounded. It is assumed that clocks are tightly synchronized, which allows the protocol
to use timestamps for concurrency control. Any process may read or write any key, and
stores the values of a subset of the keys. Since I assume a failure-free model, the purpose
of replication is to enable consistency-latency tuning rather than to protect the system
against permanent data loss.

A history of operations executed by a distributed storage system is a sequence of steps,
representing the invocations and responses of reads and writes. (as in [28]). Steps record
the time when an operation was invoked or produced a response, as well as the corre-
sponding arguments (if any) and return value. The steps in a history appear in increasing
order of time. Invocation and response steps corresponding to the same operation are
called matching, and I assume that steps are tagged with sufficient information so that all

11

matching pairs can be identified. I assume that every history H is well-formed meaning
that it satisfies two properties:

1. if H contains a read response step for key k£ and value v then H also contains a write
invocation step for k and v that precedes the response of the read; and

2. every invocation has a unique matching response and vice-versa.

An operation is a matching invocation-response pair. A write of value v to key k
is denoted abstractly by WriteOp(k,v), and a read of value v from key k is denoted by
ReadOp(k,v). The invocation and response times of an operation are denoted by the
functions start and finish. Given two operations op; and ops, we say that op; happens
before opy in a history H if finish(op;) < start(opy), otherwise we say that op; and ops
are concurrent. A history H is linearizable if there exists a total order T" on the operations
in H that extends the happens before relation, and where each read returns the value
assigned by the most recent write (preceding the read) to the same key, or the special
value L if there is no such write [28]. A history H is regular if it satisfies the requirements
of linearizability with one exception: a read may (but is not required to) return the value
assigned by any write with which the read is concurrent in H [32].

I am interested in quantifying how far a history deviates from a standard correctness
properties for read/write registers, such as linearizability and regularity. I choose regular-
ity in particular because it is the strongest property supported (in some configurations)
by popular quorum-replicated storage systems, such as Dynamo [18] and its derivatives.
Specifically, T use the methodology of Golab, Li and Shah [25] to calculate the proportion
of values (read or written) that participate in consistency anomalies with respect to regu-
larity. This technique applied to a history H entails shifting the invocation and response
steps of operations conceptually (i.e., in the course of mathematical analysis after H is
recorded) in such a way that the time intervals of the operations expand outward, which
causes pairs of operations related by “happens before” in H to become concurrent in the
transformed history H’. One way to formalize such a transformation is the following:

Definition 1. The t-relazation of a history H is a history H; obtained by decreasing the
time of every read invocation event and increasing the time of every write response event
by t time units.

A t-relaxation of H tends to increase the number of possible total orders T referred to
by the definitions of linearizability and regularity, thus lessening the constraints imposed
by these properties. Since I assume that every history is well-formed, it follows easily that

12

for every history H there exists a ¢t > 0 such that H; is regular. In particular, such a ¢
occurs when the operation intervals expand to the point where every read is concurrent
with a write of the same value to the same key. This optimal value of ¢ is our measure of
inconsistency.

Definition 2. The regular t-value of a history H is the smallest real number t > 0 such
that the reqular t-relaxzation of H, denoted Hy, is reqular.

Following [20], it can be noted that the t-value for a history can be computed in poly-
nomial time under the following assumption:

Assumption 1. For any history H and any distinct operations opy, ops in H, if opy writes
vy to key k and opy writes vy to the same key k then vy # vs.

The above assumption combined with our definition of a well-formed history means
that each history has an implicit “reads from” mapping:

Definition 3. For any history H that satisfies Assumption 1 and any read operation
ReadOp(k,v) in H, the unique operation WriteOp(k,v) in H is called the dictating write
of the read.

Efficient computation of the t-value for a history H exploits the observation that con-
sistency anomalies can be attributed to the interaction of operations accessing only two
distinct values with respect to the same key [21]. Anomalies can therefore be quantified as
follows with reference to one key and two values:

Definition 4. For any history H, key k, and values distinct v,v’, the magnitude of the
consistency anomaly due to the interaction of operations on key k that access v or v', de-
noted by the scoring function x(H, k,v,v"), is defined as the reqular t-value of the projection
of H onto operations applied to key k that access value v orv'. Furthermore, x(H,k,v) is
defined as max, 4, x(H,k,v,v").

The scoring function described above is used to calculate scores per key and per unique
value assigned to that key in a history. A distribution of these scores from a history of
operations can be used by an adaptive tuning framework to predict the required value
of delay to be injected into operations, to achieve a target value of consistency. This
mechanism is explained in detail in the following chapter.

13

3.2 Summary

In this short chapter, I introduce the system model that is implied in the rest of the doc-
ument. Operation histories and properties pertaining to them like ‘well-formedness’ are
introduced. The concepts of a ‘happens before” order between operations and of lineariz-
ability [28] are reviewed. In this thesis, however, I measure inconsistency of operations as
their deviation from regularity [32] (and not linearizability), which is often the strongest
property supported by quorum-replicated storage systems. The chapter also contains a
detailed definition of the scoring function, which is used to calculate consistency anomaly
scores per-key and per-assigned-value from an operation history.

14

Chapter 4

The SPECSHIFT Tuning Framework

4.1 Spectral shifting

In this chapter, I present a framework for trading off operation latency against consistency
by slowing down operations using artificial delays [27, 36, 10]. Such explicit delays are
similar qualitatively to the implicit delays incurred by quorum operations, in which oper-
ations wait for protocol messages from remote processes. Specifically, longer delays tend
to improve consistency similarly to larger partial quorums [36]. In eventually consistent
systems where replicas are updated asynchronously, an artificial delay equal to the sum
of the processing delay and one-way network delay is, informally speaking, sufficient to
counteract the latency of the replication protocol and ensure regularity. In comparison,
quorum operations require two network delays or one round trip. However, if the network
and processing delays are unbounded in the worst case, protocols based on artificial de-
lays cannot guarantee regularity deterministically, in contrast to quorum-based protocols.
Instead, artificial delays can in some cases provide an attractive probabilistic consistency-
latency trade-off whereby regularity is attained for a large fraction of the workload at a
latency that is substantially lower than using quorum operations.

An approach that combines probabilistic analysis with measurement to predict the
frequency of consistency anomalies and achieve consistency-latency tuning, is adopted in
this chapter. To that end, some relevant definitions are introduced below.

Definition 5. Let H be a history of operations on key k where m distinct values are
written: vy, Vg, ..., Uy,. Let x; denote the score x(H, k,v;) fori € [1,m] (score is defined in
the previous chapter). Let ¢(H) = m denote the total number of scores for H, counted with

15

multiplicity. The frequency of a score j € Z=°, denoted freq(j, H) is the number of scores
N X1, X2, -, Xm €qual to j. The score set S(H) = {X1, X2, -, Xm} S the set of unique
scores in a history H.

Definition 6. The score histogram for a given history H of operations is a collection of
bins, bo, b1, ..., bmax(s(my), where bin b; = freq(i, H) for 0 <i < max(S(H)).

The score histogram captures the full “spectrum” of regularity anomalies arising in
a history H, and enables a precise calculation of the optimal artificial delay (AD) with
respect to a given consistency target defined as a particular proportion of positive scores.

The actual proportion of positive scores in a history H is denoted by I(H) = %,

and may be higher than or lower than the target. If I(H) exceeds the target then the AD
must be increased to boost consistency at the expense of greater latency. On the other
and, if [(H) is below the target then the AD can be decreased to reduce latency while
maintaining the desired level of consistency. The optimal AD establishes equality between
I(H) and the target, and may change in response to variations in network conditions and
the workload mixture. For example, a rise in the network delay or processing delay due
to a load spike may increase the optimal AD, requiring more latency to meet the same
consistency target, whereas a decrease in the arrival rate of storage operations may lower
the optimal AD, allowing a latency reduction.

The tuning framework injects the computed artificial delay d at the end of a WriteOp
and at the beginning of a ReadOp, which stretches the boundaries of these operations. In
practical terms, this is achieved by a adding a thin layer of software on top of a distributed
storage system that delays the execution or reads and the response of writes either at clients
or at servers. The effect of the AD on the consistency of the storage system is analogous
to a t-relaxation (see Definition 1) with ¢ = d. Specifically, a t-relaxation reduces the score
X(H, k,v,v") (and similarly x(H, k,v)) by ¢ time units if the score was > ¢, or else reduces
the score to zero if it was < ¢, and so we expect intuitively that an AD of d = ¢ time units
should have a similar effect on the actual behavior of the storage system. Thus, reasoning
precisely about t-relaxations, which operate on histories at a conceptual level, allows us
to compute the optimal AD, which in turn alters the histories actually generated by the
storage system.

Using the above observation, we can roughly predict the effect of an AD of d milliseconds
on the shape of the score histograms generated by the storage system. If we were to plot
the histograms for a history H obtained from the system without ADs, and for a history
H' obtained with ADs of d time units, we would expect the histogram for H’ to resemble
the “tail” of the histogram for H comprising bins bgy1, bgyo, -... In other words, we expect

16

an AD of d time units to shift the spectrum of scores to the left by d bins, hence the name
spectral shifting.

Definition 7. For a given history H and any i,d € Z=°, the shifted frequency of j is
defined as:
S o freqli+4,H) if i=0

freq—s(z', H? d) =
freq(i+d, H) otherwise

The tuning framework (SPECSHIFT) described in this chapter predicts the score his-
togram for a history H’ obtained using an AD of d’ time units, given as input the score
histogram for a history H obtained using an AD of d < d’ time units. d is referred to
as the base delay, and d' as the target delay. The predicted score histogram for H’ has
a frequency of freg-s(i, H,d' — d) for a score i € Z=°. The accuracy of the prediction is
contingent on H and H’ reflecting, informally speaking, the same workload, meaning that
the read and write invocation rates and inter-invocation times are identically distributed.
We expect this correspondence to hold approximately provided that the AD is the only
parameter changed between the two executions that generate H and H’. The proportion
of positive scores for H' can then be predicted using the following formula:

¢(H) — freq-s(0,H,d — d)
o(H)

I'(H,d) =

Frequency of positive scores, artificial delay (AD) = Oms. Frequency of positive scores, artificial delay (AD) = 15ms

600 R 600

10 20 30 40

500

o

4

o
[S]

Frequency
Frequency

3

o
o

200

100

I

30 40
Score (ms) Score (ms)

(a) AD = 0 ms (b) AD = 15 ms

HH|||||||I||I|I.II|
50 60 70 80 90 100

0

”H“IIIHM . .)

70 80 90 100

Figure 4.1: Histograms showing the distribution of consistency anomaly scores for two
different histories.

Figures 4.1a and 4.1b show histograms corresponding to two histories obtained with
AD = Oms and 15ms, respectively. Figure 4.1a roughly resembles the tail of figure 4.1b,

17

starting at bin 15. We observe that lower scores have higher frequency and vice-versa.
Both the histograms have long tails, indicating that large scores, though rare, exist. Most
of the area of both histograms is concentrated towards the left, which indicates that most
of the staleness can be eliminated with smaller delays. However, as we increase the value
of the injected AD, there is a diminishing return in terms of reduction in the proportion
of positive scores. To eliminate all anomalies, we would have to inject a relatively large
AD, resulting in a considerable sacrifice in terms of operation latencies. This underscores
the need for intelligent consistency-latency tuning to find the optimal AD to be injected
without sacrificing latency needlessly. The remainder of this section discusses in detail how
SPECSHIFT can be used for consistency-latency tuning.

