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Abstract

In this thesis, we explore the relation between ’t Hooft polygonal gravity and loop
quantum gravity (LQG) - two models of discrete gravity in 2+1 dimensions. While the
relation between the two theories has been studied in the past, the relation between LQG
and polygonal gravity remains unclear. Indeed we argue that each approach does not
implement the same type of constraint at the kinematical level. Using a dual formulation of
LQG, we show that polygonal gravity is then recovered by a gauge fixing in this framework.
However, whether these gauge choices are possible in general is unanswered in this work.
Therefore, we analyze a specific example given by the torus universe in each approach,
using one and two polygon decompositions. By using the map from dual LQG to polygonal
gravity, we express the physical variables of discrete gravity, or observables, in terms of
polygonal gravity quantities. Once the constraints in polygonal gravity are implemented we
find that physical observables are no longer independent, meaning that polygonal gravity
cannot describe the torus universe using one and two polygon decompositions: the gauge
fixing is actually over-constraining the theory. Faced with these results, we develop a
dual version of ’t Hooft gravity. The resulting theory is then proven to be equal to the
kinematical phase space of LQG; therefore, dual ’t Hooft gravity is free of the issues
plaguing polygonal gravity.
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Chapter 1

Introduction

Physics in the 20th and 21st century has been about discovery and unification. However,
most of modern physics is based off two separate ideas first proposed in the early 20th

century: quantum mechanics and general relativity. Quantum mechanics was developed to
explain some peculiar properties of matter, such as the photo-electric effect, black body
radiation and the spectroscopy of atoms. The development of quantum mechanics led to
an upheaval of the most basic laws of physics. No longer could precise statements be made
about a particles trajectory; quantum mechanics has permanently made physics “fuzzy”
or uncertain in nature. The ultimate culmination of quantum mechanics is the standard
model. It is currently the most accurate physical theory and describes three of the four
fundamental interactions in the Universe and all visible matter1. However, the fourth
interaction, gravity, differs greatly.

The other major theory proposed in the early 1900s was general relativity (GR). General
relativity is the most successful theory of gravitation ever devised. It has passed numerous
tests, the most recent being the detection of gravitational waves by the LIGO collaboration
[1]. Like quantum mechanics, GR has also changed the way we view physics. GR led to
the realization that gravitation very different than the other interactions known in nature.
Unlike the other forces that assume the existence of a background, usually Minkowski
space, GR actually defines the background we live on. This is due to the special symmetry
that GR obeys general covariance or diffeomorphism symmetry. The essence of this sym-
metry is that most quantities in nature are only described relative to each other. Despite
all of these successes, it is thought that GR must break down at distances around the
Planck length2. This occurs because general relativity is inconsistent with the principles

1The nature of dark matter, or if it even exists, is currently unclear at the time of this writing. We
will not deal with this interesting problem in this thesis.

2The scale of the Planck length is 10−32 millimeters
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Introduction

of quantum mechanics. Therefore, it has long been suspected that we will need a theory
of quantum gravity. The reasons for this are purely theoretical in nature, as there is no
clear experimental evidence for such a theory.

However, quantum gravity has proven to be one of the most elusive theories in modern
physics. In fact, the search for a quantum theory of gravity began immediately after the
discovery of quantum mechanics and general relativity. Part of Dirac’s work in [10] was
dedicated to making Einstein’s theory of general relativity more amenable to quantization.
However, after almost a century of research, there is still no convincing solution. One
reason for this elusiveness is a lack of understanding of the features that quantum gravity
should have. Conceptually, the symmetries of general relativity (i.e. diffeomorphism in-
variance) make constructing observables extremely challenging [11, 12]. This has led to the
famous “problem of time” in the quantum gravity community. Furthermore, technically
constructing a model is arduous due to the nonlinear nature of general relativity.

When faced with such a problem, the first step is to simplify. This had led to the field
of 2+1 quantum gravity. Conceptually, the theory is similar to 4D gravity; therefore, many
lessons about the nature quantum gravity can be extracted from its study. Furthermore,
the quantization of 3D gravity is technically simpler. This is due to the fact that the
vacuum Einstein equations imply that there are no local degrees of freedom. The simplifi-
cation of the resulting theory is so successful that there exists a myriad of approaches to the
quantization of gravity in 2+1 dimensions (see [9] for a wonderful overview). As a result,
it appears that a quantum theory of gravity may have a minimum scale. For instance, in
loop quantum gravity it was discovered that there is a minimum area in 3+1 dimensions
[44]. This has led to the exploration of discrete models of gravity. In 2+1 dimensions,
discrete models can be exact, since there are no local degrees of freedom; however, there
are many different ways to discretize 2+1 gravity.

The goal of this thesis is to study the relationship between two theories of discrete
gravity. The first theory studied was developed by Gerard ’t Hooft, and is called ’t Hooft
polygonal gravity, or just polygonal gravity. It was developed in a series of papers [46, 45,
47, 48], that analyzed the causal nature of 2+1 gravity with particles. The resulting theory
of gravity, was described by an evolving surface composed of flat polygons. The theory
was derived from purely geometric arguments, and provides a wonderful visualization of
gravity. Unfortunately, as a result, its exact relation to 2+1 gravity is obscure. Moreover,
the constraint algebra of the theory is immensely complicated [20], and the symmetries of
the theory are poorly understood. Furthermore, there are disagreements in the literature
when applying the theory to the torus universe [23, 54]. Finally, the quantization of this
theory is currently unknown [45]. These issues have made it necessary to compare said
theory to other models of discrete gravity, such as loop “quantum” gravity (LQG).

Loop quantum gravity (LQG) [43, 50] is one of the more successful proposals to quantize
gravity in 4 dimensions. It has led to numerous results in quantum gravity, such as a
calculation of black hole entropy [7, 41] and early universe cosmology [5]. Additionally,
in 2+1 dimensions the theory is well-defined [38, 24]. The classical version of LQG in
2+1 dimensions is well-known and can also be viewed as a discrete model of gravity.
Unlike polygonal gravity, the constraint and symmetry structure is well-known, and the
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Introduction

application of the theory to the torus universe is well understood [53, 30]. Therefore, the
first goal of the thesis is to explore the relation between LQG and polygonal gravity. Two
previous attempts have been made [52, 28], to elucidate this relationship. However, we
found both papers inadequately described the link between the two theories.

As mentioned above, the torus universe in polygonal gravity is not well understood
[23, 54]. Therefore, a secondary goal of the thesis is to study whether polygonal gravity
contains the torus universe. Part of the reason for the difficulty in describing the torus
universe in polygonal gravity is the lack of known complete observables. Once these ob-
servables were found, we discovered that polygonal gravity may not be able to explain the
torus universe.

Faced with these difficulties, we wondered whether a different formulation of polygonal
gravity could be developed. Often times in physics, there can be two equivalent ways of
looking at the same problem, also known as a duality. One of the most famous examples of
this is AdS/CFT [31], which describes bulk gravitational physics in terms of a conformal
field theory defined on the boundary. In discrete gravity there is another duality that was
first explored in [16]. Therefore, the final goal of the thesis is to apply this duality to
polygonal gravity. The resulting theory is called dual ’t Hooft gravity.

In order to analyze these goals, the thesis begins with a quick review of classical 2+1
general relativity, in the first order formalism. The need for the formalism is then explained,
and the Hamiltonian decomposition is discussed. In doing so, the choice of polarization
will be highlighted. Polarization is the choice of how we split up phase space, i.e. what we
choose to call configuration and momentum variables. This choice, while not changing the
physical content of the theory, can greatly modify the appearance. This ambiguity leads
to the duality mentioned above and will be important when defining dual ’t Hooft gravity.

After this we will provide an explicit introduction to LQG, starting from the first order
action and a triangulation of spacetime. The presentation of this chapter will follow [16],
but the calculations have been made more explicit. Furthermore, we will develop the dual
polarization of LQG. This will be needed when we attempt to answer the first goal of the
thesis, i.e. the relation between LQG and polygonal gravity. The relation between LQG
and its dual formulation will also be discussed. In continuum gravity, there are two sets of
constraints: one enforces flatness and the other no torsion. Notably, the order in which the
constraints are implemented will alter the geometric results of the theory. Furthermore,
when quantizing, the representation of the quantum theory will change. For instance, in
the LQG polarization, the torsion constraint is implemented first. This leads to SU(2)
spin-networks. However, in the dual polarization, the flatness constraint is implemented
first. The resulting quantum theory will be described by translation (non-commutative
R3) spin-networks. Therefore, this notion of duality can be very important for any theory
of quantum gravity.

Chapter 4 reviews ’t Hooft’s polygonal gravity; the presentation is adapted from [29,
45, 20]. The first part focuses on how to construct ’t Hooft’s foliation of spacetime in terms
of flat polygons. The construction of the foliation necessarily requires a number of gauge
choices. This is where the magic of ’t Hooft’s approach comes from, and is the main cause
of the difficulty when relating it to LQG. The partial gauge fixing ’t Hooft employs is also
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further discussed. In this regard, we will explore the two components of ’t Hooft’s gauge
fixing. One amounts to a definition of time, and therefore a Hamiltonian. The other fixes
the geometry of the Cauchy surface. What it very interesting about ’t Hooft’s theory is
that once the Cauchy surface and gauge fixing is complete, we already have a notion of
dynamics. This is due to ’t Hooft’s clever choice of time. Finally, in order to compare ’t
Hooft’s theory with LQG, a symplectic structure is required. Therefore, the second part
of chapter 4 will explain ’t Hooft’s choice of symplectic form. In doing so, we will also
review the phase space constraints of polygonal gravity. The exact symmetries that these
constraints encode, will also be discussed.

Chapter 5 analyzes the first goals of the thesis. The first part of the chapter describes
the relation between ’t Hooft gravity and LQG, or more specifically the dual form of
LQG. This is part of the reason why previous works [52, 28] struggled to relate LQG to
polygonal gravity. That is, they attempted to relate polygonal gravity to LQG, not its
dual formulation. Dual LQG is the superior choice, because both it and polygonal gravity
implement a notion of the flatness constraint first. The second part of this chapter will
use the relation developed in the first part to analyze the torus universe in polygonal
gravity. First, we will review the previous attempts of analyzing the torus universe [23,
54], then we will use the tools developed in this thesis to help elucidate the torus universe
in polygonal gravity. In doing so, we will review the observables in LQG that relate to the
torus universe.

The last chapter, 6, is dedicated to exploring a new theory of discrete gravity: dual
’t Hooft. Similar to how there exist dual polarizations in LQG, we find the same duality
exists in polygonal gravity. The first part of the chapter is dedicated to developing dual ’t
Hooft from purely geometrical arguments, analogous to polygonal gravity. We first solve
a set of constraints in dual ’t Hooft that are equivalent to the torsion constraint in LQG.
This suggests that dual ’t Hooft is related to LQG. Finally, we explore the relation between
dual ’t Hooft gravity and LQG.
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Chapter 2

Introduction to 2+1 Canonical
General Relativity

In this chapter we will review 2+1 gravity with no cosmological constant. The first part
of the chapter will review the first order formulation of gravity. The choice for using this
is twofold. First, in this language, 2+1 gravity can be viewed as a gauge theory, which
makes it much easier to quantize. Secondly, the first order formulation can handle spinning
particles, such as fermions.

In the final part, we will derive the Hamiltonian decomposition of 2+1 gravity in
the first order formulation. In particular, we will emphasize the ambiguity that exists
in defining the Liouville form or symplectic potential. This ambiguity leads to what is
called “polarizations” in phase space. Namely, how one decides what are momentum and
configuration variables. This choice of splicing leads to two different versions of LQG, as
was first pointed out in [16].

2.1 First order gravity
General relativity is a theory about the geometry of spacetime. In Einstein’s original
formulation, the basic variable of the theory is the metric gµν . We will take Greek indices
µ as spacetime indices with values 0, 1, 2. The Einstein-Hilbert action then encodes the
dynamics of the theory, and is given by

S[g] =
∫

d3x
√−g(R− 2Λ), (2.1)

where g is the determinant of the metric and Λ is the cosmological constant. Here we
have neglected any boundary terms that might be needed to make the integral well defined
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2.1 First order gravity

for spacetimes that are asymptotically flat or have a boundary (see [50] for a discussion).
For the rest of the paper, we will set Λ = 0, and assume spacetime has no boundary.
Furthermore, we will fix the signature of spacetime to (− + +). Computing the variation
of the action, leads to the vacuum Einstein equations given by

Rµν = 0. (2.2)

This equation is valid in all spacetime dimensions, however in 2+1 there is a simplification.
In 2+1, Rµν = 0 implies that the Riemann curvature tensor vanishes. Therefore, from basic
differential geometry (see [21] for a nice review), we know that, locally, the metric can be
taken to be ηµν i.e. the flat metric. This implies that spacetime is locally Minkowski space.
In fact, this simplification leads to the notion of geometric structures. In more detail, this
means that spacetime can be described as a series of Minkowski patches glued together
by the isometry group e.g. ISO(2, 1). This point will be key when formulating polygonal
gravity. Unfortunately, even with these simplifications, the metric formulation is difficult
to quantize. Furthermore, the metric formalism has difficulty incorporating fermions. For
these reasons, we will use a different formulation of gravity - the first order formulation.

The first order formulation is given by two sets of variables. One is the triad eIµ, where
I is an internal Minkowski indices that runs from 0 to 2. The triad eIµ, cam be interpreted
as assigning a local inertial observer to every point of spacetime. Mathematically, eI =
eIµdxµ can be viewed as a Minkowski valued one form, also called the soldering form1.
Furthermore, now SO(2, 1) is a local symmetry of spacetime, because inertial frames are
only defined up to a Lorentz transform. Finally, the triad is related to the metric of
spacetime by

gµν = eIµηIJe
J
ν . (2.3)

Note, that under a local gauge transformation, eI → gIJ e
J , where g ∈ SO(2, 1) that gµν is

unaffected.
The other ingredient needed is given by a so(2, 1) connection ωIµJ . This connection

will allow the parallel transport of local orthonormal frames around the manifold. Unlike
the metric formulation, we will not assume that ω and e are related. This implies that
spacetime may have torsion. Torsion T I , is defined as the gauge-covariant derivative dω of
the triad,

T I = dωeI = deI + ωIJ ∧ eJ . (2.4)
In terms of spacetime coordinates this is given by

T Iµν = ∂µe
I
ν − ∂νeIµ + ωIµJe

J
ν − ωIνJeJµ. (2.5)

If spacetime is torsion free then we recover the Levi-Civita condition relating e to ω,

de = −ω ∧ e. (2.6)
1The reason for this name is simple. If we view gravity as a local gauge theory, then eI solders the

local Minkowski space to the manifold so that it can be viewed as the tangent space.
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2.1 First order gravity

As ω is a connection, it does not transform covariantly, instead the transformation is
given by

ω → Ad(g)ω + gdg−1. (2.7)
The curvature form is given by,

F I
J = dωIJ + ωIK ∧ ωKJ . (2.8)

However, in 2+1 dimensions we can further simplify this. The adjoint representation of
so(2, 1) is equivalent to the fundamental one. Therefore we can use the following isomor-
phism to write the spin connection and curvature using one index

ωI = 1
2ε

IJKωJK ωIJ = εIJKωK . (2.9)

In fact, this is nothing but a vector space isomorphism from so(2, 1) → R2,1. In fact, it
is more than that. It is also an isometry from the Lie algebra to Minkowski space, where
the Lie algebra has the killing metric defined on it. We will take the killing metric to be
2 tr(ΣIΣJ) = ηIJ where ΣI is a basis of so(2, 1).

2.1.1 Lagrangian formulation of first order gravity
Before we describe the dynamics of first order gravity, we will make one further trans-
formation. This transformation will be moving from a local SO(2, 1) gauge theory to a
SU(1, 1) gauge theory. This is possible because the standard action of SO(2, 1) on R2,1 is
isomorphic to the adjoint of SU(1, 1). Moreover, SU(1, 1) is the spin group, or universal
cover of SO(2, 1). The use of SU(1, 1) is needed to include fermions, and simplifies calcu-
lations (for more on the relation see appendix A). To convert to a SU(1, 1) gauge theory,
we first rewrite our variables, (eI , ωIJ ) in terms of the group SU(1, 1). First, eI is an R2,1

valued one form so we can use the isomorphism to su(1, 1) defined by

eI → e = eIτI ,

where again the τI are the generators of g. Our conventions used (defined in appendix A),
are such that the algebra is represented by [τI , τJ ] = εKIJτK . Furthermore, the killing form,
or internal metric, is given by

〈A,B〉 = 2 tr(AB) ≡ 〈AB〉 . (2.10)

Next we take the su(1, 1) connection to be given by

ω = ωIτI = 1
2ε

IJKωIJ .

Here we have used the isomorphism so(2, 1) → R2,1 → su(1, 1). Therefore, the basic
variables for the theory are now (e, ω). Under a gauge transformation we then have that
(ω, e) behave like

ω → Ad(g)ω + gdg−1 e→ geg−1. (2.11)
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2.1 First order gravity

At the infinitesimal level, these equations become

ω → ω + dζ + [ω, ζ] = ω + dωζ, e→ e+ [e, ζ] with ζ a g valued scalar. (2.12)

Just like in the usual representation of gravity we will need to construct the curvature
for the gauge theory. In this case the curvature is just given by the standard equation in
gauge theory,

F = dω + 1
2[ω, ω]. (2.13)

In terms of the basis τ I , this is given by

F I = dωI + 1
2ε

I
JKω

J ∧ ωK , (2.14)

The curvature in this formalism is equivalent to the usual 2+1 curvature F I
J , and the

relation is just given by
F I = 1

2ε
IJKFJK

This proof of this is,

1
2ε

I
JKF

JK = d
(1

2ε
I
JKω

JK
)

+ 1
2ε

I
JKω

J
L ∧ ωLK

= dωI + 1
2ε

I
JKε

J
M Lε

L
N Lω

M ∧ ωN (ωLM = εILMω
I)

= dωI + 1
2(δIM δKL − δILδKM )ε L

N Kω
M ∧ ωN

= dωI − 1
2ε

I
N Mω

M ∧ ωN

= dωI + 1
2ε

I
NMω

N ∧ ωM = F I .

The dynamics of the 2+1 gravity in are specified by the action

Sgrav(e, ω) = −
∫
〈e, F [ω]〉 = −

∫
M
eI ∧ FI [ω]. (2.15)

To see that this is equivalent to the original Einstein-Hilbert action without a cosmological
constant, we will find the equations of motion2. First, varying the triad gives

F I
µν [ω] = 0,

i.e. spacetime is locally flat. These are almost the Einstein equations in 3D, except that
we need to check if the connection is Levi-Civita. Varying the action with respect to ω,

2Note, that if one includes matter, the Einstein-Hilbert action and the first order gravity action can
give different answers. For instance, with fermions first order gravity minimally coupled gives a spin-spin
interaction and results in non-zero torsion
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2.2 Canonical analysis

we get precisely the torsion free condition,

0 = δωSgrav = −
∫
M
eI ∧ dδωI + εINMe

i ∧ δωN ∧ ωM

= −
∫
M

(deN + εIMNe
I ∧ ωM) ∧ δωN ,

where we used Stoke’s theorem and the fact that there is no boundary component of
spacetime.

The equations of motion in the first-order formulation are therefore given by,
F = 0, T = 0, (2.16)

which just says that spacetime is locally flat and torsionless. This is precisely the solutions
space for the usual metric formulation of gravity. Therefore, on shell, the two theories will
agree classically. The symmetries of the theory, though, will be different. Both theories are
invariant under diffeomorphisms. However, the first order action contains an additional
symmetry; namely, it is invariant under local gauge transformations (2.12). In 3+1 gravity
these are the symmetries in the first order formalism. However, in 2+1 gravity there is an
additional symmetry. This symmetry generates local translations in spacetime,

ω → ω, e→ e+ dωN, with N a g valued scalar. (2.17)

To see this, we replace e by its translated version, the action (2.15), becomes

S(ω, e+ dωφ) = −
∫
M
〈(e+ dωφ) ∧ F 〉

= S(ω, e)− 1
2

∫
M
〈dωφ ∧ F 〉

= S(ω, e) + 1
2

∫
M
〈φdωF 〉+ boundary terms

= S(ω, e).

In the third step we used integration by parts, and in the last the Bianchi identity dωF =
0. The reason for the existence of this extra symmetry is precisely due to the fact the
2+1 gravity has no local degrees of freedom. That is, if we translate an observer, the
theory will not change. The existence of this extra symmetry is what simplifies 2+1
gravity. One can show [8], that diffeomorphisms are just a combination of translations and
gauge transformations in 2+1 dimensions. Implementing flatness and torsion, in a discrete
theory of gravity is much simpler than trying to implement diffeomorphism constraints in
a discrete theory.

2.2 Canonical analysis

2.2.1 First order gravity: Hamiltonian formulation
The first step in moving to a Hamiltonian decomposition, is to foliate spacetime into a
family hypersurfaces Σt, characterized by time function t. For this to happen, we will

9



2.2 Canonical analysis

assume that spacetime is globally hyperbolic. Furthermore, this implies that spacetime
is of the form R × Σ, where Σ represents space. We will assume that Σ is 2D manifold
without boundary. We will use the time function, denoting the hypersurface Σt as our
time coordinate, meaning we write the coordinates as t = x0, x1, x2. The next step is to
separate the first order action into time and space parts. In components the first order
action becomes,

S = −
∫
M
eI ∧ FI = 1

2

∫
M
eIµFIρσdxµ ∧ dxρ ∧ dxσ

= −1
2

∫
M
eIµFIρσ ε̃

µρσdtd2x. (2.18)

At this point we must make a decision about the polarization we are going to choose.
That is, we have to decide what variables to take as configuration variables and what will
be the conjugate momenta. The action (2.15), depends on both the connection ω and the
triad e. Note that, on shell we know that these two variables will be related through the
torsion free condition dωe = 0. Therefore, it we should can pick one as our starting point.
At the end of the day, both choices are acceptable since they will give the same theory.
However, what does change is the conjugate momenta, and thus the symplectic potential
or Liouville form (see appendix B for a definition of symplectic potential).

As an example, consider a non-relativistic particle with a Hamiltonian H. The action
is given by

S =
∫
pdq −Hdt, (2.19)

implying the Liouville form Θ is Θ = pdq. By adding a total derivative to the action,
i.e. − d(pq) we can change the Liouville form to −qdp. Doing this, changes p to the
configuration variable and q conjugate momentum. In fact, we can get a 1-parameter
family of such Liouville forms modifying the action to be,

S =
∫

(pdq −Hdt)− α
∫

d(pq) . (2.20)

Taking α = 1, we get the Liouville form −dqp. If we take α = 1/2 we get a “symmetric”
potential 1/2(pdq−qdp). All of these forms give the same symplectic form (up to boundary
terms in a field theory as we shall see). Furthermore, the equations of motion are unchanged
since the total derivative gives a boundary term that vanishes. As a result, physically
nothing will change from adding this boundary term.

Returning to the action (2.15), there seem to exist two choices of conjugate momenta,
δSgrav

δω̇aJ
≡ ẽaJ = ε̃0abeJb

δSgrav

δėaJ
≡ ω̃aJ = ε̃0baωJb.

