
Prioritized Obstacle Avoidance in

Motion Planning of Autonomous

Vehicles

by

Yadollah Rasekhipour

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2017

c© Yadollah Rasekhipour 2017



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner Farrokh Jenbi-Sharifi

Professor, Mechanical and Industrial Engineering

Supervisor(s) Amir Khajepour

Professor, Mechanical and Mechatronics Engineering

Internal Member Baris Fidan

Associate Professor, Mechanical and Mechatronics En-

gineering

Internal Member William Melek

Professor, Mechanical and Mechatronics Engineering

Internal-external Member Krzysztof Czarnecki

Professor, Electrical and Computer Engineering

ii



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

Driver errors are a critical factor of the majority of car crashes. Autonomous vehicles take

drivers and driver errors out of the equation, so they are being developed to reduce car

crashes. However, in some situations, a crash is unavoidable even for an autonomous vehi-

cle. An autonomous vehicle is expected to behave properly in such a situation. Crashing

into different obstacles have different costs based on the injury or damage the crash might

cause. In an imminent crash situation, an autonomous vehicle is expected to consider these

costs and plan a trajectory that avoids the obstacles with the highest priorities.

In this thesis, a motion planning Model Predictive Controller (MPC) has been developed

that plans the vehicle’s trajectories based on the obstacle’s priorities. Motion planning

MPCs usually use potential fields or obstacle constraints for obstacle avoidance. However,

they treat all the obstacles in the same way. Two methods have been developed in this

thesis to prioritize obstacles in motion planning. The first method prioritizes obstacles

based on their avoidance necessities. It categorizes obstacles as crossable and non-crossable,

and assigns a potential function to each category corresponding to its avoidance necessity.

The second method prioritizes obstacles based on their corresponding crash costs. It applies

lexicographic optimization on the MPC to prioritize the non-crossable obstacles according

to their crash costs by prioritizing their corresponding constraints.

A motion planning MPC problem is generally a nonlinear MPC problem. It is usually

approximated by a quadratic MPC problem to become implementable in real time. In

this thesis, a quadratic motion planning MPC has been developed. This MPC has a

linear vehicle model and linear vehicle and obstacle constraints. The linear vehicle model

along with the linear vehicle constraints should be able to model the nonlinear vehicle

behavior. A linear bicycle model has been utilized, and linear tire constraints have been

developed such that they can model the nonlinear vehicle behavior at the tire force limits.

Moreover, a linear obstacle constraint set misses some of the feasible trajectories in the

process of convexifying the obstacle-free area. An iterative obstacle avoidance method has

been developed in this thesis to reduce the number of feasible trajectories missed due to

the convexification.

The performance of the developed motion planning MPC has been evaluated in a
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computer simulation with a high fidelity vehicle model. The MPC has been simulated for

test scenarios to evaluate its performance in autonomous driving and prioritizing obstacles.

The capabilities of the developed tire constraints and the iterative obstacle avoidance

method have also been observed. The motion planning MPC has also been implemented

on an autonomous test vehicle platform to show that it is implementable in real time and

to validate the simulation results.
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Chapter 1

Introduction

1.1 Motivation

A large percentage of car crashes are caused by driver errors. The National Highway

Traffic Safety Administration reported the driver as the critical factor of 94% of crashes

involving light vehicles from 2005 to 2007 [1]. Of the crashes caused by the driver, 41%

are because of recognition errors like inattention, 33% are because of decision errors like

driving too fast, 11% are because of performance errors like poor directional control, 7%

are because of non-performance errors like sleeping, and 8% are caused by other driver

errors. Autonomous vehicles do not become inattentive, do not speed, and do not sleep;

they are being developed in hopes of reducing the number of crashes by removing the main

cause of crashes, the driver.

Autonomous vehicles can reduce the number of crashes, but they cannot totally eradi-

cate crashes. Autonomous vehicle crashes can be grouped into three types of causes [2],[3].

First, an autonomous vehicle system is imperfect and can occasionally fail. Failures can

happen because of hardware failures, software bugs, perceptual errors, or reasoning errors

[4]. Second, even if autonomous vehicles are perfect, they will drive amongst human-driven

vehicles. Human drivers have unpredictable driving behaviors, and avoiding all of their

possible movements is impossible [5]. Third, even on a road with only perfect autonomous
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vehicles, the vehicles would face wildlife, pedestrians, and bicyclists, all of which also have

unpredictable behaviors. Because of the mentioned reasons, there will be unavoidable crash

scenarios for autonomous vehicles.

Autonomous vehicles are expected to respond properly in a situation where a crash is

imminent. Drivers might panic in such a situation, but autonomous vehicles cannot use

this excuse. One example of such a situation is when a deer is on the middle of the road

at such a distance that the vehicle cannot stop behind the deer if it brakes, but it can

swerve to avoid the deer [6]. In this situation, a driver might decide to brake, which would

result in a crash and a possible injury of the passenger. But, he would not be blamed

for this decision since it was made in an occasion of panic. However, a brake decision

is not acceptable for an autonomous vehicle. The vehicle can be programmed to swerve

instead of braking, and not programming it to do so is construed as negligence with legal

ramifications [7].

Many factors like the type of the objects around the vehicle, the road structure, and

the conditions of the road sides are important in making decisions for a scenario with an

imminent crash. In the deer scenario mentioned above, the deer is on the road, but the

vehicle has enough space on the road beside the deer to swerve. Therefore, swerving is

less costly compared to braking and is a better response in this situation. An alternative

scenario is when there is not enough space beside the deer for the vehicle to swerve safely,

and there are objects on the road sides that can damage the vehicle. In this scenario,

swerving and moving to the road sides only damages the vehicle and most probably does

not result in any injury. Therefore, going to the side is less costly and is more reasonable

in this situation. Another alternative is a similar scenario when the deer is replaced by

a squirrel. In this situation, crossing over the squirrel is more reasonable since it has no

harm or damage to the passengers and the vehicle so it is less costly.

There are many scenarios where a crash is imminent, and even unavoidable. In these

scenarios, autonomous vehicles are expected to consider priorities of the obstacles and find

the maneuver with the minimum cost based on these priorities. The obstacles’ priorities

should be considered in the motion planning module since it is the module in autonomous

vehicles that considers obstacles in its planning. Therefore, it is expected that the motion

planning module implements obstacles’ priorities in planning vehicle’s trajectories.
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A motion planning module should consider vehicle dynamics in its planning procedure.

If the vehicle’s trajectory is planned without considering the vehicle’s dynamics and lim-

itations, it might not be feasible for tracking. However, a motion planning module that

considers the dynamics and limitations of the vehicle in its planning procedure plans tra-

jectories that can be tracked by the vehicle. Such a motion planning system knows the

vehicle’s capacity and can utilize this capacity in reducing the crash cost. Moreover, it can

perform as both the motion planning module and the trajectory tracking module since it

also covers the tasks of the trajectory tracking module.

Many motion planning techniques are developed for autonomous road vehicles; interpo-

lating curve planners, graph-search planners like A*, sample-based planners like Rapidly-

exploring Random Tree (RRT), and optimization planners like a Model Predictive Con-

troller (MPC). An MPC handles the future predictions and system constraints in a unified

manner to find the optimal solution [8]. Therefore, among the motion planning techniques,

an MPC has the advantage of systematically handling vehicle future predictions and con-

straints of vehicle dynamics, actuators, and obstacles in planning the optimal trajectory.

A nonlinear MPC optimizes a nonlinear objective function with a nonlinear model and

nonlinear constraints. This MPC is non-convex and has a high calculation time. A motion

planning MPC has a vehicle model for longitudinal and lateral vehicle motions. It also

includes constraints on vehicle dynamics, actuators, and obstacles. A vehicle model is gen-

erally nonlinear because of its nonlinear equations of motions and extremely nonlinear tire

behavior. Obstacle avoidance is also performed either through adding potential functions,

which are nonconvex, to the objective function or through constructing an obstacle-free

area by constraints, which are generally nonlinear. Therefore, a motion planning MPC is

generally nonlinear.

A nonlinear MPC has a high calculation time and is difficult to solve in real-time. In

order to be appropriate for real-time applications, the general nonlinear motion planning

MPC can be approximated by a quadratic motion planning MPC. A quadratic MPC op-

timizes a quadratic convex objective function with a linear model and linear constraints.

Therefore, for a quadratic motion planning MPC, the vehicle behavior should be mod-

eled by a linear vehicle model and linear constraints. It is important that the model and

the constraints model the vehicle behavior appropriately over a wide range of operating
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conditions, e.g. high speed and tire force limit. Moreover, the nonconvex obstacle-free

area should be approximated by linear constraints. Some parts of the obstacle-free area

are removed in the process of approximation, which causes the MPC to lose some feasible

trajectories. It is important to develop approximation methods that do not cause losing

the optimal trajectories.

1.2 Objectives

The first objective of this project is to plan the vehicle’s trajectory according to the obsta-

cles’ priorities, i.e. in an imminent crash situation, the vehicle avoids the obstacles with the

highest priorities. A quadratic MPC will be used for motion planning, and two obstacle

avoidance methods will be utilized to apply obstacles’ priorities in the MPC problem.

The first method is the potential field method, which prioritizes obstacles based on

the need to avoid them. In this method, obstacle potential functions are included in the

MPC cost function for obstacle avoidance. Obstacles will be categorized as crossable and

non-crossable, and a potential function will be assigned to each category corresponding to

its avoidance necessity to prioritize the obstacles.

The second method is to utilize lexicographic optimization to implement priorities on

the non-crossable obstacles. Constraints will be included in the MPC problem for the non-

crossable obstacles, and the obstacles will be prioritized by prioritizing their corresponding

constraints. Lexicographic optimization will be used to prioritize the constraints in the

MPC problem.

The second objective is to reduce the number of useful trajectories removed by convex-

ification of the obstacle-free area. An obstacle-free area is generally nonconvex and cannot

be constructed in a quadratic MPC problem. For a quadratic motion planning MPC, it is

usually convexified by one set of linear constraints. This process of convexification removes

some of the feasible trajectories. In this project, an iterative MPC will be introduced that

solves the motion planning problem for three sets of obstacle constraints to reduce the

number of trajectories missed due to the convexification.
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The third objective is to develop a vehicle model and vehicle constraints for the MPC

such that the model is valid over a wide range of operating conditions. Since the MPC is

quadratic, the model and constraints should be linear. A linear bicycle model will be used

as the vehicle model. Linear tire models can model lateral tire forces if they accompany

constraints on tire sideslip angles. Moreover, in large tire forces, combined tire slip and

load transfer have great effects. In this project, tire constraints will be developed that

consider the combined tire slip and longitudinal load transfer and cover the tire sideslip

angle constraints. With these constraints, the vehicle model considers its capacity and

remains valid at tire force limits.

Moreover, the developed motion planning MPC should be implementable in real time.

1.3 Thesis Outline

In the second chapter, the background of motion planning MPCs is presented. The archi-

tecture of autonomous vehicles is explained, and different motion planning techniques are

discussed. The literature of motion planning MPC with an emphasis on the vehicle model

and the obstacle model is reviewed, and the background on lexicographic optimization

method is expressed.

In the third chapter, a potential-field-based motion planning MPC is developed. A ve-

hicle bicycle model with linear tire models is presented, and tire constraints are introduced

to keep the model valid by keeping the tire in its linear force region. The tire constraints

also consider the combined tire slip and the longitudinal force transfer so that the model

considers its limitations and remains valid at tire force limits. The potential field including

the potential functions of the obstacles and lanes are expressed. The obstacles are priori-

tized as crossable and non-crossable by assigning them potential functions corresponding

to their characteristics. Next, the MPC problem is introduced with the vehicle model as its

model, vehicle constraints as its constraints, and the potential field included in its objective

function. Then, the simulation results of some test scenarios are presented to evaluate the

performance of the motion planning MPC in autonomous driving and prioritizing obstacles.

In the fourth chapter, the MPC introduced in the third chapter is developed to prioritize
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non-crossable obstacles through lexicographic optimization. Instead of using one linear

obstacle constraint set, three linear obstacle constraint sets are introduced to reduce the

number of removed trajectories. The constraint sets are included in the MPC problem

to generate Iterative Quadratic MPC (IQMPC); IQMPC includes three MPCs, one MPC

for each constraint set. Lexicographic optimization is applied on IQMPC to prioritize the

non-crossable obstacles. Then, the motion planning method is simulated for some test

scenarios to evaluate its performance in obstacle avoidance and prioritizing obstacles.

In the fifth chapter, the developed motion planning MPC from the third chapter is

implemented on an autonomous test vehicle platform. The MPC is modified to become

compatible with the test vehicle software platform. It is also modified to compensate for

the delays of the test platform by using predicted vehicle states as its initial states. Then,

the experimental results for some test scenarios are presented to show that the MPC is

implementable in real time and to validate the simulation results of the MPC.

In the sixth chapter, conclusions of the thesis are presented, and suggestions are ex-

pressed for continuation of this project.
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Chapter 2

Background and Literature Review

2.1 Autonomous Vehicles

More than 90% of car crashes are caused by driver errors [1]. Autonomous vehicles are

being developed in hopes of reducing the number of crashes by removing the main cause

of crashes, the driver. However, there are situations when a crash is imminent, or even

unavoidable, even for an autonomous vehicle. In such a situation, an autonomous vehicle is

expected to respond properly. Crashing into different obstacles have different costs based

on the injury and damage they may cause. In an imminent crash situation, an autonomous

vehicle is expected to consider these costs and plan a maneuver that avoids the obstacles

with the highest priorities. The main focus of this thesis is to develop a platform for

autonomous vehicles that can consider the priority of the obstacles and find the maneuver

with the minimum cost based on the obstacles’ priorities. The architecture of autonomous

vehicles is studied in this section to determine the vehicles’ modules in which the priorities

can be applied.

2.1.1 Architecture of Autonomous Vehicles

Autonomous vehicle systems have different architectures. Figure 2.1 demonstrates a general

architecture for them presented in [9]. Although there is no clear line between the modules
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of an autonomous vehicle, this general architecture can demonstrate the essence of an

autonomous vehicle. A similar architecture is presented in [10] for the decision stage of

an autonomous vehicle, which is the combination of the decision and control stages of Fig.

2.1.

Figure 2.1: A general architecture for autonomous vehicles [9].

In general, the vehicle receives data from sensors such as GPS/INS sets, LIDARs, vision

cameras, and radars. It may also receive data from infrastructures and others vehicles via

communication sets. The perception stage provides knowledge about the road structure

[11],[12], road regulations [13],[14], obstacles [15],[16], and vehicle states [17],[18] based on

the data. The decision and control stages decide the vehicle’s path based on the information

generated in the perception stage and generate the actuation commands.

The decision stage consists of global planning, behavioral planning, and local planning

modules. The global planning module finds an efficient route from the current position to

the destination [19],[20]. The behavioral planning module determines an appropriate driv-
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ing behavior, like stopping at a position or changing the lane, to follow the route [21],[22].

The local planning module or motion planning module plans the vehicle’s trajectory such

that the vehicle performs the planned behavior while avoiding the obstacles. Then, the

control module or trajectory tracking module generates the vehicle’s actuator commands

to follow the planned trajectory while maintaining the vehicle’s stability.

The obstacle avoidance task is performed in the motion planning module. Therefore,

this module is expected to plan a trajectory that minimizes the cost of an imminent crash.

In this thesis, a motion planning module is developed that is capable of planning trajectories

based on the obstacles’ priorities.

Trajectory tracking modules usually consider vehicle dynamics to keep the vehicle sta-

ble and improves the ability of the vehicle in tracking the trajectory [23],[24]. However, it

is possible that the planned trajectory is not feasible for tracking by the vehicle since the

vehicle dynamics and its limitations are not considered in trajectory generation procedure

[25]. Therefore, a motion planning technique should consider vehicle dynamics and limita-

tions so that the trajectory that it generates can be tracked by the vehicle. Furthermore,

if the vehicle dynamics and limitations are considered in the motion planning technique

appropriately, the motion planning technique can utilize the vehicle’s entire capacity to

reduce the crash cost.

A motion planning module and a trajectory tracking module can be combined if the

motion planning module covers the tasks of the trajectory tracking module. A motion

planning module that considers the vehicle’s dynamics and limitations in the process of

generating the trajectory and generates the actuator inputs as its outputs can be used in

place of the two modules [26]. This way, the tasks of both modules can be performed in

an integrated manner. Such a motion planning module is developed in this thesis.

2.2 Motion Planning Techniques

The motion planning module should be capable of planning an appropriate trajectory

considering the road’s structure and regulation, obstacles’ configurations and dynamics,

and the vehicle’s current states. As mentioned, the module should consider the vehicle
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dynamics and limitations appropriately to find the best feasible trajectory in the situation

of an imminent crash. Moreover, if the module also generates the vehicle inputs, it can be

used as both the motion planning module and the trajectory tracking module in a unified

manner.

Figure 2.2 presented in [9] illustrates the motion planning techniques used in the au-

tonomous vehicle demonstrations over time. The main motion planning techniques de-

veloped for autonomous road vehicles can be categorized as interpolating curve planners,

graph-search planners, sample-based planners, and optimization planners.

Figure 2.2: Autonomous vehicle demonstrations over time and their associated motion

planning techniques [9].

Interpolating curve planners take a set of path waypoints and generate a local smooth

trajectory while considering vehicle constraints and dynamic environment. Different tech-

niques are utilized to generate the trajectories: lines and circles [27], clothoid curves [28],

polynomial curves [29], Bezier curves [30], and spline curves [31]. They can consider cur-

vature constraints in the motion planning process, but they do not consider the vehicle

dynamics.

Graph-search planners generate a grid map and find a path from the initial state to

the final state through the grids. The basic algorithm of this category is the Dijkstra

algorithm, which is a simple node search to find the shortest path from initial position to

the final position [32]. An A* algorithm [33] and similar algorithms like D* [34] implement

heuristics to make the node search fast. The state lattice algorithm generates a grid of

states instead of positions and uses the other graph search algorithms to find the best path
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from the initial state to the final state [35]. Since the calculation time of the algorithm

increases by increasing the dimension of the problem, the method cannot be solved in

real-time if the vehicle dynamics states are considered.

Sample-based algorithms sample the search state space and search for connections be-

tween the samples. Rapidly-exploring Random Tree (RRT) [36] and similar algorithms

like RRT* [37] are the main algorithms in this category. They can quickly find a path

between the initial and final states while considering vehicle constraints . These methods

quickly find a path between the initial and final states but finding the optimal path can

take longer.

Optimization planners optimize an objective function of the vehicle states with state

and input constraints. The main optimization motion planning technique is the Model

Predictive Controller (MPC) technique. This technique has the vehicle dynamics as its

model and predicts the vehicle behavior in the process of optimizing the objective function.

It can optimize the vehicle performance, constrain the vehicle states and inputs, and find

the optimal obstacle-free trajectory for the vehicle in a unified manner. The MPC problem

can also be solved in a short time.

The potential field technique is another motion planning technique which is not usually

used for autonomous road vehicles but will be used in this thesis. It generates a potential

field based on the Potential Functions (PFs) of obstacles, road structures, and goal. It

plans the path by moving in the descent direction of the field. A field is generated by a

combination of different PFs. Wang et al. [38] use exponential PFs for lanes, hyperbolic

PFs for static obstacles, and products of exponential and hyperbolic functions as PFs for

moving obstacles. Wolf et al. [39] use quadratic PFs for lanes, hyperbolic PFs for road

boundaries, and exponential PFs for cars. Ji et al. [40] use cosine PFs for lanes and

exponential PFs for cars. The idea of assigning different PFs to different types of obstacles

is used in this thesis to prioritize obstacles.

The MPC technique is used as the motion planning technique in this thesis since it

is the technique that can systematically consider a vehicle’s future behavior along with

the vehicle, actuator, and obstacle constraints. Moreover, it can perform motion planning

in a timely manner. Furthermore, it generates actuator inputs, and the motion planning
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module using this technique can act as both the motion planning module and the trajectory

tracking module in a unified manner. Potential fields are also implemented in the motion

planning MPC as a method of obstacle avoidance, and their capabilities in prioritizing

obstacles is used to apply obstacles’ priorities in the motion planning MPC.

Obstacles are not prioritized in the literature of motion planning of autonomous vehi-

cles. However, there are papers in the literature of robotics that prioritize obstacles for

motion planning [41],[42]. Although these papers prioritize obstacles, they are developed

to avoid all obstacles. However, it is necessary to develop motion plannings that prioritize

obstacles based on their crash costs for situations that avoiding all obstacles is not possible.

