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Abstract

The ultrafast optical regime is defined, as it applies to laser pulses, along with a
brief introduction to pulse generation and characterisation technologies. A more
extensive description of our particular amplified pulse generation and SPIDER
characterisation systems follows. Data verifying the correct operation of the char-
acterisation system is presented and interpreted. Our laser system is then charac-
terised in two different configurations. In each case, the data describing the system
is presented and analyzed. Conclusions are made regarding the performance of
both the characterisation and laser systems, along with suggested improvements

for each.
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1 Ultrafast Laser Pulse Characterization

Pulsed lasers form a large and important part of modern laser technology. Rather
than producing a continuous electromagnetic wave indefinitely, pulsed lasers pro-
duce short bursts of radiation which typically last for less than a second. Laser
pulses have a great variety of applications in science and engineering, as well
as being of direct scientific interest themselves. Their utility and novelty is due
to the very small time scales on which they act and to the high instantaneous
power which may be produced using a relatively small amount of energy. Today
pulses routinely reach femtosecond (107'%s) durations and produce irradiances of
102 W/em?.

The earliest lasers, including the original ruby laser [8], produced pulsed outputs
having durations in the millisecond or microsecond range. This pulsed operation
was by limitation rather than choice however, as the conditions for laser out-
put could simply not be maintained for longer periods. The first major advance
in pulsed laser technology was the deliberate pulsed operation of lasers by “Q-
Switching”. This technology allowed lasing conditions to be imposed or removed
quite suddenly, producing a high power pulsed output. Modern Q-switching pro-
duces pulse durations in the nanosecond range.

Pulsed operation by “mode-locking” [12, 1] followed shortly after the develop-
ment of Q-switching. This method produces a short pulse by superposing many
synchronised longitudinal laser cavity modes. Mode-locking allowed the genera-
tion of pulses as short as picoseconds (107'% s), and more recently, femtoseconds.
The reduction of pulse duration below the nanosecond range was a very signifi-
cant milestone for laser pulse technology. It was at this point that pulse durations
began to fall below the temporal resolution limit of electronic detectors, forcing
the development of new diagnostic techniques. The generation, measurement and
application of pulses exceeding this limit became known as the field of “ultrafast”

or “ultrashort” pulse optics.

1.1 Historical Methods

Of the earliest ultrafast diagnostic methods, non-linear correlations and streak
camera techniques were most common.

Non-linear correlations [14] are a family of pulse measurements which are math-
ematically similar to convolution. Two or more pulses are superposed and sent to
a detector which is sensitive to their temporal overlap. Changes in the degree of

overlap with the relative timing of the superposed pulses may be used to estimate



their longitudinal extent and determine a rough pulse duration.

The simplest form of correlation is the intensity autocorrelation. Two replicas
of the unknown pulse are combined with a varying delay 7. The detection system
then produces a non-linear power measurement which is time averaged over a pe-
riod much greater than the pulse length. The (“background free”) autocorrelation
A may be expressed as a function of the unknown pulse intensity and the relative

delay: .
A{r} = / LAt} L {t — 7}dt

The width of the measured signal vs. delay implies a pulse width if a particular
pulse shape may be assumed. This required assumption is obviously a significant
limitation. Further, the method lacks any sensitivity to the phase of the field,
returning only intensity characteristics. Other forms of correlation may produce
more definite and complete pulse characterization, but these measurements tend
to become impractical as the pulse reconstruction becomes more complete.

Like correlations, streak camera measurements [15] convert pulse timing infor-
mation into spatial variation. In a streak camera, the unknown pulse is sent to
a cathode target, where it frees electrons. The electrons are accelerated by an
applied electric field and then drift to a detector or detector array. Ramping or
other variation of the applied field alters the acceleration, so that electrons pro-
duced by different time segments of the pulse are separated spatially. Their spatial
distribution may be detected and forms a measurement of the pulse intensity in
time.

The resolution of streak cameras tends to be limited to the picosecond range.
There are obvious limits to the rate at which the accelerating potential can change,
and resolution is degraded by the distribution of initial electron velocities as well
as the mutual repulsion of the drifting electrons. As a further limitation, the

cameras lack sensitivity to the phase of the pulse field.

1.2 Modern Methods

State of the art ultrafast diagnostics apply a similar principle to the early meth-
ods, in that temporal pulse variation is converted to some other form which is
measurable. The two most important types of transduction for this purpose are
spatial and spectral conversion. In some cases, a combination of temporal, spa-
tial and spectral measurements are used to characterize unknown pulses, but the
methods which are proving to be the most powerful do not require time dependent

data. These “slow” measurements are not effected by the limited response time



of detection electronics.

The two most common modern ultrafast diagnostics are Spectral Phase Interferometry
for Direct Electric Field Reconstruction (SPIDER) and Frequency Resolved Optical
Gating (FROG). The former requires only spectral measurement, while the latter
requires spectral and spatial measurement. Each of these techniques characterizes
a pulse by measuring its relative spectral phase.

SPIDER [5] is a variant of a measurement technique known as Fourier Transform
Spectral Interferometry (FTSI) [7]. SPIDER may determine pulse characteristics
from two power spectrum measurements. The first measurement is simply the
power spectrum of the unknown pulse. The second power spectrum is that of
two unknown pulse replicas which are modified and recombined at a fixed relative
delay. SPIDER is particularly suited to rapid measurement, as it requires a rela-
tively small input data set and is not computationally intensive. SPIDER, systems
have been assembled which operate at a rate of 40 Hz [16].

In the FROG method [6], the unknown pulse is mixed with a gate pulse, such
that only the overlapping pulse segments are routed to a spectrometer. The mea-
surement of power spectrum vs. relative pulse timing produces a two dimensional
data set. An iterative data process may be applied which uses the unknown pulse
power spectrum and the gated pulse segment spectra to determine the unknown
pulse spectral phase. The main advantage of FROG is a very simple optical ap-
paratus. The two-dimensional data set also contains redundancies which allow
calibration to be verified by a self-consistency check. The major disadvantage of
FROG is the relatively large amount of data collection and processing required.

These two methods allow the most complete temporal pulse characterization
available to date. The instantaneous intensity of the pulse is determined defi-
nitely. The phase of the field oscillations is determined within a constant, which

is equivalent to determining the instantaneous frequency.

1.3 Target Laser System

As reported in this document, a SPIDER system was built and used to characterize
the output of a particular pulse laser system, which is described here.