(2.21)

Before making a choice of momenta, we will make the Hamiltonian decomposition easier
by splitting the action (2.18) into space and time parts,

S = −1
2

∫
M

(
eI0FIabε̃

0ab + 2eIaFI0bεa0b
)
dtdx2. (2.22)
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2.2 Canonical analysis

The second term, has a 2 because of the antisymmetry of F . We now set ε̃ab = ε̃0ab = −ε̃a0b,
to simplify the expressions. The first term, enforces that curvature must vanish. Moreover,
it contains no time derivatives suggesting it is a constraint. Focussing on the second term
in (2.22), we get

eIaFI0b = eIa
(
∂0ωIb − ∂bωI0 + ε JK

I ωJ0ωKb
)
. (2.23)

Plugging this into (2.22) gives

S =
∫
M

(
ε̃abeIa∂0ωIb − ε̃abeIa∂bωI0 + ε̃abeIaε

JK
I ωJ0ωKb −

1
2e

I
0FIabε̃

ab
)

dtd2x

=
∫
M

(
ε̃abeIa∂0ωIb + ε̃abωI0∂be

I
a + ε̃abeIaε

JK
I ωJ0ωKb −

1
2e

I
0FIabε̃

ab
)

dtd2x

=
∫
M

[
ε̃abeIa∂0ωIb + ωJ0

(
ε̃ab∂be

J
a + ε̃abεJKIe

I
aω

K
b

)
− 1

2e
I
0FIabε̃

ab
]
dtd2x,

=
∫
M

[
ε̃abeIa∂0ωIb −

1
2ωJ0ε̃

abT Iab −
1
2e

I
0ε̃
abFIab

]
dtd2x (2.24)

where for the second line we used integration by parts, and last T I = dωeI .
At this point, before we can continue, we need to pick a symplectic form. For this,

we first introduce some notation. We will take δ to denote the variational differential [14]
acting on the fields ω, e. This differential, will behave exactly like d.That is, it will square
to zero δ2 = 0 and the product δAδB will be antisymmetric. Again we stress that d acts
on spacetime while δ acts on the fields (e, ω).

The action, as expressed in (2.24), suggests that the favored choice of polarization is
to take ωIa as the configuration variable. In this case we get the Liouville form

Θgrav = 〈ẽaδωa〉 = −〈e ∧ δω〉 . (2.25)

The symplectic current is then given by Ωgrav = 〈δω ∧ δe〉.
However, we can add a boundary term to our action like in the particle example.

Consider modifying the action by

S → S − α
∫
M

d
(
eI ∧ ωI

)
, (2.26)

where α ∈ R. This is precisely the analogous to adding the term d(pq) to the action for a
particle In the case of 2+1 gravity we get the following family of symplectic potentials,

Θα = (1− α) 〈ẽaδωa〉 − α 〈ω̃aδea〉 . (2.27)

The symplectic current Ω = −δΘ, for our 1-parameter family is then given by

Ωα = −(1− α)δ 〈ẽaδωa〉+ αδ 〈ω̃aδea〉
= −(1− α)

〈
ε̃baδebδωa

〉
+ α

〈
ε̃baδωbδea

〉
= (1− α)

〈
ε̃abδωaδeb

〉
+ α

〈
ε̃abδωaδeb

〉
= Ωgrav.
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2.2 Canonical analysis

As expected, the symplectic form independent of our choice of Θα. Inverting Ωgrav, we get
the Poisson brackets for first order gravity,

{ωIa(x), ε̃bceJc(y)} = {eJa(x), ε̃cbωIc(y)} = δJI δ
b
aδ(x− y). (2.28)

In this thesis, we will stick with two choices of polarization α = 0, α = 1. The first
case, α = 0 corresponds to the usual LQG choice. On the other hand, α = 1, gives dual
LQG, as was first discovered in [16]3.

Now that we have a symplectic structure, we need to define the dynamics of the theory.
By varying eI0, ωI0, in the action (2.24) you get 6 constraints,

F I = ε̃abF I
ab = 0, T J = ∂aẽJa + εJIKω

I
aẽKa = 0. (2.29)

These constraints force the spatial part of the curvature and torsion to vanish and encode
the dynamics in 2+1 gravity. That is, the full 3-curvature and torsion must vanish on Σ. A
standard calculation then shows that these constraints form a first class system. In fact, FI
and T I are the momentum maps (see appendix B for a definition). To find the symmetries
the constraints generate we smear the torsion and curvature T =

∫
ξKT

K , F =
∫
NKFK

constraints with appropriate functions ξK and NK . A standard calculation shows that in
the LQG polarization, i.e. (ω, ẽ) we get

{ẽ, T [ξ]} = −[ẽ, ξ], {ω, T [ξ]} = −dωξ (2.30)
{ẽ,F [N ]} = d̃ωN, {ω,F [N ]} = 0. (2.31)

Referring to (2.12) and (2.17), we see that T and F generate gauge transformations and
translations respectively.

3The symmetric case α = 1/2 is related to the Chern-Simmons formulation of gravity [16]
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Chapter 3

Discrete Loop Gravity in Two
Different Polarizations

In the last chapter we reviewed continuum GR using the first order formalism. In this
chapter, we will describe a discretization of first order gravity - loop “quantum” gravity
LQG. Quantum is in quotes because this form of phase space was motivated by LQG, and
the theory we will be describing will be purely classical. LQG is a well studied formulation
of discrete gravity in 2+1, and is one of the best candidates for quantum gravity in 3+1.

We will begin by reviewing the discretization which will be used for LQG. In doing so,
we will face the same ambiguity that was mentioned in the previous chapter; namely, the
choice of polarization. This fact was first pointed out in [16], and much of the material of
this chapter was taken from there. The polarization ambiguity will lead to two different
theories: LQG and dual loop quantum gravity, or simply LQG∗.

3.1 Discretizating phase space
We start with a triangulation Γ∗, which is dual to a 3-valent graph Γ. Inside each triangle,
spacetime will be flat and torsionless. In fact, any curvature and/or torsion will be placed
on the vertices of the triangulation. The vertices of the triangulation, will be denoted by
v1, v2, . . . and the edges of Γ∗ by ˜̀ = [v2v1]. The order of the edge is to be read from
right to left. That is, for an edge starting at v1 and ending at v2 we would have [v2v1].
While this ordering might seem reversed, it is the more natural choice when using the left
action. Dual to the triangulation will be an oriented graph Γ, specified as follows: Inside
each triangle [v3v2v1] of Γ∗ a “center” point or node c is given. The duality is expressed by
c∗ = [v3v2v1]. These center points will further denote the nodes of the graph Γ dual to the

13



3.1 Discretizating phase space

v̄ Γ∗

Γ

v

c̄

c

gc(x)

Figure 3.1: Components of the graphs Γ,Γ∗ and the holonomy gc(x). Curvature and torsion
sit on the vertices of Γ∗, i.e. vi. The face c∗ and c̄∗ share the edge `∗ = [v̄v], the dual of
the oriented edge ` = [c̄c].

Triangulation Γ∗ Dual graph Γ
Triangle c∗ Node c
Edge `∗ Link `
Vertex v Face f

Table 3.1: Summary of the components of the triangulation Γ∗ and dual graph Γ∗

triangulation. The links of the graph are then denoted by ` = [c2c1]. The duality between
the links of the graph and the edges of the triangulation are specified by

`∗ = [c′c]∗ = [v′v] if [v′v] = c∗ ∩ c′∗. (3.1)

Pictorially, this expresses the fact that the dual link will be transverse to the edge of two
adjacent triangles (see figure 3.1). This duality is actually between the oriented links and
edges. The orientation on the edges of Γ∗ are specified from a counterclockwise rotation
from the respective dual links of Γ. This discretization scheme will form the basis for all
discrete theories of gravity that will be described in this thesis.

Now that we have the triangulation and dual graph specified, we can discretize phase
space. As curvature and torsion is concentrated on the vertices, we know that in each
triangle, c∗, ω can be written as

ω(x) ≡ (gcdg−1
c )(x) = −(dgcg−1

c )(x). (3.2)

The group valued function gc(x), can be viewed as the holonomy from c to x ∈ c∗ with
normalization gc(c) = 1. Note, that since spacetime is flat and torsionless inside each
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3.1 Discretizating phase space

triangle, the choice of path taken does not matter. For example, if we take any two paths
from c to x ∈ c∗ and compose them to form a loop, then the holonomy around that loop
must be the identity since the curvature vanishes.

With this parameterization, the torsion free condition implies that g−1
c egc is closed on

c∗,

d(g−1
c exgc) = (dg−1

c ∧ e)gc + g−1
c degc + g−1

c + g−1
c (e ∧ dgc)

= −(g−1
c dgcg−1

c ) ∧ egc + g−1
c degc + g−1

c e ∧ dgc
= g−1

c

(
de− (dgcg−1

c ) ∧ e+ e ∧ (dgcg−1
c )

)
gc

= g−1
c (de+ ω ∧ e− e ∧ ω)gc

= g−1
c Tgc

= 0

In this calculation we used the following fact, that will be used time and time again in this
thesis:

dg−1 = −g−1dgg−1. (3.3)
From this calculation we see that g−1

c egc is closed on c∗, which implies the form is exact in
the triangle. Therefore, we can introduce the Lie algebra valued function yc on c∗, which
satisfies

e(x) =
(
gcdycg−1

c

)
(x) (3.4)

The potential yc can be viewed as an embedding of the triangle into flat Minkowski space.
The next step is to discretize the symplectic structure. Our starting point will be the

symplectic form Ωgrav = 〈δe ∧ δω〉, since this does not depend on our choice of polarization.
Another reason we start with this, and not the Liouville form Θα (2.27), is that natural
discretizations of density weight one variables, such as ω̃, is not obvious. However, the
discretization of the connection itself is immediate. Therefore, we will start with the
discretization of ω and along the way try to identify the different polarizations mentioned
in the previous chapter. As we will see, LQG i.e. α = 0 and dual LQG α = 1 will arise
naturally.

In order to calculate Ωgrav in terms of our variables gc the holonomy and dyc, we need
to find the variations of ω and e in terms of (gc, dyc). First calculating δω, we get

δ(gcdg−1
c ) = δgcdg−1

c + gcdδg−1
c

= δgcdg−1
c − gc d

(
g−1
c δgcg

−1
c

)
= −gc

(
dg−1

c δgc + g−1
c dδgc

)
g−1
c .

This implies another identity that will be used throughout this thesis.

δ(gdg−1) = −g d
(
g−1δg

)
g−1. (3.5)
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3.1 Discretizating phase space

This only constitutes half of the variations considered. The others are the variations of
the dyad in terms of the potential yc and the holonomy gc. In this case the variation is

δe = δ
(
gcdyg−1

c

)
= δgcdycg−1

c + gcdδycg−1
c + gcdycδg−1

c

= δgcdycg−1
c + gcdδycg−1

c − gcdycg−1
c δgcg

−1
c

= gc
(
dδy + g−1

c δgcdyc − dycg−1
c dgc

)
g−1
c

= gc
(
dδyc + [g−1

c δgc, dyc]
)
g−1
c . (3.6)

Discretizing Ωgrav, by smearing it over each triangle c∗, we get

Ωc = −
∫
c∗
δ
〈
d
(
g−1
c δgc

)
∧ dyc

〉
. (3.7)

To see this, we plug (3.5) and (3.6) into the symplectic density getting,

Ωgrav = 〈δω ∧ δe〉
=
〈
− d

(
g−1
c δgc

)
∧
(
δdyc + [g−1

c δgc, dyc]
)〉

= −δ
〈
d
(
g−1
c δgc

)
∧ dyc

〉
. (3.8)

The last line can be verified by expanding the left hand side and remembering that δAδB =
−δBδA (if A and B are functions not forms),

−δ
〈
d
(
g−1
c δgc

)
∧ dyc

〉
= −

〈
dδ
(
g−1
c δgc

)
∧ dyc

〉
−
〈
d
(
g−1
c δgc

)
∧ dδyc

〉
= −

〈
d
(
δg−1

c δgc
)
∧ dyc

〉
+ . . .

=
〈
d
(
g−1
c δgcg

−1
c δgc

)
∧ dyc

〉
+ . . .

=
〈
g−1
c δgcd

(
g−1
c δgc

)
∧ dyc

〉
+
〈
d
(
g−1
c δgc

)
g−1
c δgc ∧ dyc

〉
+ . . .

= −
〈
d
(
g−1
c δgc

)
∧ dycg−1

c δgc
〉

+
〈
d
(
g−1
c δgc

)
∧ g−1

c δgcdyc
〉

−
〈
d
(
g−1
c δgc

)
∧ dδyc

〉
= −

〈
d
(
g−1
c δgc

)
∧
(
dδyc + [g−1

c δgc, dyc]
)〉
.

In the second last line, we used that the trace is cyclic and δ is antisymmetric.
While this calculation is tedious, (3.8) allows us to see that Ωgrav is an exact two form.

This means we can pull a d out. However, now there is an ambiguity, namely how do
we perform the integration? Each form will differ by a boundary term, however, when
summing over all the triangles the boundary component will vanish. This is exactly the
polarization ambiguity we described above, will lead to LQG and dual LQG.

The two integration choices we will make are

Ωc = −
∫
∂c∗

δ
〈
g−1
c δgcdyc

〉
(3.9)

=
∫
∂c∗

δ
〈
ycd

(
g−1
c δgc

)〉
. (3.10)
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3.1 Discretizating phase space

This gives us two different symplectic potentials and thus different polarizations,

Θc =
∫
c∗

〈
g−1
c δgcdyc

〉
(3.11)

Θ∗c = −
∫
c∗

〈
ycd

(
g−1
c δgc

)〉
. (3.12)

The first form is the LQG polarization while the second the dual LQG polarization.
If we continue with the discretization of the LQG polarization, we would end up with the
standard LQG picture, as we will show below.

So far we only have the symplectic form for a single triangle, which can be seen as a
sum of integrals over the edges `∗ of c∗. To form the complete phase space we need to
to glue these triangles together. First, we will apply matching conditions to the triangles
that enforce ω and e are continuous across triangles. Demanding that the connection ω is
continuous across the edge implies that

gcdg−1
c (x) = ω(x) = gc̄dg−1

c̄ (x), ∀x ∈ `∗. (3.13)

This equation requires that there exists a constant group element hc̄c that relates the
frames at c and c̄,

gc(x) = gc̄(x)hc̄c, ∀x ∈ `∗. (3.14)
This equations says that the transformation from c to x, is the same as going from c to
c̄ and then to x (see figure 3.2), which is that case since curvature is contained at the
vertices. The element hcc̄, represents the holonomy of the connection, ω, when moving
from c to c̄ along the link ` ∈ Γ. This holonomy forms the first standard LQG variable.
By flipping c and c̄ in (3.13), one can easily see that hc̄c = h−1

cc̄ .
The other matching condition, enforces that the dyad e(x) is continuous across an edge,

gcdycg−1
c (x) = e(x) = gc̄dyc̄g−1

c̄ (x), ∀x ∈ `∗. (3.15)

Using (3.14) this means the potentials yc, yc̄ must obey

dyc̄ = hc̄cdych−1
c̄c . (3.16)

Integrating this equation we end up with,

yc̄ = hc̄c(yc + xc̄c)h−1
c̄c . (3.17)

The constant term xc̄c ∈ g represents the translational holonomy, and is the edge vector
connecting the two nodes c, and c̄. This transformation simply reflects that the potentials
yc, transformation is given by the Poincaré group, with (hc̄c, xc̄c). In other words, when
moving from c to c̄ the frame is both rotated by hc̄c and translated by xc̄c.

Using these relations, we can start gluing triangles together to get the complete discrete
phase space of gravity. However, instead of dealing with triangles we will deal with the
edges. The reason for this is that our symplectic form, after integration, is localized on
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v̄
Γ∗

Γ
c̄

hc̄c

c gc(x)

v

gc̄(x)

Figure 3.2: The constant holonomy hc̄c, relates the frames associated to the “center” of
the two faces c and c̄.

the edges (see (3.9)). Therefore, since each link of Γ is dual to an edge, we can write the
total symplectic structure as the sum of contributions from each link ` = [c̄c] of Γ. To do
this, we first refer to figure 3.2, and the edge `∗ = [v̄v], with dual link [c̄c]. In this case,
the symplectic form for [v̄v] will get contributions from c and c̄. If we start with the LQG
polarization, the symplectic potential for the edge ` will be given by

Θ` =
∫
`∗

[
g−1
c δgcdyc − g−1

c̄ δgc̄dyc
]
. (3.18)

There are two terms, since each edge of the triangulation is shared by two triangles.
Furthermore, the negative sign is due to the edge having the opposite orientation when
viewed from the triangle c̄. Similarly, the symplectic potential for the dual polarization
will be given by

Θ∗` = −
∫
`∗

[
yc d

(
g−1
c δgc

)
− yc̄ d

(
g−1
c̄ δgc̄

)]
. (3.19)

The total symplectic potential is then given by summing all the links of the graph, i.e.

Θtotal =
∑
`∈Γ

Θ`. (3.20)

These two potentials will form the basis for the next two sections. Before we move on,
note that both of these symplectic potentials are related by a total derivative, namely

Θ∗` = Θ∗ −
∫
`∗

d
(〈
g−1
c δgc

〉
yc −

〈
g−1
c̄ δgc̄yc̄

〉)
. (3.21)

After summing over all the links of the graph we therefore, get that this boundary term
vanishes, confirming both polarizations will give the same symplectic form in the end.
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3.2 LQG polarization

3.2 LQG polarization
The starting point of the LQG or standard polarization is the Liouville form,

Θ` =
∫
`∗

[
g−1
c δgcdyc − g−1

c̄ δgc̄dyc
]
. (3.22)

Since gc̄(x) is a function of hc̄c and gc(x) and dyc̄ satisfies (3.16), we can rewrite the second
term in (3.18) as 〈

g−1
c̄ δgc̄dyc̄

〉
=
〈
hc̄cg

−1
c (x)δ(gc(x)h−1

c̄c )
(
hc̄cdych−1

c̄c

)〉
=
〈(
g−1
c (x)δgc(x)− h−1

c̄c δhc̄c
)
dyc

〉
.

Therefore, the symplectic potential becomes

Θ` =
〈
h−1
c̄c δhc̄c

∫
`∗

dyc
〉
, (3.23)

where we were able to move the integral in since hcc̄ is constant over `∗. The potential
Θ` gives then the natural choice of variable dual to hc̄c. The dual variable is the standard
LQG flux vector Ẽc

`∗ defined as

Ẽc
`∗ =

∫
`∗

dyc =
∫
`∗
gceg

−1
c ≡

∫
`
gcẽg−1

c . (3.24)

Therefore, our phase space variables are Ẽ`∗ , h̃`. This provides a natural discretization
of the Θgrav = 〈ẽaδωa〉 polarization of gravity. The effect of the density being placed
on e is that it encodes information of the triangulation. In the following section we will
see a similar outcome for the −〈ω̃aδea〉, where the holonomies live on the edges of the
triangulation.

Before we continue, we should see how the flux vector transforms under a gauge trans-
form. Consider the gauge transformation ξ(x) ∈ SO(2, 1). Since we have chosen left
multiplication for our group action, we know that the holonomy gc(x) will transform as
ξ(x)gc(x)ξ−1(c), and e→ ξ(x)e(x)ξ(x)−1. Plugging these two equations into (3.24), we get
that the flux transforms as

Ẽc
` = ξ(c)Ẽ`ξ(c)−1. (3.25)

Using this transformation law, we can see that the flux vectors sit at the node c and in
a sense represents the edge vector of `∗ as seen from c. One other point of interest is the
orientation of `∗. That is, choice of orientation is of arbitrary and therefore, we should
find out how the flux changes if we reverse the orientation. In this regard, we replace
` = [c̄c] with −` = [cc̄], which induces a change in orientation for `∗, i.e. `∗ → −`∗ = [vv̄].
The holonomy variables then becomes hcc̄, and the corresponding flux becomes Ẽ c̄

−`∗ , and
satisfies

Ẽ c̄
−`∗ = −h`∗Ẽc

`∗h
−1
`∗ . (3.26)
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3.2 LQG polarization

The discretized phase space variables are thus,

(hvc̄c = g−1
vc̄ gvc, Ẽ

c
`∗), (3.27)

where gvc = gc(v). Notice that in the above definition, we have set hc̄c = g−1
c̄ (v)gc(v). This

was done since h is a constant, and taking x = v allows for a better comparison with dual
LQG.

Using these phase space variables, the symplectic form is given by,

ΩLQG
` = −δ

〈
h−1
` δh`Ẽ`∗

〉
= −

〈
δ(h−1

` δh`)Ẽ` − (h−1
` δh`)δẼ`

〉
= −

〈
−(h−1

` δh`)(h−1
` δh`)Ẽ` − (h−1

` δh`)δẼ`
〉
.

An equivalent expression is,

ΩLQG
` =

〈
(h−1

` δh`)(h−1
` δh`)Ẽ` + (h−1

` δh`)δẼ`
〉
, (3.28)

which is the standard symplectic form associated to T ∗SU(1, 1) [3, 4]. This gives the
symplectic structure for one edge of the graph Γ. Expanding this construction to all the
links of our graph, we can get the entire phase space. The fluxes will sit at the nodes of Γ
as (3.25) shows, but will depend on the edges of Γ∗. On the other hand, the holonomies
sit on the links of Γ directly.

Before moving on, we remind the reader of some Lie group theory. The Lie algebra
g = TeG of a Lie group G, is isomorphic to the set of left-invariant vector fields on G1.
Left invariant vector fields ∇R

X are generated by right translation; namely, if X ∈ g, then
the left invariant vector field associated to X is given by

∇R
Ef(g) = f

(
getE

)∣∣∣∣
t=0

, (3.29)

where f is a function on G.
Every Lie group G also carries a natural one-form, called the Maurer-Cartan form.

This one-form maps vector fields on TG to elements of the Lie algebra, and is given by
ωg(v) = dLg−1(vg). Often in literature, this form will be written as g−1dg, which is strictly
true if G is a matrix Lie group. The Maurer-Cartan form is Left-invariant as is easily seen
from

L∗gωgh(v) = ωgh(Lgv) (3.30)
= dL(gh)−1dLgv (3.31)
= dL−1

h v (3.32)
= ωh(v). (3.33)

1In this paper we have been using the left action of G so this definition is more natural for us. If we
used the right action we would have used the right-invariant vector fields, but the choice is arbitrary.
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3.2 LQG polarization

In fact, using a similar calculation, one can show that the set of left invariant one forms is
isomorphic to g∗.

In our case, G = SU(1, 1) and we also have the killing metric 〈X, Y 〉 = 2 tr(XY ).
This provides us with an isomorphism between T ∗SU(1, 1) and TSU(1, 1). Therefore, we
can define the dual of Y ∈ g, by Y ∗ ∈ g∗ where Y ∗(X) = 2 tr{XY }. Thanks to this
representation, we can then parameterize su(1, 1)∗ with elements of g. Therefore, we can
trivialize T ∗SU(1, 1) using

SU(1, 1)× su(1, 1)∗ → T ∗SU(1, 1) (3.34)
(g,X)→ Θg = ωg(X∗) =

〈
Xg−1dg

〉
. (3.35)

Notice that this is exactly the symplectic potential of LQG (3.23). Using this trivialization,
one is led to the following theorem for the Poisson brackets of T ∗SU(1, 1),

Theorem 3.1. The symplectic two form ΩLQG gives Poisson brackets

{HY , HZ} = H[Y,Z], {HY , f(g)} = ∇R
Xf(g), {f1(g), f2(g)} = 0, (3.36)

where HY : T ∗G → R, is the linear function HY (Z∗) = 〈Y, Z〉, and f(g) is a smooth
function on G.

For the proof of this theorem see [25].
The nice part of the Poisson brackets in theorem 3.1 is that they are independent of

the basis we pick. However, when it comes to computations, this abstract form will not be
of much use. Therefore, we will express the Poisson brackets in term of the orthonormal
basis τI we described above. Using this basis we can identify su(1, 1) with R2,1. In fact, we
have that HτI (E) = 〈E, τ I〉 = EI , is just the coordinate function. Therefore, the Poisson
brackets for the fluxes become

{HτA , HτB}(Ẽ`∗) = H[τA,τB ](Ẽ`∗)
= Hεij

k
τk(Ẽ`∗)

= εABCẼ
C
`∗

Similarly, if we consider the coordinate functions gab for g ∈ SU(1, 1) we have that

∇R
τAgmn = ∂gmn

∂gab

d(getτA)ab
dt

∣∣∣∣∣
t=0

= (gτA)mn.