4.2 Inner-outer consistency

SPECSHIFT allows us to predict the score histogram for a target delay of d’ from a source
delay of d provided d' > d. However, we cannot use exactly the same shifting technique
to predict the score histogram for a history with a higher base and a lower target delay
(i.e., d < d) because the freg-s function (see Definition 7) is undefined in this case. To
overcome this limitation, we propose a technique that captures additional information in
the operation history H, enabling a transformation from H to a history H’ that has the
same read and write invocation rates as well as inter-invocation times, and where the AD
is zero. Recall from earlier in Section 4.1 that the ADs are injected at the beginning of a
ReadOp and at the end of a WriteOp. For read operations, our technique records the time
when the AD finishes at the beginning of a ReadOp, in addition to the start and finish
times. For writes, we record the time when the AD starts at the end of a WriteOp. We
use these additional timestamps to define inner and outer operations:

Definition 8. The inner operation for a given Read0Op(k,v) with an injected AD of d is an
operation reading v from k in the time interval [start(Read0Op(k, v))+d, finish(ReadOp(k,v))].
ReadOp(k, v) is the outer operation in this context.

Definition 9. The inner operation for a given WriteOp(k, v) with an injected AD of d is an
operation writing v to k in the time interval [start(WriteQOp(k,v)), finish(WriteOp(k,v))—
d]. WriteOp(k,v) is the outer operation in this context.

18

Outer Operation

/_ d d
erteOp(k, 1) e > ~ > ReadOp(k, 1)
- | | L |
[[[I]
- P)
Inner Operation
d

< > ReadOp(k, 0)

| | |

[[

» Time

Figure 4.2: Inner-outer operations with an AD of d.

Figure 4.2 illustrates inner and outer operations in a history H comprising one write
and two reads with an AD of d. All three operations are on the same key k£ with an initial
value of 0. The outer operations form a regular history, as WriteOp(k, 1) is concurrent with
ReadOp(k,0). However, the history of inner operations, corresponding to a history similar
to H but with an AD of 0 instead of d, has one consistency anomaly as WriteOp(k,1) and
ReadOp(k,0) are no longer concurrent.

4.3 Adaptive tuning framework

We can use SPECSHIFT to design an adaptive tuning framework that adjusts ADs to
meet a target proportion of consistency anomalies while minimizing the ADs to reduce
average operation latency. For each iteration of tuning, we take a history of operations H,
the current AD d injected to each operation, and a target proportion of positive scores P,
as input. We use these inputs to predict the target AD d; required to achieve the target
proportion P;. A new history H' is then recorded under the updated AD d;, and the inputs
for the next iteration are d;, H" and P;. The process is repeated in a loop until convergence
to P, occurs.

The calculation of d; given P, is the dual problem of the one solved by SPECSHIFT,
which predicts the proportion of positive scores from the delay. We solve the dual problem

19

as follows, with H denoting the most recently measured history and d denoting the current
delay. If the proportion P(H) of positive scores for H matches the target P, then d is
optimal and d; = d. If P(H) > P,, then d is too small, and must be increased. Then d;
is computed (as explained shortly) using the outer operations in H. On the other hand,
if P(H) < P, then d is too large, and must be decreased. Then d, is computed using the
history H;u,er of inner operations in H. The adjustment to the delay is determined using
the following function, with either H itself or H;,,., used as the input history G:

Definition 10. For a history G of operations and a target proportion (of positive scores)
of Py, the delay prediction function D(G, P,) is defined as the smallest non-negative integer
d, that satisfies the following inequality:

dp—1 dy

> fregli,G) < 6(G) = freq(0.G) = P x 6(G) <}y freq(i,G)

The intuition underlying Definition 10 is as follows. The number of positive scores in
the input history G is equal to ¢(G) — freq(0,G). In comparison, the desired number of
positive scores to meet the target P, is P, X ¢(G). The difference between ¢(G) — freq(0, G)
and P, x ¢(G) is positive by our choice of G, and represents the number of additional
positive scores that must be eliminated by adjusting the delay. A delay adjustment of +b,
is predicted to eliminate positive scores in bins by, by, ..., by, and so a rolling total over b;
yields the minimum d,, that is sufficient to reduce the proportion of positive scores below
P,

The output d, of the delay prediction function is applied as follows to compute the
target delay d; for the next round of consistency-latency tuning. If G' comprises the outer
operations of H (d too small), then d; = d+d,, otherwise G comprises the inner operations
of H (d too large) and d; = d,,.

4.4 Experimental evaluation

4.4.1 Hardware and software environment

A geo-replicated cluster on Amazon EC2 consisting of six m/.large on-demand instances
running 64-bit Ubuntu Server 14.0.4 LTS(HVM) were used in the experimental setup for
evaluating the SPECSHIFT adaptive control loop. Each of these instances were equipped
with 2 Intel Xeon E5-2676v3 2.4 GHz cores 8 GB RAM and 8GB SSD local storage. The

20

six instances spanned over three availability zones: US West (Oregon), EU (Ireland) and
Asia Pacific (Tokyo) and were distributed uniformly at two per availability zone. Each of
the two instances in an availability zone were placed on different racks. An Apache Cas-
sandra 2.2.7 installation was used on all the six hosts. Yahoo! Cloud Serving Benchmark
(YCSB) 0.10.0 was used for workload generation. A modified YCSB client running a sin-
gle YOSB process on each host, with 128 client threads connecting to the Cassandra server
on the same host was used to serve the workloads. We used the standard YCSB workload
for all of our experiments. The ycsb keyspace was set up with the replication strategy
NetworkTopologyStrategy and with a replication factor of one per availability zone. We
used Cassandra’s Ec2MultiRegionSnitch at each server. All hosts were included as seeds
for Cassandra.

The average one-way network delay between us-west and asia pacific data centers was
45 ms, between us-west and eu was 62 ms and between eu and asia pacific was 106 ms. The
average one-way network delay for the entire cluster can be estimated at 71 ms, which is the
mean of the three values. Default external NTP servers were used for clock synchronization
which provide synchronization to within 5-10 ms.

4.4.2 Experimental setup

I compare the convergence of the SPECSHIFT adaptive tuning framework, the PCAP
multiplicative control loop [10], and a binary search for the optimal AD over the constrained
range [0, 71] using Apache Cassandra deployed in Amazon’s Elastic Compute Cloud (EC2).

20 experiments were run on a Cassandra cluster, each with a distinct positive integer
value of starting delay in the range [0, 90] and a target proportion of consistency anomalies
in the range of [0.02, 0.05]. The target proportions are chosen to be small enough to be
tolerated in a real-world application. The starting delays are chosen to always be less than
the largest one-way network delay between regions, which is 106 ms (between eu and asia-
pacific, as mentioned earlier). In each experiment, three different tuning techniques are
compared, namely: SPECSHIFT, the PCAP multiplicative control loop and a constrained
binary search. All operations are delayed by the same starting delay for all three techniques
and each of them tune the AD trying to achieve the target proportion of consistency
anomalies. The number of iterations required by each technique to obtain convergence to
a value of AD which achieves the target proportion can be compared, as a measure of the
its efficiency. Each iteration is run for 30 seconds with a throughput of 6000 operations/s
and a read proportion of 0.8. The keys are drawn from the YCSB distribution latest, which
favors recently chosen keys.

21

The PCAP multiplicative loop operates by starting with a unit step size and increasing
it exponentially at each iteration until the control loop overshoots or undershoots, at which
point the direction of the steps is reversed and the step size is reset to unity. The interval
selected for binary search is based on the intuition that the proportion of consistency
anomalies is very close to zero when every operation is delayed by the average one-way
network latency of the cluster. So, the optimal delay to achieve a non-zero target proportion
must lie somewhere in between (0 and the average one-way network latency. It is important
to note that this technique only works when the average one-way network latency of the
cluster is known from beforehand, and the network does not change drastically. While it
might be possible to use binary search otherwise, using a pessimistic upper bound on the
artificial delay, the performance of the search in terms of iterations required to converge
worsens with an increased range. If the network conditions change dynamically, it could
be difficult to estimate an optimal upper bound. The other two tuning mechanisms require
no such additional parameter for tuning.

I compared SPECSHIFT to a proportional-integral-differential (PID) controller for
consistency-latency tuning. Using the PID controller involves tuning additional control
parameters k,, k; and k;. Convergence, if achieved, with the values of these parameters
suggested in [10] (k, = 1, kg = 0.8, k; = 0.5) is extremely slow and so the results have
been omitted.

4.4.3 Obtained results

Proportions, target proportion = 0.05, starting AD = 0 Delay predictions, target prop. = 0.05, starting AD = 0

e
N

SPECSHIFT (1 iteration) ——
Binary Search (5 iterations) —<—]
PCAP (12 iterations)

=4
o

e © o
> @

Artificial Delay (ms)

Inconsistency metric
(proportion of positive scores)

SPECSHIFT (1 iteration) —+—
Binary Search (5 iterations) —<— |
PICAP (12 itelrations)
6 8 10 12 0 2 4 6 8 10 12
Number of iterations Number of iterations

e

o
o
o F
ES

Figure 4.3: One experiment comparing three different tuning mechanisms, target propor-
tion = 0.05, no starting AD.

Figures 4.3 and 4.4 illustrate details for two of the 20 experiments. The termination
condition is defined as convergence to a proportion of positive scores within 0.005 of the
target proportion (denoted by a solid horizontal line in the plots showing the proportions

22

Proportions, target prop. = 0.03, starting AD = 75 ms Delay predictions, target prop.= 0.03, starting AD = 75 ms

@ 02 T 80 T T
S SPECSHIFT (1 iteration) —+— »F]
QB Binary Search (4 iterations) —<— @ \
© QLK PCAP (4 iterations) 1 E eof]
ES Z st g
g 8‘ 0.1 2
T o i 1 © “r 1
‘%’ 2 B 3} 4
<] (<]
§'§ 005 - { € »} SPECSHIFT (1 iteration) —— -
Sa —x < Binary Search (4 iterations) ——
() 4
g | I — ! PCAP (4 iterations)
g X L o A h
0 2 4 0 2 4
Number of iterations Number of iterations

Figure 4.4: Another experiment comparing three different tuning mechanisms, target pro-
portion = 0.03, starting AD = 75 ms.

16
14 |
S 12F
o
°
£ 10 fF
1]
o
£ 8f
k]
2 ol
K}
©
g 4t
+
2 F +
ol

SPECSHIFT PCAP Constrained Binary Search

Figure 4.5: Boxplot showing range of iterations taken to converge by different tuning
mechanisms over 20 experiments.

23

obtained at each iteration). Figure 4.3 shows the proportion of positive scores and the
delay at each iteration on the vertical axis for a starting delay of 0 and a target proportion
of 0.05. Figure 4.4 shows the same for a starting delay of 75 ms and a target proportion
of 0.03. We observe that the PCAP multiplicative control loop is prone to oscillations
and requires more than ten iterations to converge in the first case (figure 4.3), though it
reaches very close to the target value at the eighth iteration. The techniques other than
SPECSHIFT converge faster in the second experiment (figure 4.3), partly because of the
fact that the source and target delays are less far apart. Though SPECSHIFT requires
only one iteration in both the cases to correctly converge to the target proportion with the
required precision, the number of iterations required by the other two techniques depend
on the specific values of the starting delay and the target proportion. It is interesting to
note that in one of the two experiments, SPECSHIFT uses the outer history of operations
and in the other it uses the inner history of operations to predict the value of the AD for
the next iteration.

