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Ocular Discomfort Upon Tear Drying  

Abstract 

Purpose: Assess the relationship between tear film drying and sensation between blinks. 

Methods: MATLAB sampled a slitlamp video camera, a potentiometer and a microphone 

while subjects kept one eye open for as long as possible. 23 subjects rated the intensity of 

the ocular sensation while video and voice data were collected simultaneously. The tear 

drying on the cornea was measured.  

Results: The sensation was triphasic. Two linear functions described the latter 2 parts of the 

data (r ≥ 0.95). The correlation between TBUT and the elbow in the time-discomfort 

function was 0.72. Extent of tear film drying was linearly correlated to time (median 

correlation = 0.88). The correlation between the discomfort elbow and image elbow was 

0.93 with single data pair for each subject. Analysis of sensation characteristics showed 

significant differences between itching and burning for both intensity and time (p = 0.03 and 

p = 0.02 respectively). 

Conclusions: Simultaneous recording of ocular surface appearance, discomfort intensity and 

attributes of sensation provide novel information about the development of discomfort 

during ocular surface drying. The rapid increase in discomfort proceeding blinking has been 

quantified and the relationship between the time course of drying and discomfort is 

elucidated. 
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LITERATURE REVIEW: 

1. Dry Eye and the Sensation of Ocular Dryness: 

This thesis attempts to address the fundamental question, “Does the eye, directly sense 

Dryness?” 

Dry eye disease is one of the most common complaints seen by ophthalmic specialists [1]. It 

is a condition that causes considerable morbidity and reduces the quality of the life an 

individual. Historically the term Dry Eye is attributed to Herik S.C. Sjogren. The NEI/ 

Industry workshop’s definition is that “Dry eye is a disorder of the tear film due to tear 

deficiency or excessive tear evaporation, which causes damage to the interpalpebral ocular 

surface and is associated with symptoms of ocular discomfort.” [2]. An alternative definition 

of dry eye has been proposed which states “Dry Eye is a disease of the ocular surface 

attributable to different disturbances of the natural function and protective mechanism of the 

external eye, leading to an unstable tear film during the open eye state” [3].  

Both these definitions encompass the importance of the interaction between the ocular 

surface and the tear film. The tear film is now believed to be a hydrated mucous gel 

containing a wide range of proteins and growth factors to promote and develop the ocular 

surface [4]. These specialized functions of the “hydrated mucous gel” may probably have 

evolved over thousands of years. It is highly likely that in the early stages of the evolution of 

life, the mucous covering the surface of primitive aquatic life forms functioned to reduce the 

hydrodynamic drag due to friction, during the process of movements [5]. With the 

development of the phylogenetically ancient, innate immune system, specific nerves and 

their patterns evolved as the final result of selective responses to combinations of local cues 

and interactions with the surrounding nature [6, 7]. Any alterations in these natural 

adaptations may in certain situations, cause people to describe these medleys of resulting 

unpleasant sensations as the feeling of dryness. The sensation of dryness is perceived both in 

the cutaneous and the mucous surfaces of the body. 
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Cutaneous Dryness: What do we mean by the term Dry Skin? 

The following discussion regarding cutaneous dryness attempts to understand the common 

complaint heard in clinical practice “my skin\mouth\eye feels dry”. 

The most common dermatological problem amongst all ages is “dry rough and flaky skin” 

and yet the term “dry skin” has never been defined in a reproducible way [8-10]. The 

confusion is often between the concept of dry, meaning without water or moisture, and the 

feature of a rough and brittle scaly skin appearance. Seborrheic dermatitis, in which there is 

an abnormal increase in the amount of sebum secreted and discharged and often associated 

with greasy scales, is also considered a type of dry skin. The term rough skin and dry skin 

described the medical diagnosis of, a low sebum content better than Seborrheic dermatitis 

[11]. Studies have also shown that dry skin is aggravated during winter and in conditions of 

low humidity [12, 13]. It is frequently a sign of epidermal dysfunction and often due to 

predisposing factors such as lack of water in the stratum corneum, hyperproliferation of the 

epidermis, inadequate synthesis of the skin lipids and epithelial barrier damage, with all of 

these factors often having an influence on each other [14]. The functional changes in the 

dermis and the epidermis are responsible for the viscoelastic properties of the skin. In the 

skin the outer most layer of the stratum corneum consists of the horny layer of the 

corneocytes containing layers of keratin filled cells. The two important factors responsible 

for an intact barrier function and for the adherence of the horny layer of corneocytes in the 

epidermis of the skin which maintains adequate hydration are the morphomechanical force 

of the desmosomes formed by the cell membranes that interdigitate with those of 

neighboring cells and the functional force of the intercellular lipids that fill the space 

between the cells. The water content of the skin is also dependant on “natural moisturizing 

factors”, such as amino acids, lactic acid, pyrrolidone carboxylic acid and urocanic acid. 

These are mainly formed after the break down of filaggrin, which is a histidine rich 

interfilamentous matrix protein present in the corneocytes [15, 16]. An alteration in the 

filaggrin metabolism contributes to the disturbed epidermal differentiation leading to the 

pathological and adaptive changes of dry skin. In the eye, filaggrin is upregulated in the 

keratinized conjunctiva, but is not found in the normal conjunctiva [17]. The barrier function 

of the skin is also correlated with the presence of covalently bound ceramides in the skin. 
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These ceramides play an important role in the formation of the lamellar structures that are 

involved in the maintenance of the barrier function of the skin [18]. There are also 

differences in the amount of bound ceramide present between the stratum corneum of the 

skin, gingival stratum corneum and the intraoral stratum corneum in the pigs. Bound lipid is 

important for the formation of the multilamellar structures that are present between the 

corneocytes for the barrier function of the skin [19]. It has been established that the 

transepidermal water loss is greater when there is a reduction in the amount of bound 

ceramides in the skin. 

There are at present numerous methods to quantify the drying and irritant tendency of 

treated or untreated skin. Structural alterations in the skin are being studied through various 

bioengineering methods based on electrophysiological principles. The most recent of the 

techniques for an in vivo assessment of the skin structure and state of hydration, involve 

nuclear magnetic resonance spectroscopy, transient thermal transfer and optical coherence 

tomography [20, 21]. 

Neural Mechanisms of Dry Skin Perception: 

Dry skin is not well defined and does not always mean dry. Various aspects are inclusive in 

the expression of dryness. There are now attempts to distinguish the following opposing 

qualities of the skin and its sensation, such as dry skin vs. hydrated skin, rough skin vs. 

smooth skin and seborrheic skin vs. asteatotic skin [10]. It seems therefore that dry skin is a 

rough skin of multiple origins. To appreciate the perception of skin roughness, and to 

understand the various physical determinants of roughness, a multidimensional scaling to 

similarity judgements of different textured objects was done. Texture was believed to 

include the two strong dimensions of soft vs. hard and smooth vs. rough. It has been 

proposed that these dimensions can occur in different combinations. A third dimension, 

which includes sticky vs. slippery improves the fit of the multi-dimensional scaling in some 

individuals, pointing to the conclusion that the perception of texture has two strong 

dimensions and possibly one weak dimension [22]. In many of the experiments combining 

neurophysiological and psychophysical studies, the form and the texture components of the 

surface structure of a substance have been investigated. Form perception involves the 

perception of the geometric structure of a surface or object and its dimensionality (i.e. the 
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degrees of freedom) is large. Texture perception is of a low dimensionality and it correlates 

with the feel of a surface. Texture is thus dependant on the distributed statistical properties 

of a surface or material such as the increase in spacing of dots or ridges. Most studies have 

demonstrated that roughness perception depends on numerous factors such as shape, height, 

diameter, compliance, and density of the surface. The relationship of these factors is 

complex and non-linear [23]. It has also been observed that the velocity of scanning, the 

force of contact and the friction between the finger and a surface have a minor or no effect 

on roughness magnitude judgments. Although the neural mechanism of roughness has been 

widely investigated the neural basis for roughness perception in the skin is unclear. 

Peripheral Afferents of Mechanoreception and their Psychophysical Channels: 

Four cutaneous mechanoreceptive afferent types innervate the glabrous (nonhairy) skin. 

These afferents are characterized on the basis of their receptive field size, i.e. large vs. small 

and by the rate with which they adapt to a sustained indentation, i.e. rapid vs. slow. 

Adaptation and the receptive field size are the principle properties of these 

mechanoreceptive afferents innervating the glabrous skin. Adaptation refers to how the 

afferent fibers respond to a sustained skin indentation. In the case of the fast adapting (FA) 

nerves, the responses to a stimulus is generated when there is an active indentation of the 

skin but if the movement of the skin stops the action potentials are not generated, even if 

there is a sustained indentation and the skin is under a considerable force. In contrast the 

slowly adapting (SA) afferents respond while the skin is moving and also during the period 

of sustained indentation. With a steady indentation being maintained the discharge rate 

slowly decreases in frequency, over many seconds or minutes. The receptive field of a 

mechanoreceptor is the area of skin which when stimulated generates a response in the 

sensory neuron of that area. The boundary of the area will depend on the intensity of the 

stimulus used. The various afferents types of cutaneous nerves based on receptive field and 

adaptation are:  

The afferents associated with the Merkel cell are the “slowly adapting type 1” (SA1) 

afferents with a small receptive field.  

 4  



  

The afferents associated with the Ruffini receptors are the “slowly adapting type 2” (SA2) 

afferents with large receptive fields. 

The rapidly adapting afferents associated with the Meissner mechanoreceptors are the 

“rapidly adapting afferents” (RA) with small receptive fields. 

The rapidly adapting afferents associated with the Pacinian mechanoreceptors are the 

Pacinian afferents associated with large receptive fields [24-33].  

The slowly adapting type1 (SA1) and the rapidly adapting (RA) afferent nerves in the skin, 

exist in relatively homogenous populations. Also based on a ‘four-channel’ model of 

mechanoreception, the nerve fibers are found to be peripheral physiological correlates of the 

perceptual process of the model of mechanoreception [34-38]. A channel is defined as an 

element that is tuned to a specific region of the energy spectrum of the stimulus to which the 

system responds. In a multichannel sensory system, different channels are tuned to different 

regions of the energy spectrum of the stimulus [39]. The four channel psychophysical model 

of tactile perception proposes that each channel consists of specific end organs, innervated 

by select groups of peripheral nerves and isolated activation of these nerves can produce a 

unitary sensation. The most sensitive channel signals the threshold stimuli and 

suprathreshold sensations are due a combination of the activity of the different channels. 

However all the four channels need not be activated for a suprathreshold sensory experience. 

The model does not require the existence of all the four channels, and only implies that the 

sense of touch utilizes information being transmitted by separate and independent channels. 

A unified perception of touch is due to the activity over the different channels being 

integrated.  

The four psychophysical channels of tactile sensation are named as  

1) Pacinian (P) 

2) Non-Pacinian I (NP I) 

3) Non-Pacinian II (NP II) and  

4) Non-Pacinian III (NP III). 
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The physiological input to the P channel is the PC fibers. The sensory attribute, which is 

routinely attributed to the P channel, is “vibration” [38, 40] and the Pacinian corpuscle 

afferents are the inputs to this P channel [36, 41, 42]. The P channel, which operates in the 

frequency range of 40-800 Hz, has a maximum sensitivity range at about 300 Hz. The 

channel is sensitive to changes in the temperature of the skin surface and to changes in the 

size and duration of a stimulus [38, 39, 43-45]. The P channel is capable of both spatial and 

temporal summation, as changes in the size and duration of the stimulus produces a decrease 

in the threshold of the P channel. The non-Pacinian channel known as NP1 has “flutter” as 

its sensory attribute [40]. The input for this channel is the RA fibers which innervate the 

Meissner corpuscles [46]. The NP I channel is less sensitive to changes in stimulus 

frequency. This channel possesses sensitivity to a range of vibrating frequencies between 10 

and 100 Hz [34, 37, 47] and is not affected by changes in temperature. It is also not affected 

by the changes in the size and duration of the stimulus and therefore does not display 

temporal or spatial summation [48]. The next non-Pacinian channel, NP II operates in the 

vibratory-frequency range similar to the P channel (15-400 Hz.), but at a lower sensitivity. 

This channel is temperature sensitive but lacks spatial summation. Although initially it was 

believed that the NP II had temporal summation, subsequent work has not proved the 

presence of a temporal summation [37, 49, 50]. The sensory attribute of the NP II is 

presently not known although stimulation of this channel causes a buzz like sensation in the 

frequency range of 100-500 Hz. The slowly adapting type II fibers are the physiological 

substrates sub-serving the channel with inputs from the Ruffini end organs. The last channel 

is the NP III channel which operates at low stimulus frequencies in the range of 0.4 and 100 

Hz. The channel is affected by the skin surface temperature, but does not have the 

capabilities of spatial summation. The Merkel cell neurite complex and the slowly adapting 

type1 fibers mediate the NP III channel. The sensory attribute of this channel is “pressure” 

in the frequency range of 0.4 to 2.0 Hz [51]. Therefore the four-channel model of 

mechanoreception maintains that tactile experience is the result of the combined neural 

activity of one or more of the various mechanoreceptive channels. The particular 

combination is dependant on the stimulus. The crossing from one channel to another resulted 

in a break of the overall power function, and the functions obtained were scalloped in shape 

indicating a switching from one channel to another [52]. In the hairy skin the relationship 
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between mechanoreceptive afferents and tactile perception is still not clearly known. 

Mechanoreceptive C fiber afferents that are associated with unmyelinated axons have been 

described in the human nerves both on the face and the forearm [53-55]. These fibers have 

low threshold mechanoreceptor properties and are different from the high-threshold C 

afferents, commonly classified as nociceptors. They have a strong response to a slowly 

moving stimulus but a poor sensitivity to a fast moving stimulus. As the function of these 

low threshold C- fibers is not fully understood, it is speculated that their activity may be 

conditional on the activity of the myelinated afferents and related to adding a particular 

quality or tint to the sensation elicited by skin deformation [56]. It has been suggested that 

like the unmyelinated nociceptive fibers and thermoreceptive afferents, which function to 

contribute to a larger limbic system for the integrity of the self, the low threshold C afferents 

too may be closely related to the limbic system [56, 57]. 

Relation of Intensity of Stimulus to Magnitude of Sensation: 

The intensity of a stimulus and the perceived magnitude of the tactile sensation have been 

studied for long, with pioneering work by Weber and Fechner. Studies concerning stimulus 

intensity to tactile sensitivity have been done through neurophysiological, psychophysical 

and microneurographic methods. These studies reveal that the sensory capacity of a human 

observer is determined by the functional properties of the sense organs of the skin, rather 

than by mechanisms in the central nervous system [31]. In relation to the power law of 

Stevens, the magnitude of the tactile sensations could be described by power functions. 

When the growth in the intensity of tactile sensations was made as a function of indentation 

depth and rate it was found that the most intense tactile sensation was perceived due to the 

fastest (10 mm/sec) rate of indentation and the slowest indentation produced the least 

sensation. For a slow rate of indentation, the exponent of the power function was different 

from the exponent for the fast rate of indentation. In the case of the fast rate of indentation, 

two functions with different slopes were required to describe the estimates of the growth in 

intensity of tactile sensations [58]. The intensity of the tactile stimulus is therefore 

determined by a combination of activity across the different fiber types and no simple 

relationship between the afferent response and the perceived magnitude of the sensation is 

present. 
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A Note about the evolution of the mucous surface to reduce the drag 

force: 

   As early life evolved, nektonic animals interacted with the water that surrounded them. To 

increase the chances of survival these animals developed adaptations to reduce the drag due 

to friction on the boundary layer close to the surface of the body. One of the drag reducing 

surface adaptations, was the animal’s “surface excreting long-chain polymers” [5]. These 

polymers reduced the frictional drag through the mechanism of the Toms effect, wherein 

the addition of small amounts of polymers to a turbulent high flow in a pipe, reduces the 

pressure drop substantially below that of the fluid at the same flow rate [59]. Investigating 

the Toms effect due to long chain polymers in the mucous of two molluscs, the Red Sea sea 

hare (Aplysia oculifera) and the Pacific nut brown cowrie (Cyprea spadicea) it was found 

that the mucous of stationary molluscs which was elastic, changed to a highly viscous state 

when sliding movements were applied [60]. Two opinions have been put forth to explain 

the friction reducing effects of long chain polymers in mucous. The first is that polymers 

act as viscoelastic threads, steering water particles in the mainstream direction, to reduce 

turbulence. The second opinion is that pieces of polymer chains that are released mix with 

the fluid and reduces friction. As amniotes evolved, the lungs reduced the need for a 

cutaneous gas exchange and the mucous and the skin formed the anatomic barriers to 

provide a phylogenetically ancient, innate immune system [6]. Specific nerves and their 

patterns developed as the final result of selective responses to combinations of local cues 

and interactions with the surrounding nature. 
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2. Neural coding mechanisms of roughness in skin: 

The afferent nerves may react through different neural codes for conveying information 

about roughness perception. In the skin, four types of neural coding mechanisms have been 

advanced as possible bases for the perception of roughness; these are intensive, modal, 

temporal, and spatial codes [61, 62]. The intensive neural code is a measure of the amount of 

the neural activity such as the mean impulse rate, and is independent of the neural activity 

distributed in time and in space. Although the perception of roughness is believed to exist on 

an intensive continuum, no consistent relationship has been found between the mean impulse 

rates and the roughness magnitude [63-65]. The modal neural code for roughness perception 

is based on the relative magnitude of the intensity of response between neuronal populations 

with different transducer properties [62]. There have been very few studies of the modal 

coding of texture and roughness and no simple linear combination of the rates across the 

different afferent classes of nerves, could account for the magnitude of roughness [63, 66]. 

However based on the linear relationship between firing rate in the peripheral afferent nerves 

and the roughness ratings, it could be determined that the slowly adapting type of afferent 

nerve fibers were the type, most likely to mediate roughness perception. The non-linear 

relationships between the afferent rates and the roughness ratings are yet to be completely 

understood and the extent to which different classes of the afferents stay separated in the 

central nervous system are even less understood [67]. The temporal and the spatial coding 

mechanisms for the perception of roughness are also not completely understood. Some 

investigators believe that perceived roughness associated with neural activation, is 

dependent on both a spatial variable and a temporal variable [68, 69]. Other researchers 

studying the combined psychophysical and neurophysiological coding mechanisms of 

roughness concluded that temporal variation was not correlated with the magnitude of 

roughness but spatial variation was closely correlated with the magnitude of roughness [70]. 

In a study of the spatial patterns of the neural activity evoked in peripheral fibers and 

cortical neurons in the areas 3b and area 1 of the primary somatosensory cortex of the alert 

rhesus monkey (Macaca mulatta) the responses of the slowly adapting neurons in the area 3b 

were spatially acute, suggesting that slowly adapting neurons played an important role in 

tactual pattern recognition, due to integration within the CNS rather than summation within 
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the individual afferent’s receptive field [71, 72]. Various other studies also point to the 

conclusion that the neural code for the perception of roughness is a spatial variation in the 

slowly adapting type 1 (SA1) firing rates. The spatial variation was computed as the mean 

absolute difference in firing rates between SA1 afferents with receptive fields separated by 

~1-2 mm[66] leading to the belief that the perception of roughness is a spatial variation in 

slowly adapting type 1 firing rates, with receptive field centers separated by ~2 mm [70]. 

Other investigators have hypothesized that there exist different physiological mechanisms 

for perceived coarse roughness being dependant on a spatial mechanism, and a vibratory 

mechanism for the fine surfaces and evidence has shown that a intense high frequency 

vibration, can make a relatively smooth surface feel less smooth [73, 74].  

Perception of Moving Stimuli in the Skin: 

It is not yet clearly understood, if an increasing rate of indentation produces increased 

magnitude estimation for the same indentation depth. One study reached this conclusion. 

The same has not been found in other studies where the findings point to the fact that the 

rate of indentation depth does not influence the magnitude estimate for both tangential forces 

and for normal forces [58, 75]. Studies pertaining to the stretching of the skin have shown 

that the SAI afferents and the SAII afferents both show a dynamic and static sensitivity to 

the stretch of the skin. Similarly the rapidly adapting type I afferents and the rapidly 

adapting type II afferents both respond to the initial phase of stretching of the skin [76].  

It has been now shown that the shear forces applied in a normal direction to the skin can be 

assessed independently of the tangential force of application [77]. However in studies where 

the roughness magnitude in the finger of the hand was studied in relation to the kinesthetic 

output, the perception of the roughness magnitude for a given surface was comparable 

whether the finger moved over the surface or the surface moved over the stationary finger, 

and hence it is believed that perception of roughness is independent of the kinesthetic output.  

While the above mentioned anatomical, psychometric and physiologic mechanisms of touch 

give an indication about the touch mechanisms, only recently have the actual molecules 

which convert mechanical stimuli into electrical signals been understood at the biochemical 

and the molecular levels.  

 10  



  

Molecular mechanisms of mechanosensation and its relevance to the ocular 
surface: 

The shape of the cells and its architecture is due to the presence of the bi-lipid cell 

membrane and the cytoskeleton. Any cytoprotective response to an applied force is due to 

the interaction of the plasma membrane and the cytoskeleton [78]. It has been proposed that 

natural cells are constructed according to the principles of tensegrity. Tensegrity is defined 

as stable three-dimensional structure consisting of members under tension that are 

contiguous and members under compression that are not [79]. The intracellular architecture 

of the cell is formed by the cytoskeleton composed of microfilaments, microtubules and 

intermediate filaments. The microfilaments of the cytoskeletal lattice inside the cell exert 

tension to pull the cell membrane and it internal constituents towards the nucleus. Opposing 

this inward pull are two forces one of which is outside the cell and the other force is inside 

the cell. The outside opposing force is exerted by the extra cellular matrix, the “focal 

adhesions” to the substrate and the basement membrane of the cell. The force opposing the 

compressive microfilaments inside the cell is the microtubules. The intermediate filaments 

form the interconnecting links between the microfilaments and the microtubules also 

distribute the tension conveyed to the cell [80]. The cell therefore mechanically stabilizes 

itself by balancing the opposing forces of tension and compression. Two phenomena, 

believed to exist in the living cells, are the phenomenon of prestress, and the phenomenon of 

stiffening. Prestress is a preexisting mechanical tension present within the living cell. 

Stiffening is a response phenomenon seen in tensegrity structures, where the components of 

the structure reorient themselves in the direction of the applied stress and exhibit cell 

hardening. A strong association between prestress and the stiffness response of a cell has 

been recently demonstrated [80, 81]. The mechanosensitive ion channels (MSCs) were first 

described in skeletal muscle but are now identified in almost every type of cell in living 

organisms [82]. There are two major types of mechanosensitive ion channels. These are the 

stretch-activated channels (SACs) found commonly and the less common stretch-inactivated 

ion channels (SICs) which have been found only in the neurons and in the smooth muscle 

[83, 84]. The activation of a mechanosensitive channel requires that the channel’s energy 

exceed the barrier(s) separating open from closed state. Any force, which is applied, does 

not directly drag open the mechanosensitive (MSC) channels but a mechanical stimulus 
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alters the probability of the channel to being open due to a change in the energy levels of the 

channel on account of the applied force. The stresses applied to the tissue could be in any 

direction and not just in the plane of the membrane as the channels themselves exert forces 

that are normal to the plane of the membrane [85]. The following hypotheses have been 

proposed to explain how movement activates mechanoreceptors. 

The bilayer tension directly activates the channels. This is seen in the case of the stretch 

activated mechanosensitive (MScl) channel. 

Mechanosensation could be due to the liberation of an extracellular ligand, which activates 

the mechanosensitive channel. In the case of some mechanosensory nerve endings such as 

the Merkel cells and the Pacinian corpuscles synaptic vesicles beside the nerve endings are 

present and it is believed that these synaptic vesicles might have a role in the formation of 

the extracellular ligands. Further proof of this is that destruction of the Merkel cell but not 

the adjacent and related nerve has failed to abolish mechanosensation leading to the 

suggestion that the Merkel cell is not a mechanosensory transducer [28, 86-88]. 

The third mechanism of mechanoreceptor activation is through the DEG/ENaC channel 

which binds the extracellular matrix and the intracellular cytoskeleton [89]. DEG/ENaC 

proteins belong to the degenerin/epithelial Na+ channels. These proteins reside in many 

tissues including nerve endings. The proteins all share a common protein structure but differ 

in ion selectivity. Recently the brain sodium channel 1, which belongs to the family of 

degenerins, has been identified in the dorsal root ganglion and the protein has been traced in 

the mechanoreceptors located in the cutaneous tissue, including the Merkel and the Meissner 

corpuscles [90]. The movement of this complex DEG/ENaC channel amplifies and transmits 

the stresses that are applied, and it gates the mechanosensitive channels. In lower animals 

these DEG/ENaC channels respond to a mechanical stimulus by interacting with proteins in 

the surrounding matrix. In the mammals similar interacting extracellular matrix proteins are 

yet to be identified. 

A mechanical stimulus to the cell causes a chain of biochemical events to occur in the cell. 

These sequences of events occur in a few seconds to a few minutes. An influx of Ca2+ 

through the mechanosensory channels seems to be one of the first steps in mechanosensation 
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[91]. Events include, G protein activation, protein phosphorylation, secretion of growth 

factors, alterations in the cytoskeleton (CSK), changes in the cell-extracellular matrix 

adhesions, changes in the gene expression and importantly the release of chemical second 

messengers such as arachidonic acid, cyclic AMP, inositol triphosphate, and calcium [92]. In 

the human chondrocytes and in the periodontal ligament, the cells respond to mechanical 

stress by an increased production of prostaglandin E. The production of prostaglandin E is 

enhanced by cytokine interleukin-1 beta [93]. In conditions of retinal detachment, and in the 

case of the retinal pigment epithelium (RPE) cells and fibroblasts in tissue culture, 

application of mechanical stress causes the release of proteases [94]. In the bovine epithelial 

lens cell, the application of mechanical stress resulted in an increased permeability of 

intracellular Ca2+. The fibroblasts in the scleral and the corneal tissue may respond in a 

similar manner by causing the release of protineases [94]. 

Intercellular adhesions and gap junctions are another route through which a stimulus may be 

conveyed to the other cells which are part of the intercellular complex. Cell-cell adhesion 

molecules, such as cadherin mediated intercellular adhesion complexes connect cells to each 

other. Gap junctions, present between the cells, are intercellular transmembrane channels, 

which function to chemically connect the cytoplasm of neighboring cells. In response to 

mechanical stimulation of a single cell, the intercellular free calcium waves in the cells can 

travel over 10-20 cells through the gap junctions, from the site of origin of the stimulus. This 

is achieved by an increase in the level of phospholipase C. The phospholipase A and 

phospholipase C enzymes are termed as mechanosensitive enzymes and these enzymes 

through a sequence of biochemical events raise the level of inositol phosphate causing the 

release of calcium from intracellular stores for the propagation of the calcium wave [95]. 

Other molecular mechanisms proposed for the passage of a mechanical impulse are the 

changes caused by integrins. Integrins are a family of the cell surface proteins, which 

mediate cell adhesion and take part in cell-to-cell, and cell-to-matrix communication. 

Integrins can increase the inositol phosphate production by controlling the synthesis of the 

inositol lipid substrate, phosphatidylinositol bis-phosphate (PIP2) [96, 97]. Integrins also 

cause multiple signaling molecules to be associated with the cytoskeletal framework and the 

focal adhesion complexes. Hence mechanical stresses on the cells may generate chemical 

signals through more than one mechanism. Recent studies also indicate that intercellular 
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junctional proteins play a role in transducing physical forces into regulatory signals. 

Through the process of magnetic twisting cytometry, mechanical stresses were applied 

directly to the cell surface integrin receptors that were a part of the focal adhesion protein 

complexes. This resulted in a rapid and specific movement and localization of mRNAs and 

ribosomes towards the integrins. Following the localization of mRNAs there is a translation 

of mRNAs into proteins, near the site of reception of a signal. Mechanical tension and 

restructuring of the intracellular lattice may guide this movement [98]. The intracellular 

cytoskeleton also interconnects the extracellular matrix and the neighboring cells through the 

focal adhesion complexes at the cell base and the specialized junctional complexes at the 

lateral cell borders. As a result there is a molecular continuum and molecules in the 

extracellular matrix, the cytoplasm and the nucleus may be all mechanically coupled [92]. 

On the application of a highly localized force, it has been observed that the cells undergo 

deformation and the protruding margins of the deformed cells are mechanically coupled to 

the neighboring cells by the adherens junctions. Adherens junctions thus may directly 

transmit mechanical forces to the adjacent cells [99]. The application of a mechanical force 

to the adherens junctions activates the stretch sensitive calcium permeable channels and 

increases the intercellular actin polymerization [100]. In the eye, following a mechanical 

stress there is an increase in the levels of Transforming growth factor (TGF)-beta2, integrin 

beta1 and tenascin (TN) [101].  

Thus there are various signaling pathways following a mechanical stress and these pathways 

interact with each other to produce a complex response to mechanical and other stresses.  
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3. Epidemiology of Dry Eye, Dry Skin and Dry Mouth: 

Epidemiology of Dry Skin: 

There is no universally accepted definition of the term “Dry skin” although one definition 

states “Dry skin is not a unique, well-defined condition but represents a medley of totally 

unrelated changes in the structure of the stratum corneum associated” [10]. Some of the 

common features seen in the condition of dry skin are: 

1) Sensory characteristics with dry, uncomfortable, painful, itchy, stinging, and tingling 

sensation. 

2) Tactile characteristics with a rough, uneven, and sand like feeling and 

3) Visible characteristics with redness; lackluster surface; dry, white patches; flaky 

appearance; cracks; and even fissures. 