Therefore, the second equation in (3.36), in terms of the coordinate functions, becomes

{HτA(E), gmn} = (gτA)mn

Therefore, in the τA basis, the Poisson brackets for LQG becomes

{ẼA
`∗ , Ẽ

B
`∗} = εABCẼ

C
`∗ , {ẼA

`∗ , h`} = h`τ
A, {h`, h`} = 0, (3.37)
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3.2 LQG polarization

where h` needs to be interpreted as the coordinate function. Note, that the Poisson brackets
between the holonomy and the flux with its orientation flipped, Ẽ−`∗ , is given by

{Ẽ−`∗ , h`} = −τ ih−1
` . (3.38)

At this point we have can start to implement the dynamics or constraints of the theory.
The first constraint arises naturally from the kinematical structure of our graph, and for
this reason is known as the kinematical constraint. In the LQG formalism it is given by

Jc ≡ Ẽ[v1v2] + Ẽ[v2v3] + Ẽ[v3v1] =
∫
∂c∗

dyc =
∫
c∗

ddyc = 0. (3.39)

The meaning of this constraint is apparent from its definition. It just reflects the fact
that we assumed the interior of each triangle was torsion free. Therefore Jc, the Gauss
constraint, is a discrete version of the torsion constraint. In the dual LQG formulation, the
kinematical constraint just reinforces the other assumption we made about the triangles,
namely that they are locally flat.

Mathematically, what this constraint implies that our phase space variables (h`, Ẽ`∗)
are no longer free. Namely, different (h,E) could be related by a gauge transformation.
Furthermore, by analogy with the continuum case, the expectation is that the constraint Jc
generates local SU(1, 1) gauge transformations. The constraint Jc is a abelian momentum
map (see appendix B for a definition), therefore flow of the constraint is given by,

δcαẼ`∗ = {Ẽ`∗ , Tc(α)}, δcαh` = {h`, Tc(α)}, (3.40)

where Jc(α) = ξcAJ A
c . Using the Poisson brackets in (3.37) one finds (an explicit derivation

of a similar result will be provided in the next section)

δcξẼ`∗ = [ξc, Ẽ`∗ ] δcξh` = −h`ξc. (3.41)

These are precisely the infinitesimal SU(1, 1) gauge transformations (3.25).
At this point we can recover the classical version of spin networks, aka the kinematical

phase space of LQG Pkin
LQG, using Marsden-Weinstein reduction [33],

Pkin
LQG = (×`∈ΓT

∗
` G) � (×c∈ΓJ −1

c (0)).

Physically this means we have to do two things to find the kinematical phase space. First,
we have to find a set of observables that are invariant under the flow of Jc, i.e. SU(1, 1)
invariants. Second, the variables have to be a solution of Jc = 0. Later in chapter 6,
we will find a give a well-known description of a set of gauge invariant observables that
describe the kinematical phase space.

The last constraint we will need to define is the constraint that defines the dynamics of
the theory. In [51], it was shown that the Hamiltonian and diffeomorphism constraint in
2+1 are just a combination of the flatness and Gauss constraint. Therefore, by introducing
a discrete form of the flatness constraint, will be able to recover the dynamics of 2+1
gravity. We will need to ensure that the constraint is first class in order for the theory to
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3.2 LQG polarization

be related to gravity however. Luckily due to the holonomy, there is a canonical choice
of constraint that enforces flatness that will be first class. Namely, that the holonomies
around the faces of f in Γ are give the identity,

Gf =
∏
`∈f

h` = 1. (3.42)

This constraint, together with the kinematical constraints J , form the complete system
of constraints. Moreover, one can show, as will be done in the next section, that these
constraints are first class, as required. The fact that {Gf}f∈Γ is a first class constraint,
immediately suggests that it generates some symmetries of the theory. However, here
we run into a slight problem. The kinematical constraint was a straightforward abelian
momentum map, which necessarily means that it is Lie algebra valued. In this case, the
flatness constraint is Lie group valued. This constraint is an example of a non-abelian
momentum map [2], see appendix B for additional information. Therefore, to see the
symmetries generated by the momentum map we use the following formula [6],

δvβẼ
A
`∗ ≡ 〈G−1

λ {ẼA
`∗ ,Gλ}, βBv τB〉, δvβh` ≡

〈
G−1
λ {h`,Gλ}, βBv τB

〉
. (3.43)

While this seems to depend on the choice of ordering for the flatness constraint, one can
show that different orderings are just related by a redefinition of the gauge parameter βv.
In LQG the simplest loops are given by the faces dual to some vertex in Γ∗. For instance,
if we consider the loop λ = [c1, cn, . . . , c2, c1] and define `i = [ci+1, ci], then the flow is

δvβẼ`∗i = HiβH
−1
i , (3.44)

where Hi = h`ih`i−1 · · ·h`1 . This transformation is a discrete version of a translation, which
matches the symmetry generated by the flatness constraint in continuum gravity.

The dynamical or reduced phase space, is then given by the Marsden-Weinstein theorem
extended to Lie group valued momentum maps [2],

Pdyn
LQG = Pkin

LQG � (×f∈ΓG−1
λ (1)). (3.45)

This phase space represents the true degrees of freedom of 3D gravity, i.e. its elements are
the observables of gravity.

We can now do a sanity check to further ensure that our system is really gravity. The
reduced phase space of gravity for genus g, g > 1, has dimension 12g − 12 as previous
studies have shown (see [9] for a review). Starting from the LQG phase space, lets assume
that we have E links. Each link carries 3 degrees of freedom from the holonomies, and 3
degrees of freedom from the flux. Therefore, we have 6E degrees of freedom. Associated to
every node of the graph, we have 3 constraints from the Gauss constraint Jc. Furthermore,
every face has three constrains, due to the flatness constraint. Therefore, since we also
have to remove the degrees of freedom due to the flow of the constraint, the dimension of
the reduced phase space of LQG is

6E − 2(3N − 3F ) = −6(N − E + F ) = −6χ = 12g − 12, (3.46)
where N,F are the number of nodes and faces respectively and χ is the Euler number.
This matches the dimension of the reduced phase space of gravity.
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3.3 Dual LQG polarization

3.3 Dual LQG polarization
In the last section we derived LQG in the standard polarization. This meant we started
with (3.18). In this section we will flip the script and use the dual polarization Liouville
form,

Θ∗` = −
∫
`∗

〈
yc d

(
g−1
c δgc

)
− yc̄ d

(
g−1
c̄ δgc̄

)〉
. (3.47)

Our goal will be to proceed in a similar direction as the previous section. The difference
will be that now yc will be our configuration variable instead of the holonomy. First, we
simplify the second term in the symplectic potential by using (3.17), (3.14)〈

yc̄ d
(
g−1
c̄ δgc̄

)〉
=
〈
hc̄c(yc + xc̄c)h−1

c̄c d
[
hc̄cg

−1
c (x)δ

(
gc(x)h−1

c̄c

)]〉
=
〈
hc̄c(yc + xc̄c)d

(
g−1
c (x)(δgc(x)h−1

c̄ − gc(x)h−1
c̄c δhc̄ch

−1
c̄c )

)〉
=
〈
hc̄c(yc + xc̄c)d

(
g−1
c (x)δgc(x)

)
h−1
c̄c

〉
,

where we used that hc̄c is a constant function. Therefore, the symplectic potential becomes

Θ∗` =
∫
`∗

〈
xc̄cd

(
g−1
c (x)δgc(x)

)〉
. (3.48)

Recalling the translational holonomy xc̄c is constant, we can perform this integration ex-
plicitly,

Θ∗` =
〈
xc̄c
(
g−1
v̄c δgv̄c − g−1

vc δgvc
)〉
, (3.49)

where gvc = gc(v).
Defining the holonomy from v to v̄ viewed from c, h̃cv̄v ≡ gv̄cg

−1
vc , we can further simplify

Θ∗,
Θ∗` =

〈
(gv̄cxc̄cgvc)(h̃cv̄v)−1δh̃cv̄v

〉
. (3.50)

From this we define the configuration variable,

Ev
` ≡ gvcxc̄cg

−1
vc , (3.51)

implying the symplectic potential is given by

ΘLQG∗

` =
〈
Ev
` (h̃c`∗)−1δh̃c`∗

〉
. (3.52)

The holonomy h̃ provides the natural discretization of ω̃, (2.21), as now Ev
` lives on the

graph, and h̃`∗ lives on the triangulation. Furthermore, since xc̄c is the translational holon-
omy from c to c̄ we see that Ev

` can be interpreted at the vector connecting c to c̄ as viewed
from the vertex v.

To summarize, the variables of dual LQG are(
Ev
` ≡ gvcxc̄cg

−1
vc , h̃cvv̄ ≡ gv̄cg

−1
vc

)
. (3.53)
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3.3 Dual LQG polarization

Under a reverse of orientation, we need to understand how the fluxes change. Changing
` = [c2c1] to [c1c2] again induces a change in orientation for the dual edge. Therefore, we
actually have that the flux sits at a different vertex under a change of orientation,

E v̄
−` = −h̃cv̄vEv

` (h̃cv̄v)−1. (3.54)

In order to derive this, recall that yc̄ = hc̄c(yc + xc̄c)h−1
c̄c , which gives

yc = hcc̄yc̄h
−1
cc̄ − xcc̄. (3.55)

As a result, we have xcc̄ = −hc̄cxc̄ch−1
c̄c . The flux then becomes,

E v̄
−` = gv̄c̄xcc̄g

−1
v̄c̄

= −gv̄c̄
(
hv̄c̄cxcc̄(hv̄c̄c)−1

)
g−1
v̄c̄

= −gv̄c̄gc̄vgvcxcc̄gcvgvc̄gc̄v̄
= −h̃c̄v̄vEv

` (h̃c̄v̄v)−1.

Note that these variables sit at the vertices of Γ∗, which is dual to the usual LQG variables.
Therefore, we can think of have observers sitting at the vertices v locally describing the
geometry they see around them.

Just like LQG, the symplectic structure is given by T ∗SU(1, 1). Inverting the symplectic
form ΩLQG∗

` will be identical to LQG except with Ẽ`∗ → E` and h` → h̃`∗ , that is,

{EA
` , E

B
` } = εABCE

C
` {EA

` , h̃
c
`∗} = h̃c`∗τ

A {h̃c`∗ , h̃c`∗} = 0. (3.56)

This completes the symplectic structure for the dual LQG polarization. The next
step will be to describe the constraints of the theory. In opposition to LQG, here the
kinematical constraint enforces that the triangles of Γ∗ are flat. Namely, for the triangle
c∗, with vertices v1, v2, v3 we have that

Gc = h̃cv1v3h̃
c
v3v2h̃

c
v2v1 = 1. (3.57)

The flow for the constraint Gc is given by

δ̃cβE
A
` = 〈G−1

c {EA
` ,Gc}, βBc τB〉, δ̃cβh̃`∗ =

〈
G−1
c {h`∗ ,Gc}, βBc τB

〉
, (3.58)

and gives the infinitesimal form of translation of the nodes of Γ. Just like the flatness
constraint in LQG, this is an example of a non-abelian momentum map. If we consider a
triangle c∗ with vertices [v1v2v3] and let Gc = h̃c`∗3 h̃

c
`∗2
h̃c`∗1 , where `

∗
i = [vi+1vi] then the flow

is explicitly given by

δ̃cβE
v3
`3 = h̃c`∗3 h̃

c
`∗2
βc(h̃c`∗2 h̃

c
`∗2

)−1, δ̃cβE
v2
`2 = h̃c`∗1βc(h̃

c
`∗1

)−1, δ̃cβE
v1
`1 = βc. (3.59)
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3.3 Dual LQG polarization

To see how these were calculated, we consider the E`3 case. In this case we get that

δ̃cβE
A
`3 = 〈G−1

c {EA
`3 , h̃`∗3 h̃`∗2 h̃`∗1}, β〉

= 〈h̃−1
`∗1
h̃−1
`∗2
h̃−1
`∗3

(h̃`∗3τ
A)h̃`∗2 h̃`∗1 , β〉

= 〈Ad∗(h̃`∗2 h̃`∗1), β〉
= 〈τA,Ad(h̃`∗2 h̃`∗1)β〉
= 〈τA, τCRC

B(h̃`∗2 h̃`∗1)βB〉
= RC

B(h̃`∗2 h̃`∗1)βBδAC
= [Ad(h̃`∗2 h̃`∗1)β]A.

In the fourth and last line we use the isomorphism between the adjoint representation of
SU(1, 1) and the standard representation of SO(2, 1).

The kinematical phase space of dual LQG is given by the symplectic reduction by the
constraint Gc,

Pkin
LQG∗ = (×`∗∈Γ∗T ∗`∗G) �

(
×c∈ΓG−1(1)

)
. (3.60)

If we implemented this constraint at the quantum level we would expect that we would
get translational (non-commutative R3) spin networks. Namely, spin networks where the
discrete translations have been factored out. As we will argue below, completely factoring
out the gauge orbits is too strict when comparing LQG to polygonal gravity. Furthermore,
unlike LQG where the reduction is mostly simple to implement, here it is quite difficult.

v3

v2

v1

c1
c4

c3 c2

v5

v4
v0

c5

Figure 3.3: Gauss constraint associated to a vertex at v0

Moving onto the dynamical constraint, we expect this to be related to the Gauss con-
straint. Consider a vertex v0 surrounded by n vertices (v1, . . . , vn) ordered clockwise, and n
nodes, or centers (c1, . . . , cn) (see figure 3.3). The labeling is chosen so that c∗i = [vi+1viv0],
with vn+1 = v1. Furthermore, to simplify notation, we denote Xv0

[viv0]∗ ≡ Xi. Now
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3.3 Dual LQG polarization

we will construct an observable that will commute with G. This means our observable
at v0 has to commute with the n flatness constraints Gci . First, consider the quantity
E1 + E2 = Ev0

[v1v0]∗ + Ev0
[v2v0]∗ . The first term in this quantity transforms as,

δ̃c1
β E1 = β, (3.61)

if we choose Gc1 = h̃v0v2h̃v2v1h̃v1v0 . The second term is similar but there is a slight difference
due to a change in orientation. For this recall that,2

{EA
` , h̃−`} = −τAh̃−`∗ . (3.62)

With this in hand, the second term is given by

δ̃c1
β E

A
2 = 〈G−1

c1 {EA
2 , h̃

−1
v2v0}h̃v2v1h̃v1v0 , β〉

= −〈G−1
c1 τ

AGc1 , β〉 = −〈τA, β〉.
Therefore, the sum E1 + E2 commutes strongly with Gc1 . Continuing this and summing
all the fluxes Ei, we see that it will also strongly commute with every Gci . Therefore, we
will take the Gauss, or dynamical constraint, to be

Jv0 =
n∑
i=1

Ea = 0, (3.63)

which computes the integral of the torsion around the face f dual to v0. To make sure
this is related to the torsion constraint, we also need to compute the transformations it
generates. Setting ξ = ξAτA, and Jv0(ξv) ≡ ξA

∑
j E

A
j , we first get

δv0
α E

A
i = {EA

i , αB
∑
j

EB
j }

= αB{EA
i , E

B
i }

= αBε
AB

CE
C
i

= [α,Ei]A.

Similarly for the holonomy, where h̃i = h̃viv0 we get

δv0
α h̃i = {h̃i, ξA

∑
j

EA
j } = ξA{h̃i, EA

j } = −h̃iξ.

Therefore, putting these together we get that the transformations induced by the Gauss
constraint Jv are given by

δvξE
v
` = [ξv, Ev

` ], δvξ h̃`∗ = −h̃`∗ξv. (3.64)

These are precisely the su(1, 1) gauge transformation, confirming that Jv is the discretized
Gauss constraint. Therefore, the dynamics of LQG in the dual polarization will be given
by the constraint Jv = 0, and the physical phase space will be given by

Pphys
LQG∗ = Pkin

LQG∗ � (×v∈Γ∗J −1
v (0)). (3.65)

2The derivation is 0 = {EA
` , h̃`∗ h̃−`∗} = h̃`∗τAh̃−`∗ + h̃`∗{EA

` , h̃−`∗}, which implies the result.
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3.4 Conclusion

LQG (Dual) LQG

(Γ,Γ∗) variables (h` → Γ, Ẽc
`∗ → Γ∗) (Ev

` → Γ, h̃`∗ → Γ∗)
kin constr. Jc = 0 Gc = 1

(triangle closure) (Flat triangles)
dyn. constr. Gλ = 1 Jv = 0

(flat) (loop closure)

Table 3.2: Comparison between LQG, LQG∗

In this chapter, we described two versions of LQG: the standard and the dual polariza-
tions. We can see from table 3.2 that the choice of polarization essentially flips the role of
Γ and Γ∗. Namely, in the LQG polarization the holonomies live on the links of Γ, and the
fluxes live on the dual edges. In the dual LQG polarization, we have the exact opposite.
However, in both cases, the kinematical constraint lives on the nodes of the graph, and the
dynamical relates to the faces of Γ. The meaning of the constraints is swapped between
the two pictures. That is, the kinematical constraint in LQG is the Gauss constraint. On
the other hand, the kinematical phase space of LQG∗ is given by enforcing a flatness con-
straint. This makes finding kinematical observables extremely difficult, as is demonstrated
in chapter 5.
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Chapter 4

’t Hooft Polygonal Gravity

The first step in this thesis was to review 2+1 gravity. We showed that in 2+1 dimensions
the equations of motion implied that spacetime is locally flat. This greatly simplifies the
theory and makes it much easier to study, which is why so many different approaches to
2+1 quantum gravity exist. This local flatness will be crucial to this chapter.

In this chapter we will present ’t Hooft’s polygonal gravity, or simply polygonal gravity.
Furthermore, this chapter will form the base for the latter parts of the thesis, where a dual
version of polygonal gravity will be introduced. We will begin by using the locally flat
nature of gravity to construct a special foliation of spacetime. This is the key feature that
differentiates polygonal gravity from other approaches. In order to build the foliation, a
partial gauge fixing must be made. In the literature, the consequences of this gauge fixing
tend to be glossed over. Therefore, we will detail the consequences of this choice. This will
be crucial when we try to relate the theory to LQG. Next, we will describe the constraint
structure of the theory, and the symmetries they encode.

4.1 Kinematical structure and discretization
In this section, we will provide a review of ’t Hooft’s polygonal gravity [46, 48, 45]. Polyg-
onal gravity, like classical LQG phase space, is built upon a discretization of spacetime.
Unlike LQG however, the discretization requires a gauge fixation that greatly simplifies the
theory, and uniquely specifies the dynamics. The idea behind polygonal gravity is to take
advantage of the fact that, for 3D pure gravity, the Einstein equations imply that space-
time is flat and torsion free. This implies that M can be covered by a countable number
of local Minkowski charts X . Furthermore, the transition functions between intersecting
charts will necessarily be the Poincaré group.
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4.1 Kinematical structure and discretization

The next step is to construct a Cauchy surface, by taking advantage of these local
Minkowski charts. To this end, consider two adjacent inertial charts X1,X2 : M → R3

which overlap. Setting X1 = (t1, x1, y1) we can construct a constant time surface by setting
t1 = τ , where τ ∈ R. Repeating the procedure for X2 = (t2, x2, y2), we end up with another
constant time surface. However, there may be a time jump between these surfaces. In order
to fix this, we set t1 = t2, which defines the straight boundary between the two charts,
as is shown in figure 4.1. If we now intersect this surface with the constant time surface,

t1 = t2
t2

t3 t = t0 + ǫ

t = t0

Θ

t2 = t3

Θ′

t1

Figure 4.1: The gauge fixing condition ti = tj defines the boundaries between the polygons.
The Θ and Θ′ are the dihedral angles between the polygons.

we can form an edge of a polygon without any time jumps. That is, the boundary of the
polygons are defined by t1 = t2. Continuing this for all regions, i.e. setting

t1 = t2 = · · · = τ, (4.1)

we end up with a piecewise flat Cauchy surface made of polygons. This construction,
partially fixes the gauge in each polygon and defines a preferred Lorentz frame. In other
words we have forced that time run equally fast on all polygons, by setting ti = tj, and
forced the observers in each polygon to be a rest. This choice of time is itself an arbitrary
distinction. While the matching conditions were used to construct a consistent Cauchy
surface, different matching conditions could be chosen. For instance, if we have chosen
t1 = at2, where a is a real number we would have a consistent Cauchy surface as well.

The relation between polygons are given by the transitions between the respective
charts. Namely, since X1,X2 define the preferred inertial charts for each polygon, we have
X2 = P21X1, where P21 = X2 ◦ X−1

1 ∈ ISO(2, 1). This is because the transition map sends
inertial frames to inertial frames. This polygonal decomposition will be denoted by Γ.
Following ’t Hooft, we require, that Γ is dual to a triangulation Γ∗. This means that the
vertices of the polygons will be three valent. This assumption is key for defining the theory
as we will see. This discrete structure matches the last chapter, so we will use the same
notation. Namely, the sides of the polygon will be called links ` = [c2c1], and the ci, which
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4.1 Kinematical structure and discretization

αc2
v0

v3

v2

v1

v5

v4

c4

c5

c1

v0

c3
c2

αv0
c5

2ηv2v0

Lc3c2

Figure 4.2: The nodes and links of the graph Γ form the vertices and edges of the polygon
respectively. The angles between the edges of the polygon are specified by the dihedral
angle 2η, which is a boost.

are the vertices of the polygons, will be called nodes. Therefore, a polygon will be given
by v∗ i.e. dual to a vertex v of a triangulation.

To see the consequences of the gauge fixing and 3-valent nodes, we consider a node
c and dual triangle [v2v1v0]. The edges of the triangle connect three the polygons with
frames Xv0 ,Xv1 ,Xv2 , and is shown in figure 4.4. The matching conditions between the
polygons will be given by

Xv2 = Pv2v1 . Xv1 , Xv3 = Pv3v2 . Xv2 , Xv1 = Pv1v3 . Xv3 . (4.2)

Since the two polygons are related by a Poincaré transformation, we will parameterize
elements of ISO(2, 1) by P = (Λ, a). In terms of this parameterization, the action will be
given by P .X = ΛX +a, and Λ ∈ SO(2, 1) and a ∈ R2,1. Furthermore, we will decompose
Λ into

Λvjvi = R(φ̄vjvi)B(2ηvjvi)R(φvjvi) (4.3)
where

R(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

, B(Θ) =

cosh(Θ) sinh(Θ) 0
sinh(Θ) cosh(Θ) 0

0 0 1

. (4.4)

This decomposition will be called the ’t Hooft polygonal decomposition in the rest of the
paper.

The quantities φ, φ̄, and 2η all have geometric interpretations. The quantity φ gives
the orientation of the edge of the polygon from its observer. Namely, if we consider the
holonomy Λv2v1 , then φv2v1 gives the orientation of the edge [v2v1]∗ = [c2c1] (see figure 4.3).
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4.1 Kinematical structure and discretization

c1

2ηv3v2

x2
y2 φ̄v2v1

c2
y1

x1
Xv1

φv2v1

Xv2

Figure 4.3: Decomposition of holonomy between polygons. The φv2v1 orientates the frame
Xv1 so that the y-axis is parallel with the polygon edge [c2c1]. The parameter 2ηv2v1 is the
boost around the edge [c2c1] and is the dihedral angle between the polygons v∗1, v∗2. Finally
the angle φ̄v2v1 rotates the frame so that aligns with the frame Xv2 .