Moreover, there are obstacles that avoiding them is not necessary, and can be crossed if

required.

2.3 MPC Motion Planning

The literature of the motion planning MPC is investigated in this section. The nature of

motion planning MPC of an autonomous ground vehicle is non-convex. A vehicle model for

the vehicle longitudinal and lateral motions are used as MPC’s model, which is generally

nonlinear because of its nonlinear dynamics equations and nonlinear tire behavior. The

obstacle avoidance is also performed either by including potential functions, which are

non-convex, in the cost function or adding obstacle constraints, which are non-convex in

essence.

Some researchers consider the nonlinear nature of the problem and solve nonlinear

MPCs. However, the high calculation cost of a nonlinear MPC makes it difficult for real-

time solution. Therefore, several researchers have worked on simplifying the nonlinear

MPC problem to a quadratic MPC problem, which can be solved in a short period of

time and is appropriate for real-time applications. A quadratic MPC has a quadratic cost

function, a linear model, and linear constraints. The researchers work on finding a linear

vehicle model with linear constraints that predicts the vehicle’s behavior as close to the

nonlinear vehicle model as possible. They also study a set of linear obstacle constraints that

construct a convex area including the most useful section of the non-convex obstacle-free
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area. In this thesis, a quadratic MPC motion planning problem is developed for real-

time implementation. In the following sections the vehicle models and obstacle avoidance

methods used in the MPC motion planning literature are reviewed.

2.3.1 Vehicle Models

The vehicle models used for the motion planning of autonomous vehicles can be cate-

gorized as point mass vehicle models, kinematics vehicle models, and dynamics vehicle

models. Point mass models are linear models modeling the vehicle as a particle with the

vehicle mass capable of moving in longitudinal and lateral directions. A point mass model

does not consider a tire model and vehicle geometry, and subsequently, it can cause large

tracking errors. Therefore, some state constraints can be added to make the generated

trajectory more feasible. Longitudinal and lateral accelerations can be constrained by the

acceleration corresponding to the maximum tire force capacity [43],[44],[45]. Moreover, the

vehicle sideslip angle cannot be large for a vehicle in a non-drifting maneuver, and can be

constrained [46],[45]. A point mass model cannot predict the vehicle’s behavior adequately

even with these constraints.

Kinematics models are nonlinear models modeling the vehicle based on its geometry.

It does not consider tire models. However, to consider the passenger comfort and to avoid

skidding, constraints can be applied on the lateral acceleration to limit it to normal driving

values [47],[48],[49]. Vehicle dynamics models consider tire model in their model. Carvalho

et al. [48] and Zhang et al. [50] compare open loop behaviors of a vehicle kinematics

model and a vehicle dynamics model. The results show that, in low velocities, both models

have almost the same performance in modeling the vehicle behavior. At higher velocities,

specially higher than 15m/s, the dynamics model performs noticeably better, when the

maneuver includes steering angles larger than 1.5◦ [50]. Therefore, if an autonomous vehicle

is supposed to perform high speed maneuvers with large lateral accelerations, a vehicle

dynamics model is preferred to a vehicle kinematics model for use as the MPC model.

Vehicle dynamics models are obtained based on Newton’s second law by considering tire

models as the maneuvering forces. The vehicle dynamics equations are nonlinear regardless

of the tire model, but the main source of nonlinearity in vehicle behavior is tire behavior.
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Tires have limited capacity and become saturated. Nonlinear tire models like Pacejka and

Brush tire model are used to model the nonlinearity in the tire model. Linear tire models

model the tire behavior in the linear region. A linear tire model usually accompanies a

constraint on the sideslip angle to limit the model to the linear region of the tire force

where it is valid.

Frasch et al. [51] present a four wheel vehicle dynamics model with equations of lon-

gitudinal, lateral and yaw motions at the vehicle’s center of gravity based on the four tire

forces. They use a Pacejka tire model and considers the wheels’ dynamics in the model.

Moreover, they consider load transfer resulting from the longitudinal and lateral acceler-

ations in the tire model to generate a more accurate vehicle model. The wheel dynamics

increases the number of vehicle states by four but has a very small effect on the accuracy of

the vehicle model [52]. Gao et al. [43] use a four wheel vehicle dynamics model similar to

[51] without wheel dynamics. They also do not consider load transfer effects in the model.

A four wheel vehicle dynamics model with no wheel dynamics can be simplified by a

bicycle model. For a bicycle model, the tires of each axle are modeled as one resulting tire.

A bicycle model is nonlinear in essence. Yoon et al. [53] consider a bicycle model with a

Pacejka tire model. They constrain the front and rear tire sideslip angles since large tire

sideslip angles are not favorable. Park et al. [54] and Zhang et al. [50] consider a linear

tire model for the vehicle while the vehicle’s equations of motions are nonlinear. They also

constrain the tire sideslip angles to keep the tire in its linear force region and keep the

vehicle model valid.

Linear Bicycle Model

The previously mentioned vehicle dynamics models are nonlinear, and the MPC using these

models should be nonlinear. However, a linear bicycle model can be used in a quadratic

MPC to handle high speed maneuvers with large lateral accelerations since it considers

vehicle dynamics [55],[56],[57],[58]. Yi et al. [59] develop a nonlinear bicycle model with

a Pacejka tire model and with longitudinal load transfer. They then linearize the model

around the operating point. They also constrain the total vehicle acceleration to stay in the

friction circle. The circle is approximated by half-spaces so that the quadratic constraint
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is approximated by linear constraints to be used in a quadratic MPC.

Turri et al. [52] develop a four wheel vehicle model for vehicle lateral motion with

a Pacejka tire model where the longitudinal motion of the vehicle is known. They also

consider load transfer in the model. They then linearize the vehicle model. They calculate

the rear and front tire models as functions of the total vehicle longitudinal force and

linearize them. This way, they consider the load transfer as well as the combined slip

effects.

Gao et al. [26] present a nonlinear bicycle model with a Pacejka tire model to model the

lateral motion of the vehicle, and then linearize the model. They use a linear tire model for

the rear tire force and constrains the tire sideslip angle. They calculate the tire cornering

stiffness and the maximum tire sideslip angle such that it has the best approximation of

the tire behavior and can generate a lateral force close to the maximum lateral force. For

the front tire, they use the tire force in the motion equations and derive the steering angle

by the inverse Pacejka model. They also constrain the tire sideslip angles to keep the tires

in their linear force regions.

Erlien et al. [60] present a nonlinear bicycle model with a brush tire model for the

lateral vehicle motion of a race vehicle. Similar to [26], they use a tire inverse model

for the front tire. They assume the nominal path curvature to be the road curvature.

Therefore, instead of using a linear tire model for the rear tire, they linearize the brush

model around the nominal sideslip angle corresponding to the nominal path curvature.

This work is for race vehicles working in large path curvatures at high speeds, which need

large tire sideslip angles to track the path. For road vehicles, small tire sideslip angles are

required to track the path, and the resultant tire model would be similar to a linear tire

model. The paper also constrains the front lateral force and applies a stability envelope

for the rear tire instead of constraining the tire sideslip angles. The envelope limits the

yaw rate to its maximum steady state value corresponding to the road tire-road friction

and the rear sideslip angles to the limits corresponding to the tire linear force region.

Funke et al. [61] present a nonlinear bicycle model with a brush tire model for the

lateral vehicle motion of a race vehicle. For both the front and rear tires, they linearize the

brush tire model around the nominal sideslip angles corresponding to the nominal path
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curvature. They use a stability envelope similar to that of [60]. For the front lateral tire

force limitation, they consider the combined slip effect. They assume that the longitudi-

nal force commanded by driver remains constant, and they limit the lateral force to the

remaining tire capacity.

As mentioned, for a road vehicle, the linearized tire model in [60] and [61] are similar

to a linear tire model. Moreover, the tire sideslip angle constraints keep the tires in its

linear force range, so they keep the linear tire model valid. Several works use a vehicle

bicycle model with linear tire models, and constrain the rear and front sideslip angles

[62],[63],[48],[64]. In this thesis, a vehicle bicycle model with linear tire models is used to

model the longitudinal and lateral motions of the vehicle for the MPC motion planning.

The cornering stiffness values and maximum sideslip angles are calculated similar to [26].

Instead of constraining the front and rear sideslip angles, the lateral forces are constrained

in combined tire slip constraints such that the generated constraints cover the sideslip angle

constraints.

The combined slip is important in large tire forces, e.g, the tire has no lateral force

capacity if the the whole tire capacity is used for the longitudinal force. Load transfer is

also significant in large accelerations, e.g, harsh braking. In this thesis, the combined slip

and load transfer effects are considered as constraints. The longitudinal load transfer is

applied in the calculation of the normal tire forces similar to [59]. Funke et al. [61] and

Turri et al. [52] only model the lateral vehicle motion and apply the combined slip as a

constraint on the lateral force. In this thesis, the longitudinal motion is also modeled, and

the combined tire slip should be applied as a constraint on the longitudinal force and the

lateral force. The constraint is an ellipse, if load transfer is not considered. In this thesis,

load transfer equations are applied on the ellipse constraint equation to derive the tire

constraint. The resultant constraint is nonlinear and cannot be used in a quadratic MPC.

However, the constraint constructs a close convex space, which can be approximated by

half-spaces similar to [59].
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2.3.2 Obstacle Model

Obstacle avoidance is the main task of a motion planning system. One way to perform this

task is to generate a repulsive force that keeps the vehicle away from the obstacle. This

method is performed by adding a repulsive PF to the optimization cost function. Abbas

et al. [65] and Gao et al. [43] include hyperbolic potential functions of the distance from

the obstacle, and Park et al. [54] and Yoon et al. [53] include parallax PFs in the MPC

cost function. The resulting cost functions are nonlinear and nonconvex, and they require

the solution of nonlinear optimization problems.

Another way to perform the obstacle avoidance task is constraining the vehicle to

remain in the obstacle-free area. The essence of an obstacle-free area is nonconvex, and

the area can be generated by nonconvex constraints. Liu et al. [66] generate a safe area in

the LIDAR detection area. The safe area is the semicircle detection area cut by obstacles.

Gotte et al. [67] constrain the vehicle out of the circle around each obstacle. Gao et

al. [26] constrain the vehicle out of the ellipse around each ellipsoidal obstacle. Liao et

al. [64] consider the obstacles as rectangles and use mixed integer constraints to keep the

vehicle in the obstacle-free area. Frasch et al. [51] also consider obstacles as rectangles

but uses nonlinear constraints to generate the obstacle-free area. Qian et al. [47] generate

a quadratic nonconvex constraint for an obstacle on the side of the lane. The constraint

keeps the vehicle out of the portion of the lane containing the obstacle. For an obstacle

on the middle of the lane, they keep the vehicle behind the obstacle with a convex linear

constraint.

MPC problems with nonconvex constraints are nonlinear and have high calculation

costs. Several works investigate convex alternatives for the problem. Some researches

only control the lateral motion of the vehicle for obstacle avoidance and assume to know

the longitudinal motion prior to obstacle avoidance. They grid the obstacle-free space for

prediction time steps based on the longitudinal motion. For each prediction time step,

they constrain the vehicle’s lateral position to an available convex lateral space at the

corresponding grid [55],[62],[63],[61],[68]. The method is useful for situations where only

the lateral motion is planned by the motion planning module, e.g, a driving assistance

system where the driver controls the longitudinal motion. However, it does not plan the
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longitudinal and lateral motions simultaneously, and cannot plan maneuvers like stopping

behind an obstacle. Erlien et al. [60] solve a similar MPC problem several times for

different brake values. This way, they can plan the longitudinal motion at the same time

as the lateral motion. However, this method can consider only specific brake values and

also increases the calculation time.

Some papers generate a convex safe envelope based on the driving mode, and plan

the longitudinal and lateral motions to keep the vehicle in the safe envelope [69],[70].

Schildbach et al. [49] plan a time for lane change and performs obstacle avoidance based

on this time. They keep the vehicle in the rectangular safe envelope of the current lane for

time steps less than the planned time and in the rectangular safe envelope of the current

lane and the intended lane for time steps larger than the planned time. These methods

consider a predefined envelope structure for each driving mode. They keep the structure

of the envelope, and therefore, lose a large portion of the obstacle-free area.

Some other papers consider a linear constraint for each obstacle. Nilsson et al. [46]

generate a linear constraint with a constant slope for each obstacle ahead of the vehicle.

The constraint line is determined such that the constraint keeps longitudinal and lateral

safety distances from the obstacle. A similar constraint is also generated for an obstacle

behind the vehicle. However, for these constraints, if the longitudinal safe distance is

small, the constraint causes difficulties for a vehicle passing an obstacle on its side, and

if it is large, a section of the space behind the obstacle cannot be used for a maneuver

of stopping behind the obstacle. Jalalmaab [45] use similar constraints but considers a

horizontal constraint for the situation that the obstacle is on a different lane from the

vehicle, and it is close to the vehicle in the longitudinal direction. This variation cannot

solve the mentioned problem for the obstacles on the same line as the vehicle.

Carvalho et al. [58] generate a constraint based on the signed distance of the vehicle

and the obstacle. The signed distance of two objects is their minimum distance if they are

not in contact. The constraint constrains the signed distance to be non-negative, which is

non-convex. The paper linearizes the constraint around the predicted states. This method

generates a linear constraint with slopes based on the relative position of the vehicle and the

obstacle, and solves the problems existing for the constraints presented by [46]. However,

for an obstacle in front of the vehicle, this method generates a constraint limiting the
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vehicle to stop behind the obstacle and does not allow a swerving maneuver. An obstacle

is defined to be in front of the vehicle if it is ahead of the vehicle with no lateral distance

from the vehicle.

In this thesis, different PFs are included in the MPC cost function for different kinds of

obstacles to put priority on obstacles based on the their avoidance necessity. The obstacles

are categorized as crossable and non-crossable obstacles; a crossable obstacle, like a bump,

can be crossed but avoidance is preferred, and a non-crossable obstacle, like a car, should

be avoided. A convex quadratic approximation is performed on the PFs so that they can

be used in a quadratic MPC.

Obstacle constraints are applied on the non-crossable obstacles. As mentioned, the

linearized signed distance obstacle constraints do not allow the vehicle to swerve when

there is an obstacle in front of it. However, there are situations such that stopping behind

an obstacle is not feasible but avoiding the obstacle by swerving is possible. Therefore, the

vehicle misses its optimal solution if it uses the constraint set generated by this method

of convexification. In this thesis, in addition to this constraint set, two constraint sets are

generated, which include swerving maneuvers. IQMPC is introduced to solve the motion

planning MPC for the union of the three constraint sets to fix the previously mentioned

problem. The non-crossable obstacles are also prioritized in IQMPC using lexicographic

optimization explained in the following section.

2.4 Lexicographic Optimization

Lexicographic Optimization (LO) is a method to prioritize objective functions of an opti-

mization problem. Generally, an optimization problem with multiple objective functions

does not have a solution that minimizes all the objective functions. A weighted sum of

the objective functions can be solved to find a pareto-optimal solution of the problem [71].

If an objective function has priority over another objective function, this method is not

appropriate, since it does not necessarily minimize the objective function with the higher

priority order. Using LO, it is possible to consider priorities on the objective functions

[72]. It finds the optimal solution set of an objective function in the optimal solution set of
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the objective function with the higher priority order. The optimal solution of the objective

function with the lowest priority order is the optimal solution of the problem.

In an MPC problem, where constraints can cause infeasibility, slack variables are added

to the constraints to avoid infeasibility. Terms containing slack variables are also added

to the objective function to penalize constraint violations. Priorities can exist on the

constraints, i.e. violating some constraints can be less favorable than violating other con-

straints. LO can include the priority orders of the constraints in the MPC problem by

prioritizing the penalizing terms of the constraint violations [73]. In this thesis, LO is

applied on the motion planning MPC problem to prioritize non-crossable obstacles by

prioritizing the obstacle constraints based on the priority orders of their corresponding

obstacles.

2.5 Summary

In this chapter, the background on a motion planning MPC was presented. The main fo-

cus of this thesis is to develop a platform for autonomous vehicles that plans the vehicles’

trajectories based on the obstacles’ priorities for near-crash situations. Such a platform

has not been developed in the literature. In an autonomous vehicle, the motion planning

module is the module that plans the vehicles’ trajectory and performs the obstacle avoid-

ance task. Therefore, in this thesis, the platform is developed by developing the motion

planning module; a motion planning module is developed that plans vehicle’s trajectories

based on obstacles’ priorities.

As explained in Section 2.1, a motion planning module should consider vehicle dynamics

in its planning so that it can utilize all the vehicle capacity to plan the best feasible

trajectory. If the motion planning module also generates the actuator commands, it covers

the tasks of the trajectory tracking module. Such a motion planning module can perform

the tasks of both the motion planning and trajectory tracking modules in a unified manner.

In this thesis, such a motion planning method is used.

Section 2.2 discussed different motion planning techniques presented for autonomous

road vehicles. As explained, among the techniques, the MPC technique can systematically
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consider the vehicle model and the vehicle’s and obstacles’ constraints. It can also be

quickly solved. Therefore, this technique is used for motion planning in this thesis.

Section 2.3 presented the background on MPC motion planning for autonomous road

vehicles. As explained, a motion planning MPC is generally a nonconvex problem since the

vehicle model is nonlinear and the obstacle avoidance PFs and constraints are nonconvex.

A nonconvex MPC problem has a high calculation time. If the vehicle model is linear,

the PFs are quadratic, and the obstacle’s and vehicle’s constraints are linear, the MPC

becomes a quadratic MPC, which can be solved in real-time. In this thesis, a quadratic

MPC is developed for motion planning.

Section 2.3.1 explained the vehicle models used in motion planning MPCs. As discussed,

unlike a vehicle point-mass model and a vehicle kinematics models, a vehicle dynamics

model can predict the vehicle’s longitudinal and lateral behavior appropriately in all ranges

of speed and lateral acceleration. It is because a vehicle dynamics model includes the

tire model in the vehicle model. For a quadratic MPC, a linear vehicle model should

be used. A linear bicycle model is linear and is used as a vehicle dynamics model. As

explained, the model can use a linear tire model accompanying constraints on tire sideslip

angles. Moreover, for large tire forces, the effects of load transfer and combined tire slip

on vehicle dynamics are significant. However, in the literature, there is no linear bicycle

model modeling longitudinal and lateral motions for a motion planning MPC that considers

combined tire slip. In this thesis, combined tire slip constraints are developed for the vehicle

model, which is a linear bicycle model modeling the longitudinal and lateral motions. The

tire constraints also cover the constraints on tire side slip angles. Longitudinal load transfer

effect is also applied on the constraints.

Section 2.3.2 discussed that obstacle avoidance in motion planning MPCs is performed

by PFs or obstacle constraints. As mentioned, a repulsive PF can be used for an obstacle

to keep the vehicle away from it. In this thesis, different types of functions are used

for obstacles to prioritize non-crossable obstacles over crossable obstacles; hyperbolic PFs

are assigned to non-crossable obstacles to avoid crossing them, and exponential PFs are

assigned to crossable obstacles to allow crossing them.

As discussed in Section 2.3.2, the obstacles’ constraints can also be utilized for obstacle
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avoidance to generate the obstacle-free area. An obstacle-free area is nonconvex in gen-

eral. Several methods were discussed that approximate the obstacle-free area by linear

constraints to be used for a quadratic MPC. To plan the longitudinal and lateral motions

simultaneously, a safe envelope can be developed or a linear constraint can be used for each

obstacle. It is important that the constructed area covers the useful parts of the obstacle-

free area. The safe envelopes and the linear constraints with constant slopes fail to do so

since their predefined structure limit their covering. An appropriate presented method is

the linearized signed distance method since its slope varies based on the obstacle’s relative

position. However, this constraint limits the vehicle to stay behind an obstacle in front

of the vehicle, and does not allow swerving. There are situations where stopping behind

the obstacle is not possible, but obstacle avoidance through swerving is possible. In these

situations, the constraint set developed by the signed distance method fails to cover the

optimal trajectory. In this thesis, in addition to this constraint set, two constraint sets are

generated for swerving. IQMPC is introduced to solve the motion planning MPC for the

union of the three constraint sets to fix the mentioned problem.