The condition of dry skin is basically a sign of dysfunction of the epidermis and especially 

the stratum corneum. The meaning of the term dryness is different when mentioned in a 

subjective self-assessment by patients and during clinical assessment by a physician, 

dermatologist or an eye care professional. Dryness of the skin often is due to diminished 

water content of the stratum corneum of the skin caused by various factors (e.g. decreased 

perspiration, wind, low humidity, atopic dermatitis, vitamin A deficiency, etc). In a study 

consisting of 72 healthy volunteers, 67% had subjective complaints of dry skin, while only 

5.6% had definite clinical signs of dry skin at the time of examination. Subjective 

complaints were more common in women than in men (p < 0.001), though neither clinical 

nor objective measurements showed any sex difference, indicating that multiple factors were 

responsible for the reporting of symptoms of dryness in men and women [102]. The 

subjective sensation of dryness was also rated in a self-assessment questionnaire sent to 

3300 women and 500 men who were above the age of 18 and randomly selected, and 

26.43% of females described themselves as having dry skin [103]. It was also established 

that symptoms of dry skin in association with dry throat and dry eyes were consistently 

related to dust particles and noise symptoms in office environments [104, 105]. Perceived 

sensation of skin dryness was also correlated with dermatological tests, in 925 persons, using 

semi quantitative dermatological methods [11]. A significant association was found between 
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the self-reported symptoms of dry skin and medical tests done to evaluate the symptoms. In 

terms of the skin symptoms, although the association between rough skin and the state of the 

skin’s hydration is complex and remains to be settled, it was found that a low sebaceous 

secretion and/or a low stratum corneum hydration was significantly associated with skin 

complaints. The items dry skin and rough skin on the sensory perception subscales 

correlated well with the diagnosis of low sebum content [11]. In another selected population 

of 163 video display terminal workers, it was found that psychosocial factors were 

associated with an increased risk of reporting skin symptoms [106]. Studies with the 

scanning electron microscope have also revealed that in the dry atopic skin, the parameters 

of skin roughness were significantly increased, and in children there was a linear 

relationship of skin roughness to skin dryness (p=0.02) [107, 108]. The skin dryness is 

graded into four categories ranging from 0 to 3 points. Absent (0) = no symptoms of dry 

skin; mild (1) = ashiness, but no discernible flakes; moderate(2) = small to medium flakes; 

severe (3) = large flakes and prominent “cracked glass pattern” [109]. The population with 

skin dryness with grade 0, 1, 2 and 3 was associated with eczema in 22.3%, 39.9%, 57.0%, 

and 66.7% respectively, in a study population of children. The skin surface pH is normally 

in the range of 5.4-5.9, as measured on the skin of the volar forearm [110]. In conditions 

causing skin dryness there is often an increase in the pH value of the skin. In children the 

surface pH is lower than that in adults, with a study group reporting a mean pH value of 

5.18. The pH values of uninvolved skin in the children with eczema showed a shift towards 

alkalinity, compared to children without eczema. Socio-demographic factors such as marital 

status, education, profession, income level and social class also have an influence on the 

experience of dryness symptoms [111]. The causes of skin dryness are thus multiple and 

many of the causes are to be discovered. 

Oral Dryness – What do we mean by the term Dry Mouth? 

The subjective complaint of dry mouth is termed “xerostomia”. Xerostomia or oral dryness 

may be either due to salivary or non-salivary causes. Salivary causes may be due to 

diminished saliva, or due to an altered salivary composition. In a study of about 100 

consecutive patients referred to a xerostomia clinic, idiopathic causes of xerostomia were 

noted in 21 patients while medical causes could be attributed to the others, but in the elderly 
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age group complaining of xerostomia most cases were associated with either medical 

conditions or drug therapy [112-114]. The subjective complaints of oral dryness are also 

related to palatal salivary secretion (PAL, measured as, microL/cm2/min) and parotid 

salivary flow (PAR, measured as, ml/min). It is demonstrated that most patients with a PAL 

resting flow rate of < or = 6.0 microliters/cm2 suffered from dry mouth, burning mouth 

syndrome or oral dysaesthesia [115]. Although an impaired salivary gland function is often 

associated with an impaired salivary gland secretion, there is no firm correlation between the 

two indicating that both the quantitative and qualitative properties of saliva play an 

important role in the perception of oral dryness [116].  

The presence of mechanoreceptors in the different parts of the oral cavity has been 

documented. By employing the cytokeratin polypeptide marker CK 20 which is specific to 

the Merkel cells and the taste buds in the mouth, Merkel cells have been demonstrated in the 

oral cavity in the regions of, the mandibular gingival mucosa, the hard palate, the buccal 

mucosa and the lateral border of the tongue [117]. Studying the nerve fascicles of the human 

lingual nerve using microneurography it is shown that the superficial units of the lingual 

nerve, which terminate near the surface of the tongue, are of three different classes. These 

are the rapidly adapting nerve bundles, which resemble the fast adapting type 1 (FA1) nerve 

fibers of the glabrous skin of the hand and the slowly adapting units which, resemble the 

slowly adapting type I (SAI) and the slowly adapting II (SAII) afferents of the hand. The 

deep units encode information pertaining to the position of the tongue [117].  

In spite of the demonstration of mechanoreceptor nerves and Merkel endings in the oral 

mucosa, the perception of drying and puckering in the oral cavity is not completely 

understood. These oral sensations of drying and puckering are referred to as astringency. 

Astringency is defined as “the complex of sensations due to shrinking drawing or puckering 

of epithelium as a result of exposure to substances such as alums or tannins” [118]. 

Astringency is also related to the ability of some chemicals to precipitate or cross-link 

salivary glycoproteins and epithelial bound proteins [115]. It is therefore perceived as “a 

resistance to movement in the form of roughness and dryness, and a feeling that the surface 

tissues of the tongue, palate, and lips are constricted or drawn” [119].  

Psychophysical experiments have now established that astringency is a tactile sensation that 

results from the stimulation of mechanoreceptors during movement of the oral mucosa. The 
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stimulation of the mechanoreceptors is intensified both in the temporal and spatial domain 

when astringent compounds precipitate salivary mucin matrix. The cross-linking of the 

salivary mucin matrix possibly increases tension within the epithelium to stimulate the 

mechanoreceptors without need for contact between membranes. Another mechanism of 

tactile perception suggested is that alterations of the surface proteins could change the 

surface properties of the mucosa leading to an increased friction perceived texture [119, 

120]. The human saliva also contains three major classes of proline rich proteins which have 

a high nonspecific binding affinity to tannins, which are plant derived polyphenolic 

compounds present in plant products and beverages. These complexes formed by binding are 

highly stable and the tannin-proline rich protein complexes cause a loss of lubrication and 

result in astringency both by decreasing viscosity and increasing friction [121-124].  

Therefore the perception of oral dryness is a complex symptom to evaluate but the sensation 

of astringency may be due to the precipitation of proteins, although how the precipitation 

causes dryness is not fully understood. 

Ocular Drying: What do we mean by the term Dry eye? 

The Epidemiology of Dry Mouth and Dry Eye (ICD-9 #375.15): 

Subjects complaining of ocular discomfort and dryness often have associated symptoms of 

skin and mucosal dryness. Such symptoms are especially prominent in conditions such as 

the sicca syndrome. In view of the multiple tissue involvement in circumstances leading to 

subjective symptoms of dryness, there is often a need for multidisciplinary offices to 

evaluate complaints of dryness. Dry mouth and dry eye are complaints, which often have an 

impact on the individual’s quality of life. As there are no uniform parameters to evaluate dry 

mouth and dry eye, a comparison of the different values are difficult. There is often a higher 

prevalence of the symptoms of dry eye and ocular irritation in people confined to closed 

environments and numerous studies have found a strong association between the “indoor air 

quality” factors and perceived symptoms of Sick Building Syndrome. A study of 

commercial buildings in the US pointed out a strong association between skin problems, 

mucosal irritation, indoor air quality in buildings, and different psychosocial factors. The 

study reported that the percentage of participants reporting ‘Dry Itching or Irritated Eyes’ 

ranged from 24% to 52% with the overall percentage being 41%. The prevalence of other 
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mucosal symptoms of dry throat and stuffy nose ranged from 22% to 25% [105]. In an 

unselected clinical population of 1,054 patients in USA and Canada, dry eye questionnaires 

were used to evaluate ocular symptoms, and the most common ocular symptom was 

discomfort, with 64% of the non-contact lens wearers and 79% of the contact lens wearers 

reporting the symptom at least infrequently. 22% percent of non-contact lens wearers and 

15% of contact lens wearers were diagnosed with dry eye. There was also a diurnal increase 

in the intensity of symptoms such as discomfort and dryness [125]. A population based 

survey of 2,520 subjects in the older age group reported that approximately 27% of the 

subjects reported dry eye or dry mouth to be present at all times, and 4.4% of the population 

reported both dry eye and dry mouth. About 14.6% of the subjects reported symptoms of dry 

eye. In a related study done separately on the same 2,520 subjects17% of the subjects 

reported symptoms of dryness of the mouth, with more severe symptoms and more frequent 

symptoms being reported in women. Dry eye was assessed on the basis of a questionnaire 

which asked about six symptoms; dryness, grittiness/sandiness, burning, redness, crusting on 

the lashes and eye being stuck in the morning. A person was considered to have Dry Eye 

Syndrome if the frequency of one of the six symptoms was reported as ‘often’ [126-128]. 

The Beaver Dam Study was a cross-sectional study done in the U.S. in 3722 men and 

women. Dry eye was defined as a positive response to a single question. An overall 

prevalence of dry eye was reported in 14.4% of the population between 48 to 91 years of 

age. The age adjusted prevalence was 11.4% in men and 16.7% in the women [129]. In a 

study of patients reporting to optometric practices in Canada, from a total of 3,716 patients 

28.7% reported symptoms of dry eye, of these who reported dry eye, 24.2% reported 

concurrent dry mouth and 24.5% had symptoms, which were worse in the morning. The 

prevalence of patients reporting any level of symptoms of dry eye was 1 in 4 and severe 

symptoms were reported by 1 in 225 patients. The CANDEES study further reported  sex 

related prevalence and amongst those with severe dry eye were mainly females in a ratio of 

4.6 to 1 [130, 131]. Cross-sectional prevalence studies in Australia on 926 people reported 

that dry eye established through clinical tests was present in 10%-16.4% of the subjects. 

Severe symptoms of dry eye were reported more by women [132]. In a study done on 1,246 

commercial pilots, 901 (72.6%) reported symptoms of dry eye during the flights, while only 

67 (5.4%) reported symptoms of dry eye independent of the flight [133]. In Norway, the 
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epidemiology of dry mouth and dry eyes were studied by examining patients who listed in 

the rheumatoid arthritis register. 636 subjects between the ages of 20-70 years were 

examined. Symptoms of dry eye were reported in 38% of the subjects, oral sicca symptoms 

were seen in 50% of the subjects examined and both symptoms were noted in 27% of the 

subjects. More symptoms were noted in the groups who had reduced tears, reduced saliva or 

both, compared with subjects who had a normal tear and saliva secretion [134]. A symptom 

survey questionnaire combined with clinical tests was evaluated in a sample of 504 persons 

aged 30 to 60 in Copenhagen. Symptoms of dry eye were present in 24% of the population 

while symptoms of dry mouth were seen in 25% of the population. In this study complaints 

of oral and ocular dryness was particularly more common in women [135]. In Sweden, a 

study conducted on 705 subjects between the ages of 52 to 72 years reported symptoms of 

dry eye and/or dry mouth in 35% of the population and the prevalence rate was calculated to 

be 14.9% for keratoconjunctivitis sicca and 5.5% for xerostomia [136, 137]. Responding to a 

symptom survey, from a population of 2,500 people who were randomly selected from the 

general population in Japan, as many as 33% of the participants complained of Dry Eye 

while another study in Japan evaluated 2,127 new outpatients who reported to the clinic and 

symptoms of Dry Eye were noted in 17% of the sample population [138, 139]. Also, in 

studies across 14 office buildings in Germany, 817 patients were examined and the 

prevalence of symptoms of inflamed eyes, red eyes, irritated eyes and Dry Eye were 22.1%, 

21.1%, 18.6% and 17.8% respectively [11]. Systemic autoimmune diseases such as 

Rheumatoid arthritis, juvenile arthritis, Sjogren’s syndrome, the spondyloarthropathies, 

systemic lupus erythematosus, multiple sclerosis, giant cell arteritis, and Graves' disease 

often have an ocular involvement. In Thailand a study of 224 patients suffering from 

rheumatic diseases, reported that 19.9% of the patients had dry eye [140]. The tables 3-1 to 

3-4 indicate the prevalence of dry eye in different countries. The epidemiological studies 

reveal that the syndrome of Dry Eye is a common condition and the prevalence of this 

condition increases with age and is greater in the female population although in one study 

the prevalence of Dry Eye was more in the males. The data do indicate the increasing 

prevalence of Dry Eye although in many cases the etiological factors responsible for Dry 

Eye are unknown.  
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Factors Associated with Dry Eye: 

The symptoms of Dry Eye are often exacerbated by the use of systemic medications such as 

the hydrochlorthiazides (diuretics), beta receptor blocking agents, the tricyclic 

antidepressants, antianxiety agents (psychotropic agents), and the antispasmodic 

anticholinergic agents [141, 142]. Environmental conditions responsible include reduced 

humidity, evaporative loss from wind, room heating or air conditioning, poor indoor air 

quality as seen in the sick building syndrome. A few of the systemic conditions associated 

with Dry Eye include Sjogren’s syndrome, rosacea, systemic lupus erythematosus, 

rheumatoid arthritis, juvenile rheumatoid arthritis, spondyloarthropathies, multiple sclerosis, 

gaint cell arteritis, lymphomas, sarcoma and infection due to the human immunodeficiency 

virus. Conditions such as cicatricial pemphigoid and Stevens-Johnson syndrome produce a 

tear deficiency, due to glandular destruction of the goblet cells of the conjunctiva [140, 143].  

The available data suggest that the syndrome of Dry Eye is commonly present. In spite of 

the many studies the data available are not a reflection of the true prevalence of ocular 

discomfort. The available data from less than 20 countries do not contain any information 

pertaining to the possible prevalence of Dry Eye in the densely populated countries in Asia 

such as China, India and Indonesia. At present there are no data available regarding the 

prevalence of Dry Eye in these countries. Also the lack of standardization in the terminology 

and diagnostic tests for evaluation of Dry Eye does not permit a point by point comparison 

of the different epidemiological studies. The larger epidemiologic picture clearly indicates 

the wide prevalence of Dry Eye in the community. From the point of view of health policy 

planning the innumerable symptom surveys and studies on Dry Eye and ocular discomfort 

indicate that the prevalence of this condition that is often regarded as trivial complaint will 

increase in the future. The table below summarizes many of the symptom surveys and 

studies reported about Dry Eye and ocular discomfort. 
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Epidemiology of Dry Eye and Ocular Irritation: 

Prevalence Rates of Dryness 

Se
ri

al
 N

o.
 Country\Year 

Investigator 

Po
pu

la
tio

n 
Si

ze
 

M 
(%) 

F 
(%) 

Oral 
(%) 

Eye (Dry Eye, discomfort)

(%) and nature of study 

1 Australia, 1998 
McCarty et al. [132] 

926 46.8 53.2  10.8% -16.3%-Dry Eye 

2 Australia, 2000 
McCarty et al. [133] 

1246 
 

1223 23  72.3% Pilots in flight-Dry 
Eye 
5.4% independent of flight-
Dry Eye 

3 Australia, 2000 
Albietz, [144] 

1584    10.8% - Overall Prevalence 
7.3%  in < 40 yrs 
18.1% in > 40 yrs 

4 
 

Canada, 1997 
CANDEES 
Doughty et al. [130, 131] 

13517 39.3 60.7  28.7% - Overall Prevalence 
21.7% in those without 
contact lens, 50.1% in those 
with contact lens. 
4.6:1 - Female to Male ratio

5 Canada, 2000 
Begley et al. [145] 

83    Ocular discomfort- found to 
be most common symptom 
in contact lens wearers 

6 Denmark, 1997 
Copenhagen City Heart 
Study 
Bjerrum et al. [135] 

504   25 11% of the sample 
24% reported eye symptoms
 

7 Denmark, 1998 
Norn [146] 

    Dry eye was recorded in 
original patient records 
during the year 1930 

8 Germany, 1977 
Ruprecht et. [147, 148] 

5,833 62.3 37.7  11.7% -Overall prevalence 
15.1% in women 
9.7% in men 

Table 3-1: Epidemiology of Dry Eye 
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Prevalence Rates of Dryness 
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Country\Year 
Investigator 

Po
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M 
(%) 

F 
(%) 

Oral 
(%) 

Eye (Dry Eye, discomfort)

(%) and nature of study 

9 Greece, 1997 
Dafni et al. [149] 

837  100  0.6% with dry eye and dry 
mouth in a closed rural 
community 

10 Hungary, 1992 
Hollo [150] 

18    15 out of 18 patients had 
severe Dry eye along with 
Primary biliary cirrhosis 

11 Indonesia, 2002 
Lee et al. [151] 

1058 52.3 47.7  27.5% - Overall Prevalence 
22.8% in females 
32.7% in males 

12 Italy, 2000 
Fenga et al.[152, 153] 

213    72.3% -Lack of eye comfort 
Environmental survey of 
surgical operating rooms 

13 Italy, 2001, Versura et al. 
[154] 

1200    57.1% - Overall prevalence  

14 Japan, 1993 , Toda et al. 
[155] 

524 37.3 62.7  15.3% had dry eye 

16 Japan, 1995, Hikichi 
[139] 

2127    17% - Overall prevalence 

17 Japan, 1999 
Shimmura et al. [138] 

2500    33% - Overall prevalence 

18 Malaysia, 2000 
Soo et al. [156] 

52 2 98  (Study of patients with 
inactive SLE) 
31% - Overall prevalence of 
dry eye  

19 Norway, 1999 
Uhlig et. al. [134] 

636   50% 38% - Dry Eye 
27% - Both dry eye and dry 
mouth 

Table 3-2: Epidemiology of Dry Eye….continued 
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Prevalence Rates of Dryness 
Se

ri
al

 N
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Country\Year 
Investigator 

Po
pu

la
tio

n 
Si

ze
 

M 
(%) 

F 
(%) 

Oral 
(%) 

Eye (Dry Eye, discomfort)

(%) and nature of study 

20 South Africa, 1995 
Bulbulia et al. [157] 

78* 94 6  40% - Overall prevalence of 
dry eye in chemical workers.

21 Sweden, 1989,  
Jacobsson et al [136] 

705   5.5 14.9% reported KCS, 
35% reported either Dry eye 
or Dry mouth 

22 Thailand, 2002 
Ausayakhun et al  [140] 

224    19.9% -Overall prevalence of 
Dry eye 

23 United States,  
SEE Project 1997-1999 
Bandeen-Roche, Schein 
et al., Hochberg et 
al.[126, 127, 158] 

2520 42* 58* 17* 14.6% of sample (65-69 yrs) 
16% of sample (>80 yrs) 
27% reported either dry eye 
or dry mouth at all times. 
4.4% had both. 

24 United States, 2000 
Moss et al. [129] 

3722 43 57  14.4% - Overall prevalence 
11.4% in Men 
16.7% in Women 

25 United States, 2000- 
2001 
Schaumberg et al, 
WHS*  
[159, 160] 

39,876 

(WHS) 

 

 100  6.7% - Overall prevalence 
(for WHS)  
5.9% - 9.1% (users of HRT) 

26 United States, 2000- 
2001 
Schaumberg et al, 
PHS** [159, 160] 

22,071 
(PHS) 

100   2.3% clinically diagnosed 
DES 
1.9% -severe symptoms  

* Women’s Health Study 
** Physician’s Health Study            

Table 3-3: Epidemiology of Dry Eye….continued 
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Prevalence Rates of Dryness 
Se

ri
al

 N
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Country\Year 
Investigator 

Po
pu
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n 
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M 
(%) 

F 
(%) 

Oral 
(%) 

Eye (Dry Eye, discomfort)

(%) and nature of study 

27  United States, 2001 
Yazdani et. al.  
(from records) [161] 

25,180 
(1997) 
27, 289 
(1998) 

   0.4% - 0.5% is Overall 
prevalence of treated eye 
disease. 

28 America, 2001 
Reynolds et al. [105] 
 
 

697   22 
 

(13% had 
dry skin 
associated 
with the 
symptoms 
of dry 
eye) 

41% had dry, itching or 
irritated eye 
42% had tired or strained 
eye 
 

29 North America  
(US and Canada), 2001  
Begley et al. [125] 

1054 36 64  22% Non-contact lens 
users-had Dry Eye 
15% Contact Lens users-
had Dry Eye 

Table 3-4: Epidemiology of Dry Eye….continued 
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4. Measurement of Ocular Discomfort: 

The history of pain and nociception is perhaps as old as mankind. Although it is a major 

cause of morbidity in the world only recently has its importance been realized in a partial 

way by health care professionals and the public. The World Health Organization has 

established guidelines for cancer pain relief. However to address the issues of discomfort 

and pain due to the various causes in different parts of the world, there is no unified 

approach. It is therefore not too surprising that ocular discomfort in spite of its world-wide 

prevalence has not received adequate attention. During the past 20 years, interdisciplinary 

scientific organizations have been formed to advance the understanding of the ocular surface 

and also for the management of pain. Two important phases in the study of pain were:  

1) The realization that expression of pain was not just due to tissue damage or disease but 

due to the interaction of various factors such as prior learning history, cultural 

background, and environmental and social conditions. 

2) Randomized controlled studies replacing the uncontrolled studies that were previously 

being done [162].  

A need for accurate measurement of pain emerged from concepts which permitted the 

measurement of attributes which seemed immeasurable and the assignment of numbers to 

events which led to the development of measurement scales [163]. A four-fold classification 

of scales was first presented at the International Congress for the Unity of Science in 1941. 

Its publication (delayed due to World War II) distinguishes four main classes of scales. A 

fifth scale termed as the Logarithmic interval scale was proposed later.  

The four classes of scales are: 

1) A nominal scale identifying names and having no metric information with its empirical 

operation being the determination of equality. Only a few statistics are valid on a 

nominal scale measurement such as category frequencies, mode and sometimes 

contingency coefficients. 

2) An ordinal scale to rank items with no information about distances between values with 

its empirical operation being determination of greater or less. Statistics possible on an 

ordinal scale are median, centiles, and rank order statistics. 
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3) An interval scale with equal units but lacking a meaningful zero point with the empirical 

operation being determination of the equality of intervals. The coefficient of variation is 

not valid on an interval scale while all other statistics are valid. 

4) A ratio scale having defined intervals and with a true zero point with its empirical 

operation being, the determination of the equality of ratios [163-165]. 

Between the periods of 1929 to the early 1950s a search for effective non-narcotic analgesics 

led to development of a scale of pain measurement based on the “jnd” or just noticeable 

difference. This scale termed the “dol scale” quantified the pain threshold as a function of 

the stimulus intensity where one “dol” was the equivalent of two jnds [166]. The dol scale 

was challenged with the realization that emotion played an important part in response to pain 

and this led to the development of other scales such as an ordinal scale and a paired 

comparison method to assess pain [167]. Elsewhere other scaling techniques were being 

developed and the stimuli were divided into two types. Those forming prothetic continua 

were concerned with the ‘how much’ or the quantitative aspects, and the metathetic continua 

were concerned with ‘what kind’ or the qualitative aspect of a stimulus. Three types of 

scales were developed and the differences between the prothetic and metathetic continua 

were demonstrated. The three types of scales were; “magnitude scales”, where the observer 

is asked to assign numbers to stimuli in proportion to the magnitude of the stimulus, 

“partition scales” where the observer assigned a finite set of numbers to each stimulus (e.g. 

in interval and numeric rating scales) and “confusion scales” that included scales such as 

JND, discrimination, paired comparisons and successive intervals [168]. A knowledge of 

these scales also led to a differentiation of the types of measurement such as threshold 

measurement and suprathreshold measurement. Ocular discomfort is often measured through 

suprathreshold measurement methods. 

Suprathreshold Measurement of Ocular Discomfort: 

Many health disciplines are now making an effort to improve the quality of life. If such 

efforts are to have a sound scientific basis, then the subjective states of a person’s well being 

must be measured in a reproducible and a valid fashion. Discomfort and pain are major 

markers of the subjective state of a person. According to the ISAP definition, pain is an 

unpleasant sensory and emotional experience associated with actual or potential tissue 
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damage, or described in terms of such damage [169-171]. The word “discomfort” is not 

clearly defined in terms of the sensory or emotional experience. Discomfort is derived from 

Old French desconfort and is defined either as a mental or a bodily distress or something that 

disturbs one’s comfort. The term ocular derived from the Latin oculus means relating to the 

eye and therefore “Ocular discomfort” may be inferred as any mental or/and (more 

appropriately “and”) bodily distress relating to the eye. Symptoms of ocular discomfort are 

an inherent part of most anterior ocular surface diseases including the condition of Dry Eye. 

There is thus an increased need to measure the symptoms of discomfort. The location and 

duration of pain and/or distress are important aspects of any pain experience, although they 

are not easily quantifiable. Different types of scales have been employed to measure the 

sensation of discomfort and pain. Present methods to assess pain and discomfort include 

Uni-dimensional pain Measurement tools, Multi-dimensional pain measurement tools and 

Health-Related Quality of Life Measures.  

Unidimensional Pain measurement: 

The measurement of the intensity of pain as a unidimensional attribute has received 

considerable attention and many different methods have been developed to measure this 

sensory attribute. The unidimensional methods are most commonly used for the assessment 

of discomfort and pain and their use is on the increase. Over a 1000 references were made to 

‘VAS’ and ‘Pain’ in the 1990s while a simple ‘PubMed’ search with the same terms reveal 

that over 500 references have been produced in 2 years between 2000 and 2002 (PubMed 

Search terms: ‘VAS’ AND ‘Pain’, Field: All Fields, Limits: Publication Date from 2000 to 

2002, Result: 871) [172]. The unidimensional measurement methods include the categorical 

verbal rating scales (VRS), the categorical numeric rating scales (NRS) and the visual 

analog scales (VAS). Other methods of pain measurement are behavior observation scales, 

and physiologic responses to experimentally induced pain. The VAS, VRS, and the NRS are 

also used to measure, the relief from pain. Categoric scales assume a special importance in 

studying ocular discomfort as these rating scales employed traditionally in pain 

measurement, are often used to characterize ocular surface symptoms and understand their 

prevalence and impact on the quality of life. Further the diagnosis, severity and classification 
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of Dry Eye has been made on the basis of such verbal rating scales [126, 131, 132, 159, 

173]. Suprathreshold methods of pain measurement are divided into three broad categories. 

1) Discrete numerical or verbal category scales. 

2) Bounded or confined continuous measure scales such as the VAS. 

3) Unbounded scales such as Magnitude Estimation scale. 

Discrete Categorical Scales: 

These may be discrete numerical (e.g., numbers between 0 – 10) or discrete verbal category 

scales (e.g., mild, moderate, intense or severe). Categorical variables that have an ordered 

level are termed as ordinal variables while categorical variables for which the levels do not 

have a natural ordering are called nominal variables. Sensory and affective pain descriptors 

can be used to construct ratio scales for discriminating between the sensory intensity and the 

affect or unpleasantness of pain sensation. Such a 15 point ratio scale that uses sensory and 

affective descriptors has been constructed to differentiate between the affective and sensory 

qualities of pain [174, 175]. To understand ocular sensations, verbal category scales are 

regularly used to assess the magnitude, affective quality and thermal and other attributes of 

the evoked sensations [176, 177]. Practitioners in the field of tear film/dry eye, most 

frequently use dry eye questionnaires to evaluate the symptoms of ocular discomfort [178]. 

These questionnaires include categorical scales  that are frequently used in assessing dry eye 

symptoms to measure the characteristics, prevalence, frequency and severity (including 

diurnal changes) of the ocular surface symptoms [179, 180]. Problems in using categorical 

questions are that they are often employed in circumstances where the response is not 

categorical and in such cases the ignoring of a continuous nature of the response introduces 

an error into the response along with uncertainty and confusion for the respondent [181]. 

The second problem with category scales is that there is often a limited choice of response 

levels. This results in a loss of information and a reduction in the reliability of the scale 

causing a loss of efficiency of the measurement tool and reduction in its correlation with 

other measures. It is not fully established whether the NRS or the VAS is more easy to use 

although the NRS has been shown to be superior in certain instances while in other cases the 
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VAS and the NRS  are believed to be equally sensitive [182-185]. The categorical scales can 

be analyzed in different ways. 

Analysis of discrete category scales with equal distances: 

In category scales the categories are considered to be equal steps and assigned integer ranks 

such as 1, 2, 3, 4, etc. A categorical scale along the method of equal appearing intervals is a 

one-dimensional scale and assumes that the variable such as pain which we are trying to 

scale is reasonably a one-dimensional variable. Simple category scales have been used for 

pain studies such as the combined verbal and numeric rating scale, four point category scale 

of pain (0-no pain, 1- mild pain, 2- moderate pain, 3- severe pain) or four point category 

scale of pain relief (none, some, lots, complete) [185-187]. The McGill Pain Questionnaire is 

also analyzed by assigning integers to the category subscales. 

Disadvantages of Category Scales with equal distances: 

The major disadvantage lies in the psychometric properties of the scale. It assigns equal 

distances between the different categories in the response scale resulting in a distortion of 

the scale. This may result in a consequence where movement from moderate pain to mild 

pain may seem better than a shift from severe pain to moderate pain. The verbal rating scale 

categories most often do not have equal intervals and hence the data is ordinal data. This 

limits the statistical analysis of such data to non-parametric methods. Verbal rating scale is 

also considered as less sensitive than methods such as the VAS due to the fixed number of 

response categories. Sensitivity also depends on the number of adjectives used in the scale. 