In other words, if we view the edge as a vector Ev
c2c1 we can write this as [28]

Ev
c2c1 = Lc2c1R(−φv2v1)ey, (4.5)

where ey = (0, 0, 1). Therefore, φv2v1 rotates the frame Xv1 so that the y-axis is parallel to
the edge of the polygon [c2c1]. The boost parameter 2ηv2v1 , the dihedral angle between the
faces of the polygon. Since assumed that the edge lies along ey, we have that the boost is
around this axis. Finally, the angle φ̄v2v1 is the angle we must rotate the frame, after the
boost, so that it is aligned with the frame Xv2 . This decomposition/interpretation, has an
implication when we reverse the orientation of the edge. First, note that we require that
Λ`∗Λ−`∗ = 1. However, when we replace ` → −` there is a change of orientation of the
edge vector. This means φ`∗ and φ̄`∗ will be anti-parallel to the −` edge. Therefore, they
need to be replaced by π − φ`. Therefore, in order to be consistent, we require that the
holonomy for Λ−` be parameterized by

Λ−`∗ = R(π − φ`∗)B(2η−`∗)R(π − φ̄`∗). (4.6)
The consistency condition Λ−`∗Λ`∗ = 1 then requires that η`∗ = η−`∗ . Furthermore, this
requires that

φ`∗ + φ̄−`∗ = π, (4.7)
again since the orientation of the edge will be reversed.

Assuming, for simplicity, that the transition between polygons X1,X2, P21 satisfies
φ̄v2v1 = φv2v1 = 0,1 then the matching conditions (4.2) are given by

t2 = cosh(2η21)t1 + sinh(2η21)x1 + a0,

x2 = − sinh(2η21)t1 + cosh(2η21)x1 + a1,

y2 = y1 + a3,

(4.8)

1 This is is always possible by a rotation around the observers respective time axes

32



4.1 Kinematical structure and discretization

where we dropped the v in the label for readability. By setting φ = φ̄ = 0, we are saying
that the edge is parallel to the y-axis of both polygonal frames.

Using the gauge fix t1 = t2, that specifies the time evolution of the edge, we get

x1(t1) = tanh (η21)t1 + C1, (4.9)

where C1 is a constant.
This provides us with a further interpretation of what η represents. The boost param-

eter 2η = Θ defines the dihedral angle between the polygons, but η is also the rapidity
of the edge of the polygon. Furthermore, the velocity of the edge is perpendicular to the
direction of the edge. Note that because η12 = η21, we have that the edge of the polygon
appears to grow (or shrink) from either polygon frames. Furthermore, by construction, η
does not evolve in time. Finally, the components of the translation will not be included in
the description of the polygonal surface, since they are in fact related to the triangulation
∆, which will be used later in chapter 6.

c

c1

c2

x

y

x
y

αc
v0

y

Xv1Xv2

φ̄v0v2
φ̄v1v0

x

Xv0

Figure 4.4: The angles φv1v0 , φ̄v0v2 , specify the orientation of the edges [c2c] and [cc1]
respectively. They are related the angles αcv0 between the edges of the polygon, through
the equation αcv0 = φv1v0 + φ̄v0v2 .

To see the consequence of the three valent nodes, recall the relation between the frames
(4.2). Applying these in succession around the node, we get

P13P32P21 = 1. (4.10)

Expanding the transition function as P = (Λ, a) we get

Λ13Λ32Λ21 = 1, (4.11)
Λ13Λ32a13 + Λ13a32 + a13 = 0, (4.12)
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4.1 Kinematical structure and discretization

resembling the flatness constraint for the Chern-Simons connection. That is, the first
constraint says that the three dimensional curvature at the node has to vanish, or that
the triangles of Γ∗ have to be flat. The second constraint is reminiscent of the abelian
holonomy components from the Chern-Simons connection, and can be interpreted as a
Gauss constraint for the triangle. However, the second constraint does not imply any
relation between our variables φ and η, so we will ignore it as is usually done in the
literature [29, 28]. The first vertex relation (4.11), gives ’t Hooft’s vertex condition for a
node c,

Vc = B(2ηcv1v3)R(αcv3)B(2ηcv3v2)R(αcv2)B(2ηcv2v1)R(αcv1) = 1, (4.13)

where we set Θvivj = 2ηvivj , αcv1 = φcv2v1 + φ̄cv1v3 , etc. Considering the node in figure 4.4,
we see that αvi ∈ [0, 2π) are the angles between edges of the polygon incident to the node.
Furthermore, both α and η are invariant under rotations about the time axis. The flatness
constraint (4.13), gives a relation between the dihedral angles Θvivj = 2ηvivj at a node, and
the angles αvi . Supposing that the triangle is given by [v3v2v1], with edges `∗i = [vi+1vi],
where v3+1 = v1, then we get

s1

σ1
= s2

σ2
= s3

σ3
(4.14)

γ2s3 + s1c2 + c1s2γ3 = 0 (4.15)
c1 = c2c3 − γ1s2s3 (4.16)
γ1 = γ2γ3 + σ2σ3c1 (4.17)∣∣∣η`∗1 ∣∣∣+ ∣∣∣η`∗2 ∣∣∣ ≥ ∣∣∣η`∗3 ∣∣∣ (4.18)

and all cyclic permutations, where we set

sinαvi = si+1, cosαvi = ci+1, sinh 2η`∗i = σi, cosh 2η`∗i = γi, (4.19)

to match the literature. Note, that this set is redundant, as shown in [27]. Furthermore,
the equations do not uniquely specify α in terms of η. However, if we require that only
one of the three angles α can be greater than π there we can specify α in terms of η. In
fact, this requirement is necessary in order to have a Cauchy surface [46]. Therefore, one
set of variables in polygonal gravity is taken to be the η. The angles, α are then functions
of η. This set of equations, (4.13), also explains why ’t Hooft chose to restrict the theory
to 3-valent nodes. If the vertices where higher-valent, the equations for the rapidities η
and the angles α would be overdetermined. Therefore, it would be difficult to define the
theory in terms of just the rapidities.

The missing variables, will be given by the lengths, L, of the edges of the polygons.
Like dual LQG the lengths will be assigned to the links ` of Γ. However, due to the gauge
fixing we know that the edges will be purely spatial and lie in a spacelike hyperplane.
Therefore, the lengths will just be the difference between the positions of the nodes of a
link ` as seen from the polygon v∗. We will denote the length by L`. Furthermore, since
the metric is assumed to be continuous, the lengths of the edges will be equal when viewed
from either polygon [46]. As with η, these variables are invariant under rotations around
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4.1 Kinematical structure and discretization

the time axis of their respective polygons. Unfortunately, the lengths and rapidities will
change highly non-trivially under boosts, [20], due to the partial gauge fixing.

v1dt

v2dt

wc,2

wc,1

α3 − π/2

L2

L1

α3 − π/2

π − α3

t + dt

t
c

α3

Figure 4.5: Evolution of two links from at the node c. The growth rate of the edge i from
the node c is given by wc,i.

While we do not yet have a symplectic structure for our space, we have specified a
time. In constructing our Cauchy surface we chose a time that provided us with dynamics
of the edges of the polygons. That is, the gauge fix ti = tj, allowed us to observe that
the edges of the polygons must move perpendicularly to themselves with rapidity η. Using
this gauge fixing, we can derive the dynamics of our phase space variables L and η. As
mentioned above, we know that η will be constant in time, so those dynamics are trivial.
For the lengths, we can derive their dynamics using that we known ẋ = v = tanh(η) for a
polygon with frame (t, x, y). Following figure 4.5, we denote the angle the two edges makes
by α3 and the rapidities of the edges by η1, η2. The growth rate from the node c for the
two edges will be denoted by wc,i. Therefore, since the velocity of an edge is perpendicular
to its orientation, we know that tan(α3 − π/2) = wc,2/h2 = wc,1/h1 + v1dt. Here h1, h2
are the extra length we need to form a right angle triangle as shown in figure 4.9 (see the
green dotted lines). We also know that cos(π − α3) = v1dt/(h2 + v2dt) = v2dt/(h1 + v1dt).
After simple algebra we find

wc,1dt = v2 + v1 cos(α3)
sin(α3) dt, wc,2dt = v1 + v2 cos(α3)

sin(α3) dt. (4.20)

Then since every edge will get two contributions, from the two nodes it connects, we get
the evolution of the length L of the edge connecting the nodes A and B,

dLAB
dt = wA,1 + wB,1. (4.21)

In order for this evolution to be well-defined, we need to do one more check. In our
derivation, we assumed we had two edges of interest; however, all of our nodes will be
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4.2 Brackets and Constraints

3-valent. Therefore, we need to ensure that

v2 + v1 cos(α3)
sin(α3) = v3 + v1 cos(α2)

sin(α2) . (4.22)

This can be verified explicitly by using (4.16). This also means that we only have consistent
dynamics when our η and α obey ’t Hooft’s vertex condition (4.13).

To summarize, we now have a way to describe a piece-wise flat Cauchy surface using
lengths and rapidities/dihedral angles. These will parameterize the phase space of polyg-
onal gravity. However, this is still an overcomplete description of the surface. This can
be verified by counting the degrees of freedom of this model and comparing it to the re-
duced phase space for gravity. Therefore, there must exist constraints. However, before
we discuss the constraints it will be pertinent to first discuss the symplectic structure.

4.2 Brackets and Constraints
In the last section, we found that the dynamics of the theory are specified by ’t Hooft’s
partial gauge fixing. Namely, (4.9) shows that the edges grow linearly in time, and that η
is constant in time2. However, this is not quite enough to ensure that this is a theory of
gravity. In order to compare polygonal gravity with LQG we need a symplectic structure.
In [45], ’t Hooft asked the reduced Hamiltonian for node c to be

Hc = 2π −
∑
i at c

αi(ηj), (4.23)

i.e. the deficit angle at the node. In order for this to generate the correct time evolution
the symplectic structure is required to be

{L`i , L`j} = 0, {L`i , 2η`∗j} = −δij, {η`∗i , η`∗j} = 0. (4.24)

This was verified in [45] by checking that {Li, Hc} = wc,i.
So far, thanks to solving the matching condition at the vertices for every edge of our

polygon, we have two variables L, η. This means that if our polygonal decomposition has
E edges that there are 2E degrees of freedom. This is much larger than the known reduced
phase space of 2 + 1 gravity, which for a surface of genus g, g > 1 has dimension 12g− 12.
Thus, as mentioned above, there must exist constraints. Furthermore, we just have two
sets of variables to describe our polygons, (L, η) and the angles α, as determined from
(4.13). Therefore, we need to ensure we can reconstruct our polygons from just this set.
We will find, that in order to build polygons, some constraints will need to be imposed on
on L and η.

2Note that this evolution is only for small time. For large enough time evolution, this can break down
due to the gauge fixing. For instance, an edge’s length can shrink to zero. When this happens, ’t Hooft’s
transitions, described in [48], must be applied in order to maintain a Cauchy surface.
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4.2 Brackets and Constraints

Suppose we have a polygon like in figure 4.2. Then the first step in reconstructing the
polygon will be to find the edge vectors E`i from (L`i , η`∗i , α

v
ci

), where we set `i = [ci+1ci].
To do this we will take advantage of the fact that the partial gauge fixing implies that
the edge vectors E must lie in spacelike hyperplane. Furthermore, recall that L and η
(and thus α = α(η)), are all invariant under rotation around the time axis of the polygon.
Therefore, we assume that Ev0

`1 is parallel to the y-axis of the polygonal frame Xv0 . Then
to ensure that the polygon f = v∗0 closes we require that

CG,f (L1) = L1ey +
n∑
i=1

LiR(θL1
i )ey = 0, θLsi =

i−1∑
j=s

(π − αj), (4.25)

where Li = L`i . In the literature, the constraint is often written in complex notation.
Namely, the rotation matrices are replaced with complex exponentials. In this case the
closure constraint is given by

CG,f (L1) = L1 +
n∑
i=1

Li exp
(
θL1
i

)
= 0. (4.26)

However, this is not quite enough to ensure that we have a true polygon. To have consis-
tency, we need to make sure that we can choose any Li to lie along the y-axis. Let us try
L2 instead of L1. In this case the closure constraint is

CG,f (L2) = L2ey +
n∑
i=3

LiR(θL2
i )ey + L1R

n−1∑
j=2

π − αj
ey. (4.27)

Multiplying by R(π − α1) we get that

R(π − α1)CG,f (L2) = L2R(π − α1)ey +
n∑
i=3

LiR(θL1
i ) + L1R

 n∑
j=1

π − αj
ey. (4.28)

It is then easy to see that CG,f = 0 will only be consistent if we also require that Cα,f =∑n
j=1(π − αj) − 2π = 0. This has a nice geometric interpretation. By requiring that our

polygons are co-planar, we have necessarily enforced that every polygon has zero extrinsic
curvature; however, there can still be intrinsic curvature. Therefore, if we are indeed
to have a solution of Einstein’s equation we necessarily must require that the intrinsic
curvature of the polygon vanishes which is precisely Cα,f . In summary, in order to have
true polygons we require the ’t Hooft constraints:

Cα,f =
N∑
j=1

(π − αj)− 2π ≈ 0 (4.29)

CG,f =
N∑
j=1

Lje
iθj ≈ 0, θj =

j−1∑
k=1

(π − αk). (4.30)
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4.2 Brackets and Constraints

The constraint CG,f , is reminiscent of the Gauss constraint in dual loop quantum
gravity, except there are only 2 constraints since our gauge choice forced the edges to
be purely spatial. In fact, in the next chapter we will prove they are the same. These
constraints turn out to be first class [54, 20], however the constraint algebra does not form
a Lie algebra since the structure “constants” depend on the phase space parameters. We
will provide a proof that the constraint algebra is first class in the next chapter.

As these constraints are first class, we expect them to generate gauge transformations.
The first constraint is argued to generate time translation. To see this, first recall the
definition of the Euler characteristic χ = V − E + F = 2 − 2g, where V,E, F are the
number of vertices, edges and faces of Γ, and g is the genus of the surface. Then the first
constraint is related to the total Hamiltonian H = ∑

cHc by

H = 2π(2− 2g)−
∑
f∈Γ

Cα,f , (4.31)

where we have summed over all the polygons. Note that this also means that the total
Hamiltonian is constant when Cα,f = 0 is satisfied. One reason to see why this is the case,
is from the Gauss-Bonnet theorem. Namely, from Regge calculus for a 2D surface we know
that ∫

Σ
(2)R

√
(2)gd2x =

∑
c

Hc = H, (4.32)

However, the Gauss-Bonnet theorem gives∫
Σ

(2)R
√

(2)gd2x = 2πχ. (4.33)

Note, that computing the flow of the Cα,f constraint is simple. If we consider a polygon
f , then a quick calculation show that the lengths of the polygon are invariant, i.e.

δCα,fL = {L,Cα,f} ≈ 0. (4.34)

However, it does change the lengths of the polygons adjacent to the polygon f , and after
summing the constraints Cα,f which is why the sum of the constraints defines time evolution
in ’t Hooft time gauge.

The symmetries generated from the second constraint (4.30) are not so easily identified.
In [45, 29] it is argued that it generates the two Lorentz boosts for the local frame in each
polygon. This would seem to match the situation in LQG where the closure condition does
generate local SO(2, 1) transformations. However, we do not know of an explicit proof that
the constraint (4.30) does in fact generate boosts. However, below we will show how one
can recover this constraint from dual loop quantum gravity, proving ’t Hooft’s proposition.

As a conclusion to this chapter, we should stress an important point. Nowhere in our
derivation did we ever use the Einstein-Hilbert action or the Einstein equations explicitly.
That is, we used purely geometrical arguments to derive the symplectic structure and
constraints. Therefore, we should do a quick counting argument to ensure that we get the
correct number of degrees freedom for the reduced phase space. First if our graph has E
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4.3 Conclusion

edges we then have 2E degrees of freedom. Every polygon has 3 constraints, two from CG,f
and one from Cα,f . However, the action of the symmetry group generated from Cα,f and
CG,f is not free. Namely, if we apply the same Lorentz boost to every polygon frame the
lengths and rapidities would not change. Therefore, we have that the number of degrees
of freedom is seemingly given by

2E−3F−(3F−1) = 2E−6F+1 = 6E−6V−6F+1 = −6(V−E+F )+1 = 12g−11, (4.35)

where we used the fact that the graph Γ is trivalent so 2E = 3V . Therefore, it seems
the dimension of phase space is an odd number. In [45], is is argued that this is due to
the choice of time we picked as a gauge. This enforces a relation among the lengths and
rapidities and decreases the number of degrees of freedom to the required 12g − 12.

4.3 Conclusion
In this chapter polygonal gravity was introduced. Polygonal gravity is based on a special
discretization of the Cauchy surface, where the faces or polygons of the graph Γ, are forced
to be co-planar. As a result of this, the extrinsic curvature inside each polygon vanishes.
In the next chapter, this will be the biggest hurdle when relating dual LQG to polygonal
gravity. Another assumption necessary to define polygonal gravity is that the vertices of
the graph are three valent. Namely, that the Cauchy surface has been triangulated. This
is necessary, so that the rapidities of the edges, and the angles between them, have a well-
defined relation. In other words, if the vertices have a higher-valence, solving the vertex
condition (4.13) becomes more difficult.

The symplectic structure for the theory was then taken as a postulate, and was verified
by ensuring that it generated the correct equations of motion. The constraints for the
theory enforced that the ’t Hooft polygons are “true” polygons. Firstly, the edges viewed
as vectors have to sum to zero. This ensures that the polygon closes. Secondly, the sum of
the angles of the polygon has to give the classical result, i.e. equation (4.30). In the next
chapter, we will explicitly derive this structure from dual LQG.
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Chapter 5

Exploring the Relationship
Between LQG and Polygonal
Gravity

In the previous two chapters, three models of discrete gravity were introduced. The first,
LQG, is a discretization of first order gravity, where we have set α = 0 in equation (2.27).
The second was a dual version of LQG, and is the natural discretization of (2.27) with
α = 1. Therefore, both theories start from the same family of symplectic potentials. The
third theory discussed was polygonal gravity. Unlike the previous two theories, polygonal
gravity starts from a purely geometric standpoint, not from an action or equation of motion.
The question then becomes, how the two classes of theories are related. This will answer
the first goal of the thesis. While previous work has been done on this question [28, 52],
we will explain why their solutions were incomplete, and further analysis was necessary.

The major obstacle in comparing the two theories will be the structure of the graph
Γ, and how it relates to ’t Hooft’s polygons. Therefore, in the first section of this chapter
we will compare the discretizations of LQG, LQG∗ and polygonal gravity. Here, we will
mention why the approach taken in [52] fails to reduce LQG to polygonal gravity. Fur-
thermore, this will fully motivate why using LQG∗ is the superior choice. The reason is
that the flatness constraint is solved first in LQG∗ and polygonal gravity. In the follow-
ing section, we will explore precisely how the dual loopy framework reduces to polygonal
gravity. This will be related to work previously done in [28]. However, there are several
differences between this work and this thesis. First, we do not restrict the theory to one
polygon, making our presentation more general. Second, we correct a mistake presented
in [28], where they stated that the constraints (4.29) and (4.30) are related to the Gauss
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5.1 Comparing discretizations of polygonal gravity and LQG

LQG (Dual) LQG ’t Hooft gravity

(Γ,Γ∗) variables (h` → Γ, Ẽc
`∗ → Γ∗) (Ev

` → Γ, h̃`∗ → Γ∗) L` → Γ, η`∗ → Γ∗, α`1,`2
kin constr. Jc = 0 Gc = 1 Vc = 1

(triangle closure) (Flat triangles) (Flat triangles)
gauge fixing. – – tv1 = tv2 = · · · = τ

(planar region & time choice)
dyn. constr. Gλ = 1 Jv = 0 CG = 0, Cα = 0

(flat) (closure constraint) (polygon condition)

Table 5.1: Comparison between LQG, LQG∗ and ’t Hooft gravity.

constraint of LQG∗ (3.63).
Another issue that is overlooked in [28], is whether the gauge fixing required in polyg-

onal gravity is possible. In order to answer this question, we apply polygonal gravity to
the torus universe. In the literature there are conflicting statements regarding the nature
of the torus universe in polygonal gravity. In [23], they claim to recover the reduced phase
space for the torus universe (i.e. the cotangent bundle of the moduli space of the torus), by
identifying the Teichmüller parameters. However, the authors of said paper never analyzed
whether their proposed parameters where gauge invariant. This was first pointed out in
[54], where “spacetime” arguments were used to suggest that said parameters were not
gauge invariant. Therefore, in the final section of the chapter, we review both arguments
and then use the map from dual LQG to attempt to answer whether the torus universe
can be described in polygonal gravity.

5.1 Comparing discretizations of polygonal gravity
and LQG

All the theories we have described in this thesis can effectively be described by the dis-
cretization scheme presented in section 3.1. Namely, we start by triangulating a spatial
hypersurface Σ. The main difference is how the theories deal with the dual graph Γ. In
regular LQG, the holonomies live on the graph Γ. These holonomies relate observers at
the nodes of the graph. The fluxes Ẽ, describe the edges of the triangulation by virtue of
the Gauss constraint (3.39). Namely, any three vectors that sum to zero can be seen as
describing the edges of a triangle.

In [52], the Gauss reduced phase space of LQG, PLQG
kin , is argued to be related to

polygonal gravity. Their key insight was that the dihedral angle Θc2c1 between two triangles
c∗1c
∗
2 defined by (6.8) is canonically conjugate to the Gauss invariant length Lv2v1 , (6.6) of

the dual edge. While this does superficially seem to have the same symplectic structure
as polygonal gravity there are some key differences. One difference is that, as mentioned
above, the definitions of L, (6.6) and (6.8) are both Gauss invariant observables. Therefore,
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5.2 Gauge fixing dual LQG to polygonal gravity

they will be unchanged under boosts. This is in stark contrast to L and η in polygonal
gravity, which are clearly not invariant under boosts. Furthermore, LQG has exactly the
opposite discretization as polygonal gravity. Namely, the edge vectors describe the edges of
the dual triangles of Γ∗ not the links of Γ. The authors of [52] realized this and attempted
to deal with this by a complicated process, that involved joining together triangles together
if the extrinsic curvature, i.e. Θ was zero, creating general polygons. However, by doing
so they are unable to recover ’t Hooft’s vertex relations [52]. In fact, this is the cause
for all the differences highlighted above. Polygonal gravity starts by solving the flatness
constraint, not the Gauss constraint.

In light if these tribulations, it seems that the usual LQG formalism is not convenient
to recover the polygonal formulation. Luckily, many of the difficulties we face is exactly
due to the fact that the discretization of polygonal gravity is dual to the usual LQG choice,
just like dual loop quantum gravity. Therefore, dual LQG is the correct theory to relate to
polygonal gravity, since they both start by solving the flatness constraint. However, how
this is done in polygonal gravity is not simple, as we will now show.