As discussed in Section 2.4, LO can be used to prioritize the objective terms of an

optimization problem. It can apply priority on the constraints of an MPC problem. In this

thesis, constraints are applied on a non-crossable obstacle. The obstacles are prioritized by

prioritizing their corresponding constraints through LO. Using this method, in a situation

where a crash is unavoidable, the vehicle avoids the obstacles with the highest priorities.
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Chapter 3

Potential-Field-based Motion

Planning MPC

3.1 Introduction

In this chapter, a motion planning MPC is developed that utilizes the potential field

obstacle avoidance method to prioritize obstacles. It prioritizes obstacles by assigning

different potential functions to them corresponding to their avoidance necessity. This

chapter is mainly developed based on the work of Rasekhipour et al. [74].

The motion planning MPC introduced in this chapter is quadratic. Therefore, its

objective function should be quadratic, and its model and its constraints should be linear.

A linear bicycle vehicle model is used to model the vehicle behavior in the MPC. The model

uses linear tire models, and tire constraints are included in the MPC to keep the model valid

at different operating conditions. The tires have limited capacities, which are considered

in the constraints by including tire combined slip limitations and the effect of longitudinal

load transfer on the limitations. With these constraints, the MPC can generate feasible

trajectories on tire force limits since the vehicle model considers its limitations through

the constraints. The constraints also keep the tire in its linear lateral force region to keep

the linear tire models, and subsequently, the vehicle model, valid.
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In this chapter, first, the correlations of the motion planning module with other modules

of an autonomous vehicle is discussed. Next, the equations of motion of a bicycle model

are presented. The equations are linearized and discretized for use in the MPC problem.

The tire constraints are also presented and linearized for use in the MPC problem. Next,

potential functions are presented for the road structure and different kinds of obstacles to

generate the potential field. Then, the MPC problem is constructed based on the vehicle

model, constraints, and potential field. The motion planning MPC is evaluated with a

high fidelity CarSim simulation under complicated scenarios, and the results are presented

and discussed.

3.2 Autonomous Vehicle Architecture

The correlations of the motion planning module with other modules of an autonomous

vehicle are discussed in this section. Figure 3.1 illustrates the correlations through the

architecture of an autonomous vehicle. The motion planning module plans the vehicle’s

trajectory so that it avoids obstacles, complies with road regulations, follows the desired

commands, and provides the passengers with a smooth ride. It is assumed that the module

receives information of the obstacles, road, vehicle, and desired commands from the other

modules.

The obstacle information includes the position, velocity, size, and category of each

obstacle. The road information consists of the road profile, the number of lanes, and the

widths of the lanes. The vehicle information includes the vehicle’s position, heading angle,

longitudinal velocity, lateral velocity, yaw rate, and normal tire forces. The obstacle, road,

and vehicle information are provided for the motion planning module from the perception

module [75],[76] and the estimation module [77],[78]. Moreover, the desired commands

including the desired lane and speed are generated in the behavioral planning module.

It is assumed that each obstacle moves with the same longitudinal and lateral velocities

as its current velocities for predicting its position in MPC. The risk due to uncertain

behaviors of the obstacle as well as errors in the estimation of the vehicle’s and the obstacle’s

states is considered in generating the safe distance of the potential functions. Moreover,
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Figure 3.1: Architecture of an autonomous vehicle.

the running step time of the MPC is 50ms, and any change in the behavior of the obstacle

is considered in the planned motion of the vehicle rapidly.

The motion planning module calculates the driving commands including the front steer-

ing angle and the total longitudinal force commands. These choices of commands corre-

spond to the driver commands, which include steering wheel angle and the gas/brake pedal

positions, so for a semi-autonomous vehicle, switching between the autonomous system and

the driver can be performed simply.

The vehicle model used for the predictions of MPC is a linear model, which models

only longitudinal, lateral, and yaw motions of the vehicle, and does not consider roll, pitch

and bounce motions of the vehicle. However, roll, pitch, and bounce motions of the vehicle

do not correspond to the motion of the vehicle on the road, and only correspond to the

vertical tire forces, which are assumed to be available for the motion planning module from

the estimation module. Furthermore, the vehicle parameters of the vehicle are assumed

to be constant. However, if their values change, and the estimation module estimates the

parameters, the vehicle model can be updated by the estimated parameters easily. The
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perception, estimation, and robustness analysis are out of scope of this thesis.

3.3 Vehicle Dynamics Model

A bicycle model is used to model the vehicle dynamics. The notation used in the vehicle

model is shown in Fig. 3.2. The equations of motion of the bicycle model are [79]:

Ẋ = u cos(θ)− v sin(θ), (3.1a)

Ẏ = v cos(θ) + u sin(θ), (3.1b)

θ̇ = r, (3.1c)

m(u̇− vr) = FxT , (3.1d)

m(v̇ + ur) = Fyf + Fyr , (3.1e)

Iz ṙ = lfFyf + lrFyr , (3.1f)

in which X, Y , and θ are the vehicle’s longitudinal position, lateral position, and heading

angle in the global coordinate, u, v, and r are the vehicle’s longitudinal velocity, lateral

velocity, and yaw rate at its center of gravity, m is the vehicle’s mass, Iz is the vehicle’s

momentum of inertia around its vertical axis, FxT denotes the total longitudinal force of

tires, Fyf and Fyr are the total lateral forces of the front and rear tires, and lf and lr are

the distances from the vehicle’s center of gravity to the front and rear axles, respectively.

The vehicle is assumed to have a front steering system. A linear tire model is used for

the lateral tire forces [79]:
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Figure 3.2: Vehicle bicycle model.

Fyf = Cfαf = Cf

(
δ − v + lfr

u

)
, (3.2a)

Fyr = Crαr = Cr

(
−v − lrr

u

)
, (3.2b)

where δ is the steering angle, αf and αr are the sideslip angles of the front and rear

tires, and Cf and Cr are the cornering stiffness values of the front and rear tires. Figure

3.3 illustrates the tire’s nonlinear behavior and its linear approximation with a linear

tire model. The tire’s sideslip angles should be limited to keep the linear approximation

valid. The cornering stiffness values and the sideslip angle limit are calculated considering

three criteria: 1) the error between the linear model and the nonlinear behavior should be

small in the limited sideslip angle range to keep the tire model valid, 2) the lateral tire

force at the sideslip angle limit should be close to the maximum lateral tire force so that

most of the lateral tire force capacity is available for the vehicle model, 3) the lateral tire

force calculated by the linear tire model at the sideslip angle limit should be equal to the

maximum lateral tire force so that the tire force ellipse constraint explained in the next

section constrains the tire force to remain within its linear region [26].

Equations (3.1) and (3.2) are linearized around the vehicle’s operating point to obtain

the linear vehicle dynamics:
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Figure 3.3: Linear tire model approximation.

ẋ = Ax + Buc, (3.3a)

x = [X Y θ u v r]T , (3.3b)

uc = [FxT δ]T , (3.3c)

in which x and uc denote the state and input vectors, and A and B are the state and input

matrices. The linear model is discretized through the zero order hold method for use as

the model of the MPC.

3.3.1 Vehicle constraints

A road vehicle has limitations on the actuator capacities and the tire force capacities.

Actuator capacities are considered as constraints:

|δ| ≤ δmax, (3.4)
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Fx ≤
Tmax
Reff

, (3.5)

where δmax is the maximum steering angle, Reff is the effective radius of the wheels, and

Tmax is the maximum propelling torque. Since the propulsion system of the vehicle in this

thesis includes four in-wheel motors, Tmax is the total sum of the maximum motor torques.

It is notable that in (3.5), wheel dynamics is neglected. Constraints are also applied on

the rate of change of steering angle:

|∆δ| ≤ ∆δmax, (3.6)

where ∆δ is the change of the steering angle in one step, and ∆δmax is its capacity.

Moreover, since the tire’s longitudinal and lateral forces cannot exceed the friction

ellipse, the model predictive controller should consider this limitation in its prediction to

have an accurate prediction:

(
FxT

FxT−max

)2

+

(
Fy∗

Fy∗−max

)2

≤ µ2, (3.7)

where FxT−max is the maximum total longitudinal tire force , Fy∗−max, for ∗ = f, r, is the

maximum front or rear lateral tire force, and µ is the tire-road friction coefficient. It is

notable that these constraints also limit the lateral tire forces to remain in their linear

region.

The maximum forces in the constraint equations of (3.7) are dependent on the load

transfer. Since the bicycle vehicle dynamics considers the total forces of the tires on the

same wheel track, the lateral load transfer is ignored. The effects of longitudinal load

transfer on the vertical front and rear tire forces is:

Fzf =
Wlr − FxTh
lf + lr

, (3.8a)
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Fzr =
Wlf + FxTh

lf + lr
. (3.8b)

where Fz∗ , for ∗ = f, r, is the front or rear vertical tire force, h is the height of the vehicle’s

center of gravity from the ground, and W is the vehicle’s weight. The maximum total

longitudinal tire force is not affected by load transfer. However, the longitudinal load

transfer affects the maximum lateral force in (3.7). Assuming that the lateral tire force

capacity changes linearly with respect to the vertical tire force:

Fy∗−max = Fy∗0−max
Fz∗
Fz∗0

. (3.9)

in which Fy∗0−max and Fz∗0 , for ∗ = f, r, are the nominal maximum lateral front or rear

tire force and the nominal vertical front or rear tire force, where nominal forces are the

forces with no load transfer.

The longitudinal load transfer effect is included in the tire force ellipse constraints by

applying (3.8) and (3.9) on (3.7):

(
FxT

FxT−max

)2

+

(
Fyf

Fyf0−max
.

W lr
Wlr − FxTh

)2

≤ µ2, (3.10a)

(
FxT

FxT−max

)2

+

(
Fyr

Fyr0−max
.

W lf
Wlf + FxTh

)2

≤ µ2. (3.10b)

The resultant constraints are illustrated in Fig. 3.4. In these figures, the longitudi-

nal/lateral force ratio is the ratio of the longitudinal/lateral tire force to the nominal

maximum longitudinal/lateral force. The constraints are nonlinear but convex. They are

approximated by linear constraints so that they can be used in the quadratic MPC problem.

Each constraint is approximated by a octagon inscribed in it. The hexagon is calculated

by minimizing the area between the original constraint and its hexagon approximation to

maximize the available tire force for the vehicle model.
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Figure 3.4: Tire force constraints and their polyhedral approximations, a) front tire force

constraint, b) rear tire force constraint

Moreover, the vehicle speed should not exceed the maximum speed limit. The limit is

considered by a constraint:

u ≤ umax, (3.11)

where umax denotes the maximum allowed vehicle speed.

3.4 Potential Field

A potential field is a field generated by the obstacle and goal Potential Functions (PFs)

to lead the vehicle toward the goal while keeping it away from the obstacles. A goal PF

has a minimum at the goal so that the goal attracts the vehicle, and an obstacle PF has a

maximum at the obstacle position so that the obstacle repulses the vehicle. In this thesis,

the task of leading the vehicle towards its goal is performed by the tracking terms in the
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objective function of the motion planning MPC. Therefore, the potential field generated

here is repulsive only, and is constructed of obstacle PFs. A PF, URq , is defined for the lane

markers to prevent the vehicle from going out of the lane. The obstacles are categorized

as crossable and non-crossable obstacles, and a PF is defined for each category based on

it avoidance necessity, UNCi
for a non-crossable obstacle and UCj

for a crossable obstacle.

The potential field, U , is the sum of the PFs:

U =
∑
i

UNCi
+
∑
j

UCj
+
∑
q

URq , (3.12)

where indices i, j, and q denote the ith non-crossable obstacle, the jth crossable obstacle,

and the qth lane marker, respectively. The presented functions below are some sample

functions; other functions can be used for modeling other road regulations and obstacles.

3.4.1 Non-crossable Obstacles

Non-crossable obstacles are obstacles that should not be crossed since they are either

important themselves, like a pedestrian, or can cause a damage to the vehicle, like a car. A

hyperbolic function of the distance between the vehicle and the obstacle is used to generate

the potential field caused by this kind of obstacle. The rate of change of the function strictly

increases as the distance decreases, and it approaches to infinity, which prevents the vehicle

from crossing the obstacle. Schulman et al. [80] use the Signed Distance (SD) between

the vehicle shape and the obstacle shape for collision avoidance. Figure 3.5 shows the

signed distance of two shapes. The SD is the minimum distance of the shapes if there is

no contact between the shapes, and the negative of the penetration distance if there are

contact points. More information on the signed distance can be found in [81].

The PF is generated as a function of the SD, si:

UNCi
(X, Y ) =

ai

si(
X
Xsi

, Y
Ysi

)bi
, (3.13)
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where ai and bi are intensity and shape parameters of the PF, respectively. A SD is a

function of the position of the vehicle and the obstacle and their shapes. But, since the

position of the obstacle and the shapes of the vehicle and the obstacles are know prior to

generation of the potential function, si is demonstrated as a function of vehicle position

only in (3.13). In addition, the vehicle needs to have a larger distance to the obstacle in

the longitudinal direction than the lateral direction. Therefore, the SD is normalized by

the safe longitudinal and lateral distances from the obstacle, Xsi and Ysi , which are defined

as:

Xsi = X0 + uT0 +
∆u2

ai

2an
, (3.14a)

Ysi = Y0 + (u sin θe + uoi sin θe)T0 +
∆v2

ai

2an
, (3.14b)

In (3.14a) for the safe longitudinal distance, the first term is the minimum safe longitudinal

distance, X0, and the second term is the distance spanned by the vehicle during the safe

time gap included to consider the risk due to vehicle speed. The third term of this equation

is the distance corresponding to the longitudinal velocity difference between the vehicle and

the obstacle included to consider the risk due to the speed difference [82]. In (3.14b) for

safe lateral distance, the first term is the minimum safe lateral distance, Y0, and the second

term is the lateral distance spanned by the vehicle and the obstacle during the safe time

gap if they have the constant heading angles of θe toward each other, which is included

to consider the risk due to vehicle and obstacle speed. The third term of this equation is

the distance corresponding to the lateral velocity difference between the vehicle and the

obstacle included to consider the risk due to lateral velocity difference. The safe time

gap, denoted by T0, compensates for the vehicle response time, and its value is assigned

accordingly. Furthermore, uoi is the longitudinal velocity of the ith obstacle, an is the

normal acceleration, and ∆uai and ∆vai are the approaching velocities in the longitudinal

and lateral directions. In each direction, the approaching velocity is set to the velocity

difference between the vehicle and the obstacle if they are approaching, and it is set to

zero otherwise. The SD is normalized due to the desire that the distance of the vehicle and
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the obstacle in longitudinal orientation is more than the safe longitudinal distance and in

lateral orientation is more than the safe lateral distance.

Figure 3.5: Signed distance of two shapes [58].

Moreover, a zero SD results in an infinite PF. In addition, with this PF, the vehicle

would have no longitudinal response to the obstacle approaching from the side if the lon-

gitudinal component of the SD is zero but a driver would brake in this situation. These

issues are resolved with a modification in the calculation of the SD; if the longitudinal

distance between the vehicle and the obstacle is less than a threshold, ∆X0, it is set to

∆X0 with the obstacle being ahead.

If the vehicle and the obstacle are approaching each other, there is a region around the

obstacle where the vehicle cannot avoid a collision. The longitudinal and lateral collision

distances, Xci and Yci , are defined as the maximum distances from the obstacle in the lon-

gitudinal and lateral directions at which the collision cannot be avoided. In each direction,

the collision distance is the distance required to change the approaching velocity to zero

by modifying the vehicle velocity with the maximum acceleration, amax:

Xci =
∆u2

ai

2amax
, (3.15a)

Yci =
∆v2

ai

2amax
, (3.15b)
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The intensity and shape parameters of (3.13) are calculated by assigning the safe po-

tential parameter, Usaf , and the accident potential parameter, Uacc, to the PF at the safe

distance and the collision distance, respectively:

UNCi
=

Usaf si = 1

Uacc si = sc
. (3.16)

It is notable that in order to be at the safe distance from the obstacle, the vehicle

just needs to be at the safe distance in either lateral or longitudinal direction. The same

expression holds for the collision distance. Therefore, the collision SD, sc, is the maxi-

mum of the corresponding SD of the longitudinal collision distance and the corresponding

SD of the lateral collision distance. The potential field of an obstacle vehicle located at

(Xoi , Yoi) = (20, 3.5)m and moving at the same speed as the vehicle at 80Km/h is shown

in Fig. 3.6.
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Figure 3.6: Non-crossable obstacle potential field.
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3.4.2 Crossable Obstacles

Crossable obstacles are obstacles that can be crossed without any damage, but it is pre-

ferred not to cross them, if possible, like a low profile object or a bump on the road. The

PF of such an obstacle is defined with an exponential function:

UCj
(X, y) = aje

−bjsj( X
Xsj

, Y
Ysj

)
, (3.17)

where sj is the normalized SD between the vehicle and the obstacle calculated similar to

(3.13),(3.14). aj and bj are also the intensity and shape parameters, which are calculated

similar to (3.14)-(3.16) except that the uncomfortable potential parameter, Uunc, is assigned

to the PF at the collision distance.

The exponential function repulses the vehicle from the obstacle everywhere because of

its positive gradient. But, at positions close to the obstacle, the gradient decreases as the

distance to the obstacle decreases, which allows the vehicle to cross the obstacle. Figure

3.7 shows the potential field generated by this function for a similar situation to that of

Fig. 3.6.

3.4.3 Lane boundaries

In a structured road, the vehicle should not cross the road lane markers unless a lane

change is desired. To avoid undesirable lane marker crossings, PFs are defined for lane

markers:

URq(X, Y ) =

aq (sq(X, Y )−Da)
2 sq(X, Y ) ≤ Da

0 sq(X, Y ) > Da

, (3.18)

where sq is the SD of the vehicle from the lane marker, Da is the allowed distance from the

lane marker, index q = r, l denotes the right or left lane marker, and aq, is the intensity
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Figure 3.7: Crossable obstacle potential field.

parameter calculated by assigning the lane marker potential parameter, Ulma, to the PF

at zero SD.

If a lane keeping is intended, the right and left lane markers are the ones on which the

PFs are implemented. If a lane change is intended, the PF is not implemented on the lane

marker that can be crossed for the lane change. It is implemented on the next lane marker

instead. The lane marker PFs are defined with quadratic functions, and their gradients

increase linearly as the SD decreases. Therefore, the vehicle can cross the lane markers to

any extent, but the farther the vehicle goes from the middle of the lane, the harder the

PF pushes it toward there. Figure 3.8 shows the road PF for a lane change maneuver on

a two lane road.

3.5 MPC Problem

In this section, a motion planning MPC is developed with the presented vehicle dynamics

model and constraints. The presented potential field for obstacles and road regulations is

added to the controller objective function to include obstacle avoidance and road regulation
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Figure 3.8: Lane potential field for a lane change.

observation to the MPC. The model predictive controller predicts the response of the

vehicle up to a horizon, and optimizes the vehicle dynamics, command following, obstacle

avoidance, and road regulations observation up to that horizon based on the predicted

values.

It is assumed that the desired lane and speed are predefined. Therefore, the desired

lateral position, which is the center of the desired lane, and the desired longitudinal velocity

are the outputs to be tracked:

y = [Y u]T , (3.19a)

ydes = [Ydes udes]
T , (3.19b)

Ydes = (ldes − 1/2)Lw + ∆YR, (3.19c)

where y is the output vector tracking the desired output vector, ydes, Ydes is the desired

lateral position, udes is the desired vehicle speed, Lw is the lane width, ∆YR is the lateral
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offset of the road compared to a straight road, and ldes is the index number of the desired

lane counted from the right.

The constraints of (3.10) and (3.11) are applied in the optimal control problem as

soft constraints. A soft constraint can be violated, but its violation is penalized. A slack

variable is added to the constraint equation to allow some violation, and it constructs a

penalty term in the objective function of the MPC to penalize the violation. It is notable

that although surpassing the tire ellipses is physically impossible, the constraints on the

tire forces are considered soft. It is because the constraints are models of the actual tire

limitation and might differ from the exact limitations. Moreover, the errors in the estimated

states might also cause constraint violations. Therefore, the tire constraints are considered

as soft constraints to avoid infeasiblity due to constraint violation.