The target system (figure 1) consists of a mode-locked laser oscillator and an
accompanying laser amplifier. The oscillator produces an infrared pulse using
an optically pumped Titanium:Sapphire crystal as the gain medium. A four-
mirror cavity with an intra-cavity prism pair produces approximately 60 thousand
resonant longitudinal modes within the very wide gain bandwidth of the crystal.

These modes radiate simultaneously and synchronise naturally, producing pulses of



roughly 20 nm bandwidth centered at approximately 800 nm. Output pulse energy
is around 5 nJ. Output pulse duration is on the order of tens of femtoseconds and
the pulses repeat at approximately 100 M Hz.

The chirped-pulse amplifier [9] consists of three stages. The initial stretcher
spreads the oscillator pulses in time to a duration in the hundreds of picosec-
onds. After stretching, single pulses are selected from the oscillator pulse trains
and amplified. These seed pulses enter the regenerative cavity via a Faraday iso-
lator and make several round trips through a second Ti:Sapphire gain medium.
The gain medium is optically pumped by a synchronised pulse from a Q-switched
Neodymium:Yttrium-Lithium-Fluoride laser. After a set number of passes, the
amplified pulse has its polarization altered by a Pockel’s cell and is thus routed
back in the direction from which it came. The Faraday isolator uses a direction de-
pendent polarization change to direct the amplified pulse to the compressor, rather
than allowing it to retrace the path of the seed pulse. The grating compressor ap-
proximately reverses the effect of the stretcher. Amplified pulses have energies in
the milliJoule range and durations in the tens to hundreds of femtoseconds. The

amplified pulses are produced at a rate of roughly 1 kHz.

Pump Laser H| Amplifier

| S

Compressor 1 7 N
| / //
Stretcher I
Pump Laser N Oscillator

Figure 1: The laser system under study.



2 Theoretical Background

2.1 Coherence

A laser pulse is an electromagnetic wave packet. It is a propagating fluctuation
of the electric and magnetic fields covering a finite volume. The property which
makes a laser pulse differ from other forms of light is coherence.

Coherence describes the regularity of a field. It may be explained in terms of
the spherical wavefronts given off by a point source and the net field generated by
many such sources. The waves emitted at any point will never be perfectly regular
in spacing, and will tend to show occasional jumps in phase due to processes
such as collisions on the atomic scale. Because of this irregularity in wave phase,
replicas of the wave will only superpose with a consistent phase relation over a
limited relative delay. This statistical measure is known as the coherence time.
Replicas delayed by more than the coherence time will form a noisy superposition
in which some parts of the wave pair interfere destructively while other parts
interfere constructively. In the coherence time, a field disturbance will propagate
a corresponding distance known as the coherence length.

For a spatially distributed source, the different emitting points may show vary-
ing degrees of synchronisation. Well synchronised sources will generate wavefronts
with a consistent phase, while poorly synchronised sources will form noisy wave-
fronts. Spatial coherence describes the degree of consistency of phase in the trans-
verse dimension, and 1s important when superposing waves from different parts of
the source.

A laser pulse is highly coherent in both its transverse and longitudinal di-
rections, having a zero amplitude field preceeding and following a set of clearly
defined wavefronts. In forming such a regular wave-packet pattern, it differs from

the noisy traveling disturbances of other sources such as incandescent lamps.

2.2 Analytical Pulse Description

2.2.1 Single Variable Approximation

The laser pulse is conventionally described in terms of its electric field. A truly
general description of this electric field requires many variables. Four dependences
(three spatial and one temporal) are required to describe the magnitude of each of
two field polarizations. Fortunately, the transverse spatial variation of the pulse
is not of interest in many cases. Often in the remaining cases, it can be assumed

identical or analogous to the transverse variation of a continuous laser beam.



Further, the two polarizations may usually be considered independent, so that the
problem of analytical representation is simplified to describing a linearly polarized
electric field magnitude along the propagation axis. This magnitude varies only
as a function of the longitudinal spatial co-ordinate and time.

For the propagation in air of pulses whose dimensions are large with respect
to wavelength, one may usually neglect absorption of the radiation, transverse
spatial spreading of the beam (diffraction), and longitudinal spreading of the pulse
(dispersion). Under these conditions, the pulse maintains its shape and on-axis
magnitude as it propagates, so that the pulse description is similar in each of the
two remaining variables. The variation of the pulse with time at any given point
is then identical to the variation of the pulse with distance at some corresponding
time, so that a pulse description in terms of either variable contains all information
of interest. Conventionally, pulses are described as functions of time, with their
longitudinal spatial behaviour implied by the velocity of light. The time frame
chosen is usually local, following the pulse as it propagates so that the description
changes only if the physical characteristics of the pulse change. Note that a typical
plot of the pulse field vs. time is like an instantaneous snapshot of the pulse in the

process of travelling from right to left.

2.2.2 Temporal Representation

The simplified (one dimensional) laser pulse is represented analytically by a time
dependent complex function whose real part is proportional to the electric field

magnitude at any time ¢:

E, {t}ei¢t{t}

This field description is possible because of the high temporal coherence of the
laser pulse. A low coherence field would require a more complicated function
capable of describing abrupt and random changes in field strength.

The modulus of the temporal function E; (considered real) defines the pulse
amplitude or amplitude envelope, while the (real) argument ¢, is referred to as
the temporal phase. The amplitude is proportional to the square root of the
instantaneous intensity of the pulse I;{t}, which is the average power determined
over one period of oscillation. The amplitude function limits the electric field,
restricting the pulse to a finite time span and setting the local magnitude of field
oscillations.

The temporal phase changes the real/imaginary component decomposition, al-

lowing the field to oscillate between the limits defined by the amplitude envelope.



The rate of change of phase determines the instantaneous frequency of the pulse.
Note that the sign of the argument is irrelevant due to the even symmetry of the
real component; the choice of the above representation over its complex conjugate
is just a matter of convention. Assume here that the phase angle increases with
time.

Temporal phase is often expressed in terms of a power series expansion in which

the centre point t. is zero:

ot} = b+ dul(t —to) + ot — tc)2 + ...

This series may diverge for very large or small values of the time, since the phase
is only of significance where the amplitude function is non-zero.

The constant part of the temporal phase, which is independent of time, is
referred to as the absolute temporal phase. It determines where the peaks of
the oscillation are positioned with respect to the envelope. Quadratic and higher
order contributions to temporal phase result in changes of instantaneous frequency
over the duration of the pulse. A pulse of continuously increasing or decreasing
instantaneous frequency is said to be “chirped”.