Figure 4.5 shows that the PCAP multiplicative loop takes anywhere between 1 to 15
iterations to converge to the target proportion of positive scores in our experiments, with
the mean value at a little more than 7. Binary search in the constrained interval of [0,
71] takes anywhere between 4 to 7 iterations to do the same, with a mean of almost 6.
SPECSHIFT however almost consistently takes one iteration to converge. The plot 4.5
shows outliers for SPECSHIFT and binary search. Outliers are determined as any value
that lies more than one and a half times the length of the box from either end of the box,
as is the norm with box-and-whisker plots.

The accuracy of the prediction at each iteration of SPECSHIFT is contingent on the
workload not changing across iterations. In the experiments described so far in this section,
I have assumed an open system [11] where the overall throughput of the system remains
unchanged at 6000 ops/s even if the latencies of individual operations vary due to variations
in the injected ADs. Figure 4.6 demonstrates an experiment which compares three tech-
niques in a closed system, where the individual storage servers operate at peak throughput
and the overall throughput of the system decreases with an increase in operation latencies.
The starting delay is 0 and the target proportion of positive scores is 0.05, similar to the
experiment in figure 4.3. We find that the overall throughput of the system drops by half
(from 22 kops/s to 11 kops/s) between the starting point of each adaptive loop in figure
4.6 (AD = 0 for all operations) and their point of convergence (AD roughly equal to 46ms
for all operations). Though SPECSHIFT takes one extra iteration (2 iterations total) to
converge in this case compared to the previous experiments, it performs better than the
PCAP multiplicative loop (9 iterations total) and constrained binary search (5 iterations
total).

24

Proportions for a closed system, target prop. = 0.05, starting AD = 0 Delays for a closed system, target prop. = 0.05, starting AD = 0

e
N

SPECSHIFT (2 iterations) ——
Binary Search (5 iterations) —<—]
PCAP (9 iterations)

e o e 9
W s 0 o
o T

Artificial Delay (ms)

2F SPECSHIFT (2 iterations) —+—]
10| Binary Search (5 iterations) —<— |
- _PCAP ¢ iteraltions)

6 8 10 0 2 4 6 8 10
Number of iterations Number of iterations

e
=

Inconsistency metric
(proportion of positive scores)

o
o
~
EN

Figure 4.6: Comparison of the techniques for a closed system, target proportion = 0.05,
starting AD =0

4.4.4 Discussion

Overall, SPECSHIFT exhibits the best convergence of the three control loops because it
exploits the special structure of the tuning problem by examining the score histograms
carefully at each iteration. The other two techniques are more general, but converge
more slowly because they make decisions using a small subset of the information harvested
using consistency measurements in each iteration, namely the proportion of positive scores.
PCAP is based on the principle that the consistency target can be reached more quickly
using larger steps, and indeed it crosses the horizontal line representing the target in
Figures 4.3 and 4.4 about as quickly as binary search, but this does not guarantee fast
convergence. At the point where PCAP crosses the target, its step size is relatively large
and so it tends to undershoot or overshoot, leading to oscillations. In contrast, binary
search uses larger steps initially and then smaller steps as it nears the target, similarly to
SPECSHIFT in cases where it requires multiple iterations. The main drawback of binary
search is that it must be restarted from the beginning if the optimal delay changes, for
example due to a load spike, which causes disruption as the initial artificial delay can be
far from optimal. SPECSHIFT and PCAP minimize disruption by adapting continuously,
and are more appropriate in a practical environment.

4.5 Summary

In this chapter, a technique called spectral shifting is described, which suggests that if we
shift the score histogram of a history of operations to the left by d bins, we get a score
histogram for another history where each operation is delayed by d time units. I use the

25

phenomenon of spectral shifting to design an adaptive tuning framework (SPECSHIFT)
that takes a target proportion of staleness as input, and predicts the value of AD to
be injected to each operation to meet the target proportion of staleness. SPECSHIFT is
compared to the PCAP multiplicative loop [10] and a feedback loop that uses a constrained
binary search for predicting delays at each iteration. Experiments show that SPECSHIFT
is able to achieve much faster convergence to the optimal value of AD, compared to the
other tuning frameworks.

26

Chapter 5

A Probabilistic Analysis of Eventual
Consistency

5.1 Notation and general assumptions

In this chapter, I perform a probabilistic analysis of eventual consistency on a theoretical
distributed storage system which is similar to Amazon’s Dynamo. Reads and writes are
processed on every storage server using read /write quorums. For this analysis, we focus on
the weak consistency setting in which the size of read and write quorums is one. To achieve
desired levels of consistency, all read and write operations are injected with a tunable
artificial delay. We assume that the clocks on all the storage servers are synchronized.
Following our analysis, we are able to formulate a mathematical equation to determine the
probability with which a given write participates in a consistency anomaly. The consistency
metric used in the analysis is the same used for SPECSHIFT (see definition 4). We use
the following notations in the analysis:

1. There are n storage servers.

2. The start and finish times of an operation (read or write) op is denoted by start(op)
and finish(op) respectively.

3. There is a constant one-way network delay of L across n replicas.

4. A write is followed by a delay of d time units and a read is preceded by a delay of d
time units.

27

5. The total throughput across all replicas is represented by A.

6. A\, represents the write throughput and A, represents the read throughput. The
ratio A,/A is the read-proportion and is represented by p. A, A., and A, follow the
relationship: A = A\, + A,

Following are some assumptions made in the the analysis:

1. Reads and writes follow a Poisson process and consequently, operations have expo-
nential inter-arrival times. Such an assumption is meaningful when the arrivals of
operations are memoryless and independent of each other.

2. All operations are on the same key.
3. Full replication is performed across the storage servers.
4. L > 3d, for simplicity of analysis.

5. Processing delays for reads and writes on the servers are considered to be zero, for
simplicity of analysis. A write takes effect in a remote replica L time units after it
starts in the replica in which it first arrived.

Under these assumptions, we can define the events that result in a write of value v, W,
at replica r; participating in an anomaly with the write of another value x at any replica,
W, and their corresponding reads. The read of a value v is denoted by R, and similarly,
the read of a value x is denoted by R,. Since all operations are on the same key, it has
been omitted from all symbols in the analysis for the sake of clarity and simplicity. The 4
disjoint cases in which a subset of operations from {W,, R,, W,, R,} can conspire to cause
a consistency anomaly are enlisted below:

e V1 : There exists a write of value x, W, that starts after the finish of write W, and
a read of the value v that starts after the finish of write W,.

e V2 : There exists a write W, that finishes before the start of write W, and a read of
the value x that starts after the finish of write W,,.

e V3 : There exists a write W, that starts after the start of W, but before the finish
of W,, a read of the value v that starts after the finish of W, and a read of the value
x that also starts after the finish of W,.

28

Time

>

Figure 5.1: Anomaly cases between the writes of two values, v and z, and their reads.

e V4 : There exists a write W, that finishes after the start of W, but before the finish
of W,, a read of the value v that starts after the finish of W, and a read of the value
x that also starts after the finish of W,.

Examples of the anomaly cases V1-V4 described above are illustrated in figure 5.1. The
start and finish times of operations W,,, W,, R, and R, are indicated by vertical lines and
time is represented on the horizontal axis progressing onward from left to right. The figure
shows one example of an anomaly for each case and there are other ways in which these
cases can occur. For example, in the cases V3 and V4, the position of the reads R, and
R, can vary arbitrarily as long as both of them start after the finish of both the writes W,
and W,,.

5.2 A simpler probabilistic model

This analysis builds on top of a similar analysis by Dr. Golab [13] which also assumes
that operations take place instantaneously, but does not take the artificial delay d into
account. The probabilistic analysis is simpler in such a case, and an elegant closed-form
expression for the proportion of zero scores (see definition 4) is achieved, as shown below.
The proportion of positive scores can be calculated by subtracting this probability from 1.

29

Theorem 1. For any infinite history H of the system, and for any value v € Z>° written
to the key k in H:

/\w)\T B . . n—1
P(x(H,k,v)=0) = [(A Y)+ (A -)e (/] >L]

Aw Ar (%) —(Awt+A (=)L
(waT(nTl)) * <)\w+)\r(”71)>e (e (5))]

The simple model produces accurate predictions of staleness when compared to a real-
world distributed storage system (Apache Cassandra) for low values of overall throughput.
However, for high values of throughput, the predictions are pessimistic - because the simple
model does not account for processing delays on the storage servers. In this chapter, I
extend the simple model to account for constant and symmetric artificial delays. Artificial
delays serve to mask the effect of processing delays, thus correcting the weakness of the
simple model to an extent. They also serve as a consistency-latency tuning mechanism.
The rest of this chapter explains the intuition and derivation of the extended mathematical
model (including artificial delays) in detail.

5.3 Intuition and simplifying assumptions

We can see from figure 5.1 that three anomaly cases out of four (V1, V3 and V4) involve
a read of the value v. We use this observation to break our analysis up into six cases
depending on the position of the latest read of v in a given history. The latest read of v is
important because if a set of operations containing a read of v causes one of anomaly case
V1-V4, it would still cause the same anomaly case if the read of v was substituted with the
latest read of v. This property allows us to reason about the latest read of v in the history
and ignore reads of v prior to that. Broadly, we break each case up into three parts:

1. Calculating P(E1) where E1 is the event of the latest read of v finishing in a given
interval of time.

2. Given El occurs, calculating P(E2), where E2 is the event of no write starting in
time [0, L] from start(W,) or read finishing in the same interval and causing one or
more of cases V1-V4.

3. Given E1 and E2 occur, calculating P(E3) where E3 is the event of no write starting
in time [L, oo| from start(W,) or read finishing in the same interval and causing one
or more of cases V1-V4.

30

The anomaly cases V1-V4 arise out of interplay between multiple operations which may
overlap in time. To limit the complexity of the analysis, a few simplifying assumptions
have been made in each case. Results from the analysis with the simplifying assumptions
do not consistently result in either an upper or a lower bound on the actual probability.
The nature of these assumptions are largely similar across cases and are stated below,
though each assumption is re-stated with the corresponding specifics in each case as well.

1. P(E2) is calculated in most cases by calculating the probability of no operation caus-
ing an anomaly in each replica individually and multiplying the resulting probability
by the number of replicas. We can do this because operations starting in the time
interval [0, L] from start(TV,) in one replica do not affect the probabilities of opera-
tions starting in the same interval in other replicas. Avoiding each of the anomaly
cases V1-V4 impose slightly different restrictions on the intervals in which reads and
writes can feature in each replica. However, in some specific cases, they have been
treated similarly for the sake of simplicity.

2. P(E3) is calculated in some cases ignoring the effects of E1 and E2 on the probability
of the respective reads and writes in this interval. However, the calculation of E3
does take into account that the latest read of v starts at a position specific to that
case. If the throughput is high or if L is large, P(E3) tends to be close to 1 and
relatively independent of E1 and E2.

5.4 Detailed analysis

It is assumed that W, starts at time 0 at replica r;, and finishes at time d. The analysis
is divided into 6 disjoint cases, based on the position of the latest read of v (called R,
henceforth). These cases are:

1. Case A : R, finishes in the time interval [2d, 3d).

2. Case B : R, finishes in the time interval [3d, min(4d, L — 3d)).

3. Case C: If L > 4d, R, finishes in the time interval [4d, L — 4d)).
4. Case D : R, finishes in the time interval [L,L + d).