If the number of categories used is 11 or more it is considered as sensitive as a visual analog 

scale. If the verbal rating scale has less than 5 categories then its sensitivity may be reduced 

[185, 188]. Other limitations are that the scales rely on the patient’s ability to read and 

interpret the words that are mentioned. Very often the patients may not be able to find a 

word that accurately describes the sensation or reflects the experience. Patients may also feel 

they lie between two categories. This method is therefore not recommended as the sole 

method of pain assessment [188]. In spite of these drawbacks due to its simplicity the 

categorical scales with equal appearing intervals are used extensively. The McMonnie’s Dry 

eye questionnaire is an example of a category scale that has been used to diagnose dry eye 

with a high sensitivity and specificity [189]. This questionnaire has a grading scheme to 
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assess the condition of dry eye and some of the psychometric properties of this questionnaire 

have been documented [189]. The questionnaire differentiated normal subjects from subjects 

with Sicca syndrome in a defined population. It was originally derived from a literature 

review analysis of patients with Sicca symptoms, attending a Rheumatology Center. In some 

of the previous studies employing this questionnaire there were numerous sampling 

anomalies [190]. The McMonnie’s questionnaire consists of forced choice items, with 

responses ranging from between 3 to 5 points and an arbitrary value assigned to the 

responses. In two questions no value is assigned to a certain response (Question 5 and 6 of 

the Dry Eye Questionnaire) [190]. Such questionnaires though widely used may not truly 

demonstrate the complete properties of the verbal descriptors. To understand the observed 

relationship between the scale and the attribute, the measurement quality of the scale must 

be first evaluated along accepted methodologies [191]. 

Method of Successive Categories: 

This is based on Thurstone’s law of categorical judgment, where the observer rates the 

stimulus into a number of ordered categories. The value of each category is determined from 

the response behavior of subjects simultaneously with the actual scaling of stimulus 

attributes. In such an analysis the spacing of each category is inversely related to the amount 

they overlap. The amount of each category is the relative proportion that each response is 

used to describe the same stimulus [192]. In general the values of a stimulus are measured 

through techniques of physics and numbers are assigned to sensation magnitudes. The 

magnitude of the sensory response obtained is plotted against the physical value of the 

stimulus and a psychophysical magnitude function is obtained. When the physical 

characteristics of the stimulus cannot be specified, the observers do not report the sensory 

response directly. A set of equations called the law of categorical judgment is used to scale 

the stimulus on a psychological continuum. A psychological continuum is a continuum of 

subjective or psychological magnitudes. Each subjective or psychological magnitude is 

mediated by a “discriminal process”. The discriminal process as defined by Thurstone means 

“that process by which the organism identifies, distinguishes, or reacts to stimuli”. When a 

stimulus is presented to an observer it gives rise to a discriminal process as the perceptual 

system encodes the features of the stimulus and converts them into a subjective response. 
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The discriminal process is affected by the features of the stimulus, the perceptual system of 

the observer and the sensory system of the observer and these involve both the ‘cognitive’ 

and the ‘affective’ processes of the observer [193]. The result of this process is an 

impression of the stimulus and its location relative to other possible stimuli. Because of 

perceptual noise causing momentary fluctuations, a given stimulus is not always associated 

with the same discriminal process and as a result instead of a single discriminal process there 

may be a number of discriminal processes for a given stimulus. The discriminal process that 

is most often associated with the stimulus is the modal discriminal process. The value of the 

modal discriminal process is the indirect scale value of the stimulus. The standard deviation 

of the distribution is the discriminal dispersion. The discriminal dispersion and scale values 

are different for different stimuli. Such procedures of analysis have been applied in the 

measurement of pain [194, 195]. 

Disadvantages of the method of Successive Categories: 

The method of successive categories often implies that the categories reflect successively 

more of the stimulus property on the psychological continuum. Another disadvantage is that 

there is often a loss of both information and precision in information due to the (a priori) 

categories in the scales. 

Determination of Category Values Independently: 

The category values of a measurement scale may be determined independently from their 

use in describing evoked sensation. This is in contrast to the Thurstone method of 

determination of category values simultaneously with the scaling. The determination of such 

category values is important because many clinical pain studies cannot provide the stimulus 

control for a Thurstone’s analysis. An example of such an independent determination is the 

MPQ (McGill Pain Questionnaire). 102 words from the clinical literature were classified 

into three major classes and 16 subclasses. The three major classes describe the ‘sensory 

qualities’ the ‘affective qualities’ and the ‘evaluative’ words. Each of the subclasses was 

given a descriptive label and included words that were qualitatively similar. Subsequently 

different groups of individuals consisting of physicians, patients and students quantified 

these words by assigning intensity values to the words. Both the five and seven point 

numeric scales ranging from least (or mild) to worst (or excruciating), and a Thurstone 
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analysis was used to determine numeric values for the pain intensities implied by the words. 

To this classification four more supplementary or miscellaneous subclasses were added 

resulting in the final classification of 20 subscales with each subscale having two to six 

items. Some of the MPQ items have been quantified again by a relative magnitude procedure 

wherein a ratio scaling method was used to rate the relative magnitude of the descriptors. 

The same ratio scaling method was also used to rate the length of lines that were presented 

randomly and a psychophysical function was used as a calibration function to convert mean 

response for each descriptor to a common unit of line length. In this method the results of 

the quantifications of the verbal descriptors and the line length were converted to a common 

unit. In other procedures the category values were determined by a cross modality matching 

to hand grip force and time duration [174, 196]. These methods provide a means to assess 

the consistency and reliability of verbal category scales. The disadvantage is that they do not 

address the variability in the absolute magnitude of the words such as how much sensation is 

represented in the word mild or moderate. This is usually resolved by equating the full range 

of words across the individuals and by relying on the face validity of the use of a common 

language. Another approach is to match clinical pain to a pain evoked by a defined stimulus 

or to match the intensity of pain to a stimulus which is non-painful [197]. Other methods to 

quantify category values employed procedures where the same subjective scale was used to 

rate clinical and experimental pain and these studies indicated that the relationship between  

quantified verbal descriptors and a know stimulus could be described by power functions. 

The consistencies in the results often support the  use of quantified verbal descriptors for the 

assessment of controlled noxious stimulation and clinical pain [198, 199]. The MPQ has 

been used to assess ocular discomfort caused by tear drying. 

Formats of the Category Scales: 

Construction of Scales: 

The quantification of verbal descriptors helps in the formation of the categorical scales. 

Quantified descriptors are used to construct categorical scales which may be direct 

estimation techniques, comparative methods or econometric methods. The general issues 

involved in the construction of the scales for maximizing precision and for minimizing bias 

are: 

 33  



  

Number of steps needed for construction of the scales: This is determined by considering 

that if there is less number of levels than the subject’s ability to discriminate there will be a 

loss of information. The minimum number of scale categories should be 5 to 7. Using 5 

scale categories reduces the reliability by about 12%. The loss in reliability for 7 and 10 

categories is small. A measure to be considered while designing the scale is that raters often 

tend to avoid the extreme positions of the scale [181, 200]. Discrimination judgments of 

clinical conditions by experienced observers often have a high inter and intra-observer 

reliability but this reliability of discrimination may be reduced when the scales contain fewer 

intervals. While judging conjunctival hyperemia less than 6 intervals reduced the reliability 

of discrimination. At the same time increasing the number of intervals with the purpose of 

trying to make the scale fine reduced the concordance between judgments [201]. A finer 

scale may therefore result only in a moderate improvement of sensitivity. It is shown that for 

a scale to be moderately sensitive it should not exceed 1 standard deviation (SD) of the 

discrepancy (discrepancy being the difference between two paired observations A and B; 

Discrepancy = Observation A – Observation B). For a scale to be fine it should not be less 

than one third of the SD of the discrepancy. While formulating a qualitative scale the 

benchmarks defining the intervals should be carefully chosen so that the intervals are evenly 

spaced [202]. 

The maximum number of categories that should be used: Discrimination judgement 

relies on short term memory and while making discrimination judgements an average 

person’s memory has limitations on the amount of information that can be received 

processed and remembered. The limitations on short term memory is mostly in the order of 

seven chunks and therefore for practical purposes most scales have an upper limit of 7 

categories which should not result in a significant loss of information [203, 204]. Does a 

scale need an even or an odd number of categories? The research needs dictate this. In 

bipolar scales the subject may have the choice of expressing no opinion when there is odd 

number of categories or may be forced to express an opinion if there is even number of 

categories. 
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The meaning of the adjectives used in the scales: Many words are used commonly while 

constructing scales. Verbal qualifiers used to grade the degree of a given attribute may be of 

the following types: 

1) Intensity words such as a little, very, extremely. 

2) Frequency words such as never, sometimes, often, always or constantly. 

3) Probability words such as hardly, possibly. 

4) Quality words such as bad, satisfactory, good, and excellent.  

5) Agreement words such as yes, no, sometimes, uncertain, don’t accept, agree and true.  

These words used to elicit judgements about frequency or intensity may or may not mean the 

same to subjects and investigators. Subjects often rely on verbal information when the data 

cannot be easily quantified, but when the data can be quantified, they prefer numerical 

information [205]. The adjectives used in the scales are in many instances coupled with 

adverbs that have a probabilistic meaning (i.e. a possibility of a numerical probability or a 

range of probabilities corresponding to the phrase may be present) or terms which indicate 

the frequency (e.g. very, quite, ‘no adverb’, rather, fairly, somewhat). When using these 

words, there is often ‘between-subject’ variability in the numerical values assigned to the 

terms. Such results indicating variability have also been replicated even when experts who 

used verbal descriptions in their work were subjects. The high between-subject differences 

are thought to be due to individual differences in language usage and context effects [204, 

206, 207]. The within-subject variability is not minor, but is considerably less than between-

subject variability and within a particular context subjects are often consistent in the 

interpretation of verbal expressions [204]. There is also an enormous overlap among the 

terms used. The probability of a “highly probable” event ranged from 0.60 to 0.99 with 

variability in other phrases, including an overlap of 0.2 between terms like, unlikely and 

likely [206]. Other verbal expressions (e.g. always, never) are interpreted consistently 

among subjects and may be used as ‘anchor phrases’ [208]. The use of verbal expressions is 

not inferior to numerical estimations and it is important to select a reduced set of phrases 

whose ordinal properties are generally agreed upon and which could be used with little or no 

confusion. A serious restriction of the vocabulary which may reduce the discriminating 
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power must be avoided and a careful selection of the words that are sufficiently apart of each 

other, will eliminate this overlap greatly [204]. The Melbourne Visual Impairment Project 

which is a population based study used the ratings of absent/none, mild, moderate, and 

severe. For each of these words the definitions were provided which specified the 

investigators definitions of these levels [132]. Descriptors are also used in clinical grading 

scales and in spite of the continuous development of various methods to assess clinical 

conditions objectively, the subjective grading scales have shown good repeatability and will 

continue to be used [209]. 

Numbers placed under words: When numbers are placed under the words, with a negative 

to a positive continuum it is often construed to have a bipolar conceptualization of the 

attribute of interest, whereas the presence of only positive numbers may give rise to a 

unipolar conceptualization. The numbers often make a difference in the interpretation of the 

words. Numbers have been placed under the words with the assumption that ordinal 

variables can be treated as conforming to interval scales. The advantage of treating ordinal 

variables as interval variables is that it permits interpretable statistics and this provides an 

increased understanding of the characteristics of the data [210, 211]. 

Data may be ordinal or not ordinal in nature: An issue with rating scales is that they are 

on an ordinal level of measurement. The distance between the successive categories may or 

may not be the same, but unless the distribution is skewed, the data from rating scales are 

often analyzed as if they are interval data. In the event there are non-equal values these are 

determined indirectly by the variability between the category choices [192].  

Direct Estimation techniques:  

The direct estimation techniques require the subject to indicate by a line or a check in a box, 

an estimate of the magnitude that is being measured. The adjectival scale measurement may 

be done by a discrete responses or continuous responses. The rating scale with a continuous 

response is also termed as the graphic rating scale. This is similar to the VAS which is also a 

direct estimation method. The Likert scale is an example of a direct estimation scale where 

the subject has to express opinion by rating agreement with a series of statements [212, 213]. 

The responses are usually on a continuum of agree-disagree. Mainly four important 
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principles are followed in the construction of the Likert-type scale [214]. These principles 

are:  

1) Isomorphism; This consists of identifying the goal of the assessment to have an 

isomorphism (i.e. a conceptual and structural consistency) between the construct and the 

way it is being measured.  

2) Singularity; this means that each of the statements on the scale should have only one idea 

or else it will not be possible to ascertain the level of agreement with an item. 

3) Social desirability management; indicates that statements which are socially appropriate 

or inappropriate should be avoided as the level of the agreement being assessed will 

reflect more what the respondents think the surveyors want to know.  

4) Knowledge liability; means the response should be the reflection of actual opinion and 

should not be dependant on facts for an accurate appraisal.  

Likert scales having between 3 to 11 categories have been used to diagnose and assess the 

frequency and severity of ocular symptoms due to various causes and their impact on the 

quality of life [126, 190, 215-219]. In a study rating the handling of contact lenses, the 5 

point Likert scale was compared to other scaling techniques and was found to be the least 

satisfactory scale while in another study the seven point Likert scale was not statistically 

different from the VAS and it showed a comparable responsiveness with advantages such as 

easy interpretation and administration [220, 221]. Another widely used method of direct 

estimation is the semantic differential scale or the Osgood’s method [222]. The technique 

developed to deal with emotions and feelings is based on the idea that people think 

dichotomously. The method is a development of the Likert scale and adds three major 

dimensions of judgment which are the evaluative factor (e.g. good – bad), the potency factor 

(e.g. strong – weak) and the activity factor (e.g. tense – relaxed). These EPA ratings usually 

consist of a 5 or 7 point bipolar scales although any number of scales can be used. The 

intention is to obtain more information about the attribute being measured by understanding 

the links between the attitudes and behavior. The advantages of these scales are that they are 

simple, economical and can be used in most circumstances and are valid in cross-cultural 

comparisons [223]. The EPA measurements are appropriate when one is interested in 
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affective responses. A disadvantage associated with these methods of measurement is that it 

is assumed, the adjectives chosen mean the same to all the subjects. Another disadvantage is 

that the correlation between the stated attitudes and the actual perception of a subject is often 

low as it is shown that attitudes are poor predictors of behavior and actions [224].  

Direct estimation methods all have the advantage that they are easy to design and administer. 

They require less pre-testing as compared to the comparative method and are easily 

understood by the subjects. An important disadvantage is that bias with the ‘halo 

phenomenon’ is often noted and this may result as the intent of the questions is known to the 

subject as well as to the researcher. 

Comparative Methods: 

The comparative methods have the quality of being able to transform the rank order data or 

comparative preference data into an interval scale. Such an approach addresses problems 

associated with the ordinal nature of unidimensional rating scales. The comparative methods 

are an advancement of the Thurstone’s scaling of psychological stimuli [192]. The original 

three methods of Thurstone’s scaling (i.e. paired comparisons, successive intervals, and 

equal appearing intervals) are not widely employed due to a number of limitations but 

modifications of these scaling methods are often used [225-227]. Comparative methods 

commonly used in a modified way are: Thurstone’s method of equal appearing intervals, 

Guttman scaling and the paired-comparison technique. 

Thurstone’s method of equal appearing intervals: 

A large number of attitude statements spanning the range of all possible options, regarding 

the attribute/attitude being assessed are generated. The large number of statements or ‘scale 

items’ are rated on a 1-to-11 scale (1= least favorable to concept, 11= most favorable to 

concept) and the median rank and the interquartile range is computed (the interquartile range 

is the difference between the 75th percentile and the 25th percentile). The selection of the 

items for the scale is then done by sorting the items in ascending order by median and within 

that by descending order by interquartile range. The statements selected are those with the 

smallest interquartile as these have the least variability across the judges. The items span the 

entire range of values. These items comprise the scale and the respondent’s score is the 
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average score of the items selected. The principles of this method are that the scoring of 

items should be linear for analysis, the items should be ‘sample free’ and should not depend 

on whose responses they were estimated from, they should be ‘test free’ and should not 

depend on which items they were estimated from, the missing data should not matter, and 

the method must be easy to apply. 

Guttmann Scaling: 

Guttmann scaling in pain measurement is generally used to determine a decline or change in 

the functional ability/disability due to pain, progressive deteriorations of a disease state, 

effect of different measures on the management of disease state, and to assess global health 

status of patient populations [228-230]. Guttmann scaling is similar to Thurstone’s scaling 

method. It specifically addresses only a single underlying attribute. The scale is created by 

generating a large sample of items that reflect the attribute being assessed. The items are 

administered to a group of respondents, who rate (by agreement or disagreement with a set 

of attitudes) how the item is related to the attribute or construct of interest. Following this, a 

matrix or table is constructed showing the responses of all respondents. Two steps are 

involved in the construction of the matrix (scalogram). The items are ranked in an order of 

extremes with the most extreme being placed first and other items are placed in decreasing 

order of extremeness. The respondents are placed in the order of favorableness with the most 

favorable being placed first followed by a decreasing order of favorableness. This helps to 

determine, from the total pool the cumulative value (frequency and score) of each of the 

items that approximate the property of the attribute. Each item now has a scale value 

obtained from the cumulative analysis. The final scale items are then administered to a 

subject and the subject’s scale score is computed by adding the scale values of every item 

they agree with. The degree of approximation of the score to perfection is measured by the 

coefficient of reproducibility, which should be higher than 0.9 in most cases for the scale to 

be considered unidimensional. Advantages of the Guttmann scales are that a single number 

carries complete information about the exact pattern of responses to every item. It measures 

for reproducibility and scalability. The disadvantage is that unidimensional domains are rare. 
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Paired Comparison Technique: 

The paired comparison method is based on Thurstone’s law of comparative judgment. In this 

method each stimulus is paired with each other stimuli and with ‘n’ stimuli there are ‘n (n-

1)/2’ pairs. This is similar to the method of equal intervals but the two methods differ in 

approach to calibration. While in the method of equal intervals the items are ranked, in the 

paired comparison method each of the items are compared to each of the other items and a 

judgment about which of the two has more of the property is made. Data indicating the 

proportion of times each option is chosen over the other is displayed in a matrix. The table is 

then converted into z scores to assign weights to each item. This scale with weighted items is 

administered to subjects and the final score is the sum or average for all the items, as these 

items are interval level measurements. This method is appropriate only when a few items are 

to be scaled. Paired comparison techniques are often used to compare between two lenses or 

eye drops and such methods may indicate the efficacy of one treatment method over the 

other [231]. 

All the three comparative methods require more time for development as compared to direct 

scaling methods. A clinical scale that has used such a procedure in both acute and chronic 

pain measurement is the Descriptor Differential Scale. An advantage with the comparison 

methods is that they provide a measure of the scaling consistency and indicate subjects who 

do not attend the scaling task. This aids in eliminating uncooperative subjects and helps to 

improve the psychometric properties of this rating scale [232-234]. Multiple items also 

permit the use of different alternative questionnaires with each questionnaire having 

different descriptor items that are theoretically equal in value. This is helpful to rate the pain 

over a period of time as the use of the same descriptors repeatedly may result in a rating with 

memory of the previously used pain descriptors. The average of multiple items reduces the 

scaling errors and these averages are considered superior to single responses or to the mean 

of only a few responses [235]. Randomization of the categories reduces the chance of the 

item being chosen on the basis of location, and forces choice on the basis of content.  

Continuous Measure Scale: 

A continuous measure scale may be bounded or unbounded. 
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Bounded Continuous Scale: 

The visual analog scale is the most commonly used bounded continuous scale. It is 

considered by many to be a simple measurement tool and is frequently used for assessing the 

variations in the intensity of pain. The VAS is considered the “gold standard” for assessing 

clinical and suprathreshold pain by some researchers while others strongly discourage the 

use of the VAS to rationalize inappropriate procedures especially in the absence of objective 

symptoms [236, 237]. The VAS is also used in assessing the effects of treatments. It is 

typically a 100 mm scale that is continuous and is often independent from language (except 

when anchor words are used). The VAS has a large number of response categories and is 

more sensitive to changes in pain intensity although in practice the VAS is considered valid 

for detecting fine changes with a fewer pain levels [238]. It is widely accepted that the VAS 

has ratio scale properties and therefore the data obtained from the VAS is analyzed by 

parametric methods of statistical analysis. The most widely used intensity scale for palliative 

pain, is the verbal rating scale incorporating the terms “none, mild, moderate, and severe” at 

intermediate positions and a substantial correlation has been demonstrated between this VRS 

and the VAS [239, 240]. In one study the terms “moderate” pain and “severe” pain were 

correlated with corresponding VAS scores and a baseline VAS score in excess of 30 mm 

was considered as moderate pain with a mean score of 49 mm and corresponding severe pain 

was 54 mm with a mean score of 75 mm [241]. The advantages of the VAS are that the 

scores of the VAS have the qualities of ratio data provided the data are normally distributed 

[188, 242-244]. The disadvantage of the VAS is that the attribute of interest is measured on 

a single scale and this is overcome by using multiple visual analog scales to assess the 

related aspects of an attribute of interest. The contribution of the various dimensions of pain 

to the ratings is not known. If the ends of the VAS are labeled either by words or numbers, it 

affects the ratings of the attribute of interest. Other disadvantages are that subjects or 

patients especially the elderly may not find it simple and often find it difficult to complete 

the scale. The non-compliance rates range from 7-26% [182, 183, 245-248]. Reliable ratings 

cannot be produced across different groups of patients as patients may interpret the scale 

differently [172, 249]. There is also a poor reproducibility of the scale with those who have a 

cognitive dysfunction, patients in immediate post-operative period and in those suffering 

from dementia [250, 251]. Despite these limitations the VAS is favored because it places a 
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minimal demand on the ill patient and because of its simplicity. Some of the limitations of 

the visual analog scale have been overcome by the visual analog thermometer (VAT) which 

was used initially in the pain rating of patients suffering from burns. The VAT has shown a 

close correlation with the standard visual analog scale and the numeric rating scale [252]. 

Many other modifications of the VAS exist but the psychometric properties of these 

instruments have not been fully explored and therefore it is difficult to arrive at conclusions 

regarding their performance. In the measurement of ocular discomfort, the VAS has been 

widely used lending a reliability and validity to its use in the measurement of symptoms of 

ocular dryness and ocular irritation [253]. While employing continuous scales in clinical 

observations it is important to develop confidence limits so as to distinguish between true 

and observed findings (any observation score O =  T + E + B, where O is the observation 

score, T = True Score, E = Random Error and B is the Bias). The limits are often set at a 

95% confidence interval and in general it is desirable to have a narrow confidence interval. 

Visual analog scales are frequently used to assess the symptoms of ocular discomfort [220, 

254]. 

The Unbounded continuous scales: 

Ratio scaling procedures constitute unbounded continuous scales and are of four types. 

These are ratio production, ratio estimation, magnitude estimation and magnitude 

production. The most common method used in pain measurement is the method of 

magnitude estimation which has shown accurate ratio responses, with a reduced between-

subject and within-subject variability [255, 256]. All the ratio scales have some common 

characteristics. 

Before using ratio scales instructions need to be given to subjects for evaluating and 

responding in terms of ratio or judgements regarding proportion. These instructions may 

include a modulus (where a specific number is chosen for the first response) or they may be 

modulus free allowing any number to be chosen for the first response. 

All the ratio scaling methods theoretically offer unlimited continuous response. This is 

especially true for the methods involving magnitude estimation (numbers), and time 

duration. Other unbounded ratio methods may in actual practice be bounded due to 

mechanical, physical or safety limitations. 
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Ratio scales assume the power relation between stimulus and the response. The relation 

between the stimulus intensity and the response modality is described by a power function of 

the form ψ = k (φ − φο ) 
n, where ψ is the subjective magnitude that grows, as φ the stimulus 

magnitude is raised to the power of ‘n’, and φο is the effective threshold (also termed the 

threshold correction), and k is a constant. From the psychophysical function of each different 

stimulus modality, its specific exponent has been derived as the ratio of response-specific 

function to stimulus-specific function [257]. In magnitude estimation the numbers are used 

to describe sensations and this has been arbitrarily assigned an exponent of 1. Hence any 

stimulus modality judged with numbers as in magnitude estimation, will have an exponent 

which is the reciprocal of the exponent of the psychophysical function. There are two 

methods of applying magnitude estimation in pain studies. In the modulus dependant 

method, the observer is presented a standard stimulus which has a certain modulus 

(numerical value) and when stimuli are presented subsequently the observer assigns numbers 

to each of the stimuli with a value that is relative to the value of the modulus. The data from 

several observers is combined and the median or the geometric mean can be calculated for 

each stimulus value. In the modulus free method the modulus is not assigned by the 

experimenter. The subject establishes his or her own modulus and the stimuli presented are 

assigned numbers in proportion to their magnitudes as perceived by the subject. The 

modulus free method is often preferred as the observer is permitted to choose his or her 

modulus. In both of the above methods the psychophysical magnitude function is the 

average magnitude estimation plotted as a function of a property of the stimulus. This 

method of pain measurement has the following advantages. No extensive training is needed, 

judgments can be obtained rapidly and several parameters of the stimulus can be studied 

extensively. 

The fourth characteristic of ratio scale procedure is that stimulus spacing should be small to 

cause confusion regarding the identity of the stimulus and the number of stimuli so that 

subjects do not identify the stimulus to give same response to an identified stimulus. Factors 

which can influence the exponent include the value of the threshold correction, stimulus and 

response range (a small stimulus range employed frequently while delivering painful 

stimuli) increases the value of the exponent and a constricted response scale reduces the 
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exponent’s value [258]. A lowered exponent is often termed as virtual exponent as it reflects 

the compression effect on the top of the scale along with the unrestrained continuum [259]. 

The value of the exponent also depends on the instructions given to the subjects and with 

appropriate instructions and adequate training the compressive effect on the exponent was 

found to diminish [260, 261]. The power functions that are derived from the psychophysical 

function are now being used to describe a neural response relation. In one study on the basis 

of parallelism between, psychophysical response to CO2
 stimulation of the human cornea 

and the CO2 concentration-firing frequency response curve for single unit activity of 

polymodal nociceptors in the cat, it was inferred that pain sensations evoked in the human 

cornea, by CO2 stimulation was due to excitation of polymodal nociceptors. Further, the 

power function exponents derived from CO2 concentration-pain sensation curve of human 

cornea was found to be similar to exponent values obtained by CO2 stimulation of the nasal 

mucosa leading to the inference that similarities could be due to the protective role of the 

nociceptive system [262-264]. Another use of power functions is that when different types 

of cross modality methods are employed to derive similar power function exponents in the 

study of qualitative pain, it may provide a way to quantify the qualitative descriptors of pain 

intensity [265, 266]. The slopes (exponent) of the psychophysical functions also permit a 

comparison between different sessions to understand the reproducibility of pain and methods 

can be devised to minimize the between session variability [267]. The method of line 

production is another cross modality matching method where the subjects draw a line of any 

length to indicate the amount of pain perceived. 

Other Unidimensional Suprathreshold Scaling techniques: 

Some of the other methods of suprathreshold scaling are the methods of discrimination and 

the method of stimulus integration. These response dependant methods consist of an S x R 

stimulus matrix where the stimulus intensity S is presented R number of times. The response 

method may be direct scaling using Verbal descriptors, categorical scales, VAS or cross 

modality matching. A modification of the sensory decision theory task (mostly used in 

threshold detection of pain) is also employed. Many sets of four stimulus intensities are 

presented and subjects use a 12-14 point category scale to assess the pain. These methods 

are used only by a few people in the assessment of pain [268]. The above mentioned 
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methods measure mainly the intensity of pain sensation; the unpleasantness of pain is 

commonly measured with the use of language. Scales which measure the affective 

dimension are the hedonic pain scales.  

The Hedonic Pain Scales: 

The affective dimension of pain includes the hedonic aspect of pain which is the degree of 

unpleasantness. With gustatory and olfactory senses the hedonic nature of the sensation may 

be either pleasant or unpleasant. In pain the hedonic nature is only unpleasant or 

disagreeable and this makes the evaluation difficult. As the hedonic pain is more qualitative 

in nature language is used to evaluate the affective dimension of pain. Words describing pain 

are categorized and quantified and the use of these words in different studies has indicated a 

consistency and generalness in the structure of affective descriptors for measuring the 

affective dimension of pain [269, 270]. In addition to the intensity and unpleasant quality of 

pain, there are other qualities such as burning, squeezing, and throbbing. The evaluation of 

these qualities of pain and the similarities within them is done by the process of 

multidimensional scaling. 

Multidimensional scaling:

The method of multidimensional scaling is considered useful especially to understand the 

different dimensions of pain. Multidimensional scale is considered useful if the following 

considerations are fulfilled: 

1) It should lead to an increase in the accuracy of the pain measurement which is 

determined by the reliability of the measurement method. 

2) It should aid in the diagnostic accuracy of the condition. 

3) It should provide the researcher or clinician a greater understanding about the pain of the 

subject.  

4) It should provide an understanding of the relationship between psychophysical data and 

neurophysiological causes of pain. 