5.2 Gauge fixing dual LQG to polygonal gravity
Referring to table 5.1, we can see that LQG∗ and polygonal gravity are much more similar,
at least at the level of the discretization, than LQG. In both LQG∗ and polygonal gravity,
the holonomies live on the edges of the triangulation, and the kinematical constraint is
the flatness constraint. In fact we can recover the polygonal variables α and η exactly in
dual LQG. Consider a link ` = [c2c1] with dual edge `∗ = [v2v1]. The holonomy h̃c1

v2v1 ,
then represents the change of frame from the faces of Γ as you travel through c∗1. This
suggests that we can use ’t Hooft’s decomposition of elements, (4.13). Note that since
LQG is usually presented in using the spin group SU(1, 1) of SO(2, 1), the expressions for
R and B will change,

Rs(φ) =
(
eiφ 0
0 e−iφ

)
, Bs(Θ) =

(
cosh(Θ) sinh(Θ)
sinh(Θ) cosh(Θ)

)
. (5.1)

However, nothing else about the decomposition changes, i.e.

h̃c1
v2v1 = Rs(φ̄v2v1)Bs(2ηv2v1)Rs(φv2v1). (5.2)

At this point there seems to be an ambiguity in the choice of node c1, c2 for the holonomy
h̃v2v1 ; namely, we can choose h̃c1

v2v1 = gv2c1gc1v1 or h̃c2
v2v1 = gv2c2gc2v1 . However, recall that we

assumed that curvature is focussed on the vertices of the triangulation. Furthermore, by
composing h̃c1

v1v2 and h̃c2
v2v1 we end up with a closed curve, where the region inside the curve

is flat. Therefore, both holonomies will be identical. Mathematically this can be expressed
though the matching condition (3.14), which implies there exists a constant hc1c2 relating
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the two holonomies,

h̃c1
v2v1 = gv2c1gc1v1

= gv2c1hc1c2hc2c1gc1v1

= (gv2c1h
v1
c1c2)(hv2

c2c1gc1v1)
= gv2c2gc2v1

= h̃c2
v2v1 ,

where in the third equality we used the fact that the holonomy is constant along the
edge [v2v1]. Plugging the decomposition (5.2) into the flatness constraint Gc, we then
easily see that ’t Hooft’s vertex condition vanishes exactly when the flatness condition
is satisfied. Therefore, η and α in dual LQG, obey the same conditions. In fact, η and
α, are observables for the kinematical phase space of dual LQG, since components of the
holonomies commute. This hints that polygonal gravity’s phase space is related to the
kinematical phase space of LQG∗. However, this is where we start to run into issues.
Namely, we do not yet have length variables. In fact, the construction of these spatial
lengths, will be the main issue we have to deal with.

The expectation is that ’t Hooft’s lengths will be related to the fluxes of the dual loop
picture. After all, both are assigned to the links of the graph Γ. Moreover, both are given
by the difference between the two endpoints of the link as seen from the center of the
polygon. In polygonal gravity, this is assumed. In dual LQG, this is true by definition of
the flux

Ev
[c2c1] = gvc1xc2c1g

−1
vc1 . (5.3)

With this observation, it seems obvious choice of polygonal length in LQG∗ is Lc1c2 =∣∣∣Ev
c1c2

∣∣∣. Unfortunately, this choice does not seem to work since it is not a kinematical
observable. That is, by using (3.59) we can see that L will change as

δ̃c1
β L

2
c1c2 = 2〈Ev

c1c2 , δ̃
c1
β E

v
c2c1〉 = 2〈Ev

c1c2 , (H
c1)−1βHc〉, (5.4)

where Hc1 is a holonomy that depends on the specific ordering of the flatness constraint.
The geometrical reason this change for this is quite obvious. The flatness constraint at
the node c1 acts by translating the location of node inside the triangle c1. Obviously, this
will change the length of the edge unless we also move the node of c2 by a corresponding
amount. Faced with these difficulties we will try to define polygonal gravity’s lengths after
gauge fixing. The question becomes what is the correct choice of gauge.

5.2.1 Gauge fixing to pure polygons
Gauge fixing, as detailed in appendix B, means that we pick a unique representative of the
gauge orbits of Gc. The issue now is to find the correct gauge fixing that reduces LQG∗
to polygonal gravity. The answer is found in table 5.1. When ’t Hooft constructed the
theory, he imposed a gauge fixing. One of the implications of the gauge fixing, was that
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5.2 Gauge fixing dual LQG to polygonal gravity

the faces of the graph Γ became planar. That is, all of the flux vectors had to live in
some spacelike hyperplane. However, this is not generically true in either LQG or the dual
formulation. Therefore, the correct gauge fixing is one that makes the polygons co-planar,
as was first pointed out in [28]. In fact, there is an other reason for this gauge fixing.
When ’t Hooft defines his theory, as we mentioned above, he first imposes the applies the
constraint Vc = 1. However, usually this also removing the gauge orbits of Vc from phase
space. Unfortunately, it is clear whether or how this is done in polygonal gravity. Luckily,
making a loop or face planar involves a gauge fixing related to the flatness constraint. To
make the loop planar, the nodes must be translated into a spacelike hyperplane, which are
the transformations generated by the flatness constraint. However, as we will argue below
this does not completely remove all orbits of the flatness constraint.

We now need to find a gauge fixing condition obeying a few conditions. Mainly, we
want to pick a gauge that applies to the flatness constraint only. Therefore, we need to
ensure that the constraint commutes with the Gauss constraint. In this regard, considering
the figure 3.3, one possible set of gauge fixing conditions is given by

Ov
`i`j`k

= Ev
`i
·
(
Ev
`j
∧ Ev

`k

)
≈ 0, (5.5)

for all permutations of the edge vectors. This set of constraints is naturally invariant
under rotations since the triple product is invariant under SO(2, 1) transformations. Un-
fortunately, this set of constraints is overcomplete. This implies certain Poisson brackets
between the constraints will vanish, making it untenable for computing Dirac brackets.
One solution is to find a subset of these constraints that, in general, enforce the all faces to
be planar. While this is possible, the next problem is that computing the Dirac brackets
is not straightforward. Furthermore, there is no guarantee that the theory at the end of
the day is polygonal gravity. Furthermore, geometrically, the Ov

`i`j`k
will not pick a single

representative of the gauge orbits of Gc. To see this, assume that we have satisfied the
co-planar constraints. Computing the flow of the flatness constraint at every node we can
translate every node in the time direction will preserve the co-planar condition. Of course
this is not the only translation that preserves this gauge, but it is the simplest. In fact, it
appears to be related to the time evolution in polygonal gravity. Another thing to note is
that polygonal gravity assumes that observers are at rest in their polygon. This constitutes
a second constraint. If we assume that the co-planar condition has been satisfied, then it
means that there exists a unique normal to the polygon. Therefore, saying the observer
is at rest in the polygon means that the normal is given by (1, 0, 0). However, what if we
do not assume the polygon is planar? Can we combine the two constraints? One possible
constraint to do this would be given by forcing E0

` = 0 for every ` ∈ Γ. This constraint
would require both translations and boosts. First, since polygons in general have more
than 3 edges we again will need translations. Then we will need to rotate the frame in
every polygon. This seems to combine both gauge fixings we mentioned above. Unfortu-
nately, finding the Dirac brackets from applying this constraint will again be extremely
complicated. Therefore, we did not attempt it in this thesis. However, we can talk about
what the implications of this gauge fixing would be. If this gauge fixing is satisfied, we
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have a natural choice for the length

L2
` = Ei

`δijE
j
` . (5.6)

That is, we just look at the spatial components of the fluxes. Furthermore, this gauge
fixing also would still allow boosts to act on the surface. We cannot determine how they
would act on the lengths without computing the Dirac brackets, but we would expect
them to be highly complicated, like they are in polygonal gravity. Furthermore, as was
first pointed out in [28] we can actually find the symplectic structure after assuming the
gauge fixings have been satisfied.

Recall that polygonal gravity orients the edges of the polygons using components of
the holonomy matrices. However, this is only possible after the two assumptions we just
described are used. Furthermore, in order for this prescription to be consistent, we need
ensure that the edges orientation satisfies a few consistency relations. First, by using the φ
parameters, we were able to reconstruct the edge vector i.e. the flux using (4.5). In terms
of SU(1, 1) this is given by

Ev1
` = L`Ad(Rs(−φ`∗))τy (5.7)

where φ, φ̄ comes from ’t Hooft decomposition of the holonomy (5.2). Furthermore, note
that the lengths specified in the decomposition matches the definition we gave above for
L`.

If we change the orientation of the edge, then we know the flux must be given by,

E−` = −Ad(h̃`∗)E`. (5.8)

Plugging in the decomposition (6.2), we get

Ev2
−` = −h̃v2v1E

v1
` h̃
−1
v2v1 = −L`Ad(Rs(φ̄v0v2))τy, (5.9)

where we used the fact that Bs(η) leaves τy invariant, since it defines boosts around the τy
axis.

In LQG, the angle between two fluxes is given by

cosαv0
c1 (E) = −〈Ec2c1Ec1c〉

Lc1c2Lc1c
. (5.10)

In order for the ’t Hooft definition of the angle to be consistent we should ensure that
these two definitions of the angles match. A priori this does not have to be the case. In
fact, the only reason they will be true is because of the gauge choices mentioned above.

Consider the situation depicted in figure 5.1. Using the decomposition (5.7), we get
that the fluxes are given by

Ev0
c2c = −Lc2cAd(Rs(φ̄v0v2))τy, Ev0

c1c = Lc1cAd(Rs(−φv1v0))τy. (5.11)
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Following ’t Hooft’s vertex condition, the angle is given by αc1
v (h) = φv1v0 + φ̄v0v2 . Substi-

tuting these decompositions into (5.10) gives

cosαv0
c1 (E) = − Ev0

c2c1 · Ev0
cc1∣∣∣Ev

c2c1

∣∣∣∣∣∣Ev
c1c

∣∣∣
= −
−
〈
Lc2c1Ad(Rs(φ̄v0v2))τy, Lc1cAd(Rs(−φv1v0))τy

〉
Lc2c1Lc1c

=
〈
Ad(Rs(φ̄v0v2))τy,Ad(Rs(−φv1v0))τy

〉
=
〈
τy,Ad

(
Rs(−φ̄v0v2 − φv1v0)

)
τy
〉

= cos(αc1
v (h)).

Therefore, it seems that the decomposition reproduces the correct result. However, we
could have picked a different decomposition of Ev0

c1c2 and have written it as

Ev0
c1c2 = Lc2c1Ad(Rs(−φv2v0))τy. (5.12)

In this case we have

cosαv0
c1 = −〈Ad(Rs(−φv2v0))τy,Ad(Rs(φv1v0))τy〉

= −〈τy,Ad(Rs(φv2v0 − φv1v0))τy〉
= − cos(φv2v0 − φv1v0)
= − cos

(
π − φ̄v0v2 − φv1v0

)
.

In the second last line we used (4.7). Therefore, we have that both decompositions of the
edge give the same result, verifying that φ`∗ can be used to orient the edge length in dual
LQG with gauge fixing.

Note, that the explicit value of α depends on the order of the flatness constraint.
Namely, whether the path around the triangle is in a clockwise or counter-clockwise fashion.
To see this, consider the flatness constraint around c1 in figure 5.1 given in the counter-
clockwise orientation Gc1 = h̃v0v2h̃v2v1h̃v1v0 . In this case we get the angles are given by

αc1
v0 = φv1v0 + φ̄v0v2 αc1

v1 = φv2v1 + φ̄v1v0 αc1
v2 = φv0v2 + φ̄v2v1 . (5.13)

If we replace the constraint with its inverse, i.e. h̃v0v1h̃v1v2h̃v2v0 , we get

αc1
v0 = φv2v0 + φ̄v0v1 = π − φ̄v0v2 + π − φv1v0

αc1
v1 = φv0v1 + φ̄v1v2 = π − φ̄v1v0 + π − φv2v1

αc1
v2 = φv1v2 + φ̄v2v0 = π − φ̄v2v1 + π − φv0v2 .

Comparing this with α above, we see that the definitions differ by a factor of 2π. Of
course the cosine of the angle will not change, but the interpretation will. In fact, the
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v

c

c1

c2

v2

v1

αv0
c

Figure 5.1: Using the decomposition (5.7), we can exactly recover the angles between the
fluxes from the holonomy matrices.

sign ambiguity can be seen to arise from the fact that the rotation in the second case
is performed clockwise instead of the usual counter-clockwise. In order to fixing this
ambiguity we will always assume that the flatness constraint is taken in counter-clockwise
orientation.

Now we can compute the symplectic potential of the theory. Following [28], we insert
(5.2) and (5.7) into ΘLQG∗ . With this in mind, first note that R−1(φ)δR(φ) = τ0δα and
B−1(2η)δB(2η) = 2δητy. Note that τ0 is the su(1, 1) basis element in the time direction
(see appendix A for the definition). Then we have

ΘLQG∗ =
〈
E`h̃

−1
`∗ δh̃`∗

〉
=
〈
L`Ad(R(−φ`))τy

(
δφτ0 + δφ̄τ0 + Ad(R(−φ`))τy2δη`∗

)〉
= L`2δη`∗ 〈Ad(R(−φ`∗))τy,Ad(R(−φ`∗))τy〉
= L`2δη`∗ .

This is exactly the symplectic structure for polygonal gravity. Therefore, it may seem we
have reduced LQG∗ to polygonal gravity. In fact this is what the author [28] suggests.
However, this is deceiving for a couple of reasons. One, is that we still do not quite under-
stand what the gauge fixing entails. This means we still do not know what, translational
degree of freedoms, i.e. the symmetries generated by Gc, still remain after making the
polygon planar. From the argument above, we expect that there are still some transla-
tional degree of freedoms left. Furthermore, this gauge fixing may not even be possible.
Another issue is that we have not recovered the constraints of polygonal gravity, i.e. CG
and Cα. The issue is especially defined for Cα, which a first glance, does not seem to have
a counterpart in dual loop quantum gravity.
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First, let us see the form of the Gauss constraint Jv using the decomposition (5.7).
Assuming we have the same orientation of edges as shown in figure 3.3, then every edge
vector can be written as

Ev0
cici−1

= Lcici−1Ad(Rs(−φviv0))τy. (5.14)

Therefore, the Gauss constraint becomes

Jv0 =
∑
i

LiAd(Rs(−φviv0))τy, (5.15)

where we have set Li = Lcici−1 . At first glance, this looks nothing like polygonal gravity’s
closure constraint CG. However, it is not, yet, expressed in terms of polygonal gravity’s
reduced variables L, η and α(η). In order to remedy this, we multiply the constraint by
Ad(Rs(φ̄viv0)),

Jv0 = L1 +
∑
i=2

LiAd(Rs(φv1v0 − φviv0)). (5.16)

Considering the jth term in the sum, we insert φ̄v0vk − φ̄v0vk , changing the rotation matrix
to

R(φv1v0 − φvjv0) = R

φv1v0 +
j−1∑
n=2

(φ̄v0vj − φ̄v0vj)− φvkv0


= R

(
(φv1v0 + φ̄v0v2) + (φ̄v0v3 − φ̄v0v2) + · · · − φ̄v0vj−1 − φvjv0

)
= R

j−1∑
i=1

(φvi−1v0 + φ̄v0vi − π)


= R

j−1∑
i=1

(αciv0 − π)


= R(−θj),

(5.17)

where θj = ∑j−1
i=1 (π−αciv0) is from (4.30). The reason we ended up with −(π−α), is because

the constraint written in polygonal gravity’s fashion assumes that the order of the edges is
in a counter-clockwise fashion. However, for the Gauss constraint in LQG∗ the edges are
summed in a clockwise fashion. Of course this choice is arbitrary so we indeed have that
CG,v∗ = Jv.

In polygonal gravity, it is usually stated, without proof, that CG,f generates local
Lorentz boosts of each polygon f . However, we know of no exact proof of this statement.
Furthermore, analyzing how this constraints acts on the lengths is not easy [20]. This
showcases the power of deriving CG,f from dual LQG. In dual LQG it is easily shown that
the spatial components of the Gauss constraint generate boosts, and so this will still be
the case in polygonal gravity.

The remaining question, becomes the origin of the other polygonal gravity constraint
Cα,f? In [28], they try to argue that it is related to the time component of the Gauss
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constraint, but by forcing the polygons to be planar this component of the constraint
vanishes. Furthermore, the gauge transformation generated by the time component of Jv
in LQG∗ has already been factored out since our variables L, η are invariant with respect
to these rotations. However, we know that it must be related to some constraint in LQG∗ if
polygonal gravity does describe gravity. The meaning of the constraint is that the polygon
must have a vanishing deficit angle. Geometrically this means its intrinsic curvature must
vanish. Furthermore, since we assumed that the polygon is extrinsically flat by making it
co-planar, this equivalently says that the polygon must have no 3-curvature. Therefore,
it must be related to the flatness constraints. However, since we have already solved the
local flatness constraints, it must be partially global in nature. Another way to see this
is that we only get the correct value for the Gauss-Bonnet theorem if the constraints Cα,f
for each face f is zero (4.31).

Fλ

Figure 5.2: By concatenating flatness constraints we can form Fλ, which enforces vanish-
ing 3-curvature. Each polygon is extrinsically flat (grey fill), so we can derive polygonal
gravity’s constraint Cα,f constraint.

Now consider a polygon f dual to a vertex v0 (i.e. f = v∗0), like in figure 3.3. For each
node ci, we have a local flatness constraint for the triangle dual to the node. However,
we can concatenate these constraints together; in fact, the polygon v∗i can be surrounded
by a larger polygon formed from the vertices λ = [v1v5v4v3v2v2v1]. The product of the
holonomies of this polygon, Fλ = h̃v1v5h̃v5v4h̃v4v3h̃v3v2h̃v2v1 , then must be trivial when Gci =
1. To see this, consider the following ordering for the constraints Gci = h̃v0vi+1h̃vi+1vih̃viv0 .
Taking the product of the constraints ∏i Gci , then we get∏

i

Gci =
∏
i

h̃v0vi+1h̃vi+1vih̃viv0 = Fλ. (5.18)

Therefore, the area inside this region must be fully flat, as is expected in 2+1 gravity.
Furthermore, the curve λ is homotopic to the edges of the polygon, so we require that the
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3-curvature inside the polygon vanishes. However, we already know the region inside the
polygon is extrinsically flat as in figure 5.2, therefore we require that the polygon must be
intrinsically flat, which is precisely the Cα,f constraint.

One way to see this is to consider a loop in dual LQG like the one we constructed.
We assume that the edges of the polygon within this loop have zero extrinsic curvature
between them. The holonomies are therefore a rotation around the shared normal of the
polygons, and Fλ becomes

Fλ = exp
(
αλn

AτA
)
, (5.19)

where αλ is the sum of the angles of the holonomy. Since spacetime is flat, we require that
αλ = 2π. A calculation similar to (5.17) then shows that αλ = ∑

ci∈λ(π − αci).
The form of the constraint also means that the flow it generates are time translations

of the polygons. This what Cα,f is argued to generate in [45]. To see this, note that any
flux vectors entirely contained in the loop λ Poisson commute with Fλ. This is precisely
what was found for Cα,f in chapter 4. However, it will affect the polygons next to λ
(e.g. next to v0 in figure 5.2). In that case, the loop λ will intersect some of the edges
of the polygon. This, again, is exactly what we found in the previous chapter. Namely,
all variables associated to the polygon f commute with Cα,f . Only the polygons or loops
adjacent to f that are influenced by the Cα,f constraint. Again, we stress that this means
that, unlike what was said in [28], the Cα,f constraint is not related to the Gauss constraint.
Instead it is a global version of the flatness constraint. This also implies that polygonal
gravity is not equal to the kinematical phase space of LQG∗, as was argued in [28].

An issue we have not yet dealt with is the polygonal gravity Hamiltonian. Nowhere in
our theory, did we require the introduction of a reduced Hamiltonian. This is because, we
started with dual LQG as our starting point, which automatically provided us with the
correct symplectic structure. In polygonal gravity’s original formulation, a Hamiltonian is
introduced to get a symplectic structure that gave the required equations of motion. As a
consequence of this, an additional partial gauge fixing was required. This gauge choice can
be seen as choosing a global time. In our case, we instead have a Hamiltonian constraint
which, following Dirac’s procedure, is given by

H =
∑
f∈Γ

NfCα,f +
∑
f∈Γ

NG
f CG,f , (5.20)

where f are the faces of Γ dual to the vertices v0, and Nf , N
G
f are the Lagrange multipliers.

Analyzing this constraint, ’t Hooft’s gauge fixing (4.2), is given by the choice of Nf =
1, NG

f = 0 for all the faces of the polygon.

Summary

In this section, we attempted to derive ’t Hooft’s polygonal gravity starting from the dual
LQG framework. This was mostly accomplished. Starting from dual LQG’s symplectic
form, we were able to recover polygonal gravity’s symplectic structure, as was first done
in [28]. This was done by forcing the faces dual to the vertices of the triangulation to
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be planar. The Gauss constraint, from dual LQG, was then shown to be equivalent to
CG,f by an explicit calculation for the first time. The other constraint Cα,f , was then
recovered by concatenating a bunch of flatness constrains together. As a result of deriving
these constraints from dual LQG, we immediately know the transformations they generate,
proving it generates boosts. Another result is that Cα,f and CG,f are first class.

One issue that has not been answered is whether the gauge choice of making the faces
co-planar is always possible. In fact, it is expected that this will not be the case. It is
already known that time evolution in polygonal gravity leads to discontinuities, [46], leading
to a series of transitions. Therefore, we postulate that the transitions occur precisely from
the gauge fixing we described above. One approach to answering this question would be to
compute the Dirac Brackets, and analyzing the resulting algebra. Furthermore, since the
reduction, was not explicitly carried out, the full reduced phase space of gravity may not
be contained in polygonal gravity. Therefore, to check whether the gauge fixing described
above do not over constrain the system, we will analyze the torus universe.

5.3 The torus universe in LQG and polygonal
gravity

The torus universe is the simplest spacetime one can consider in discrete gravity. In fact,
the reduced phase space for the torus universe has been explicitly known for decades [37,
53]. The reason for this simplicity is that the flatness and torsion constraints are degen-
erate. In the LQG framework, this means it becomes much easier to identify independent
degrees of freedom and write down explicitly the degrees of freedom and their Poisson
brackets. However, this degeneracy will turn out to be problematic in polygonal gravity,
where the nature of the degeneracy is not clear. This degeneracy led to two papers, [23]
and [54], making different conclusions. In the paper [23], the authors claim to find the
Teichmüller parameters of the theory, seemingly solving the torus universe. However, they
fail to show that their proposed Teichmüller parameters are gauge invariant. In the other
paper [54], the author analyzes this problem again and argues that the parameters in [23]
are not invariant under boosts. However, the author also fails to identify the true degrees
of freedom of the model and, instead relying on incomplete or “spacetime” arguments.
Part of the reason for this is both that papers were unable to construct observables for the
reduced phase space in terms of ’t Hooft’s variables. In fact, gauge invariant observables
in polygonal gravity were unknown. In LQG however, the observables are well known [30,
35]. Therefore, using the map developed above, we will use the known observables of LQG
and write them down in terms of polygonal gravity’s variables. Then the question becomes
whether the observables in LQG are independent in ’t Hooft gravity. If they are, the torus
universe will be contained in polygonal gravity.
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5.3.1 One polygon torus universe
The first step in answering whether polygonal gravity can describe the torus universe is
to choose a discretization. The simplest discretization that obeys ’t Hooft’s three-valent
vertex condition is given in figure 5.3. As the figure shows, this discretization requires two
triangles and a single dual face or polygon. Thus, we will refer to this discretization as the
one polygon torus.
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Figure 5.3: Left: Triangulation of torus and dual graph Γ. Opposite edges of triangulation
are identified. Right: Dual polygon, found from cutting along the edges of the graph Γ.

The torus universe in the LQG formalism has been explicitly solved [37, 53]. The
difference however, is that they they use a simpler discretization of the torus, and not
the dual LQG polarization. Therefore, we will have identify the observables in the dual
framework with our more complicated discretization. First, from figure 5.3, the constraints
in LQG∗ will be given by

Gc1 = h̃c1
`∗3
h̃c1
`∗2
h̃c1
`∗1
, Gc2 = h̃c2

−`∗2
h̃c2
−`∗1
h̃c2
−`∗3
, (5.21)

Jv = Ev
`1 + Ev

`2 + Ev
`3 + Ev

−`1 + Ev
−`2 + Ev

−`3 . (5.22)
Note that Gc2 is not an independent constraint. The triangles c∗2, c∗1 share the same
holonomies, implying Gc2 = 1 exactly Gc1 = 1. Furthermore, the constraints Jv and
Gc1 are independent. To see this, note that the Gauss constraint can be written as

Jv = (1− Ad(h̃`∗1))Ev
`1 + (1− Ad(h̃`∗2))Ev

`2 + (1− Ad(h̃`∗3))Ev
`3 . (5.23)

Now consider the loop [−`∗2 − `∗1`∗2`∗1]. From the two flatness constraints, the holonomy of
this loop is trivial

Gc2Gc1 = h̃−`∗2 h̃−`∗1 h̃`∗2 h̃`∗1 = 1.
This implies that h̃`∗1 and h̃`∗2 commute and therefore have the same rotation axis. If we
denote this axis of rotation by ñv then we have that

〈nv,Jv〉 = 0, (5.24)
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5.3 The torus universe in LQG and polygonal gravity

since the holonomies will leave the axis invariant. This means that the Gauss constraint
enforces two independent constraints. Note, it still generates 3 symmetry transformations.
To check whether we have found all the relations between the constraints, we will count
the remaining degrees of freedom. Given there are 3 independent edges, this means we
have 3× 3××2 = 18 variables from the holonomies and fluxes. The constraint Gc1 ,Gc2 ,Jv
all generate independent transformations, which means 3 + 3 + 3 = 9 degrees of freedom
are just due to the orbits of the constraint. We also have 3 + 2 constraints left from Gc1

and the two components of Jv. Therefore, there are only 18−9−5 = 4 degrees of freedom
left, which is precisely the dimension of the reduced phase space of the torus.