The motion planning MPC problem is:

min
uc,εεε

Np∑
k=1

(
U t+k,t+‖yt+k,t−yt+k,tdes ‖

2
Q+‖ut+k−1,t

c ‖2
R+‖ut+k−1,t

c −ut+k−2,t
c ‖2

S

)
+‖εεε‖1

λλλ, (3.20a)

s.t.(k = 1, . . . , Np)

xt+k,t = Adx
t+k−1,t + Bdu

t+k−1,t
c , (3.20b)

yt+k,t = Cxt+k,t + Dut+k,tc , (3.20c)

yt+k,ts = Csx
t+k,t + Dsu

t+k,t
c , (3.20d)

yt+k,ts ≤ yt+k,ts−max + εεε, (3.20e)

εεε ≥ 0, (3.20f)

ut+k,tc = ut+k−1,t
c , k > Nc, k 6= c2Nrc +Nc, c2 = 1, . . . , (Np −Nc)/Nrc, (3.20g)
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ut−1,t
c = uc(t− 1), (3.20h)

xt,t = x(t), (3.20i)

where t + k, t index denotes the predicted value at k steps ahead of the current time t,

Np is the prediction horizon, and εεε is the vector of slack variables. The objective function

includes the predicted potential field defined in (3.12), quadratic terms of tracking, inputs,

and changes in inputs with weighting matrices Q, R, S, respectively, and first norm of

slack variables weighted with λλλ. The quadratic terms of the input and the changes in the

input are included to minimize the consumption energy and the jerk, respectively. The

states are predicted through (3.20b), which is obtained by discretizing (3.3a) to obtain Ad

and Bd as the discrete state and input matrices. Equation (3.20c) calculates the tracking

outputs, where C and D are the output and feedforward matrices. The constraint on the

actuators, (3.4)-(3.6), on the vehicle speed, (3.11), and corresponding linear constraints

of the tire capacity constraint, (3.10), are presented in (3.20e), where ys is the vector of

constraint variables and is bounded by ys−max, the vector of constraint bounds, and the

slack variable vector is included to allow violation of the bounds. The slack variables

corresponding to actuator constraints are set to zero since they cannot be violated. The

constraint variables are linearized around the operating point, which are to be written as

a function of states and inputs in (3.20d), where Cs and Ds are the constraint output and

feedforward matrices. The computation cost is reduced by reducing the number of control

inputs in (3.20g); after the first Nc prediction steps, the control inputs change every Nrc

steps.

The presented optimization problem can be solved for any PF. However, because of

the nonlinear nonconvex PFs, the problem is nonlinear and nonconvex, and its solution

is expensive. Its approximated quadratic convex problem can be solved noticeably faster.

Thus, to reduce the calculation time, the problem is converted into a quadratic convex

problem. To do so, the PFs are first approximated by convex functions.

The PFs are defined on (X, Y ). Olfati-Saber [83] defines the obstacle PF only in the

SD’s direction to generate the repellent force. For each obstacle and at each prediction

step, the PFs defined in this chapter are transformed to a coordinate, (ξi, ηi), that has one

axis (ξi) in the direction of the SD:

40



[
ξi

ηi

]
=

[
cos γ sin γ

− sin γ cos γ

][
sXi

sYi

]
. (3.21)

Figure 3.9 illustrates the coordinate transformation. The black coordinate is the road

coordinate and the red coordinate is the SD coordinate, which is normalized with the safe

distances. The red rectangle is the vehicle in this coordinate, and si is the SD. The vehicle

position at the prediction step k is anticipated based on the vehicle speed and heading

angle at time step t. The angle between the SD at this position and sXi
-axis is γ. The

blue coordinate, (ξi, ηi), is obtained by rotating the SD coordinate by this angle.

𝜂𝑖  

𝑠𝑖  

𝑋 

𝑌 

𝜉𝑖 

obstacle 𝑖 

vehicle 

𝑠𝑋𝑖
 

𝑠𝑌𝑖  

𝛾 

Figure 3.9: Coordinate Transformation.

The PFs defined in Section 3.4 can all be written as a function of si instead of (X, Y ).

In other words, for a PF, g : R2 → R, there is a function, h : R→ R, that h(si) = g(X, Y ).

Moreover, the PF, g, can be transformed from (X, Y ) to (ξi, ηi) by (3.21) to obtain the

transformed PF, gT : R2 → R, where gT (ξi, ηi) = g(X, Y ). Considering the definition of

the SD, the gradient and Hessian of gT are:

si =

 (ξ2
i + η2

i )
1/2 no contact

−(ξ2
i + η2

i )
1/2 in contact

, (3.22a)

∇gT =
[
ξi
si
h′ ηi

si
h′
]T
, (3.22b)
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∇2gT =

 ξ2is2i h′′ + s2i−ξ2i
s3i

h′ ξiηi
s2i
h′′ − ξiηi

s3i
h′

ξiηi
s2i
h′′ − ξiηi

s3i
h′

η2i
s2i
h′′ +

s2i−η2i
s3i

h′

 , (3.22c)

where h′ and h′′ are the first and second derivatives of function h with respect to si.

From (3.22b), it can be seen that, at the anticipated vehicle position, the gradient is in

ξi direction, i.e. the repellent force is only in the direction of the SD, as it is in [83].

Moreover, due to (3.22c), the Hessian matrix is uncorrelated at the anticipated vehicle

position in the new coordinate. Therefore, the function is convex at this position if both

diagonal elements are non-negative. If any diagonal element is negative, the function is

linearized at the corresponding direction of the element, using the first order Taylor series.

The resulting function is a convex function convexified around the anticipated operating

point.

The convex function is then transformed to the original coordinate, (X, Y ). Since

convexity holds for a linear transformation, the transformed function is also a convex

function. The whole process is equivalent to an eigenvalue decomposition process that

only keeps the positive eigenvalues. Therefore, the Hessian of the resulted function is

the closest positive definite matrix to the Hessian of the original function in terms of the

Frobenius norm [84].

The resulting convex function is then approximated by a quadratic function through

the second order Taylor series. The quadratic function is a close convex quadratic ap-

proximation of the original function around the nominal point; its gradient equals the

original function’s gradient, and its Hessian matrix is the closest positive definite matrix

to the original function’s Hessian matrix in terms of the Frobenius norm. The quadratic

approximation adds calculation time spent on transformations, first and second deriva-

tives, and Taylor series approximations. However, the added time is negligible compared

to the calculation time of the optimization problems. Using the resulting PFs, the optimal

control problem is a convex quadratic optimization problem. The problem is similar to

a corresponding nonlinear problem solved by Sequential Quadratic Programming (SQP)

in one sequence. Boggs et al. [85] derive an upper bound for the optimization error of

each sequence of SQP, where the optimization error is the difference between the result of

the sequence and the local minimum of the nonlinear problem in the neighborhood of the
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problem’s initial value. Based on this upper bound, for the quadratic problem, the closer

the problem’s initial value is to the minimum, which is equivalent to the anticipated vehicle

point being closer to the vehicle position at the minimum, the smaller the optimization

error. Moreover, the closer the calculated Hessian matrices of the PFs to their Hessian ma-

trices at the minimum, the smaller the optimization error. Therefore, a PF with a smaller

convex quadratic approximation error and a smaller variation of the Hessian matrix in the

neighborhood of the problem’s initial value result in a smaller optimization error. In the

next section, the performance and the calculation time of the nonlinear problem and the

quadratic problem are compared for a scenario. The other scenarios are simulated only for

the quadratic problem.

3.6 Results

3.6.1 Test Scenarios

Roads are dynamic environments with obstacles moving at different speeds in different

lanes and positions. The roads themselves might be curved, and a lane might end or

begin. Moreover, a vehicle might be required to change its lane or stay in the lane to

take an exit or turn. For any combination of the obstacles, road, and intended lane, the

undertaken maneuver might be different. In this section, some test scenarios are defined

to evaluate the performance of an autonomous driving system. Some normal scenarios for

an autonomous driving system are:

• Lane keeping on curved roads,

• Lane changing with no obstacle in the vicinity,

• Keeping a desired distance from the vehicle in front of the ego vehicle (adaptive cruise

control).

Other more complicated scenarios that an autonomous driving system should be able to

perform include:
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• Lane changing while there are vehicles on the intended lane,

• Merging into a highway while there are vehicles on the right lane,

• A vehicle carelessly approaching the ego vehicle from the side,

• Non-crossable static obstacle on the lane,

• Crossable static obstacle on the lane.

The aforementioned complicated maneuvers are only some of the many cases that might

happen when driving on a road. However, they can evaluate the performance of motion

planning systems in observing safety and road regulations. The first and second cases test

the vehicle in observing safety and road regulations in a lane change. The vehicle should

change the lane as soon as it is safe and keep its lane if it is not safe. In the second case,

the current lane is ending and the vehicle may need to reduce its speed or even stop before

the lane ends. The corresponding maneuvers of these situations include normal maneuvers

such as lane changing and modifying speed to keep distance from the obstacles.

The third case tests the motion planning system in predicting the lateral movement of

the obstacles and taking action in emergency situations while observing the road regula-

tions. The vehicle should be able to predict the obstacle’s path and avoid the accident

while keeping its lane, which is performed by keeping some space from the obstacle via

accelerating or decelerating. It includes simple maneuvers such as lane keeping and keeping

a safe distance from the obstacles.

The fourth and fifth cases test the motion planning system for observation of the road

regulations. The vehicle should keep its lane; if there is enough lateral space on the lane, it

should pass the obstacle on the side; otherwise, it should stop behind the obstacle or cross

it. It also tests the motion planning system for prioritizing obstacles. In the situation that

there is not enough lateral space for passing the obstacle on the side, if the obstacle is not

crossable, the vehicle should stop behind it, and if it is crossable, the vehicle should cross

it.

Altogether, these cases are appropriate for evaluating the performance of motion plan-

ning systems in observing the safety and road regulations, obstacle avoidance, and longi-
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tudinal and lateral maneuverability. They also evaluate how the motion planning system

performs in prioritizing obstacles based on their avoidance necessities. The following test

scenarios are defined based on the mentioned cases:

Scenario 1 : The vehicle is merging onto a highway and its lane ends in 150m. It should

change its lane from Lane 1 to Lane 2 while there are three vehicles in Lane 2. There is

not enough space between these vehicles for the ego vehicle to merge safely between them.

Scenario 2 : The vehicle starts in Lane 1 and is commanded to change its lane while there

are three vehicles in Lane 2. There is enough space between these vehicles for the ego vehicle

to go in between them. The road is curved with a radius of 300m for X =
[
200 250

]
m

and a radius of −300m for X =
[
250 300

]
m.

Scenario 3 : The vehicle starts in Lane 1 and is commanded to stay in Lane 1. There is

a vehicle in Lane 2 at the same longitudinal position and with the same speed as the ego

vehicle. It moves laterally from the center of Lane 2 towards the center of Lane 1 with a

constant lateral velocity in the time interval of t =
[
1 6

]
m. The ego vehicle should make

enough space for it to avoid collision.

Scenario 4 : The vehicle starts in Lane 1 and is commanded to stay in Lane 1. There

is a static non-crossable obstacle on Lane 1 located at 0.5m from the right boundary of

the lane. The obstacle is assumed to be a square obstacle with 0.5m length, and there is

enough lateral space on the lane for the vehicle to pass it.

Scenario 5 : The scenario is the same as Scenario 4 except that the obstacle is crossable.

Scenario 6 : The scenario is the same as Scenario 4 except that the obstacle is located at

1.5m from the right boundary of Lane 1, and therefore, there is not enough lateral space

on the lane for the vehicle to pass the obstacle.

Scenario 7 : The scenario is the same as Scenario 6 except that the obstacle is crossable.

The initial vehicle speed, u0, the desired vehicle speed, udes, the speed of obstacles, uoi ,

and initial position of the obstacles relative to the vehicle, Xo0i , are listed in Table 3.1.
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Table 3.1: Test Scenario Parameters

u0 udes Vo1 Vo2 Vo3 Xo01 Xo02 Xo03

(Km/h) (Km/h) (Km/h) (Km/h) (Km/h) (m) (m) (m)

Scenario 1 100 100 100 100 100 −40 0 40

Scenario 2 80 100 100 100 100 −25 0 25

Scenario 3 80 80 80 − − 0 − −
Scenarios 4-7 80 80 0 − − 80 − −

3.6.2 Simulation

The proposed motion planning MPC is simulated on a vehicle system to evaluate the

performance of the controller. The vehicle system used in the simulation is a model of

a Chevrolet Equinox in CarSim software. The vehicle parameters used in the MPC are

extracted from this vehicle model. The controller parameters are shown in Table 3.2 for

a dry road. The vehicle is electric with four wheel electric motors. The motor torques

and brake torques that generate the total force are calculated and applied to each wheel.

The torques are distributed proportional to the wheels’ vertical force. A slip controller is

also applied on each wheel to avoid large slip ratios. The upper bound on the longitudinal

force is based on the motors’ torque capacities, which are determined from the motors’

specifications. The bound varies with the vehicle speed, and the one at the vehicle speed

of 80Km/h is presented in the table. Also, the maximum speed, umax, is assumed to be

10% over the desired speed.

In this section, the controller is simulated for the scenarios presented in the previous

section so that its performance in observing the road regulations, obstacle avoidance, ma-

neuverability, and prioritizing obstacles is evaluated. The controller time step is 50ms,

and the prediction horizon is 20 steps, making the prediction time to be 1s. The optimiza-

tion problem is solved on an Intel Core-i7 3.4GHz CPU with QPOASES [86], which is a

quadratic programming solver.

At each time step, a potential function is generated for each obstacle at each prediction

step. The obstacle position at each prediction step is predicted assuming that the obstacle
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moves with the same longitudinal and lateral speed of the current time step. The vehicle

position is also predicted at each prediction time step assuming that the vehicle moves with

the same longitudinal and lateral speed of the current time step. For each prediction time

step, a potential function is generated for each obstacle based on the predicted obstacle

position, and is approximated by a quadratic convex function around the predicted vehicle

position. Then, the vehicle current state is used as the MPC initial state, and matrices

required for quadratic programming problem of QPOASES are generated based on the

objective function and constraints defined in (3.20) using the state, input, output, and

feedforward matrices. The MPC problem is solved by QPOASES using the generated

matrices to calculate the vehicle inputs. Next, the CarSim vehicle model is simulated for

one step. The input of the CarSim vehicle model is the calculated vehicle inputs, and

its outputs are the vehicle states, which are used to as the vehicle current states in the

calculations of the next step.

Scenario 1 is a merging maneuver when there are moving obstacles on the other lane

and the current lane is ending. The scenario is simulated for the nonlinear and quadratic

motion planning problems, and the simulation results are shown in Fig. 3.10. The paths of

the ego vehicle and obstacles are shown in Fig. 3.10a. In this figure, at some sample times,

markers are used to demonstrate the position of the vehicle and obstacles; each shape

represents a sample time, and each color represents the vehicle or each of the obstacles. As

shown, the vehicle waits for all the obstacles to pass; the potential fields of the obstacles

keep the vehicle away from Lane 2 when there are obstacles occupying it. Moreover, a

potential field of a static obstacle located at the end of Lane 1 is added to the existing

potential field to keep the vehicle from passing the end of the lane. Due to this potential

field, the vehicle reduces its speed and avoids passing the end of the lane. After all the

obstacles pass, the vehicle changes its lane safely. At the end of the lane change, the

potential field of the left lane boundary keeps the vehicle from going out of the road.

The scenario is simulated for the nonlinear and quadratic problems. As it can be

seen, the quadratic motion planning system imitates the behavior of the nonlinear motion

planning system. The difference between the simulation results is noticed closer to the

end of the lane. At this location, the required large deceleration causes an error in the

anticipated longitudinal vehicle position. Moreover, since the anticipated vehicle position
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Table 3.2: Controller Parameters

Parameter Value Unit Parameter Value Unit

m 2270 Kg T0 0.25 s

Iz 4600 Kgm2 Reff 0.351 m

lf 1.421 m Da 0.5 m

lr 1.434 m Lw 3.5 m

Cf 127000 N ∆X0 1 m

Cr 130000 N FxT−max 21400 N

W 22268.7 N Fyf0−max 10400 N

h 0.647 m Fyr0−max 10600 N

µ 0.9 - Tmax 3000 Nm

amax 9 m/s2 δmax 10 deg

an 1 m/s2 ∆δmax 0.5 deg

Usaf 1 Np 20 -

Uacc 10 - Nc 5 -

Uunc 2 - Nrc 5 -

Ulma 2 - Q
[
0.2 0.01

]
-

X0 1.5 m R [2e− 9 100] -

Y0 1 m S [5e− 8 500] -

is too close to the end of the lane, the error in approximating the hyperbolic PF of the end

of the lane by a quadratic convex function becomes more noticeable. These two sources

cause the differences in the results of the quadratic problem. Despite the differences, the

performance of the quadratic problem is comparable to that of the nonlinear problem. On

the other hand, the average calculation time of the nonlinear problem for a time step of

this simulation is 21.03s while that of the quadratic problem is 0.0094s. It is notable that

since the step time is 0.05s, the quadratic problem can be solved in real time. The other

scenarios are simulated for the quadratic problem.

Scenario 2 is a lane change while there are moving obstacles on the intended lane.

Figure 3.11 shows the simulation results for this scenario. Since there is a moving obstacle
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Figure 3.10: Scenario 1 for nonlinear and quadratic problems, a) paths of vehicle and

obstacles, blue: vehicle for nonlinear problem, green: vehicle for quadratic problem, red:

Obstacle 1, purple: Obstacle 2, white: Obstacle 3, b) longitudinal force command and

vehicle speed for the nonlinear problem, c) steering angle command and lateral accelera-

tion for the nonlinear problem, d) longitudinal force command and vehicle speed for the

quadratic problem, e) steering angle command and lateral acceleration for the quadratic

problem.

on the side of the vehicle, the vehicle cannot proceed with the lane change immediately;

the potential fields of the obstacles keep the vehicle away from Lane 2. The vehicle slightly

reduces its speed, and waits for the obstacle on its side to pass. When there is enough
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Figure 3.11: Scenario 2, a) paths of vehicle and obstacles, blue: vehicle, red: Obstacle 1,

purple: Obstacle 2, white: Obstacle 3, b) longitudinal force command and vehicle speed,

c) steering angle command and lateral acceleration.

distance between the obstacles and the vehicle, it moves to the other lane while keeping

its distance from the both obstacles by adjusting its speed. The lateral movements of the

vehicle and its speed changes are according to the PFs keeping the vehicle away from the

obstacles. It can also be seen that the motion planning system can handle the maneuvers

on a curved road.

In this scenario, the vehicle merges in between the obstacles since there is enough

space. In Scenario 1, there was less space between the obstacles, and the vehicle’s speed

was largely different from obstacles’ speeds. Therefore, going in between the obstacles was

not safe enough and the potential fields of the obstacles kept the vehicle in Lane 1 until

all the obstacles passed the vehicle and the lane change was safe.

The third scenario is when a moving obstacle beside the vehicle carelessly changes its

lane to the vehicle’s current lane. The simulation results for Scenario 3 are shown in Fig.

3.12. Due to the potential field of the obstacle, the vehicle reduces its speed to make some
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Figure 3.12: Scenario 3, a) paths of vehicle and obstacle, blue: vehicle, red: obstacle

b) longitudinal force command and vehicle speed, c) steering angle command and lateral

acceleration.

space for the obstacle, and moves to the right to keep its lateral distance from the obstacle

and avoid collision. The potential field of the right boundary lane, on the other hand,

leads the vehicle towards the middle of the lane and keeps the vehicle in the lane. By

the time the obstacle is on the middle lane marker, the vehicle has made approximately

10m of longitudinal space to keep a safe distance from the obstacle. The vehicle goes back

towards the center of the lane, due to the right lane boundary PF, after making enough

longitudinal space for obstacle avoidance.

Scenarios 4-7 are designed to show the different responses of the motion planning MPC

to different kinds of obstacles. Two kinds of obstacles are considered: crossable obstacles

and non-crossable obstacles. Scenarios 4 and 5 are when there is a crossable or non-

crossable obstacle in the current lane of the vehicle, but there is enough lateral space to

pass the obstacle on the side. The simulation results for these scenarios are shown in Fig.

3.13. The PFs of the obstacles lead the vehicle to the left of the lane, and the road potential

field leads the vehicle to the right. As a result, the vehicle moves slightly to the left to pass
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the obstacle while it stays in the lane. At the time that the vehicle passes the obstacle,

the lateral distance between the boundary of the obstacle and that of the vehicle is around

0.6m for both Scenarios 4 and 5. After the vehicle passes the obstacle, the road potential

field leads the vehicle back to the lane center. Moreover, the vehicle speed does not change

noticeably in any of the cases, as expected. It is notable that the obstacle of Scenario 4 is

static, so its potential field is sharper than the PFs corresponding to the moving obstacle

of Scenarios 1-3, which allows the vehicle to pass it on the side with a smaller margin.

