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Abstract

Purpose

The human brain changes significantly with age. The plasticity of the visual cortex is

thought to decrease into adulthood while childrens’ brains are highly plastic. This change

in plasticity is thought to be due, in part, to an inhibitory neurotransmitter known as

gamma-aminobutyric acid (GABA). Recent research has established a general increase in

GABA levels from childhood into adulthood, thought to be associated, in part, with the

decrease in plasticity. It is unclear, however, whether GABA levels affect the changes in

plasticity that occur from young adulthood into older age. In older age, a further de-

crease in GABA levels has been suggested. The purpose of this thesis is threefold: (1) To

implement a strategy for inducing long-term potentiation (LTP), (2) to understand the as-

sociations between psychophysical and physiological measures of neuroplasticity within the

primary visual cortex, and (3) to assess the effect of age on both measures. We hypothesize

that as plasticity continues to decline into older age, GABA levels will continue to increase.

Methods

Binocular rivalry alternation rates (ARs) were used as a behavioural measure of cortical

GABA levels. A dichoptic presentation using red/green glasses was displayed on an Asus

3D Vision Ready monitor. Young (18-40 years) and older (60-80 years) participants wear-

ing red/green glasses indicated whether they perceived the red grating, green grating, or a

mix of the two–referred to as piecemeal–using 3 keys. Visually-evoked potentials (VEPs)

were then used as a measure of the change in plasticity following a rapid onset/offset
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checkerboard stimulus thought to induce LTP within the primary visual cortex. VEPs

before and after the inducing stimulus were recorded and compared.

Results

ARs were significantly slower in older adults compared to the young adults. Pre to

post waveform amplitudes had relatively lower LTP in the young adults compared to the

older adults; however neither group showed significant LTP (p>0.05 for main effect of pre

versus post VEP amplitude).

Conclusions

No correlation between AR and LTP was observed. AR was slower in older adults than

in young adults. LTP was relatively greater in older adults compared with the young adult

group. A decrease in GABA levels with older age, as most studies have found, alludes to

an increase in ARs; however this was not the case in the present results. In contrast, while

slower ARs suggests an increase in GABA levels, LTP was relatively greater in older adults

suggesting a decrease in GABA levels. These data indicate that either AR or LTP, or both

AR and LTP, are inadequate measures of GABA concentration or inaccurate measures

of plasticity, or that GABA and LTP may not be directly related in the tested sample.

Changes in neurotransmitter concentrations with age may lead to neural adaptations that

alter the response to both rivalry and LTP in unexpected ways.
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Chapter 1

Introduction

Human characteristics change remarkably over a lifetime. Our daily experiences shape

and alter our behaviour, thoughts and overall personality. Contrary to previous findings,

however, there is minimal change in the number or density of neurons within most areas

of the brain following early childhood development; rather the changes in thoughts, be-

haviours and memories are more largely dependent on the reformation of neural branching

and the brain’s ability to alter its neural connections1. With time and experience, the

branching of neurons is either strengthened or weakened depending on the use of the neu-

rons involved in a particular pathway. The malleability of the neuronal circuits of the brain

is referred to as neural plasticity2. The primary visual cortex, like other sensory areas of

the brain, relies largely on early childhood experiences for proper structural and functional

development. Abnormalities in development, such as minimal or lack of visual input, can

result in impaired or loss of function of essential synaptic circuitry. Additionally, changes

in neural function involving behaviour, memory and movement can occur due to disease
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or brain injury over a lifetime. Such injuries to the brain currently have limited treatment

opportunities with the belief that the adult brain is unable to change significantly.

As in many areas of the brain, the visual cortex experiences a phase of increased plas-

ticity throughout early childhood development known as the critical period. While in some

cortical areas, such as the motor cortex, there is evidence for substantial reorganization

following damage to the brain from disorders such as stroke3,4, it is more difficult for such

changes to occur within the primary visual cortex5–7. This is associated with reduced

plasticity following the closure of the critical period, which is thought to be more clearly

defined than in other areas of the brain5,8. Insufficient visual imput to one eye throughout

the critical period results in a shift in ocular dominance to the unaffected eye, causing

reduced vision, or amblyopia, in one eye due to abnormal cortical processing. Research

advances in understanding the mechanisms that underlie visual cortex plasticity demon-

strate that changes to the brain can theoretically be enhanced in adults, providing new

directions in possible treatments and neurorehabilitation9–12.

Hebbian plasticity, named after the psychologist Donald Hebb, is a theory describing a

mechanism of synaptic plasticity that reflects changes in synaptic strength. The changes

result from specific patterns of neural activity and are believed to play a key role in the

process of learning2,13,14. The theory states that repetition of a neural function or correlated

input to a particular synapse will strengthen the synapses and increase communication

between the neurons involved in that particular circuit–an idea often summarized with

the phrase ”neurons that fire together, wire together”2,13. For instance, correlated neural

activity will strengthen the synapse between those two neurons2. Conversely, decorrelated

activity can, in turn, weaken synapses2.
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One fundamental synaptic strengthening mechanism is known as long-term potentia-

tion, or LTP. LTP is a phenomenon that alters the strength of synaptic connections and is

thought to underlie the processes of learning and memory formation and can be induced

through visual stimulation15,16. As with learning and memory formation, the ability to

make changes in synaptic strength between neurons varies with age2,5. As the brain ma-

tures, it becomes increasingly more difficult for existing connections to strengthen or for

new connections to form, particularly in the primary visual cortex–a result thought to be

caused, in part, by the increase of the neurotransmitter known as gamma-aminobutyric

acid (GABA)2,5,17,18. Consequently, we aim to understand the correlation between LTP

induction and GABA levels in humans to provide a foundation for understanding the

mechanisms that underlie brain plasticity in adults.

1.1 Overview of the Visual Pathway

The development of the visual system, as well as other neural functions, is dependent

on early experience and input from the surrounding environment. Frequent and diverse

visual stimuli are essential to ensure proper functionality of visual areas within the brain.

The eye is the light-sensitive organ that converts the energy of a photon into an electrical

signal and transmits the signal through the optic nerve to the primary visual cortex and

associated areas. The process of transforming, interpreting and understanding a visual

input from the environment is known as perception.

A visual stimulus must first be focused on the posterior layer of the eye–known as the

retina–before it can be processed in the brain. The photoreceptors of the retina capture
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the light entering the eye while the retinal ganglion cells (RGCs) encode features of the

visual stimulus such as colour and contrast19. The majority of this information (from

>90% of ganglion cells) is then conducted towards the brain in three primary pathways:

the parvocellular (P) pathway, the magnocellular (M) pathway and the koniocellular (K)

pathway20–23. Each pathway is responsible for encoding specific features of the stimulus,

which are processed first at the lateral geniculate nucleus (LGN) of the thalamus, then

further in the primary visual cortex and other associated areas19.

Information from the P, M and K pathways remain separated in the LGN. The P path-

way carries information about colour and is sensitive to high spatial frequencies and low

temporal frequencies22–24. Conversely, the M pathway carries information regarding lumi-

nance and contrast, and is sensitive to low spatial frequencies, high temporal frequencies,

as well as motion21–23. The K pathway seems to be more heterogeneous than the other

two and is not fully understood22–24. All three pathways form synapses in the LGN onto

distinct groups of neurons that continue to the primary visual cortex.

The organization of visual input continues into the brain, forming not only distinct

pathways of information but also separating input from each from each eye22–24. The rep-

resentations of each eye within the visual cortex are known as ocular dominance columns

and are thought to play a role in binocular vision22–24. Early studies in cortical plasticity

found that monocular deprivation during development, simulating amblyopia–a neurode-

velopmental disorder in which early visual deprivation in one of both eyes results in reduced

visual function due to abnormal visual cortex development–resulted in the degradation of

this pattern of organization. This causes a shift in visual input preference from one eye to

the other, known as ocular dominance plasticity25. The development of the visual cortex
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and normal binocular vision is therefore dependent largely on equal visual input to both

eyes.

1.1.1 Processing of the Extrastriate Cortex

The primary visual cortex contributes to two functionally distinct pathways known

as the dorsal stream and the ventral stream. The P and M pathways provide input to

each of the major streams within the primary visual cortex. The dorsal stream processes

spatial information and motion perception and receives information primarily from the M

pathway22,26,27. The ventral stream, which includes area V2 and V4 of the extrastriate

cortex, is responsible for identifying information relating to form perception and receives

information from the P pathway22,26,27. The separate streams of information are often

referred to as the ”where” and the ”what” pathways, respectively27.