5. Case E : R, finishes in the time interval [L + d,00)

31

6. Case F : R, finishes in the time interval (d, 2d) or no read of value v occurs at all.

In the rest of this section, I calculate the probability of none of V1-V4 happening in each
case independently. Since the six cases are disjoint, we can add the individual probabilities
from each case to get the probability of none of V1-V4 occuring in all the six cases.
This probability is equal to the probability that W, does not participate in a consistency
anomaly.

5.4.1 Case A

2d+t, L Time
2d 3d

Figure 5.2: Case A.

R, finishes in the time interval [2d, 3d): the probability of no anomaly happening in this
case is the probability of R,; finishing in the interval [2d,3d) and the probability of non-
occurrence of any operation other than R,; in any of the replicas that results in one or
more of V1, V2, V3 and V4. In this case, anomalies happen due to the occurrence of one
or more of V2, V3 and V4. V1 does not occur because start(R,;) — finish(W,) < d, which
means that any write starting after finish(W,) will be concurrent with R,;.

Let us assume that R, finishes at time 2d + t; from time 0 (which corresponds to
start(W,)) , 0 < tx < d. Such a read can only happen in replica r; because all replicas
other than r; can only read the value v L time units after time 0 and 2d+t;, < L. Probability
that a read starts in replica r; at time ¢ from finish(W,) is %e*(’\r/”)t’c. The probability
that there are no writes in replica r; from time 0 to finish(R,;) is e~ Qw/n)(te+2d)

The probability that there is at least one read of the value v at r; finishing in the time
interval (¢, + 2d, L] at time ¢, +2d+t;, 0 < t; < (L —t}, — 2d), is the probability of at least
one read finishing in the above mentioned interval and the probability of no other write
starting at r; in the time interval (0, t; +2d +t;]. Given there are no writes at r; from time
0 to finish(R,), this probability can be calculated as below:

ti=L—(ty+2d)
/ (O /m)e=Or/mt = /a0 gy,
t;1=0

32

L—tp—2d

= Lr/n e*()\r/nJF)‘w/n)tl
A/ 4 A/

= <%) (1 _ e*(k/n)(Lftk72d))

The probability of no read of v finishing at r; in the same time interval is:

Ay Aw A\ L
1 — (X) (1 _ef(/\/n)(Lftk72d)) — <7) 4 (T) e (A/n)(L—tr—2d) (51)

The probability that v is read in the time interval [L, 00| is the probability of one read
finishing at time L +t,, from zero at any replica r;, and the probability of no write starting
in the interval (0, ¢,,] in all replicas, and the probability of no write starting in the interval
(tm, L + t,,] in the replica r;. This probability can be calculated as below:

tmO]

Ar
- () e .

The probability that no such read occurs is 1 — (%) e~Qw/mML For simplicity of analysis,
we assume that the events - no read of v finishing in the time interval (2d + ¢, L] and in
time interval (L, oo are independent. From the above calculations, the probability of R,
finishing at time 2d + t; from 0, P(R4), can then be represented by the equation below:

Ar Aw A\ o
P(Ra) = (E) e~ A/t o= (N /1) (tr+2d) KT) + (7) o~ (A/m) (Lt 2d)] «

(-())

In the time interval [0, L], given R, finishes in [2d, 3d], there is no write start or read
finish in r; that causes one or more of V1, V2, V3 and V4. Intuitively, this is because no
write starts in r; in the interval (0, 2d + t;] and any read that finishes at r; in this interval
reads v. Any read finishing in the interval (2d+t;, L] reads v or a value written by a write
that started after 2d + ¢;, and hence is not concurrent with W,. So, the probability of no
anomaly in the interval [0, L] at r; is 1.

t;=0

tm =00
/)\Te—/\rtmG—Awtme—()\w/n)Ldtm _
t

m=0

i\
F O\ Ou/mL e A
(Ar n /\w) c c

(5.3)

33

For any replica r, # r;, we divide the analysis up into two sub-cases:

4

v 5
! : va

Replicar,
‘No write here L :
O d 2d+t, | 2d+t L Time

24 3d
Figure 5.3: Subcase Al.

Subcase Al: No write starts in [0, d] at r,. This happens with probability e~(w/md V2
and V4 can happen at r, in the interval [0, L]. Any read finishing at r, in the interval [2d,
L] at 2d +1t;,0 < t; < (L — 2d) reads a value written by a local or a remote write that
either finishes before 0 (causing V2), or is concurrent with W, (causing V4), if there is no
write starting at r, in [d, 2d +t;]. The probability of such a read finishing at time 2d +t;

18S:
(A /) e~ /™t o= Cuu/m)(t5+4)

Therefore, the probability of at least one such read is:

tj=(L—2d) tj=(L—2d)
/ (A /1) e—(Ar/n)tj6—(Aw/n)(tj+d)dtj = (\/n) e—(Aw/md/ e—(A/nmdtj
t

=0 t;=0

— (%) e~ (Aw/n)d (1 o e—(A/n)(L—Qd))

The probability of no such read, also equal to the probability of no anomaly happening at
r, in the interval [0, L] for case A1, and represented by P(X ;) is calculated as follows:

)\7” - n —(A/n)(L—
P(Xa)=1- (T) e~ Ou/md (1 _ o= (/m(L—2) (5.4)

34

- R | Replicar,

Y

2d+tm+tn Time

24 3d

2d+t,
Figure 5.4: Subcase A2.

Subcase A2: There is at least one write starting in [0, d] at r,. V3 can happen at r, in
the interval [0, L], but no start of a write or finish of a read at r, in the interval [0, L]
causes any one of V1, V2 or V4. Let the latest write concurrent with W, start at time ¢,,,
0 < t,, < d. The probability of the latest write concurrent with W, arriving at time t,,,
can be represented as below:

(Aw/m) e~ Qw/m)tm o —(Aw/n)(d=tm) _ ()\w/n)ef()\w/n)d

On further inspection, a read must start after the finish of the latest concurrent write,
which happens at time ¢, + d, to cause V3 in the interval [0, L]. Such a read finishes after
tm + 2d. From figure 5.4, we can reason that no finish of a read or start of a write causes
V3 in the interval [0, L] if there is no read that finishes in the interval (2d + ¢,,, L] at
2d + t, + t,,0 < t,, < (L — 2d — t,,) without at least one write starting before it in the
interval [d, 2d + t,,, + t,]. The probability of the finish of at least one read in the interval
(2d + t,,, L] causing V3 can be represented as below:

tn=L—2d—tm
/ (Ar/n) e~ Or/mling=Ou/m)nttm +d) gy
tn=0

_ ()\r/n) o /) (bm-+d) [ef(/\/n)tn|L72d7tm} _ <ﬁ) o= /) (tm+d) (1 _ ef(A/n)(Ldeftm))

—\/n tn=0 A
Hence, the probability of no such read finishing in the same interval is:
A
1 — or —(Aw /1) (tm~+d) 1— —(A/n)(L—2d~tm) 55
(%) (1-) 59

35

Using (5.5), the probability of no anomaly in the interval [0, L] at r, for sub-case A2,
represented by P(X 42), can be calculated as below:

tm=d

A
P(Xa2) = / (Aup/m) e~ u/md (1 - (T) e~ Cu/m(tmtd) (1 —eO/n)(“dtm))) dt,,
tm=0

_ (A_w> o Ou/md g (%) =20/ (1 _=(hu/n)d) +(A_w> e~ /) (L=2) =) ()1

n A
(5.6)

The probabilities P(X 41) and P(X42) depend only on 7,’s local reads and writes. So,
the probabilities for all r, (# r;) are independent of each other. The overall probability
that there is no write start or read finish at any replica that causes an anomaly in the
interval [0, L] given R, finishes at time 2d + #;, is:

(e=Pw/mMAP(X 41) + P(X 49))" (5.7)

A read finishing in the interval (L, co) can cause V3 to happen if it reads the value
written by a write that is concurrent with W,. No write starting in this interval can cause
an anomaly. We make two simplifications to minimize the complexity of the analysis here:

e We assume that the events of no write starting and no read other than R,; finishing
and causing one or more of V1, V2, V3 and V4 in the intervals [0, L] and [L, oo] are
independent of each other. This assumption allows us to calculate the probabilities
in the intervals individually and multiply the individual probabilities to obtain the
probability of not observing an anomaly involving W, in the combined interval [0,
Q).

e We know that the presence of R,; implies that there are no writes starting in r; in
the interval [0, 2d 4 t;], but we ignore this in our calculation of the probability of no
anomalies caused in the interval [L, co.

Let us consider a write W,,, writing a value w at the replica r,, , starting in the time
interval (0, d). W,, can happen in any replica in this interval except r;, the replica where

n—1

T happens. The probability of W, starting at time ¢,,0 <1, <d is ("—_1) /\we*(Pty

n

Given W, happens at time t,, the probability that there is at least one read of w at
any replica finishing in the interval [L, L + ¢,] can be calculated as the probability of at

36

least one read finishing in the same interval and of no write starting before it in the same
replica. The probability of a read finishing at L+t¢,,0 < ¢, < ¢, in any replica r,, (7, # ;)
and reading the value w can be represented as:

(/1) e Or/mta g /m) Lty tq)

The probability of at least one read of value w at replica r,, finishing in the interval [L,
L +t,] can hence be calculated as:

tg=t
q P)\T
/ ()\r/n) e—(Ar/n)tqe—(/\w/n)(L—tp+tq)dtq — (T) e~ Aw/n)(L—tp) (1 o e_o‘/”)tp)

tq=0

The probability that that there is a read of the value w at any replica finishing in the
interval [L + t,, 0o] is the same as that calculated in (5.2) and is equal to (3¢) e~(w/mE,
We make an independence assumption similar to the one stated above for events in the
intervals (L, L +t,] and (L +t,, 00). We can now calculate the probability of at least one
read finishing in the interval [L, oo] and causing V3 as follows:

tp=d _
/ (n 1))\we—<”T_1))\wtp Kﬁ) o w/n)(L—tp) (1 _ e(/\/n)tp)} %
tp=0 n A
Ar
(- (3)r)

tp=d)
:/ ((ﬁ) 6_(/\11)/”)1’67(”772))‘74)1517 —_ (ﬁ) 6—()\11;/77/)116(("_):@4)(1) dtp
=0 \\ A A

37

= (g e (1=) -
n— w

nA (n=1D)Aw+Ar
r ~Qw/mL (1 _ (et g
(((n—l))\w—l—)\r))\)e (1-)

So, the probability of no read in any replica finishing in the interval (L, oo] causing V3,
represented by P(I), can be calculated as follows:

P(I)y=1- (" - 1) M (1 - (%) e_(’\“’/")L) «
(((n - 1)@) A) B (B }

The overall probability of no anomaly for case A (represented by P(A)), which is the
probability that there is no write start or read finish at any replica in the interval [0, oo
that causes an anomaly, given R,; finishes in the time interval [2d, 3d], can be calculated
from (5.3), (5.7) and (5.8) as follows:

P(A) = /t " (P(Ra) x (e P/MP(X 01) + P(Xa2))"" x P(I)) dtx

=0

= (e Pw/MIAP(X 1)) + P(X 40))" ! x P(I) x /tkd P(R4)dty, (5.9)