Scenarios 6 and 7 are where there is a crossable or non-crossable obstacle on the current

lane of the vehicle and there is not enough lateral space to pass the obstacle on the side.

The simulation results of these scenarios are shown in Fig. 3.14. As the results show, the

potential field of the non-crossable obstacle leads the vehicle to stop behind the obstacle.

The crossable obstacle, however, is crossed while the vehicle does not change its speed

considerably, which reflects the appropriate choice of the crossable obstacle PF. Moreover,

for both cases, the vehicle does not move noticeably in the lateral direction.

3.7 Summary

In this chapter, a motion planning MPC was introduced that utilizes the potential field

obstacle avoidance method for prioritizing obstacles. A vehicle dynamics model along with

actuator and tire constraints were presented. Different PFs were introduced for different

obstacles and road structures based on their characteristics. A motion planning MPC

was presented with the vehicle model as its model and actuator and tire constraints as

its constraints so that it predicts the vehicle behavior appropriately and generates feasible

maneuvers. The PFs were included in the MPC’s objective function for observing road

regulations and obstacle avoidance based on the obstacle’s priorities.

The MPC problem was nonlinear and to reduce the computational time, the problem

was approximated by a quadratic convex problem. The calculation time and the perfor-

mance of the nonlinear and quadratic problems were compared by simulation. The results

showed that although the approximation can cause errors in the result of the quadratic

problem, the performance of the quadratic problem was acceptable with a fraction of time
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Figure 3.13: Scenarios 4 and 5, a) vehicles path and obstacles position, blue: vehicle of

Scenario 4, purple: vehicle of Scenario 5, red: obstacle b) longitudinal force command

and vehicle speed in Scenario 4, c) Steering angle command and lateral acceleration in

Scenario 4, d) longitudinal force command and vehicle speed in Scenario 5, e) steering

angle command and lateral acceleration in Scenario 5.

needed to solve the nonlinear problem.

Some complex test scenarios were defined to evaluate the performance of the proposed

motion planning MPC. The simulations used high fidelity vehicle models in CarSim, but the

vehicle model of the MPC was a linear bicycle model. The results showed the capability

of the introduced motion planning method in performing the appropriate maneuvers in
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Figure 3.14: Scenarios 6 and 7, a) vehicles path and obstacles position, blue: vehicle of

Scenario 6, purple: vehicle of Scenario 7, red: obstacle b) longitudinal force command

and vehicle speed in Scenario 6, c) steering angle command and lateral acceleration in

Scenario 6, d) longitudinal force command and vehicle speed in Scenario 7, e) steering

angle command and lateral acceleration in Scenario 7.

complicated scenarios. When a lane change is commanded from the behavior planning

module, the vehicle does not change its lane unless it is safe to do so. The vehicle merges

in between two vehicles if there is enough space between them and it is safe to merge. If the

current lane is ending, and a lane change is not safe, the vehicle reduces its speed or even

stops before the lane ends, and changes its lane only when it is safe to do so. If a vehicle is
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approaching the vehicle from the side carelessly, the vehicle makes space for it as much as

possible while staying on the road. For all these complicated scenarios, potential fields keep

the vehicle away from the obstacles and road boundaries, and the tracking terms of the

objective functions guide the vehicle toward their desired speed and lane. It is notable that

the shape and intensity parameters of the developed potential field are tuned such that the

vehicle behaves appropriately in different situations, which is a time consuming process.

Besides, becoming trapped in the local minimum is one of the problems of potential field

methods, which is addressed by tuning the potential field parameters in this project.

Moreover, the MPC was developed to prioritize the obstacles based on their avoidance

necessity. Appropriate PFs were assigned to crossable and non-crossable obstacles to treat

them based on their characteristics. The results showed the capability of the developed

MPC in prioritizing the obstacles. The vehicle stops behinds a non-crossable obstacle if

there is not enough space to pass the obstacle on its side. On the other hand, the vehicle

crosses a crossable obstacle without a noticeable speed change if there is not enough space

to pass the obstacle on its side. For both kinds of obstacles, the vehicle passes them on

their sides, if possible.
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Chapter 4

Prioritizing Obstacles using

Lexicographic Optimization

4.1 Introduction

A motion planning MPC was introduced in Chapter 3 that avoids obstacles by including

a potential field to its cost function. The MPC prioritizes the crossable and non-crossable

obstacles through assigning them PFs corresponding to their avoidance necessity. In this

chapter, the MPC developed in the previous chapter is modified to apply priority on

non-crossable obstacles, which have a wide range of crash costs. This chapter is mainly

developed based on the work of Rasekhipour et al. [87].

Obstacle avoidance constraints are generated in this chapter for the non-crossable ob-

stacles, and are included in the MPC problem. As mentioned in Chapter 2, the obstacle

constraint set introduced in [58] is appropriate for most driving situations. However, the

constraint set limits the vehicle to stop behind an obstacle in front of the vehicle while in

some situations, stopping behind the obstacle is not feasible but passing the obstacle on its

side is feasible. This method fails to avoid the obstacle in such a situation. In this chapter,

in addition to this constraint set, two constraint sets are introduced: one for passing the

obstacle on its right, and one for passing it on its left. Iterative Quadratic MPC (IQMPC)
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is introduced consisting of three iterations of the developed MPC problem; one iteration for

each constraint set. IQMPC fixes the aforementioned problem by expanding the feasible

set through including the other two constraint sets.

LO is applied on the MPC to prioritize non-crossable obstacles. It prioritizes the ob-

stacles through prioritizing their corresponding constraints. It is notable that, in a motion

planning problem, the vehicle model should remain valid so that the planned trajecto-

ries based on the model can be tracked by the vehicle. Therefore, the vehicle dynamics

constraints have the highest priority order. Obstacle constraints are ordered based on

the obstacles’ crash costs after the vehicle constraints. LO applies the priority orders on

IQMPC. Using this method, in a situation where avoiding all obstacles is not possible,

the MPC finds the solution that preserves the vehicle dynamics capacities, and avoids the

obstacles with the highest priority orders.

The rest of the chapter is organized as follows. First, the obstacle avoidance constraint

sets are presented, and IQMPC is introduced for the constraint sets. Next, the LO approach

for prioritizing constraints in an MPC problem is explained, and the LO-based motion

planning MPC is introduced to prioritize the obstacles. A mixed integer MPC is also

presented as a benchmark to evaluate the performance of IQMPC in obstacle avoidance.

Then, simulation results are illustrated for some test scenarios to evaluate the performance

of IQMPC in obstacle avoidance and prioritizing obstacles.

4.2 Obstacle constraints

Carvalho et al. [58] present obstacle constraints based on the signed distance of the vehicle

and an obstacle:

s(X, Y ) > 0. (4.1)

Then, they linearize the constraint around the vehicle operating point, which makes the

obstacle avoidance problem a convex problem.
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This approach handles most of the driving situations. However, in a situation where an

obstacle is in front of the vehicle, the corresponding constraint of the obstacle is vertical and

keeps the vehicle behind the obstacle. An obstacle is defined to be in front of the vehicle

if it is ahead of the vehicle along the road and its signed distance with the vehicle has

no component in the Y -direction. There are situations where stopping behind an obstacle

that is in front of the vehicle in not possible because of the velocity difference between the

obstacle and the vehicle, but it is feasible for the vehicle to pass the obstacle by moving to

its side. The approach presented in [58] cannot handle these situations. Therefore, in this

section, constraints are presented for an obstacle in front of the vehicle so that the vehicle

can also pass the obstacle on its side.

For driving on a road, there are three options for the vehicle when there are obstacles

in front of the vehicle: to stop behind the obstacles, to pass the obstacles on their left

side, and to pass them on their right side. Therefore, three sets of constraints are defined

in this section for obstacles in front of the vehicle. The first set of constraints are the

linearized constraints of (4.1), which generates the available area for the vehicle to stop

behind the obstacle. The second set of constraints is defined so that the vehicle can move

to the left side of the obstacles. A crash rectangle is defined for each obstacle as the locus

of the vehicle when the signed distance of the vehicle and the obstacle is zero. It is notable

that in this thesis, the vehicle and the obstacles are assumed to be of rectangular shapes

parallel to the X-Y axes. The area outside the crash rectangle is the available area for the

vehicle. However, the area is non-convex and should be convexified by linear constraints

to be used in the quadratic MPC. A line passing through the upper left corner of the crash

rectangle, (X1, Y2), is used as an approximation of the area for passing the obstacle on its

left, as shown in Fig. 4.1:

(X −X1) ≤ (Y − Y2) cotψ, (4.2)

where ψ is the constraint angle, which is defined as the angle of the constraint line with

the X-axis. As demonstrated in the figure, the angle is obtained by connecting the vehicle

position to the upper left edge of the crash rectangle with a circular arc. The angle of the

arc at the vehicle position equals the vehicle heading. Therefore, the arc represents a path
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for the vehicle if it goes on a circle. The angle of the arc at the rectangle’s edge is set

as the constraint angle. Using this geometry, the radius of the arc, R, and the constraint

angle are:

R =
(X1 −X)2 + (Y2 − Y )2

2(Y2 − Y ) cos θ − 2(X1 −X) sin θ
, (4.3)

ψ = cos−1

(
cos θ − Y2 − Y

R

)
. (4.4)

If the vehicle’s heading angle is large enough that the vehicle can pass the obstacle by

going straight, the constraint angle is set to the vehicle’s heading angle. Furthermore, for

the potential function of the obstacle, the signed distance is set to the signed distance of

the vehicle and the constraint line instead of the signed distance of the vehicle and the

obstacle. It is notable that the obstacle position is predicted at each prediction step by

assuming that it continues its motion with the same longitudinal and lateral velocity as

the current moment.

Figure 4.1: Linear Constraint Approximation.

It is also notable that if stopping behind the obstacle is not feasible, there are prediction

steps such that the vehicle cannot be behind the obstacle even with the maximum brake

acceleration. These steps satisfy the following equation:
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−1

2
amaxk

2 + u0k ≥ X1, (4.5)

where, amax is the maximum possible acceleration, u0 is the current vehicle longitudinal

velocity, and k is the prediction step. For these prediction steps, the vehicle should be on

the side of the obstacle to avoid the obstacle, and the constraint is changed to:

Y ≥ Y2, (4.6)

Moreover, because of the uncertainties of the road-tire friction, the vehicle’s model, and

the obstacle’s motion the vehicle cannot be planned to pass the obstacle at zero distance.

Therefore, a length of L0 and a width of W0 are added to each obstacle in calculating the

constraints, which are set to 1.5m and 1m, respectively. It also implies that the constraints

should be soft constraints, since they might be violated because of the previously mentioned

causes.

A similar approach is also used in calculation of the third set of constraints which

corresponds whto passing the obstacles in front of the vehicle on their right side. Moreover,

although potential functions are used to lead the vehicle within the lanes, constraints are

implemented on the road boundaries to ensure that the vehicle stays within the boundaries.

The constraints of all the obstacles and the road boundaries, except for the obstacle in front

of the vehicle, are the same for the three constraint sets and are obtained from (4.1).

4.3 Iterative Quadratic MPC

IQMPC is introduced in this section for motion planning. It consists of three iterations of

MPC, one for each constraint set presented in Section 4.2. By solving the three iterations,

three solutions are found for stopping behind the obstacles in front of the vehicle, moving

to their left, and moving to their right. The solution of IQMPC is the best one of the three

solutions. The MPC problem for each iteration is presented in the following.
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The MPC problem optimizes the vehicle dynamics behavior in its prediction horizon

since the vehicle dynamics model presented in Section 3.3 is its model and constraints

presented in that section are included in the MPC. The potential functions presented in

Section 3.4 are also included in the objective function of the MPC to keep the vehicle at a

safe distance from the obstacles. The motion planning MPC should also track the desired

lane and speed; as explained in Section 3.5, the output vector y should track the desired

value vector, ydes. The MPC problem is:

min
uc,εεε

Np∑
k=1

(
U t+k,t +‖yt+k,t−yt+k,tdes ‖

2
Q +‖ut+k−1,t

c ‖2
R +‖ut+k−1,t

c −ut+k−2,t
c ‖2

S

)
+‖εεε‖1

λλλ, (4.7a)

s.t.(k = 1, . . . , Np)

xt+k,t = Adx
t+k−1,t + Bdu

t+k−1,t
c , (4.7b)

yt+k,t = Cxt+k,t + Dut+k,tc , (4.7c)

yt+k,ts = Csx
t+k,t + Dsu

t+k,t
c , (4.7d)

yt+k,ts ≤ yt+k,ts−max + εεε, (4.7e)

εεε ≥ 0, (4.7f)

ut+k,tc = ut+k−1,t
c , k > Nc, k 6= c2Nrc +Nc, c2 = 1, . . . , (Np −Nc)/Nrc, (4.7g)

ut−1,t
c = uc(t− 1), (4.7h)

xt,t = x(t), (4.7i)
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The MPC variables are the input vector, uc and the slack variable vector, εεε. The objective

function of the MPC includes the quadratic potential field. The objective function also

includes the quadratic terms of the output tracking, the input, and the change of the input

and the first norm of the slack variable. (4.7b) predicts the states and (4.7c) calculates the

tracking outputs. The vehicle and obstacle constraints are presented in (4.7e); the vector of

constraint variables is bounded by the vector of constraint bounds. Also, the slack variable

vector is added to the constraints to make them soft constraints. The corresponding slack

variable of the input constraints (3.4)-(3.6) are set to zero since they cannot be violated

physically. The tire capacity constraints of (3.10) cannot be violated physically either, but

the slack variables are included in them to avoid possible infeasibility due to estimation

errors. The constraint variables are predicted in (4.7d). The number of the control input

is reduced as in (4.7g) to reduce the calculation time.

As explained, three iterations of the MPC problem presented in (4.7) are solved, one

for each obstacle constraint set presented in Section 4.2. For each iteration, the obstacle

constraints of (4.7e) are the corresponding obstacle constraint set of the iteration. The

solution of IQMPC is the best solution of the three iterations. The best solution is the

solution with the smallest slack variables, which is the solution that is more likely to avoid

obstacles. The iteration with the best solution is called the optimal iteration. In the case

that the slack variables are equal, a predefined iteration preference is used to find the

optimal iteration. The iteration preference is determined based on the road regulation;

e.g, staying on the lane is preferred to leaving the lane, and passing the obstacle on its left

is preferred to passing it on its right. In this thesis, the iteration preference is: 1) stopping

behind the obstacles in front of the vehicle, 2) passing the obstacles on their left sides, and

3) passing the obstacles on their right sides. The procedure of finding the optimal iteration

is explained in detail in the next section.
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4.4 Lexicographic Optimization (LO)

4.4.1 LO-based MPC

In this section, the LO-based MPC for solving the aforementioned multi-objective optimiza-

tion problems is briefly presented [88]. Assume a multi-objective optimization problem:

min
ξξξ∈Ξ

f(ξξξ), (4.8a)

f(ξξξ) =
[
f1(ξξξ) f2(ξξξ) . . . fq(ξξξ)

]T
, (4.8b)

where Ξ ⊆ Rd, and fi(ξξξ) : Ξ→ R. The optimization problem has a minimum if:

∃ξξξ∗ : fi(ξξξ
∗) = min

ξξξ∈Ξ
fi(ξξξ) ∀i, (4.9)

The optimal point, ξξξ∗, does not exist for general objective functions. Therefore, other

approaches are used to find pseudo-optimal solutions for the problem.

One approach to finding the pseudo-optimal point is to solve the weighted sum of the

objective functions. This method finds a compromised solution that does not optimize any

of the objectives in general. It is the method used in the MPC problems introduced in

the previous section. The LO method is another approach for finding the pseudo-optimal

point. It is used when the objectives have priority over each other, i.e. optimizing one

objective has priority over optimizing another objective. If the ith objectives have priority

over the jth objective for i < j, ξξξ∗ is the lexicographic minimum of (4.8) if:

f ∗1 = min
ξξξ∈Ξ

f1(ξξξ), (4.10a)
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f ∗i = min
ξξξ∈Ξ

{
fi(ξξξ)|fj(ξξξ) ≤ f ∗j , j = 1, . . . , i− 1

}
, ∀i ∈ {2, . . . , q}, (4.10b)

ξξξ∗ =
{
ξξξ ∈ Ξ|fj(ξξξ) ≤ f ∗j , j = 1, . . . , q

}
. (4.10c)

As expressed in [72], the LO can be used for MPC problems with prioritized constraints

and objectives. Holding constraints usually has priority over minimizing the regulation and

tracking terms of the objective function. Moreover, holding some constraints may have

priority over holding other constraints. In an MPC problem, when it is possible to violate

a constraint, a slack is added to the constraint to avoid infeasibility due to constraint

violation, and the violation is penalized by adding a term containing the slack value to

the MPC objective function. Therefore, the objective function terms can be prioritized

as follows: the penalizing terms of the objective function are prioritized based on the

priority order of their corresponding constraint, and the tracking and regulating terms are

prioritized based on their priority orders after the penalizing terms.

4.4.2 Obstacles Priority Order

The main focus of this thesis is to develop a platform to prioritize the obstacles based on

injuries and damages they may cause. In Chapter 3, obstacles were categorized as cross-

able and non-crossable obstacles, and each category was assigned an appropriate potential

function to be treated according to its avoidance necessity. Crossing a crossable obstacle

has no crash cost. Crossable obstacles were modeled by exponential functions that pe-

nalize approaching the obstacle but let the vehicle cross the obstacle. Failing to avoid a

non-crossable obstacle, on the other hand, causes a crash cost. Non-crossable obstacles

were modeled by hyperbolic functions that do not allow crossing the obstacles.

In this chapter, the non-crossable obstacles are prioritized since their crash costs vary

widely. The method used here can consider any number of priority orders. The follow-

ing priority orders are applied on the obstacles and road boundaries in this project: 1)

occupied sidewalk, 2) pedestrian, 3) car, 4) rock, 5) empty sidewalk. The priority orders

are determined based on the possible corresponding crash costs. For example, hitting a
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pedestrian could cause injury, hitting a car might only cause car damage, and going on an

empty sidewalk most probably does not cause any damage or injury. Therefore, a pedes-

trian is superior to a car, and a car is superior to an empty sidewalk. Moreover, a crossable

obstacle does not required avoidance, so it has the lowest obstacle priority order. Its po-

tential function included in the objective function of the MPC generates a force repulsing

the vehicle from the obstacle.

4.4.3 LO-based Motion Planning MPC

The MPC introduced in (4.7) has objective terms including the potential functions, the

tracking and regulation terms, the penalizing terms for vehicle constraint violations, and

the penalizing terms for the obstacles constraint violations. If the priority of the objective

terms is determined, the MPC can be solved using a lexicography method.

As explained, the tire force capacity cannot be physically violated, but it is considered

as a soft constraint to avoid the possible infeasibility due to estimation errors. Holding

this constraint is important so that the MPC’s predictions based on the vehicle model

are correct. Therefore, the penalizing term corresponding to this constraint has the first

priority order. Violating the obstacles’ constraints causes injury and damage cost, and

their corresponding objectives are considered as objectives with the next priority orders.

Their priority order are determined as explained in Section 4.4.2. The potential functions,

tracking and regulation terms, and the penalizing term of the vehicle speed have the same

priority, and the weighted sum of their objectives is considered as the objective with the

lowest priority order. Therefore, assuming there are n obstacle priority orders, the priority

orders of the objectives are:

1) f0(uc, εεε) = ‖εεε‖1
λλλ0

,

2) f1(uc, εεε) = ‖εεε‖1
λλλ1

,

...

n+1) fn(uc, εεε) = ‖εεε‖1
λλλn

,
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n+2) fn+1(uc, εεε) =
∑Np

k=1

(
U t+k,t+‖yt+k,t−yt+k,tdes ‖2

Q+‖ut+k−1,t
c ‖2

R+‖ut+k−1,t
c −ut+k−2,t

c ‖2
S

)
+

‖εεε‖1
λλλn+1

,

where the terms of λλλ0 corresponding to the tire capacities, the terms of λλλl corresponding

to the obstacles with the lth priority order, and the terms of λλλn+1 corresponding to the

speed constraint set to 1, and the other terms are set to 0. The MPC iterations of IQMPC

can be solved with LO using these priority orders on the objective functions. Using this

method, the tire capacities are held as much as possible as the first priority order so

that the controller has a correct prediction. Next, obstacles with the first priority are

avoided as much as possible, while it is assured that the prediction model is as correct as

possible. Then, obstacles with the second priority are avoided as much as possible, while

the prediction model is as correct as possible and the first priority obstacles are avoided

as much as possible. The same procedure is applied for the rest of the obstacle priorities.