The development of these two visual streams has been studied extensively to understand

the functional and structural consequences of atypical development of the visual system.

Research on the rate of development of each system presents contradicting results with

some studies, demonstrating later ventral visual stream development and others indicating

the opposite27. Nonetheless, stimulation of the visual system in the early stages of life is

essential to ensure proper functionality in later years and throughout adulthood.
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1.2 Neuroplasticity and the Critical Period

The ease and extent of changes within the brain are more pronounced throughout

early childhood development8,28. Increases in neuroplasticity known as critical periods

occur in many regions of the brain and at various times throughout early childhood de-

velopment29,30. Sensory stimulation during these relatively short periods is essential to

the proper development of the neuronal connections of a particular function within the

brain5,30. Studies with rats and kittens, as well as monkeys, show shifts in ocular dominance

following periods of monocular deprivation during the early stages of development31–33. De-

privation outside the critical period, however, has little to no effect on ocular dominance

cortical processing31,32. Although neural changes occur following the closure of the critical

period, the primary visual cortex becomes less plastic. Therefore, the development and

functionality of the ocular dominance columns within the brain is experience-dependent.

The critical period for visual acuity and ocular dominance in humans is conventionally

thought to close around the age of 7 years34, when the plasticity of the primary and extras-

triate visual cortex steadily declines35,36. In other words, the brain’s potential to restructure

its connections in the visual cortex becomes increasingly more difficult throughout child-

hood and later years1. In the past, developmental and neurological vision disorders, such

as amblyopia, were deemed permanent if not treated during the critical period of brain

development, due to the presumed lack of plasticity in the adult brain1. However, recent

findings demonstrate that while the opening of the critical period is relatively sudden,

the closure is rather gradual and incomplete, indicating that changes can in fact be made
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within the adult brain1.

1.2.1 Mechanisms of Neuroplasticity

1.2.1.1 Visually-Evoked Potentials (VEPs)

Visually evoked potentials (VEPs) are an event-related potential induced by a visual

stimulus and recorded from an electro-encephalogram (EEG)37. VEPs are a common tech-

nique used to measure visual cortex activity in humans37. Recent studies have used changes

in VEP waveform amplitudes to assess changes in primary visual cortex plasticity16,38.

A brief appearance of a high contrast image–most commonly a checkerboard–produces

a specific pattern of negative and positive waveform components. Pattern reversal wave-

forms, where the black and white checks reverse positions, and pattern onset waveforms,

where a static checkerboard is presented on and off periodically, are two common methods

of presenting a pattern stimulus due to having more inter-subject reliability than other

methods37.

1.2.1.1.1 Typical VEP Waveforms

Different recording methods and stimulus properties result in different VEP waveforms.

Additionally, waveforms can vary within and between populations. Typical pattern onset

waveforms in response to a pattern flicker separated by a luminance-matched blank screen

look like figure 1.1–a primary positive component approximately 90ms after the stimulus

appears (C1), a primary negative component at approximately 120ms (C2) and a second
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positive component at approximately 180ms (C3) (figure 1.1)37. Pattern reversal waveforms

look similar to figure 1.2–a primary negative component approximately 80ms after the

stimulus appears (N80), a primary positive component at approximately 100ms (P100)

and a second negative component at approximately 135ms (N135) (figure 1.2)37. These

expected waveforms provide a measure of abnormalities within the visual pathway and can

be used to diagnose and assess retinal and neural pathologies37.

Figure 1.1: A schematic representation of a waveform in response to a pattern onset
checkerboard stimulus.
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Figure 1.2: A schematic representation of a waveform in response to a pattern reversal
checkerboard stimulus.

Factors such as biological sex and age may affect VEP waveforms. Studies have demon-

strated that female waveforms are more variable, possibly due to hormonal changes39, while

others have demonstrated changes in component latency with age37. Theoretically, rep-

etition of a high contrast stimulus may affect the amplitudes of some VEP components

indicating an increase or decrease in plasticity compared to baseline measures16,40. This

technique is based on the phenomenon known as long-term potentiation.

1.2.1.2 Long Term Potentiation and Plasticity

Long-term potentiation (LTP) is the activity-dependent process of strengthening and

increasing communication between synapses16,41–43. This phenomenon is central to the pro-

cess of learning and memory formation and is primarily associated with the excitatory neu-

rotransmitter glutamate as well as the -amino-3-hydroxy-5-methyl-4-isoxazole propionate
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(AMPA) and the N-methyl D-aspartate (NMDA) glutamate receptors16,44. An increase of

glutamate in the synapse after repeated stimulation of a neuron will result in a cascade of

events, gradually leading to an increase of AMPA receptors as well as additional synapses

between the two neurons45. Therefore, LTP strengthens the communication between the

neurons and alters the processing of information within the brain. In the past, LTP re-

sponses have been observed in animal models16,46,47 and isolated human cortical tissue by

electrically stimulating the tissue and recording evoked potentials and intracellular exci-

tatory post synaptic potentials (EPSPs)48,49. Additionally, noninvasive techniques such as

transcranial magnetic stimulation (TMS) have been used to induce LTP in humans15,50,51.

More recently, visual or auditory stimuli have been found to induce an LTP-like response

in humans as measured by changes in evoked potential amplitude as well as by activity

increases shown using brain imaging techniques16,41,50. The complex relationship between

LTP and adaptation is still being investigated, however it is believed that adaptation stabi-

lizes neuronal circuits rather than counteract the effects of LTP induction52. For example,

viewing rapidly contrast reversing visual stimuli increases the magnitude of VEPs extracted

from EEG38,51,53. This effect has been linked to the induction of long-term potentiation as

effects are stimulus specific16,38,41,54,55. For instance, LTP of a horizontally-oriented stimu-

lus will show effects for that same orientation and no effects for vertical stimuli55,56. The

change in VEP amplitude provides an electrophysiological index of visual cortex plastic-

ity38,51.
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1.2.1.2.1 VEP Stimuli Parameters

Since high contrast patterned visual stimuli provide information about visual resolu-

tion and elicit more consistent waveforms across individuals compared to unpatterened

(flash) stimuli, a checkerboard is the most commonly used stimulus to produce reliable

and consistent results57. Checkerboards have been used in most studies that test the abil-

ity of a visual stimulus to produce an LTP-like response16,38,42,51,58–61. To elicit LTP, the

onset/offset or contrast reversal rate is either set to a high frequency for a short period of

time16 or a constant slow frequency for a longer period of time38. Regardless of the method

used to measure the LTP-like response, each demonstrated VEP potentiation following the

induction of LTP as compared to the baseline recordings–typically taken at a frequency of

1Hz16,42,51,55,59–61. The two primary papers for this approach vary slightly in method and

results16,38.

1.2.1.2.2 The LTP of VEPs by Teyler et. al.16

Teyler and colleagues were the first to demonstrate that rapid stimulation by a visual

stimulus–what they called photic tetanus–resulted in an increase in VEP amplitude16. A

checkerboard (0.3 degree checksize, 4 degrees of visual angle) was presented to one half of

the visual field, either right or left. This hemifield pattern allowed for one hemisphere to act

as a control in comparison to the condition following the photic tetanus. A pattern onset

flicker of the hemifield checkerboard was presented at a frequency of 1Hz for 7 minutes. The

right and left hemifield checkerboards were randomly and equally presented throughout the

pre and post measure. The photic tetanus condition was randomly chosen to be a left or
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right hemifield checkerboard flickering at a frequency of 9Hz for 2 minutes. The other

hemisphere was used as a control. Participants were asked to close their eyes for 2 minutes

immediately following the photic tetanus and before the post measure.

A 128-electrode cap was used to measure waveforms. A dipole of 7 channels centered

around parietal electrodes P7 and P8–positions used for the 10-20 system for electrode

placement–provided the largest signal. Significant increases in amplitude in the post-

tetanus measure were found in the N2 component of the hemisphere ipsilateral to the

checkerboard hemifield as compared to the control hemisphere.

1.2.1.2.3 The LTP of VEPS by Normann et. al.38

As compared with the above protocol, Normann et. al. used a full-field pattern reversal

checkerboard stimulus (0.3 degree check size) reversing at a frequency of 2 reversals per

second (rps) (1Hz) for 20 seconds as a pre and post measure. There were two conditions.