The next step is to find the observables of the torus. The observables for this system
have been discussed in the Chern-Simons formalism [36, 35, 34] and LQG in [30, 37, 53].
The first set is given by the traces of the holonomies of the loops `∗i of the torus. These
are sometimes called the “mass” m`i , and are defined by

tr h̃`∗i = 2 cosh
(
m`∗i

/2
)
. (5.25)

Note that m`∗i
, are not the ’t Hooft rapidities η necessarily. In general, the trace of a

holonomy in polygonal gravity is given by

tr
(
h̃`∗
)

= 2 cos
(
φ̄`∗ + φ`∗

2

)
cosh(η`∗), (5.26)

The other observables are sometimes called the “spin” of the holonomy. For a non-
contractible loop λ they are given by

sλ = tr
(
h̃λEλ

)
, (5.27)

where Eλ is the flux, or translational holonomy. Unlike the trace of the holonomy, these
observables are harder to define for our discretization, since no single flux forms a loop.
However, the loops defining the fundamental group of the torus, are given by `∗1, `∗2. We
then need to construct the translational part of the holonomy using the links ` of Γ. From
figure 5.3, we can see the two loops generating the fundamental group for the translational
holonomy can be taken to be [−`3`1] and [−`3`2]. The SU(1, 1) holonomies corresponding
to these loops are h̃−`∗2 and h̃`∗1 respectively. The two spin observables are then given by

s1 = tr
[
h̃`∗1

(
Ev
−`3 + Ad(h̃−`∗1)Ev

`2

)]
, s2 = tr

[
h̃−`∗2

(
Ev
−`3 + Ev

`1

)]
. (5.28)

To see that these Poisson commute with Gc1 ,Gc2 , note that the flatness constraint flows
are given by

δ̃c1
β E`1 = β, δ̃c2

β E`1 = −h̃`∗2βh̃
−1
`∗2
, (5.29)

δ̃c1
β E`2 = h̃`∗1βh̃

−1
`∗1
, δ̃c2

β E`2 = −β, (5.30)
δ̃c1
β E`3 = h̃−1

`∗3
βh̃`∗3 , δ̃c2

β E`3 = −h̃−1
`∗3
βh̃`∗3 . (5.31)
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5.3 The torus universe in LQG and polygonal gravity

The transformations for E−`i are easily found by using E−`i = −h̃`∗1E`ih̃`i . It is then a
simple exercise of plugging these transformation laws into the expression for s1, s2, and
using the Ad-invariance of the trace to show that the si are observables.

One way to see that these are related to observables sλ is to delete the `3 edge by a
gauge transformation. In this case h`3 = 1 and E`3 = 0. The spin observables then become

s1 = tr
(
E`2h̃`∗1

)
, (5.32)

which is precisely sλ.
To see what geometric information these observables encode, it is helpful to use a pa-

rameterization of the holonomy matrices. We will use a standard SU(1, 1) parameterization
(which is reviewed in appendix A) given in terms of the exponential matrices exp

(
θnbτb

)
.

Depending on the nature of n, we get the following result

exp
(
θnIτI

)
=


cosh(θ/2)1 + 2 sinh(θ/2)nbτb n2 > 0 (spacelike)
cos(θ/2)1 + 2 sin(θ/2)nbτb n2 < 0 (timelike)
1 + nbτb n2 = 0(lightlike).

(5.33)

In this case we can see that the “mass” is just the angle or rapidity parameter for the
transformation around the axis n. The nature of the holonomies associated the ell∗i are
hyperbolic in nature, since the torus is spacelike by assumption [9]. This implies that the
rotation axis n is spacelike for `∗1 and `∗2. Therefore, using exponential map parameteriza-
tion, the spin variables become

s1 = 2 sinh
(
m`∗1

/2
)
(E−`3 + E`2) · n,

s2 = 2 sinh
(
m`∗2

/2
)
(E−`3 + E`1) · n.

(5.34)

Notice that since m`∗i
is an observable, we can separate it from si to get the independent

observables,
Pi = (E−`3 + E`i) · n, i=1,2 (5.35)

In the case of the torus universe, the Poisson brackets between the observables are
easily calculated. First, note that

{2 cosh(m`i/2), Pj} = sinh(m`i/2)δij. (5.36)

This then implies that m`i and the Pj are canonically conjugate. That is,

{m`i , Pj} = δij, (5.37)

recovering the result from [37]1. From the constraints of the system, it is also easily shown
that the four observables are independent. Therefore, all torus universes can be described

1For higher genus, the Poisson brackets between the mass and spin observables becomes much more
complicated.
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5.3 The torus universe in LQG and polygonal gravity

by the values of these parameters. Now we can move to answering whether the torus
universe with a one polygon description is contained in polygonal gravity.

The torus universe in the polygonal gravity was analyzed in [23, 54]. However, as
mentioned above, the papers contradict each other. The reason is that both paper strug-
gle is that the cannot find the observables in terms of polygonal gravity variables. The
answer to whether we can describe the torus universe, will then be given by whether the
4 observables are independent on-shell. In order to check this, we need to analyze the
nature of the constraints in the 1 polygon torus universe. Like LQG∗, polygonal gravity’s
constraints are degenerate. Due to the identification of the links of the polygon in figure
5.3, the constraint (4.30) becomes

Cα = 2(α1 + α2 + α3)− 4π. (5.38)

Likewise, the Gauss constraint (4.29) becomes

CG = L`1 +L`2 exp(i(π − α3))+L`3 exp(i(2π − α3 − α2))+L`1 exp(i(3π − α3 − α2 − α1))
+ L`2 exp(i(4π − 2α3 − α2 − α1)) + L`3 exp(i(5π − 2α3 − 2α2 − α1)). (5.39)

Therefore, we see that Cα = 0, implies CG = 0. Therefore, we only have to ensure the
α(η) satisfy Cα = 0. This also means that all lengths of the polygon are unconstrained.

In [23], they give two possible solutions to Cα along with ’t Hooft’s vertex conditions.
Since Cα implies that the 2D intrinsic curvature must vanish at the nodes, one solution
is forcing all the rapidities to be zero. This gives the trivial solution and corresponds to
the static torus [9]. This set of solutions is degenerate however, [9], so we will no longer
consider it.

The second solution to the vertex conditions (4.13) and Cα, is when only one of the edges
rapidities vanishes. In the literature, these are often called quasi-static nodes. Applying
the constraint and ’t Hooft’s vertex conditions, we have that

η`∗1 = η, η`∗2 = η, η`∗3 = 0, (5.40)
α1 = π − α, α2 = α, α3 = π, (5.41)

where α and η are free parameters. This solution is the point of departure for the two papers
[23] and [54]. In [23] they take α as being a legitimate degree of freedom. In contrast, [54]
view α as purely gauge and unphysical. Taking α as unphysical, gives the following degrees
of freedom L1, L2, L3, η. The author then argues that there are only 3 degrees of freedom
left after gauge fixing. The problem with both papers is that even if ’t Hooft’s variables
are not gauge invariant. Therefore, no conclusion can be made based on the dimension
of the phase space, from the amount of non-gauge invariant observables. Therefore, we
instead need to identify the true observables in the system to find the dimension of the
reduced phase space.

To find these observables, we re-express the mass and spin observables in terms of ’t
Hooft’s variables. Applying the two decompositions (5.2) and (5.7), we find that the mass
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5.3 The torus universe in LQG and polygonal gravity

observables are given by,

2 cosh
(
m`∗1

/2
)

= −2 cos
(
α1 + α2 + α3

2

)
cosh

(
η`∗1

)
(5.42)

2 cosh
(
m`∗2

/2
)

= −2 cos
(
α1 + α2 + α3

2

)
cosh

(
η`∗2

)
. (5.43)

These where found by using (5.26) and the fact that the angles are related to the φ, φ̄ by

α1 = φ`∗3 + φ̄`∗2 = φ−`∗3 + φ̄−`∗2
α2 = φ`∗1 + φ̄`∗3 = φ−`∗1 + φ̄−`∗3
α3 = φ`∗2 + φ̄`∗1 = φ−`∗2 + φ̄−`∗1 .

(5.44)

On-shell i.e. when Cα and ’t Hooft’s vertex condition are satisfied, we get that the
observables reduce to

2 cosh
(
m`∗1

/2
)
≈ 2 cosh(η) (5.45)

2 cosh
(
m`∗2

/2
)
≈ 2 cosh(η). (5.46)

Therefore, in the ’t Hooft gravity 1 polygon torus universe, we have that 2η = m`∗1
= m`∗2

.
Moving to the spin variables (5.28), and subbing in the planar decomposition (5.7), we

get that

s1 =
[
L`2 cos

(
φ̄`∗1 − φ`∗1 + 2φ`∗2

2

)
− L`3 cos

(
φ̄`∗1 − 2φ̄`∗3 − φ`∗1

2

)]
sinh

(
η`∗1

)

s2 =
[
L`1 cos

(
φ̄`∗2 − φ`∗2 + 2φ`∗1

2

)
− L`3 cos

(
φ̄`∗2 − 2φ̄`∗3 − φ`∗2

2

)]
sinh(η`2).

Rewriting this in terms of the polygon angles α, we get

s1 =
[
L`2 cos(α3)− L`3 cos

(
α3 − α2 + α1

2

)]
sinh(η`1) ≈ −(L`2 + L`3 cosα) sinh η

s2 = −[L`1 + L`2 cos(α1)] sinh(η`1) ≈ −(L`1 − L`2 cosα) sinh η.
(5.47)

Therefore, the observables for the torus, given in terms of ’t Hooft’s variables are given by

m`1 = 2η P`1 = L`2 + L`3 cosα
m`2 = 2η P`2 = L`1 − L`3 cosα.

(5.48)

This shows that ’t Hooft’s one polygon torus universe only has three independent variables.
Therefore, we cannot cover the reduced phase space for the torus universe with one ’t Hooft
polygon.
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Figure 5.4: Two polygon torus universe.

5.3.2 Two polygon torus universe
The next simplest discretization in the torus universe is given by two polygons. The
discretization we have chosen is given in figure 5.4. Note while other discretizations are
possible, they are all just related to this one by a translation in the universal covering of
the torus universe. With the two polygon discretization, the constraints for the system in
LQG∗ are given by

Gc1 = h̃−`∗4 h̃−`∗1 h̃`∗5 Gc2 = h̃−`∗5 h̃`∗2 h̃`∗6
Gc3 = h̃−`∗6 h̃`∗1 h̃`∗3 Gc4 = h̃−`∗3 h̃−`∗2 h̃`∗4

(5.49)

Jv = Ev
−`3 + Ev

`1 + Ev
−`4 + Ev

−`2 + Ev
−`5 + Ev

−`1 + Ev
−`6 + Ev

`2

Jv̄ = E v̄
`3 + E v̄

`4 + E v̄
`5 + E v̄

`6 .
(5.50)

If we concatenate the four flatness constraints together, we end up with a global constraint,
which implies that h̃`∗1 and h̃`∗2 commute.

Like the one polygon torus, the constraints in the torus universe are not independent.
To see this, note that we have 6 independent edges. This corresponds to 36 variables, 18
from the 6 holonomies and another 18 from the 6 fluxes. We also have 4 flatness constraints
and two Gauss constraints. Since each constraint is three dimensional it seems that there
are 18 constraint. Another 18 degrees of freedom are contained gauge orbits since the
constraints are first class. This seemingly gives zero degrees of freedom. However, the
constraints are not independent. Assuming that the flatness constraints for the nodes
c1, c2, c3 have been solved, we have Gc4 = 1, as

G−1
c4 = Gc1Gc2Gc3 = 1. (5.51)

Therefore, one of the four flatness constraints is degenerate with the others.
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5.3 The torus universe in LQG and polygonal gravity

From the one polygon universe we found that that the torsion constraint and the flatness
constraints are not independent. In the same vein, we have that h̃`∗1 and h̃`∗2 commute, and
thus define a common axis of rotation nv. Taking the inner product between the normal
and the Gauss constraint Jv gives

〈nv,Jv〉 =
〈
Ev
−`3 + Ev

−`4 + Ev
−`5 + Ev

−`6 , nv
〉
. (5.52)

This is degenerate with Jv̄ so we see that one component of the two Gauss constraints
is degenerate. Therefore 4 of the 18 constraints are not independent, giving the correct
degrees of freedom.

The observables for the 2 polygon universe will be basically the same as the ones for
the one polygon universe. The “mass” observables will again be given by

tr h̃`∗1 = 2 cosh(m1/2), tr h̃`∗2 = 2 cosh(m2/2). (5.53)

The “spin” observables can also be identified in analogy to the one polygon universe. In
this case, three fluxes are needed to form a loop, and a moment of refection will show that
the spin observables are given by

s1 = tr
[
h̃`∗1

(
Ev
−`3 + Ad(h̃−`∗1)(Ev

−`6 + Ev
`2)
)]
, (5.54)

s2 = tr
[
h̃−`∗2

(
Ev
−`3 + Ev

`1 + Ad(h̃`2)Ev
−`4

)]
. (5.55)

Therefore, by analogy with the one polygon universe, we again have described the torus
universe in the dual LQG framework. We can now proceed to the two polygon universe in
’t Hooft’s formalism.

First, we relate the angles of the 2 polygon universe to the orientations φ, φ̄,

αv̄c1 = φ`∗5 + φ̄−`∗4 , αv̄c2 = φ`∗6 + φ̄−`∗5 ,

αv̄c3 = φ`∗3 + φ̄−`∗6 , αv̄c4 = φ`∗4 + φ̄−`∗3 ,

αvc4,32 = φ−`∗3 + φ̄−`∗2 , αvc3,13 = φ`∗1 + φ̄`∗3 ,

αvc3,61 = φ−`∗6 + φ̄`∗1 , αvc2,26 = φ`∗2 + φ̄`∗6 ,

αvc2,52 = φ−`∗5 + φ̄`∗2 , αvc1,15 = φ−`∗1 + φ̄`∗5 ,

αvc1,41 = φ−`∗4 + φ̄−`∗1 , αvc4,24 = φ−`∗2 + φ̄`∗4 .

(5.56)

The meaning of the labels is elucidated in figure 5.4. For example, the angle αvc1,32 is the
angle at the node c1 from the edges `3, `2, as seen from the polygon centered at v. Using
these angles, the constraints, first for the polygon centered at v̄, are given by

CG,v̄ = L`6 + L`5 exp
(
i(π − αv̄c2)

)
+ L`4 exp

(
i(2π − αv̄c2 − αv̄c1)

)
+ L`3 exp

(
i(3π − αv̄c2 − αv̄c1 − αv̄c4)

) (5.57)

Cα,v̄ = 2π − αv̄c1 − αv̄c2 − αv̄c3 − αv̄c4 . (5.58)
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The deficit angle constraint, Cv
α, for the polygon centered at v is given by

Cα,v = 6π − αvc4,13 − αvc3,32 − αvc3,61 − αvc2,26 − αvc2,52 − αvc1,15 − αvc1,41 − αvc4,24. (5.59)

The Gauss constraint for v isn’t written down explicitly due its length. Using these ex-
pressions, the two mass observables can be written in terms of ’t Hooft’s variables as

tr
(
h̃`1
)

= 2 cos
(1

2(αvc1,15 + αvc2,52 + αvc4,24 + αvc1,41)
)

cosh
(
η`∗1

)
, (5.60)

tr
(
h̃`2
)

= 2 cos
(1

2(αvc1,15 + αvc2,52 + αvc3,61 + αvc2,26)
)

cosh
(
η`∗2

)
. (5.61)

In the one polygon case, the first step in analyzing the problem was solving the flatness
constraints. In the two polygon case, explicitly solving the flatness constraint for each
node is not as simple. One way forward is gauge fixing, the system to make it simpler.
Our gauge choice is to set the rapidity of one of the edges to zero. This is only possible
for edges that fail to form loops. Namely, the rapidities for η`∗1 , η`∗2 6= 0. This is because a
gauge transformation φ acting on the holonomies attached to these nodes would act by

h̃`∗1 → φ(v)h̃`∗1φ
−1(v). (5.62)

In order for η`∗1 = 0, the holonomy would have to be conjugate to a pure rotation, which is
not possible. Therefore, only one of the edges dual to the polygon centered at v̄ can have
possibly have a vanishing rapidity. For definiteness, we set η`3 = 0. In order for this gauge
choice to be possible, we need to ensure that a solution to the constraints exist, and the
gauge fixing can be reached. The latter point should be true, since CG generates boosts.
Therefore, all we have to do is ensure that a solution to the constraints exist.

First, setting η`∗3 = 0 has a number of consequences. From (4.17), we have that η`∗1 = η`∗6 .
This means that the node c3 is again quasi-static and thus is described by

η`∗1 = ηc3 αv̄c3 = π − αc3

η`∗6 = ηc3 αvc3,13 = αc3

η`∗3 = 0 αvc3,61 = π.

(5.63)

Similar reasoning hold for the node c4, giving
η`∗2 = ηc4 αv̄c4 = π − αc4

η`∗4 = ηc4 αvc4,32 = αc4

η`∗3 = 0 αvc4,24 = π.

(5.64)

Now we notice the rapidities for the two remaining triangles will be equal, i.e. the quantities
ηc4 , ηc3 , η`∗5 will decorate the edges. Therefore, following ’t Hooft’s vertex condition (4.13),
the angles will be the same. Namely, we will have

αvc1,41 = αvc2,26 = α̂, (5.65)
αv̄c1 = αvc2,52 = α′, (5.66)
αv̄c2 = αvc1,15 = α̃. (5.67)
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Plugging these relations into the Cα constraints we get that

C v̄
α = αc3 + αc4 − α′ − α̃, (5.68)

Cv
α = 4π − αc3 − αc4 − 2α̂− α′ − α̃. (5.69)

Together these imply that,

2π = α̂ + α′ + ᾱ, (5.70)
2π = αc3 + αc4 + α̂. (5.71)

These relations then simplify the Gauss constraints for both polygons. For v̄ we get that

C v̄
G ≈ L`6 + L`3 exp(iαc3) + L`4 exp(i(2π − α̂)) + L`5 exp(i(π + α̃)), (5.72)

and similarly for v,

Cv
G ≈ L`6 + L`1 + L`5 exp(i(π − α̃)) + L`2 exp(i(2π − α̃− α′))

+ L`4 exp(i(2π − α̃− α′)) + L`1 exp(iπ) + L`3 exp(i(2π − αc3))
+ L`2 exp(i(3π − αc3 − αc4))

≈ L`6 + L`5 exp(i(π − α̃)) + L`4 exp(iα̂) + L`3 exp(i(2π − αc3)).

Therefore, we see that when the two Cα constraints are satisfied the Gauss constraints for
v and v̄ are equivalent.

However, there is an additional reduction. The expression (5.70), implies that the
nodes c2 and c1 are quasi-static. This indicates that one of the rapidities must vanish,
which necessarily gives that η`∗5 = 0. From this, we get that α̂ = π, and then that
α̃ = π − α′. Furthermore, since the vertex is quasi static, we get

η`∗4 = ηc4 = ηc2 = η`∗1 .

The result of this back reacts through the polygon. Setting ηc3 = η and αc3 = α we get
that,

η`∗1 = η αv̄c3 = π − α αv̄c1 = α′

η`∗2 = η αvc3,13 = α αvc1,41 = π

η`∗3 = 0 αvc3,61 = π αvc1,15 = π − α′

η`∗4 = η αv̄c4 = α αv̄c2 = π − α′

η`∗5 = 0 αvc4,32 = π − α αvc2,26 = π

η`∗6 = η αvc4,24 = π αvc2,52 = α′

(5.73)

Therefore, α and α′ are free parameters in the theory. Furthermore, in this case the Gauss
constraint further simplifies to

C v̄
G = L`6 + L`3 exp(iα)− L`4 + L`5 exp(−iα′). (5.74)
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The solution to this constraint are then easily identified. A solution is given by setting
L`6 = L`4 , L`3 = L`5 = 0. As a result, we have reduced the two polygon universe to the
one polygon universe, by gauge fixing. Therefore, the observables for this system will be
equal to the observables for the one polygon torus. Consequentially, the two polygon torus
universe cannot contain reduced phase space of gravity.

The next step forward would be to ask whether N polygons could solve this issue. We
suspect this will is not the case. It should always be possible to apply a gauge fixing and
essentially delete an edge of a polygon. For instance with N polygons we could apply N−1
gauge fixes that force N − 1 rapidities to vanish. In the end, we suspect, we will again get
the one polygon universe. Therefore, we end with the following conjecture:

Conjecture 1. Polygonal gravity cannot fully describe the torus universe.

5.4 Conclusion
In this chapter we explored the relationship between LQG and polygonal gravity. First,
we showed that due to the discrete structure of polygonal gravity, LQG∗ was the correct
polarization to use. This is because polygonal gravity first solves the flatness constraint,
which matches LQG∗. This corrected a mistake in the literature [52]. The next step was
reducing dual LQG to the polygonal gravity variables. This required gauge fixing the
faces of Γ to be co-planar, so that they would form polygons. Unfortunately, how this
was accomplished was not fully satisfactory. Namely, we assumed that such a gauge fixing
was already done by a series of translations, but never attempted to see whether such a
transformation was possible. The reason for this, is that Dirac brackets are very hard to
compute in general; relatedly, observables for the kinematical phase space of LQG∗ are
difficult to find. However, by assuming that the polygons were co-planar, we were able to
reproduce the results in [28], but in the LQG∗ formalism. That is, we were able to recover
the symplectic structure for polygonal gravity.

The CG,f constraint (4.30) was then shown to be equivalent to the Gauss law in LQG∗
(5.17). As a byproduct of this result, we corrected a mistake in [28] about the origin of
the other constraint Cα,f (4.29). Therefore, we accomplished the first goal of this thesis.

In the following section, we used the relation between these two theories to attack
the problem of whether the torus universe exists in polygonal gravity. This was done by
expressing the physical variables of reduced discretized gravity, in terms of ’t Hooft’s vari-
ables. The result was that we did not have enough independent physical observables to
cover the reduced phase space of the torus, when using one or two polygonal decomposi-
tions. We conjectured 1 that N polygons will also fail to capture the torus universe. The
reasoning for this is that a N polygon decomposition of the torus can be reduced to the
single polygon by gauge fixing. This suggests that polygonal gravity does not contain the
torus universe, and gauge fixing from LQG∗ over constrains the theory.
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Chapter 6

Duality in ’t Hooft Gravity

In the previous chapter we explored two different approaches to discrete gravity and their
relation. That is, we showed how ’t Hooft’s polygonal gravity is a gauge fixed version of
dual LQG. The gauge fixing forced the faces of the graph Γ to be co-planar and, thus, on-
shell form flat polygons. However, our explanation is not entirely satisfying. First, we were
not able to entirely explain how the orbits of the flatness constraints (i.e. translations),
are explicitly dealt with in dual LQG. Instead, we argued, somewhat heuristically, that by
imposing the co-planar condition certain translations were factored out. Furthermore, we
were not able to compute the Dirac brackets explicitly. Part of the issue is that solving the
flatness constraint first is much more difficult than the Gauss constraint. This is partially
the reason why the LQG polarization was developed before the dual version. In the LQG
polarization, solving the Gauss constraint leads to Regge geometry [8, 13], a theory that
was developed in the early 1960s [40]. This leads to the question of whether there exists a
dual polarization of polygonal gravity that more closely mirrors Regge geometry and LQG.