Finally, the vehicle finds an appropriate trajectory based on the potential functions, the

tracking and regulation terms, and speed violation penalizing term, while the vehicle model

is as correct as possible and the non-crossable obstacles are avoided as much as possible.

Solving an LO problem increases the calculation time, as each MPC is split to n + 2

optimization problems. IQMPC has three MPC iterations, and LO is applied on each

iteration. The first priority objective is the same for the three iterations. For the obstacle

priority objectives, each of the n optimization problems should be solved three times to

find the best iteration. Then, the quadratic problem of fn+1(uc, εεε) is solved for the best

iteration to find the final answer. Therefore, the motion planning problem, at the worst

case, needs to solve 3n + 1 linear optimization problems and 1 quadratic optimization

problem.

The optimal iteration is determined after solving the n obstacle priority problems for

the three iterations. It is determined based on the objective values and the iteration

preferences:

P0 = {1, 2, 3}, (4.11a)
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Pl = arg min
p∈Pl−1

fpl (uc, εεε), l = 1, . . . , n, (4.11b)

p∗ = min
p∈Pn

p, (4.11c)

where fpl (uc, εεε) denotes the objective function corresponding to the obstacle with the lth

priority order at the pth iteration. As mentioned, there are three iterations with the

preference from 1 to 3. First, the objective values are used in descending order of priority

to determine the best iterations in (4.11b). Then, in (4.11c), the iteration preferences

determine the optimal iteration, p∗, among the best iterations determined by (4.11b).

4.5 Mixed Integer MPC

A Mixed Integer MPC called MIMPC is introduced in this section, which uses mixed integer

constraints to generate a complete non-convex obstacle-free area. It is used as a benchmark

to evaluate the obstacle avoidance performance of IQMPC. MIMPC is similar to the MPC

presented in (4.7) for IQMPC, with the difference that it utilizes mixed integer obstacle

constraints to generate the obstacle-free area. For each obstacle, the area outside the crash

rectangle is the obstacle-free area. The area outside of a rectangle can be constructed by

the union of four constraints [89]:

X ≤ X1 or

X ≥ X2 or

Y ≤ Y1 or

Y ≥ Y2,

(4.12)

where (X1, Y1) and (X2, Y2) denote the positions of the lower left and upper right edges of

the rectangle, respectively. The above “or” constraints can be written as “and” constraints

using mixed integer constraints [89]:
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X ≤ X1 +Mτ1 and

−X ≤ −X2 +Mτ2 and

Y ≤ Y1 +Mτ3 and

−Y ≤ −Y2 +Mτ4 and∑4
i=1 τi ≤ 3,

(4.13)

where M is the upper bound of the distance between the vehicle and the obstacle and τi,

for i = 1, ..., 4, is a binary variable.

MIMPC utilizes the mixed integer obstacle constraints presented in (4.13) for obstacle

avoidance. Except for the obstacle constraints, the optimization problem of MIMPC is

similar to that of IQMPC presented in (4.7). Therefore, the mixed integer quadratic

optimization problem of MIMPC is:

min
uc,εεε,τττ

Np∑
k=1

(
U t+k,t+‖yt+k,t−yt+k,tdes ‖

2
Q+‖ut+k−1,t

c ‖2
R+‖ut+k−1,t

c −ut+k−2,t
c ‖2

S

)
+‖εεε‖1

λλλ, (4.14a)

s.t.(k = 1, . . . , Np)

xt+k,t = Adx
t+k−1,t + Bdu

t+k−1,t
c , (4.14b)

yt+k,t = Cxt+k,t + Dut+k,tc , (4.14c)

yt+k,ts = Csx
t+k,t + Dsu

t+k,t
c + Esτττ

t+k,t, (4.14d)

yt+k,ts ≤ yt+k,ts−max + εεε, (4.14e)

εεε ≥ 0, (4.14f)
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τττ ∈ {0, 1}n, (4.14g)

ut+k,tc = ut+k−1,t
c , k > Nc, k 6= c2Nrc +Nc, c2 = 1, . . . , (Np −Nc)/Nrc, (4.14h)

ut−1,t
c = uc(t− 1), (4.14i)

xt,t = x(t), (4.14j)

In addition to the control inputs and the slack variables, the binary variables are also

optimization variables of MIMPC; τττ is the vector of binary variables. The mixed integer

obstacle constraints of (4.13) are included in constraint equations of (4.14d) where the

binary variables are added to the equations through the binary matrix, Es.

4.6 Results

In this chapter, IQMPC and MIMPC are simulated on the CarSim vehicle model as ex-

plained in the previous chapter to evaluate the performance of IQMPC. The prediction

horizon is 40, and the time step is 50ms, which makes the prediction time 2s. The calcu-

lation time of the solver for each of the quadratic MPC problems is less than 2ms, which

makes IQMPC problem solved in less than 34ms. Therefore, IQMPC can be implemented

in real time.

For IQMPC, at each time step, three obstacle constraints and three potential functions

are generated for each obstacle at each prediction step. The obstacles’ and vehicle’s position

at each prediction step are predicted as explained in Section 3.6.2. For each prediction

time step, three obstacle constraints and three potential functions are generated for each

obstacle based on the predicted obstacle position as explained in Section 4.2. Each potential

function is approximated by a quadratic convex function around the predicted vehicle

position. Then, the MPC problem of the tire constraint objective function is solved by

QPOASES to find the optimal value of the objective function. Next, for each iteration

of IQMPC, starting from the highest priority order, the quadratic programming problem
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of MPC is solved for each obstacle priority order using QPOASES to find the optimal

value of the corresponding objective function. Each of the MPC problems is constrained

such that the value of each of the objective functions with a higher priority order than

that of the MPC problem is less than or equal its calculated optimal value. They are also

constrained such that the tire objective function has a value less than or equal its optimal

value. This procedure is performed for the three iterations, where for each iteration,

its corresponding constraints and potential functions are used. Next, the iteration that

avoids the obstacles with the highest priority orders better is selected, as explained in

Section 4.4.3. The quadratic MPC problem corresponding to that iteration is solved by

QPOASES to find the vehicle inputs. The MPC is constrained such that the value of each

of the tire and obstacle objective functions is less than or equal its corresponding optimal

value. Next, the CarSim vehicle model is simulated for one step. The input of the CarSim

vehicle model is the calculated vehicle inputs, and its outputs are the vehicle states, which

are used to as the vehicle current states in the calculations of the next step. A similar

procedure is performed for MIMPC with the difference that one iteration is solved using

the mixed-integer constraints as explained in Section 4.5.

4.6.1 Scenario 1: Passing an Obstacle

As mentioned in Section 4.3, IQMPC has the ability to pass an obstacle on its side when

stopping behind the obstacle is not feasible, but passing it on its side is feasible. In this

section, a scenario is designed to show the capability of IQMPC in this situation. The

vehicle is assumed to move on the first lane of a two-lane road with a speed of 60Km/h.

The desired speed is 60Km/h and the desired lane is the first lane. It is assumed that the

road has a 1.5mmargin on each side. There are sidewalks on the road boundaries. The right

sidewalk is occupied with pedestrians, and the left sidewalk is empty. A static obstacle

appears in the middle of the first lane at a distance of 18m ahead of the vehicle. The

obstacle is square-shaped with the sides of 1m, representing a pedestrian. The priority

orders assigned to the obstacles are presented in Table 4.1. The stopping distance of

the vehicle at this speed is 16.38m. Considering the vehicle length of 5m, the vehicle

cannot stop behind the obstacle since it only has 15m obstacle-free space ahead of the
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Table 4.1: Priority Orders of Obstacles in Different Scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Right Road Boundary 1 1 4 1 1

Left Road Boundary 3 1 1 1 1

Static Obstacle 2 2 2 3 3

Moving Obstacle − 3 3 2 2

vehicle. Therefore, if the MPC problem is solved only using the convexified signed distance

constraints presented in [58], it cannot avoid the obstacle. But, IQMPC can avoid the

obstacle.

Figures 4.2-4.5 show the maneuver performed by the autonomous vehicle IQMPC,

MIMPC, ad MPC with signed distance constraints similar to [58]. Figure 4.2 illustrates

the path of the vehicle. In this figure, the vehicle at the initial position is shown by a

blue rectangle, and the obstacle is shown by a red square. The path of the vehicle is

demonstrated by the purple line for MPC with signed distance constraints, by the blue

line for IQMPC, and by the green line for MIMPC. The vehicle position is marked on the

path by small squares at each 1.5s. A contact rectangle is drawn around the obstacle with

dashed lines. The rectangle represents the area that if the vehicle position is located within

it, the vehicle and the obstacle are in contact. Therefore, a path that does not enter the

contact rectangle is obstacle-free. It can be seen that, as expected, the motion planning

method with the signed distance constraints similar to [58] cannot avoid the obstacle, but

IQMPC avoids the obstacle.

The procedure of choosing the optimal iteration and calculating the optimal solution

is explained for IQMPC at the start of Scenario 1. First, f0, the objective function of the

tire capacities, is optimized. f0 is the same for the three iterations, and therefore, is solved

once. f0 = 0 at this moment, meaning that the tire capacities are not violated. Then, fp1 is

optimized for p = 1, 2, 3 while keeping f0 ≤ 0, which results in
[
f 1

1 f 2
1 f 3

1

]
=
[
0 0 0

]
.

Therefore, based on (4.11b), P1 = {1, 2, 3}. This means that the obstacles with the first

priority order can be avoided for the three iterations while tire capacity constraints are

hold. Then, fp2 is optimized for p = 1, 2, 3 while keeping f0 ≤ 0 and fp1 ≤ 0, which
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Figure 4.2: Scenario 1 vehicle’s and obstacle’s path- blue: vehicle for IQMPC- green:

vehicle for MIMPC- red: static obstacle.
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Figure 4.3: Scenario 1 simulation results for MPC with signed distance constraints: a)

longitudinal force command and vehicle speed over time, b) steering angle command and

lateral acceleration over time, c) tire friction circle.
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Figure 4.4: Scenario 1 simulation results for IQMPC: a) longitudinal force command and

vehicle speed over time, b) steering angle command and lateral acceleration over time, c)

optimal iteration over time, d) tire friction circle.

results in
[
f 1

2 f 2
2 f 3

2

]
=
[
2.40 0.28 4.78

]
. Therefore, based on (4.11b), P2 = {2}. This

means that the best iteration for avoiding the obstacle with the second priority order is

Iteration 2. It is clear that since P2 has only one value of 2, based on (4.11b), P3 = {2}.
Therefore, based on (4.11c), p∗ = 2, meaning that Iteration 2 is the optimal iteration

for this maneuver. It is notable that the optimal iteration is determined based on fp2 for

p = 1, 2, 3, and there is no need to solve fpl for l > 2 and p 6= 2. Hence, to find the

best solution of the optimization problem, f 2
3 is optimized while keeping f0 ≤ 0, f 2

1 ≤ 0,

and f 2
2 ≤ 0.28, which results in f 2

3 = 5.06. Then, f4, which is a quadratic objective

function, is optimized while keeping f0 ≤ 0, f 2
1 ≤ 0, f 2

2 ≤ 0.28, and f 2
3 ≤ 5.06, which

calculates the optimal solution of the motion planning problem. It is also notable that if

73



Time (s)

0 1 2 3 4 5L
o

n
g

it
u

d
in

a
l 
F

o
rc

e
 (

K
N

)

-20

-10

0

10

S
p

e
e

d
 (

K
m

/h
)

20

40

60

80

(a)

Time (s)

0 1 2 3 4 5

S
te

e
ri
n

g
 A

n
g

le
 (

d
e

g
)

-10

0

10

L
a

te
ra

l 
A

c
c
e

le
ra

ti
o

n
 (

m
/s

2
) 

  
 

-5

0

5

(b)

-1 0 1

Longitudinal Force Ratio

-1

0

1

L
a

te
ra

l 
F

o
rc

e
 R

a
ti
o

(c)

Figure 4.5: Scenario 1 simulation results for MIMPC: a) longitudinal force command and

vehicle speed over time, b) steering angle command and lateral acceleration over time, c)

tire friction circle.

(4.11b) does not determine the optimal iteration, (4.11c) does so based on the iteration

preferences. For example, at time t = 2s, fpl = 0 for l = 1, 2, 3 and p = 1, 2, 3, which means

that P3 = {1, 2, 3}. Therefore, based on (4.11c), the optimal iteration is calculated to be

Iteration 1.

As seen, both IQMPC and MIMPC can pass the obstacle. The calculated optimal

iteration of IQMPC is shown in Fig. 4.4c. While the vehicle is behind the obstacle,

Iteration 2, which corresponds to passing the obstacle on the left, is the optimal iteration.

Then, Iteration 1 is the optimal iteration as it has the first iteration preference.

Figures 4.4 and 4.5 also show that the vehicle applies large steering and braking values

simultaneously to perform the maneuver, using a large amount of the tires’ and actuators’
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capacities. The tire friction circles are demonstrated in Fig. 4.4d and 4.5c, where the blue

circles are the tire capacity circles on a dry road with a friction of 0.9. The horizontal

axis is the ratio of the total longitudinal tire force to the total force capacity. The vertical

axis is the ratio of the front/rear lateral tire force to the front/rear force capacity. The

front/rear force capacity is calculated as the front/rear vertical tire force times the friction,

and the total force capacity is the sum of front and rear force capacities. The green line

corresponds to the front tires and the red line corresponds to the rear tires. As it can be

seen, both the front and rear tire forces can be on the edge of the tire friction circle, i.e. the

motion planning MPCs are capable of utilizing the tire capacities in their planning. The

steering angle capacity is also reached in performing the maneuvers (Fig. 4.4b). Since the

vehicle model and tire constraints are considered in the MPCs, the vehicle can perform the

maneuvers, utilizing the tires’ and actuators’ capacities. Moreover, an oscillation with a

frequency of almost 2Hz is noticed in the lateral acceleration when the maneuver is harsh.

The oscillation happens because of the vehicle’s pitch and roll dynamics, which causes the

vertical forces on the wheels to oscillate.

IQMPC avoids the obstacle, but compared to MIMPC, it performs a harsher maneuver.

It is because the process of convexification reduces the available area, which makes the

maneuver harsher. However, IQMPC takes around 9.1ms by average to be solved at

each step time, while MIMPC takes around 19.2s. The scenario is repeated when the

initial distance of the obstacle and the vehicle is reduced by increments of 1m. For both

controllers, the smallest distance such that they can avoid the obstacle is 15m. Therefore,

although IQMPC does not perform as well as MIMPC, it can avoid the obstacle with much

less calculation time. The next scenarios are simulated only for IQMPC.

4.6.2 Scenarios 2-5: Obstacle Priority

Scenarios 2-5 are designed to observe the performance of the presented motion planning

system in implementing priority on obstacles. These scenarios are similar to Scenario 1,

except that, in these scenarios, there is also a moving obstacle. The obstacle is moving

with a velocity of 25Km/h in the middle of the second lane, and is initially 10m ahead of

the vehicle in X-direction. The obstacle is of the same size of the vehicle, which is 5m in
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Figure 4.6: Scenario 2-5 vehicle’s and obstacle’s path- blue: vehicle in Scenario 2- green:

vehicle in Scenario 3- purple: vehicle in Scenario 4- dark green: vehicle in Scenario 5- red:

static obstacle- yellow: moving obstacle.

length and 2m in width. The situation is designed such that the vehicle cannot avoid the

both obstacles while it stays within the road boundaries.

Four scenarios are defined for this situation with different obstacle priority orders to

show how the priority implementation changes the vehicle’s maneuver. In Scenario 2,

sidewalks occupied with pedestrians exist over the road boundaries on both sides, the

static obstacle is a pedestrian, and the moving obstacle is a car. Scenario 3 is similar to

Scenario 2 except that the right sidewalk is empty. Scenario 4 is similar to Scenario 2

except that the static obstacle is a rock. Scenario 5 is similar to Scenario 2 except that the

static obstacle is a bump, which is categorized as a crossable obstacle. The priority orders

of the obstacles for each scenario are presented in Table 4.1.

The simulation results for these three scenarios are shown in Fig. 4.6-4.10. The paths

of Scenarios 2, 3, 4, and 5 are shown by the blue, green, purple, and dark green lines,

respectively, in Fig. 4.6. The vehicle’s position along each path is marked by a square every

1.5s. The static obstacle is shown with a red square, and the dashed rectangle around

it is the contact rectangle similar to Fig. 4.2. The moving obstacle is also illustrated

by yellow rectangles at the initial position and at its position every 1.5s, and its path

is demonstrated by a yellow line. Contact rectangles are also drawn around the moving

obstacle at each occasion. If the marker on the vehicle path is outside the contact rectangle

at the corresponding occasion, the obstacle is avoided at that occasion.

In Scenario 2, the vehicle remains on the road and avoids the static obstacle, but it
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Figure 4.7: Scenario 2 simulation results: a) longitudinal force command and vehicle

speed over time, b) steering angle command and lateral acceleration over time, c) optimal

iteration over time, d) tire friction circle.

hits the moving obstacle, which has the lowest priority order. The controller calculates the

optimal iteration to be Iteration 2, which corresponds to moving to the left of the obstacle

in front of the vehicle. It is notable that, although the vehicle hits the obstacle, it tries

to avoid the obstacle by reducing its speed. In Scenario 3, the vehicle avoids the static

and moving obstacles, but it crosses the right road boundary, which has the lowest priority

order. The optimal iteration is calculated to be Iteration 3, which corresponds to moving

to the right of the obstacle in front of the vehicle. The vehicle moves back to its lane as

soon as it passes the static obstacle. In Scenario 4, the vehicle avoids the moving obstacle

and stays on the road, but it hits the static obstacle, which has the lowest priority order.

The optimal iteration is Iteration 1, which corresponds to stopping behind the obstacle in
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Figure 4.8: Scenario 3 simulation results: a) longitudinal force command and vehicle

speed over time, b) steering angle command and lateral acceleration over time, c) optimal

iteration over time, d) tire friction circle.

front of the vehicle. Although the vehicle hits the static obstacle, it tries to stop behind the

obstacle by reducing its speed. In Scenario 5, the vehicle avoids the moving obstacle, stays

on the road, and crosses the static obstacle, which has the lowest priority order. Since the

static obstacle is crossable, the vehicle crosses it without changing its velocity noticeably.

In all the scenarios, the vehicle tries to avoid all the non-crossable obstacles and uses

the tires’ and actuators’ capacities to do so. Since the vehicle constraints have the highest

priority order, IQMPC plans the trajectory for the lowest violation of the vehicle limita-

tions, and its prediction of the vehicle behavior remains valid. Therefore, it is capable

of planning a trajectory performable by the vehicle. In all the scenarios, the vehicle is

successful in avoiding the obstacles with the highest priority orders, and hits the obstacles
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Figure 4.9: Scenario 4 simulation results: a) longitudinal force command and vehicle

speed over time, b) steering angle command and lateral acceleration over time, c) optimal

iteration over time, d) tire friction circle.

with the lowest priority orders if avoiding them is not feasible.

4.7 Summary

In this chapter, IQMPC was introduced for motion planning, and the LO was applied on it

to prioritize obstacles. A quadratic motion planning MPC misses some feasible trajectories

because it uses just one linear obstacle constraint set. IQMPC was introduced to reduce

the number of missed feasible trajectories by using three linear obstacle constraint sets

instead of one. It uses the linear signed distance obstacle constraint set as well as two
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Figure 4.10: Scenario 5 simulation results: a) longitudinal force command and vehicle

speed over time, b) steering angle command and lateral acceleration over time, c) optimal

iteration over time, d) tire friction circle.

constraint sets allowing the vehicle to swerve to the right and left of an obstacle in front of

it. IQMPC was simulated on a high fidelity CarSim vehicle model in some test scenarios.

In Scenario 1, there is a static obstacle in front of the vehicle at a distance such that the

vehicle cannot stop behind it, but can avoid it by moving to its side. A motion planning

MPC using the linearized signed distance constraint set fails to avoid the obstacle in this

situation. However, as the simulation results showed, the vehicle avoids the obstacle by

moving to the obstacle’s side if it uses IQMPC since it can use the union of the feasible

trajectories of the three constraint sets.