In the first condition, the checkerboard reversed at 19rps (9.5Hz) for 10 minutes. In the

control condition, the checkerboard reversed at 2rps, just as in the pre and post measures for

10 minutes. Unexpectedly, the control condition showed a more pronounced potentiation

effect than did 10 minutes at 19rps. Between stimulations, participants were asked to

read out numbers presented on a grey screen for 2 minutes. The centre electrode Oz was

analyzed. Significant potentiation in the N135 component and a possible depotentiation

in the P100 component was found.
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1.2.1.2.4 Factors Influencing LTP

The nature and permanence of LTP has been investigated extensively in recent years.

It was found that this LTP-like effect does not diminish over time in the absence of visual

stimulation, but only when it is depotentiated with the baseline frequency16,59,62. For exam-

ple, the LTP-like effect after the photic tetanus will depotentiate only after the participant

repeatedly views the baseline stimulus at 1Hz16,60. In other words, a slow baseline fol-

lowing the photic tetanus will depotentiate the response. Although the experiment lasted

only a few hours, theoretically, the changes that occur therefore remain unless otherwise

transformed. This demonstrates a possibility for long-lasting changes in the adult brain.

In the following years, sinusoidal gratings, both vertical and horizontal, were used in-

stead of checkerboards to illustrate the specificity of the LTP-like response. Vertical grat-

ings flickering for two minutes resulted in a potentiated response to vertical gratings, but

no effect was seen for horizontal gratings signifying orientation specificity53,55. Although

it requires further investigation, the technique of inducing LTP through visual stimulation

provides an objective measure of visual cortex plasticity.

Most studies used a 64 channel EEG system and analysed LTP by reducing the surface

amplitude data to equivalent dipoles. However, clinical VEP systems typically have only

1 to 4 channels and the possibility of using clinical systems to evaluate LTP and tech-

niques to optimise LTP for use in clinical settings are currently unknown. Optimizing the

methodology and protocol for practical and clinical use is necessary for further implications

in future studies. Teyler and Normann’s protocols were replicated and modified by several

other labs which reported similar results as well as expanded on the effects and implica-
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tions of inducing LTP using visual stimuli15,51,55,56,58. Although it is difficult to compare

between the two studies as they differ significantly, optimizing the method for clinical use

is yet to be done. A quick, reliable and objective measure using VEPs as a measure of

plasticity is critical if it is to be used on clinical patients or as treatment in the future.

Recent research shows that the closure of critical periods, from infancy into childhood,

is, in part, due to an increase in inhibition mediated by the inhibitory neurotransmitter

gamma-aminobutyric acid, or GABA8,28. This change in GABA levels has been seen in

many areas of the brain including the somatic sensory, motor, auditory and visual cortex63.

GABAergic neurons are the major supply of inhibitory neurotransmitters in the brain and

play a primary role in the organization of the cerebral cortex. The initial development of

GABA within the brain is also an essential component for the beginning of the critical

period64. In other words, a gradual onset of GABA levels is thought to open the critical

periods while further increases with time will close them; however the relative levels of

GABA as compared to adults remain low8,11. Consequently, animal studies have shown

that inhibiting GABA in young adults is crucial for enhancing developmental plasticity and

controlling the critical period of brain development8,11. One study found that reduction

of GABA via pharmacological intracortical infusion of 3-mercaptopropionic acid (MPA), a

drug known to reduce GABA concentration within the brain, reactivates and induces visual

cortex plasticity in young adult rats11. Although invasive, this provides insight into the role

that GABA has in neuroplasticity of the primary visual cortex following the closure of the

critical period. Similarly, inhibiting GABA production through gene-targeted disruption

was found to prevent the atypical development of the visual cortex that occurs following

brief deprivation in a mouse model64.
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Generally, GABA levels are thought to increase from early childhood development into

young adulthood. In contrast, GABA levels into older adulthood seemingly decline in the

primary visual cortex as well as other areas and are thought to be a cause for the visual

degradation that may occur with age65,66. The effect that this natural decline in GABA

has on visual cortex plasticity is currently unknown. Previous psychophysical studies with

humans have reported a decrease in alternation rate as well as stronger suppression with

age40,67. These differences that occur with age were potentially explained by a decrease

in inhibition with age, allowing for stronger and longer percept durations during rivalry40.

It is understood that GABA levels increase from early childhood development into young

adulthood. However, a decline in GABA levels from young adulthood into older age is

thought to be associated with the cognitive decline that occurs in older adulthood. This

seemingly contradicting trend is a motivating factor for understanding the effect of age

on GABA levels. Evidently, measuring and assessing intracortical GABA levels as well

as understanding its effect on the critical period and plasticity has been a focus of recent

research as results may lead to promoting the recovery of abnormal visual development as

well as the effects of brain damage.

1.2.1.2.5 Assessing GABA Levels

1.2.1.2.5.1 Animals Measuring GABA levels in vivo has been achieved with vari-

ous techniques within animal models. For instance, one group established that high-

performance liquid chromatography (HPLC) is able to measure very low levels of GABA

allowing for detection of small changes in a rat’s cerebral cortex68. Another technique, al-

though low in spatial resolution, is single-photon emission computed tomography (SPECT)69.
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While a number of invasive techniques exist to quantify and inhibit GABA with animal

models, none are applicable to humans and therefore other methods are required.

1.2.1.2.5.2 Humans GABA levels in humans have typically been quantified using

imaging techniques such as magnetic resonance spectroscopy (MRS)18,70–72. MRS is a

technique used to assess the biochemical composition of the brain as well as other organs

using signals from hydrogen molecules and protons73. The concentration of specific chemi-

cals within the brain can be used to evaluate physiological changes related to disorders such

as stroke, Alzheimer’s disease and Parkinson’s disease73. To measure the effect of GABA

concentration on brain structure and function, studies have used specific drugs that alter

GABA levels. For instance, maintaining or increasing GABA levels has effects on some

epileptic disorders74, while inhibiting GABA has shown increases in neuroplasticity6,64. Al-

though using MRS to determine the concentration of GABA levels in vivo is less invasive

than those techniques used on animal models, it requires expensive scanners and specialist

expertise. Other indirect measures are also possible (see below).

1.2.1.2.6 GABA and Age

GABA inhibition within the primary visual cortex is thought to play a role in the closure

of the critical period, reducing plasticity as the brain matures. Conversely, studies have

shown that GABA levels within some regions of the brain in fact decline with age65,75,76.

One study used MRS to measure intracortical GABA levels specifically the frontal and

parietal regions of tha brain in adults between the ages of 20 and 76. Results showed a

significant decrease in GABA levels with age, consistent with previous animal studies75.
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Several studies have also shown that the decrease in GABA levels may underly some age-

related cognitive decline77–79. It is still unclear, however, what the effect of age is on

GABA levels within the primary visual cortex and the impact it has on visual processing

and neural plasticity.

1.2.1.2.7 Binocular Rivalry as a Behavioural Measure of GABA

Lower levels of GABA, measured using MRS, have recently been shown to correlate

with a faster alternation rate for a phenomenon known as binocular rivalry (Rho = 0.506)18.

Consequently, binocular rivalry, specifically alternation rates, may provide a behavioural

measure of cortical GABA levels. Binocular rivalry is a phenomenon that occurs when

two different images are presented to each eye simultaneously. The images are alternately

suppressed as one image dominates at a time80. The frequency of switching from one image

to the other is known as the alternation rate. This is thought to be a result of a balance

of excitation and inhibition in the visual cortex. The mechanism of binocular rivalry is

not yet understood; however it is thought to encompass higher and lower level areas of the

visual pathway81. The fluctuations that occur throughout the visual pathway result in a

bistable perception of the rivalrous images.

The concentration of GABA in children is expected to be relatively lower as compared

to adults, thought to be correlated with higher plasticity18. Consistent with the theory,

children have faster alternation rates than do adults82–84. Following the critical period,

GABA levels seemingly increase slightly resulting in relatively reduced plasticity as com-

pared to the critical period. However, interestingly enough, a reduction in GABA levels
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with older age has been found to correlate with perceptual changes40,75. For instance, a

decrease in GABA levels have been correlated to an age-related decline in 3D shape dis-

crimination40. The effect of naturally reducing GABA levels with age on visual cortex

plasticity is unknown. This raises the intriguing possibility that older adults may show

enhanced LTP compared to younger adults. Alternation rates provide an indirect measure

to assess the neural changes that occur with age.

1.3 Summary

The development of the visual system is a delicate and time sensitive occurrence. If

the brain is not stimulated properly throughout early childhood development, the struc-

ture and functionality of the brain will be affected. Neurodevelopmental disorders become

increasingly difficult to treat in adulthood due to the decline in neuroplasticity with age.