The analytical pulse description may be understood intuitively in terms of
phasor diagrams. The analytical function is a phasor of time dependent magnitude
and angle (figure 2). The rate of change of the angle determines the instantaneous
frequency of the pulse, while the real axis projection represents the electric field
strength at any instant. The phasor has zero magnitude outside the time span

corresponding to the pulse.

2.2.3 Spectral Representation

Like any function, the time dependent pulse description may be converted to
various other forms. The Fourier transform (appendix A) may be used to convert
the time-dependent pulse description into a function of frequency. The inverse
mapping is also possible.

The pulse representation in frequency has a similar form to the temporal func-

tion. It is a complex function of a single variable:
E fw}eled = f[Et{t}ewt{t}]

The single variable w is the angular frequency, which is greater than conventional
frequency by a scaling factor of 27. The (real) modulus E,, and (real) argument ¢,
of the spectral analytical function are known as the spectral amplitude and spectral

phase respectively.
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Figure 2: Phasor representations of a laser pulse. The electric field magnitude is represented by
the real part of the time dependent pulse phasor (a). In the frequency representation, the time

dependent phasor is decomposed into phasors of constant angular frequency (b).

The value of the spectral analytical function at a given frequency can be con-
sidered a projection onto a single basis vector in frequency space. This component
corresponds to a sinusoidal wave in time. The wave will have a frequency as
given, an amplitude equal to the spectral amplitude and a position on the time
axis determined by the spectral phase. Contributions from all frequencies form
the time domain pulse as a superposition of sinusoids. The square of the spec-
tral amplitude is the spectral intensity I,{w}, which expresses the power present
in each frequency component. As with the temporal case, this simple functional
description is possible because of the high temporal coherence of the laser pulse.
A low coherence field would not maintain a consistent superposition of frequency
components, and would therefore have a fluctuating spectral phase.

In terms of the phasor description, the spectral analytical function describes a
set of phasors which each rotate in time at a unique, constant frequency, and which
each produce a field component proportional to their real projection. The spectral
amplitude determines the magnitude of each phasor, while the spectral phase
describes the various phasor angles at time zero. The temporal analytical phasor
corresponds to the net phasor obtained by summing the entire set of spectral
phasors. Figure 2 illustrates a component phasor.

As with temporal phase, the spectral phase may be considered a series expan-

sion of the single variable:

Puf{w} = o+ Put(w — we) + Pua(w —we)? + ...

The centre frequency w,. is usually chosen so as to minimize the magnitude of the
coefficients and optimize convergence of the series. Common choices include the

frequency having the peak intensity, or the intensity-weighted average frequency



[2]. Once again this expansion need only be valid over the neighbourhood where
the amplitude function is non-zero, so that it may diverge for extreme frequencies.

The constant spectral phase is that part of the spectral phase function inde-
pendent of frequency. It may be identified with the absolute temporal phase, since
adding a constant angle value to all frequency component phasors is the same as
adding a constant angle value to their net phasor. The constant spectral phase
thus determines the position of the field oscillations with respect to the pulse
amplitude envelope.

Variations of the spectral phase which are linear with respect to frequency are
of no significance to the pulse characteristics. By the Fourier shift theorem, pulses
differing only in linear spectral phase occur at different times, but are otherwise

physically identical:
Ew{w}ei(%;{w}-l-wr) — eiwr(Ew{w}eiéw{w}) — j:'[Et{t + T}ei¢t{t+r}]

The time shift 7 of the pulse is simply the proportionality constant of the added
linear spectral phase.

In the visual terms of the phasor diagram, a linear spectral phase shift is equiv-
alent to advancing or retarding each component phasor by an amount proportional
to its frequency. This does not alter the superpositions that occur, but does change

the time at which they are observed.

2.2.4 Function Notation

Two conventions are often used to simplify analytical pulse description. First,
the symbols representing a function are used to imply the type of function. Thus
E, I and ¢ refer to amplitude, intensity and phase respectively in both temporal
and spectral cases. Secondly, temporal and spectral functions are distinguished
solely by the symbol used for their function argument. For example, ¢{t} may
be identified with the temporal phase ¢,{t}, because the argument t is commonly
used to denote time. This convention simplifies analytical expressions and reserves

subscripts for other purposes.

2.3 Dispersion

To a good approximation temporal laser pulse characteristics remain constant as
the pulse travels through air or vacuum. Significant modification may occur when
the pulse travels through materials of higher density, or through certain systems of
optical elements. These systems are best described in terms of the spectral pulse

representation.



In traversing an optical system, a pulse frequency component will oscillate
through some number of cycles determined by the optical path length, which
is a function of both the geometrical path length s and the wavelength in the
medium. If the optical path length varies with frequency, the system is said to
be dispersive, and the superposition of components will be altered. The angular
phase ¢ acquired by any component may be expressed in several forms using the
angular wavenumber k, material wavelength A, vacuum wavelength Ay, refractive
index n and the transit time ¢:

27s 2msn

10 s 3 N w

Dispersion is often divided into two categories. Path length dispersion occurs

when the geometrical path length varies with frequency. Material dispersion oc-
curs when the refractive index varies with frequency (in which case the remaining
medium-dependent quantities k{w}, Mw} and t{w} above will show their fre-
quency dependence accordingly). The sign convention used to describe dispersion
is such that lower frequency components suffer the least time delay for a positively
dispersive system. Positive dispersion will increase instantaneous pulse frequency

vs. time.

2.3.1 Material Dispersion

For propagation in a dense medium, significant positive material dispersion is
almost always present. This dispersion may be expressed as a function of any of
the medium-dependent quantities listed above, but it is most common to express

it in terms of the angular wavenumber:

¢lw} = sk{w}

This form may be differentiated with respect to frequency to relate spectral phase

to the "group velocity” v, of the pulse:
dp  dk s

= §— =
dw dw Vg
An additional differentiation relates spectral phase to ”group velocity dispersion”,

which is the derivative of group velocity :

dz_qb_ d*k S

d?  Tdw? T dvg/dw

The group velocity describes the speed at which the pulse propagates in an

optical medium. This is not necessarily equal to the phase velocity v,, which is

10



the speed of any given component:

In a medium of constant refractive index, all phase velocities and the group
velocity are equal, and the pulse does not experience any physical change.

If the index varies linearly with frequency, different cycles of the sinusoids will
come into alignment to form the pulse amplitude envelope. The shifting results in
a change of absolute phase which is proportional to the propagation distance in
the medium. The envelope (and thus the pulse itself) will propagate at the group
velocity without changing shape, and will appear to move with respect to the net
field oscillation. When the pulse exits the medium and returns to vacuum or air,
the group and phase velocities will become equal, and the absolute phase of the
pulse will remain fixed.