The scenario was also simulated for MIMPC considering the obstacles with mixed in-

teger constraints. Using this method, the vehicle can avoid the obstacle with a smoother
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maneuver compared to IQMPC. The reason is although IQMPC covers more feasible tra-

jectories than a quadratic MPC, it does not cover all the feasible trajectories, while MIMPC

can consider all the obstacle-free area. However, IQMPC solves the problem noticeably

faster than MIMPC. Moreover, the results showed that the smallest distance between the

vehicle and the obstacle for which the vehicle can avoid the obstacle is the same for both

methods. Therefore, although IQMPC does not find a smoother trajectory of the vehicle,

it has the advantage of solving the problem fast and being implementable in real time over

MIMPC.

The LO was applied on IQMPC to prioritize obstacles. Scenarios 2-5 were designed to

show the performance of IQMPC in prioritizing obstacles. There is a static obstacle and

a moving obstacle on the road, such that both the obstacles cannot be avoided while the

vehicle stays on the road. Different priorities are designed for the obstacles and the road

margins. The results of Scenarios 2-5 show that the vehicle avoids the obstacles with the

highest priority orders and hits the obstacle with the lowest priority order. For Scenario

2, there are pedestrians on the road sidewalks, the static obstacle is a pedestrian and the

moving obstacle is a car. In this scenario, the vehicle avoids the pedestrians, stays on

the road, but hits the car. Scenario 3 is the same as Scenario 2 except that there is no

pedestrian on the right road margin. In this scenario, the vehicle avoids the pedestrian

and the car by moving to the right sidewalk. Scenario 4 is the same as Scenario 2 except

that the static obstacle is a rock. In this scenario, the vehicle avoids the car, stays on the

road, and hits the rock while reducing its velocity. Scenario 5 is the same as Scenario 2

except that the static obstacle is a bump, which is a crossable obstacle. In this scenario,

the vehicle avoids the car, stays on the road, and crosses the bump without changing its

velocity noticeably.

The results of Scenarios 2-5 show that with the presented method, the vehicle avoids the

obstacles with the highest priority orders successfully. It utilizes the tires’ and actuators’

capacities to perform the best obstacle avoidance maneuver. Since the vehicle constraints

have the highest priority, their violation is minimum, which keeps the vehicle model valid.

Therefore, the planned trajectory is performable by the vehicle while the tires’ and actua-

tors’ capacities can be reached. It is also notable that the method can be applied for any

number of obstacle categories. Increasing the number of priorities increases the calculation
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time. However, possible non-crossable obstacles on a road can be categorized in a handful

number of priority categories allowing for the real-time implementation of the proposed

method.
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Chapter 5

Experimental Results

5.1 Introduction

In this chapter, the motion planning MPC developed in Chapter 3 is implemented on a test

autonomous vehicle platform. The motion planning MPC is modified to become compatible

with the test vehicle software platform, and be used as the motion planning module of the

software platform. The test platform has large delays, which causes oscillatory vehicle

behavior. The delays are compensated by predicting the vehicle states and using the

predicted states as the MPC’s initial states. Experimental tests are performed on the test

vehicle to validate the simulation results of the motion planning MPC and show that the

MPC is implementable in real-time.

The rest of the chapter is organized as follows. First, the test vehicle and its equip-

ments and modules are introduced. Next, the setup of the motion planning module for

experimental tests is explained. The MPC inputs including vehicle states and virtual road

and obstacles are obtained based on the data received from the other modules. Actuation

mappings are calculated, and actuator inputs are generated based on the MPC outputs

using the mappings. The platform delays are also compensated through a state predic-

tor. Then, the experimental results of some test scenarios are presented to validate the

simulation results of the motion planning MPC.
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5.2 Test Vehicle

The experimental tests are performed on a BYD Tang test vehicle belonging to Intelli-

gent Vehicle Research Center of Beijing Institute of Technology (Fig. 5.1). The vehicle is

equipped with a Velodyne 32 LIDAR, two cameras, a GPS/INS navigation system, and two

ARK-2000 on-board computers. The communications between the hardware sets are per-

formed with TCP/IP protocol through EKI-2528PAI routers. The vehicle is also equipped

with an active steering system, an electric motor, and a hydraulic brake system.

Figure 5.1: Test Vehicle.

The test vehicle software platform is developed on C++. The platform consists of a

perception module, a route planner module, and a motion planning module. The perception

module uses a Simultaneous Localization And Mapping (SLAM) method to generate an

occupation map and localize the vehicle based on the LIDAR and GPS/INS data. The

SLAM has a precision of 20cm and localizes the vehicle on a 20cm× 20cm grid map. The

route planner module generates a predefined path profile, e.g, a straight path or a circular

path, for the vehicle. Since the platform is not capable of detecting lanes or road margins,

the path profile generated by this module is assumed to be the road profile in the motion
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planning module. The motion planning MPC developed in Chapter 3 is utilized in the

motion planning module of the platform.

5.3 Motion Planning Module Setup

The motion planning MPC developed in Chapter 3 should be adjusted for use in the test

vehicle software platform. Since the platform is developed on C++, the MPC developed

in MATLAB/Simulink is converted to C++. It is notable that since QPOASES is based

on C++, it can be used in the platform to solve the quadratic programming problem of

the MPC.

The motion planning MPC should also be modified based on its inputs and outputs

from the software platform. The developed motion planning MPC receives the vehicle

states, the road and obstacle data, and the desired velocity and lane and generates the

driving commands. In this section, the adjustments required in the MPC for it to be

compatible with the software platform are presented.

The experimental results of the test platform with the motion planning MPC show

an oscillatory vehicle behavior because of the delays in the vehicle platform. The delays

originate from the localization system, the motion planning system, and the actuation

system. In this section, the delays are compensated through a state predictor to remove

the oscillations.

5.3.1 Vehicle States

The motion planning MPC requires initial vehicle states, and receives them from the vehicle

platform. The vehicle states include the longitudinal velocity, lateral velocity, yaw rate,

position, and heading angle. The yaw rate and heading angle are received from the vehicle

navigation system. The vehicle speed in the north and east direction are also received from

the navigation system. The vehicle longitudinal velocity can be calculated as the vector

sum of the vehicle speed in north and east directions. The vehicle lateral velocity cannot

be obtained directly from the navigation system, so it needs to be estimated, which is
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out of the scheme of this work. This velocity is set to zero for these experiments. This

approximation does not affect the predictions of the MPC significantly if no harsh lateral

maneuver is performed.

The vehicle position is received from the perception module, which localizes the vehicle

using a SLAM method. The module has a large calculation time, which is shown for a

maneuver in Fig. 5.2. The calculation time is around 300ms on average, which causes an

average delay of around 300ms on the position data. The delay is compensated by a state

predictor as introduced in the following subsection.
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Figure 5.2: Calculation time of the perception module.

5.3.2 Road and Obstacles

The motion planning MPC requires road data including the lane widths, profile, and

number, and the obstacles data including the position of the obstacles, their size, and their

type. The obstacles, lanes, and road margins are not detected in the software platform,

and detecting them is out of the scope of this thesis.

The software platform has a route planner module, which generates a virtual path

profile. For the experimental tests, the path profile is assumed to be the current lane

profile. Moreover, the other road data including the width and number of lanes, and the

obstacle data are defined virtually. The virtual road and obstacle data, as well as the

desired speed and lane, are defined in the motion planning module for each scenario.
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5.3.3 Actuation System

The motion planning MPC generates the driving commands including the total longitudinal

force and the front steering angle. These commands are applied on the test vehicle through

its active steering system, electric motor, and hydraulic brake system. The active steering

system receives the steering wheel angle, the electric motor receives the motor torque, and

the hydraulics brake system receives the brake pressure. Therefore, the front steering angle

command should be mapped onto the steering wheel angle, and the total longitudinal force

command should be mapped onto the motor torque and the brake pressure.

For low velocities, the steady state yaw rate has the following relation with the front

steering angle:

r =
u

lf + lr
δ, (5.1)

By knowing the steering wheel angle feedback and the vehicle yaw rate and speed for a

low speed maneuver, the mapping from the front steering angle to the steering wheel angle

can be calculated. The map is calculated to be a linear map with a proportional factor

of 17.5. Figure 5.3 illustrates the steering wheel angle over time for an experimental test

comparing the actual feedback value with the estimated value from (5.1) with the obtained

map to show the accuracy of the map.
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Figure 5.3: Steering wheel angle mapping.
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The total longitudinal force can also be calculated by Newtons second law using the

longitudinal acceleration:

FxT = max, (5.2)

where ax is the longitudinal acceleration. By knowing the brake pressure, motor torque

command, and the vehicle longitudinal acceleration, the mappings from the total longi-

tudinal force to the brake pressure and to the motor torque can be obtained. Figure 5.4

illustrates mappings from the longitudinal acceleration to the brake pressure and to the

motor torque which can be transformed to the desired mappings by (5.2). In this figure,

the circles demonstrate the cloud maps obtained from experimental results, and the lines

represent the approximated map to be used in the motion planning module. As seen in

Fig. 5.4a, the maximum longitudinal acceleration generated by the motor is 3.89m/s2.

The mapping for the motor is approximated by two lines, which are shown in the figure.

Moreover, as seen in Fig. 5.4b, for the brake pressures less than 0.9KPa, no brake is

applied on the vehicle. The mapping for the brake is approximated by a line for brake

pressures larger than this value. Therefore, the total longitudinal force is mapped to the

brake pressure and motor torque by the following equations:

Tm =

922
FxT

m
+ 136 FxT ≥ −1.5m

0 FxT < −1.5m
, (5.3)

Pb =

 0 FxT ≥ −1.5m

−0.73
FxT

m
− 0.16 FxT < −1.5m

, (5.4)

where Tm is the motor torque and Pb is the brake pressure. Moreover, the maximum total

longitudinal force is also constrained to consider the limitation of the motor:

FxT ≤ 3.89m, (5.5)
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Figure 5.4: Mapping from the longitudinal acceleration to actuator inputs, a) mapping to

motor torque, b) mapping to brake pressure.

Comparing the steering wheel angle and brake pressure commands to the steering wheel

angle and brake pressure feedback show that there are also delays from the sent commands

to the command implementation (Fig. 5.5a,5.5b). There is no motor torque feedback.

However, comparing the equivalent longitudinal acceleration of the motor torque command

to the measured longitudinal acceleration shows delays on the motor torque (Fig. 5.5c). As

the results show, the delay is around 600ms for all the actuation systems. The following

section predicts the states to compensate for these delays and the other delays in the

system.

5.3.4 Delay Compensation

There are delays on the test vehicle platform that makes the vehicle’s behavior oscillatory.

Figure 5.6 shows the performance of the motion planning MPC in keeping a straight lane

in speeds less than 25Km/h. The route planner module generates a straight path in the

direction of the vehicle heading to set the lane profile straight along the heading. As the

results show, the vehicle needs very large steering angles to follow the straight path, which

is inappropriate. The reason for this behavior is the delays of the test platform.

As explained in Section 5.3.1, the calculation time of the perception module is around
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Figure 5.5: Actuation delays, a) steering delay, b) brake delay, c) motor delay.

300ms, which makes the vehicle position approximately 300ms old. Moreover, as explained

in Section 5.3.3, the actuators implement the driving commands with around 600ms delay.

It is also notable that the step time of the MPC is 100ms for the experimental tests, which

causes a 100ms delay on the vehicle commands. Therefore, approximately, a total delay

of 1000ms exists from the time that the vehicle states are measured to the time that the

commands calculated based on the states are applied on the vehicle. As seen in Fig. 5.6,

because of this large delay in the test platform, the test vehicle performs the lane keeping

maneuver with an oscillatory behavior.

If a delay of ke steps exists on the estimated vehicle states, the available estimated

states at the current time t are not the current vehicle states and pertain to vehicle states
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Figure 5.6: Experimental results for a lane keeping maneuver without delay compensation,

a) vehicle path, b) vehicle speed, c) steering angle command and lateral acceleration.

at t− ke. If this delay is the only source of delay in the system, the current vehicle states

can be predicted based on the previous control inputs, u(t− i) for 1 ≤ i ≤ ke, to be used

as the initial states of MPC [90],[91]. Moreover, if the system delay is only because of the

MPC step time, the current control input, u(t), is implemented on the vehicle at the next

step time. Therefore, u(t) should be calculated for the states pertaining to t + 1 instead

of the states pertaining to t. The control input calculated at the previous step, u(t − 1),

is applied on the vehicle during this delay time, and the vehicle states can be predicted

based on this input to be used as the MPC’s initial states [92]. The same statement holds

for the actuation delay. If the only source of delay in the system is the actuation system,

the control input calculated at the current time, u(t), is applied on the vehicle at t + ka

where the actuation delay is of ka steps. If there is no disturbance on the vehicle, the
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vehicle states can be predicted at t+ ka based on the previous control inputs, u(t− i) for

1 ≤ i ≤ ka, to be used as the MPC initial states [93].

In the test vehicle platform, all three mentioned delays exist. If some states are esti-

mated with no delay, x̃r, and some states are estimated with a delay, x̃d, the predicted

states, x̂, at t− ke is:

x̂(t− ke) =
[
x̃d(t) x̃r(t− ke)

]T
, (5.6)

The vehicle dynamics equations presented in (3.1) can be written as x(t+1) = f(x(t),uc(t))

using zero order hold method. This equation is used to predict the vehicle states. Because

of the controller step time delay and the actuation delay, the control input applied on the

vehicle at the current time is old for ka + 1 steps. Therefore, the vehicle states can be

predicted using the following equation:

x̂(t+ i+ 1) = f(x̂(t+ i),uc(t+ i− ka − 1)), −ke ≤ i ≤ ka, (5.7)

In these experimental tests, a delay of 3 steps exists on the perception module. There-

fore, the position states are estimated with a 3 steps delay. The longitudinal velocity, yaw

rate, and yaw angle are assumed to be estimated with no delay. The lateral velocity is set to

zero, and can be assumed to be either a delayed state or a state with no delay. It is assumed

to be a delayed state so that it is predicted for the 3 steps to approach its steady state

value. Therefore, ke is set to 3, and the estimated state matrices are x̃d = [X Y v]T and

x̃r = [u r θ]T . The actuation delay, ka, is also 6 steps. Starting from the states obtained

by (5.6), the vehicle states can be predicted using (5.7).

In the experimental tests, the predicted vehicle states at t + ka + 1 are used as the

MPC initial states instead of the estimated states to consider the effect of the delays. It is

notable that the states estimated with no delay are available at t. Therefore, in the process

of prediction, their estimated values at t replace their corresponding predicted states at t

for a more accurate prediction:
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x̂(t) =
[
x̂d(t) x̃r(t)

]T
. (5.8)

Moreover, the future desired values of the MPC are calculated for t + ka + 1 to factor in

the delays in the setup of MPC problem [94].

The results of a lane change maneuver to the left with the predicted states is illustrated

in Fig. 5.7. As the results show, the vehicle can change its lane with an appropriate be-

havior. Moreover, after the lane change, the vehicle can follow its lane with a considerably

smaller steering angle compared to the maneuver shown in Fig. 5.6. It can be concluded

that, using the predicted states as the MPC initial states, the motion planning module

generates more reasonable inputs by considering the effect of the delay. For the rest of

the experimental tests, the motion planning MPC uses the predicted states as its initial

states. The computation time of the motion planning module is also illustrated in Fig.

5.7d. It shows that the calculation time of the motion planning module is less than 30ms,

and the module can plan the vehicle trajectory for real-time applications with step times

over 30ms.

As mentioned in Section 5.2, the perception module uses a SLAM method to localize

the vehicle. The SLAM method localizes the vehicle with large errors. The heading angle

and the lateral position of the lane change maneuver are plotted over time in Fig. 5.7e to

show the errors. The heading angle is relative to the initial heading angle. As the results

show, from the time 17s to 25s, the heading angle is positive. Moreover, The steering

angle is also less than 0.3◦ during this time, and the vehicle sideslip angle is very small.

Therefore, it is expected that the vehicle moves toward the left side of the lane. However,

the plot of the lateral position shows that the vehicle moves toward the right side of the

lane during this time, which is because of the localization error. This error avoids the

motion planning MPC for perfect path tracking. Moreover, the accumulation of this error

causes large lateral offsets from the desired path, which makes performing maneuvers with

large lateral movements difficult.
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Figure 5.7: Experimental results for a lane keeping maneuver without delay compensation,

a) vehicle path, b) vehicle speed, c) steering angle command and lateral acceleration, d)

heading angle and lateral position, e) calculation time of motion planning module.
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5.4 Test Scenarios

In this section, some test scenarios are performed on the test vehicle. The test scenarios

are obstacle avoidance scenarios similar to Scenarios 3-7 of Chapter 3. It is notable that

the road profile is generated based on the predefined path of the route planner module

regardless of the actual road profile, and SLAM has noticeable position errors accumulating

over time. Since the tests are performed on the streets, the lateral movements are limited.

Therefore, the test scenarios expressed in this section are scenarios designed for keeping a

straight lane.

The desired longitudinal velocity of the scenarios is 40Km/h. Each scenario starts

with 5s of being static. Then, the vehicle accelerates for 5s with constant motor torque of

3000Nm while the lane should be kept. The torque is applied to increase the vehicle speed

in a short time. Then, the obstacle avoidance scenario is performed.

5.4.1 Car approaching from the side

This scenario is similar to Scenario 3 of Chapter 3; a car is on the left lane and carelessly

changes its lane to the test vehicle’s lane. The test vehicle is commanded to keep its lane.

So, it should reduce its speed and go to the right of the lane to avoid the obstacle. In this

scenario, a virtual obstacle is included, which is moving on the left lane with a speed of

40Km/h. It has the same longitudinal position as the test vehicle at the time of 10s. It

starts changing its lane at the time of 11s and changes its lane in 5s.

The experimental results of this scenario are illustrated in Fig. 5.8. The obstacle and

the test vehicle are plotted in Fig. 5.8a by rectangles in actual sizes at the times of 11s,

13.5s, and 16s. As the results show, the vehicle reduces its speed rapidly to make space for

the obstacle, as expected. After the obstacle passes, the vehicle increases its speed. The

results also show that the vehicle moves to the right of the lane, but because of the large

localization errors, the movement due to obstacle avoidance cannot be distinguished from

the errors.
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Figure 5.8: Experimental results for car approaching from the side, a) paths of vehicle

and obstacle, blue: test vehicle, red: obstacle, b) longitudinal force command and vehicle

speed, c) steering angle command and lateral acceleration.

5.4.2 Non-crossable obstacle on the middle of the lane

This scenario is similar to Scenario 6 of Chapter 3; a non-crossable obstacle is in the

middle of the lane while lane keeping is commanded. So, the vehicle should stop behind

the obstacle. In this scenario, a virtual obstacle is placed in the middle of the lane at 90m

ahead of the vehicle at time 10s, which is when the obstacle avoidance starts. The obstacle

is 0.5m × 0.5m. Fig. 5.9 shows the experimental results of this scenario. The obstacle is

shown with a red rectangle, and a contact rectangle is drawn around it with dashed lines.

The contact rectangle represents the area that if the vehicle position is located in it, the

vehicle and the obstacle are in contact. Therefore, a path that does not enter the contact
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Figure 5.9: Experimental results for non-crossable obstacle on the middle of the lane, a)

vehicle path and obstacle position, blue: test vehicle, red: obstacle, b) longitudinal force

command and vehicle speed, c) steering angle command and lateral acceleration.

rectangle is obstacle-free. As seen, the vehicle stops behind the obstacle while keeping the

lane, as expected.

5.4.3 Crossable obstacle in the middle of the lane

This scenario is similar to Scenario 7 of Chapter 3; a crossable obstacle is in the middle of

the lane while lane keeping is commanded. Therefore, the vehicle should cross the obstacle.

The scenario is set similar to the scenario of Section 5.4.2 except that the virtual obstacle

is set to be crossable. Fig. 5.10 shows the experimental results of this scenario. As seen,

the vehicle crosses the obstacle while keeping the lane and its desired speed, as expected.
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Figure 5.10: Experimental results for crossable obstacle on the middle of the lane, a)

vehicle path and obstacle position, blue: test vehicle, red: obstacle, b) longitudinal force

command and vehicle speed, c) steering angle command and lateral acceleration.