However, investigating the mechanisms underlying plasticity in the adult brain can provide

insight into more effective treatments for neurorehabilitation in the future. By bringing to-

gether two different techniques, namely binocular rivalry and LTP, the question of whether

GABA levels influence visual cortex plasticity in adult humans can be addressed. GABA

and measures of plasticity can therefore be used to understand the changes that occur from

early life to adulthood.
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Chapter 2

Rationale and Objectives

Throughout early childhood development, the brain is highly plastic and develops

rapidly8,28. While the rate of neuronal change within specific regions of the brain is par-

ticularly high during the critical period, the plasticity of the brain steadily declines into

adulthood. Although it was once thought that neuroplasticity is minimal after the closure

of the critical period, recent research has proved that the brain does in fact have the po-

tential to change, strengthen connections as well as form new ones well into adulthood,

albeit at a slower rate1. These findings have changed the perception that developmen-

tal and neurological disorders are permanent if not treated during the critical period of

brain development. Understanding the mechanisms involved in the high rates of plasticity

in children as opposed to the slower changes in the adult brain allows for the possibil-

ity of treatments for adult patients with disorders such as amblyopia. Recent findings

demonstrate that neuroplasticity can in fact be assessed within adults by eliciting the

synaptic mechanism of long-term potentiation. Long-term potentiation (LTP), the process
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of strengthening synapses by persistent repetition of a particular activity, is fundamental

to the process of learning and memory formation16.Additionally, significant efforts have

been made to understand the role of neurochemicals in the varying rates of plasticity in

the human brain. For instance, the age-related decline in plasticity has been attributed, in

part, to an increase in inhibition mediated by the inhibitory neurotransmitter GABA8,28.

Studies have shown that inhibiting the effects of GABA is essential for inducing develop-

mental plasticity and controlling the critical period of brain development8. In other words,

the reduction of GABA may stimulate plasticity in the adult brain.

The objectives of this thesis are:

1. To identify the best method of LTP induction using visually-evoked potentials (VEPs)

in humans.

2. To investigate whether or not a relationship exists between GABA levels, assessed

indirectly using binocular rivalry alternation rates, and the extent of LTP induction

in the human visual cortex.

3. To study the effect that age (young adulthood vs. older adulthood) may have on

alternation rates and LTP.
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Chapter 3

General Methods

3.1 Experimental Design

The study is divided into pilot studies and a main study. In the pilot studies, stimulus

paradigms were investigated. The most optimal protocol was chosen for the main study–a

cross sectional comparison between two distinct age groups. In this chapter, the strategies,

instruments and techniques used are explained. The following chapters provide more details

that are specific to each experiment.
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3.2 Psychophysical Measure of Alternation Rates with

Binocular Rivalry

3.2.1 Equipment

Binocular rivalry was induced by presenting red and green orthogonally oriented sinu-

soidal gratings separately to each eye. Gratings had spatial frequencies of 0.5, 1, 1.5 or 2

cycles per degree (cpd). The stimulus–programmed using Matlab–were round, subtending

6.1 degrees of the visual angle on a black background. The viewing distance was 60cm.

The red and green colour of the stimulus was calibrated based on the red/green gel of the

glasses being used. A black fixation cross was in the centre of each grating.

3.2.2 Protocol

The psychophysical measure comprised of 6 to 10 trials. Each trial consisted of the

stimulus being presented for 60 seconds. Participants, while wearing the red/green glasses,

were asked to indicate whether they were seeing the red grating, the green grating, or a

mix of the two (known as piecemeal) using the three indicated keyboard presses and to

press the key for the whole duration that they saw the percept. Piecemeal was defined

as seeing equal perepts at the same time, or seeing a mixture of red and green (yellow).

Participants were given an optional break between each trial.
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3.3 Electrophysiological Measures

3.3.1 Equipment

Visually evoked potentials (VEPs) were measured using a clinical-grade EEG system

(Espion E2 electrophysiology testing system version 5.2) available within the Optometry

Clinic at the School of Optometry and Vision Science. Five Ag/AgCl or silver cup elec-

trodes were placed on a participant using the 10/20 system–an international system of scalp

electrode placement for electroencephalogram (EEG) experiments85. Three electrodes were

placed at the back of the head, specifically at Oz–10% above the inion, measured based

on the distance from the inion to the nasion–and either 10% (PO7 and PO8) or 15% (P7

and P8) lateral to Oz on either side, measured based on the circumference of the head. A

reference electrode was placed 30% above the nasion at Fz (figure 3.1). A ground electrode

was placed on the right ear. The scalp and ear areas where electrodes were to be placed

were cleaned using NuPrep Skin Prep Gel to reduce impedance and improve conductiv-

ity. Electrodes were placed on the scalp using Ten20 Conductive Paste. Scalp areas were

cleaned after the experiment using alcohol swabs.

Three active channels were monitored on the system. Recording was synchronised to

the pattern change (reversal or onset). Records of individual presentations (sweeps) were

averaged. Sweeps with artifacts such as blinks or other high voltage signals were rejected

from the average. Averaged waveforms are called steps’ and 3 steps were averaged for

an overall pre and post measure separately. Waveforms were sampled at a frequency of

1000Hz with band pass filters of 0.3 to 100 Hz as set in the clinical system.

23



Figure 3.1: Electrode placement for electrophysiological measure.

3.3.2 Stimuli

High contrast black and white patterns were presented on a screen with a visual angle

of 7.7 degrees. Patterns were checkerboards that contained equal areas of black and white

and were either phase reversed or presented as onset/offset from a luminance-matched grey

background so that pattern changes did not result in change of the overall luminance of the

screen. There is a range of used stimuli such as vertical and horizontal gratings; however,

checkerboards are most commonly used. The stimulus was presented on a 60Hz 20” CRT

screen at a 1.5-meter viewing distance. Participants were asked to fixate on a red cross

in the centre of the screen with correction for distance as needed. The experiment was

performed with no room lighting. The Espion E2 monitor was the control monitor and

was turned away from the participant to eliminate any light distractions.
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3.3.3 Protocol

All VEP testing consisted of an initial stimulus as a pre measure, a tetanizing stimulus–

a stimulus that induces LTP–followed by a repeat of the initial stimulus as a post measure.

After the tetanizing stimulus, participants were asked to close their eyes for 2 minutes

before the post measure was recorded. The sweeps for the pre and post measures were

averaged separately. The tetanizing waveforms were not analyzed.

3.3.4 Summary

Methods and protocols were chosen based on recent literature regarding GABA levels

and sensory-induced LTP16,38. Pilot data was first collected in order to determine the most

optimal stimulus paradigms and protocol for the main study.
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Chapter 4

Pilot Studies

4.1 Studies of Binocular Rivalry

Data were collected within the lab to determine behavioural differences in alternation

rate based on the spatial frequency and orientation of the stimulus. Four spatial frequencies

(0.5, 1.0, 1.5 and 2.0 cpd) as well as two orthogonal grating orientations (45/135 and

90/180 degrees) were used. Combinations of the two variables were randomized during

40 60-second trials on 9 participants. Average alternation rates were calculated for each

individual trial using the following formula then averaged across all 9 participants.

The results indicated that the largest spatial frequency of 0.5cpd resulted in the least

time spent in piecemeal (figure 4.1). The alternation rates for all spatial frequencies were
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not normally distributed. As a result, a Wilcoxon test indicated significant differences

between all pairs of spatial frequencies except 0.5 and 1 cpd, and 1 and 1.5 cpd (see

Appendix A for p values). No significant difference was found between the two orientations

(Z=-1.381, p=0.167) (figure 4.2). As a result, further data were collected using the 0.5 cpd

gratings and the oblique orientation (45/135 degrees).

Figure 4.1: Average time spent in piecemeal for 9 observers plotted against spatial fre-
quency. Asterisks indicate significant differences in alternation rates between indicated
spatial frequencies. Error bars = SEM.
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Figure 4.2: Average alternation rates of 9 participants for two grating orientations.