=0

From (5.3),
tp=d
/ P(Ra)dty, =

tr=0

tr=d
/ k ﬁ 6—(>\r/n)tk6—()\11;/n)(tk+2d) A_’w + & e_()\/n)(L_tk_Qd) %
te=0 \ 7 A A
Ar
(- (e
, A
)6 (3))
/tk:d —(Ar /)t o= (Aw /n)(te+2d) Aw Ar —(A/n)(L—ty—2d)
e~ N/t ™ Aw /T Lk —)+ (=]e " k dty,
=0 A)\

38

(5.10)

The integral

tr=d
/'c ~(Ar/n)tk = (/) (b1, +2d) K w) () —(\/n)(L—ty— 2d):| dt,
t,=0 A

tp=d
_ / T Al 200 /m)d K_w) () (V) (L=t 2d>} dt,
t,=0 A
tr=d)\
o—20h/n)d / ~ompty | (Aw A\ emmE-te-2a)| gy,
tkIO)\)\

tp=d
20/ [/ <AA) Ot gy, 4 / (%) e—wn)tke—u/n)(L—tk—w)dtk]
t=0
tr=d
o2/ { / * <A) e~ Otk gy 4 / () —(\/n)(L—2d) dt}
o\
tr=0
A Ar f=d
— o20w/m)d o [(_w) () 1 _ef(/\/n (_) —(A\/n)(L— 2d)/ dtk]
SWASYA) o

—2(Aw/n)d nAy —(\/n)d A\ (an)(L—2d
— ¢ 2Qw/n)d o [(V) (1_6 (/))_|_<7>e (A/n)(2)d]
Therefore, equation 5.10 reduces to
()] ()]
A" R (5.11)
NAw —(\/n)d T —(A/n)(L—2d
[(?)(1_6(/))4_(7)6(/)(2)d]

From (5.9) and (5.11),

P(A) = (e Pw/MP(X 1)) 4+ P(X 22))" ! x P(I)x

(ﬁ) {1 _ (%) e(Aw/mL} o—20w/m)d o [(”?2) (1— e /m) 4 (%) 6@/@@2@4
n

(5.12)

39

5.4.2 Case B

W, Ry

Figure 5.5: Case B.

R, finishes in the time interval [3d, min(4d, L — 3d)]: let us assume that R,; finishes at
3d+tg, 0 <ty < d. (The symbol ¢, is re-defined here and should not be confused to be the
exact same symbol used in case A. We choose to use the same symbol in case B to draw
parallels easily between the two cases). If (L - 3d) < 0, this case does not occur and so the
probability of an anomaly involving W, happening in this case is equal to the probability
of no anomaly happening, which is equal to zero.

Otherwise, we can calculate the probability of R, finishing at time 3d + t; from 0,
represented by P(Rpg), similarly as in case A. The only difference from case A is that R,
finishes at 3d + t;, instead of 2d + t.

A NS I
P(Rp) = (Z) oo/t = v /) (t4-+30) KT) N (7) o~ O/m) (Lt 34)] y

A\
)

Let the upper limit on the finish time of R,; for this case be Ug = min(4d, L — 3d). In
the time interval [0, L], given R,; finishes in [3d, Ug], there is no start of a write or finish of
a read at replica r; that causes one or more of V1, V2, V3 and V4. For any replica r, # r;,
any write starting in the interval [d, d + t;] causes the anomaly V1. The probability of no
such write starting in the same interval is e~ w/™t

(5.13)

Given no writes in this interval at any replica, neither of anomalies V2 and V4 happen
in the interval [0, L] if any read finishing in the interval [2d, L] at ¢,,0 < t, < (L — 2d) is
preceded by at least one write starting at the same replica in the interval [d + 5, 2d + t,].
If a write concurrent with W, starts after time 0 at ¢,,0 < t, < d at any replica, V3 does
not happen in that replica in the interval [0, L] if any read finishing in the interval [2d +t,,

40

L] in the same replica is preceded by at least one write starting at the same replica in the
interval [d + i, 2d + t,].

We see above that the constraining intervals for reads are a little different for the cases
V2 and V4 and the case V3, while the constraining intervals for writes are the same.
However, for simplicity of analysis, we assume that the intervals for reads to be the same
for cases V2 and V4 and the case V3. The error introduced because of this assumption is
limited by the fact that d < L/3 (see section 5.1) and ¢, < d. The probability of one read
finishing in the interval [2d, L] at 2d + t,,0 < t; < (L — 2d) and causing an anomaly can
be calculated as:

(ﬁ) o= O/t = (v /) (A=t 1)
n
The probability of at least one such read finishing in the interval [2d, L] can be calculated
as:

ts=L—2d)\)\ ts=L—2d
/ (_T> 6—(Ar/n)tse—(Aw/n)(d_ths)dts — <_T’> 6—()\w/n)(d—tk)/ 6—(>\/n)tsdt5
t t

s=0 n n s=0

_ (%) o—(hw/m)(d—ty) (1 _ 6—()\/n)(L—2d))

The probability of no such read in the same interval is:
A
1— (T) e~ (w/n)(d—ty) (1 _ e—(/\/N)(L—Qd)) (5.14)

Using 5.14, given R,; finishes at 3d + t;, the probability of no write starting or no read
other than R, finishing in the interval [0, L] and causing one or more of V1, V2, V3 and
V4 is represented by P(Xp), and can be calculated as below:

>\7" - n)(d— —(A/n)(L—
P(Xp) = e~Ou/mt (1 _ (T) e~ Onu/m)d=10) (1 _ =0/ 2d>))

Ot (%) e~ Oha/md (1 _ g=(/m)(E-20)) (5.15)

V3 can happen if a read finishes in the interval [L, oo] reading the value written by a write
concurrent with W, and starting after time 0, as in case A. Making similar assumptions as
in case A, the probability of no read in any replica finishing in the interval (L, oo] causing

41

V3 in this case is also P(I) (see 5.8). We can now calculate the overall probability of no
anomaly for case B similarly as in case A:

t,=Up

P(B) = / e P(Rg) (P(Xp))" " P(I)dt, = P(I)x / P(Rg)P(Xp)" "dt;, (5.16)

t=0 tp=0

From 5.13, we see that

P(RB) = ﬁ e_o\r/”)tke—(Aw/n)(tk-i-?)d))_w + ﬁ e—(A/n)(L—tk—?;d) «
n A A
Ar
()
A A) A Y .
_ (H) [1 _ (T) . (Aw/nw} o v /m)3d KT) Ot (T) o~ (\/n)(L 3d>]

=Cp (C’Bgeptk + C’Bg) , Where

Ar A\ _w/mIL) =Ova/n Aw
Cp1 = (z) (1 - (7) e~/)L) e G/ Oy = (T) ,p=—(An)

and Cps = (%) e~ Wm)(L=3d)
From (5.15),
Ar

P(Xp) = e~ Gw/mte _ (—

~(Aw/n)d (1 _ o=(A/n)(L—2d)
) e (1 emiay

A
= "™ 4 Cpy, where Cpy = — <—

|) e—()\m/n)d (1 _ e—(A/”)(L_M)) and m = — (/\w/n>

Following binomial expansion,

1
n—1 m n— n—
+(n _ 2) (e™*) Cpa® + Cpy’

Therefore, we can calculate P(B) from (5.16) as follows:

n— n— —1 n—
P(Xp)"™" = (e + Cpa)" ' = (™) + (n) (™)™ Cpy + -+

P(B) = P(I) x /t e P(Rg)P(Xp)" dt),

£=0

42

t,=Up
= P(I) X / Cr (CB2€ptk + 033) (emtk + CB4)n_1 dty
t

k=0

= P(I) X CBl X (SBl + SB2)7 where (517)

n—1 '

n—1 elm(n—=1-i)+plUp _ | ‘

Sri = Cpo X . ;
B1 B2 ;(n—l—l)(m(n_1_2)+p) B4, ALl

n—1 :
n—1 e[m(n_l_z)}UB —1 .
Spe = Cps X oF
B2 B ;(n—l—z) (m(n—1—1)) B4
where 7 is the sequence number of terms in the series Sp; and Sps, ranging from 0 to

(n—1).

5.4.3 Case C

Wy R:vl
0 d 2d 3d 4d 4dtt, Time

Figure 5.6: Case C.

R, finishes in the time interval [4d, L — 4d)]: like in case B, if (L - 4d) < 0, this case does
not occur and so the probability of no anomaly involving W, happening is zero. Let us
assume that R, finishes at 4d + ¢, 0 < t;, < d. The symbol t; is re-defined in this case, as
in case B.

If (L —4d) > 0, we can calculate the probability of R,; finishing at time 4d + t; from
0, represented by P(R¢) similarly to (5.3).

A Aw A\ L
P(Rc) — (E) 6_(Ar/n)tke—(Aw/n)(tk+4d) [(T) + (T) e (A/n)(L—ty, 4d):| X

A\
- (G)e]

Given R, finishes in [4d, L — 4d], there can be no start of a write or finish of a read in
the interval [0, L] at replica r; that causes one or more of V1, V2, V3 and V4 . For any

43

replica r, # r;, any write starting in the interval [d, 2d + t;] causes the anomaly V1. The
probability of no such write starting in the same interval is e~(w/m(d+t)

A read finishing at r, in the interval [2d, L] causes one of anomalies V2, V3 and V4
unless at least one write starts at the same replica after time d and before the finish of the
read. However, we know that no writes can start in the interval [d, 2d 4 ;] for an anomaly
to not occur. Consequently, there can be no reads finishing at 7, in the interval [2d, 2d +]
for an anomaly to not occur, the probability of which is e~/ In the interval (2d + t4,
L], for an anomaly to not occur, no read can finish at r, before the start of at least one
write at the same replica after time d and before the finish of the read. Similarly to (5.4),
this probability can be calculated to be:

A A
a Ar) = (W/m)(L—2d—t:)
()G

While the calculation above is true for avoiding anomaly cases V2 and V4, avoiding
the anomaly V3 in the case of at least one write concurrent with W, existing and starting
after zero at r,, requires no read finishing before at least one write in a sub-interval of
[2d, L]. The head of the interval [2d, L] shifts to the right in the sub-interval, depending
on the start of the latest of such writes concurrent with W,. However, like in case B, we
ignore this nuance and consider the constraining intervals for reads at r, to be the same
for cases V2 and V4 and for case V3, for simplicity of analysis. Under the assumptions
stated above, given R,; finishes at 4d + t;, the probability of no write starting or no read
other than R, finishing in the interval [0, L] at any one replica and causing one or more
of V1, V2, V3 and V4 is represented by P(X¢), and can be calculated as below:

P(X0) = e~ Oulm)a+a) =0/ ((Lw) N (A_) e—(A/n)(L—zd—tk)>
A A

_ (%w) o~ Ou/md =\t . <%> O /m)d = (3 /m)(L-2) (5.18)

Making similar assumptions as in case A, the probability of no read in any replica
finishing in the interval (L, oo| causing V3 in this case is P(I) (see 5.8). We can now
calculate the overall probability of no anomaly for case C similarly as in case B:

te=(L—4d)) tp=(L—4d))
P(C) = / P(Re) (P(Xe))"™ P(I)dty = P(I) / P(Re) (P(Xe))™ dty

£=0 t,=0
(5.19)

44

From 5.4.3, we see that

P(Re) = (%) o~ Oor/m)t o= (hu /) (t14d) K%w) n (%) e—(A/n)(L—tk—zxd)} "
Ay
(1)
A A A A
(AN 2 (2 e Ourmn| - umia | (A movmne (A - ovm-ad)
e R E (G E e C Y L

=Cr (C’Cgeqtk + ch) , where

Ar A\ onmn] —om A
Cer = (g) [1 - <X> e~ A/)L} e~/)4d7 Coa = (T) , ¢ =—(A/n)

and ch = (%) 6_(>‘/n)(L_4d)

Aw A\ _ _
P(Xe) = (_> o~ Cu/md =\t (7) O /m)d (3 /m)(L-2)

= Ceye®™ + Cps, where

Following binomial expansion,
P(Xe)" ' = (Coue™™ + Cos)" ™

= Ce () (1) (o) ot

n—1
1

+ (n B 1) (Coue™*) (Cos)" 2 + (Cos)" !

n—2
Therefore, we can calculate P(C) from (5.19) as follows:

tr=L—4d

P(C) = P(I) x / P(Re) (P(Xe))" dty

45

tp=L—4d
= P(I) x / Cer (CCQthk + ch) (C’C4€St’C + 005)7%1 dty,
t

k=0
= P(I) X CCl X (SCI + SCQ> s where (520)

e[s(n—l—i)-‘,—q](L—4d) -1

n—1
B n—1 n—1—i i
501—002><;(n_1_i>(py e S)(004) (Ces)', and

(n—1—19)](L—4d) __ 1

n—1
n—1 els n—1—i i
SCQ:OC?’X;(n—l—i)(Y oy)(004) (Ces)',

where 7 is the sequence number of terms in the series S¢; and Seo, ranging from 0 to
(n—1).