Any non-zero value of the group velocity dispersion will introduce non-linear

spectral phase, altering both the pulse envelope and phase.

2.3.2 Path Length Dispersion

Path length dispersive systems modify pulses by physically separating their com-
ponent frequencies and recombining them after they have traversed a frequency
dependent geometrical path. Two such systems are of interest here, the grating
pair and the prism pair.

A reflective optical grating is a surface whose reflective phase and or amplitude
varies periodically in one dimension. The most common type found in ultrafast
optics is a mechanically ruled gold surface, where the grooves are spaced on the
order of a micron (107%m). When excited by part of an incoming wavefront, each
groove will act as a line source, re-emitting the incident wave in all directions.
In addition to the reflected beam observed for a regular mirror, the grating will
produce beams in any direction for which which adjacent groove outputs are an
integer number of cycles out of phase. The number of cycles describes the order of
the reflection. For any non-zero order, the exact reflected direction is wavelength
dependent. The various frequency components of the incident beam therefore
leave the grating at different angles, fanning out in the plane perpendicular to the
grooves.

A grating pair arranged with their faces and grooves oriented parallel to one
another may be used to induce a controlled amount of dispersion. First order
reflections are applied as shown in figure 3. The incident pulse is separated into

frequency components after the first incidence. The second grating then reflects
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Figure 3: Two dispersive optical systems. The grating pair (a) produces path length dispersion
only, while the prism pair (b) introduces both path length and material dispersion.

each component at an angle complimentary to its initial reflection. The compo-
nents leave the second grating traveling parallel to one another, though slightly
offset. The path length through the system is frequency dependent, so that the
exit pulse will have experienced dispersion. If the lateral spatial offset of the
components is large with respect to the beam diameter, it may be corrected by
reflecting the beam back through the grating pair in a different vertical plane.
This second pass will double the net dispersion. The grating pair dispersion has
been determined analytically [17] and may be calculated given the line spacing d,

the distance between grating face planes GG and the angle of incidence :

dt —2cG

W (1= ((efvd) — sin{7}))?
Here v is frequency, ¢ is the speed of light, and the double pass geometry is
accounted for by the factor 2.

Prisms isolate pulse frequency components in much the same way as a grat-
ing. The variation of refractive index with frequency in the prism material causes
slightly different exit angles for each component of an incident pulse. A prism pair
(figure 3) may form a system similar to the grating pair, in which an initial prism
sends frequency components in different directions and a second prism realigns
them [10]. Again, a double pass may be used for perfect recollimation. In the case

of the prism pair, both material and path length dispersion are present.
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2.4 Spectral Phase Measurement

2.4.1 Spectral Interference

When two waves are mixed they interfere. The net resulting wave depends on
both the amplitude and relative phase of the component waves. This is a familiar
effect in the temporal (or spatial) domain.

Interference may also be observed in the frequency domain. The power spec-
trum observed for two combined pulses is not simply the sum of the individual
pulse spectra. Instead, the observed spectral intensity will vary as the square of
the net spectral amplitude, which is phase dependent. Spectral intensity maxima
will be observed where the individual pulse frequency components have reinforc-
ing phase. Minima will be observed at frequencies where the individual pulse
components have canceling phase.

Analytically, superposing two coherent pulses (in the linear optical case) is
equivalent to adding their phasors. In the spectral basis, each pulse is viewed as the
sum of a set of constant magnitude, constant frequency phasors, and component
phasors of like frequency may be added to form the spectral representation of the
net field.

The general expression for the two pulse spectrum D{w} has an analytical form

which is common in optics and other wave phenomena,

D{w} = Eifw} + Bufw} + Ey{w} Bafw} cos [ £ 1{w} F eafw}]

The first two terms are simply the power spectra of the individual pulses, while
the third term describes interference effects. Note that the interference depends
only on the absolute value of the phase difference, so that the sign of the phase

difference (or equivalently, the labeling of the pulses) is irrelevant.

2.4.2 Fourier Transform Spectral Interferometry

Under appropriate conditions, the spectral phase difference between two pulses
may be recovered from their combined spectrum by the method of Fourier Transform
Spectral Interferometry (FTSI) [7]. The procedure is based on frequency filtering,
a common signal processing technique.

If two pulses are well separated by some time delay 7, their spectral phase
difference will be approximately linear in frequency. The interference term of the
combined spectrum will oscillate through several periods over the bandwidth of
the pulse, so that the spectrum forms a fringe pattern (figure 4) analogous to the

spatial intensity pattern observed in Young’s 2 slit experiment [13]. Several pulse
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Figure 4: A measured pulse pair spectrum (a) exhibits fringes caused by spectral interference.
The nominal fringe spacing is the inverse of the pulse time separation t. A Fourier transform
maps the spectrum to three distinct regions of the transform abscissa (b). All spectral phase

information is contained in each of the two lobes on either side of the central maximum.

pairs may be collected to form an averaged interference spectrum, so long as the
pair spacing is consistent, and the separation between consecutive pairs is large.
The returned phase properties are understood to be an average.

The oscillation of the spectrum contains the desired phase information. To
isolate the phase dependent part of the data, the spectrum is Fourier transformed.
This transformation should not be confused with another common process, namely
inverse transforming the spectral pulse representation; note that it is a forward
Fourier transform which is applied to the spectral intensity. The transformed
function (figure 4) is a representation of the spectrum in a reciprocal space, which
has units of time. The usual roles of time and frequency are thus reversed.

Components of the spectrum are mapped to regions of the time axis equal
to the inverse of their spectral width. Broad features which vary slowly with
spectrometer frequency are mapped to a central (“D.C.”) region around the zero
time point. Narrow spectral features are mapped to more extreme times, both
positive and negative. If the spectral intensity changes due to phase difference are
rapid relative to the intensity changes of the individual pulse spectra, then the
oscillation term will map to a unique region of the time axis. Specifically, it will
form a distinct pair of (“A.C.”) sidebands. A filter may be applied to remove the
central lobe, isolating the interference data.

The transformed spectrum representation is a complex function of time. Be-
cause the measured spectral intensity is a real quantity, the positive and negative

sides of the transform are complex conjugates. Taken as a pair, the side lobes
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may be inverse transformed to form a real data set which is the spectral phase
oscillation. If only a single lobe is inverse transformed, a complex magnitude and
phase representation of the oscillation term results. The real part of this repre-
sentation is equal to half the observed value of the oscillation term. The complex
angle is equal to the individual pulse phase difference. By convention, assume that
the positive time sideband is retained, so that the angle of the complex spectrum
representation increases with spectrometer frequency.