Blinking may have an effect on binocular rivalry measures, although studies have shown

that the effect does not significantly change the alternation rates86,87. Nevertheless, pilot

data were collected with the purpose of assessing the effect of blinking on alternation

rates. Blinks were manually counted and averaged across 10 60-second trials. A Spearman

correlation on data for 5 participants showed no significant association between blinking

and alternation rates (R2=0.16, p = 0.792). Lastly, a small study was done wherein

the red/green glasses were reversed for half the trials to calculate eye dominance. This

information ensured that participants were relatively equally dominant so as to provide an

accurate measure of alternation rates. One spatial frequency of 0.5cpd and one orientation

(45/135) was used for this study. After 3 trials, the glasses were reversed for a total

of 6 10-second trials for 8 participants. Average alternation rates of the first and last

three trials for 7 of 8 participants were not significantly different (t=-0.475, p=0.647).

Reversing the glasses allowed for eye dominance interpretation. All 8 participants spent on

average an equal amount of time seeing red when the red lens was on either eye, indicating
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relatively equal dominance (Mean time (seconds) red:green = 21.9:22.9). The average time

spent in red for the first and second three trials were not significantly different (t=-0.665,

p=0.510). This study protocol of 8 participants was chosen for the psychophysical thesis

data collection.

4.2 VEP Protocol Selection

4.2.1 Protocol 1

Data were collected on 10 participants based on a published on/off VEP protocol16.

While Teyler and colleagues used a hemifield checkerboard to provide a control cerebral

hemisphere for each participant, software limitations only allowed for a full field checker-

board in our study. Pre and post baseline measurements consisted of 3 minutes (30

sweeps/result, 2 results/step, 3 steps) of on/off checkerboard presented at a frequency

of 1Hz. The stimulus was on for 35ms and off for 965ms; however no stimulus onset asyn-

chrony between flashes was possible as was done with Teyler and colleagues. There were

two conditions that each participant completed at least 24 hours apart. The first condition

was the photic tetanus, where the full-field checkerboard flickered on and off at a frequency

of 9Hz for 2 minutes. The control condition was 2 minutes at a frequency of 1Hz. The

control condition was always second to the 9Hz flicker. Participants were asked to fixate

on a centre red cross throughout the protocol. Following the 2-minute photic tetanus or

control condition, participants were asked to close their eyes for 2 minutes before post

measures were recorded. Electrodes were placed at Oz, PO7 and PO8 on the occipital
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lobe.

4.2.2 Results

Based on the average waveforms of 6 male participants, Teyler and colleagues found

significant differences pre to post in one component which they referred to as N1b at

approximately 176ms (figure 4.3)16. No N1b component was present in the average results

for all participants in our data. The waveforms presented with a double-peaked positive

component and, qualitatively, no increase in amplitude in the post waveform was seen

(figure 4.4).

Figure 4.3: Waveform schematic representing the potentiation of the N1b complex reported
by Teyler and colleagues. Positive is up on the y-axis. Modified from Teyler et. al.16.

In comparing the data with that of the article’s, these results may have been due to the

placement of the electrodes. While a 128-electrode net was used for data collection in the

original paper, only 3 channels were available in the clinical system we used. Therefore, we

hypothesized that the effects may be better replicated if the lateral electrodes were placed

15% out from Oz, on P7 and P8 instead because potentiation includes parietal components

in the original study. Three participants were tested with the single difference of placing

the electrodes further out from the centre. Still no difference pre and post was found in
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the nature of the waveforms and no potentiation was evident.

As the stimulus was presented for only 35ms, it was possible that the unexpected wave-

form was a combination of the on and off VEP response. Consequently, three participants

were tested with the photic tetanus protocol with the stimulus remaining on for 490ms

and off for 510ms (figure 4.5). Results varied across participants however waveforms were

generally more consistent with previous studies than the 35ms protocol.

4.2.3 Protocol 2

Some studies in later years modified Teyler’s protocol to induce LTP and found similar

results. Normann and colleagues used a full-field reversal checkerboard protocol38. Their

pre and post measures consisted of two 20-second recordings for a reversal rate of 2 reversals

per second (rps), which is equivalent to 1Hz. They had two conditions: the photic tetanus

condition of 19rps and the control condition of 2rps, each lasting for 10 minutes followed

by two minutes of reading numbers on a screen. Interestingly, their control condition

showed increases in VEP amplitude–similar to Teyler’s results–while the 19rps, equivalent

to approximately 9Hz, showed no potentiation. Protocol 2 matched Norman’s control

condition and was performed on 3 participants with one modification: participants closed

their eyes for 2 minutes instead of reading numbers or a grey screen. Channel electrodes

were placed at Oz, PO7 and PO8.
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Figure 4.4: Group average of 10 participants for the 9Hz condition (top) and the control
condition (bottom) for channel 1.
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Figure 4.5: Average waveform of 3 participants for prolonged stimulus onset (490ms on,
510ms off) for channel 1.

4.2.3.1 Results

Once again, waveforms for all three participants did not appear as reported in the

literature (figure 4.6). A prominent N80 component was present, followed by the P100

component, however a shallow N135, if any, followed. We observed a depotentiaion of the

VEP after tetanization, however, the short pre- and post- recording times resulted in low

signal to noise ratios.

33



Figure 4.6: Average waveform of 3 participants for replication of the pattern reversal
protocol for channel 188.

4.3 Discussion

Protocol 1, a modified version of Teyler and colleague’s original methods16, showed no

qualitative difference in pre and post waveforms as anticipated. The average waveforms

presented a broad, double positive peak, possibly masking the second negative component

that was previously found to change significantly16. Extending the duration of the stimulus,

however, did not unveil the negative component. Nonetheless, a longer stimulus duration

showed waveforms that were more consistent with previous studies. The pattern-reversal

protocol matched to that of Normann et al made it more difficult to increase the signal

to noise ratio due to the short pre and post measures as opposed to the pattern onset
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protocol.

Since the original protocol used for this method involved a pattern onset stimulus, this

was the chosen protocol used for the study, applied to a clinical system. As a result, the

modified prolonged stimulus onset of 490ms was chosen for the main study over the original

35ms onset time.
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Chapter 5

Main Study Methods

5.1 Introduction

Following the pilot studies, a main study was conducted to compare LTP and rivalry

alternation rates between younger and older adults.

5.1.1 Recruitment

The younger adult population (18-40 years) was recruited from throughout the Uni-

versity of Waterloo through poster advertisements and emails. The older adult population

(60-80 years) was recruited using the Waterloo Research in Aging Participant (WRAP)

pool. Participants were required to have good vision with or without glasses or contact

lenses, and to be in good health.
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5.1.2 Participant Screening

All screening measures (inclusion criteria) (Table 5.1) as well as the psychophysical

task were performed in the same room under consistent room light conditions. The elec-

trophysiological task was performed in a clinical testing room with minimal light. All

measurements were taken continuously on the same day.

Table 5.1: Summary of inclusion and exclusion criteria

Young Older

Inclusion Criteria
Cover Test No strabismus, ≤6 exophoria No strabismus, ≤6 exophoria

Worth 4 Dot Normal binocular fusion Normal binocular fusion
Stereoacuity ≤40” ≤200”

VA (OU) ≤0.3 logMAR ≤0.3 logMAR
Exclusion Criteria

Amblyopia; medication for depression/anxiety;
glaucoma/cataracts; diabetic retinopathy;

age-related macular degeneration;
prone to seizures/epilepsy

Those with amblyopia or disrupted binocular vision were excluded as the measure of

alternation rates demands equal perception with both eyes. Additionally, certain medi-

cations for disorders such as anxiety, depression, psychosis and seizures alter the levels of

GABA in the brain. Exclusion criteria was determined using a questionnaire (Appendix

B). Participants who self-reported currently taking those medications or similar were ex-

cluded. Participants were given $20 in appreciation of their time, and parking costs (if

applicable) were reimbursed.
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This project was reviewed by, and received ethics clearance through a University of

Waterloo Research Ethics Committee. All participants were informed of the nature of the

study before participation and gave consent before any measures were taken (Appendix C).

Our recruitment target was 30 participants in each group. In total, 30 young adults (19

female) and 14 older adults (10 female) were recruited. Fewer older adults were recruited

than planned due to difficulties in identifying participants who fulfilled the study inclusion

criteria. Electrophysiological data were not collected for one younger participant. Electro-

physiological data for one older participant were excluded from analysis as she could not

tolerate the tetanization stimulus.

5.1.2.1 Cover Test

A cover test is typically used to assess ocular alignment and consists of two measures:

the unilateral or cover/uncover test as well as the alternating test assessing tropia and

phoria respectively89. The cover test was performed while the participant was looking

at either a near (40cm) and distant (6m) object. All participants showed no manifest

deviations and phorias were within normal range based on Morgan’s norms90.