5.4.4 Case D

d - LAty Time
L L+d

Figure 5.7: Case D.

R, finishes in the time interval [L,L + d]: let us assume that R, finishes at L + ¢, 0
< tr < d. The symbol t; is re-defined in this case, as in the previous cases. A read of value
v finishes in the interval [L, L + d] at time (L + t) if a read finishes at a replica at time
(L + t;) and no write starts at all other replicas in the interval [0, ¢;] and no write starts
in the replica the read finished in the interval [0, L + tx]. The probability of a read of v at
(L + tx) can thus be calculated as:

et = (=D /mAuti = Qs /) (L)) o=Arth g=uth o= (huo/m)L

The probability of at least one read of value v in the interval [L + t, oo] can be calculated
similarly to (5.2) in case A and is equal to (5)e~*»/™E The probability of no such

46

read in the same interval is 1 — (%) e . We can now calculate P(Rp), which is the

probability of R,; finishing at L + t; as follows:

—(Aw/n)L

P(RD) —)\Tefx\rtkewatke*(/\w/n)L (1 _ (%) e(Aw/n)L) (5'21)

Similarly to cases B and C, no anomaly happens at replica r;. A write in any replica
r, # r; starting in the interval (d, L + t; — d) causes anomaly V1. Given no writes happen
in replica r, in the above interval, a read at r, finishing in the interval [2d, L + t;] would
read a value written by a write which is either concurrent or older than W, causing one
of anomalies V2, V3 and V4 (similarly to cases B and C, we assume that the constraining
intervals for reads are the same for cases V2 and V4 and for case V3 for simplicity of
analysis, although they are not).

It is important to note here that 0 < ¢, < d, which means that if a read finishes in
the interval [2d, L + tx] at r, and reads a value written by a remote write, the earliest
possible start time of this write is L 4+t — L = t;, which is less than d. This implies that
the remote write is either concurrent or older than W, and that the read would cause one
of V2, V3 and V4. This property enables us to calculate the probability of no anomaly in
each replica independently in the above mentioned interval. Given there are no writes in
the interval (d, L + t;, — d) at r,, for no anomaly to happen, there should be no reads in
the interval (2d, L+t — d) and no read before at least one write in the interval [L +1t; —d,
L + tx]. The probability of no read before at least one write in the interval [L + ¢, — d,
L + tx] can be calculated similarly to (5.1) and is equal to:

A A
A A\ o=(/m)d
()G

The probability that no anomaly occurs at r, in the interval [0, L] given R, finishes at
L + tg, represented by P(Xp) can now be calculated as follows:

P(Xp) = e~ C/mL-tti=2) =0 /) (L5 -3d) ((A_w) n (A_) e(A/n)d)
) A

_ o~ Qo /n)(L=2d) ,—(Ar/n)(L=3d) (()\Tw) i (%) e—wn)d) o~ /)t (5.22)

In the interval [L + t;, oc], the only possible anomaly is V3, and the probability of
V3 not happening can be calculated similarly to (5.8) in case A and this probability is
P(I). We ignore the fact that R,, happens at r; in the calculation of P(I) to simplify our

47

analysis. Also, like in the previous cases, we assume that the events of no anomaly in the
interval [0, L + t;] and no anomaly in the interval [L + ¢, oo] are independent of each
other. We can now calculate the overall probability of no anomaly in case D, represented
by P(D) as below:

tr=d
PID) = [(P(Ro) > (P(Xp))"™ x P(D) di

k=0

t=d A
_ P(I)/ |:)\Te)\rtke)\wtke(/\w/n)[/ (1 _ <_T> e(Aw/n)L>} %
t.=0 A
A A et
e~ (Aw/n)(L=2d) o —(Ar/n)(L—3d) w2 e~ (A/n)d) o—(A/n)tx dts,
A A
- o (3))
|:e(Aw/n)(L2d)€(Ar/n)(L3d) ((A_w) n () ()\/n)d):| / e=Athe=((n=D)/m gy
A

(5.23)
tp=d

The integral / e_/\tke_((n_l)/n)/\tkdt / 27’L 1)/n /\tkdt

tk:(]

— <ﬁ) (1 — e~ (@n=D/mAd)
n_

From (5.23), we can then calculate P(D) as follows:

P(D) = P(I) x ()\Te_’\Ttke_()‘w/”)L (1 — (%) e_(’\“’/”)L)) X
n—1
[e<Aw/n>(L2d>e<Ar/n>(L3d> ((%w) L (%) e(A/n)d)] y (5.24)

(i) -]

48

5.4.5 Case E

WV : :va
Time
d - L+d+t,

L L+d

Figure 5.8: Case E.

R, finishes in the time interval [L 4 d,00) : let us assume that R,; finishes at L +d+t;, 0
< t, < d. The symbol t; is re-defined, as in the previous cases. A read of value v finishing
after time L + d implies no writes starting in the interval [0, d], which means V3 is not
possible in this case. A read finishing in the interval [2d, L] can cause V2 or V3 if it reads
a value written by a write that finishes before 0 or is concurrent with W, respectively. V1
happens if a write starts in the interval (d, L + t).

A read finishing at L 4+ d + t; at any replica ry reads the value v if there is no write
starting in all replicas in the interval [0, d 4 t;) and there is no write starting at ry in the
interval [d + t, L + d+t;). The probability of no read of v in the interval [L + d + t;, o]
can be calculated similarly to (5.2) and is equal to 1 — (%) e~w/ML The probability of
R, finishing at L + t;, represented by P(Rg) can now be calculated as follows:

P(Rg) =\ oMtk o= Aw(tetd) o—(Aw /n) L (1 . (ﬁ) e(x\w/n)L)
" A

=)\ e Awdem(u/n)L (1 - (%) e_(kw/")L) e~ M (5.25)

As in the previous cases, no anomaly can happen in replica r;. For any replica r, # r;,
a write starting in the interval (d, L + ¢;) causes V1. Given there are no writes in the
interval, a read finishing in the interval [2d, L] causes one of V2 or V4. The probability that
no anomaly occurs at replica r, represented by P(Xg) can now be calculated as follows:

P(Xg) = e~ Qw/n)(Lttg—=d) ,=(Ar/n)(L=2d) _ —=(Aw/n)(L=d),—(Ar/n)(L=2d) ,—(Aw/n)tx (5.26)

The probability P(Xg) only depends on the local reads and writes of replica r,. So,
the probability of no anomaly in all replicas other than r; can be calculated by simply

49

multiplying the probabilities of no anomaly in individual replicas. The overall probability
of no anomaly in case E, represented by P(F) is calculated as follows:

t =00

P(E) = /t P(Rg) x (P(Xg))" " dty,

£=0

t=00 A
:/ |:)\T€/\wd€()\w/n)L (1 o (_T) 6(/\w/n)L) eAtk] 5
tr=0)\

(e Oun/m =) =0) (L=20) = Oy

[(1 (2) i)
" A

thOO
(e—()\w/n)(L—d)e—(Ar/n)(L—Qd))”_1 / 67(A+("T*1)Aw)tkdtk
tr=0

(5.27)

T (e - .
The i 1 oty = | ey | 0 D =
¢ Integra /tkO € diy,)+ (nT_l) A () (n)\ + (n - 1) /\w>

From (5.27), P(E) is calculated as follows:

P(E) = (n)\ - (nn_ 0)\w) X ()\re_Awde—(Aw/n)L (1 - (%) e‘(Aw/")L)) X (5.28)

(e—(Aw/m(L—d)e—(Ar/m(L—w))”—1

5.4.6 Case F

R, finishes in the time interval (d, 2d) or no read of value v occurs at all. If R, finishes in
(d, 2d), it is concurrent with W,,. In that case, or in the case of no read of v at all, the only
anomaly that can happen is V2. All the other anomaly cases require a read of v starting
after finish(W,). The probability of R, finishing in the time interval (d, 2d) or no read
of value v at all can be calculated as the probability of no read of v in the interval [2d, oo].

A read of value v in the interval (2d, L] can only happen at replica r;, if a read finishes
in the interval and no write starts at r; after time 0 and before the finish of the read.
Let such a read finish at t,,0 < t, < L. The probability of such a read finishing at ¢, is
(A, /n) e~ Ar/mtue=(Rw/n)(2d+ta) The probability that at least one such read finishes in the
interval (2d, L] is:

tu=(L—2d) tu=(L—2d)
/ (Ar/n) e—()\r/n)tu6—(Aw/n)(2d+tu)dtu _ (Ar/n) e—()\w/n)(Qd) / e—()\/n)tudtu
t

»=0 ty=0

20

A
_ <7> e~ Oha/m)) (1 _ =3 /m=20) (5.29)

In the interval [L, 00), the probability of at least one read of v can be calculated similarly
to (5.2) in case A and is equal to (%) —(Gw/mL Making the simplifying assumption that
the events of no read of v finishing in the interval [2d, L) and in the interval [L, co) are
independent of each other, the probability of no read of v finishing in the composite interval
[2d, 00) can be calculated by multiplying the probabilities of no read of v finishing in the

individual intervals. This probability, represented by P(Rp), is calculated as follows:

A A\
P(Rp) = (1 — (TT) e~ (Aw/n)(2d) (1 _ 6(/\/H)(L?d))) (1 _ <T> e ()\w/n)L) (5.30)

The finish of a read reading a value written by a write that finishes before start(W,) has
to be before time L after which all reads in any replica read value v or newer. Reads
of a value written by a write that finishes before start(W,) will cause anomaly V2 if the
read finishes in the interval [2d, L]. In the interval [2d, L — d], a value written by a write
that finishes before start(W,) and also happens at a remote replica cannot be read. So,
in this time interval, we only have to reason about reads and writes that happen locally
in each replica to calculate the probability of V2 not happening. If (L — 3d) < 0, this
case does not happen and the probability of no anomaly in this interval, P(Xr) =0. In a
replica r,, in the interval [2d, L — d|, V2 happens if a read finishes at ¢,,0 < ¢, < (L — 3d)
and there is no write starting in the interval [—d, 2d + ¢,]. The probability of this is
(A, /n) e~ Ar/mitee=(uw/m)Bd+te) The probability of at least one read finishing in the interval
[2d, L — d] and causing V2 is:

tv=(L—3d) tv=(L—3d)
/ ()\T/n) 6_(>\7»/n)tu 6_(>\w/n)(3d+tv)dtv — ()\T/n) 6—(>\w/7’l)(3d) / 6—()\/n)tv dtv
t