The first part of this chapter will describe the dual ’t Hooft formalism. Like polygonal
gravity, it will be motivated from purely geometrical arguments. Therefore, we will not
start with an action principle. Dual to polygonal gravity, the starting point will be the
triangulation Γ∗. The theory will be defined in terms of the variables (L, 2η, α). However,
the angles α will be given by the edge lengths L, not the dihedral angles 2η. Furthermore,
the lengths will live on the edges of Γ∗ not Γ, and vice versa for the dihedral angles. In
the following section, we will describe the dynamical structure and will postulate that
the symplectic structure for L, 2η will be identical to polygonal gravity. This postulate
is well motivated since our presentation suggests that dual ’t Hooft is just a different
polarization of polygonal gravity. In this regard, our dynamical constraint in dual ’t Hooft
is in opposition to polygonal gravity. Here, we find that the consistency condition for
gluing triangles together is just a flatness constraint for the faces of the dual graph Γ.
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6.1 Dual ’t Hooft gravity

In the second part of this chapter, we will show how dual ’t Hooft gravity is related
to the standard LQG polarization. We will argue the kinematical phase space of LQG
is identical to dual ’t Hooft’s, when a specific gauge has been chosen. In this case, the
reduction to the kinematical phase space is much simpler than LQG∗ to polygonal gravity.
The reason for this is that finding observables for the kinematical phase space is much
simpler.

6.1 Dual ’t Hooft gravity
In polygonal gravity we started with assuming that observers sit a centers of polygons,
which are related to the faces of Γ. The links of Γ then encoded information about the
lengths of the polygons, and the edges of Γ∗ described the transformation between the
observers of adjacent polygons. Furthermore, in polygonal gravity we required that Γ∗
was a triangulation. This was required to ensure that ’t Hooft’s vertex condition (4.13)
would specify the angles of the polygon α in terms of rapidity η of the links. In dual ’t
Hooft, essentially the opposite occurs. First, in order to simplify the assumption we will
assume that Γ,Γ∗ are already embedded in a Cauchy surface. Therefore, we do not need
to specify ’t Hooft’s matching condition (4.2). Dual to polygonal gravity, we will assume
that observers sit in the center of the triangles of Γ∗ not the faces of Γ. In other words,
the nodes of Γ will represent observers, not the vertices of Γ∗. Note that since observers
sit in triangles, we do not have to force them to be planar. In polygonal gravity, the
polygons where described by lengths and angles, this will be opposite in dual ’t Hooft. The
lengths and angles in dual ’t Hooft gravity are associated to the edges of the triangulation.
Moreover, similar to polygonal gravity, we will assume that the observer in each triangle is
at “rest”. Therefore, the lengths L, will be purely spatial, and the normal to each triangle
are given by (1, 0, 0). Due to this structure, the angles of dual ’t Hooft gravity are given
by the lengths. Consider a triangle c∗ = [`∗3`∗2`∗1] with side lengths given by Lc`∗i , then the
angles are specified by

L2
`∗i

= L2
`∗j

+ L2
`∗
k
− 2L`∗jL`∗k cos

(
αcvi

)
, (6.1)

for every permutation of i, j, k. This relation is analogous to the vertex relation (4.13) for ’t
Hooft gravity. Additionally the lengths must obey the triangle identity, i.e. L`∗i +L`∗j ≥ L`∗

k
,

which is akin to ’t Hooft’s hyperbolic triangle identity
∣∣∣η`∗i ∣∣∣+ ∣∣∣η`∗j ∣∣∣ ≥ ∣∣∣η`∗k ∣∣∣.

In terms of the construction of polygonal gravity, there is an interesting relation with
dual ’t Hooft gravity. Recall in ’t Hooft gravity, consistency conditions are required when
gluing the polygons together. This resulted ’t Hooft’s vertex condition (4.13). However,
when defining this, we also had a translational part (4.2), that we ignored. This was
because, the lengths/geometry of the dual triangles were not pertinent. In dual ’t Hooft
gravity this is reversed. In this case we are just concerned with the translational part of
the triangles describing the lengths and angles. The non-translational parts are ignored
contrasting polygonal gravity. Furthermore, the gluing condition for the translational part
(4.12), gives the cosine law (6.1).
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6.1 Dual ’t Hooft gravity
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Figure 6.1: In dual ’t Hooft gravity, observers sit at the nodes ci of Γ, and describe the
lengths of the edges of the triangulation Γ∗

So far we only have considered a single triangle in dual ’t Hooft gravity. In order to
describe the Cauchy surface we need to glue these triangles together. Each triangle is a
local inertial observer, just like in ’t Hooft gravity; therefore, we know that the observers
will be related by a constant Poincaré transformation. However, we are only going to
consider the SU(1, 1) part of the transformation. The translational part of the Poincaré
transformation describes the lengths of the faces of Γ. However, analogous to polygonal
gravity, our observers do not care about this information. Therefore, if we consider two
triangles c∗1, c∗2, with the edge `∗ shared between them, the transition between them will
be given by hc2c1 ∈ SU(1, 1). Using the ’t Hooft decomposition (4.3), we will write the
holonomy as

hc2c1 = h` = Rs(φ̄`)Bs(2η`)Rs(φ`). (6.2)
Like in ’t Hooft gravity, the rotation angles φ, φ̄ will be interpreted as the orientation of
the edge `∗ when viewed from c1 or c2 respectively. The boost parameter 2η, describes the
dihedral angle between the two triangles. Finally just like polygonal gravity, we require
the metric to be continuous between the triangles. This implies the length of the edge `∗
will be the same when viewed from c1 or c2.

The holonomies between triangles will not be independent in general. This can be seen
from similar reasoning used to define ’t Hooft’s vertex condition. Consider an observer
sitting in a triangle c1 surrounded by a series of triangles ci, as in figure 6.1. If this
observer, Xc1 , moves in a loop from triangle to triangle, then we require

Xc1 = hc1cihcici−1 · · ·hc2c1Xc1 . (6.3)

This implies that the holonomy if any loop λ ∈ Γ is the identity, and is equivalent to

Vλ = B(2ηc1ci)R(π − αci(L))B(2ηcici−1)R(π − αci−1(L)) · · ·B(2ηc2c1)R(π − αc1(L)) = 1.
(6.4)
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6.1 Dual ’t Hooft gravity

’t Hooft polygonal gravity Dual ’t Hooft gravity

(Γ,Γ∗) variables L` → Γ, η`∗ → Γ∗, α(η) L` → Γ, α(L), η`∗ → Γ∗
kin constr. Vc = 1 cosine law

(flat triangle) (triangle closure)
gauge fix tv1 = tv2 = · · · = τ n̂ = (1, 0, 0)
dyn. constr. CG = 0, Cα = 0 Vλ = 1

(polygon condition) (flat)

Table 6.1: Comparison between ’t Hooft polygonal gravity and dual ’t Hooft gravity.

Note, we took to the loop to be given by λ = [c1cici−1 · · · c1], and we left the functional
dependence of α to reinforce they are functions of the length. This gives three constraints
for dual ’t Hooft gravity. The appearance of π − α, comes from the fact that in LQG we
are concerned with the angles between the edges of the triangulation, not the links of the
dual graph. Finally, the constraint enforces the flatness constraint for the Cauchy surface.
In our case, the loops will usually be given by the faces dual to the vertices of Γ∗.

The comparison between ’t Hooft gravity and its dual is shown in table 6.1. At the
kinematical level, the two theories mirror the duality of LQG and LQG∗. That is, the
location of the variables L, η are swapped between the two pictures. The gauge fixing in
both pictures are similar as well. In polygonal gravity, the partial gauge fix implies three
things. The first and second, enforce that the faces of Γ are co-planar and the observer
is at rest in the polygon. The third, imposes that all polygonal clocks evolve at the same
rate. For dual ’t Hooft, we automatically have that the triangles are co-planar, and does
not require any gauge fixing. We do require that observers in dual ’t Hooft gravity are at
rest. Finally, we have chosen not to apply ’t Hooft’s time gauge fix. The reason for using
this gauge fixing is twofold. First, such choices of time may not be possible in principle.
Secondly, the choice of time was made so that ’t Hooft could recover the correct symplectic
structure for gravity. However, we will take a different approach for dual ’t Hooft gravity.
We postulate that the symplectic structure is equal to one of polygonal gravity,

Proposition 6.1. The symplectic structure needed for dual ’t Hooft to be related to 2+1
gravity is given by,

{L`∗i , L`∗J} = 0, {L`∗i , 2η`j} = −δij, {2η`i , 2η`j} = 0. (6.5)

The argument for this proposition, is that the choice of polarization does not change
the symplectic form.

This completes the discussion of dual ’t Hooft gravity. In summary, we have a theory
based on a set of lengths and angles which describe the geometry of triangles, and dihedral
angles between them. This closely mirrors the situation in Regge calculus, or canonical
simplicial gravity [13]. Furthermore, since polygonal gravity was related to LQG∗ we
expect dual ’t Hooft to be related to LQG. The exact nature of this relation is what we
will tackle next.
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6.2 Relation to LQG and Regge calculus

6.2 Relation to LQG and Regge calculus
Dual ’t Hooft gravity places its length variables on the edges of Γ∗ which is similar to the
fluxes of the LQG polarization. Therefore, superficially we expect the phase space of dual
’t Hooft gravity to be related to the kinematical phase space of LQG Pkin

LQG. Recall that
this is given by solving the Gauss constraint (3.39). The exact relation between the two
theories is what we will explore in this section. Recall, in polygonal gravity one of the
issues was finding the Dirac brackets after partially gauge fixing the orbits of the flatness
constraint. In dual ’t Hooft gravity, however, we will be able to avoid this problem since
finding a complete set of kinematical observables is much easier to do.

To start consider a triangle c∗ = [v1v2v2]. Following [8], the lengths and angles for the
triangle are defined as

L`∗ =
∣∣∣Ẽc

`∗

∣∣∣, cos
(
αvj

)
= −Ẽ[vivj ] · Ẽ[vjvk]

L[vivj ]L[vjvk]
. (6.6)

For three-valent vertices, as we have assumed by necessity, the Gauss constraint, Jc, implies
that the three fluxes form the edges of a triangle. For higher valent vertices this is no longer
true. This is why we had to, by hand, enforce the co-planar condition to hold in dual LQG.
Moreover, the beautiful part of these observables is that they are well-defined on Pkin

LQG,
since both are gauge invariant. This starkly contrasts the situation in LQG∗ where the
lengths do not form good observables for the kinematical phase space, prior to gauge fixing.

In order for these lengths and angles to be the same as the ones from dual ’t Hooft, we
need to ensure that the angles are related to the lengths by the cosine law. In fact, this
is exactly what the Gauss constraint gives. To see, this consider a triangle c∗ = [v1v2v3],
with edges `∗i = [vi+1vi], where v3+1 = v1. Taking the dot product of Ẽ`3 with the Gauss
constraint (3.39), we get that

0 ≈ Ẽ`1 ·
(
Ẽ`1 + Ẽ`2 + Ẽ`3

)
≈ Ẽ`1 · Ẽ`1 − (Ẽ`2 + Ẽ`3) · Ẽ`2 − (Ẽ`2 + Ẽ`3) · Ẽ`2
= L2

`1 − L2
`2 − L2

`3 + 2L`2L`3 cos(αv1),

which is precisely the cosine law. Furthermore, the triangle inequality for the edge lengths
can also be derived from the Gauss law. As such, we see that the dual ’t Hooft’s consistency
conditions are just a form of the Gauss constraint. The lengths are also the same when
viewed from other triangles since fluxes viewed from the adjacent triangle are related by
(3.26). Therefore, it appears these lengths are precisely the ones in in dual ’t Hooft gravity.

So far the L observables just describe the geometry of the local triangles. Therefore,
we need some kinematical observables that describe how the triangles are glued together.
This necessarily in require information from the LQG holonomies h`. The dihedral angles
Θ between the triangles, will define the missing information. The first step in defining
these kinematical observables will be to define the normal for each triangle. The normal
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6.2 Relation to LQG and Regge calculus

to the triangle described above is given by

nc = E`1 ∧ E`2
|E`1 ∧ E`2|

. (6.7)

Note that this definition of the normal is well-defined exactly when the Gauss constraint
is satisfied. Namely, any two edges will give the same normal up to a term proportional to
the Gauss constraint. The dihedral angle between two triangles is then given by

cosh
(
ΘMin
c1c2

)
=
〈
nc1 ,Ad(h−1

c2c1)nc2
〉
. (6.8)

Note that Θc1c2 = Θc2c1 from the definition.
Since our gauge group is SU(1, 1) one may wonder if this definition if well-defined. That

is, a possible concern may be that the normals may not be not be timelike. However, this
is not the case because we embedded our graph in a spacelike Cauchy surface. To see this,
note that ` is a spacelike curve. Writing the flux in terms of the continuum variables we
have that

ẼA
` =

∫
RA

B(g)eBa ˙̀a(s)ds, (6.9)

where s is the parameter for our curve and RA
B(g) is the gauge transformation g in the

vectorial representation. Then we have

ẼAηABẼ
B = RA

C(g)ηABRB
De

C
ae
B
b
˙̀a ˙̀b

= ηCDe
C
ae
B
b
˙̀a ˙̀b

= ˙̀agab ˙̀b > 0,

where it is greater than zero since gab is the spatial metric. Therefore, our flux vectors will
all be spacelike and the normals will be timelike.

The dihedral angles then form the other set of variables needed to describe the kine-
matical phase space of LQG. One way to check this is to count the degrees of freedom.
First, there are two independent sets of kinematical observables for each link of Γ, L`∗
and Θ`. Therefore, we have 2E variables, where E is the number of links of Γ. By solv-
ing the Gauss constraint we have 3F constraints, one flatness constraint for every face of
Γ. Furthermore, we only have 3F degrees of freedom encoded the orbits of the flatness
constraints. As a result, the number of degrees of freedom is

2E − 6F = 6E − 6V − 6F = 12g − 12, (6.10)

where V is the number of vertices and we used that Γ∗ is a triangulation. This again is
the dimension of the reduced phase space of gravity for g > 1 surfaces, verifying we can
describe the kinematical phase space using L and Θ.

Now the question is, why did we not use the same definition of Θ that was used in
defining dual ’t Hooft, i.e. (6.2). The dual ’t Hooft definition, 2η, of the dihedral angle
is inconvenient in our case since it is not SU(1, 1) gauge invariant. Therefore, in order for
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Figure 6.2: Kinematical observables for the LQG polarization. These provide enough
information to completely describe the kinematical phase space.

it to describe dihedral angle between triangles we would need to apply a gauge fix, and
then compute Dirac brackets to find the Poisson brackets for the kinematical phase space.
This would lead to the same difficulties we found in ’t Hooft gravity. Using the definition
(6.8) instead makes it much easier to kind the Poisson brackets. The reason for this is that
since L and Θ are kinematical observables their Poisson brackets can be calculated from
the LQG Poisson brackets. In fact, we can explicitly calculate them, as was first done in
[52]. To find the Poisson brackets, we first find brackets between the square of the lengths
are given by

{L2
`∗i
, L2

`∗j
} = 4δijẼA

`∗i
ẼB
`∗j
εABCẼ

C
`∗i

= 0. (6.11)

This implies that {L`∗i , L`∗j} = 0 for all `∗i , `∗j ∈ Γ∗. Similarly, it is easy to show that the
dihedral angles Poisson commute, since holonomies Poisson commute in LQG.

For the remaining Poisson brackets, consider the two triangles shown in figure 6.2. In
this case, it is immediate that the brackets between Θ`i and L`∗j will be zero if i 6= j. The
only case of concern is when the curves intersect, e.g. `3 and `∗3 in figure 6.2. To find this
Poisson bracket, first we define the unnormalized normals for the triangles c∗1, c∗2 by

N c1 = Ẽ`∗1 ∧ Ẽ`2 = [Ẽ`∗1 , Ẽ`∗2 ]
N c2 = Ẽ`∗4 ∧ Ẽ`5 = [Ẽ`∗4 , Ẽ`∗5 ].

(6.12)

It is then obvious that {Ẽ`3 , nci} = 0, i = 1, 2. Next, we have that

{L2
`3 , |N c1||N c2| cosh Θ`3} = 2L`3 sinh Θ`3{L`3 ,Θ}. (6.13)
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Conversely, plugging in the expressions for L2
`3 and cosh Θ`3 we get that

{L2
`3 , |N c1 ||N c2| cosh Θ`3} = {Ẽc1,A

`3 Ẽc1
`3,A, 〈Ad(h`3)N c1 , N c2〉}

= 2Ẽc1
`3,A{E

c1,A
`3 , 〈h`3N c1h−1

`3 , N
c2〉}

= 2〈nc2 ,Ad(h`3)[Ẽc1
`3 , n

c1 ]〉
= 2(Ad(h−1)N c2) · (Ẽ`3 ∧N c1)
= −2|N c1||N c2|

∣∣∣Ẽc1
`3

∣∣∣ sinh Θ`3

from which the result {L`∗3 ,Θ`3} = −1 follows. Therefore, the lengths and gauge invariant
dihedral angles are canonically conjugate. However, this does not imply that Θ = 2η in
general. However, precisely when dual ’t Hooft’s gauge fixing is satisfied, we will have this
relation holds. The dual ’t Hooft gauge fixing implied the normal of every was given by
τ 0. This choice of gauge is easily possible in LQG, since it just is given by a local SU(1, 1)
transformation of each triangle frame. Furthermore, the Poisson bracket between L and
Θ does not change after applying this gauge fix. This is precisely because L and Θ are
kinematical observables. Therefore, we need to check whether the LQG L and Θ are equal
to dual ’t Hooft’s L and 2η with this choice of gauge.

First the length variables trivially match, since after the gauge fix nI = (1, 0, 0), the
fluxes become purely spatial. For the dihedral angles, we first decompose the LQG holon-
omy using (6.2), i.e. h = R(φ̄)B(2η)R(φ). Then in this case since nc1 and nc2 are both
just τ 0 we have that

〈nc1 ,Ad(hc1c2)nc2〉 =
〈
τ 0,Ad(B(2ηc1c2))τ0

〉
= cosh(2ηc1c2), (6.14)

implying that Θc1c2 = 2ηc1c2 .
This almost completes the map from LQG to dual ’t Hooft gravity. The only thing we

have left to do is relate the LQG flatness constraint (3.42) to the dual ’t Hooft constraint
(6.4). In fact this is basically done, since the two constraints both enforce flatness for loops
of Γ. The only point of contention may be the identification α in Gλ with the angle found
from the cosine law from the Gauss constraint. However, in our gauge choice n = τ 0 we
already know that the α found from the holonomy and from the cosine law are equal, as
a calculation similar to the one performed right after (5.7) shows. Therefore, the flatness
constraints are equal. As a result, we have proved the postulate 6.1.

6.3 Conclusion
In this chapter, we introduced a new theory of discrete gravity - dual ’t Hooft gravity.
The motivation for this theory was to introduce a discrete theory of gravity from purely
geometrical arguments, like polygonal gravity. However, unlike polygonal gravity, the hope
was that the phase space structure and interpretation would be simplified. The idea was
to look for a discrete version of gravity dual to polygonal gravity. This duality is expressed
in table 6.1. In summary, the duality means swapping the location of the observers in ’t
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Hooft, from the center of polygons to the centers of the dual triangles. Furthermore, Gauss
constraint is first solved in dual ’t Hooft, like in LQG. The wonderful part this swap was,
that far fewer gauge fixings are required to define the theory. This makes the comparison
with other discrete models of gravity far easier. In fact, we were able to show that the
phase space of dual ’t Hooft is equal to the kinematical phase space of LQG. This implies
that dual ’t Hooft gravity is free of the problems that plagued polygonal gravity.
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Chapter 7

Conclusions and Future Work

In this thesis we analyzed the relation between LQG and polygonal gravity. Using this
relation, we then answered a long standing question about polygonal gravity: the nature
of the torus universe in ’t Hooft gravity. Furthermore, we analyzed whether polygonal
gravity has a dual formulation similar to LQG.

In regards to the first question, we found that polygonal gravity was a gauge fixed
version of LQG in its dual form (see table 5.1). Both polygonal gravity and dual LQG
solve the flatness constraint around nodes first. These results challenged conclusions made
in previous works. Namely, we refuted the claims made in [52] that state polygonal gravity
is equal to the kinematical phase space of LQG. Furthermore, we found that the constraints
of polygonal gravity arise from both the Gauss constraints and flatness constraints, refuting
the claim made in [28]. That is, we did not find that polygonal gravity was equal to the
kinematical phase space of dual LQG. Instead, there still exist remnants of the flatness
constraint that are expressed in the polygonal constraint (4.29). One important issue
to note is that we were not able to, after gauge fixing, find the Dirac brackets. This
prevented us from finding whether polygonal gravity’s gauge fix was always possible in
principle. Moreover, we could not answer whether the reduced phase space of polygonal
gravity was equal to the reduced phase space of LQG. In fact, as the solution to the second
question (i.e. the torus universe) shows, this may not be the case.

In more detail, we found that polygonal gravity could not describe the torus universe
using one or two polygons. This led to the conjecture 1 that the torus universe is not
contained in polygonal gravity. The fact that the physical reduced gravity variables were
not independent in the polygonal formalism led to this conclusion. Our results about the
torus universe settled a question argued in previous works [23, 54] about the nature of
polygonal gravity applied to the torus universe. Namely, we found that the author [54]
was correct in suggesting that polygonal gravity could not describe the torus universe
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using one polygon. However, the reason for this differs from what the author suggested.
Namely, while the angle α is not a full observable, this is not the reason polygonal gravity
fails. Furthermore, we were able to extend these results to the two polygon model, finding
that again polygonal gravity failed to describe the phase space of the torus universe. As
our conjecture states, this raises an important question of whether polygonal gravity can
describe the torus universe at all. If it cannot, this would signify that the various gauge fixes
that were applied may not always be possible. A natural line of continued research would
the standing of higher genus surfaces in polygonal gravity. This question has partially been
answered [29]. However, they were unable to answer whether polygonal gravity covers the
moduli space for genus g surfaces. Using the machinery developed in this thesis, namely
the identification of the degrees of freedom in discrete gravity, an answer to this question
may be possible.

A shortcoming about the research done in chapter 5 is that we were unable to an-
alyze the origin of the transitions in polygonal gravity [46]. Namely, polygonal gravity
contains discontinuities in its evolution, such as when an edge length shrinks to zero. In
the literature [46, 22, 29], it is argued that these transitions are due to the gauge choices
made in defining the theory. However, since we were unable to explicitly reduce the phase
space in dual LQG to polygonal gravity using Dirac brackets, we could not answer these
questions. Another issue left unexplored is whether adding particles to the above picture
would change any of the results presented. Both issues provide interesting lines of future
research.