5.1.2.2 Worth 4 Dot Test

The Worth 4 dot test assesses binocular fusion and can reveal suppression at both

distance and near89. Although this is considered a coarse assessment of binocular vision,

it was a beneficial for our study purposes and reflected similar conditions to that of our

psychophysical measure. Participants wore red/green glasses in the standard format to
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disassociate their eyes as the test was performed at near (40cm) and distance (6m). All

participants reported seeing 4 dots, indicating normal binocular vision.

5.1.2.3 Stereoacuity

The perception of depth is referred to as stereoacuity and is a central characteristic of

binocular vision89. Both eyes receive slightly different images resulting in disparity which

is required to perceive depth89. While there are several different methods to measure

stereoacuity, the Stereo Fly test was used for this study. The Stereo Fly test uses crossed

polaroid filters to present slightly different images to each eye89. Participants were asked to

indicate which of four circles was protruding from the rest–known as the Wirt test89–while

wearing the polarized glasses. The younger age group were required to see a minimum of

40 seconds of arc to be eligible for the study while the older age group population were

required to see a minimum of 200 seconds of arc.

5.1.2.4 Visual Acuity

Visual acuity was assessed using the automated Freiburg Visual Acuity Test. The

program uses the best parameter estimation by sequential testing (best PEST) to estimate

the visual acuity threshold91. Landolt crowded Cs were presented on a 24” Asus monitor

6m away from the participant. Thresholds were recorded for the right eye and left eye as

well as both eyes together. All measurements were recorded in logMAR units. Participants

were excluded if their VA for both eyes was >0.3 logMAR.
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5.1.3 Psychophysical Measurement of Alternation Rate

Binocular rivalry alternation rates were recorded as participants viewed a 0.5 cpd di-

choptic grating that subtended 6.1 degrees of visual angle while wearing red/green glasses.

Red and green gratings were orthogonally oriented and oblique presented at 45 and 135

degrees respectively. A chin rest was placed 57cm away from the monitor. A practice

trial before the study allowed for participants to familiarize themselves with the keyboard

presses. The study consisted of 6 trials, each lasting for 60 seconds. Participants took

breaks for up to one minute between each trial. During the first three trials, the partici-

pants wore the red/green glasses so that the red lens was over the right eye. For the last

three trials, the glasses were reversed so that the green lens was over the right eye. This

was done to assess whether any participants who are highly dominant in one eye as this

might have affected the rate of alternations per second. Blinks were counted manually, and

later recorded for some participants using an IR video camera placed above the monitor.

5.1.4 Electrophysiological Measure

A modified version of Teyler and colleagues’s protocol was chosen (see Chapter 4). A

full-field checkerboard stimulus (0.3 degree check size, 7.7 degrees of the visual angle) was

presented on a 60Hz 20” CRT screen 1.5m away from the participant (figure 6.1). With

dimmed light conditions, the checkerboard was presented as 490ms onset and 510ms offset

at a frequency of 1Hz for 3 minutes for both the pre and post measures. Immediately

following the pre measure, the checkerboard was presented at frequency of 9Hz for two

40



minutes. Following tetanization, participants closed their eyes for 2 minutes. The 3-minute

post measure was then recorded. Electrodes were placed at Oz, PO7 and PO8.

Figure 5.1: Electrophysiological stimulus used (top) and protocol schematic in minutes
(bottom).

5.1.5 Statistical Analysis

The statistical software SPSS was used for analysis. The psychophysical and electro-

physiological measures were analyzed both separately and together as described below.

5.1.5.1 Alternation Rates

Alternation rates were analyzed within and between groups. The effect of number of

blinks on alternation rates, as well as differences between the age groups in alternation
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rate were investigated using a dependent and independent t-test respectively.

5.1.5.2 VEP Analysis

Since the protocol chosen included a full-field, pattern-onset checkerboard, the VEP

waveforms may be inverted for some channels due to the anatomy of the visual cortex in

an individual’s brain. Waveforms were exported from the Espion E2 system as Excel files

and analyzed manually. The distance from the first prominent deflection from baseline,

whether positive or negative, to the following peak or trough was calculated as the absolute

difference between the two peak values in microvolts. This was labelled as Amplitude 1.

Amplitude 2 was calculated in the same manner from the second peak or trough to the

following peak or trough (figure 5.2). Peaks were identified based only on the pre wave-

form. The amplitudes were then measured at the same time points in the post waveform

as the peaks identified in the pre waveform. Measurements were taken for all channels

individually.

As expected, amplitudes 1 and 2 values varied considerably between participants de-

pending on the signal-to-noise ratio as well as the maximum potentials of each individual

participant. After analysis of the peak-to-peak amplitudes, the percent change between

the pre and post waveforms was calculated.

A repeated measures ANOVA was used for each amplitude as the statistical method

of choice. Three factors were considered: time = pre vs. post, electrodes = Oz vs. right

vs. left channels and group = young vs. older. Potentiation was defined as an increase

in the absolute value of either of the measured VEP amplitudes in the post waveform. A
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Figure 5.2: Schematic representation of a waveform and the measurements taken for am-
plitude 1 and amplitude 2.

decrease in post amplitude compared to the pre amplitude was defined as depotentiation.

A regression analysis was then used to investigate the correlation between potentiation and

alternation rate when controlling for electrodes as well as age group.
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Chapter 6

Main Study Results

6.1 Population Demographics

A total of 30 young (mean age = 26 ± 3.9, 19 female) and 14 older (mean age = 68 ± 5.0,

4 male) participants were included in the study. Participants had no ocular deviations,

normal binocular vision and met all inclusion and exclusion criteria. Stereoacuity and

visual acuity (VA) measures were both within an acceptable range (Table 6.1).

Table 6.1: Mean demographics for each age group with standard deviations

Mean Age Median Stereoacuity Mean VA (OU)

Young (n=30) 26 ± 3.9 20” (≤ 40”) -0.05logMAR ± 0.13
Older (n=14) 68 ± 5.0 63” (≤ 200”) -0.02 logMAR ± 0.09
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6.2 Binocular Rivalry Alternation Rates

6.2.1 Effects of Blinks on Alternation Rates

The average number of blinks per minute for the young and older age group were 13 ±

10 and 10 ± 7 respectively (Table 6.2). The Shapiro-Wilk test showed that the blink rates

were not normally distributed for either group. A Wilocoxon test showed no significant

difference between the blink means (Z=-1.758, p=0.079).

Table 6.2: Means with standard deviations and medians for blinks and alternation rates

Blinks AR
Mean Median Mean Median

Young 13 ± 10 9 0.59 ± 0.15 0.59
Older 10 ± 7 8 0.37 ± 0.14 0.36

Additionally, no significant correlation was found between the average number of blinks

per minute and the alternation rates for both groups together (R2 = 0.03, p=0.225).

Analyzed separately, no significant correlation was found for the young population (R2 =

0.05, p=0.229) (figure 6.1). The older population also showed no correlation between blinks

per minute and alternation rate although approaching significance (R2 = 0.25, p=0.063)

(figure 6.2). However, the correlation was driven by one participant with an extreme blink

rate. Without this participant, the correlation fell to an R2 of 0 (R2=0, p=0.953) (figure

6.3).
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Figure 6.1: Scattergram of alternation rate against blink rate for the younger group. Each
point represents the average data for one participant.

Figure 6.2: Scattergram of alternation rate against blink rate for the older group. Each
point represents the average data for one participant.

6.2.2 Alternation Rate and Age

The Shapiro-Wilk test showed that the alternation rates were normally distributed for

both groups individually and there were no outliers. Levene’s statistic showed that the
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Figure 6.3: Scattergram of alternation rate against blink rate for the older group excluding
one outlier with a high blink rate.

Figure 6.4: Scattergram of blink rates for both age groups. Blue represents the young
population. Red represented the older population. The mean with standard error is
plotted for each age group.

values had equal variances between the two groups. An independent t-test indicated that

the alternation rate was significantly lower in the older group than in the young group (t42

= 4.667, p<0.001) (figure 6.5).
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Figure 6.5: Individual alternation rate data for each age group. Blue represents the young
population. Red represents the older population. The mean with standard error is plotted
for each age group.