»=0 ty=0

_ (%) o—(\w/n)(3d) (1 _ e—()\/n)(L—Bd))

The probability of no such read, or the probability of no anomaly in the interval [2d, L — d]
is then calculated as follows:

Ar
P(Xp)=1- (T) e~ Pu/mBd) (1 _ o= (/m)(L=5d)) (5.31)

A read finishing in the interval [L — d, L| can read a value written by a write that
finishes before 0 and happens either at the local or a remote replica. The probability of a

ol

read finishing at any replica r, in the interval [L — d, L] at time t,,,0 < t,, < d is \,e .
Given that there is a read in the above mentioned time interval, V2 happens if there is no
write at 7, in the interval [—(d —t,), L —d+t,] and if there is no write in all other replicas
in the time interval [—d, —(d — t,)]. The probability of at least one such read can hence
be calculated as:

to=d

ty=d
/)\re—)\th (e—)\wtze—()\w/n)L> dtw _)\re—()\w/n)L/ Q_Atzdtx
t

2=0 tz=0
_ (%) 6—(>\w/n)L(1 . e—)\d)

The probability that no such read occurs is represented by P(Yr) and can hence be calcu-
lated as follows:

Ar
P(Yp)=1-— (T) e~ Gu/ml(] _ =) (5.32)
We assume an independence of the events of no anomaly in interval [2d, L — d] and the
interval [L — d, L] like in the previous cases, to have a simpler analysis. The overall
probability that there is no anomaly for case E is represented by P(F") and can be calculated
as follows:

P(F) = P(Rp) x P(Xp) x P(Yp) (5.33)

The overall probability that W, does not participate in an anomaly, represented by
P(N), can be calculated as the sum of probabilities of the disjoint cases A, B, C, D, E and
F as follows:

P(N)=P(A)+ P(B)+ P(C)+ P(D) + P(E)+ P(F)
. The probability that W, participates in an anomaly is 1 — P(N).

5.5 Evaluation

5.5.1 Experimental setup

The results of the mathematical model were compared against a custom built simulator
written in Java. The simulator takes the number of replicas n, the average throughput A,
the proportion of reads p, the average one-way latency L and the symmetrical artificial
delay added to each operation d as input. It then simulates 10° reads and writes (according
to the read-proportion p) to the same key, each following exponential inter-arrival times in

o2

n replicas and records the history of these operations into a file. We assume that the clients
triggering the reads and writes are co-located with the storage servers. The proportion of
positive scores is then calculated using the regular metric for consistency (see definition 4).

The predictions of staleness of the model were also compared against an Apache Cas-
sandra cluster. The Cassandra cluster is configured similarly as described in chapter 4,
section 4.4.1. However, in this case, we use one m4.large ec2 instance per zone across four
availability zones. The availability zones used are: US West (Oregon), EU (Ireland), Asia
Pacific (Tokyo) and Asia Pacific (Sydney). The average one-way network delay (L) is
measured to be 85 ms.

5.5.2 Obtained results

Inconsistency metric
(proportion of positive scores)

model, p = 0.8 —¥— |
simple model, p = 0.8

model, p = 0.5
simPIe model, p = 05----

0 | 1 1 1
0 200 400 600 800 1000 1200

Throughput (ops/s)

Figure 5.9: Comparison between the new and a simpler mathematical model, AD = 5 ms.

The probability obtained in the mathematical model is equal to the proportion of total
operations participating in anomalies, for an infinite history. The figure 5.9 compares the
predictions for the proportion of inconsistent operations obtained from the mathematical
model presented in the thesis, to predictions from a simpler model [13], with a small value
of d (= 5 ms). It must be noted here that the simple model does not take the parameter
d into account, and d only affects the predictions of the newer model (presented in this
thesis). The number of replicas, n is set to 5 and the average one-way latency L is set
at 71 time units, which is the measured one-way latency for our Cassandra cluster used
in SPECSHIFT (see chapter 4). We see that the simple model predicts a much higher

23

proportion of inconsistent operations compared to the new model, especially for higher
values of throughput.

The figures 5.10a, 5.10b, 5.11a, and 5.11b compare predictions for proportion of in-
consistent operations obtained from the simple model, the new mathematical model, from
a simulator running 10° operations, and from an Apache Cassandra cluster. The value
of n is set at 4 and the proportion of inconsistent operations is predicted /measured for
increasing values of overall throughput. The proportion of inconsistent operations is com-
puted/measured for ADs of 10 ms and 20 ms and for read-proportions of 0.8 and 0.5.

o8| model, p = 0.5 —¥— |

' simulator, p = 0.5 —&5—
Cassandra, p = 0.5

simple model, p=0.5 -----

model, p = 0.8 —v—

02 simulator, p = 0.8 —&— |
Cassandra, p = 0.8

sirrllple mode;l, p= 0'8. -----

Inconsistency metric
(proportion of positive scores)

Inconsistency metric
(proportion of positive scores)

o

>
L
o
=1
L

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200
Throughput (ops/s) Throughput (ops/s)
(a) p=0.38. (b) p = 0.5.

Figure 5.10: Comparison of predicted proportion of positive scores between the mathemat-
ical model, the simulator and Cassandra, AD = 10 ms

1—= T T T T T
: model, p = 0.8 —v—
simulator, p = 0.8 —&—
Cassandra, p = 0.8
simple model, p=0.8 -----

o8| model, p = 0.8 —¥— |

' simulator, p = 0.8 —&5—
Cassandra, p = 0.8

simple model, p=0.5 -----

Inconsistency metric
(proportion of positive scores)

Inconsistency metric
(proportion of positive scores)

! ! i
200 400 600 800 1000 1200

o

>
L
o
=1
L

0 200 400 600 800 1000 1200

0
Throughput (ops/s) Throughput (ops/s)
(a) p=0.38. (b) p = 0.5.

Figure 5.11: Comparison of predicted proportion of positive scores between the mathemat-
ical model, the simulator and Cassandra, AD = 20 ms

54

5.5.3 Discussion

We see that the predictions of the simple model are pessimistic with respect to the values
obtained from Cassandra. The new model and the simulator trace each other closely and
are also quite close to the values obtained from Cassandra for high throughputs. The
disparity between the model (and simulator) and Cassandra for low throughputs could
be due to the fact that operations arrivals at extremely low throughputs (a few tens of
operations per server per second) may not follow Poisson arrivals strictly. This is conjecture
though, and the exact reason for the disparity has not been explored in this body of work.

We see that the proportion of inconsistent operations observed in the Cassandra cluster
is always lower than the values predicted by the model and the simulator. This is due to
processing delays on the storage servers, which add to the effect of artificial delays and
lower inconsistency. However, for higher values of d (roughly > 10 ms), the effect of the
artificial delay dominates over processing delays, which results in good predictions by the
mathematical model. The model presented in this thesis can be used to calculate a fairly
tight upper bound on the proportion of positive scores in a distributed storage system
when all operations are delayed by the same time units. Qualitatively, the mathematical
model is able to correctly predict that the proportion of positive scores decreases with an
increase in A beyond a point, and the rate of decrease of the proportion of positive scores
is more at lower values of read-proportion p or at higher values of the artificial delay d.

5.6 Summary

In this chapter, I extend an existing simple probabilistic model [13] of consistency in
distributed storage systems operating under weak consistency settings to account for ADs. I
assume that the delays are constant for all operations and are injected before reads and after
writes. Operation arrivals are assumed to follow a Poisson process. I derive a mathematical
formula that relates the proportion of stale reads to environment parameters like proportion
of reads (and writes), the number of storage servers, the network latency between them,
the read/write throughput, and the constant AD. The predictions of staleness from the
mathematical model are compared against a custom-built simulator of the storage system
written in Java, and a real world storage system (Apache Cassandra). Experiments show
that the predictions of staleness from the model match the values from the simulator closely,
and also match the values from Cassandra for high values of total throughput.

95

Chapter 6

Conclusion

Distributed systems are constrained by the finite propagation speed of information. This
means that in distributed key-value storage systems, stale reads are unavoidable under
weak consistency settings, even in the absence of failures. In geo-replicated systems, the
probability of stale values being read is amplified due to high network latencies between
storage servers. Using strong client-side consistency settings (in the form of strict quo-
rums) can help eliminate consistency anomalies but increases operation latencies manifold,
especially when one-way network latency between the storage servers is large. This is
typically the case when the storage servers span over multiple continents. Some modern
businesses have preferred high availability over strict consistency requirements which has
lead to an increased use of Dynamo-like eventually consistent key value stores in the indus-
try. However, eventual consistency is often poorly understood and the guarantees provided
by eventually consistent systems are not well defined. This leads to a pressing need for a
middle ground and systems to tune consistency and operation latencies according to the
specific requirements of a business.

6.1 Research contributions

This work introduces an adaptive tuning framework (SPECSHIFT) which controls the
overall percentage of stale reads observed in a cluster by injecting artificial delays to read
and write operations. The system is able to adjust latency of operations in a distributed
cluster to meet a specific target proportion of positive (consistency anomaly) scores. The
prediction of the delay to be injected at each iteration of the control loop is calculated by
analyzing a distribution of consistency anomaly scores from operation histories obtained

o6

from the storage servers. Although similar adaptive control loops have been designed
before [10], the predictions are made in such systems using generic mechanisms without
using insights from the history of operations that are available at each iteration other
than the overall percentage of positive scores. Specifically, the distribution of these scores
contain information which can be used to make very accurate predictions. Owing to this,
the SPECSHIFT feedback loop achieves convergence to the optimum value of delay to
meet the target proportion much faster than the state-of-art solution (PCAP).

This work also presents a probabilistic analysis of eventual consistency and a mathe-
matical formula that predicts the probability of a given write participating in a consistency
anomaly, from a number of parameters that define the environment of the storage system.
A mathematical formulation of inconsistency in distributed storage systems operating un-
der weak consistency settings was first introduced by Dr. Golab, the results of which were
published in a joint work [13]. This work extends the simple mathematical model described
there by accounting for artificial delays, which would allow fine-grained control over the
consistency and latency of operations observed in a storage system. We see from chapter 5
that the probabilistic analysis of consistency anomalies can be tedious because anomalies
are caused by the interplay of multiple operations which may overlap in time. Nevertheless,
the mathematical model is able to match the values of expected staleness calculated from
a custom built simulator of the storage system running 10° operations (per experiment)
closely. The staleness predicted by the model is also matches the staleness observed in a
widely used real-world distributed database (Apache Cassandra) closely for high values of
throughput.

The extended probabilistic model helps us estimate the effect of processing delays at
the storage servers on overall inconsistency, thus correcting the pessimistic predictions
(compared to a real-world storage system) of the simple model at high values of throughput,
to an extent. The mathematical formula also enables us to study the relationships between
the environment parameters (overall throughput, read/write proportion, read and write
delays, one-way network latency, number of replicas, etc.) and consistency in a storage
system, without the need to perform the tedious and resource-intensive task of setting up
a distributed cluster.