The raw data for the multidimensional pain is collected by the methods of verbal descriptors, 

visual analog scale, and other cross modality matching methods described above and 
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through physiological responses. The verbal descriptors do contain subtle differences and 

lend themselves to a better analysis. The dimensions that are usually latent are revealed in 

the analysis of the data, and are generally not directly observable. It provides a spatial 

representation of the data and helps to facilitate the interpretation of the data. The two types 

of multidimensional scaling methods are metric and non-metric models. The four basic steps 

of MDS include; data collection to form the similarity/dissimilarity matrix, extraction of 

stimulus coordinates, determination of the number of coordinates representing the data, and 

rotation and interpretation of the data. A few of the common methods of analysis used in 

pain studies are factor analysis, ideal-type analysis and INDSCAL (Individual differences 

scaling). Symptoms of ocular comfort have been studied through the method of MDS and 

factor analysis revealed the different dimensions of groups of ocular symptoms associated 

with symptoms of contact lens wear [271]. In evaluating discomfort induced by ophthalmic 

drops, a two dimensional space accounted for most of the symptoms with burning/stinging 

in one dimension and oily/slippery in the other dimension [272]. Multidimensional analysis 

of ocular comfort between post menopausal symptomatic group and an asymptomatic 

normal population revealed that despite the presence of symptoms of dryness in one group, 

the ocular comfort was scaled in a similar way by both the groups [273]. This revealed that 

comfort and dryness could be viewed in different orthogonal dimensions in the 

multidimensional derived space. Such methods help to define a set of independent 

dimensions with high internal consistency. The utility of factor analysis was demonstrated 

during the assessment of dry eye in a large population based sample [158]. With the 

diagnostic techniques improving and with the imaging of pain and discomfort becoming 

more sophisticated, the importance of multidimensional scaling will increase. A summary of 

the data collection methods, analysis and advantages and disadvantages of multidimensional 

scaling are mentioned in table 4-1. 

Some of the other methods of measuring discomfort and pain especially in subjects who do 

not have language skills are through observations of behavior. There is however a very low 

concordance between the ratings of pain by subjects and by medically trained personnel. 

Whenever there is such a discrepancy existing, there is often a tendency to overlook the 

report of the patient or subject. These issues should be resolved by taking multiple measures 
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of pain bearing in mind that pain is defined as a “subjective experience” and self reports are 

the most valid methods of assessing pain and discomfort. 

Computerized method of Pain assessment: 

Computers are now widely used in devising methods to test discomfort and pain. Electronic 

dairies with questions displayed permit the patients/subjects to enter categorical or numerical 

data for evaluation of discomfort and pain. The use of such instruments is increasing [274-

277]. Computerized numeric rating scales with touch screen have made the immediate 

evaluation of a questionnaire possible [278]. Electronic visual analog scales have been 

developed and their use is on the increase [279, 280]. Any design process that involves the 

development of an electronic pain measurement tool broadly consists of the following basic 

steps. It consists of an ‘Input’ where the subject’s registration and demographic information 

is present. The input information is available to the other components of the application and 

is used to sort the results and generate the reports. The ‘Stimulus’ part of the application 

enables the subject and the experimenter to view the stimulus on the screen. The stimulus 

may be provided through an audio, video, live interaction or through complex programming. 

Having the stimulus incorporated into the application has the advantage that the 

administration of the test is made simple. The ‘Data collection’ component enables the 

subject and the experimenter to enter responses to the assessment items. Subjects enter 

information where there is a stimulus component. The experimenter may enter behavioral 

observations. This is followed by the ‘Processing’ stage of the application where the 

unprocessed responses are loaded into an analysis program. The ‘Reporting’ displays the 

results on the screen. Each of the components should be tested before it is put to actual use 

[281]. The computerized methods have been found to be useful for measuring the temporal 

characteristics of pain which are included in the IASP taxonomy of pain. According to this 

taxonomy pain can be (1) Continuous or near continuous and non-fluctuating; (2) 

Continuous or nearly continuous and fluctuating; (3) recurring, irregularly; (4) recurring, 

regularly; (5) paroxysmal; or it may be (6) sustained with superimposed paroxysms [282]. 

The fluctuations of pain have not been studied much and most conventional methods of pain 

measurement may not have the ability to record acute fluctuations occurring over a short 
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interval of time. The computerized technologies have a tremendous potential in 

the measurement of pain and discomfort.     

The above review of the techniques for the suprathreshold measurement of ocular 

discomfort is only a brief summary of the vast literature available about ocular discomfort. A 

better understanding of the measurement of ocular discomfort and pain is possible only 

when it is coupled with knowledge of the physiologic mechanisms responsible for the 

maintenance of a healthy ocular surface.    

These mechanisms will be considered in the next section. 

 

Multi-dimensional Measurement - Metric or Non-metric 

Often a great increase 
in amount of raw data 
collected
The number and 
quality of the different 
dimensions are highly 
situation and method 
specific
Dimensions may be 
difficult to interpret
In clinical situations 
refined analysis of 
pain quality may not 
increase accuracy of 
pain rating
Application to clinical 
situation is often not 
easy

Common methods of analysis are

• Factor Analysis 

• Ideal-type analysis

• e.g. INDSCAL 
Increases reliability or accuracy of 
pain measurement

Accurately characterizes subtle 
changes in pain (rotational quality)

Projection methods enable  data to be 
visualized along different orthogonal 
dimensions in MDS space

Projections help discover independent 
dimensions

Independent dimensions can be often 
defined with high internal consistency

Categorical Verbal 
Rating Scales
(more nuances of stimulus 
judgements)

Categorical Numeric 
Rating Scales
(Greater Sensitivity scale 
employed)

Visual Analog Scales
(a 10cm line either 
horizontal or vertical)

Cross modality 
matching methods,

Paired comparisons

Physiologic responses

Observed behavior

DisadvantagesAnalysis methods / AdvantagesCommon data 
collection methods
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Table 4-1: Summary of the Advantages and Disadvantages of Multidimensional Scaling. 
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5. Structure and function of the Tear Film: 

The structure of the tear film has been extensively studied to contribute to the understanding 

of the ocular surface. The morphology of the tear film is dependant upon a normal lid 

structure and lid closure [283] and the state of the ocular functional unit. Normally there is a 

continuous alteration in the constituents of the tear film due to the constantly changing 

climatic and environmental influences [284]. The tear film was believed to be a three layered 

structure consisting of a mucous layer close to the epithelium, an aqueous layer outside of 

the mucous layer and a lipid layer on the external surface of the aqueous layer [285]. The 

present concept is that the tear film is a bilayered structure consisting of an 

aqueous/mucinous phase and a lipid phase [286]. The mucous layer has a refractive index 

that is identical with the aqueous phase of the tear film and hence is difficult to visualize 

[287]. The aqueous layer and the lipid layer are easier to visualize. 

The lipid layer of the tear film: 

The lipid layer is the outermost layer of the tear film. It consists of an outer non-polar lipid 

layer with anti-evaporative properties and an inner polar layer with surfactant properties.  

The three essential functions of the lipid layer are:  

1) To provide an effective barrier and prevent evaporation. 

2) To provide a surfactant layer that acts as an effective bridge between the non-polar lipid 

layer and the aqueous mucinous layer [288]. 

3) To maintain compression and expansion of the lipid film without hysteresis as the eye 

blinks to prevent tear overflow [289]. 

Other functions of the lipid layer are: 

4) To prevent the maceration of the skin lid margin by the tear. To form a barrier for 

preventing contamination of the tear film. 

5) To prevent the spreading of sebum from the cutaneous glands into the eye. 

6) To provide a smooth surface for refraction of the incoming rays of light [289, 290]. 
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For the most part the lipid layer is formed by the secretion of the meibomian glands. A small 

contribution to its formation is from the glands of Zeis. 

Morphology of the meibomian gland: 

The meibomian glands are compound tubulo-alveolar holocrine glands, which secrete the 

meibomian oil forming the lipid layer of the tear film. There are about 25 glands in the upper 

lid and about 20 glands in the lower lid. These glands are arranged in a single row along and 

perpendicular to the lid margin. Each gland has a long central duct surrounded by acini. 

Saccular acini project from the main tubules of the glands. The acini, which may be single or 

composite, consist of a layer of flattened basal cells resting on a basement membrane. This 

outer cell layer of the alveoli forms the germinal layer. A cell differentiation in the 

centripetal direction results in an enlargement of the cells, loss of nuclei, lipid accumulation, 

and degeneration of the centrally located cells that forms the holocrine secretion. The 

basement membrane of the acini separates the gland from the surrounding lymph space and 

the stroma of the tarsal plate. The tubules of the acini join to form the meibomian duct. Four 

layers of cells line the duct of the gland and at the region close to the orifice there may be six 

layers of cells. The orifices of the glands emerge anterior to the mucocutaneous junction, 

through punctal openings and consist of three concentric rings. The rings are described as an 

inner opaque cuff, followed by a dark or translucent middle opaque ring, and an outer 

opaque cuff, which surrounds the punctum of the meibomian gland [290, 291]. Dense 

collagen, fibroblasts and a network of blood vessels and nonmyelinated nerve fibers 

surround the glands. Elastic tissue and smooth muscle fibers are found around the acini. In 

the meibomian glands of the primates the nerve fibers are mainly associated with the acinar 

structures. The stimuli for the secretion of the meibomian glands have not been clearly 

identified. The nerve supply of the meibomian gland and their role in meibomian secretion is 

described below. 

Regulation of the lipid layer secretion: 

The secretions of the meibomian gland mainly contribute to the formation of the lipid layer 

of the tear film. The glands are innervated by the sensory nerves, the sympathetic and the 

parasympathetic nerves. Different neuropeptides have been identified by specific antisera in 

the human meibomian gland. These include substance P (SP), the calcitonin gene related 

 50  



  

peptide (CCRP) and the vasoactive intestinal polypeptide (VIP). The neuropeptides, 

neuropeptide Y (NPY) and the neuronal enzyme tyrosine hydroxylase (TH) have been 

identified in the meibomian gland of primates, rabbits and rats [292-294]. In the cynomolgus 

monkey the acini of the meibomian gland appear to be surrounded by a mesh of 

unmyelinated nerves and terminal axons with varicose endings. These varicose axons 

contain small agranular and large granular vesicles and show an immunoreactivity to the 

neurotransmitters, neuropeptide Y and the vasoactive intestinal polypeptide (VIP) indicating 

a parasympathetic nature of innervation [295]. The proximity of the nerve fibers to the acini 

of the meibomian gland and their immunoreactivity to the peptides of the autonomic nervous 

system indicate a possible neurotransmitter mechanism for the modulation of meibomian 

gland function [296]. In the adult rats a parasympathetic neuronal regulation of the 

meibomian gland has been demonstrated [297]. Using retrograde tracers, the sensory and 

sympathetic CGRP immunoreactive nerve fibers were traced to neurons located in the 

trigeminal ganglion and the superior cervical ganglion [298, 299]. It is believed that CGRP 

causes a vasodilation in the ocular tissues with a consequent increase in the level of the 

circulating hormones leading to an increased secretion of the meibomian gland. These 

nerves and circulating hormones are believed to regulate the meibomian secretion. This 

regulation of meibomian secretion may be controlled at different levels including; (a) a 

regulation at the level of lipid formation (b) a regulation of the rate of maturation of the 

holocrine mechanism in the meibomian gland and (c) a regulation of the rate of release of 

the meibomian secretion. There is increasing evidence that the meibomian gland is under a 

hormonal regulation [292, 300]. The presence of estrogen and progesterone receptor mRNAs 

in the meibomian gland, lacrimal gland acinar epithelial cells, lid, palpebral and bulbar 

conjunctiva and the cornea have been established immunohistologically. Androgen receptor 

proteins have been demonstrated in the acinar epithelium of the meibomian gland, epithelial 

cells of the human lacrimal gland, the bulbar and forniceal conjunctivae, cornea, the lens and 

the RPE cells [301, 302]. These target sites of androgen activity possess the ability to locally 

convert testosterone to dihydroepiandrosterone (DHEA). In the skin an increase of DHEA 

leads to an increase in the sebum secretion, while a decrease in DHEA causes decreased 

sebum secretion [303]. In the eye it has been demonstrated that anti androgen medications 

are associated with meibomian dysfunction and an unstable tear film resulting in symptoms 
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of dry eye [304]. The lipid secretion in the androgen target organs is therefore related to the 

levels of the circulating androgens and estrogens, and this relation is especially prominent in 

the aging individuals. An endocrinosenescence due to aging results in a decline of several 

hormones. Changes are especially seen in the adrenal and the gonadal glands where there is 

a decline of serum/plasma hormones such as DHEA, DHEA sulfate, 17 β-estradiol and 

progesterone [305, 306]. The deficiency of the circulating androgens and estrogens leads to 

meibomian gland dysfunction resulting in tear lipid profile changes that may cause an 

evaporative type of dry eye [300, 307]. The regulation of the meibomian gland therefore 

seems to be dependant on both neurotransmitters as well as hormones. The relative influence 

of each is not presently understood though it is possible that the lack of hormonal support 

may play an important role in the aging individuals.  

Composition and formation of the Lipid Layer: 

There is a large variation in the tear lipid content in the normal individuals. The main 

constituents of the tear lipid are the wax esters, sterol esters, polar lipids, diesters, 

triglycerides, free sterols and the free fatty acids. 

Liquid composition of Human Meibum Percentage 

Cholesterol Esters 29.5%-38.0% (or less) 

Wax Esters 35.0%-47.0% (or more) 

Triglycerides 29.5%-38.0% (or less) 

Polar Lipids  6.0%-16.0%  

Diesters 2.0%-8.4%    

Free fatty acids 2.1%-2.5%      (or less) 

Free Cholesterol 1.50%-1.80% 

Hydrocarbons  3%-7% 
Table 5-1: Composition of the lipid layer    (Data source [290, 308-310])

The lipids of the tear film, like thin films in the other biological systems form a lipid 

monolayer [308, 311-313]. At present very little is known about the mechanism of in-vivo 

formation of ocular film lipid monolayers but it is observed that the phospholipids form 

aggregates including sheet-like monolayer structures. Our knowledge regarding the 
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dissolution of these layers and their implications in evaporative dry eye disease of the ocular 

surface is even more limited [2]. In vitro, the formation of the lipid monolayer requires: 

1) Negatively charged lipids (as even a reduced quantity of the negatively charged lipids 

leads to a multilayered formation) [314]. 

2) A small quantity of protein which aids in the formation of the monolayer. 

3) An adequate concentration of monovalent ions (sodium less than 10mM) and divalent 

ions (calcium less than 1mM) to aid the formation of monolayers.  

In the tear film, a lipid monolayer establishes itself as the above conditions are satisfied. The 

meibum contains anionic phospholipids such as phosphatidylserine (7%), 

phosphatidylinositol and cardiolipin [315, 316]. The aqueous layer of the tear film contains 

about 150mM of univalent ions mainly sodium and potassium and 1mM of divalent ions 

mostly calcium and magnesium. Small amounts of protein are also present.  

The normal appearance of the lipid layer of the eye has been studied using non-invasive 

methods such as Interferometry and specular reflection. Based on its thickness and 

appearance the lipid layer is classified as having various patterns  such as Open meshwork, 

Tight meshwork, Meshwork and wave, Wave appearance, Amorphous, and Lipid layer with 

1st order interference colors [317].  

Brewster angle microscopy provides a direct observation of the meibomian lipid layer 

following spreading in a Langmuir type trough. The lipid layer thickness ranges between 45 

nm to 135 nm [318]. In the in vitro studies, the normal lipid layer is observed to be 

homogenous and mobile at a surface tension of 5.0mN/m, with areas of lower and higher 

reflectivity. The lower reflectivity lipids are 2nm thick and higher reflectivity lipids are 8-10 

nm thick.  

Lipids from healthy persons may be inhomogeneous and mobile whereas in conditions such 

as meibomitis, the lipid layer is inhomogeneous and immobile [311]. Based on the 

appearance, the lipid layers have been classified into normal and abnormal. The common 

causes for abnormal lipid layer are meibomian over secretion, an abnormal meibomian 

secretion due to disease or inflammation, abnormal spreading of the lipid layer, rapid lipid 

break-up, natural contamination, effects of cosmetics, eye drops and contact lenses. Soft 

contact lenses cause the lipid layer to be thinner [317]. In the case of rigid contact lenses, the  
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Classification of Abnormal tear lipid layer appearance 

Pattern Description Observation 

Meibum Over-secretion Large thickness variation 2nd, 3rd and 4th order 
interference 

Abnormal Secretion Thin lipid layer due to 
undersecretion 

Hardly visible 

Blepharitis Irregular and globular Good appearance 

Abnormal Spreading Variable thickness and 
thinner in upper region 

Well apparent in 
incomplete blink 

Poor Mixing of the newly 
formed lipids 

Secretions take longer to 
come to a stop following 
blinking. 

Surface plaques or streaks 
or oily lenses 

Lipid island formation with 
high tear evaporation 

Grey area separated by 
zones of high reflective 
lipid cover 

Table 5-2: Classification of abnormal lipid layer (Data Source [317]) 

 
 
 

Grades of Lipid layer Interference Pattern 

Grade  Observation  Type of eye 

Grade 1 Somewhat grey color, uniform distribution Normal eye  

Grade 2 Somewhat grey color, non-uniform distribution Normal or Dry Eye 

Grade 3 A few colors, non-uniform distribution Dry eye 

Grade 4  Many colors, non-uniform distribution Dry eye 

Grade 5  Corneal Surface partially exposed Dry Eye 

Table 5-3: Grades of lipid interference pattern (Data Source [319]) 
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lipid layer is more often very thin or absent. Another classification based on the tear lipid 

layer interference pattern differentiates the lipid layer into 5 grades. A significant correlation 

between the interference pattern, the lipid layer appearance and other dry eye examination 

modalities such as fluorescein staining, schirmer’s test, rose bengal and tear film breakup 

time was present. The 5 different grades of Lipid layer interference based on the appearance 

are mentioned in Table 5-3. Other modes to differentiate the lipid layers exist [318, 320]. 

Functions of the Lipid Layer: 

The three important functions of the tear lipid layer are: 

The Prevention of Evaporation: 

In humans the lipid layer reduces aqueous evaporation by about 90%-95% [321]. In the 

absence of the lipid layer the rate of evaporation may increase four-fold [322]. A ten to 

twenty fold increase in evaporation from the corneal surface of rabbits is noted when the 

lipid layer is removed. The lipid layer consists of two phases. The outer and thicker phase 

termed as the non-polar phase, retards the transmission of water vapor and increases the 

resistance to evaporation. This phase is believed to be dependent on the structure of the inner 

polar phase [289]. The deep polar phase comprising of surfactant phospholipids is a bridge 

between the aqueous and the non-polar lipid phase. The surfactant property of the polar 

phase and the barrier function of the non-polar phase could be due to their specific 

compositions. When lipid layers consist of closely packed parallel hydrocarbon chains, the 

resistance to evaporation is increased because the energy barrier to the diffusion of the water 

molecule across the lipid chain is very high. This is even more pronounced if the lipid chain 

is long, and it is suggested that the resistance\chain-length relationship for monomolecular 

layers is an exponential relationship [323]. Normally about 10% of the total tear volume 

evaporates, while 90% drains through the lacrimal punctum [324]. An increased aqueous 

evaporation is due to a poor quality lipid layer being associated with lower tear film stability 

and regardless of the thickness a stable lipid layer retards the evaporation of tears [322]. The 

presence of lipid deficiency alters the evaporation rate with a 1.5 to a 3.0 fold increase in the 

evaporation rate of tears. When aqueous deficiency is combined with a meibomian gland 

dropout, there is often a four fold increase in the rate of tear evaporation. This leads to a high 

tear osmolarity and a decreased tear break up time leading to a vicious circle of increased 
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evaporation and ocular surface damage [290]. In meibomian gland disorders, the tear 

electrolytes increase uniformly, while in the lacrimal gland disease, the Na+ rises secondary 

to an increased secretion caused by the low flow rates [325]. 

Surface Spreading Function: 

The surface spreading function of the lipid layer is important for the establishment of the 

tear film following a blink. Knowledge about surface spreading is mostly obtained from 

studies of the lung where the alveolar lining consists of, an aqueous hypophase covered by a 

lipoprotein monolayer with dipalmitoyl-phosphatidylcholine as its most important 

component [326]. In vivo, lipids spread over water or over physiological saline. This 

movement of the surface lipids and the underlying fluid which is caused by the surface 

tension gradients is called the Marangoni flow or effect. This spontaneous spreading (or 

superspreading) ability is not fully understood but factors such as gravity, airflow effects, 

and surface tension  gradients are believed to compete in the spread of thin lipid films. In 

case of thin film surface layers, surface tension gradients play a more significant role than 

the other factors and the presence of lipids stabilizes the tear film by: 

1) Providing about 25% decrease in the surface tension. 

2) Distributing the charge carried by the polar head group 

3) The hydroxyl groups of the polar heads interacting with the proteins and mucins in the 

aqueous subphase [321, 327-329].  

As the spreading front stretches, the surface tension (also known as the ‘film pressure’) 

increases, even as the concentration of the thin layer reduces. This establishes a dynamic 

surface tension gradient where the higher the gradient the faster the spreading. This 

spreading is also dependant upon film thickness, film activity and the viscosity of the 

underlying fluid. If the film’s surface diffusion and gravity are negligible, the unsteady 

spreading flow generates a wave that travels in the direction of higher surface tension. The 

film thickens at the edge of the traveling wave and thins behind it, so much so that it may 

result in a rupture. This rupture causes the spreading to stop. In most of the physiological 

conditions, a preexisting layer of film may already be present. The leading edge of the newly 

laid film then spreads more slowly [328]. In the eye, the lipocalins on the inner polar phase 
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of the lipid layer stabilize the tear film with their surfactant properties [321]. Intact tears 

have a surface tension of 42-46 mN/m, but when the lipid is extracted the surface tension 

rises to 53-55.5mN/m. It indicates that the complex of lipocalins and polar lipid fractions of 

the meibomian with possible contributions from the lacrimal gland origin, maintain the 

surface tension [288]. The spreading lipid also lowers the surface tension of tears which 

causes the water to be drawn into the tear film for the aqueous phase of the tear film. 

Spreading of the lipid film in the eye has been observed in vitro by Brewster angle 

microscopy and in other in-vivo studies [320, 330, 331]. These findings suggest that the 

Marangoni effect probably has a role in maintaining the tear film thickness. In spite of these 

advances, a recent study on the structure of the surfactant films using the scanning force 

microscopy revealed that the structure-function relationship of surfactants is more complex 

and the widely accepted theory of monolayer phospholipids governing the surface tension 

may probably need further evidence [326].  

Compression and expansion of the lipid layer: 

The lipid layer of the tear film causes the tear film to act as a thixotropic system (i.e. shear 

thinning where the bonds and cross-links are labile and can break and reform). This is 

essential for the fluidization and restructuring of the tear film. It is further suggested that the 

thixotropic characteristics of the lipid layer are dependant on the interrelationships between 

the lipid classes and the length of the fatty acids [308]. It is essential for the tear film to 

maintain its integrity and a reversible compression and subsequent expansion without any 

hysteresis. In vitro studies of lipid monolayers and their formation have shown that either 

lipid monolayers or bilayers can be formed reversibly. This is dependant on the lipid 

composition [289]. Using dipalmitoyl-phosphatidylcholine (DPPC), a lipid present in several 

biological systems including the skin, the tear film of the eye, ear and the alveoli a 

monolayer to bilayer phase transition was observed and it was concluded that DPPC 

monolayers can form bilayers spontaneously. Transmission electron microscopy studies 

reveal that at certain concentrations of DPPC, small folds appeared in the monolayers. These 

folds represent the over compression of the DPPC monolayer. Studies also indicate that 

when the composition of the lipid monolayer changes there are differences in the surface 

pattern appearance. All this lends evidence to the hypothesis that a regular monolayer alone 

 57  



  

may not govern the surface tension, but a more complex structure-function relationship 

exists in the thin layers and it is difficult to conclude that formation of reversible bilayers or 

trilayers does not occur in vivo in the tear film in spite of the lack of evidence [289, 326]. 

The Aqueous-mucin layer of the tear film: 

The mucin component of the aqueous layer: 

The mucin part of the aqueous-mucin component of the tear film is formed mainly by the 

secretion of the goblet cells, and the squamous epithelial cells of the cornea and conjunctiva 

with a small contribution from the lacrimal gland. The aqueous layer is formed mainly by 

the secretions of the main and the accessory lacrimal glands. The corneal and conjunctival 

epithelial cells contribute to the secretion of the aqueous component by secreting water and 

electrolytes into the tear film [332, 333]. Mucins are high molecular weight glycoproteins 

with a shape similar to a test tube brush. They contain serine and threonine residues with 

attached O-linked oligosaccharide chains. The carbohydrate chains account for about 70% to 

80% of the dry weight of mucins. The molecular mass of mucins range from 3 × 105   to over 

4 × 107 kDa [334]. 15 mucin genes have been identified by genome mapping and are 

partially or completely sequenced (i.e. MUC1, MUC2, MUC3A, MUC3B, MUC4, 

MUC5AC, MUC5B, MUC6 to MUC9, MUC11 to MUC13 and MUC16) [335]. Viewed 

with the atomic force microscope, the ocular mucins are seen as linear polymers with length 

ranging from several hundred nanometers to several microns and having a diameter less than 

1.5nm [336]. Human mucins are categorized into two types: Transmembrane mucins (i.e. a 

protein subunit in which the polypeptide chain is exposed on both sides of the membrane) 

and Secretory mucins (which may be gel-forming or the soluble type). In the tear film and 

the ocular surface epithelium, at least four types of mucins are believed to be present 

although additional mucins are likely to be present [337]. The mucin concentration gradient 

decreases from the epithelium towards the lipid layer [286]. The entire ocular surface 

produces mucins [338-342]. The conjunctival goblet cells synthesize the secretory gel 

forming mucin MUC5AC (mucin 5, subtypes A and C), whereas the stratified epithelium 

forms the membrane spanning mucins MUC1 and MUC4 [343].  
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In humans, rat, mouse and rabbit the goblet cells are seen as plump clusters, and at a high 

resolution these cells contain packets of mucin. Using fluorescein containing lectins, mucin 

packets were noted both between the goblet cells and within the goblet cells. Streams of 

labeled mucin emanating from the apical surface of goblet cells have been visualized [338]. 

MUC1 is a membrane spanning mucin, expressed by the stratified epithelium of the 

conjunctiva. MUC1 mRNA has been detected in all layers of the corneal epithelium and in 

the superficial cells of the cornea, conjunctiva and lacrimal gland tissue [342, 344]. The role 

of MUC1 is not exactly known though it is believed to facilitate the spread of gel forming 

mucin. It does not seem to play a significant role in the tear film stability of the MUC1 

knockout mice. Although it is not conclusively established, MUC1 may play a role in 

preventing the adhesion of pathogens to the ocular surface [345-347]. MUC2 is reported in 

the conjunctival and corneal epithelium and its transcript (a transcript is a sequence of RNA 

produced by transcription from a DNA template), as determined by quantitative polymerase 

chain reaction is about 5600 to 6000 fold lower than that reported for MUC5AC  [337, 348]. 

Mucous hyper-secretion is induced both in vivo and in vitro, by allergic conditions that 

induce the expression of MUC2 and MUC5AC in the cells [349]. Like the MUC1 the MUC4 

is also a membrane spanning mucin reported in all the layers of the conjunctival epithelium, 

in the limbal portion of the corneal epithelium and the lacrimal gland [286, 337, 338]. The 

lacrimal gland may therefore be a second source of mucin for the tear film [350]. The 

conjunctival goblet cells form the gel forming secretory mucin MUC5AC [351]. MUC5B is 

known to be present in the lacrimal tissue [344, 352]. The conjunctiva and the lacrimal 

glands also produce the soluble mucin MUC7 [337]. Through the procedure of reverse 

transcription-polymerase chain reaction (RT-PCR), minor quantities of MUC11 have been 

detected in the corneal epithelium [353]. The whole of the ocular surface also expresses a 

highly glycosylated mucoprotein with a high molecular weight. This mucin like glycoprotein 

complex is recognised by the monoclonal antibody H185 and is expressed at the tip of the 

microvilli and microplicae of the apical surface of the cornea and the conjunctiva. The 

antibody recognizes an O-linked carbohydrate structure on the mucins [341]. The expression 

of this mucoprotein is dependant on the density of the microplicae and microvilli of the 

corneal and conjunctival epithelium. Older cells with less microplicae and microvilli that 

cause less scattering under the SEM and appear as darker cells have less mucin expression 
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while the younger cells having more of microvilli and microplicae demonstrate more mucin 

expression [354]. Normally this shows as a mosaic pattern of binding with the monoclonal 

antibody H185. In the Dry Eye due to changes in the surface distribution of mucin, the 

monoclonal antibody H185 binds predominantly to the goblet cell mucin packets, giving the 

preparation a “starry sky” pattern [355]. 