The linear component of the recovered spectral phase difference arises from the
time separation of the pulses, as described in a common reference frame. It is
often preferable to describe the pulses by similar functions, such that they would
occur simultaneously if viewed in a common time frame. This choice of functional
description is practical for comparing the pulses and results in identical linear spec-
tral phase components. This description may be applied to the phase difference
measurement by writing the linear component of the phase difference explicitly,
outside the pulse functions. One assumes that the functional descriptions have
been time shifted to a common frame by adding a linear spectral phase to one of
the pulses. The sign chosen for the linear term depends on previously assumed
conventions, specifically pulse labeling, pulse order in time, the rotation direction
of the complex pulse and spectrum representations and the sign of the Fourier
transform. Assuming that the time delay 7 1s measured with respect to the frame
of pulse 1, and applying all previous sign conventions, the signed phase difference

may be written:

p{w} — do{w} — o {w} — dp{w} +wr

The linear term of the measured phase difference wr may be removed numer-
ically or by a calibration measurement. The remaining data is the non-linear

spectral phase difference ® between the two pulses:

o{w} = gfw} — dofw}

The traditional application of FTSI is measurement of the phase transfer func-
tion of an optical element. The transfer function describes the non-linear spectral
phase change experienced by a pulse due to dispersion. If the two pulses used
to generate the spectrum are replicas created in an interferometer, then the non-
linear phase difference between them will be due to dispersion differences in the
arms of the interferometer. A phase difference measurement may therefore be used
to determine the spectral phase transfer function of the beamsplitter substrate,

or the beamsplitter substrate plus or minus the transfer function of any optical
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element placed in an arm of the interferometer. A calibration measurement of the
substrate dispersion may be used to algebraically isolate the dispersion due to the
optic under test.

In addition to measuring the change in non-linear spectral phase imparted by
an optic, FTSI may be applied to the problem of measuring the pulse spectral
phase itself. In this case, the unknown pulse under test (labeled u) is mixed with
a reference pulse (labeled r) whose spectral phase is known. The reference phase
is simply combined algebraically with the measured phase difference to return the

unknown phase:

(I){w} = qu{W}—qbu{W}
dufw} = o{w}— 2{w}

Unfortunately, this characterization method cannot be used to make definite
pulse spectral phase measurements because the reference pulse phase must either
be measured by some other means or assumed. In the former case spectral interfer-
ometry is dependent on other methods, while in the latter case the measurement

1s not definite.

2.4.3 Self-Referencing Spectral Interferometry

Self-referencing spectral interferometry allows limited but definite measurement of
the spectral phase of an unknown pulse waveform (labeled ) without the use of
a second, characterized pulse. The method combines two replicas of the unknown
pulse (labeled 1 and 2). One of the pulse replicas (say 2) is frequency modulated,
so that its spectrum is shifted by the modulating frequency 2:

Ez{w}eiéz{w} = E{w— Q}eiéu{w—ﬂ}

The applied frequency shift is chosen to be a relatively small fraction of the to-
tal pulse bandwidth. The pulse replicas now have spectral functions which are
displaced in frequency but otherwise identical, and they are said to be spectrally
sheared. Asusual, FTSI may be applied to the combined pulse spectrum to return
the non-linear spectral phase difference between the two pulse replicas vs. spec-
trometer frequency. Relating the two replicas back to the unknown pulse however,
shows that the measured phase difference is actually a comparison of the unknown

pulse spectral phase value at adjacent frequencies:

Diw} = ¢{w} —do{w} = dufw} —duf{w -}
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The phase measurement compares the unknown phase at each frequency to its
value at a neighbouring frequency differing by the spectral shear. When combined
with the spectral shear value, this measured phase difference may be related to
the first derivative of the unknown phase:

du{w} — duf{w — O} dduf{w}
Q - dw

At this point, a constant may be added to the derivative expression which is

equivalent to a linear term in the unknown phase. By the Fourier shift theorem,
this constant simply determines the time frame chosen to describe the pulse. If
we assume that the temporal pulse is described in a local time frame such that
it peaks around the zero point, then the unknown spectral phase function must
have zero slope at the intensity weighted centre frequency. The constant may be
set accordingly. The choice of constant does not effect the physical characteristics
determined for the unknown pulse.

A continuous first derivative could be integrated to determine the non-linear
spectral phase. The discrete measurement may be summed instead. The partial
sum of the discrete derivative at any point in the series is equivalent to the non-
linear phase at that point, aside from some constant value. This second unknown
constant is analogous to a constant of integration and must be set arbitrarily. This
leaves the absolute phase of the reconstructed pulse unknown. This limitation
applies to the FROG technique as well.

When combined with a trivial spectral amplitude measurement and inverse
transformed, the measured spectral phase function determines the instantaneous
intensity and frequency of the unknown pulse. Only the absolute value of the phase
remains undetermined. Note that the discrete nature of the measured spectral
function does not limit the accuracy of the pulse reconstruction. By the Whittaker-
Shannon sampling theorem (appendix A), the time domain pulse may be ezactly
described by a phase function with a sampling interval exceeding the inverse of
the pulse duration. It is the spectral width which limits the quality of the pulse

reconstruction by setting the highest pulse frequency component reproduced.

2.4.4 The SPIDER Method

Self-referencing spectral interferometry as described in the previous section cannot
currently be realized for pulses of optical frequency. This is strictly a technology
limitation, in that no frequency modulator is known which can generate the re-
quired spectral shear. Spectral Phase Interferometry for Direct Electric Field
Reconstruction (SPIDER) [5] adds one additional step to pulse modification and
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data processing to allow self-referencing spectral interferometric measurements of
laser pulses. In SPIDER, non-linear frequency mixing is used to produce a spectral
shear.

Certain combinations of propagation medium and high field strength result in
“non-linear” optical conditions. In the non-linear regime, one observes effects not
predicted under the usual approximations of traditional optics. One such effect is
frequency mixing, in which two coincident waves are combined to form a third wave
whose frequency is an integer combination of the incident wave frequencies. If one
of the incident waves is a pulse and the other a continuous (single frequency) wave,
then the output mixed wave is simply a frequency-shifted version of the original
pulse. Both amplitude and phase functions are shifted in frequency without a
distortion in shape.