5.4.4 Non-crossable Obstacle on the side of the lane

Two scenarios similar to Scenario 4 of Chapter 3 are performed; a non-crossable obstacle

is on the side of the lane, placed once on the right side of the lane and once on the left

side of the lane. Lane keeping is also commanded. So, the vehicle should pass the obstacle

that is on the right side of the lane on the obstacle’s left and the obstacle that is on the

left side of the lane on the obstacle’s right. The scenarios are set similar to the scenario

of Section 5.4.2 except that the virtual obstacle is placed once at 1.5m on the right side

of the center of the lane and once at 1.5m on the left side of the center of the lane. The

experimental results of these scenarios are demonstrated Fig. 5.11.
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Figure 5.11a shows the vehicle’s path and the obstacle’s positions for these scenarios.

The obstacle on the right side of the lane is demonstrated by a red rectangle, and the vehi-

cle’s path corresponding to its avoidance is in blue. Moreover, the obstacle on the left side

of the lane is demonstrated by an orange rectangle, and the vehicle’s path corresponding

to its avoidance is in green. As the results show, when the obstacle is on the right side,

the vehicle slightly moves to the left to avoid the obstacle while keeping the lane and the

desired velocity. Moreover, when the obstacle is on the left side, the vehicle stays on the

right side of the lane to avoid the obstacle while keeping the lane and the desired velocity,

as expected.

5.4.5 Crossable obstacle on the side of the lane

Two scenarios similar to Scenario 5 of Chapter 3 are preformed; a crossable obstacle is on

the side of the lane, placed once on the right side of the lane and once on the left side of

the lane. These scenarios are set similar to the scenario of Section 5.4.4 except that the

virtual obstacles are crossable. Therefore, the vehicle should pass the obstacle that is on

the right side of the lane on the obstacle’s left and the obstacle that is on the left side of

the lane on the obstacle’s right.

Fig. 5.12 shows the experimental results of this scenario. As the results show, when

the obstacle is on the right side, the vehicle moves slightly to the left to avoid the obstacle

while keeping the lane and the desired velocity. Moreover, when the obstacle is on the left

side, the vehicle stays on the right side of the lane to avoid the obstacle while keeping the

lane and the desired velocity, as expected.

5.5 Summary

The motion planning MPC presented in Chapter 3 was implemented on an autonomous

test vehicle platform in this chapter. The MPC was modified to be compatible with this

platform, and some test scenarios were performed to validate the simulation results of the

motion planning MPC with experimental results in real time.
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Figure 5.11: Experimental results for non-crossable obstacle on the side of the lane, a)

vehicle path and obstacle position, blue: test vehicle for right obstacle, red: right obstacle,

green: test vehicle for left obstacle, orange: left obstacle, b) longitudinal force command

and vehicle speed for right obstacle, c) steering angle command and lateral acceleration

for right obstacle, d) longitudinal force command and vehicle speed for left obstacle, e)

steering angle command and lateral acceleration for left obstacle.
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Figure 5.12: Experimental results for crossable obstacle on the side of the lane, a) vehicle

path and obstacle position, blue: test vehicle for right obstacle, red: right obstacle, green:

test vehicle for left obstacle, orange: left obstacle, b) longitudinal force command and

vehicle speed for right obstacle, c) steering angle command and lateral acceleration for

right obstacle, d) longitudinal force command and vehicle speed for left obstacle, e) steering

angle command and lateral acceleration for left obstacle.
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There were delays on the test platform. The vehicle position was obtained by the

perception module, which had a calculation time of around 300ms. The results also showed

a delay of around 600ms on the actuation system. The step time of the motion planning

module of the test vehicle was also 100ms. Therefore, a total delay of around 1000ms

existed on the test platform. The experimental results showed that if the delay was not

compensated for, the test vehicle could not follow a path smoothly, even at low speeds.

The delay was compensated by using predicted vehicle states as the MPC’s initial states.

Using this method, a path could be followed smoothly, and a lane change could also be

performed appropriately.

Some test scenarios were also performed to validate the simulation results of the motion

planning MPC. The test vehicle stopped behind a non-crossable obstacle when passing on

its side was not possible, and passed in on its side when possible. The vehicle also crossed

a crossable obstacle, when passing on its side was not possible, and passed in on its side,

when possible. Moreover, when a car approached the test vehicle carelessly from the side,

the vehicle reduced its speed to make space for the car and avoid the car. Therefore,

although there was a large delay in the platform, and the localization system had large

errors, the motion planning MPC was modified adequately to work in this platform and

performed appropriately. The experimental results validated the simulation results of the

motion planning MPC. They also showed that the MPC is implementable in real time.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, a motion planning MPC was designed for an autonomous vehicle that plans

the vehicle’s trajectory according to obstacle priority orders. This motion planning MPC

categorizes the obstacles as crossable and non-crossable, and treat each category according

to its characteristics. It also prioritizes the non-crossable obstacles based on their possible

crash cost, and plans its trajectory based on their priority order. Moreover, it utilizes

a vehicle model using a bicycle model and tire constraints that remain valid at tire force

limits. Furthermore, the iterative obstacle avoidance method presented in this thesis allows

for a more optimal motion planning by reducing the number of feasible trajectories removed

by convexification. The major findings and contributions of this thesis are as follows.

The obstacles were prioritized based on their avoidance necessity by utilizing a potential

field in the motion planning MPC. Potential fields have been used for obstacle avoidance

in motion planning MPCs in literature. However, one potential function has been used for

all the kinds of obstacles in each MPC. This approach treats all the obstacles similarly.

However, obstacles can be prioritized by assigning each category of obstacles a different

potential function that corresponds to the obstacles’ characteristics. This approach treats

obstacles based on their characteristics. In this thesis, the obstacles were categorized as
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crossable and non-crossable using this approach. Assigning an appropriate function to

each category makes the non-crossable obstacles to be avoided at any condition, and the

crossable obstacles to be avoided when it is comfortable.

Non-crossable obstacles were prioritized based on their possible crash costs by applying

lexicographic optimization on the motion planning MPC. It is common to use obstacle

constraints for obstacle avoidance in motion planning MPCs. This method considers the

same priority for all obstacles. However, the obstacles have different crash costs and

should be prioritized. In this thesis, obstacle constraints were included in the MPC for

non-crossable obstacles. The obstacles were prioritized by prioritizing their corresponding

constraints through lexicographic optimization. Therefore, in a situation where a crash is

unavoidable, the motion planning MPC plans the vehicle’s trajectory such that the vehicle

avoids the obstacles with the highest priority orders.

A vehicle model was developed for the MPC that is valid at tire force limits. A linear

vehicle bicycle model has been used in the literature of motion planning MPC. The model

uses linear tire models and accompanies constraints on tire sideslip angle to keep the

model valid by keeping the tire in its linear force region. On the other hand, considering

the limitations caused by combined tire slip and load transfer in the vehicle model makes

the model valid at tire force limits. However, in the literature, there is no linear bicycle

model that considers combined tire slip in modeling both longitudinal and lateral motions

of a motion planning MPC. In this thesis, tire constraints were presented that consider the

limitations of the combined tire slip and the effect of longitudinal load transfer on these

limitations. The tire constraints were used in the motion planning MPC to generate a

vehicle model that considers tire capacities. The tire constraints also cover the tire sideslip

angle constraint, and keep the tire in its linear force region to keep the vehicle model valid.

An iterative obstacle avoidance method was presented that reduces the number of

trajectories removed by convexification. If the obstacle avoidance is performed through

obstacle constraints, and the motion planning MPC is quadratic, the obstacle-free area

should be convexified by linear obstacle constraints. The convexification process removes

some of the feasible trajectories. One of the best convexification methods presented for

autonomous road vehicles is the linearized signed distance method. However, this method

constrains the vehicle to stop behind an obstacle in front of it, and does not allow a swerving
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maneuver in such a situation. In this thesis, in addition to generating a constraint set based

on this method, two constraint sets corresponding to swerving to the right and to the left

were also generated. The union of these three constraint sets has less removed trajectories

than the first constraint set. IQMPC was presented to solve the problem for the union of

the three sets; it consists of three MPCs, one for each constraint set. IQMPC increases

the calculation time, but it increases the available feasible trajectories.

The performance of the developed MPC was evaluated through computer simulations

in MATLAB/Simulink and CarSim. A high fidelity vehicle model of an electric Chevrolet

Equinox in CarSim was utilized to simulate the vehicle behavior. The MPC was imple-

mented in Simulink, and a quadratic programming solver called QPOASES was used to

solve the MPC quadratic problem. The MPC was simulated for some test scenarios. The

simulation results showed that the MPC plans the vehicle’s trajectory appropriately in

complex driving situations. The results also showed that the MPC treats obstacles based

on their characteristics; the vehicle avoids the crossable obstacles only when it is comfort-

able to do so, but it tries to always avoid the non-crossable obstacles. They also showed

that the MPC prioritizes the obstacles; in situations that avoiding all the obstacles is not

possible, the vehicle avoids the obstacles with the highest priority orders and crashes into

the obstacles with the lowest priority orders.

It can also be seen from the results that the vehicle generates large tire forces on the tire

force limits, when required; i.e. the MPC used the tire capacity in generating the vehicle’s

trajectories. Furthermore, the results showed that the proposed IQMPC increases the

available feasible trajectories; in a situation where stopping behind an obstacle in front

of the vehicle is not possible, but swerving is possible, the IQMPC avoids the obstacle

by swerving while the MPC based on the linearized signed distance constraint set cannot

avoid the obstacle.

The proposed MPC was also implemented on a test vehicle platform to validate the

simulation results of the MPC with experimental results. The MPC was modified to become

compatible with the test vehicle software platform. It was also modified to compensate for

the test platform delays by using predicted vehicle states as the MPC initial states. The

modified MPC was implemented on the test vehicle for some test scenarios. The results

showed that the MPC was modified adequately to work in this platform and performed
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appropriately despite the large delays in the platform and large localization errors. The

experimental results also validated the simulation results of the MPC and showed that the

MPC is implementable in real time.

6.2 Future Work

The following are a few suggestions for the continuation of the work done in this thesis to

improve the performance of the motion planning MPC.

• Improving obstacle priority orders: In this thesis, the priority orders were assigned

to each obstacle based on the possible crash costs of the obstacle’s category; e.g. cars

were prioritized over rocks. However, the speed and the angle of the crash also have

great impacts on the crash costs; e.g. a high speed crash with a rock is more costly

than a low speed crash with a car. These factors can be considered in predicting the

possible crash cost of obstacles to obtain more accurate obstacle priority orders.

• Obtaining the optimal lane by utilizing IQMPC: The desired lane is usually planned

in the behavioral planning stage of an autonomous vehicle. However, this stage does

not consider the vehicle dynamics and obstacle avoidance in planning the desired

lane. IQMPC can be modified to find trajectories for lane keeping, lane change to

the left, and lane change to the right. The trajectories can be sent to the behavioral

planning stage as feedback so that this stage decides the desired lane by considering

the vehicle dynamics and obstacle avoidance performance of the optimal trajectory

corresponding to each lane.

• Considering ride comfort: The weighting matrices in the objective function of the

proposed motion planning MPC were tuned for a smooth driving condition, but the

ride comfort was not optimized. Passenger ride comfort indexes can be included in

the MPC objective function so that the optimality in terms of passengers’ comfort is

also considered in planning the vehicle’s trajectories.

• Improving IQMPC: IQMPC was proposed to improve the obstacle avoidance per-

formance by covering more feasible trajectories. However, it does not cover all the
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feasible trajectories. The number of iterations and the constraint set of each itera-

tion can be modified so that more feasible trajectories are covered, and the obstacle

avoidance performance is improved.

• Controlling tire slips: In this thesis, tire slips were not controlled in the motion

planning MPC; they were controlled in a slip controller. Tire slips can be controlled

in the MPC by including the wheel dynamics in the vehicle model of the MPC. This

way, the vehicle’s trajectory is planned based on a more accurate vehicle model. It is

notable that to control the tire slips, the torques on each wheel should be considered

as a control input, which increases the number of control inputs, and consequently,

the calculation time. However, the tire slip should be considered only at a few first

prediction steps. Therefore, to reduce the number of control inputs, the wheel torques

can be replaced by the total longitudinal force after these steps.

• Planning trajectories with large yaw angles: The vehicle model used in the proposed

motion planning MPC is a linear bicycle model linearized for small yaw angles. How-

ever, there are some maneuvers that require large yaw angles in a prediction horizon,

e.g. U-turn. In these maneuvers, the proposed vehicle model is invalid, and therefore,

the motion planning MPC cannot plan these maneuvers appropriately. These ma-

neuvers are performed at low speeds. Therefore, a switching MPC can be developed

that uses the dynamics model at high speeds and a kinematics model at low speeds.

This MPC can plan trajectories with large yaw angles at low velocities while it con-

siders the vehicle dynamics at high speeds where vehicle dynamics consideration is

required.
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[11] Jose M Álvarez, Antonio M López, Theo Gevers, and Felipe Lumbreras. Combining

priors, appearance, and context for road detection. IEEE Transactions on Intelligent

Transportation Systems, 15(3):1168–1178, 2014.

[12] Qingquan Li, Long Chen, Ming Li, Shih-Lung Shaw, and Andreas Nuchter. A sensor-

fusion drivable-region and lane-detection system for autonomous vehicle navigation in

challenging road scenarios. IEEE Transactions on Vehicular Technology, 63(2):540–

555, 2014.

[13] Vijay John, Keisuke Yoneda, Zheng Liu, and Seiichi Mita. Saliency map generation

by the convolutional neural network for real-time traffic light detection using template

matching. IEEE Transactions on Computational Imaging, 1(3):159–173, 2015.

[14] Tao Chen and Shijian Lu. Accurate and efficient traffic sign detection using dis-

criminative adaboost and support vector regression. IEEE Transactions on Vehicular

Technology, 65(6):4006–4015, 2016.

[15] Beomseong Kim, Baehoon Choi, Seongkeun Park, Hyunju Kim, and Euntai Kim.

Pedestrian/vehicle detection using a 2.5-d multi-layer laser scanner. IEEE Sensors

Journal, 16(2):400–408, 2016.

[16] Javier Hernandez-Aceituno, Rafael Arnay, Jonay Toledo, and Leopoldo Acosta. Us-

ing kinect on an autonomous vehicle for outdoors obstacle detection. IEEE Sensors

Journal, 16(10):3603–3610, 2016.

[17] Ehsan Hashemi, Alireza Kasaiezadeh, Saeid Khosravani, Amir Khajepour, Nikolai

Moshchuk, and Shih-Ken Chen. Estimation of longitudinal speed robust to road

conditions for ground vehicles. Vehicle System Dynamics, 54(8):1120–1146, 2016.

109



[18] Alberto Y Hata and Denis F Wolf. Feature detection for vehicle localization in urban

environments using a multilayer lidar. IEEE Transactions on Intelligent Transporta-

tion Systems, 17(2):420–429, 2016.

[19] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact

routing in large road networks using contraction hierarchies. Transportation Science,

46(3):388–404, 2012.

[20] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,

Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route

planning in transportation networks. In Algorithm Engineering, pages 19–80. Springer,

2016.

[21] Michael Ardelt, Constantin Coester, and Nico Kaempchen. Highly automated driving

on freeways in real traffic using a probabilistic framework. IEEE Transactions on

Intelligent Transportation Systems, 13(4):1576–1585, 2012.

[22] Sébastien Glaser, Benoit Vanholme, Säıd Mammar, Dominique Gruyer, and Lydie

Nouveliere. Maneuver-based trajectory planning for highly autonomous vehicles on

real road with traffic and driver interaction. IEEE Transactions on Intelligent Trans-

portation Systems, 11(3):589–606, 2010.

[23] Paolo Falcone, H Eric Tseng, Francesco Borrelli, Jahan Asgari, and Davor Hrovat.

Mpc-based yaw and lateral stabilisation via active front steering and braking. Vehicle

System Dynamics, 46(S1):611–628, 2008.

[24] Toshihiro Hiraoka, Osamu Nishihara, and Hiromitsu Kumamoto. Automatic path-

tracking controller of a four-wheel steering vehicle. Vehicle System Dynamics,

47(10):1205–1227, 2009.

[25] Stephen M Erlien. Shared vehicle control using safe driving envelopes for obstacle

avoidance and stability. PhD thesis, Stanford University, 2015.

[26] Yiqi Gao, Andrew Gray, H Eric Tseng, and Francesco Borrelli. A tube-based robust

nonlinear predictive control approach to semiautonomous ground vehicles. Vehicle

System Dynamics, 52(6):802–823, 2014.

110



[27] Ming Feng Hsieh and Umit Ozguner. A parking algorithm for an autonomous vehicle.

In Intelligent Vehicles Symposium, 2008 IEEE, pages 1155–1160. IEEE, 2008.

[28] Misel Brezak and Ivan Petrovic. Real-time approximation of clothoids with bounded

error for path planning applications. IEEE Transactions on Robotics, 30(2):507–515,

2014.

[29] Christoph G Keller, Thao Dang, Hans Fritz, Armin Joos, Clemens Rabe, and Dariu M

Gavrila. Active pedestrian safety by automatic braking and evasive steering. IEEE

Transactions on Intelligent Transportation Systems, 12(4):1292–1304, 2011.

[30] Zhao Liang, Guoqiang Zheng, and Jishun Li. Automatic parking path optimization

based on bezier curve fitting. In Automation and Logistics (ICAL), 2012 IEEE Inter-

national Conference on, pages 583–587. IEEE, 2012.

[31] Tomas Berglund, Andrej Brodnik, H̊akan Jonsson, Mats Staffanson, and Inge

Soderkvist. Planning smooth and obstacle-avoiding b-spline paths for autonomous

mining vehicles. IEEE Transactions on Automation Science and Engineering,

7(1):167–172, 2010.

[32] Rahul Kala and Kevin Warwick. Multi-level planning for semi-autonomous vehicles in

traffic scenarios based on separation maximization. Journal of Intelligent & Robotic

Systems, 72(3-4):559, 2013.

[33] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Path plan-

ning for autonomous vehicles in unknown semi-structured environments. The Inter-

national Journal of Robotics Research, 29(5):485–501, 2010.

[34] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible maneuvers

for autonomous vehicles. The International Journal of Robotics Research, 28(8):933–

945, 2009.

[35] Tianyu Gu, Jarrod Snider, John M Dolan, and Jin-woo Lee. Focused trajectory

planning for autonomous on-road driving. In Intelligent Vehicles Symposium (IV),

2013 IEEE, pages 547–552. IEEE, 2013.

111



[36] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Frazzoli, and

Jonathan P How. Real-time motion planning with applications to autonomous urban

driving. IEEE Transactions on Control Systems Technology, 17(5):1105–1118, 2009.

[37] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and Seth

Teller. Anytime motion planning using the rrt. In Robotics and Automation (ICRA),

2011 IEEE International Conference on, pages 1478–1483. IEEE, 2011.

[38] Jianqiang Wang, Jian Wu, and Yang Li. The driving safety field based on driver–

vehicle–road interactions. IEEE Transactions on Intelligent Transportation Systems,

16(4):2203–2214, 2015.

[39] Michael T Wolf and Joel W Burdick. Artificial potential functions for highway driv-

ing with collision avoidance. In Robotics and Automation, 2008. ICRA 2008. IEEE

International Conference on, pages 3731–3736. IEEE, 2008.

[40] Jie Ji, Amir Khajepour, Wael William Melek, and Yanjun Huang. Path planning

and tracking for vehicle collision avoidance based on model predictive control with

multiconstraints. IEEE Transactions on Vehicular Technology, 66(2):952–964, 2017.

[41] Erwin Prassler, Jens Scholz, and Paolo Fiorini. Navigating a robotic wheelchair in

a railway station during rush hour. The international journal of robotics research,

18(7):711–727, 1999.

[42] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using velocity

obstacles. The International Journal of Robotics Research, 17(7):760–772, 1998.

[43] Yiqi Gao, Theresa Lin, Francesco Borrelli, Eric Tseng, and Davor Hrovat. Predictive

control of autonomous ground vehicles with obstacle avoidance on slippery roads.

In ASME 2010 dynamic systems and control conference, pages 265–272. American

Society of Mechanical Engineers, 2010.

[44] Julia Nilsson, Mattias Brännström, Jonas Fredriksson, and Erik Coelingh. Longitu-

dinal and lateral control for automated yielding maneuvers. IEEE Transactions on

Intelligent Transportation Systems, 17(5):1404–1414, 2016.

112
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