Functions of the Ocular Mucins: 

Lubrication of the ocular surface: 

The mucins on the ocular surface protect the ocular surface and form a physical protective 

barrier over it. The membrane bound mucins serve as glycocalyx (i.e. a polysaccharide or 

glycoprotein covering on a cell surface) coating the microvilli and microplicae of the corneal 

epithelial cells. A chemical attraction exists between the membrane bound mucin complexes 

and the soluble mucin complexes [286]. During the normal blink the eye lids move rapidly 

across the eye and this may result in spreading the secreted mucus. The turbulence caused by 

the blink transfers some of the membrane bound mucin molecules into the aqueous layer 

[356]. The aqueous mucin component of the tear film lubricates this gliding movement of 

the lid over the globe. The relative velocity of the gliding surfaces (lid and the globe) is 

about 15-25 cm/sec with a sheer rate of about 20,000 sec−1 and a shear stress of about 150 

dynes/cm2 at the mucous-aqueous interface [287]. During this movement the ocular mucins 

show a non-Newtonian behavior. This means that when a shear force is applied as during 

blinking, the viscosity of the solution falls. This may be due to the process of shearing and 

re-entangling of the mucous polymers. In Newtonian behavior the viscosity is independent 

of the shear rate [357-359]. Both the gel-forming and the transmembrane mucins are 

important for the spread of the mucin. Another view regarding the ocular surface lubrication 

and the adhesion of mucin to the epithelium is that the ocular surface cells and the corneal 

and conjunctival mucous derived from these cells are both hydrophilic. This causes a polar 

repulsion and prevents the adhesion of the overlying goblet cell mucous to the underlying 

mucin, to the normal surface cell and the damaged epithelial cells. The ocular mucous 

therefore remains as a hydrated mucous gel in a sloppy state without adhering to the 

epithelium. This physical characteristic assists in the spreading of mucous to reduce the 

shear force of blinking [360].  
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Stability of the tear film: 

Ocular mucins influence the tear-film break up time and play a major role in stabilizing and 

spreading the tear film [337, 361-363]. The type II cells in the stratified squamous 

epithelium of the conjunctiva contain numerous vesicles loaded with a long chain 

mucoprotein. This glycosylated mucoprotein synthesized in the cells is transferred to 

vesicles which fuse with the outer surface of the conjunctival epithelium. The fusion results 

in a “mucoprotein spread” that anchors (or repels, according to the polar repulsion concept) 

and spreads the overlying mucous onto the conjunctival and corneal epithelium [360, 361]. 

The mucin expressed by the goblet cell is a gel-forming mucin and forms the main 

component of the mucous layer. It spreads over the glycosylated mucoprotein coating 

formed by the corneal and the conjunctival epithelium and these two mucins together 

facilitate the formation of the overlying aqueous layer. In addition to this the mucin in the 

tears lowers the surface tension aiding in the formation and stability of the tear film. [337]. 

Other sources of mucin are the stratified epithelium of the conjunctiva which produces the 

MUC1, MUC4 and MUC7 and the mucins secreted by the lacrimal gland (MUC7) [344]. It 

is suggested that the membrane spanning mucins spread to provide a negatively charged 

hydrated epithelial surface which supports and facilitates the distribution of the tear film. 

When there is a loss of the tear volume along with an altered tear lipid layer, decreased 

formation of glycocalyx mucins and gel forming mucins, there is an alteration in the mucin 

gene expression which leads to symptoms of discomfort and dry eye [353]. Mucins therefore 

play a role in stabilizing the tear film. 

Regulation of the mucous layer secretion: 

The mucous layer is mainly formed by the goblet cells of the conjunctiva which are single or 

grouped and connected to the neighbouring cells by tight junctions [364]. These cells in the 

conjunctival epithelium secrete mucous in an apocrine manner (i.e., all or most of the 

secretory granules are discharged) upon stimulation. If all the goblet cells of the conjunctiva 

secrete mucous in response to a stimulus, a rapid depletion of the mucous would occur and 

there would be no more goblet cell secretion till replenishment occurs. It is therefore 

possible that there is a neural regulation of the goblet cell. Innervation of the goblet cells by 

sensory, sympathetic and parasympathetic nerves has been demonstrated suggesting that 
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goblet cells secrete mucin in response to neural stimulation and a cyclic AMP-dependant 

signal transduction pathway may be involved [292, 365]. The regulation of the mucin gene 

expression can be altered by various physiological, pathological and environmental factors 

such as air pollutants, hormones, bacterial infection, cancer, cystic fibrosis, and embryo 

implantation. In response to insults from these diverse noxious stimuli a mucin transcription 

is stimulated probably through common signal transduction cascades [353]. In the 

respiratory tract airways, it is shown that the epidermal growth factor receptor system 

(which consists of about 11 members), regulates mucous secretion on being activated by its 

ligands which are the epidermal growth factor (EGF) and the transforming growth factor α 

(TGFα). Causes of EGF activation include allergens, cigarette smoke, acute neutrophilic 

inflammation, bacterial infections and tissue damage [366, 367]. In the tear fluid in humans, 

both EGF and the TGFα are present and probably originate in the lacrimal gland with a 

small contribution from the conjunctiva [368-371]. The normal concentration of EGF in 

minimally stimulated tears is between 0.75-7.1ng/ml [372]. Following reflex tearing there is 

a decrease in the EGF [373]. In the rabbit the tear EGF concentration rises dramatically after 

creation of the wound, and returns to the basal level after the 1st post wounding day which 

indicates its role in epithelial proliferation in the immediate post wound time period [374]. 

Other chemokines and the interleukins may stimulate the secretion of mucous. Interleukin-9 

which is a cytokine produced by the T-helper2 (TH2) cells, specifically stimulates an 

increased mucin secretion of MUC5AC in the respiratory airway [375]. Mucins therefore 

play a role in preventing ocular surface inflammation.  

The Aqueous component – its formation and function: 

The aqueous component of the tear film is mainly secreted by the lacrimal gland and the 

accessory lacrimal gland. The aqueous tears consist of ions and proteins produced by the 

secretory epithelium of the glands and the contributions of the plasma cells of the immune 

system. Its osmolarity ranges from 283 to 304.4 milliOsmols with a slightly higher 

concentration in the males. An increased osmolarity of aqueous tears (over 310 milliOsmols) 

is likely to be associated with the condition of Dry Eye [325, 376, 377]. The tear fluid also 

contains electrolytes such as Na+ , K+, Cl¯ and HCO3
¯ which show an increase by about 

3.5% relative to controls in conditions that cause lacrimal gland disease with a resultant Dry 
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Eye. The protein component of the aqueous tears is derived from the plasma cells and the 

secretory epithelium of the gland. Plasma cells migrate from lymphoid structures such as the 

gut associated lymphoid tissue (GALT) and secrete immunoglobulin A (IgA) that protects 

the ocular surface. Within the lacrimal gland the plasma cells are located in the interstitial 

spaces between the glands. Acinar cells of the lacrimal gland mainly function to secrete 

water, synthesize and secrete tear specific proteins and transport IgA from the interstitial 

compartment into the lumen of the gland. The water is moved from the interstitial spaces of 

the gland into the lumen of the gland where it is mixed with other secretory products. This 

movement of water across the epithelium is achieved through the process of osmosis and 

possibly assisted by two different processes, (a) the aquaporin 5 (AQP5) water channels 

located in the apical acinar cell and (b) a normal organization of the gap junctions containing 

the protein connexin 26 and 32 [378]. Aquaporins are water specific membrane channel 

proteins which enhance water permeability or water plus glycerol permeability (i.e. 

aquaglyceroporins), in biological membranes. AQP5 is normally expressed at the apical 

membrane of the lacrimal acinar cells and in the corneal epithelium. In the salivary gland 

and in the respiratory mucosa it plays an important role in the fluid transport function but its 

role in the lacrimal gland epithelium is not fully established [379-382]. It is suggested that 

aquaporins play a role in water transport when a high flow rate of near-isosmolar fluid 

secretion/absorption is needed. In some patients with Sjogrens’s syndrome, an abnormal 

cytoplasmic localization of the lacrimal APQ5 has been seen [383]. The significance of this 

finding is unclear as other studies employing different immunohistochemical methods have 

found that the distribution and the density of aquaporin 5 in the salivary gland is the same in 

persons with and without primary Sjogren’s syndrome [382-384]. The main lacrimal gland 

specific proteins in the tears are lactoferrin, tear specific prealbumin (TSP or lipocalins) and 

lysozyme [385]. Protein secretion from the lacrimal gland is stimulated by neurotransmitters 

and neuropeptides located in the neurons of the glands. The details of the protein secretion 

are mentioned in the section “Innervation of the Lacrimal Gland”. Stimulation of protein 

secretion causes an intracellular vesicle movement and fusion with the apical membrane of 

the acinar cell. In addition to this there is a movement of vesicular membrane protein from 

the basolateral portion of the lacrimal acinar cell into the acinar cell. In the rat the lacrimal 

tissue secretes the sialomucin complex (SMC)\MUC4 and MUC7. These mucins are a 
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secondary source of soluble mucin on the aqueous surface. MUC4 is especially important as 

a deregulation of the SMC\MUC4 expression may suppress apoptosis and facilitate the 

development of tumors [386]. 

Morphology of the Lacrimal Gland: 

The lacrimal gland consists of lobes of secretory acini that drain into secretory tubules which 

lead to the main duct of the gland. Acini and secretory tubules are separated by connective 

tissue, and in some areas they are associated with myoepithelial cells, fibroblasts and mast 

cells. Scattered throughout the interstitium of the gland are groups of lymphoid cells 

consisting of B cells, T cells and plasma cells that are scattered in the interstitium of the 

gland. The acinar cells are columnar while the duct cells are more cuboidal in shape. The 

apical portion of the acinar and duct cells contains vesicles. A basement membrane upon 

which the cells lie causes the polarization and functioning of the cell. Large junctional 

complexes couple the cells in a mechanical and electrical manner at the luminal end of the 

acini and uncoupling these gap junctions formed by the connexin proteins Cx26 and Cx32, 

compromises the optimal fluid secretion of the lacrimal gland [378]. Gender and age related 

changes have been observed in the lacrimal glands including fibrosis of the lobules of the 

gland, atrophy of the acinar epithelium, and lymphocytic and fatty infiltration of the gland 

[387, 388]. 

Innervation and mechanism of secretion of the Lacrimal Gland: 

The lacrimal gland is considered to play an important role in the pathophysiology of Dry 

Eye. Its complex innervation is formed by the sensory nerves, the sympathetic (adrenergic) 

nerves and the parasympathetic (cholinergic) nerves [389]. The sensory nerves are derived 

from the trigeminal ganglion, the sympathetic fibers originate in the superior cervical 

ganglion and the parasympathetic fibers are derived from the pterygopalatine ganglion and 

the ciliary ganglion [390, 391]. The parasympathetic (cholinergic) nerves contain the 

neuropeptides VIP (Vasoactive Intestinal Polypeptide), SP (Substance P) and CGRP 

(Calcitonin gene-related peptide). The lacrimal gland is stimulated by a neural mechanism 

and by growth factors. The lacrimal nerves stimulate the gland by means of receptors located 

on the basolateral part of the acinar cell membrane. These receptors include the M3-receptors 

(muscarinic-receptors) for acetylcholine, VIP receptors (type I and II), and α1 and β 
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adrenergic receptors for norepinephrine. In addition the melanocortin-5-receptor (MC5-R) 

that responds to the ACTH/α-MSH peptide (adrenocorticotropic hormone/α-melanocyte-

stimulating hormone peptide) has been demonstrated in the lacrimal gland. The circulating 

adrenocorticotropic hormone (ACTH) and melanocyte-stimulating hormone (α-MSH) act on 

this receptor to stimulate protein secretion in the lacrimal gland. [392]. The different regions 

of the lacrimal gland react differently to the neuropeptides present in the nerves. In the 

region between the tubules of the lacrimal gland there was a strong reactivity for VIP, while 

nerve fibers which were associated with the interlobular blood vessels stained for CGRP and 

NPY [293, 389, 393]. Three different signal transduction pathways activate the lacrimal 

secretion. These are the parasympathetic muscarinic (i.e. cholinergic) pathway activated by 

acetylcholine, the α1–adrenergic agonist pathway activated by norepinephrine and the 

adenylate cyclase, cyclic adenosine monophosphate (cAMP) dependant pathway that is 

activated by VIP. The parasympathetic pathway stimulates the muscarinic receptors located 

on the basolateral membrane of the acinar cells to cause a short term stimulatory regulation 

of lacrimal gland secretion through acetylcholine (Ach). In the humans only the M3 

muscarinic receptor (glandular subtype) has been identified in the lacrimal gland. The 

activation of this muscarinic receptor causes it to be coupled to the G-proteins (Gs and Gq/11, 

proteins with a high affinity for the guanine nucleotide). The G-proteins are coupled to 

phospholipase-Cβ (PLCβ). This phospholipase-Cβ acts specifically on a cell membrane 

constituent, that is involved in signal transduction process (phosphatidylinositol-

bisphosphate) and initiates a hydrolysis reaction to produce the second messengers 1,4,5-

inositol triphosphate (1,4,5-IP3) and diacylglycerol (DAG). The inositol triphosphate 

produced from the hydrolysis reaction interacts with the receptors present on the 

endoplasmic reticulum of the cell to signal the release of Ca2+ into the cytoplasm of the cell. 

A depletion of the Ca2+ stores within the cell can cause an influx of Ca2+ across the plasma 

membrane of the cell. The DAG formed by the hydrolysis reaction causes an activation of 

the various isoforms of protein kinase C (PKC) present within the cell [394]. These protein 

kinase C isoforms (PKC is a family of 11 different isoenzymes) play a role in modulating the 

lacrimal secretion. The Ca2+ stores released into the acinar cell act either alone or through a 

Ca2+/calmodulin-dependant kinase pathway and cause the secretion of protein, electrolytes 

and water from the lacrimal gland. It has been shown that the release of proteins has a direct 
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relationship to the intracellular acinar Ca2+ [395, 396]. While the mechanism of secretion by 

the muscarinic pathway is well known the α1–adrenergic pathway is less clear. Stimulation 

of the sympathetic nerves causes the release of norepinephrine which binds to the α1- and β-

adrenergic receptors on the lacrimal gland. A subtype/subtypes of the α1- adrenergic 

receptor which is still to be determined is present in the lacrimal gland and it couples with a 

subtype of a G protein in the lacrimal acinar cell. This coupling activates an effector enzyme 

which is as yet unknown. The effector enzyme stimulates specific isoforms of protein kinase 

C (PKC) which may have an inhibitory or stimulatory effect on the lacrimal gland. The 

nature of the effect is determined by their localization. The PKC isoforms stimulate 

secretion by phosphorylating certain protein substrates in the acinar cell, leading to protein 

and electrolyte secretion. The β-adrenergic agonists are weak stimuli of protein and 

electrolyte /water secretion [395, 397]. Another signaling pathway in the lacrimal gland is 

the vasoactive intestinal peptide (VIP) dependant pathway. The vasoactive intestinal peptide 

interacts with VIP type I and VIP type II receptors (VIPRI and VIPRII respectively), present 

in the lacrimal gland. While VIPRI has been identified in the acinar and the duct cells 

VIPRII has been found in the myoepithelial cells surrounding the acini. Upon being 

activated the VIP receptors couple with a G-protein subtype, to produce adenylate cyclase 

(AC; formerly called adenylyl cyclase) which in turn produces cyclic adenosine 

monophosphate (cAMP) from adenosine tri phosphate (ATP). The increased amount of 

cAMP activates the protein kinase A (PKA), resulting in the phosphorylation of a set of 

protein substrates which induces through exocytosis a protein and electrolyte/water 

secretion. VIP also causes an increase in the Ca2+ ions. The mechanism for this increase is 

probably an increase in the influx of extracellular calcium rather than a release of 

intracellular Ca2+. The VIP pathway is basically a potent stimulator of protein and 

electrolyte\water secretion [292, 395, 397]. The α-MSH and ACTH both activate the cAMP 

pathway. α-MSH and ACTH are potent stimulators of protein, but their effect on water and 

electrolyte is unknown [392]. In addition to these neural mechanisms of stimulation of the 

lacrimal gland there are different growth factors which cause stimulation of the lacrimal 

gland. An important family of growth factors identified in the lacrimal gland is the 

epidermal growth factor family (EGF). The EGF stimulates protein secretion in the rat 

lacrimal tissue [398]. In the human lacrimal gland the EGF precursor mRNA has been 
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detected. Soluble EGF has also been detected in the human lacrimal gland. A member of the 

EGF family called the transforming growth factor α (TGFα) has been detected in the human 

lacrimal gland. EGF functions by causing the secretion of protein in the lacrimal secretion 

which affects the function and health of the ocular surface [397]. The lacrimal secretion is 

inhibited by peptides of the proenkephalin family which are present in the lacrimal gland 

[399]. 

Accessory Lacrimal Gland Secretion: 

The accessory lacrimal glands are embedded in the conjunctiva. They resemble the lacrimal 

gland histologically and structurally although true acini are absent and they secrete the same 

proteins as the lacrimal gland [400, 401]. Each nodule of the accessory lacrimal gland is a 

functional unit surrounded by a layer of connective tissue. Within the gland there is a 

ramification of the intralobular ducts and these ducts join to form the main excretory duct. 

The secretory epithelium of the gland consists of elongated tubules that terminate into end 

pieces. Within the cells of the tubules are large secretory granules. The amount of granules 

and organelles in the neighbouring cells vary at a given time lending evidence to neural 

regulation of the lacrimal gland. Nerve fibers have been demonstrated in accessory lacrimal 

glands and evidence suggests that in the interstitial connective tissue region of the lacrimal 

gland, there are blood vessels, fibroblasts and unmyelinated nerve fibers in close apposition 

to the vascular endothelial cells and the glandular cells. A few axons with parasympathetic 

and sympathetic characteristics have been identified. All this suggests that there is a neural 

regulation of the accessory lacrimal gland secretion, with cholinergic agonists stimulating 

secretion [292, 401, 402].  

Secretion by the Corneal Epithelium: 

The corneal epithelial cell layer contributes to the formation of the mucinous phase and the 

aqueous\mucinous phase of the tear film. The epithelium consists mainly of three layers; 

superficial epithelial cells, wing cells, and basal epithelial cells. These cells upon neural 

stimulation secrete electrolytes and water into the tears [332, 403, 404]. This secretory 

process in the corneal epithelium serves to maintain corneal transparency and is partly 

mediated by multiple ion transporters including the H2O channels and the Na+, K+, Cl−, H+-

lactate cotransporters (cotransporters are proteins which cause the transport of a substance 
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across a membrane, and this is coupled with the simultaneous transport of another substance 

across the same membrane in the same direction). The fluid is transported from the basal to 

the apical direction and these transporters create osmotic gradients to drive the transport of 

water. An important ion channel for the passage of water is the Cl−  ion channel where Cl− 

secretion is coupled with fluid transport from the stromal to the epithelial side. This fluid 

transport is achieved by a Na:K pump and cotransporters linked to the Na:K pump such as 

the Na+/K+/2Cl− cotransporters. In the cornea it is believed that the cotransporter takes up the 

Cl− ions from the basolateral membrane and transports it into the cell thus raising the 

concentration of Cl− within the cell. This results in an electrical gradient between the stroma 

and the epithelial cells which causes the opening of the ion channels on the apical side of the 

epithelium leading to a Cl− efflux and increased fluid secretion onto the epithelial surface 

[405-407]. These chloride channel transcripts have been quantified in the human cornea and 

other epithelial tissue and the Ca2+-activated chloride channel (CLCA2) transcript which is 

most abundant, of the different functional types of chloride channels in the corneal 

epithelium may be an important effector of fluid transport [408]. The cornea also maintains 

hydration by secretion of fluid into tears through the aquaporin channel proteins which 

enhance water permeability. The two types of aquaporin water channels present on the 

cornea are aquaporin channel 1 (AQP1) on the endothelial side and the aquaporin channel 5 

(AQP5) present on the epithelial side. In the AQP5 null mice a significant increase in the 

corneal thickness is seen indicating the importance of aquaporins in water transport in the 

cornea [409]. Apart from the secretion of water and electrolytes the cornea contributes to the 

tear film by forming the mucoprotein glycocalyx which anchors the overlying mucin and the 

mucin/aqueous layer of the tear film. The cornea is also known to secrete mucins onto the 

ocular surface to lubricate the ocular surface and to maintain the stability of the tear film. 

Mucins secreted by the corneal epithelium include MUC1, MUC2, MUC4 and MUC11 

[337, 342, 410]. What is yet not known is the molecular mechanism that couples ion 

transportation and water and the relative contribution of the various ion channels and 

aquaporin water channels for the transport of water into the tear film. 
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Secretion by the Conjunctival Epithelium: 

The secretion by the conjunctiva of water and electrolyte is similar to that of the corneal 

epithelium. The large surface area of the conjunctiva makes it is possible to produce a larger 

volume of tears when stimulated. The conjunctiva is divided into the palpebral and the 

bulbar portions and consists of a stratified epithelial layer with an underlying substantia 

propria. The stratified squamous epithelium is between 2 to 10 cell layers in thickness 

depending on the region. The limbal epithelium is believed to be about 10 cells deep. On 

scanning electron microscopy the cells are mostly hexagonal in appearance and are studded 

with microvilli and microplicae [354, 411]. Five types of cells have been identified on the 

basis of morphological appearance and the kind of organelles present. These are named as 

type I cells, type II cells, type III cells, type IV cells and type V cells. The type I cells are the 

goblet cells of the conjunctiva. These goblet cells have been differentiated from the cell 

types II-V on the basis of biochemical and immunohistochemical markers [412]. The type II 

cells contain numerous small granules or vesicles. The type I (goblet cells) and the type II 

cells play an important role in the protection of the ocular surface. 

Innervation of the Conjunctiva: 

The conjunctiva is innervated by the sensory, parasympathetic and the sympathetic nerves. 

They consist of unmyelinated nerves which form a plexus around the base of the epithelial 

cells and the superficial stroma. The sensory innervation is derived from the first division of 

the trigeminal nerve [413-415]. These sensory nerves contain the neuropeptides Substance P, 

calcitonin gene related peptide (CGRP) and gallanin [371, 416]. The parasympathetic nerves 

are derived from the pterygopalatine ganglion and are supplied via the facial nerve to the 

conjunctiva. They contain the neurotransmitters, acetylcholine and the vasoactive intestinal 

polypeptide (VIP) [417]. The sympathetic nerves are derived from the sympathetic plexus of 

the ophthalmic artery and from the superior cervical ganglion and contain the 

neurotransmitters, norepinephrine and neuropeptide Y. Sympathetic nerves stimulate the 

secretion of the stratified squamous cell but not the secretions of the goblet cell [371]. The 

nerve endings may be free terminals or corpuscular nerve endings. These corpuscular nerve 

endings are commonly found at the limbus and the margin of the eyelid [418]. 
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Goblet cells of the conjunctiva: 

In the humans the goblet cells are found as single cells with an increased density of 

distribution in the region of the fornices, and in the inferonasal portion of the conjunctiva of 

the eye. Occasionally clusters of goblet cells may be located within the epithelium as the 

glands of Manz and crypts of Henle [419]. The mean number of the goblet cells per 100 

epithelial cells was about 10.1 ±2.8 in young individuals and was about 5.25 to 3.38 in 

persons who were 62 years on an average. Others have reported a goblet cell density of 1.24 

± 1.62 in the bulbar conjunctiva compared to 30.21 ± 14.32 in the lower forniceal 

conjunctiva with no difference due to age and gender [420, 421]. The goblet cells are 

innervated by the parasympathetic and the sympathetic nerves but not the sensory nerves. 

Parasympathetic nerves play the main role in stimulating goblet cells and contain 

acetylcholine and the vasoactive intestinal polypeptide (VIP). They stimulate the muscarinic 

receptors M1 and M3, while the VIP stimulates the VIPR2 receptors. These receptors are 

located subjacent to the secretory granules of the goblet cells [422]. The cholinergic agonist 

signal transduction (i.e. acetylcholine mediated) pathway for stimulation of goblet cell 

mucous secretion is being elucidated. As in the lacrimal gland and other tissues stimulated 

by the cholinergic agonists, the second messengers’ inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG) play an important role in increasing the level of intracellular Ca+. In 

the rat conjunctiva it is shown that cholinergic agonists bind to the muscarinic receptors to 

cause a transactivation of the EGFR (epidermal growth factor receptor) that activates 

mitogen activated protein kinase. This elevates the intracellular Ca+ to stimulate goblet cell 

secretion. The evidence for the role for neural stimulation of goblet cell secretion is therefore 

increasing [394, 423, 424]. The sympathetic nerves of the conjunctiva and their receptors, 

the α1A-adrenergic and the β3-adrenergic receptors are present in the region of the 

basolateral membrane of the goblet cell. The significance of their presence is not clear as it 

is not confirmed that the adrenergic agonists stimulate goblet cell production [371]. In 

response to a parasympathetic neural stimulation the goblet cells secrete the gel forming 

mucin MUC5AC which provides the scaffolding for the mucin layer of the tear film [353, 

363]. This mucous secretion is increased when there is an elevation in the Ca2+ ions and an 

activation of the protein kinase C [425, 426]. Other signaling pathways such as the P2-
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purinergic receptors (a class of cell surface receptors which are widely distributed in the 

central and peripheral nervous system for mediating fast synaptic transmission through ATP) 

and growth factors such as the epidermal growth factor (EGF) also stimulate the goblet cell 

mucin secretion [427]. In addition to mucins the goblet cells also synthesize other proteins 

and fluid. Some of the proteins secreted are peroxidase and the trefoil factor family peptides 

(TFF-1 and the TFF-3). Their function is unknown and it is suggested that they contribute to 

the rheological properties of the tear film by mainly increasing the viscosity of the tear film 

[428, 429]. The goblet cells of the conjunctiva also secrete mucous in response to neural 

stimulation of the cornea. This may be an immediate paracrine response mechanism to 

protect the ocular surface [430, 431]. Other sources of conjunctival mucin secretion are the 

transmembrane mucins and the mucous glycoprotein formed by the second secretory system. 

The Second Secretory System: 

Apart from the goblet cells which form MUC5AC, the sources of conjunctival mucins are 

(a) vesicles in the surface cells of the conjunctiva and (b) transmembrane sialomucins 

(MUC4 and MUC1) secreted by the squamous epithelium. The vesicles of the surface cells 

(also known as the subsurface vesicles) contain a long chain mucous glycoprotein. These 

vesicles fuse with the outer surface membrane of the conjunctival cells and expose the 

intravesicular mucoprotein to the overlying mucous layer. The secreted mucins are distinct 

from the membrane associated mucins [339, 432]. The stratified squamous cells of the 

conjunctiva also secrete the transmembrane (i.e. membrane associated) mucins MUC4 and 

MUC1. These mucins (as the term ‘transmembrane’ suggests) are not released into the tear 

film but are anchored into the microvilli of the conjunctival epithelial cells by the presence 

of membrane spanning domains located in the terminal regions of the mucin complexes 

[353]. All this suggests that neural regulation plays an important role in the production of 

conjunctival goblet cell secretion in response to physiological, environmental and 

pathological influences. 

Conjunctival fluid secretion and absorption: 

The conjunctiva may possibly contribute to the formation of the tear film (including the 

baseline secretion and reflex secretion) through two main mechanisms. The fluid may be 

derived from the (a) stratified squamous epithelium of the conjunctiva or from (b) the 

 71  



  

innumerous blood vessels present on the conjunctival surface. The epithelial cells form the 

main source of conjunctival fluid secretion under physiological conditions. Fluid derived 

from the blood vessels may be due to plasma leaks due to inflammation, antihistamine 

therapy and conditions that increase the vascular permeability. The fluid flow from the 

conjunctival surface into the tears is largely due to the active secretion of chloride coupled 

with fluid flow occurring on the mucosal side of the conjunctiva [433]. The goblet cells also 

play a role in the secretion and transport of fluid. The conjunctiva is especially important for 

ocular surface homeostasis, as it performs the functions of, secreting (Cl− coupled with 

water) and absorbing (Na+ coupled with water) fluid at the same time. The fluid secretion is 

dependant on the rate of Cl− secretion from the conjunctival mucosa into the tear film and is 

affected by substances such as calcium ions (Ca+), adenosine 3′,5′-cyclic monophosphate 

(cAMP), protein kinase C and uridine triphosphate (UTP) [434-437]. The pathways for the 

flow of fluid from the serosal side of the conjunctiva to the mucosal side may be either 

through the tight junctions between the cells (paracellular) or through the cell membranes 

(transcellular). The transcellular (serosa to mucosa) movement of fluid is the predominant 

route and this may be aided by the presence of APQ3 (aquaglyceroporin 3) found in the 

bulbar conjunctival epithelium. Like other aquaporins secretory channels, they may react to 

the osmotic gradient present across the cell membrane to enhance the flow of water [438, 

439]. The exact role of the transconjunctival fluid in ocular surface homeostasis is not 

clearly defined as the two types of conjunctival secretion are stimulated differently by the 

parasympathetic and the sympathetic nerves. The formation and the physiology of the tear 

film is the basis to understand the mechanisms responsible for the stability and break up of 

the tear film and the resulting sensation.  

The Mechanism of tear breakup: 

Once the tear film is formed various factors are responsible for the stability of the tear film 

and its breakup. The stability of the tear film is assessed by different methods such as 

measurement of the tear breakup time and by measurement of the surface tension of the tear 

film [440, 441]. The tear breakup time may be measured either by invasive or non-invasive 

methods. In the invasive method of assessing the tear break up time, the time elapsed from 

the opening of the eye after a blink to the appearance of the first random dry spot after 
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application of topical fluorescein to the ocular surface is measured [442]. Non-invasive tear 

breakup is determined by, the use of grids to study breakup, the tearscope, by methods of 

interferometry and the Hartmann-Shack wavefront sensor [443-446]. Though many different 

methods of assessing the tear film exist, the commonly preferred methods include dry eye 

questionnaires, FBUT, ocular surface staining and Schirmer test [178]. Although the 

mechanism of the tear breakup is not clearly understood and three different hypotheses of 

tear breakup have been proposed.  