Unfortunately, non-linear frequency mixing cannot be used to directly generate
the required spectral shear, because it is not currently possible to mix frequency
pairs as dissimilar as an optical frequency (&~ 500 THz) and the required shear
value (&~ 1 THz). Instead, SPIDER frequency modulates both pulse replicas,

shifting them by unique optical frequencies:

¢1{w} Pu{w =}
Po{w} = du{w— o}

The slight difference in frequency shifts results in a spectral shear () between the

shifted pulses:
Q = Qz — Ql

This shifting process is illustrated schematically in figure 5.
The phase shifts may be determined and used to relate the measured spectral

phase difference to the unknown pulse phase.

Diw} = du{w—h}—du{w -} = du{(w—)} —u{lw—) -0}
= dufw’} = du{w’ - O}

Concatenation of the measured values then proceeds exactly as in the previ-
ous section, allowing the measurement of instantaneous intensity and frequency
of the unknown pulse. Note that several spectral phase data sets may be recon-
structed from a given interference spectrum by varying the starting point used for
concatenation.

As a matter of convenience, the two modulation frequency components are

usually derived directly from the unknown pulse. The optical setup is illustrated in
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figure 6. A third replica of the pulse is sent through a grating system and stretched
in time. The segments of the stretched pulse which arrive at the sum frequency
generator coincident with the interferometer pulses are of different frequency and

approximately monochromatic.
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Figure 5: Frequency shifts used in the SPIDER method. The particular case illustrated here is
the more common frequency upconversion.
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Figure 6: Temporal schematic of the frequency shifting process commonly used in SPIDER.
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3 The SPIDER System

3.1 Optical Apparatus

The optical part of our SPIDER apparatus is built on a standard 24” x 12" optical
board housed in a plastic box. Functionally, it may be divided into four smaller
systems: a Michelson interferometer, a dispersive grating system, a path length
adjuster and a sum frequency generator. This is similar to the schematic shown
in figure 6. Any remaining optical components are trivial items such as mirrors or
beamsplitters.

The horizontally polarized input pulse is divided into two replicas at an initial
glass beamsplitter. The transmitted pulse replica is directed to the grating system
while the reflected replica is sent into the interferometer. This choice of routing
is deliberate. It divides the input beam power in a ratio of 60% transmitted
to 40% reflected, which partially balances the different losses of the stretcher
and interferometer. Dispersion errors due to the beamsplitter substrate are also
avoided by sending the reflected replica to the interferometer.

In the stretcher system, the input pulse is dispersed by two gold surface gratings
ruled at d=!' = 1200 lines/mm each. The arrangement is as shown in figure 3.
After the initial pass, a periscope displaces the beam vertically and sends it back
through the grating pair at a slightly greater height. The dispersion of the stretcher
for frequencies within the pulse bandwidth is approximately 2 x 10°, as calculated
using the measured incidence angle v = 37° and the distance between grating faces
G =10 em.

The pulse sent into the interferometer is divided and recombined at a single
coated glass beamsplitter as shown in figure 7. One arm of the interferometer is
adjustable via a micrometer and translation stage, while the other is fixed. The
adjustable arm is set such that its total path length delay is greater than that of
the fixed arm by roughly 2 ps, with a more accurate value determined by spectral

measurement. The interferometer is the part of the apparatus which is most

2y
1 2

e\/\/H/\/v%Vl

- Figure 7: The Michelson interferometer used to repli-

cate the unknown pulse.
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Figure 8: The type I non-collinear sum frequency generator. Second harmonic (SH) and sum
frequency (SF) signals are indicated for inputs A and B. The optic axis (OA) of the BBO crystal

falls in the plane of the interacting beams as shown.

sensitive to vibration, so for improved stability several points of the beamsplitter
are mounted adhesively to a thick aluminum ring, which is then bolted to a solid
block of aluminum. The adjustable arm is built by placing a small translation stage
at the top of another solid aluminum block. The substrate of the beamsplitter is
approximately 1 mm thick and oriented to face the fixed arm. Interference spectra
generated with the unamplified pulses direct from the oscillator were observed to
be very consistent in fringe spacing, indicating that the interferometer is quite
stable with respect to mechanical vibration.

The interferometer output is sent through a variable path length and then
aligned below the stretcher output. The path length is adjusted so that the pulse
pair from the interferometer is syncronised with the much longer pulse from the
grating stretcher. Entering the sum frequency generator, the beams are parallel
but vertically offset, with a separation of about 1 c¢m.

The sum frequency generator is based on a birefringent, non-linear crystal. Non-
linear optical interaction in the crystal generates three new outputs in the 400 nm
(blue) region of the spectrum by combining pairs of infrared input photons [3].
Two of the outputs are due to second harmonic generation, where both combined
photons come from the same input beam. This forms a frequency-doubled replica
of each input. The third output is the sum frequency combination of the two input
signals, generated by combining one photon from each input beam. The direction
of each output is determined by conservation of photon momentum. The specific
arrangement used in this case is referred to as a non-collinear type I geometry and
1s shown in figure 8.

Entering the sum-frequency generator, the parallel input beams are focused by
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a common lens and intersect over a region centered at the 20 ¢m focal length.
Focusing increases the field intensities to create non-linear optical conditions. A
100 pm thick beta barium borate (BBO) crystal window is placed in the region
of overlap. Each molecule of the crystal may separately emit any of the three
possible outputs, and these various point sources must be syncronised or “phase-
matched” over the bulk of the crystal to produce a significant net output. This is
accomplished by orienting the crystal so that its “optic axis” falls within the plane
formed by the intersecting input beams. The input beams are then of “ordinary”
polarization while the vertically polarized outputs are of “extraordinary” polariza-
tion. Rotation of the crystal in the plane of the input beams alters the refractive
index experienced by the output beam and may be used to partially synchronize
the molecular outputs. When properly oriented, the directional, polarization and
wavelength dependences of the crystal’s refractive index partially cancel. A second
lens following the crystal is used to recollimate the diverging output beams and
direct them to a periscope. In the periscope the pulse polarization is rotated to the
horizontal before the pulses are sent to the spectrometer. An aperture preceeding
the lens may be used to single out one of the three crystal outputs.

The sum frequency beam is the frequency shifted pulse replica pair used for
SPIDER measurement. The stretched pulse is chirped to a length of about 20 ps,
so that its instantaneous frequency varies continuously from one end of the pulse
to the other. There should be little change in instantaneous frequency over the
(~ 100 fs) duration of a single pulse, but a significant change over the 2 ps
time interval between pulses. Each interferometer pulse replica arrives at the
crystal coincident with a different, approximately monochromatic frequency of
the stretched pulse, generating a spectral shear of approximately 1.7 T Hz, with
the first pulse being shifted by about 374 T Hz.