In the last part of the thesis, we developed a dual formulation of polygonal or ’t Hooft
gravity, i.e. dual ’t Hooft gravity. The point of this proposal was to develop a model of
gravity similar to ’t Hooft, but that escaped the issues that hindered polygonal gravity.
The resulting theory expressed a similar notion of duality that is present in LQG. In
fact, we explicitly showed that the phase space of dual ’t Hooft gravity is equal to the
kinematical phase space of LQG. This result implied that dual ’t Hooft gravity is free of
the problems that plagued the original formulation. Moreover, the kinematical phase space
of LQG is known to be related to Regge geometry in 2+1 dimensions [8, 13]. Therefore,
in this regard, dual ’t Hooft gravity should be related to a Hamiltonian version of Regge
geometry. This should make dual ’t Hooft gravity more amenable to quantization. We
hypothesize it should be related to the Ponzano-Regge model of quantum gravity [39, 24].
Another benefit with the dual ’t Hooft framework is that one can recover a notion of a
discrete diffeomorphism and Hamiltonian constraints, following the methods developed in
[8]. In more detail [8], the Hamiltonian constraint would be given by

Hλ,c = 2 tr(ncGλ,c), (7.1)

where nc is the normal to the triangle c∗ and Gλ,c is a flatness constraint whose loop λ
begins (and ends) at the node c. The diffeomorphism constraint is given by

Dλ,c
` = 2 tr

(
Ẽc
`Gλ,c

)
. (7.2)
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Using this, one can recover a discrete version of Dirac’s deformation algebra [49], which is
universal in continuous gravity. As such, it appears that dual ’t Hooft gravity can recover
a notion of discrete ADM gravity.

An interesting next step in this formalism would be to add a cosmological constant.
LQG, with a cosmological constant, has been explored extensively in literature [19, 15, 18,
17]. Therefore, the hope would be that by using the relation between LQG and ’t Hooft
developed in this thesis, a similar map could be developed.

Another potential line of research would be a symmetrization of polygonal gravity,
or Chern-Simons-’t Hooft gravity. In [16], it is noted that Chern-Simons gravity can be
viewed as the symmetric, or α = 1/2, version of the Liouville form (2.27). This means,
Chern-Simons gravity can be viewed as two copies of gravity; part in the LQG polarization
and the other in the dual polarization. That is, the Chern-Simons symplectic form can be
shown to be equivalent to

ΩCS = 1
2(ΩLQG + ΩLQG∗). (7.3)

The question would be whether such a version of polygonal gravity exists. Returning to the
dual graphs (Γ,Γ∗) the answer would appear to be yes. First, notice that in defining dual
’t Hooft and polygonal gravity, we made two simplifications which are dual to each other.
In polygonal gravity, we assumed that observers sat inside each face of Γ. The edges
of Γ∗ only contained SU(1, 1) transition functions. The translational part was ignored,
since we were not concerned with the geometry of the dual triangles. Instead we were
only interested the SU(1, 1), as it related the frames of the polygons. Furthermore, since
we defined that the observer sat inside a polygon, we assumed the edges only contained
translational degrees of freedom. In dual ’t Hooft, the opposite was the case. Here, the
observers sat in the triangles of Γ∗. Therefore, we were not concerned with the geometry
of the dual faces (i.e. the translational degrees of freedom of Γ), but instead with the
geometry of the triangles. The links of the polygons then contained SU(1, 1) holonomies,
since it encoded the relationship between the observers.

Chern-Simons-’t Hooft would then seemingly be constructed by combining these two
theories. Namely, observers will be in both the faces and triangles. In this case, the
edges and links of Γ∗ and Γ, respectively, would both carry full ISU(1, 1) holonomies. The
expectation is that this formulation of ’t Hooft gravity would be related to Chern-Simons
gravity. The issue in formulating this theory, however, is the nature of the constraints.
In [16] the independence of the constraint for their formulation of Chern-Simons gravity
was not fully analyzed. Therefore, knowing the constraints needed in Chern-Simons-’t
Hooft gravity may not be that simple. We leave this interesting line of research to future
exploration.
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Appendix A

The Relation Between SO(2,1)
and SU(1,1)

In this thesis we mainly deal with the group, SO(2, 1), which describes the local symmetry
of Minkowski space minus the translational parts. Gravity can then be expressed as a
local SO(2, 1) gauge theory, where very point of spacetime has an inertial observer. In
order to be able to add fermions to our theory however, we have to move from SO(2, 1) to
spin(SO(2, 1)) which is SU(1, 1). In this section we will review the relation and between
the groups and some of the conventions we use.

The relation between SO(2, 1) and SU(1, 1) is that the standard representation of
SO(2, 1) equals the adjoint representation of SU(1, 1), namely we have

gvAτAg
−1 = τAR

A
B(g)vB. (A.1)

Note that if we replace g → −g we get the same representation. The expresses the fact
that PSU(1, 1) ' SO(2, 1), or in other words, that SU(1, 1) is the double cover of SO(2, 1).

The elements τA are the (pseudo)-Pauli matrices or generators of the Lie algebra of
SU(1, 1) which we will assume satisfies the following algebra,

τAτB = 1
4ηAB + 1

2ε
C

AB τC , (A.2)

An explicit representation of this algebra is given by

τ t = 1
2

(
i 0
0 −i

)
τx = 1

2

(
0 −i
i 0

)
τ y = 1

2

(
0 1
1 0

)
(A.3)
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The Relation Between SO(2,1) and SU(1,1)

Using this it is easy to show that the Lie algebra su(1, 1) and so(2, 1) are isomorphic.
Explicitly one can show that 2τA → (ΣA)BC = εABC is a Lie algebra isomorphism. Both
Lie algebras contain a canonical metric, or the killing metric, which we will take to be
given by 〈A,B〉 = 2 tr(AB).

These relations allow us to construct a further isomorphism su(1, 1) ' R2,1(3) ' so(2, 1).
For so(2, 1) the vector space isomorphism to R2,1 is given by ξI = 1

2ε
IJ
Kξ

K
J , or just the

Levi-Civita symbol or an internal Hodge dual. Then the isomorphism to su(1, 1) is just
given by ξ = ξIτI . This isomorphism is in fact an isometry as well because the killing
metric 2 tr(AB), A,B ∈ su(1, 1), since we have

2 tr(AB) = AIBJ2 tr(τIτJ) = AIBJ2 tr(1/4ηIJ1) = AIηIJB
J . (A.4)

Using this representation one can integrate the Lie algebra using the exponential map
exp : su(1, 1)→ SU(1, 1) to get

exp
(
nIτI

)
=


cosh |n|2 1 + 2 sinh |n|2 n̂

IτI for nInI > 0
cos |n|2 1 + 2 sin |n|2 n̂

IτI for nInI < 0
1 + nIτI for nInI = 0

(A.5)

For SU(1, 1) note that the exponential map is not injective or even surjective. However,
if we mod out by Z2 and form the projective group PSU(1, 1) ' SO(2, 1) the exponential
map is indeed surjective and so we can indeed use this as a parameterization of the group,
since we are concerned with the adjoint representation of SU(1, 1). To recover the matrix
elements of SO(2, 1) we simply use (A.1) to get

〈Ad(g)τA, τC〉Min = 2 tr
(
gτAg

−1τC
)

= ηCBR
B
A(g) (A.6)

Applying these formulas to our parameterizations (A.5) we get that

RA
B

(
exp

(
nIτI

))
=


cosh |n|δAB + (1− cosh |n|)n̂An̂B − sinh |n|εABC n̂C for nInI > 0,
cos |n|δAB + (1 + cos |n|)n̂An̂B − sin |n|εABC n̂C for nInI < 0,
δAB − εABCnC for nInI = 0,

(A.7)
Therefore, physically this parameterization describes a rotation or boost by an amount |n|
around the axis n̂. The nature of the transformation depends, critically, on the nature of
n and is important when analyzing the torus universe.
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Appendix B

Symplectic Geometry and
Constrained systems

The mathematics of phase space is given by symplectic geometry. Therefore, we will
provide a brief review of the symplectic geometry, needed in the thesis. Furthermore, since
symmetries in field theories mean that constraints are present, we will also provide a brief
introduction into Dirac’s constraint analysis [10].

B.1 Symplectic manifolds
Phase space is given by a symplectic manifold (P,Ω) which is a manifold carrying a
non-degenerate, closed two form, called the symplectic form Ω1. The wonderful aspect of
symplectic geometry is that they provide a way to generate flows of observables H, through
Hamiltonian vector fields, XH , which are given by

Ω(XH , ·) = −dH. (B.1)

For example, if we take H to be the Hamiltonian system, then the corresponding Hamil-
tonian vector field generate time evolution. Symplectic manifolds also have a wonderful
property- locally they are the same. That is, Darboux’s theorem [4] states that there exist
coordinates (q, p) (called Darboux or canonical) such that the symplectic form takes the
form

Ω = dq ∧ dp. (B.2)
1If non-degeneracy is relaxed you end up with a pre-symplectic form, or in a different viewpoint a

Poisson manifold.
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B.1 Symplectic manifolds

This starkly contrasts the metric in GR, where they differ locally.
Symplectic forms also allow the construction of Poisson brackets, which are defined

by
{f, h} = Ω(Xf , Xh) = −df(Xh). (B.3)

In canonical coordinates this is given by the familiar expression

{f, h} = ∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi
. (B.4)

This bracket is skew-symmetric and satisfies the Jacobi identity due to the fact that Ω is
closed. In fact due to the fact that the symplectic form is non-degenerate, we can invert
it and define a Poisson bivector Π ∈ ∧2TP . In terms of Π, the Poisson bracket is given by

{f, g} = Π(df, dh), (B.5)

and Hamiltonian vector field can be expressed as

Xh = Π(·, dh). (B.6)

In this thesis we only deal with a special symplectic manifold the cotangent bundle of
configuration space. In physics we often start in a Lagrangian perspective. Namely, physics
is based on the configuration manifold M . Then by performing a Legendre transform, we
move to the Hamiltonian description. Mathematically the Legendre transform is a map
from the tangent bundle TM of configuration space to the cotangent bundle T ∗M . The
benefit of doing this is that the cotangent bundle carries a canonical symplectic potential
(often called Liouville form) Θ. In terms of canonical coordinates (q, p), Θ is given by
Θ = pdq. The symplectic form is then just given by

Ω = −dΘ. (B.7)

Therefore, for phases spaces that or given by cotangent bundles, the symplectic form is
exact. In this thesis, we will only deal phase space’s that are this form.

B.1.1 Momentum Maps
Momentum maps encode symmetries of phase space. Namely, they are the phase space
incarnation of Noether currents. Furthermore, the constraints of 2+1 gravity are them-
selves momentum maps, and generate SO(2, 1) transforms and translations. Therefore, we
will give a brief introduction to the definition of a momentum map. For a more detailed
presentation see [4, 32].

First we need to define what is a symmetry for a symplectic manifold. A symmetry for
a symplectic manifold is a symplectomorphism, i.e. a map that preserves the symplectic
form Ω. If we have a Hamiltonian, we also require that the symplectomorphism leave
the Hamiltonian invariant. Symmetries of physical systems are usually captured by group
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B.1 Symplectic manifolds

actions. We will denote left group actions using the symbols . : G×P → P , and it will be
written by g . f , where g ∈ G, the group and f is a function on the symplectic manifold
P . A group action is then called symplectic if g . · : P → P is a symplectomorphism for
all g ∈ G.

The wonderful thing about Lie group actions, is that their local nature can be captured
by their generators or Lie algebra g of the Lie group G. In fact we can define the vector
field X ∈ g associated to the group action by

δX(f) = d
dt

∣∣∣∣∣
t=0

(exp(tX) . f). (B.8)

Abelian momentum maps of a group action G on P is then given by a Lie algebra
valued function J : P → g, such that

dJ(X) = −ω(δX , ·), (B.9)

where J(X) : P → R and is given by Jp(X), where X ∈ g. In terms of Poisson brackets
this is given by

δX = {·, J(X)}. (B.10)
Therefore, momentum maps generate the symmetries of the system. Namely, their Hamil-
tonian vector field generate symmetries.

One restriction in this definition is that it assumes that the generator of the symmetry
is abelian. More mathematically, we have assumed that the momentum map takes values
in g not the Lie group itself. In chapter 3, instead have that flatness constraint takes
values in the group G. However, with analogy to the continuum case, we expect that the
constraint should generate translations which are the symmetries of gravity. Therefore, we
need a generalization of momentum maps to the non-abelian case.

For this consider g and g∗, the Lie algebra of G and its dual the Lie algebra of the
group G∗. In our case G∗ will just be the group of translations which is abelian2. Let’s
denote eA, eB as the bases of g, g∗ respectively. In this case the non-abelian momentum
mapM, will be given by [6],

M : P → G∗,

ξ → g∗(ξ) = e−Q(ξ), such that δXf =
〈
g−1
∗ {f, g∗}, ξ

〉
,

(B.11)

where 〈·, ·〉 is the natural bilinear form between g∗ and g. Q(ξ) is known as the charge
generating the group action.

In this thesis the only phase space we deal with is T ∗ SU(1, 1) ' SU(1, 1) × su(1, 1).
In this case SU(1, 1)∗ ' su(1, 1)∗ ' R3. Furthermore, we used the killing form to identify

2In general this need not be the case. This is related to a mathematical framework called the Heisenberg
double which generalizes the phase space T ∗G.
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B.2 Dirac Bergman constraint analysis

g and g∗. Therefore, the bases of g are τA and g∗ = τA, which are defined in A. The two
momentum maps of we are interested in are given by

J : T ∗G→ g∗ ' R3, G : T ∗G→ G

(G,X)→ g∗(X) = eX
AτA , (X, g)→ g.

(B.12)

The symmetry transformations they generate are given by,

δAJX
B =

〈
g−1
∗ {XB, g∗}, τA

〉
= εABCX

C , δAJ g =
〈
g−1
∗ {g, g∗}, τA

〉
= −gτA

δβGX
A =

〈
g−1{XA, g}, β

〉
= Ad(g)β, δβGg =

〈
g−1{g, g}, β

〉
= 0.

(B.13)

Furthermore, since J is an abelian momentum map, we can see how the definition of a
non-abelian momentum maps reduces to abelian momentum map definition.

B.2 Dirac Bergman constraint analysis
Constraints in Hamiltonian systems arise when the Legendre transform from the La-
grangian theory is singular. For example, lets assume our theory has a Lagrangian L;
the conjugate momenta are given by

pi = ∂L

∂q̇
. (B.14)

In order for this transformation to be well defined, one has to assume that this relation
is invertible. However, e.g. in gravity, this is not may not be true in physical theories.
In fact all gauge theories necessarily will be singular. The Hessian being singular means
that there are relations among the phase space variables q, p. These relations are called
primary constraints φm(q, p) = 0.

At this point one may think that constructing a Hamiltonian may be impossible, how-
ever this is not the case and in fact we can still recover the canonical Hamiltonian given
by

HC = pmq̇
m − L. (B.15)

The reason this, is that H doesn’t explicitly depend on q̇ even in the singular case. This
follows from

δHC = pmδq̇
m + δpmq̇

m − ∂L

∂q̇m
δq̇m − ∂L

∂qm
δqm

= δpmq̇m −
∂L

∂qm
δqm,

which shows that HC depends only on q and p. However, the Hamiltonian is not uniquely
described in terms of p and q, since the δpm are not all independent. Therefore, the
canonical Hamiltonian is only defined on the constraint surface φm(q, p) = 0 which we will
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denote by C. Recall that above we said that the Hamiltonian is not unique in phase space.
This is because we have lots of different choices for how to extend the Hamiltonian off the
constraint surface. One extension is given by the extended Hamiltonian HE,

HE = HC + umφm, (B.16)

where the um are Lagrange multipliers. The um can be viewed as coordinates filling the
part of the extended phase space not covered by (q, p). In fact, the Legendre transform
from the space of (q, q̇) to the surface of φm(q, p) = 0 surface of the extended phase space
(q, p, u) is invertible. Therefore, the natural Hamiltonian in this case is the extended one.
Of course how to pick the um functions is ambiguous.

One thing we have not yet mentioned is whether the constraints φm are conserved in
time? For our theory to be consistent we will require this to be true. Therefore, we need

φ̇m = {φm, HC} − un{φn, φm} ≈ 0. (B.17)

Here we have used the notion of weak equivalence ≈ which means that the two terms are
equivalent up to terms proportional to the constraints of the theory. This leads to two
possible outcomes. Either we end up with an expression the involves the un, which at least
partially determines what they must be, or we end up with a relation involving q and p.
In the latter case we get secondary constraints that must be satisfied. This process of
finding these extra constraints continues until no more constraints are found. In the end,
the split between secondary and primary constraints isn’t important so we will now just
combine the primary and secondary constraints together.

More important than the distinction between primary and secondary constraints, are
first and second class constraints. A phase space function F is said to be first class, if it
Poisson commutes with all of the constraints, i.e. {F, φm} ≈ 0 for all m. If a function
does not commute with all of the constraints then it is second class. It turns out that is
almost all cases of physical interest [26] all first class constraints arise from gauge freedom
in the theory. Moreover, first constraints generate symmetries, and are momentum maps.
In fact, what we found in 2+1 first order gravity, where the flatness and torsion constraints
generated translations and rotations. A potential problem with first class constraints are
present is that time evolution is not unique longer unique. To see this note that the
evolution of the constraints φm is given by,

φ̇m = {φm, HC}+ un{φm, φn} ≈ 0. (B.18)

As we have already added all of the primary and secondary constraints to φm, we know
that we only have relations among the um left. Therefore, the natural question is whether
we can find the Lagrange multipliers um. In the case of purely second class constraints
the answer is yes. In this case the matrix ∆mn = {φm, φn} is invertible and therefore we
can find um. Time evolution of the system is then completely specified and we have a
consistent Hamiltonian description. However, if even one constraint is first class, this is no
longer true.
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In this case the matrix ∆mn is no longer invertible Physically however this is expected
since they respond to gauge freedom. Therefore, different gauges will lead to seemingly dif-
ferent evolution in time, however physics or the observables will not change. The question
then becomes how do we deal with the unknown functions um.

One way forward is to introduce the notion of an observable. A function O defines
an observable if it, at least weakly, Poisson commutes will all first class observables. In
this case the time evolution of an observable is defined unambiguously on the constraint
surface since

Ȯ = {O, HC}+ um{O, φm} ≈ {O, HC}+ un{O, φn}, (B.19)
where φn are the second class constraints.

At this point we bring to the readers attention that in general covariant systems, like
gravity, we often have that the Hamiltonian itself is a constraint, as an example below
will show. In this thesis we always deal with generally covariant systems, we will have
that the canonical Hamiltonian HC is constrained to vanish. Note that something peculiar
happens for observables in this case. As the canonical Hamiltonian is now a constraint
we necessarily have that an observable must commute with it. This seems to suggest that
observables in a generally covariant theory are “frozen” in time. This is the root of the
problem of time in quantum gravity. For a expose of this issue and how to recover a notion
dynamical evolution see [11, 42, 43]. A different problem with observables, is that they
are extremely difficult to find. In fact, to find them one has to basically solve the theory.
Luckily there is another way forward.

From above we know that if we have second class constraints we have well defined time
evolution. Therefore, one way to deal with first class constraints is to introduce extra
constraints, χ that make the first class constraints second class. This is known as gauge
fixing. Geometrically this has a nice interpretation. The issue with first class constraints
is are that the gauge orbits

δαφF = α{F, φ}, (B.20)
prevents time evolution from being unique. What gauge fixing does is pick a unique
representative from the orbits. Therefore, we need our gauge fix χ to satisfy a couple of
requirements. First, it must completely fix the gauge, i.e. {χ, φ} 6= 0 if φ is a first class
constraint. This is a local condition. However, the gauge fix must also satisfy a global
condition. The gauge fix must be possible. Namely, by applying gauge transformations we
can satisfy the constraint. If either if these aren’t possible, then that gauge choice fails.
As a result, at least as many gauge fixes as first class constraints are required. Once we
have done this, we have a representation of the reduced phase space. However, in this case
the Poisson bracket must be modified. In order to preserve the constraint surface, Dirac
brackets [10] need to be introduced. Dirac brackets are given by

{f, g}D = {f, g} − {f, χA}(∆AB)−1{χB, g}, (B.21)

where χA are the second class constraints and ∆AB = {χA, χB}. This gives the Poisson
bracket structure on the reduced phase space.
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B.2.1 An example of gauge fixing: the relativistic particle
In order to see how Hamiltonian analysis of general covariant systems works, we will
consider the example of a free relativistic particle. The Lagrangian of the system is given
by

S = −m
∫ √
−ηµν ẋµẋνdτ, (B.22)

where τ is some affine parameter. The Euler Lagrange equations are then

m
d
dτ

(
ẋµ√−ẋν ẋµ

)
= 0. (B.23)

This action however, has contains a continuous symmetry. If we change our affine
parameter from τ → τ̄(τ) we see that ẋµ changes as

dxµ
dτ = dxµ

dτ̄
dτ̄
dτ ,

and dτ = dτ/dτ̄ dτ̄ which implies the action is invariant. From the discussion above this
signifies that there will be a constraints in phase space.

Moving to the Hamiltonian picture, the conjugate momenta are given by

pµ = ∂L

∂ẋµ
= mẋµ

(−ẋµẋµ)1/2 . (B.24)

If we try to invert this relation, we would find that it isn’t possible. One easy way to
see this is that the momentum pµ obeys pµpµ = −m2. This forms a primary constraint
for the system which we will call C = p2 + m2. If we now attempt to find the canonical
Hamiltonian for the system we get

H = pµẋ
µ−L = (−ẋµẋµ)1/2

m
pµp

µ + (−ẋµẋµ)1/2 = (−ẋµẋµ)1/2

m

(
pµp

µ +m2
)

= NC, (B.25)

where N = m−1(−ẋµẋµ)1/2. Therefore, we see that the canonical Hamiltonian is pro-
portional to the constraint C and so we have a totally constrained system as expected.
Furthermore, the constraints are first class trivially.

The evolution of the system is then given by

ẋµ = {xµ, H} ≈ N{xµ, C} = 2Npµ (B.26)
ṗµ = {pµ, H} ≈ 0, (B.27)

which are the Euler Lagrange equations, but with an arbitrary function N , sometimes
called the lapse function. Note, that these “evolution” equations are just the gauge orbits
of the system.

Therefore, we don’t yet have a picture of reduced phase space of the theory. To find
the reduced phase space we will perform a gauge fixing. Here we will take our gauge choice
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to be Ω = x0 − τ , which physically means choosing a time for the particle. To see if this
was locally a good gauge choice, we compute the Poisson bracket of Ω with the constraint
C. In this case we get

{Ω, C} = {x0, pµp
µ} = 2p0 6= 0. (B.28)

Therefore, we have a good gauge choice, implying we can now specify the lapse function
N , by requiring that Ω is preserved in time

0 = dΩ
dτ = ∂Ω

∂τ
+ {Ω, H} = −1 + 2Np0. (B.29)

which implies the lapse function is N = 1/2p0. The equations of motion then become
ẋµ = pµ/p0. Finally to find the Poisson structure on the reduced phase space after gauge
fixing, we need to compute the Dirac brackets {·, ·}D. First, we find

∆AB = {χA, χB} = 2p0
(

0 1
−1 0

)
, (B.30)

where χA = (Ω, C). Therefore, the Dirac brackets are

{xµ, xν}D = 0 {pµ, pν}D = 0 {xµ, pν}D = δµν −
pµ

p0 δ
0
ν . (B.31)

That last bracket is special. First, for purely spatial components we have that {xi, pj}D =
{xi, pj}, so the spatial Poisson brackets are unchanged. However, notice that

{xi, p0}D = − p
i

p0 = pi

p0
= ẋi, (B.32)

i.e. our first component of the conjugate momenta has become the Hamiltonian. This
was to be expected since the gauge choice forced x0 as the time variable, and p0 generates
translations in x0.

We can eliminate p0 altogether by explicitly solving the constraint C. From C, we
require p0 =

√
pipi +m2. Therefore, in this instance the reduced Hamiltonian becomes

Hred =
√
pipi +m2, (B.33)

which is just the energy of the particle. In fact if in the Lagrangian picture we had taken
τ = x0, we would have arrived at this reduced Hamiltonian from the beginning.
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