Lipid contamination of the mucous layer: 

This hypothesis proposes that an important factor responsible for the spread of the tear film 

is conjunctival mucin interaction with water and lipids. The formation and rupture of the tear 

film is explained by the role of the different components of the tear film. Normally the 

surface of the cornea in the absence of a tear film is hydrophobic. A coating on the 

hydrophobic corneal surface by bound epithelial mucins renders it hydrophilic and wettable 

by water [447]. When the eye lid closes it distributes the mucin over the cornea and also 

eliminates the air-tear film interface. At the lid edges which are in apposition to each other, 

there is an accumulation of mucous that is coated by the meibomian lipids. Upon eye 

opening a new tear-air interface of high surface tension is created (70 dynes/cm). As a result 

the meibomian lipids spread rapidly on this surface. The aqueous phase spreads rapidly 

under the lipid phase and this is assisted by mucin dissolved in the fluid phase. Due to the 

lipid and mucin interaction the surface tension of the mucin is lowered (to 35 dynes/cm) and 

the tear film becomes stable. With the passage of time the tear film deteriorates as the 

insoluble lipids slowly diffuse towards the mucous-aqueous interface to contaminate the 

mucous layer. This may cause a rise in the aqueous-mucous interfacial tension and the 

formation of a hydrophobic region. This hydrophobic locus causes a rupture of the water 

film resulting in the formation of a hole. This process of lipid diffusion to the mucous 

membrane could be enhanced by the presence of the Marangoni flow where the movement 

of the lipids and the underlying aqueous is caused by surface tension gradients. It is not yet 

determined if the vertical spreading of the meibomian lipids is the primary event that is 

followed by a spread of the aqueous mucin layer or if the mucin and water layers spread first 

and subsequent establishment of the lipid layer. Eventually in either case the contamination 
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of the mucous layer by the tear film lipids results in a reversal of polarity and spontaneous 

rupture of the tear film [442, 448, 449]. 

Mucous Rupture resulting in tear film rupture: 

According to this hypothesis the mucous layer of the tear film becomes unstable leading to 

the development of holes and subsequent rupture of the mucous layer leading to the 

dewetting of the cornea and rupture of the tear film. The normal cornea in the absence of 

mucous is believed to be hydrophilic and covered by an intense hydrophilic coating of 

hydrated and relatively insoluble mucous gel while the deeper cells of the cornea are less 

hydrophilic [450-452]. The mucous layer and the tear film act as a thin biofilm and they are 

governed by forces such as Van der Waals forces (also termed as apolar forces, Lifshitz 

forces, London forces or dispersive forces), ionic bonds, hydrogen bonds and acid base 

interactions (i.e. polar forces) [453]. Van der Walls forces are intermolecular forces which 

arise from non-specific attractions when two molecules or atoms are close together. These 

forces act on all atoms and molecules including ones that are neutral. These forces can act 

over long distances and also cause an orientation of the molecules. Polar (acid/Base) forces 

act over a short range and the force of attraction is inversely related to the distance. Apolar 

or Lifshitz forces normally favor adhesion (although these forces are attractive, they can also 

be repulsive in nature), while the polar forces cause repulsion. The polar repulsive properties 

of the normal uncontaminated mucous prevents the cohesion of the mucous to itself and its 

adhesion to the underlying epithelium [454]. It is suggested that the mucous present in the 

tear film therefore acts as a “sloppy gel” which cannot adhere tightly to the epithelium. The 

mucous layer formed by the conjunctival and lacrimal secretion is believed to be separated 

from the mucoprotein glycocalyx by a potential distance of about 5nm containing an 

electrolyte-water mix. Due to factors such as dehydration, epithelial damage, cell loss and 

lipid contamination the mucous looses its polar properties resulting in a binding of mucous 

to the epithelium. This collapse of the hydrophilic mucous may result in an immediate 

breakup of the tear film on the surface. In the in vitro experiments it is shown that viscous 

polymer films of high interfacial tension (about 40mJ m− 2) spontaneously dewet in a few 

minutes when they are present in between water and a substrate and when the effective 

Hamaker constant is positive (the Hamaker constant is a constant governing the strength of 
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the Van der Walls forces, which cause dewetting) [455]. In addition to this spontaneous 

dewetting when the interfacial tension is low as in the case of the mucous-aqueous 

interfacial tension the breakup of the tear film occurs in a few minutes. These observations 

propose that under the influence of the Van der Walls dispersion forces the mucous layer 

may rupture to cause a spontaneous dewetting of the cornea and this phenomenon is 

exacerbated in dry eyes. Once the rupture of the mucous layer occurs, the aqueous tears 

come directly into contact with the corneal epithelium. However because the epithelium is 

hydrophilic, tear breakup is initiated when the tears come in contact with hydrophobic 

epithelial sites which are non-wettable by the aqueous tears.  

The above two hypotheses both suggest that the surface of the cornea changes from a 

hydrophilic to a hydrophobic state. A different model proposes that tear film thinning is 

based on the upper lid velocity during the blink phase.  

The hydrodynamic coating model: 

This hypothesis proposes that the thickness of the tear film is a function of the velocity of 

the upper lid’s movement. According to this coating model, as the upper lid rises up a fluid 

surface layer is first created along the rising meniscus of the upper lid. This rise is 

determined by the velocity of the upper lid movement and the radius of curvature of the tear 

film meniscus at the lid margin. The fluid rise is followed by the slower rise of the thicker 

lipid layer. The rise of the lipid layer may cause a reforming of the tear film and any 

thickness disturbance to the bulk of the tear film is evened out by a curvature driven leveling 

with the intermolecular forces acting on the thin film. The deposition of the tear film is 

therefore governed by two opposing forces, the viscosity of the tears which resists the 

upward drag of the rising tear film, and the capillary force and surface tension which draw 

liquid into the tear film. When the upper lid stops moving, the drag force diminishes while 

the tear film continues to draw fluid resulting in a thinning of the tear film close to the lid 

margins. In studies employing fluorescein this may be observed as black lines adjacent to the 

upper and the lower lid. The tear film is thus perched between the upper and lower lid 

margin. The formation of the black lines depends on the initial tear film thickness (which is 

a function of the velocity of the upper lid’s movement) and a thinning dependent on the 

radius of curvature of the tear menisci at the margins of the lids. The exact mechanism of 
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tear breakup is not clearly explained though is proposed that either drainage due to gravity or 

a rising film height reaching the effective range of the dewetting forces may be responsible 

for the breakup of the tear film [313, 456].  

In all the three cases a breakup of the tear film is proposed. Studies of the tear film have 

indicated that the depth of the tear breakup may be up to 1.5µm thick.  

With this brief account of the formation and function of the tear film, the physiology of the 

cornea and its role in ocular discomfort will be considered. 
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6. Corneal nerves - structure and functions: 

The structure and function of the cornea has intrigued researchers for more than two 

centuries. Early studies about the cornea were documented in the eighteenth century, by the 

anatomist Antoine Pierre Demours (1762-1836). Demours Sr., father of Antoine Pierre 

Demours, published numerous essays on ocular anatomy and is often credited with the first 

description of the ‘posterior membrane’ of the cornea now known as Descemet's membrane. 

[457]. The corneal innervation in mammals was probably described about one hundred and 

sixty years ago [458]. In spite of many different studies over this period, many questions 

regarding the architecture and physiology of the corneal nerves remain unanswered. A brief 

description of the physiology and function of the corneal nerves and factors affecting corneal 

sensations follows. 

The innervation of the cornea – anatomy and architecture: 

The cornea is supplied by the sensory, sympathetic and parasympathetic systems and is 

among the densely innervated structures in the body with the number of nociceptors 

estimated at about 7000 per mm2  [459]. 

The sensory nerve supply to the cornea: 

Embryology and main divisions of the trigeminal nerve: 

Retrograde nerve tracing studies mostly done in animals indicate that the sensory nerves of 

the cornea originate mainly in the ophthalmic division of the ipsilateral trigeminal ganglion. 

The cells of the trigeminal ganglion have central processes that form the large sensory root 

of the fifth cranial nerve while the peripheral processes separate into the ophthalmic, 

maxillary and mandibular divisions of the trigeminal nerve. Embryologically the trigeminal 

nerve is the nerve of the first branchial arch although in humans the ophthalmic branch of 

the trigeminal is not a branchial component and therefore does not supply any of the 

structures formed by the pharyngeal arches. Histological studies of the Gasserian ganglion’s 

development in the embryo indicate that the cells of the ophthalmic nerve are separate from 

the maxillary and mandibular nerves which are more close together [460, 461]. Each 

division of the trigeminal nerve is associated with an autonomic component. The ophthalmic 
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division is associated with the ciliary ganglion, the maxillary division is associated with the 

sphenopalatine ganglion and the mandibular division is associated with the otic ganglion. 

The sympathetic innervation to the cornea is derived from the superior cervical ganglion. 

Parasympathetic innervation from the ciliary ganglion is present in the rat and the cat 

corneas, while in humans the parasympathetic innervation is unclear. The ophthalmic nerve 

is the smallest of the three branches of the trigeminal and contains most of the corneal 

afferent nerves. These branches reach the eye mainly via the long and short ciliary nerves, 

which arise from the naso-ciliary branch of the ophthalmic nerve. These afferent sensory 

nerves are small in size and their properties of conduction are similar to nerves in the range 

of the C-fiber and A-δ fibers. After piercing the sclera the autonomic and the sensory fibers 

course toward the anterior segment in the suprachoroidal space between the choroid and the 

sclera. In the suprachoroidal space they branch to exchange axons so that at the 

corneoscleral limbus each bundle contains sensory, sympathetic and parasympathetic nerves. 

As the nerves approach the cornea they move anteriorly to separate from those supplying the 

uvea. Before entering the stroma the majority of fibers give branches to the limbal blood 

vessels and proceeds further as corneal nerves. 

The morphology and architecture of the corneal afferent nerves: 

The corneal nerves enter the cornea at about the anterior third of the stroma and the nerves 

adjacent to each other branch to rejoin and form a plexiform network that is distributed in a 

radial fashion at the periphery of the cornea. In the humans the corneal nerves form about 

70-80 fascicles or bundles with each fascicle containing about 900 to 1500 axons [458]. 

Upon entering the cornea they loose their perineurium and myelin within a region of 1mm of 

the limbus. These nerves are enmeshed in an extracellular matrix and lie close to keratocytes 

which are often wrapped around the nerve bundle. Whether some of the sensory nerves end 

in the stroma is not completely determined. The majority of the stromal nerves form a 

subepithelial plexus beneath the basement membrane and then turn up at 90 degrees and 

proceed towards the corneal surface by penetrating the Bowman’s layer throughout the 

periphery and the centre of the cornea [462, 463]. After piercing the basement membrane, 

the large nerve bundles turn 90 degrees again and proceed in a direction parallel to the 

surface of the cornea between the Bowman’s layer and the basal epithelial cell layer as 
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epithelial leashes [464]. Another commonly observed morphology is straight nerve terminals 

originating directly from the sub-epithelial plexus. These nerve terminals pierce the 

Bowman’ membrane and ascend in the epithelium. They may undergo a variable amount of 

branching before terminating in the superficial layers of the epithelium just a few microns 

beneath the corneal surface [462, 465, 466]. The basal epithelial leashes contain both beaded 

and straight nerve fibers and the straight nerve terminals. From the basal leashes only the 

beaded nerve fibers bifurcate and turn up, towards the anterior surface of the epithelium to 

end as axon terminals in the superficial epithelium. The size of the nerve fibers in the 

subbasal plexus is commonly between 0.1µm to 0.5µm although they may range between 

0.05µm to 2.5µm. These subbasal leashes of nerves are unique to the cornea. They approach 

the apex of the cornea radially along the 2-8, 3-9, 4-10, 5-11 and 6-12 directions. Except for 

leashes in the 6-12 direction, the other leashes do not reach the corneal apex nor do they 

cross to the other side of the cornea. Only the leashes along the 6-12 hr direction which have 

a superior-inferior orientation reach the apex of the cornea. These observations suggest that 

in the region of the corneal apex the preferred orientation of the nerves is in the superior-

inferior direction, while in the region surrounding the apex the nerves are in the nasal-

temporal direction [459]. Each leash consists of 2-15 tightly packed thin axons. The 

individual axons traverse the cornea and sometimes branch dichotomously. They 

occasionally interconnect by cross bridges with the adjacent axons, before finally ending as 

free nerve terminals. In some cases the  nerves may travel for as long as 2 millimeters in the 

human eye before ending as free terminals [467]. As a result of this long path of the nerve 

fibers the receptive field of a single sensory axon may cover a region from 20% – 50% of 

the corneal surface [458, 468].  

Studies have been done to understand the architecture of the nerves in relation to the 

electrophysiology and the function of the nerves. In the rabbit the Aδ and C fibers of the 

cornea show different distribution patterns although such differences are not clear in humans 

[469]. These studies using the methods of light microscopic examination, electron 

microscopic examination mainly revealed the density and ultrastructure of the corneal 

nerves. 
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Histology and Density of the corneal nerves: 

Light microscopic, electron microscopic and confocal microscopic appearance of the nerves 

reveal that the nerves with a beaded appearance invaginate the epithelial cells and 

keratocytes, suggesting a direct innervation of the cells [463, 470]. In the stroma the nerves 

contain vesicles and mitochondria that are homogenously distributed. In the epithelium the 

varicosities on the beaded nerve fibers mainly contain clear vesicles and mitochondria and at 

the location of the beads the nerve fibers turn upwards. In the upward course the nerves run 

between the epithelial cells and may also deeply invaginate into the cells. At the level of the 

wing cells they are swollen and contain large dense vesicles. Different studies have 

quantified the neural density using different methods [464, 470]. It is suggested that the 

density of the nerves may be the same in the central and the central-peripheral portion of the 

cornea. The overall neural density (defined as the total length of the nerve fibers within a 

defined optical section frame, of the confocal microscope), as observed during in vivo 

confocal microscopy in the epithelium of younger individuals (25 ± 5 years of age) was 

about 632.35 ± 287.57 µm/mm2   and in the older individuals (70 ± 5 years of age) was about 

582.39 ± 327.13 µm/mm2 [471]. 

The autonomic nerve supply to the cornea: 

The function of the autonomic system in the human cornea is not completely understood. In 

animal studies the cornea receives a modest amount of innervation from the superior cervical 

ganglion [472]. In humans it is believed that the post-ganglionic sympathetic fibers exit from 

the superior cervical ganglion in the internal carotid nerve and ascend with the internal 

carotid plexus. These fibers then enter the carotid canal in the petrous portion of the 

temporal bone and at the foramen lacerum the sympathetic fibers destined to reach the eye, 

move away from the artery to advance towards the trigeminal ganglion. Before entering the 

orbit the sympathetic nerve fibers, form a plexus with the parasympathetic fibers derived 

from the pterygopalatine ganglion. This plexus forms a meshwork along the abducens, the 

trochlear and the ophthalmic nerves. The further course of the plexus along the ophthalmic 

nerve has been inferred from clinical observations in the humans and by retrograde tracing 

studies or selective denervations done in animals. Most sympathetic nerves pass to the naso-

ciliary nerve and then to the long and the short ciliary nerves to reach the anterior segment of 
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the eye [473, 474]. The sympathetic innervation of the cornea is largely derived from nerve 

fibers present in the corneoscleral limbal region. A stromal penetration of the nerve fibers 

has been observed and in some instances an intraepithelial penetration of the cornea is also 

noted [465, 475-477]. In humans, the anatomy of the parasympathetic system supplying the 

cornea is not clear although recent findings indicate that a dysfunction of the 

parasympathetic system may contribute to the condition of Primary Sjogren’s Syndrome 

[478]. The sensory and autonomic nerves of the cornea exert their influence on the epithelial 

cells and respond to the challenges of the environment by expressing different 

neurochemicals which are discussed below. 

Ultrastructure and histochemistry of the corneal nerves: 

Based on anatomy, function, histochemistry, and dependence on trophic factors the corneal 

nerves, like nociceptors in other parts of the body, can be divided into two broad populations 

of nerves: Neurons with myelinated medium sized (2-6 µm) axons which have a fast (12-30 

m sec−1) conduction and large diameter cell bodies (Aδ-fibers) and unmyelinated, thin 

(0.4−1.2 µm) slow (0.5-2.0 m sec−1) conducting fibers with a cell body of small diameter (C-

fibers). Based on the anatomical ultrastructure three main types of nerve endings are 

believed to exist. The first type contains numerous mitochondria, neurofilaments and 

microtubules with occasional small and clear round vesicles. The second type of nerve fiber 

contains many small and clear vesicles with occasional large or small dense cored vesicles. 

The dense cored vesicles contain neuropeptides such as Substance-P and CGRP (calcitonin 

gene related peptide) but the contents of the clear vesicles is not known as yet. In animal 

studies these clear vesicles were present even after a combined autonomic ganglionectomy 

though they disappeared after a sensory denervation [479, 480]. The third type of nerve 

contains numerous small dense cored vesicles. These vesicles disappear after superior 

cervical ganglionectomy and therefore are believed to be derived from the corneal 

sympathetic nerve supply. Recently it was proposed that the nerves of the cornea are 

homogenous in appearance and that the differences in the morphology previously reported 

were due to differences in the segment of the nerve terminal that was cut [463]. Through the 

techniques of histochemistry different receptor antibodies have indicated the presence of 

various types of sensory receptors especially for the transduction of the noxious stimuli. 
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Although there are few studies directly indicating the presence of receptors on the corneal 

nerves, there is indirect evidence from animal studies and from studies involving the 

detection of noxious stimuli that point to the presence of receptors on peripheral terminal 

endings such as the corneal nerves. A few of the important receptor types present on the 

cornea include: 

Ligand-Gated Ion Channels: 

The ligand gated ion channels are grouped into three structurally distinct families which are 

not phylogenetically related and may be either excitatory or inhibitory. These families are: 

1) Cysteine-loop (Cys-loop) receptor family: 

This includes the cys-loop receptors made of 5 homologous subunits of proteins which 

traverse the cell membrane four times (i.e. they have 4 transmembrane domains). The 

anionic Cys-loop receptors include the GABAA and the glycine receptors and the 

cationic receptors include the nicotinic and 5-HT3 receptor. In the rat, the application of 

GABA activators on the cornea has indicated that GABAA receptor mechanisms modify 

corneal input to the second order neurons in the trigeminal brainstem complex [481]. 

2) Glutamate receptors: 

Glutamate is a major excitatory amino acid transmitter that acts on the NMDA (N-

methyl d-aspartate) and the non NMDA ionotropic glutamate receptors (ionotropic 

receptors are the ligand gated ion channels). The glutmate receptors have four 

homologous subunits of proteins (i.e. three transmembrane domains) and in the rat these 

receptors localized on the cornea are involved in transmitting the excitatory amino acid 

to the central trigeminal neurons to cause an increase in the c-fos expression when there 

is a stimulation of the cornea [482]. 

3) ATP gated ion channel: 

The application of ATP opens the ionotropic channel known as the P2X receptors and 

the metabotropic G-protein coupled receptor termed as the P2Y receptors [483]. Of the 

seven subtypes of the P2X receptors the commonly found subtypes on the nociceptors 

are the P2X3 and the P2X2 subtypes. The ATP-gated cation channels have two 

transmembrane domains and bear a structural similarity to the mechanosensitive 
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channels. The purines adenosine triphosphatase and adenosine when applied peripherally 

have nociceptive as well as antinociceptive properties. In the rabbit cornea and the rat 

cornea the application of ATP elicits an increase in the intracellular Ca2+ ion 

concentration indicating the presence of receptors sensitive to ATP [484]. Recently using 

the rat model to study sensitization and hypersensitivity to pain it was shown that a P2X4 

receptor subtype located on the microglial cells was a key pain receptor [485].  

Excitatory Amino Acids: 

The excitatory amino acids (EAAs) such as glutamate and aspartate act as metabotropic 

receptors and are coupled to intracellular membrane-associated proteins termed as G-

proteins which serve as the second messengers or transducers of the nociceptor initiated 

response (G-proteins are activated by several receptors and normally have a high affinity for 

guanine nucleotides and hence are named as G-proteins). The EAAs may also act as 

ionotropic receptors when they are coupled directly to cation permeable ion channels. 

Although there is no definite proof as yet, it is believed that the corneal nerves may be 

activated by these EAAs [459].  

Substance P and CGRP receptors: 

Substance P is a neuropeptide which activates the neurokinin-1 receptors. In humans 

Substance P is seen in the beaded fibers of the corneal epithelium and in the nerve trunks of 

the corneal stroma. These nerves originate in peptidergic neurons located in the trigeminal 

ganglion and disappear after maxillary and ophthalmic neurotomy [486, 487]. The CGRP 

co-localizes with Substance P and is demonstrated in the nerve fibers of the cornea and the 

limbal blood vessels [488]. 

Vanilloid Receptors: 

The vanilloid receptors belong to the TRP family of channel proteins. The vanilloid 

receptors (VR1) are expressed on nociceptors and they bind capsaicin. The receptors are 

transducers of noxious thermal and chemical stimuli. In rats VR1-immunoreactivity was 

determined in the small diameter nerve fibers of the cornea  and the application of the 

agonist capsaicin caused a transient increase in the intracellular Ca2+ ion concentration in 

the nerve terminals which was blocked by the capsaicin antagonists [484, 489]. 
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Tetrodotoxin sensitive and Tetrodotoxin resistant Na+ channels:

The marine neurotoxin Tetrodotoxin selectively blocks the voltage sensitive ion channels by 

inhibiting the inward movement of sodium with no effect on the movement of potassium 

leading to an inhibition in nerve conduction. The corneal nerves express different types of 

voltage-gated Na(+) channels which are either sensitive or resistant to the effects of 

Tetrodotoxin. At least two types of TTX resistant sodium channels are present along the 

entire length of the peripheral corneal nerve fiber from the region of the corneoscleral region 

to the distal end of the corneal leash fiber[490]. In the trigeminal ganglion corneal and non-

corneal nerves responded differently to Tetrodotoxin. The fast conduction nerve fibers i.e. 

the  myelinated A with > 1.5m/s were sensitive to Tetrodotoxin and the slow conduction 

nerve fibers i.e. the unmyelinated C with < or = 1.5m/s were resistant to the effect of 

Tetrodotoxin indicating that the terminal characteristics of the nerve endings play an 

important role in determining the properties of nerves [491].  

Serotonin Receptors (5HT):

Serotonin is an algesic and inflammatory mediator. Corneal sympathetic nerves are believed 

to contain serotonin and it is suggested that this amine has a role in the corneal nerves [492, 

493]. The activity of neurons in the rat trigeminal subnucleus was studied by the application 

of 5HT to specific regions of the cornea. 5HT evoked little response compared to other 

irritant chemicals. This could be due to very little or no central transmission of 5HT 

receptors [494, 495]. 

Opioid Receptors:

The opiod growth factor (OGF) and its receptors termed as “OGFr” are widely present in the 

corneal epithelium of different species such as the rat, cat, dog, horse and man. In humans 

OGF and OGFr have been localized in the epithelial cells of the cornea [496]. The OGF 

functions to inhibit would healing in a receptor mediated fashion and in the rat small 

quantities of OGF are expressed in the corneal nerve fibers [497, 498]. 

Prostaglandin Receptors:

 Prostaglandins are local mediators of inflammation and they regulate the cell function by 

acting on the G-protein coupled cell surface receptors. There is no anatomic data which 
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documents the presence of prostaglandin receptors on the nociceptors on the ocular surface. 

The actions of prostaglandins such as PGE2 are mediated by specific E-prostanoid receptors 

(EP) of which there are at least four subtypes (EP1 through EP4) and the actions of PGF2α are 

mediated by the FP receptors. All four types of EP receptors have been found in the 

conjunctiva and the cornea. The levels of EP1 receptor subtype and the FP receptor protein 

were especially high in the conjunctiva and cornea [499]. 

Acetylcholine receptors:

The application of acetylcholine activates the corneal nociceptors in a dose dependant 

manner [500]. Acetylcholine normally causes a burning sensation upon application and both 

the cholinergic and the muscarinic receptors are involved in this process. In the rabbit cornea 

acetylcholine activated a specific population of nerve fibers not activated by mechanical or 

thermal stimuli and physiologically these nerves were involved in the transmission of pain 

following injury or ischemia [501]. 

The neurochemistry of the corneal nerves: 

Based on neurochemistry, corneal nerves may be peptidergic or non-peptidergic. Peptidergic 

nerves include the sensory and autonomic nerves of the cornea that express neuropeptides 

[463, 465]. The neuropeptides act on the receptors located on the terminal afferent corneal 

fibers and initiate nociception and somatic sensation. At least 17 different neuropeptides of 

neuronal origin act as ligands to stimulate the corneal nerves. Apart from these neuronal 

neuropeptides the corneal peripheral nerves are  also under the influence of non-neuronal 

ligands such as Acetylcholine, ATP, prostaglandin E, opioids, adenosine, glutamate, 

bradykinin, noradrenaline and serotonin. The peptidergic sensory nerves of the cornea 

express tachykinins which include Substance P and neurokinin A, Calcitonin CGRP, 

Galanin, Pituitary adenylate cyclase-activating peptide (PACAP) and the Vasoactive 

intestinal polypeptide (VIP). The different ligands present in the cornea and the various 

types of receptors indicate that different receptors may respond to different ligands and the 

sensory input may possibly be modulated before it is transmitted centrally. Sensitization is 

an example of peripheral modulation of the nociceptors where there is a decrease in the 

threshold and an increased sensitivity of the nociceptors to heat and chemical suprathreshold 

stimuli [502, 503]. Inflammatory mediators such as histamine, prostaglandins, bradykinin, 
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and 5HT all sensitize the peripheral nociceptors and this is demonstrated in the polymodal 

nociceptors in the cornea [504, 505]. All this indicates that following a nociceptive stimulus 

it is possible that different nociceptors are activated peripherally and the evoked response to 

a stimulus is due to the co-activation of various receptors. The nociceptors may therefore 

modulate the response to a noxious stimulus at the peripheral level. The stimulation of the 

nerves causes an orthodromic propagation of impulses to the CNS and an anitdromic 

impulse may trigger the release of neuropeptides from the nerve terminals into the 

extracellular space. These ligands diffuse to specific receptors on distant nerve terminals and 

this process termed ‘volume transmission’ is an important method for neurotransmission in 

the peripheral nervous system. When the receptors are activated by ligands released from the 

same terminal the process is termed as autoreception. Another method of modulation of the 

peripheral sensory terminal is by paracrine reception where the ligand is released from one 

terminal and diffuses to a neighboring terminal to activate the receptors of the terminal. 

Considering that there are innumerable neuropeptides in the nerves of the cornea and in the 

different components of the ‘lacrimal gland/ocular surface functional unit’ it is possible that 

the methods of volume transmission, autoreception and paracrine reception are all methods 

initiating the sensation of discomfort and pain in the anterior ocular surface. The peptidergic 

nerves containing Substance P and CGRP probably originate in the trigeminal ganglion and 

are dependant upon the Nerve growth factor (NGF) neurotrophin for development. They are 

seen to disappear after ophthalmic and maxillary neurotomy. The non-peptidergic nerves in 

the cornea do not contain any of these peptides but express a sensory neuron specific acid 

phosphatase isoenzyme. This substance termed as fluoride-resistant acid phosphatase 

(FRAP) is believed to use the excitatory amino acid neurotransmitters aspartate and 

glutamate. The non-peptidergic nerves are dependant on the glial cell derived nerve growth 

factor neurotrophin (GDNF) for development. Normally the corneal nerves and the corneal 

epithelial cells support and exert a trophic influence on each other. As a part of the tissue 

maintenance and physiological renewal, the neuropeptides of the trigeminal and sympathetic 

neurons stimulate the corneal epithelial cells and modulate the proliferation of the corneal 

epithelium. Substance P causes an increase in the corneal epithelial cell mitotic activity and 

CGRP causing inhibition of epithelial cell mitosis [506]. These trophic factors are normally 

released into tears and during “resting conditions” they prevent corneal damage caused by 
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minor insults such as mechanical movement of the eyelid, blinking, desiccation, changes in 

humidity, cooling and air currents [459]. The cells of the corneal epithelium support the 

nerves by releasing growth factors essential for the nerve such as Nerve Growth Factor 

(NGF) and the Gial cell derived neurotrophic factor (GDNF). The NGF and the GDNF 

regulate the sensitivity of the nociceptors and also act as inflammatory mediators [507]. It is 

now known that inflammation and nerve injury result in a phenotypic alteration of the 

neuropeptides and this has a functional significance during the inflammatory process [508]. 

The neuropeptides of the autonomic nerves of the cornea: 

The sympathetic autonomic nerves of the cornea contain the neurotransmitters, 

noradrenaline, serotonin and neuropeptide Y (NPY). While the parasympathetic nerves are 

not described in the human cornea, in animal studies involving the rat the neuropeptides 

such as acetylcholine, VIP, met-enkephalin, NPY, and galanin have been described. Some of 

the other neuropeptides detected include cholecystokinin, brain natriuretic peptide, 

vasopressin, neurotensin and beta endorphin. The origin of these neuropeptides is not yet 

clear and it remains to be determined if they are of sensory or autonomic in origin. 

The functional characteristics of the sensory corneal nerves: 

General characteristics: 

The corneal sensory nerves are nociceptors and like other nociceptors possess the following 

characteristics. 

1) Lack of Specificity: 

Sensory nerves which detect odor, light or tactile stimulus often exhibit specificity to a 

stimulus modality. The olfactory receptors are very specific and each receptor type 

responds in a specific manner to a specific odor from among more than a thousand 

different types of odor. The nociceptors differ from these sensory nerves as they lack 

specificity and most of them are polymodal and respond to mechanical stimuli, noxious 

heat, cold and endogenous and exogenous chemical stimuli. These differing 

characteristics evolved in nature for the survival of the animal [509, 510]. 
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2) Low degree of gain: 

In the senses concerning vision and odor the energy of a low intensity stimulus is 

amplified so that a high gain converts the stimulus into an electrical energy that can be 

detected. In the nociceptors a low intensity stimulus from an external source does not 

translate into high gain as low intensity stimuli often do not cause tissue damage. Any 

stimulus that might cause damage to the tissue often does not need amplification to be 

understood. The exception to this mechanism is endogenous stimuli caused by cytokines 

and substances liberated as inflammatory products which are detected with a high 

sensitivity [510]. 