3.2 Spectrometer

Pulse spectra are measured by a spectrometer of the Czerny-Turner type, specifi-
cally Oriel model MS1271, shown in figure 9. The pulse to be measured is directed
onto a 10 pum entrance slit where it diffracts, acting as a line source that re-emits
the incident wave along a cylindrical wavefront. This arrangement reduces sensi-
tivity to input beam width, position and direction. Curved mirrors collimate the
cylindrical wave and direct it to a grating which spreads the various frequency
components. The diverging component frequencies are redirected by additional
curved mirrors and sent to an array of detectors. The frequency band and resolu-

tion of the spectrometer may be controlled by the orientation and line density of
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the interchangeable grating. A 1200 line/mm ruled gold grating is used to mea-
sure the infrared fundamental pulse spectrum, while a 2400 line/mm holographic
grating is used to measure the blue frequency-shifted spectra.

The detector array is an Oriel LineSpec linear charge-coupled device (CCD).
The single line of detectors is positioned horizontally, so that each element receives
light from a different range of frequency components. An electrical charge accu-
mulates at each element in rough proportion to the incident light intensity, so that
the relative charges form a power spectrum measurement of the input. During the
readout cycle, each pixel charge is converted to a voltage sequentially, forming
an analog voltage signal. This analog output is digitized at the computer by a
GageScope oscilloscope board. Array readout syncronisation and pixel readout
syncronisation signals aid in timing the data conversion.

The combination of grating and detector produces a wavelength resolution of
approximately 0.07nm for the infrared setting and 0.03nm for the blue setting.
Wavelength calibration is accomplished using gaseous electrical discharge lamps.
The infrared range is calibrated using the Argon (Ar) emission spectrum, while
the blue range is calibrated using Helium (He) and Hydrogen (H) emission spectra.
Several lines in the immediate neighbourhood of the pulse spectrum are assigned
a pixel number value according to their intensity weighted centre point. Stan-
dard tables [18] are used to assign a wavelength value to each line as well. The
pixel /wavelength data pairs are then fitted to a fourth order polynomial which
expresses wavelength as a function of pixel number, allowing the interpolation of
wavelength values for all pixels. To reduce error, the polynomial fit is centered
at a pixel number near the region of interest, and calibration lines far from the
region of interest are not included.

Background calibration of the spectrometer is also necessary. Charge sources

such as stray light and thermally generated carriers produce dark current at each
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L Figure 9: The Czerny-Turner spectrometer. The

G |‘\ entrance slit (S), grating (G) and detector array are

S indicated. Some reflective and focusing optics are
omitted for clarity.
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pixel independent of the input light. An averaged value of the background level is

determined for each pixel and removed from the initially read signal.

3.3 Data Processing

SPIDER data processing is performed on an IBM compatible personal computer
(PC) running LabView programming software under the Windows 2000 operating
system. The processing is approximately instantaneous or “real-time”, finishing
well within one second of pulse generation.

Measured interference spectra are Fourier transformed directly using a built in
LabView algorithm which accepts a one dimensional set of data and assumes a
regular sampling rate. This is a simpler alternative to converting the measured
wavelength spectrum to an evenly sampled function of frequency. Additional phase
appears when the sampled spectrum is viewed as a function of pixel number, but
the Fourier transform filtering process may still be applied because the pixel to fre-
quency relation is approximately linear over the pulse bandwidth. The additional
phase disappears when the pixel values are converted to frequency. Execution
speed is improved by the use of fast Fourier transform (FFT) algorithms. The
frequency filter applied in the transformed space is a “hyper-Gaussian” which is
a Gaussian curve raised to a power. Exponents of about 4 work well, providing
a wide, flat and apodized filter. To further increase execution speed, the filter
function is evaluated only during an initialization loop and stored for use in future
iterations. This improves execution time by reducing the calculation of exponential
functions.

The observed fringe pattern phase is shifted down in frequency by subtracting
the shift value applied to the highest frequency pulse replica. This is determined
by comparing the fundamental and shifted spectra.

The delay dependent component of the fringe pattern phase is determined by a
separate measurement of the interferometer output second harmonic. The pulses
are essentially identical in this case so that the phase returned from the interference

spectrum is the desired linear phase:
Diwy = of{wr—dfw} = 20u{w/2} - 20u{w/2} + w7
= wr

The directly measured data may be used, or the time delay may be determined
from a linear fit and used to generate the background phase.
The derivative phase at the desired centre frequency is set to zero by subtracting

a common constant value from the entire data set.
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The spectral shear may be determined by calculating the dispersion of the
grating pair at the fixed pulse frequency and combining this with the pulse time-
separation as measured during calibration. Alternatively, the shear may be esti-
mated by comparing the intensity weighted centre frequencies of the individual
shifted pulses. A third shear estimating method which compares theoretical and
observed fringe pattern modulation amplitude did not produce consistent results.

Integration of the measured phase derivative proceeds by concatenating values
separated by the spectral shear. A linear interpolation between nearest neighbour-
ing sample points is used to evaluate the phase derivative at the required points.
To increase execution speed, the point pair used for each interpolation and the
relative weighting of each point is calculated only during an initialization loop. It
is then stored for future loop iterations. One or several spectral phase data sets
may be constructed by shifting the starting point of the concatenation. All data
sets have their absolute phase set to zero at a common centre frequency, which al-
lows their phases to be averaged in the frequency domain. The measured spectral
phase values may optionally be fit with a polynomial for analysis or smoothing.

An optional transformation to the time domain may be performed by use of an
inverse Fourier transform. Spectral amplitude and phase data sets are constructed
at sampling rates similar to the spacing of the measured spectral amplitude data.
Values are interpolated over the measured spectral ranges and set to zero else-
where. Extra zero values added to the extreme frequency ends of the spectrum
allow the use of an inverse FFT algorithm and increase the sampling rate for the
plotted temporal pulse function, though they do not improve the actual resolution
of the data.
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4 Measured Data

Data captured with the SPIDER system is presented in this section. The data
is analyzed in section 5. By convention, spectral phase curves are presented in
radian units as a function of proper (as opposed to angular) frequency. Phase

fitting coefficients are defined by the relation
v} = o+ o1(v —ve) + (v — l/c)2 + ...

where the phase is in radian units, v is the proper frequency, and v, is the centre
frequency. The SPIDER software used femtosecond time units and nanometer
length units for convenience, and as a result the phase expansions assume fre-
quencies in PetaHertz. Conversion to other units or coefficient conventions is

straightforward.