6.3 Electrophysiological Measure of Plasticity

One participant in the young population did not have a recorded VEP measure due to

technical difficulties. VEP analyses for the young population were therefore performed on

29 participants (figure 6.6). Two participants in the older population were excluded from

analysis. One participant was unable to tolerate the 9Hz flicker during the VEP recording

while another had a very low signal-to-noise ratio. Therefore, VEP analysis for the older

population was performed on 12 participants (figure 6.6).
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Figure 6.6: Average waveforms for the center, right and left channels across 29 young
adults and 12 older adults.
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6.3.1 VEP Latencies

The latencies of each measured peak were qualitatively similar (table 6.3). The standard

deviations of each latency value are shown in table 6.4. Peak 3 exhibited a bimodal

distribution (figure 6.7) due to the variation of waveforms as seen in figure 6.6.

Table 6.3: Average latency of measured peaks for each channel

Center (Oz) Right (PO8) Left (PO7)
Pre Post Pre Post Pre Post

Young
Peak 1 82 83 84 85 81 83
Peak 2 134 134 116 117 121 122
Peak 3 174 174 145 148 160 161

Older
Peak 1 84 85 83 88 87 90
Peak 2 117 120 116 116 124 124
Peak 3 156 154 156 157 157 161

Table 6.4: Standard deviations of latencies of measured peaks for each channel

Center (Oz) Right (PO8) Left (PO7)
Pre Post Pre Post Pre Post

Young
Peak 1 13 13 18 17 13 13
Peak 2 42 42 27 27 37 37
Peak 3 82 83 39 41 70 71

Older
Peak 1 11 9 16 14 11 11
Peak 2 23 26 22 23 27 27
Peak 3 39 39 29 30 37 42
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Figure 6.7: Peak 3 latencies of the pre Oz waveform plotted against age.

A repeated measures ANOVA (2 x group, 2 x time, 3 x electrode) on the pre and post

latencies was performed separately for each peak. The results show a significant main

effect of time for Peak 1 only (F1,1=13.438, p=0.001). Post measure latencies were slightly

higher than the pre measures. However the averages show that the peak measurements for

at approximately the same latency. No significant main effects of electrode or group were

found and no significant interactions between time, electrode and group was found. For

both Peak 2 and Peak 3, main effects and interactions were not significant.
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6.3.2 VEP Amplitudes

Amplitude 1 and 2 values varied considerably between participants, as expected, de-

pending on the signal-to-noise ratio as well as the maximum potentials of each individual

participant (table 6.5). The statistical method of choice was a repeated measures ANOVA,

performed on the pre and post absolute values of the differences between each peak.

Table 6.5: Mean absolute values of the peak to peak amplitudes and the percent of positive
polarity for amplitudes 1 and 2

Center (Oz) Right (PO8) Left (PO7)
Polarity Pre Post Polarity Pre Post Polarity Pre Post

Young

Amp 1 13.8 24.28 20.09 44.8 12.80 11.96 24.1 14.58 12.95
±15.64 ±13.97 ±9.89 ±9.45 ±8.49 ±8.01

Amp 2 86.2 13.09 11.01 58.6 10.79 10.27 75.9 9.38 8.36
±13.11 ±11.08 ±8.11 ±8.46 ±5.97 ±6.10

Older

Amp 1 16.7 16.34 15.53 33.3 15.59 15.60 33.3 15.55 15.86
±11.02 ±11.78 ±11.80 ±12.70 ±9.80 ±11.29

Amp 2 83.3 10.67 13.14 66.7 11.34 13.04 66.7 10.06 12.32
±8.36 ±11.34 ±10.29 ±13.70 ±6.83 ±9.83
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6.3.3 VEP Amplitude 1

A repeated measures ANOVA (2 x time, 3 x electrode, 2 x group) was chosen for analysis

of amplitude 1. The three-way interaction between time, electrodes and group was non-

significant (F1,2=1.579, p=0.213). However, significant two-way interactions were observed

between time and group (F1,1=5.596, p=0.023) (figure 6.8) as well as time and electrode

(F1,2=5.292, p=0.007) (figure 6.9). The interaction between electrode and group was not

significant (F1,1.748=3.269, p=0.051). Between participant analysis showed no significant

main effect of time (F1,1=3.811, p=0.058) or age group (F1,1=0.065, p=0.800). However, a

significant main effect of electrode was found (F1,1=3.811, p=0.044). Post-hoc analyses of

the significant time x group interaction showed no significant main effects between groups

for neither the pre (F1,39=0.201, p=0.657) nor the post measures (F1,39=0.045, p=0.834).

Post-hoc analysis with a Bonferroni correction of the significant time x electrode interaction

showed the amplitude of the center channel for the pre waveform is significantly different

from the right (p=0.004) and the left (p=0.019) channels. A post-hoc t-test between

pre and post measures for each channel showed significance only in the center channel

(t40=5.089, p<0.001). See Appendix D for plots of non-significant interactions.
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Figure 6.8: The interaction between amplitude 1 pre and post values and age was signifi-
cant. Main effects were not significant. Error bars = SEM.

Figure 6.9: The interaction between pre/post amplitudes and channels was significant.
Main effects were not significant. Error bars = SEM.
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6.3.4 VEP Amplitude 2

A repeated measures ANOVA (2 x time, 3 x electrode, 2 x group) was chosen for

analysis for amplitude 2. As with amplitude 1, the three-way interaction between time,

electrodes and group was non-significant for amplitude 2 (F1,2 =1.706, p=0.188). However

the interaction between time and group was significant (F1,1=10.847, p=0.002) (figure

6.10). The young group exhibited depotentiation after tetanization whereas the older group

exhibited potentiation (figure 6.6). No significant interaction was found between electrode

and group (F1,1.998=0.235, p=0.791) and time and electrode (F1,2=0.366, p=0.695). No

significant main effect of time (F1,1=0.944, p=0.337), electrode (F1,1.998=0.671, p=0.514)

or age group was found (F1,1=0.138, p=0.712). Post-hoc analyses of the significant time

x group interaction showed no significant main effects between groups for neither the pre

(F1,39=0.028, p=0.868) nor the post measures (F1,39=1.126, p=0.295). See Appendix D

for plots of non-significant interactions.
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Figure 6.10: The interaction between amplitude 2 pre and post values and age was signif-
icant. Error bars = SEM.

6.4 Alternation Rates, VEP Amplitudes and the Ef-

fect of Age

A linear regression analysis was chosen to investigate whether alternation rates could

predict the change in VEP amplitudes for each age group. The difference between pre and

post was quantified as percent change for both amplitude 1 and amplitude 2. No significant

association was found between alternation rates and either amplitude when controlling

for both electrode (right and left electrode only) and group (table 6.6). The percent

change in amplitude 1 is equal to 16.435 - 44.194(AR) + 1.166(Electrode) +4.516(Group),

where electrode is coded as 1=right and 2=left and group is coded as 0=young adults

and 1=older adults. The percent change for amplitude 2 is equal to -3.031 +3.360(AR) -
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0.921(Electrode) + 19.417(Group) where the variables are defined as in amplitude 1. A

Pearson correlation between alternation rates and amplitude 1 or 2 was not significant

(amplitude 1: R2=0.081, p=0.071; amplitude 2: R2=0.048, p=0.160).

Table 6.6: Univariate regressions between alternation rate, electrode and age (dependent
variables) for amplitude 1 (independent variable)

Factor B [95% CI] R2 p

AR -44.184 [-97.449, 9.081] 0.061 0.103
Electrode 1.166 [-14.632, 16.963] 0.061 0.884

Group 4.516 [-16.234, 25.265] 0.064 0.666

Table 6.7: Univariate regressions between alternation rate, electrode and age (dependent
variables) for amplitude 2 (independent variable)

Factor B [95% CI] R2 p

AR 3.360 [-59.202, 65.921] 0.101 0.915
Electrode -0.921 [-19.476, 17.633] 0.010 0.922

Group 19.417 [-4.954, 43.789] 0.041 0.117

6.5 Summary

Alternation rates differed between the groups as young adults had faster alternation

rates than did older adults. The VEP waveforms for both age groups appeared to be

qualitatively different; however no main effect of group was found. Alternation rates were

not significant predictors of either amplitude 1 or amplitude 2. Pre and post amplitude
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measures were significantly different in the young age group but the difference indicated

depotentation. This difference was not statistically significant in the older age group.
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Chapter 7

Discussion and Conclusions

7.1 Objective 1

The first objective of this study was to identify the best method of LTP induction

measured by visually-evoked potentials (VEPs) in humans. The original pattern on-

set method16 and pattern reversal method38 have been modified slightly throughout the

years15,51,58, however a reliable protocol for practical and clinical use in the future has yet

to be established. Clinical systems typically record up to 4 channels while studies in the

literature use a 64 or 128 electrode net, which requires expensive equipment and is not

practical for clinical use16,51,55,58. The few studies which used only one channel, namely

Oz, had short pre and post measures that lasted only 20 seconds15,38. With the large vari-

ability in VEPs between individuals, we found that 20 seconds did not provide a strong

enough average for all participants, particularly for those with a low signal-to-noise ratio
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and therefore may not be reliable for clinical use. The chosen protocol for the main study

was an attempt to adapt published research protocols to a clinical setting16,38. VEP pilot

data waveforms showed unexpected variability and did not qualitatively look as published

in previous literature16,38. A large negative peak at approximately 175ms after the stim-

ulus onset was found to potentiate significantly in the past16 however our waveforms did

not consistently have a prominent negative peak for the same results to be found. The

prolonged onset stimulus parameters (on for 490ms and off for 510ms) were thought to

eliminate any possible masking of the negative peak by the larger positive peak preceding

it and was therefore chosen as the main protocol. The main study results show considerable

variability between participants within each age group along with differences between the

younger and older adult groups. Contradictory to previous results, amplitudes 1 and 2 did

not change significantly for the young population16,38. The older population pre and post

amplitudes of amplitude 2, however, showed a mean potentiation although non-significant.