3) Adaptation and Sensitization: 

When a constant mild stimulus that does not result in tissue damage is present, then the 

response to the stimulus is often reduced in about 2-3 seconds to prevent a saturation of 

the response. This is the process of adaptation. However if there is any preceding tissue 

damage, even a non-nociceptive input from an undamaged region near to the site of the 

injury produces a sensation of discomfort or pain. This is the process of sensitization and 

it is believed to be an intrinsic property of the nociceptive terminals resulting in a state of 

hyperalgesia. The inflammatory mediators and calcium ions are especially involved in 

the process of sensitization. 

4) Fatigue: 

This is the property of the nociceptors where following adaptation there is a slow 

recovery and often the response may be after a certain length of time. Fatigue has been 

demonstrated in polymodal nociceptors innervating the cornea [502, 511]. 

These properties influence the mechanisms involved in the transduction and propagation of 

sensations that give rise to discomfort and pain. The steps involved in transducing different 

forms of energy in nociceptors are yet to be fully understood. Also very little information is 

available about the modulation and onward transmission of the stimulus by structures 

surrounding the corneal nerve terminals. Based on the response to the different types of 

energies, it can be presumed that the corneal and conjunctival nociceptors have different 

transducing mechanisms for each form of stimulating energy and on this basis, the ocular 
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nociceptors are classified as mechanosensitive nociceptors, mechanoheat nociceptors, 

polymodal nociceptors, cold nociceptors or mechano-insensitive nociceptors. 

Classification of Neurons based on Electrophysiological response: 

The mechano-sensory neurons: 

This is a class of nerves that respond exclusively to mechanical forces. These nerves have 

the highest conduction velocity and action potentials with large amplitude [511, 512]. They 

are more responsive to a moving stimulus rather than to a sustained indentation. The impulse 

response of these mechanosensory nerves in terms of duration, latency and frequency of 

their action potentials is proportional to the amplitude and velocity of the stimulus. A 

sustained indentation normally causes an adaptation in the response [513]. By employing 

mechanical and electrical stimuli upon small spots of the cornea the receptive field of the 

mechanosensory units was plotted as having an elongated shape along the trajectory of the 

nerve fiber. Stimuli which moved parallel to the long axis of the nerve fiber produced a 

maximal stimulation while stimuli applied perpendicularly had a diminished response [469]. 

The mechanical thresholds of the human cornea as measured by the Gas esthesiometer as a 

response to a puff of air is 82.8 ± 13.8 mL/min while others reported similar corneal 

threshold values in the range of 80 ± 6 mL/min. The conjunctival threshold values in these 

studies were 84.9 ± 10.4 mL/min and 140±10 mL/min respectively. The sensations evoked 

by mechanical stimulation were described as unpleasant irritation, burning and stinging 

[264, 514, 515]. In the cat, the bulbar conjunctiva surrounding the cornea contains low 

threshold mechanosensitive receptors [516]. In the human eye similar corpuscular nerve 

endings are noted in the region of the limbus though their function is not fully determined 

[418]. The limbus and the adjacent bulbar conjunctival region is innervated by the 

conjunctival and scleral units and also from collaterals of corneal axons termed the sclero-

corneal units. The receptive fields of the scleral units are more abundant in the anterior 

region of the eye although they extend over the whole eye. The receptive fields of the sclero-

corneal units extend from the cornea to the bulbar and sometimes palpebral conjunctiva. 

Mechanical threshold of these units is low in the limbus and high in the region of the 

conjunctiva and their response to mechanical force and heat closely resembles the responses 

of corneal mechanosensitive and polymodal units [516]. 
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The mechano-heat neurons: 

The detection of heat is subserved by specialized channels termed as the transient receptor 

potential vanniloid-class of channels (TRPV) [517]. Four types of TRPV channels are 

implicated in sensing heat [518]. In the cornea of the cat are present a group of Aδ neurons 

with mechanical and thermal sensitivity but no chemical sensitivity except when stimulated 

by repeated applications. Similarly in the rabbit cornea the Aδ units respond to high intensity 

mechanical stimulus (> 350 dyne) and a high heat stimulus (> 40ο C) with a bimodal phasic 

pattern but do not respond to ACh [466]. Although less in number compared to the 

polymodal neurons in the cat cornea, the mechanoreceptors constitute about 22% of Aδ 

fibers and 15% of mechano-heat receptors. Threshold with thermal stimulation of the cornea 

and conjunctiva was in the range of 1.4 ± 0.1οC and 2.0 ± 0.1ο C [514].  

Cold Neurons: 

The transduction of cold into electrical activity is now believed to be due to cold receptors 

present on the nerve terminals. Receptors sensing cold have been cloned and in the rat 

trigeminal ganglion a member of the transient receptor protein channel responding to cold 

stimuli has been cloned [519-521]. In cultured dorsal root ganglion neurons the cold receptor 

stimulant menthol and cooling initiated ionic currents and like other nociceptors these 

neurons demonstrated the properties of sensitization to menthol, adaptation to sustained 

cooling and modulation by calcium [522]. Cold units in the cat cornea respond to drop in 

temperature vigorously and the frequency of these impulse discharges are proportional to the 

drop of temperature. These cold neurons have small receptive fields (4mm2) located in the 

periphery of the cornea. The corneal cold units are functionally different from the 

conjunctival and scleral cold units as they have a weak response to mechanical and chemical 

stimuli unlike conjunctival and scleral units which are insensitive [516]. There are also 

functional differences existing between cold sensitive nerves and polymodal nerves in the 

guinea pig cornea. It is suggested that the structural differences at the nerve terminals may 

actively propagate sensory action potentials from polymodal nerves while in the cold 

sensitive nerves that have fewer Na+ channels there is a passive initiation of the action 

potential at a more proximal point in the axon [523]. Cold air applied to the human cornea 

elicits an initial cooling response and the cooling threshold is established as -2.4 ± 0.4ο C 
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below the corneal surface temperature. Others investigators have reported that a 0.3οC drop 

in tear film surface temperature caused a cooling effect [524]. The initial cooling is followed 

by irritation as the temperature is further reduced to about -5οC below the corneal surface 

temperature. Menthol applied to the eye causes an initial cooling sensation followed by mild 

irritation or discomfort and in some cases caused a sensation of burning possibly due to 

simultaneous activation of cold and polymodal neurons [264, 524].  

The polymodal neurons: 

These polymodal neurons have an abundant distribution (71% in the cat cornea), the ability 

to detect a wide range of stimuli and are also easily sensitized by mediators such as heat and 

prostaglandins [511, 513, 525]. Functionally they are Aδ and C neurons which respond to 

mechanical, thermal and chemical stimuli. 

Response to mechanical forces: 

As a response to mechanical force the electrical recordings of polymodal units show a 

spontaneous activity with lower mechanical threshold than pure mechanosensory nerves, a 

tonic discharge to sustained mechanical indentation, a long lasting postdischarge and fatigue 

to repeated stimuli of high intensity [502]. 

Heat responses: 

The psychophysical perception of temperature is due to specific classes of neurons that 

respond to different ranges of temperatures. The polymodal neurons respond to heat above 

38-39οC. Most of the capsaicin receptors encode noxious heat and are activated by low to 

moderate heat at about 43ο C to a sudden suprathreshold temperature elevation. The nerves 

respond with impulses that accelerate in frequency and subsequently peak. A gradual 

temperature increase to a noxious level causes a proportional increase in the firing 

frequency. If the temperature exceeds the noxious thermal level, the firing resumes with an 

irregular low frequency, impulse discharge that lasts for many hours [511, 526]. The 

conjunctival polymodal units have a thermal threshold that is about 2-3οC higher than the 

cornea and also exhibit the property of sensitization [516]. 
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Response to Chemicals: 

Polymodal neurons respond to substances such as acid, hyperosmotic sodium chloride and 

CO2 (which is converted to carbonic acid). In the human conjunctiva and cornea the 

application of CO2 evokes a sensation of stinging and/or burning pain. The chemical 

thresholds measured as a response evoked by CO2 upon the cornea and the conjunctiva has 

been determined to range from 31% to 55% of CO2  [263, 515]. The sensation evoked by a 

chemical stimulus is different from the sensation evoked by a mechanical stimulus 

indicating a selective response of receptors of the peripheral nerve terminal. Protons 

stimulate the nociceptive endings and a local decrease in the pH is accompanied by a 

discharge of nerve impulses whose frequency is proportional to the proton concentration 

[525]. The site of action of the protons is not established but the chemical stimulation of 

neurons causes an intracellular Ca+ entry into the nerve terminals resulting in an action 

potential. This response is believed to be mediated by the non-selective vanilloid receptor 

channels (VR1) and the acid sensing ion channels. In the rat cornea the capsaicin evoked 

increase of intracellular Ca2+ in peripheral nerve terminals was completely blocked by the 

VR1 antagonist capsazepine [484]. Adenosine-5′- triphosphate (ATP) which is normally 

released from damaged cells or nerve endings when applied to the rabbit corneal epithelium 

also causes an increase in the intracellular calcium ion concentration. This increase which is 

especially prominent in the wing cell layers is believed to be via the P2Y receptors and the 

intercellular gap junctions [527, 528]. Inflammatory mediators released during inflammation 

or injuries have an excitatory effect on the polymodal neurons indicating that polymodal 

receptors transmit nociceptive information of inflammatory origin. Bradykinin evokes 

responses in the polymodal nerves at very low concentrations and is believed to be an 

“endogenous pain-producing substance” [529]. Prostaglandin E2 (PGE2) when applied to the 

cornea caused a dose dependant response in the Aδ and C polymodal receptors [516]. 

Substances such as serotonin (5HT) and histamine (HA) do not evoke significant discharges 

individually although they all cause a long lasting sensitization [469, 513]. The application 

of a mixture of inflammatory mediators (inflammatory soup) on the cornea evoked a brisk 

and vigorous electrical response in the nerve [505, 530]. 
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Cold responses: 

Polymodal neurons respond only weakly to cold. A low frequency discharge is seen at 29ο C 

and a further decrease to 20ο C diminishes the silent background activity of nociceptors 

[264, 516]. 

Itch Neurons: 

It is now believed that distinct neurons encode the itch sensation both peripherally and 

centrally [531-533]. Separate itch fibers in the human eye are not yet documented but animal 

and human studies, ocular symptom surveys and psychophysical studies provide evidence 

for the existence of nerve fibers that encode the itch sensation. In the cat a separate pathway 

for the itch sensation has been shown and neurons in the lamina 1 region of the 

spinothalamic tract which are specifically responsive to histamine have been identified. 

These second order neurons have thalamic projections (to the lateral thalamus) which are 

different from those of the nociceptive neurons (which project to the medial thalamus more 

often) and exhibit distinct conduction velocities [534]. The itch sensation is also 

distinguished as a distinct sensation in the guinea pig model where the hind-limb scratching 

response to prostaglandin and histamine induced conjunctival pruritis has been quantified 

and shown as different from the response to pain and other chemicals [535]. The effects of 

different chemicals on the subnucleus caudalis region of the trigeminal brainstem were 

investigated. Single-unit responses of the second order neurons (wide dynamic range (WDR) 

and nociceptive specific (NS) neurons) were recorded after the application of chemicals to 

the ipsilateral eye. The dose response relationship revealed that the response to histamine 

had a rapid onset and a shorter duration compared to capsaicin, acid, and mustard oil [494]. 

Other studies have shown that the polymodal units which were excited by acetylcholine, 

PGE1, glutamate and bradykinin did not show a response to histamine [469]. In healthy 

human subjects the techniques of microneurography (on the cutaneous branch of peroneal 

nerve) led to the identification of histamine sensitive C-fibers among the slowest conducting 

mechanically insensitive C-fibers in the lower leg [536]. Symptom surveys involving Dry 

Eye often note ocular itch as a commonly reported symptom [125, 253, 537]. There is now a 

mounting body of evidence that a distinct set of fibers encode the itch sensation in the eye. 
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Second order neurons of the ocular surface: 

The stimulation of the Aδ and C fibers activates the second order neurons and different 

studies have reported the response properties of neurons in the trigeminal brainstem 

complex. Functionally the second order neurons are classified as low threshold 

mechanoreceptive, WDR multireceptive responding over a broad range from a lowthreshold 

mechanoreceptive to noxious stimuli and NS neurons. Electrical responses evoked by the 

application of chemicals on the cornea in the cat and rat has been measured in the second 

order neurons in the transition part of the trigeminal subnucleus interpolaris and subnucleus 

caudalis and in the region between the trigeminal caudalis and the cervical spinal cord (C1). 

The units responding exclusively to mechanical units are termed as Class 2 neurons and 

neurons which respond only to noxious corneal stimuli were termed as Class 3 units. In the 

interpolaris-caudalis transition, the units from the cornea responded only to a low threshold 

mechanical stimulus and about 25% of the units were of the WDR type. Units located in the 

caudalis-C1 had receptive fields in the cornea and were of the WDR type or NS type [538-

540]. These second order neurons also express the protein c-fos after noxious stimulation of 

the cornea and in the subnucleus caudalis region of the brainstem of the rat these c-fos 

positive neurons were reduced by the application of Substance P and neurokinin receptor 

antagonists indicating that Substance P and neurokinin A are involved in transmitting 

information from the ocular surface to the brainstem [541, 542]. Knowledge about the 

transmission of information from the second order neurons and the central processing of 

ocular sensory information is limited. In the cat the brain stem trigeminal ocular neurons 

project to the contralateral ophthalmic nociceptive specific and the wide dynamic range units 

located in the nucleus ventralis posteriomedialis of the thalamus. The ophthalmic units in the 

VPM were defined into three subclasses, nociceptive specific (NS), wide dynamic range 

(WDR) units and low threshold mechanoreceptive units (LTM) units. These units were 

located in the dorsolateral margin of the nucleus termed as the shell zone [543]. Thalamic 

relays project to the primary and the secondary somatosensory region of the orbitofrontal 

cortex and the anterior cingulate region of the brain. This cortical processing is sustained by 

reciprocal interactions with the thalamus and the other parts of the brain receiving input 

from the trigeminal neurons. The electrophysiological responses alone do not explain the 

 94  



  

hedonic aspect of discomfort and it is unclear as to how the electrical impulses translate into 

the various qualities of ocular discomfort. Correlations have been made between the 

electrical response of ocular units to different stimuli in animal studies and psychophysical 

responses of human subjects to similar stimuli [264]. As the physiology of the response 

systems are vastly different, the conclusions drawn from such studies can only be tentative. 

These electrical and psychophysical responses should be considered in conjunction with the 

factors affecting the sensitivity of the ocular surface. The sensitivity of the ocular surface is 

not uniform and demonstrates topographical variations within and between histologically 

similar and dissimilar tissues. The factors affecting the surface sensitivity are briefly 

discussed below. 

Factors affecting Ocular Surface Sensitivity:

The cornea is one of the most sensitive tissues in the human body. The sensitivity of the 

apex of the cornea is higher than the peripheral region with regional differences in the 

peripheral region and the lowest sensitivity being in the superior region [544]. The reason 

for this increased sensitivity of the apex of the cornea is not clear and is not explained even 

by the recent findings about the architecture of the nerve terminals [459]. The sensitivity of 

the ocular surface remains almost the same in persons between the ages of 10 - 50 years. At 

about 65 years of age the sensitivity falls by half. This decline is attributed to various factors 

such as increase in the fibrous content of the tissue, lipid infiltration and decreased water 

content [544, 545]. A significant diurnal variation in the sensitivity of the cornea with low 

sensitivity in the morning and increased sensitivity in the evening has been reported. The 

morning fall in sensitivity is attributed to an altered physiology of the closed eye during the 

sleeping hours [546]. There is no difference in corneal sensitivity between men and women 

although in women during the period of pre- and during menstrual cycle the sensitivity was 

noted to be depressed [547]. The sensitivity of the eye was also shown to alter with the color 

of the eye [548]. Corneal sensitivity is reduced by the use of contact lenses and 

hypoaesthesia of the cornea is commonly reported after surgical procedures involving the 

anterior segment. There is often a reduced corneal sensitivity seen in ocular and systemic 

diseases such as keratoconus, corneal dystrophies and diabetes [549-551]. We do not at 

present have a satisfactory explanation for the physiological variations in corneal sensitivity 
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in relation to the neurophysiology of the ocular surface. It is however certain that acute 

inflammation and an altered physiology of the ocular surface results in markedly increased 

nerve activity with a spontaneous firing persisting for several hours [516]. The long term 

ocular surface changes caused by an unstable tear film lead to alterations in the physiology 

of the integrated ocular surface/lacrimal gland functional unit [552]. These pathological 

changes of the ocular surface contributed to by an unstable tear film may result in an 

alteration of the excitability of the multireceptive central neurons. The perception of 

discomfort caused during a normal tear break up should therefore be measured to improve 

our understanding of discomfort caused by a drying of the eye. Such a measurement would 

help provide the baseline data for the immediate and acute discomfort caused by tear drying. 

As there are no conventional methods for measurement of the intensity and affective 

dimension of ocular discomfort and ocular pain in real time, a method has been developed to 

measure the various aspects of discomfort caused by tear drying upon the ocular surface. 
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EXPERIMENTS: 

7. Experiment 1: 

The study consisted of two experiments. The first experiment aimed to determine the 

characteristics of the sensation during transient ocular dryness. This was considered 

important as the symptoms of ocular discomfort are related to the drying of the eye. The 

second experiment was developed to overcome the difficulties that were experienced during 

the first experiment. 

Materials and Methods: 

Subjects: 

9 subjects participated in the study with ages ranging between 25 to 35 years. 3 subjects 

were females and the rest were males. None of the participants had any regular complaints 

of ocular irritation. All the subjects completed a baseline ocular examination. None of the 

participants had any ocular or systemic disorder at the time of participation in the study. One 

participant had a history of contact lens wear.  

Procedure: 

A measured quantity of fluorescein dye was introduced onto the surface of the eye. The 

subjects were instructed to blink and then open the eye and then refrain from blinking for as 

long as possible. The tear breakup time (TBUT) was determined. Subjects had to indicate 

the time when discomfort was first perceived. Subjects also rated the quality of discomfort 

by using sensory or affective verbal descriptors. The site where discomfort was first 

perceived during the period of eye opening had to be indicated by the forced choice method. 

For this purpose the ocular surface was divided into the following four quadrants; superior 

temporal, inferior temporal; superior nasal and inferior nasal. Subjects were also asked 

specifically about the sensations of dryness and cold on the ocular surface. The subjects 

were asked to blink if the discomfort was unbearable and the eye could no longer be held 

open. The blinking resulted in the re-establishment of the corneal tear film. Subjects were 

again asked to rate the sensation which was experienced soon after blinking. This procedure 
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was repeated four times in each eye. Measurements for all the subjects were done at about 

the same time during the afternoon. 

Data Analysis: 

The data were analyzed by measuring the average time taken for tear breakup and the onset 

of discomfort. A correlation matrix was generated to note the region of the tear breakup, and 

the site of discomfort reported.  

Results: 

The average time for tear breakup from four measurements of each eye, and the 

corresponding times for the onset of discomfort are reported in Table 7-1.  

 RIGHT EYE LEFT EYE 
Subject 
Number 

Average 
TBUT 
(secs.) 
 
 

Onset of 
Discomfort 
in seconds 

Discomfort 
time - TBUT 
time (secs) 

Average 
TBUT 
(secs) 

Onset of 
Discomfort 
in seconds 

Discomfort 
time - TBUT 
time (secs) 

Subject: 1 9.00 12.00 3.00 9.00 13.25 4.25 

Subject: 2 10.47 12.75 2.28 8.97 10.50 1.53 

Subject: 3 11.76 14.65 2.89 11.27 13.00 1.73 

Subject: 4 8.25 11.50 3.25 8.83 11.50 2.68 

Subject: 5 10.00 12.25 2.25 9.25 13.75 4.50 

Subject: 6 10.75 15.25 4.5 10.5 14.75 4.25 

Subject: 7 9.25 12.75 3.5 11 13 2 

Subject: 8 10.5 11.75 3.25 10 13 3 

Subject: 9 8.25 12 3.75 9.25 12.75 3.5 

Table 7-1: TBUT and onset of discomfort 
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A scatterplot relating the onset of Tear breakup time (TBUT) and the time when the 

discomfort was first reported is shown in Fig 7-1.  
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Figure 7-1: Discomfort vs. TBUT 

  

The results of the plot indicate that the tear break up time preceded the onset of discomfort.  

The subjects also had to specify the region where discomfort was perceived. The responses 

from the subjects were plotted in a table (Table 7-2 and 7-3). Each correct response marked 

with the symbol ‘*’, was when the subject reported discomfort in a quadrant where the tear 

break up was observed. An incorrect response meant that the subjects reporting of the 

quadrant of discomfort did not correspond to the site of tear breakup observed and this was 
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marked with the symbol ‘ο’ before the response number. Results for each eye are shown 

separately. 

 
Table 7-2: RE: Observed tear breakup vs. Reported tear breakup 

* -before the response number indicates the reported site of tear breakup 
o -before the response number indicates the observed site of tear breakup 
 
 

 
Table 7-3: LE- Observed tear breakup vs. Reported tear breakup 

* -before the response number indicates the reported site of tear breakup 
o -before the response number indicates the observed site of tear breakup 
 
The results for the right eye indicate that 22.3% of the subjects’ responses were accurate 0% 

of times. About 33.3% of the responses were accurate only 25% of times. Another 22.2 % of 

subjects’ responses were accurate about 50% of times and only 22.2% of subjects were 
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accurate in their responses by about 75% of times. The results of the accuracy response for 

the left eye are shown in table 7-3. The results in the left eye indicate that only 11.0% of the 

subjects’ responses were correct 75% of times. In about 55.5% of responses the subjects 

identified the site of reported onset of discomfort to region of tear breakup with a 50% 

accuracy. In about 22% or responses the subjects were accurate only 25% of the times and in 

11.1% of responses the subjects were not accurate at all (0%). The results of the quality of 

the discomfort as rated by the subject are shown below in figure 7-2. 
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Figure 7-2: Symptoms of ocular drying during forced eye opening 

 

None of the subjects experienced a dry or cold sensation during the time of tear break up. 

The most frequently reported quality of discomfort caused by the transient drying was 

irritation. The other symptoms reported were grittiness and burning sensation. All subjects 

reported that blinking was due to a sensation of pain that was perceived upon forceful 

opening of the eye. None of the subjects reported a sensation of dry eye or sensation of cold 

during this period of transient drying of the eye. 

 101  



  

Ocular symptoms of transient drying 

 
Table 7-4: Symptoms of transient drying 

 

Discussion and Conclusion:

The experiment aimed to evaluate the characteristics of the ocular symptoms associated with 

the disruption of the tear film. The experiment also aimed to understand if subjects could 

localize the region of onset of discomfort during the tear breakup. Normally the drying of 

the corneal surface initiates the blink reflex [448]. Dry spots begin to appear on the cornea 

about 15-30 seconds after a blink and this is believed to be accompanied by a fall in 

temperature [442, 553]. The tear film break up time due to tear film thinning is modified by 

enhanced evaporation and humidification [448]. These and other factors influencing the 

ocular surface activate the corneal and the conjunctival nerve fibers to produce sensations of 

discomfort, irritation and pain [516]. The quality of the sensations reported by the subjects 

were mainly irritation, grittiness, burning sensation and pain. Pain was reported as the end 

event by all the subjects and this is probably because each subject repeated four trails of 

forced eye opening and the reports of the latter trails may be influenced more by the 
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chemicals released into the tear film causing an activation of the polymodal and 

chemosensitive neurons of the ocular surface. These findings are similar to other studies 

where common symptoms reported after forced eye opening for as long as possible were 

stinging and burning pain [554]. None of the subjects reported a sensation of cold or 

dryness. This could be because the thinning of the tear film may not activate significant 

amounts of cold receptors which are located mainly in the region surrounding the limbus 

[516]. Alternatively because the subjects were seated in front of a slit lamp the normal drop 

in the corneal surface temperature that is believed to accompany tear breakup may not have 

been appreciated in the presence of the slit lamp’s illumination with its accompanying heat. 

Subjects were also not able to localize the region of the tear breakup because a large number 

of nociceptors are activated by the mechanical and chemical events initiated by forced eye 

opening causing a suprathreshold sensation event. In the hairy skin the spatial discrimination 

threshold of painful heat and non-painful touch is 8.6 mm and 9.0 mm [555]. Similar values 

for the cornea are not presently known and knowledge is limited to the receptive fields of the 

nerve fibers which have elongated shapes corresponding to the nerve fiber [469]. The poor 

localization may also be because the receptive fields of the WDR second order neurons 

receiving input from the trigeminal ganglion have a range of about 1–2 cm2 and may 

therefore be incapable of providing stimulus localization [556]. Similar results have been 

noted in other studies where only about 30-33% of the subjects could identify the 

localization of the tear breakup [554]. 

In conclusion this experiment established that ocular discomfort succeeded the tear breakup 

and the characteristics of the discomfort could be rated. The experiment served to highlight 

the following difficulties (a) providing responses to multiple types of sensations 

simultaneously was not an easy task (b) there was often difficulty in monitoring the time 

event of the subjects’ rating of sensations and (c) there was difficulty in noting the exact 

location of the onset of tear breakup. The second experiment sought to overcome these 

difficulties. 
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8. Experiment 2: 

The difficulties listed in the first experiment were overcome in the second experiment by 

using the following method. 

Instrumentation: 

Description of the “Comfortscope” an instrument for the continuous rating of 
comfort:  

An instrument for measuring the quantitative and qualitative discomfort and pain 

continuously during tear drying was built at the School of Optometry, University of 

Waterloo. This instrument which we call “Comfortscope” attempts the bridge the gap in the 

qualitative and quantitative methods of rating discomfort and pain. The scheme of the 

instrument is shown in the figure 8-1 below. 

 

 

Signal function Generator 

Figure 8-1: Comfortscope Schematic Diagram 
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The components of the instrument include  

1) A signal function generator. 

2) A precision single turn rotary dial potentiometer of type A- linear, with carbon 

composition. 

3) A data acquisition card (NI PCI-6035E) from National Instruments. 

4) A slit lamp video camera at 5 Hz. to record the ocular changes of the subject.  

5) A microphone to record the quality of the discomfort for the affective dimension of 

discomfort and pain.  

6) An infrared non-invasive thermometer (Thi-500 from TASCO) to continuously measure 

the temperature of the ocular surface. 

Software written in MATLAB (Version 5.0) sampled the single turn potentiometer, slit lamp 

video camera, microphone and an infrared thermometer. The calibration of the instrument 

was done every time before the recording of data. All the data were collected and plotted on 

the same time frame at 0.2 second intervals. The scheme for collection of data is shown in 

figure 8-2. Each trial of rating discomfort due to tearbreakup and drying was recorded into a 

folder that was automatically created by the “Comfortscope” instrument. A folder at the end 

of the trial includes:  

1) JPEG images of the ocular surface recorded at every 0.2 seconds. 

2) A text file named “data.txt” with three columns consisting of  

(i) Time recorded at intervals of 0.2 seconds, 

(ii) Intensity of discomfort corresponding to time and  

(iii) Temperature values obtained from the infra-red thermometer.  

3) A file named “data.mat” consisting of sound data. 

Subjects: 

23 subjects (11 male and 12 female) with ages ranging from 20-30 years, with no symptoms 

of dry eyes participated in the study. All the participants gave informed consent to a protocol 

approved by the Office of Research Ethics at the University of Waterloo. None of the 
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subjects wore contact lenses during the period of the study. To familiarize subjects with the 

psychophysical rating method all the subjects were trained to use the instrument before data 

collection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Comfortscope  

 Initialize 
 Set up GUI * 

 Configure DAQ ** 
(Pain, Temp, Voice 

and Video) 
 Calibrate DAQ

(Pain, Temp) 

 Start Record 

 Start DAQ. 
(plotting data in

real time) 

 Check GUI 
parameters 

 Stop Record 

 START\STOP 
button  

 Write Data 

 
Figure 8-2: Scheme for collection of continuous ratings of discomfort and pain.  

*   GUI = Graphic user interface 

** DAQ = Data acquisition 
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Psychophysical rating method: 

The data from each subject were obtained from three discomfort ratings in one day and this 

was repeated for three consecutive days. For analysis presented in this thesis, individual data 

sets that had full scaling, imaging and verbal data were used. The left eye was chosen in all 

subjects. The right eye was taped during the period of the study. A drop of fluorescein was 

instilled into the conjunctival sac. Subjects were required to blink once to enable an even 

spread of the fluorescein and then keep the eye open for as long as possible. The ocular 

surface appearance and tear film was monitored using a slit lamp. Subjects rated the 

intensity of the sensation by adjusting the single turn potentiometer to represent the strength 

of the discomfort. The intensity and characteristics of the discomfort as spoken into the 

microphone by the subject were recorded. The room temperature and humidity was 

approximately constant during the period of the study. The calibration of the instrument was 

undertaken every time before recording data from a subject.   

 
Figure 8-3: Graphic User Interface for data collection created with MATLAB 
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Two fields are displayed on the GUI. A “record” field consisting of a “Stopped” which 

changed to a “Started” when clicked upon. An “ID” field to enter the ID number of the 

subject. The large circular “pie” type of graphic interface corresponds to the range of 

movement of the potentiometer. The black arrow moves simultaneously and corresponds to 

the movement of the potentiometer’s knob. When the instrument was started for recording 

the psychophysical rating of quantitative and qualitative data were acquired simultaneously 

and plotted on the same time frame. All the digital images of the ocular surface obtained 

from the slit lamp were recorded in JPEG format with the picture quality set at 90 and 

resolution of 146 x 176. Following data collection a quick preview of the data was displayed 

as seen in the figure 8-4. This preview was used during training to provide visual feedback 

to subjects about the potentiometer. During the data collection subjects received no feedback 

other than kinesthesis related to the potentiometer position.  