6.2 Learnings

The broad learnings from my research on the consistency-latency trade-off can be summa-
rized as below:

57

1. The distribution of consistency anomaly scores in a history (see histograms in the
figure 4.1)contains information which could be vital to understanding the consistency-
latency trade-off. The experiments on the adaptive tuning framework described in
chapter 4 validates spectral shifting (experimentally), but the phenomenon in itself
could have broader implications. For example, spectral shifting allows developers
to estimate the value of latency required to get rid of all consistency anomalies less
than or equal to a particular score, by looking at a score histogram. I found that
score histograms typically have a long ‘tail’ - which implies that there would be a
large latency cost associated with a system that tolerates no staleness whatsoever.
It also points to diminishing gains in consistency with increasing latency beyond a
point. SPECSHIFT predicts a value of latency given a particular target proportion
of staleness. The score histograms can guide developers on how to set the target
value of staleness in the first place.

2. It is possible to model consistency in eventually consistent systems mathematically
using probabilistic calculations. I assume memoryless arrivals (that follow a Poisson
process) of operations in chapter 5, but the derivation can be extended to assume
other distributions on operation arrivals as well. Such a mathematical calculation can
be tedious because of the interplay of multiple operations that causes an anomaly.
However, a mathematical formula is invaluable to understanding consistency in dis-
tributed storage systems and how it relates to not only latency of operations, but also
other environment parameters like proportion of reads (and writes), the number of
storage servers, the network latency between them, and the read/write throughput.

6.3 Future work

Figure 4.1 in chapter 4 shows score histograms for two different histories of operations.
The shape of the score histogram and how it relates to the environment parameters under
which a corresponding history is collected has not been studied in detail yet. A model to
predict the shape of the score histogram accurately would help us answer questions like -
does the score histogram always have a long ‘tail’? If indeed there is always a diminishing
gain in consistency on increasing latency beyond a point, what is the rate of this decay
and what are the factors that control it?

The mathematical model presented in this thesis assumes full replication and a symmet-
ric constant delay to all operations. It can be extended to incorporate partial replication
or unequal read and write delays. Such a model will enable us to understand how delaying

o8

reads or writes exclusively affects consistency. A similar analysis could be done for other
fine-tuning mechanisms like CPQ [36] which would enable us to compare these techniques
comprehensively without having to rely on experimental data. Such an analysis can go
a long way in quantifying the trade-offs related to distributed storage systems concretely,
and allowing application developers to estimate the consistency and latency of operations
in eventually consistent storage systems conveniently and accurately.

29

References

1]

2]

[7]

8]

D. Abadi. Consistency tradeoffs in modern distributed database system design: CAP
is only part of the story. IEEE Computer, 45(2):37-42, 2012.

A. Aiyer, L. Alvisi, and R. A. Bazzi. On the availability of non-strict quorum systems.
In Proc. of the 19th International Symposium on Distributed Computing (DISC), pages
48-62, 2005.

Amazon’s SimpleDB. Available at http://aws.amazon.com/simpledb.

E. Anderson, X. Li, A. Merchant, M. A. Shah, K. Smathers, J. Tucek, M. Uysal, and
J. J. Wylie. Efficient eventual consistency in Pahoehoe, an erasure-coded key-blob
archive. In Proc. of the 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 181-190, 2010.

E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. J. Wylie. What consistency does
your key-value store actually provide? In Proc. of the 6th Workshop on Hot Topics
in System Dependability (HotDep), pages 1-16, 2010.

M. S. Ardekani and D. B. Terry. A self-configurable geo-replicated cloud storage sys-
tem. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 367-381, 2014.

H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124-142, 1995.

P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and 1. Stoica. Prob-
abilistically bounded staleness for practical partial quorums. Proc. VLDB Endow.,
5(8):776-787, 2012.

60

http://aws.amazon.com/simpledb

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

D. Bermbach and S. Tai. Eventual consistency: How soon is eventual? An evaluation
of Amazon S3’s consistency behavior. In Proc. of the 6th Workshop on Middleware
for Service Oriented Computing (MW4SOC), pages 1:1-1:6, 2011.

E. A. Brewer. Towards robust distributed systems (Invited Talk). In Proc. of the 19th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC),
page 7, 2000.

J. F. Cantin, M. H. Lipasti, and J. E. Smith. The complexity of verifying memory
coherence and consistency. IEEE Transactions on Parallel and Distributed Systems,
16(7):663-671, July 2005.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst., 26(2):4:1-4:26, 2008.

S. Chatterjee and W. Golab. Brief announcement: A probabilistic performance model
and tuning framework for eventually consistent distributed storage systems. In Proc.
of the ACM Symposium on Principles of Distributed Computing (PODC), pages 259—
261, 2017.

S. Chatterjee and W. Golab. Self-tuning eventually-consistent data stores. In 19th
International Symposium on Stabilization, Safety, and Security of Distributed Systems

(SSS), 2017.

B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2):1277-1288, 2008.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with YCSB. In ACM Symposium on Cloud Computing (SoCC),
pages 143-154, 2010.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In Proc. USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 251-264, 2012.

61

[18]

[19]

[20]

[21]

[22]

23]

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available

key-value store. In Proc. of the 21st ACM Symposium on Operating System Principles
(SOSP), pages 205-220, October 2007.

H. Fan, S. S. Chatterjee, and W. Golab. Watca: The waterloo consistency analyzer. In
IEEE 32nd International Conference on Data Engineering (ICDE), pages 1398-1401,
2016.

A. Fekete, S. N. Goldrei, and J. P. Asejo. Quantifying isolation anomalies. In Proc. of
the 35th International Conference on Very Large Data Bases (VLDB), pages 467478,
August 2009.

P. Gibbons and E. Korach. Testing shared memories. SIAM Journal on Computing,
26:1208-1244, August 1997.

D. K. Gifford. Weighted voting for replicated data. In Proc. of the 7th ACM Sympo-
stum on Operating Systems Principles (SOSP), pages 150-162, 1979.

W. Golab, J. Hurwitz, and X. Li. On the k-atomicity-verification problem. In Proc. of
the 33rd International Conference on Distributed Computing Systems (ICDCS), pages
591-600, 2013.

W. Golab, X. Li, and M. A. Shah. Analyzing consistency properties for fun and profit.
In Proc. of the 30th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), pages 197-206, 2011.

W. Golab, X. Li, and M. A. Shah. Analyzing consistency properties for fun and
profit. In Proc. of the 30th ACM Symposium on Principles of Distributed Computing
(PODC), pages 197-206, June 2011.

W. Golab, M. R. Rahman, A. AuYoung, K. Keeton, and I. Gupta. Client-centric
benchmarking of eventual consistency for cloud storage systems. In Proc. of the 34th
International Conference on Distributed Computing Systems (ICDCS), pages 493-502,
2014.

W. Golab and J. J. Wylie. Providing a measure representing an instantaneous data
consistency level. US Patent Application 20,140,032,504, filed 2012, published 2014.

M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492,
1990.

62

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

S. Krishnamurthy, W. H. Sanders, and M. Cukier. An adaptive quality of service aware
middleware for replicated services. IEEFE Transactions on Parallel and Distributed
Systems, 14:1112-1125, 2003.

A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35-40, Apr. 2010.

L. Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. [EEE Transactions on Computers, C-28(9):690-691, September
1979.

L. Lamport. On interprocess communication, Part I: Basic formalism and Part II:
Algorithms. Distributed Computing, 1(2):77-101, June 1986.

H. Lee and J. L. Welch. Randomized registers and iterative algorithms. Distributed
Computing, 17(3):209-221, 2005.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don'’t settle for
eventual: Scalable causal consistency for wide-area storage with COPS. In Proc. of
the 23rd ACM Symposium on Operating Systems Principles (SOSP), pages 401-416,
2011.

D. Malkhi, M. K. Reiter, and R. N. Wright. Probabilistic quorum systems. In Proc.
of the 16th ACM Symposium on Principles of Distributed Computing (PODC), pages
267-273, 1997.

M. McKenzie, H. Fan, and W. M. Golab. Fine-tuning the consistency-latency trade-off
in quorum-replicated distributed storage systems. In Proc. of the Scalable Cloud Data
Management (SCDM) Workshop at the IEEE International Conference on Big Data,
pages 1708-1717, 2015.

J. Misra. Axioms for memory access in asynchronous hardware systems. ACM Trans-
actions on Programming Languages and Systems, 8(1):142-153, January 1986.

S. Nguyen. Adaptive control for availability and consistency in distributed key-values
stores, 2014. University of Illinois at Urbana-Champaign.

S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez, G. Gibson, A. Fuchs, and
B. Rinaldi. YCSB++: benchmarking and performance debugging advanced features

in scalable table stores. In Proc. ACM Symposium on Cloud Computing (SoCC), pages
9:1-9:14, 2011.

63

[40]

[41]

[50]

[51]

M. R. Rahman, L. Tseng, S. Nguyen, I. Gupta, and N. H. Vaidya. Characterizing
and adapting the consistency-latency tradeoff in distributed key-value stores. ACM
Transactions on Autonomous and Adaptive Systems, 11(4):20:1-20:36.

B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed: A cautionary
tale. In Proceedings of the 3rd Conference on Networked Systems Design € Imple-
mentation - Volume 3, page 18, 2006.

C. Shao, J. L. Welch, E. Pierce, and H. Lee. Multiwriter consistency conditions for
shared memory registers. SIAM J. Comput., 40(1):28-62, 2011.

A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions of synchronization
and consistency in Beehive. In Proc. of the Ninth ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 211-220, June 1997.

R. N. Taylor. Complexity of analyzing the synchronization structure of concurrent
progreams. Acta Informatica, 19(1):57-84, April 1983.

D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and H. Abu-
Libdeh. Consistency-based service level agreements for cloud storage. In Proc. of the
24th ACM Symposium on Operating Systems Principles (SOSP), pages 309-324, 2013.

F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed consistency for shared dis-
tributed objects. In Proc. of the 18th ACM Symposium on Principles of Distributed
Computing (PODC), pages 163-172, May 1999.

W. Vogels. Eventually consistent. Communications of the ACM, 52(1):40-44, January
2009.

Voldemort. Available at http://project-voldemort.com/.

H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency properties and
the trade-offs in commercial cloud storages: the consumers’ perspective. In Proc.

of the 5th Biennial Conference on Innovative Data Systems Research (CIDR), pages
134-143, January 2011.

H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM Trans. Comput. Syst., 20(3):239-282, 2002.

K. Zellag and B. Kemme. How consistent is your cloud application? In Proc. of the
Third ACM Symposium on Cloud Computing (SoCC), page 6, 2012.

64

http://project-voldemort.com/

	List of Figures
	Introduction
	Motivation
	Problem statement
	Research contributions
	Document organization

	Background and Related Work
	Trade-offs in distributed storage systems
	Measuring consistency
	Adaptive consistency-latency tuning
	Mathematical models of consistency
	Summary

	Formal Model and Important Definitions
	System model
	Summary

	The SPECSHIFT Tuning Framework
	Spectral shifting
	Inner-outer consistency
	Adaptive tuning framework
	Experimental evaluation
	Hardware and software environment
	Experimental setup
	Obtained results
	Discussion

	Summary

	A Probabilistic Analysis of Eventual Consistency
	Notation and general assumptions
	A simpler probabilistic model
	Intuition and simplifying assumptions
	Detailed analysis
	Case A
	Case B
	Case C
	Case D
	Case E
	Case F

	Evaluation
	Experimental setup
	Obtained results
	Discussion

	Summary

	Conclusion
	Research contributions
	Learnings
	Future work

	References