Original papers establishing the protocol reported results with as little as 6 subjects. This

study had a sample size of 30 young and 14 older participants, providing further insight into

the application of LTP on the general population. The timeframe of this study prevented a

more detailed exploration of optimal LTP induction and measurement paradigms. There-

fore, further investigation of stimulus parameters, protocol timing and the practical use of

this measure of visual cortex plasticity across all age groups is necessary for optimization.
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7.2 Objective 2

The second objective of this study was to investigate whether or not a relationship exists

between GABA levels–assessed indirectly using binocular rivalry alternation rates–and the

extent of LTP induction in the human visual cortex. Previous studies have shown that

potentiation is found in the second negative component of the waveform16,38. Additionally,

results from similar VEP protocols demonstrate that potentiation occurs laterally 10-15%

away from Oz16. Most studies have used dipole measures that select optimal signal location

from one participant to the next92. However this is not possible with a clinical system.

Our results show that alternation rates cannot significantly predict the potentiation of

either amplitude. Although both VEP and AR measures show differences across both age

groups, the two were not correlated. Based on previous literature, we hypothesized that

slower alternation rates will be correlated with higher GABA levels18. This implies that the

older age group–who had slower alternation rates than the young population–have higher

GABA levels. This contradicts other literature which hypothesizes decreased GABA levels

as a cause of the cognitive decline that occurs with age65. Both binocular rivalry and LTP

were indirect measures of plasticity in the adult brain. Perhaps a stronger statistical power

would reveal significant relationships between the two measures. Although differences in

alternation rates and changes in VEPs exist between both age groups, the two measures

were not significantly correlated.
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7.3 Objective 3

The final objective of this study was to investigate the effect that age may have on

alternation rates and LTP. Older adults had significantly slower alternation rates than the

younger population. Research on GABA levels and bistable perception such as binocu-

lar rivalry demonstrated a correlation between the two18. Higher GABA levels resulted

in slower alternation rates18. We therefore used binocular rivalry as a behavioural mea-

sure and inferred that our older adults population have higher GABA levels than do the

younger adults. While an increase in GABA levels is necessary for the opening of the

critical periods and further increases contribute to their closure, studies have shown that

a decrease in GABA with age may play a role in cognitive decline93–95. Based on GABA

levels being inversely correlated with alternation rates, the results demonstrate that the

older adults should have higher GABA levels. Although consistent with van Loon and

colleagues’ correlation of GABA and bistable perception18, this outcome was unexpected

given contradictory evidence for a general reduction of GABA in older age75,93–95. The

correlation found may not be a result of higher GABA levels, but rather an imbalance of

excitatory and inhibitory interactions within the brain. Previous studies have hypothesized

that binocular rivalry may be a result of excitation and inhibition within the primary visual

cortex18,96. Changes to the amount of excitatory and inhibitory activity may have an effect

on cognitive function and conscious awareness. One study in cats showed that a decrease

of GABAergic neurons by about half occurs with age whereas no change was found in the

number of excitatory neurons within the visual cortex65. Slower alternation rates in older

adults may be one aspect of the cognitive decline that occurs with age, not due to lower
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GABA levels but rather the disproportion of inhibition and excitation. It is still unclear,

however, whether these age-related changes contribute to changes in cognition, plasticity

or perception.

An interesting result of the study was the difference in waveforms between the two age

groups. Waveform patterns for both amplitude 1 and 2 were qualitatively different between

the young and older populations. Changes in latencies with age have been reported in the

past with pattern reversal stimuli and may be attributed in part to a random loss of neurons

within the visual pathway97,98. As pattern onset waveforms are more variable, there are

no reported changes between young and older adults. The young age group showed a

qualitative overall depotentiation of both amplitudes while the older population showed no

significance for either. Nonetheless, a potentiation was is qualitatively visible in the second

amplitude for most participants in the older age group and an increase in statistical power

may reveal significance.

VEPs have been shown to vary slightly by gender. Females typically have shorter laten-

cies and larger average VEPs than do males98. Gender differences may also be attributed to

anatomical differences, skull thickness, possible differences in visual information processing

as well as hormonal levels–although the later is speculative39,98. We did not collect data

relating to the menstrual cycle for our younger female participants and therefore we do

not currently have data to test this hypothesis. It is also possible that the group difference

in qualitative VEPs be due to lower GABA levels in the older group. Lower inhibition

in the visual cortex may be causing an increase in VEP potentials as compared to more

inhibition in the young adults. It is still unclear however what the reason may be and

whether GABA levels significantly influence VEPs.
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7.4 Strengths and Limitations

Although the VEP protocol design was limited by technical restrictions of the avail-

able clinic system, it revealed intriguing differences in waveforms that occur with age and

demonstrated the need for a reliable, clinical protocol. One limitation of the study was

the smaller population of older adults recruited for the study. As some correlations were

approaching significance, a larger study may reveal more significant changes between chan-

nels and pre and post measures as a result of improved statistical power. Additionally,

attentional resources in older adults have been found to be weaker than younger adults.

The slower alternation rates may not be solely a result of changes in GABA levels, rather to

the amount of attention given to the ambiguous stimulus during passive viewing83. While

this phenomenon has been studied, further investigation is needed to understand the mech-

anisms of attention and the differences that occur with age. Future studies might focus on

the optimization of a clinical protocol that is fast, reliable and practical for patient studies.

Additionally, further investigation of the variations in waveforms as well as the differences

in potentiation between different VEP components and age groups is needed to understand

the mechanisms that contribute to the changes in plasticity.

7.5 Conclusion

Recent studies have shown that the adult brain is in fact capable of forming and

strengthening new connections, albeit at a slower rate than in children1. These find-

ings have paved the way for new research to understand the mechanisms that underlie
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adult cortical plasticity, and how these mechanisms can be controlled and manipulated to

increase plasticity following the critical period. With our current understanding of age-

related GABA, it is unclear whether binocular rivalry can in fact be used as an indirect

measure of GABA. Further, we cannot conclude that binocular rivalry is correlated to the

proportional increase in plasticity. Additional investigation is required to understand the

differences in binocular rivalry, changes in plasticity as well as VEP waveforms that occur

with age. Further research on the underlying mechanisms that drive these changes will pro-

vide an understanding of the neurochemicals necessary for neuroplasticity and the external

influences that can modulate them. The changes that occur in the brain with age have a

large impact on cognitive abilities as well as perception and can alter many aspects of daily

life. The results may therefore have implications in the treatment and neurorehabilitation

of developmental disorders as well as damage to the brain that can occur with age9–12.
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Appendix A

Pilot Data Significance Values

Figure A.1: The significance values of the non-parametric Wilcoxon tests between alterna-
tion rate and spatial frequency.
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Appendix B

Exclusion Criteria Questionnaire
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Appendix C

Consent Form

The following form was provided for each participant prior to beginning the study.
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Appendix D

Non-Significant Interactions

D.1 Amplitude 1

Figure D.1: The interaction between electrode group was not significant for amplitude 1.
Error bars = SEM.
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D.2 Amplitude 2

Figure D.2: The interaction between pre and post values and electrode was not significant
for amplitude 2. Error bars = SEM.

Figure D.3: The interaction between electrode and age group was not significant for am-
plitude 2. Error bars = SEM.
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