 

 

Figure 8-4: Preview displayed when the instrument is stopped. 
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Analysis: 

The analysis of the discomfort data was done in Statistica ’98, with the Non-linear model of 

curve fitting and by means of a “user defined function”. The video slit lamp images obtained 

at 0.2 seconds interval were analyzed in ObjectImage 2.08 software. A custom macro was 

written for the analysis of the images. Irregular illumination and a low quality of the images 

were important difficulties encountered and overcome during image analysis. The change in 

the tear film fluorescence indicated by increasing dark areas over the cornea was assumed to 

represent the drying of the tear film and was measured. All images were converted from 

JPEG to TIFF format before analysis using “Graphic Converter 4.0”. The custom macro 

delineated the cornea and calculated this tear drying in the following manner.  

1) Each image was opened automatically its title was copied into a variable called "winT" 

and the green slice of the three stack image (RGB) was duplicated. The duplicated 

temporary green image was inverted, autothresholded and made binary, which separated 

the white area of the eye. 

2) This binary image of the white area was then subjected to a short series of erosions and 

dilations which at first removed and then added a single pixel layer and smoothed the 

image to remove small particles. 

3) Then the image was automatically outlined (i.e., outlined with a "marching ants" 

selection) and the perimeter was calculated, giving every point along the perimeter in x-y 

coordinates. The top-most left-hand and top-most right-hand points were determined and 

a curve was created to mimic the curve of the upper eyelid. This step created a close 

approximation of the corneal area in each image (figure 8-5). 

4) Next this corneal region of interest (ROI) is created in the undisturbed image using the 

"restoreROI" feature and the average mean of this area is measured and stored in a user-

defined array. Also stored at this stage were the coordinates of the bounding rectangle of 

this cornea estimation. 
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Figure 8-5: Automated image processing to determine the extent of tear drying. 

Green slice of the RGB image is duplicated, then inverted and autothresholded (lighter image 
on the right side) and made binary to be smoothed. After a series of erosions and dilations the 
binary image is automatically outlined to create an approximation of the corneal image. After 
further processing the perimeter is calculated and this overlay is used in the undisturbed 
cornea to delineate the region of interest. 
 

5) After all the images were processed in this fashion, the mean area of all the images was 

called from the statistical workup of the mean data and the largest bounding rectangle 

was determined. 

6) The oval ROI used to measure each image in a series was taken from the maximum 

coordinates of the bounding rectangles in each image of the first series, i.e., the left most, 

top most, right most, and bottom most coordinates of all the images determined the left, 

top, width, and height of the ROI of the cornea. 

7) The area of this ROI was the total area (which is almost constant for a given series of 

images) and the total and mean grayscale level of each corneal ROI was determined 

(figure 8-6). 

Data of the symptom characteristics were analyzed in a program termed “Painview” written 

in MATLAB. Linear markers were placed at the beginning and end of the sound wave 
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displayed by “Painview”. The spoken characteristics recorded were replayed by clicking on 

the play button (figure 8-7) and the exact time of the spoken event was noted. 

 

The two images represent 

appearance upon eye 

opening and just before 

blink. 

 

Figure 8-6: Example of automatic outlining of the cornea 

Results: 

A sample of multidimensional data obtained during a measurement is shown in figure 8-7. 

The intensity of the ocular discomfort which results from varying lengths of dryness of the 

eye can be recorded immediately. The affective unpleasantness and the characteristics of the 

discomfort are recorded on the same time scale. 

 

Figure 8-7: Sample of Multidimensional data obtained simultaneously  
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Results -Ratings of Discomfort: 

An analysis of the results showed that the intensity of the discomfort preceding blink 

exhibited at least three different phases. There were also distinct patterns in the discomfort 

ratings. In 67.65% of the subjects the intensity of the sensation which preceded blink was 

triphasic in nature. Upon opening the eye there was a brief period with no alteration in the 

nature of the sensation termed as the “no change” phase. This was reflected on the scale as 

the period of no change in discomfort intensity during the initial few seconds. The second 

phase was due to the “slowly rising phase” of discomfort and the slope of this phase was less 

steep. The third phase was due to a “rapidly rising phase” of discomfort and was 

characterized by a more steep slope (figure 8-8 and 8-9). 

 

Figure 8-8: The typical triphasic pattern of discomfort 

The three phases are an initial “no change” phase of discomfort followed by a second “slowly 
rising phase” and the third “rapidly rising phase” of discomfort. 
 

Two linear functions with a variable “elbow” position described the data well with 

correlation coefficients typically of at least 0.95. An example of the linear functions 

describing the data is shown in figure 8-10.  
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A correlation analysis between the clinical tear breakup time (TBUT) and ocular discomfort 

was done and the results are shown in the Table 8-1. 

The results in the table show that: 

1) The clinical TBUT is inversely correlated with the slope 

2) The shorter the TBUT the steeper is the slope 

3) The steeper the slope the more rapid is the increase in discomfort. 

 

 
Figure 8-9: Typical discomfort pattern showing the three phases  

The data above represents two consequent interblink intervals. 
 

The correlation between the TBUT and the elbow determined by the function indicated that 

the shorter the TBUT the quicker the onset of discomfort and this is shown in figure 8-11. 

The correlation between the two slopes is that the steeper the slope of the initial phase the 

steeper the slope of the second phase and the longer and flatter the slope of the initial phase 

the longer and flatter the slope of the second phase. This is shown in the steep functions in 

figure 8-11 and 8-12 and the longer and less steep slopes in figure 8-13. In 17.28 % of the  
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Figure 8-10: Two linear functions describe the data. 

The functions described the data with correlations typically at least 0.95 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p < 0.05 

 Correlations: 
N = 23,  Marked correlations are significant at p<0.05 

 
Variable 

 
TBUT 

 
START 

 
BREAK 

 
ELBOW 

 
SLOPE 1 

 
SLOPE 2 

 
TBUT 

 
1.0 

 
 

    

 
START 

 
0.41 

 
1.00 

    

 
BREAK 

 
0.74 

 
-0.70 

 
1.00 

   

 
ELBOW 

 
0.72 

 
-0.25 

 
0.87 

 
1.00 

  

 
SLOPE 1 

 
-0.67 

 
-0.40 

 
-0.69 

 
-0.65 

 
1.00 

 
 

 
SLOPE 2 

 
-0.47 

 
0.01 

 
-0.37 

 
-0.57 

 
0.45 

 
1.00 

 

Table 8-1: Associations between TBUT and Ocular Discomfort  
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Model: v4=((b1+b4*v3)*(v3<b5))+(((b1+b4*b5)+(v3-b5)*b3))*(v3>
y=(((-4.809004)+(2.1423)*x)*(x<(5.20811)))+((((-4.809004)+(2.1423)*(5.20811))+(

x-(5.20811))*(3.63186)))*(x>=(5.20811))
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Figure 8-11: Graph indicating that a short TBUT is associated with a steep slope and a rapid 

increase in discomfort. 

 
 
 

 
 
 

 
 

 

 

 

 

 

 

 

Model: v8=((b1+b4*v7)*(v7<b5))+(((b1+b4*b5)+(v7-b5)*b3))*(v7>
y=(((-24.2868)+(0.8736815)*x)*(x<(29.71834)))+((((-24.2868)+(0.8736815)*(29.718

34))+(x-(29.71834))*(4.584127)))*(x>=(29.71834))

Time (sec)

Figure 8-12: Correlation between the TBUT and the elbow is indicative that a short TBUT is 

associated with a rapid onset of discomfort.  

In
te

ns
ity

C:7
C:8 C:9 C:10 C:11 C:12 C:13 C:14

C:15
C:16

C:17
C:18

C:19 C:20

C:21

C:22

C:23

C:24

-1

1

3

5

7

9

11

28.0 28.5 29.0 29.5 30.0 30.5 31.0

r = 0.989

1.7, 1.6

Model: v8=((b1+b4*v7)*(v7<b5))+(((b1+b4*b5)+(v7-b5)*b3))*(v7>
y=(((-24.2868)+(0.8736815)*x)*(x<(29.71834)))+((((-24.2868)+(0.8736815)*(29.718

34))+(x-(29.71834))*(4.584127)))*(x>=(29.71834))

Time (sec)

en
si

ty
In

t

Model: v8=((b1+b4*v7)*(v7<b5))+(((b1+b4*b5)+(v7-b5)*b3))*(v7>
y=(((-24.2868)+(0.8736815)*x)*(x<(29.71834)))+((((-24.2868)+(0.8736815)*(29.718

34))+(x-(29.71834))*(4.584127)))*(x>=(29.71834))

Time (sec)

en
si

ty
In

t

C:7
C:8 C:9

C:7
C:8 C:9 C:10 C:11 C:12 C:13 C:14

C:15
C:16

C:17
C:18

C:19 C:20

C:21

C:22

C:23

C:24

-1

1

3

5

7

9

11

28.0 28.5 29.0 29.5 30.0 30.5 31.0

r = 0.989

1.7, 1.6

 
115



 

 
 
 
 

 

 

 

 

 

 

 

 

Model: v8=((b1+b4*v7)*(v7<b5))+(((b1+b4*b5)+(v7-b5)*b3))*(v7>
y=(((-10.1964)+(0.219654)*x)*(x<(62.7757)))+((((-10.1964)+(0.219654)*(62.7757))

+(x-(62.7757))*(1.246247)))*(x>=(62.7757))
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Figure 8-13: The less steep the slope of the first phase the less steep the slope of the second 

phase. 

 

  
Figure 8-14: An example of atypical triphasic pattern of discomfort with initial “no change” 

followed by a rapid phase and a subsequent less rapid phase of discomfort. 
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subjects there was an initial phase where the discomfort increased rapidly and this was 

followed by a phase of slowly increasing discomfort. This reverse type of atypical pattern is 

shown in figure 8-14. A mixed response consisting of a typical pattern in the first 

psychophysical rating followed by an atypical pattern in the second rating or an atypical 

pattern in the first psychophysical rating followed by a typical pattern in the second trail was 

seen in about 7.65% of the ratings. An incomplete response where the subject was not able 

to rate the discomfort due to an inadvertent sudden closure of the eye was seen in about 

7.41% of the ratings. 

Model: v6=((b1+b4*v5)*(v5<b5))+(((b1+b4*b5)+(v5-b5)*b3))*(v5>
y=(((-20.28073)+(0.8553996)*x)*(x<(30.92323)))+((((-20.28073)+(0.8553996)*(30.9

2323))+(x-(30.92323))*(0.4166087)))*(x>=(30.92323))
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Figure 8-15: Two linear functions describe the data with atypical pattern of discomfort 

 

Results –association of tear breakup with discomfort: 

Analysis of the relationships between the ratings of ocular discomfort and extent of dry areas 

as seen by the fluorescein patterns showed a monotonic association with linear r2 of at least 

0.80 (all p < 0.05). The associations with the typical and atypical pattern of discomfort are 

shown in figures 8-16 and 8-17. In other instances the tear drying consisted of the atypical 
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pattern with an initial rapid phase of drying followed by a more gradual phase of drying and 

the corresponding psychophysical rating of discomfort was typical in pattern (figure 8-18).  
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Figure 8-16: A monotonic association can be noted between tear drying and ocular discomfort 

with initial slow phase of discomfort followed by a rapid increase in discomfort. This is the 

typical pattern of discomfort. 

 

The two linear functions with a variable “elbow” position which were used to describe the 

intensity of discomfort were also used to describe the tear drying on the ocular surface. 

When the “discomfort elbow” was plotted against the “image elbow” with single data pair 

for each subject the correlation between the discomfort elbow and image elbow was 0.93 

and the changes in dry areas often preceded the ratings of discomfort (figure 8-19). 
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Figure 8-17: An example of association between the tear drying and ocular discomfort with 

initial rapid phase followed by a subsequent slow phase. The tear drying and intensity rating 

are both atypical 

 

Results: Symptom Characteristics: 

The characteristics of the discomfort recorded into the microphone in “Comfortscope” was 

replayed in the “Painview” program and the time of the event was noted. Another 

“multidimensional data preview” function termed “Breaks”, written in MATLAB enabled 

the intensity of discomfort, the ocular surface appearance and the characteristics of the 

discomfort to be plotted simultaneously. Fiducial markers were displayed in this preview 

where the regions of changing intensity of discomfort in time could be noted. Clicking upon 

the fiducial markers displayed the image of the ocular surface. The changing characteristics 

of discomfort were also plotted in time (figure 8-20). 
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Figure 8-18: Association of atypical pattern of drying and typical pattern of rating of intensity 

of discomfort 

 
The characteristics of discomfort and pain recorded in the subjects responses were classified 
into three broad categories  

1) mechanical symptoms such as scratchy and dry 

2) chemical symptoms that included stinging and burning and 

3) itch symptom 

The symptom of itch occurred in 29% of the reports during the initial period of the interblink 

interval. Discomfort associated with the mechanical symptoms occurred in 39% of the 

reports at the beginning and mid-period of the interblink interval and in only 9% of the 

reports mechanical symptoms were reported at the end of the interblink interval. In 91% of 
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the reports chemical symptoms were reported at the time immediately prior to the blink 

(figures 8-22 and 8-23).  
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Figure 8-19: The “discomfort elbow” was plotted against the “image elbow” and this revealed 

that the changes in the dry areas often preceded the ratings of discomfort. 

 

The changing characteristics of the discomfort can be noted in the plot shown in figure 8-21. 

The symptoms of discomfort were plotted against the intensity of discomfort as shown in 

figure 8-24. Symptoms of irritation, dryness and itching were noted at the lower range of the 

intensity of discomfort while symptoms such as stinging, burning and sharp pain occurred at 

the upper range of the intensity ratings.  

 
 
 

 

 
121



 

“Breaks” determined the more local changes in the intensity of discomfort. Local alterations 

mainly consisted of small fluctuations of rising uncomfortable phases that were followed by 

less uncomfortable moments. The function determined these changing moments and enabled 

viewing of the corresponding image and the symptom characteristic if spoken by the subject.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 8-20: The multidimensional data preview function “Breaks” 

This function enabled visualization of discomfort, ocular surface appearance and 

characteristics of the discomfort at the same time. Fiducial markers were displayed by the 

function at locations of change in the state of discomfort intensity.  
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Figure 8-21: Example of data in an individual illustrating the changing characteristics of the 

discomfort as well as tear film and intensity variables. 

 

Figure 8-22: Symptoms characteristics at the beginning of the interblink interval. 
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Figure 8-23: Symptom characteristics of discomfort just before blink. 
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Figure 8-24: Graph shows the relationship between characteristics and intensity ratings 
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Figure 8-25: Graph showing relationship between symptom characteristics and time 

 
Figure 8-26: Graph shows the relationship between symptom characteristics and Intensity 
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Figures 8-25 and 8-26 show the intensity and time of first report of the three groups of 

symptoms illustrating the difference between the three. Kruskal-Wallis analysis showed 

statistically significant differences between itching and burning for both intensity and time 

(p = 0.03 and p = 0.02 respectively). 
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DISCUSSION AND CONCLUSION: 

9. Discussion: 

Ocular discomfort associated with dry eye is one of the most commonly reported symptoms 

in clinical practice [1]. Relief from discomfort has remained an important strategy in the 

management of dry eye. Clinicians and researchers have always viewed that an essential 

element of treatment is to reduce the severity of symptoms. It appears that the measurement 

of this change should be addressed by research methods. The measurement of change has at 

least three different objectives. 

1) To measure differences in the amount of change both within and between individuals 

and to understand if the change is “little” or a “lot”. 

2) To identify the factors that are correlated with this “little” or “lot” of change. 

3) To infer the effects of any intervention. 

The traditional approaches to the measurement of discomfort and pain include verbal and 

numeric rating scales, behavioral observation scales and physiological responses. Because 

discomfort and pain are subjective a patient’s report is considered as the most valid measure 

of these experiences [557]. Some of the frequently used self rating instruments are the 

Verbal category scales, Visual analog scales (VASs) and the MPQ. These methods were 

developed for the discrete rating of discomfort or pain and are employed by practitioners in 

tear film and dry eye management to assess the characteristics, prevalence, frequency and 

severity of ocular surface symptoms. These scaling methods are inadequate to measure the 

changing state of an acute continuous discomfort. The Verbal category and VASs are 

unidimensional rating scales especially useful to measure one dimension of discomfort or 

pain. Recent knowledge that pain is no longer a linear system stresses the need for 

multidimensional scaling methods. The MPQ has been used to assess the multidimensional 

nature of ocular discomfort caused by tear drying [554]. The disadvantage in employing 

these methods is that very little information about the physiological or pathological 

correlates of change is obtained while rating acute either acute pain in general or ocular 

discomfort in specific. Various studies have used different methods to capture information 

about the events that cause a change. Some of these methods attempted to eliminate recall 

 
127



 

bias and initially paper diaries and subsequently electronic diaries were introduced to 

instantly record information about brief intervals of discomfort and pain. Either non-

compliance or a low compliance with electronic and paper diaries remained a major problem 

for recording acute events [558, 559]. Recently computer-based Visual analog scales (VAS) 

and affective scales were used for the psychophysical ratings of discomfort and pain. The 

two rating scales (VAS and the affective scale) were displayed sequentially and subjects 

used a computer mouse to rate discomfort [279]. Others studies have combined brain 

imaging with psychophysical methods to understand the sensory and affective dimensions of 

pain [560, 561]. In the study of ocular discomfort the main methods employed are symptom 

surveys, clinical tests for determining the tear secretion rate and staining techniques to 

estimate the epithelial damage. Instability of the tear film is implicated in causing symptoms 

of ocular discomfort and dry eye. However the only available direct clinical measure of tear 

film stability is the TBUT. Studies reporting the association between subjective symptoms of 

dry eye and objective tests have shown weak associations or less strong clinical associations 

[562-564]. Because the definition of dry eye includes the triad of ocular surface disease, tear 

film instability and ocular irritation, it is possible that the weak associations reported 

between subjective symptoms and objective signs may be due to limitations in the existing 

methods of measuring qualitative and quantitative discomfort. This raises at least three 

important questions:  

1) What other method can we employ to measure ocular discomfort?  

2) Can we bridge the gap between the qualitative (domain sampling) method and 

quantitative (psychophysical scaling) method of rating discomfort and pain? 

3) Is there any correlation between the sensations, ocular surface appearance and the 

physical characteristics of the stimulus? 

The “Comfortscope” model was the result of an attempt to answer these questions and to 

bridge this gap between the qualitative (domain sampling) and quantitative (psychophysical 

scaling) methods of recording discomfort and pain caused by tear drying. This is the first 

study to simultaneously record, discomfort intensity, ocular surface appearance and 

attributes of sensation. The intensity of ocular discomfort and pain was measured on a 0-10 

scale. The 0 in the scale is a meaningful zero point where the subject does not perceive any 
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discomfort after the opening of the previously closed eye. The upper end of the intensity 

scale was associated with the physiological blink reflex and when ocular discomfort and 

pain was intense, reaching 10, the discomfort or pain necessitated blink or closure of the eye. 

A change in the measure of discomfort was recorded at every 0.2 seconds. The results 

clearly emphasize that the multidimensional attributes of the pain sensation can be captured 

simultaneously for a better understanding of discomfort and pain. The “Comfortscope” 

proved to be a useful tool for rating the various attributes of discomfort and pain related to 

tear drying. 

The discomfort intensity: 

In the majority of the subjects the ocular sensation before blink consisted of three phases. 

Upon opening the eye there was a brief period with no change in the nature of the sensation. 

The blink mechanism therefore not only reestablishes the tear film but it also resets the 

altered state of comfort caused by tear breakup. In videotopographic measurements of the 

anterior tear film and the central cornea it was shown that the corneal surface became more 

regular in the first few seconds after the blink [565]. Although the direct influence of this 

surface regularity upon discomfort is not known, it seems that upon blinking the level of 

ocular discomfort is returned to a “basal” state and remains at this level during minimal or 

no alterations on the ocular surface. An up-regulation of this basal state may result in the 

manifestation of the persistent symptoms of discomfort seen in dry eye disease.  

The second phase was due to a slowly rising phase of discomfort and the slope of this phase 

was less steep compared to the slope of the third phase in 67.7% of the subjects. As 

evidenced by the power functions noted in the results, this second phase has complex 

associations with tear drying. At present the different models of tear breakup and subsequent 

drying caused by initial occurrences such as lipid contamination of mucous layer or a 

mucous rupture of the tear film do not clearly explain the events underlying the 

psychophysical ratings [448, 452, 454]. But in the majority of the subjects the short TBUT 

evoked a response from the ocular surface that resulted in a rapid increase in discomfort and 

was seen as a steep slope. A long TBUT caused a more gradual increase in discomfort and 

this was seen as a less steep slope. These negative correlations between the TBUT and the 

slopes suggest that the steep slope of rising discomfort is to a certain extent driven by a 
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rapidly increasing instability or mechanical disruption of the tear film causing the rapid 

recruitment of nerve fibers (therefore more steep slopes) and less rapid mechanical events 

seen in a long TBUT recruit the nerve fibers less rapidly (hence less steep slopes). But tear 

break up is associated with more complex neurochemical mechanisms and this simple 

account is incomplete to explain this complex event.  

The functions used to describe the intensity data determined a “variable elbow” position and 

the correlation between the TBUT and the elbow indicated that the shorter TBUT resulted in 

a quicker rapid onset of discomfort. It is not surprising that the TBUT and elbow are 

strongly associated because blinking is to a certain extent driven by the ocular surface 

stimuli and would normally seem to be occurring in the beginning of the third phase.  

The third phase of rapidly rising discomfort was characterized by a more steep slope. This 

steep slope results from subjects forcing their eyes to be kept open. The act of forcible 

opening of the eye causes a rapid increase of discomfort and signals the need for the eye to 

blink. These results are similar to the results of experiment 1 shown in the plot of 

“Discomfort vs. Tear breakup” (fig 7-1) where the tear breakup preceded the discomfort. In 

addition there is a poor correlation between TBUT and the stage when the slowly rising 

discomfort phase begins (r = 0.1 in table 1). This would suggest that what drives blinking is 

not the change from a “no discomfort” state to “slowly rising discomfort” but rather the 

more rapid transition to rapid discomfort from a state of “slowly rising” discomfort phase. 

The results also show that the two slopes of phase 2 and phase 3 are positively correlated 

and when considered in association with the negative correlations of the TBUT, it is possible 

that “comfortable” people have both phases with less steep slopes (Experiment 2-figure 13) 

while uncomfortable people have steeper slopes.  

In about 17% of the subjects an atypical triphasic pattern of discomfort consisted of a phase 

of “no change” followed by a phase of “rapid increase in discomfort” and a subsequent 

“slow phase”. This rapid rise of discomfort in the second phase is similar to a steep second 

phase seen in the “typical pattern” of discomfort. Because nociceptive systems have a low 

gain it is likely that this initial rapid rise in discomfort is perceived from the presence of 

factors which signal an impending nociceptive threat to the “tear film/ocular surface 

function unit”. This leads to a rapid recruitment of protective response mechanisms such as 
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reflex tearing and increased mucin secretion by the conjunctival and corneal epithelium. 

This sudden increase in tear volume and mucin glycoproteins alters the tear rheology, aids in 

stabilizing the mechanical tear disruptions and also clears away any chemicals released into 

the tears. These physiological mechanisms are possibly reflected in the less steep third 

phase.  

Relationship of tear drying to ocular discomfort:

The blink reflex and the associated reestablishment of tear film on the ocular surface returns 

the eye to a state of “basal comfort”. The results of sensation (discomfort intensity response) 

in relation to stimulus (tear drying monitored by the image) illustrate in a straightforward 

way (figure 8-16 and 8-17) that discomfort and tear film disruption are highly associated 

within individuals. The psychophysical ratings of discomfort often closely mirror the tear 

disruption patterns. An initial rapid tear disruption and drying is often associated with the 

atypical discomfort pattern characterized by a more steep second phase of discomfort. In 

previous studies modeling the tear rupture similar patterns of tear film disruptions were 

termed as linear or exponential [566]. Other studies have reported associations of tear film 

breakup and ocular sensation [554]. But the simultaneous psychophysical ratings of 

discomfort along with an analysis of tear drying have not been reported before. In addition 

to this a more general perspective of the association between tear drying and ocular 

sensation (figure 8-19) reveals that they are associated within the group. The figure 8-19 also 

indicates that the tear film changes precede the sensory changes. At present it is not clear 

what type of the change occurs during disruption, drying and evaporation of the tear film. 

Hyperosmolarity of the tear film and an alteration in the transmembrane mucin gel layer and 

a collapse of the hydrophilic mucous of the ocular surface have been postulated as common 

events. The high correlation between drying and ratings of discomfort (r = 0.91) indicates 

that the alterations in tear film can be immediately perceived and rated by the subjects. 

Symptom characteristics: 

The visualization of symptom characteristics over time enabled the symptoms to be 

classified into the three major groups. A mechanical group of symptoms, chemical group of 

symptoms and itch symptoms. These symptom groups correlate with the functional neurons 

present on the ocular surface such as the mechano-sensory neurons, C-polymodal with 
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response to mechanical and chemical stimuli and chemosensory neurons insensitive to 

mechanical and thermal stimuli. At present there is no documentation about itch fibers in the 

eye, but as mentioned before there is an increasing body of evidence that a distinct set of 

fibers encode the itch sensation. The grouping of symptoms into these three classes also 

strengthens the present tentative correlations existing between the functional type of ocular 

units recruiting different modalities of stimuli and corresponding sensations experienced by 

humans. The existing algorithm for ocular discomfort classifies the symptoms mainly into 

non-tear related and tear related problems [552]. It seems appropriate to classify the 

symptoms on the basis of the underlying types of functional nerves. Such a classification 

would enable interventions to address the symptoms on the basis of physiology irrespective 

of the underlying pathology. Analysis of the symptom characteristics revealed the changing 

nature of characteristics over the course of the interblink interval as seen in the pie charts in 

figure 22 and figure 23. During the beginning of the interblink interval the three groups of 

symptoms reported in decreasing order of frequency were mechanical (including 

scratchiness and dry sensation), chemical (including stinging and burning) and itch 

respectively. However just before the blink only two groups of symptoms were reported. 

These were chemical symptoms and mechanical symptoms in decreasing order of frequency. 

The chemical symptoms of stinging and burning comprised 91% of the responses. These 

findings are similar to other reports where forced eye opening reported symptoms of stinging 

and burning most frequently [554]. The results indicate that the symptom ‘itch’ was 

commonly reported as an initial symptom while it never immediately precedes the blink. 

This is also illustrated in figures 8-25 and 8-26 in which it is shown that the initial reports 

and the initial intensities are different with itch being less intense and earlier than stinging 

and burning and mechanical symptoms (e.g. scratchiness and dryness). Stinging and Burning 

are uncommon immediately after a blink but are the commonest symptoms (related to a high 

intensity) immediately before the subjects blink. The reports of mechanical symptoms were 

located in between itch and burning sensations. The results clearly established that itch is a 

symptom characteristic associated with a low value of discomfort intensity during forced eye 

opening (figure 8-24). However the monitoring of this symptom has tremendous importance 

against the backdrop of the more common and often disabling condition of pruritis. In 

experiments relating to the microneurography of C-units, the small axon diameter fibers with 
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slow conduction velocities were identified as histamine sensitive and responsible for itch. It 

is possible that similar C-fibers in the eye remain to be identified.  

The symptom of dry eye: 

A fundamental question that we began with was “Does the eye feel dry?” and whether 

dryness is a sensation. It is likely that these various pathways interact and produce a 

complex response. In the skin the dimensions of texture and form perception encode 

roughness. At present identified in every living cell are the commonly found stretch 

activated and less commonly found stretch inactivated mechano sensitive channels. The 

phenomenon of mechanosensation could be due to liberation of extracellular ligands, the 

presence of the DEG/ENaC proteins residing in the cells and the nerve endings or stimulus 

conveyed through the gap junctions and intercellular adhesions with the presence of the 

mechanosensitive enzymes such as phospholipase C and A. Apart from these the integrin 

receptors which mediate cell to cell adhesion play a role in transducing physical forces. In 

the eye following mechanical stresses there is an increase in the levels of (TGF)-beta2, 

integrin beta1 and tenascin (TN) [101]. It is therefore possible to infer that just as the 

perception of dryness in the mouth is independent of any sliding frictional force a similar 

perception of dryness independent of the lid and ocular surface friction is encoded in the eye 

and this complex phenomenon reported as the symptom of dryness, is conveyed by not only 

a sensory neuronal mechanism but also by the non-neuronal cells on the ocular surface.  

Conclusion: 

In conclusion this is the first report of the simultaneous measures of the various aspects of 

ocular discomfort and pain. The technique provided us novel information about the 

development of discomfort during ocular surface drying. It also enabled the quantification of 

the sequence of events preceding blink and demonstrated the strong associations between 

tear film characteristics (TBUT and tear drying dynamics) and the accompanying 

discomfort. It also demonstrated that symptom characteristics that accompany tear drying 

reflect different components of ocular surface sensitivity. 

A prominent difficulty encountered was that the image analysis reporting tear drying was a 

relative measure of drying assuming that the eye upon first opening was at some basal state 
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of hydration. This assumption was made as the subjects were young individuals with no 

symptoms of dry eye. Irregular illumination over the region of the ocular surface often 

caused difficulties and the illumination itself though constant throughout the course of the 

experiment did not provide optically calibrated images. The discomfort itself was provoked 

by forced eye opening and it is essential to study the phases of discomfort during the normal 

interblink interval by employing non-invasive TBUT methods. 
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