4.1 SPIDER Verification

The following data was collected to verify the correct operation of the SPIDER

system.

4.1.1 Interferometer Imbalance and Fringe Sampling Rate

Dispersion differences between the arms of the interferometer are a source of error.
In traditional FTSI it is usual to measure this phase difference and correct the
observed data, or to balance the arms using a glass blank. The blank is identical
to the beamsplitter substrate and is placed in the arm opposite the substrate to
make the glass path lengths identical. For SPIDER, dispersion throughout the
entire optical apparatus is a source of error. In our SPIDER apparatus little
glass was used outside the unbalanced interferometer, and a glass blank was not
available to match the beamsplitter substrate. It is therefore expected that the
interferometer imbalance is the greatest source of dispersion error. The imbalance
of the interferometer is measured here and used to estimate that error.

The interferometer was used to create fringe spectra of different pulse time
separation. Seed pulses from the laser oscillator were used as input, and the output
was sent directly into the spectrometer. The use of the fundamental frequency
was convenient and resulted in more accurate data, as the seed pulse amplitude
function was very smooth and unlikely to cause noise in the observed oscillation.
Several multiple-shot fringe spectra were recorded, including figure 4, pg. 14. The
single pass substrate dispersion determined at three different time separations is

shown in figure 10.
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The imbalance data may also be used to check for error due to spectrometer res-
olution. Fringe definition requires two data points at minimum, and improves with
additional sampling. The sample spacing of the spectrometer is fixed for either
scale, so that the fringe width determines the number of samples per fringe. The

samples here have different fringe width, and therefore different fringe resolution.

4.1.2 Spectral Shift Adjustment

The spectral phase returned from a SPIDER measurement should be independent
of the particular frequency shifts applied to the individual pulse replicas, as long
as the values fall within reasonable limits and are accurately determined by cal-
ibration. The phase data sets presented in figure 11 are used to verify correct
operation and calibration. Two data sets differ in the total amount of spectral
shift. Two data sets have different spectral shear. The parameter changes were
accomplished by varying the interferometer delay and the grating/interferometer

path matching delay. The SPIDER was recalibrated at each new setting.

4.1.3 Shear Calibration

The spectral shear may be determined by comparison of upconverted pulse spectra,
or by dividing the pulse time separation by the SPIDER stretcher dispersion.
For the first method, alternating arms of the interferometer are blocked off, and
the shear is taken as the difference in intensity weighted centre frequency of the
upconverted pulses. For the second method, the stretcher dispersion is calculated
from measured stretcher geometry [17] and the time separation is determined
from the linear component of the second-harmonic interference spectrum. Figure

12 shows phase curves constructed by the different methods.

0.3
0.2
g
©
= 01
Figure 10: Single pass dispersion of the Michelson in-
0 terferometer beamsplitter substrate, measured at the
fundamental. The pulse time separations used were
360 370 380

3.75 ps (solid line), 1.98 ps (dash-dot line), and 0.64 ps
THz (dotted line).
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4.1.4 Shear Approximation Error

Each method of spectral shear measurement described above leaves the SPIDER
susceptible to a small error which varies with the chirp of the unknown pulse.

When the shear is determined using the dispersion of the SPIDER stretcher, the
unknown pulse is assumed to be of minimum duration for its bandwidth (“trans-
form limited”). If the unknown pulse enters the SPIDER stretcher with an initial
chirp (of either sign), this assumption is only approximate. When shift and shear
are determined by comparison of upconverted spectra, values will be inexact when-
ever the chirp of the unknown pulse changes from the value used for the calibration.
The data presented here was recorded in order to estimate the significance of these
erTors.

The chirp of the unknown pulse was adjusted by changing the grating spacing
in the laser system compressor. The spectral phase was reconstructed over a
range of compressor settings, using both fixed calibration values determined at the
compressor centre and values measured separately for each compressor position.
The values were measured by comparing upconverted spectra. Figure 13 shows

the phase coefficient values as a function of compressor setting for each case.
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Figure 11: Spectral shifting test. Two phase curves were measured using identical shear values
and different first pulse shifts (a) of 373.9 THz (solid line) and 371.1 THz (dotted line). Two
phase curves were measured using identical first pulse shifts and different shear values (b) of

1.5 THz (solid line) and 0.9 THz (dotted line).
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Figure 12: Phase traces comparing different reconstruc-

tion methods. The reconstructions used shear values de-

365 370 375 380
THz

termined by SPIDER timing and grating geometry (solid

line) and power spectrum comparison (dashed line).
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Figure 13: Quadratic (a) and cubic (b) spectral phase coefficient values vs. laser compressor

setting for the cases of corrected (solid line) and fixed value (dashed line) calibration.
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4.2 Pulse Variation

This data describes the variation in the reconstructed spectral phase. Amplified
pulse systems tend to produce somewhat inconsistent pulses from one shot to the
next, so that the measured variation is expected to be due more to the physical
performance of the laser than the precision limits of the SPIDER system.

One thousand phase measurements were made, each corresponding to a single
pulse. This required the use of an optical chopper with an appropriate duty cycle,
as the minimum exposure time of the CCD was about six times longer than the
pulse repeat period. To identify short term drift in system behaviour, the spectra
were recorded at evenly spaced intervals over a period of one hour. The entire laser
system and detector were given more than an hour to reach a steady operating
state before recording began.

A third order polynomial was fit to each returned phase. The phase coefficients

and their statistical parameters are presented in figure 14 and table 1.
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Figure 14: Single-shot quadratic (a) and cubic (b) spectral phase coefficients, as sampled over a

period of one hour.

Order Mean Standard Deviation Table 1: Fluctuation statistics for
the target system. These cor-
_ 5 1.2 4 5.2
2 3.98 x 12 fi 2.2 X 106 f53 respond to the phase coefficients
3 537 X 10 fS 29 X 10 fS shown in ﬁgure 14.
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4.3 Target System Characterization

In order to characterize the target laser system, the amplified pulse spectral phase
was measured as a function of compressor setting. Interference spectra were
recorded over the whole compressor range at 0.5 mm intervals. Each interfer-
ence spectrum was averaged over approximately 2500 shots and used to determine

a spectral phase trace. Several of these traces are shown in figure 15.
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Figure 15: Phase curves recorded for the amplified laser
~100 pulse. Proceeding from the concave-up trace, the dis-

365 370 375 380 played phases were measured at grating micrometer po-
THz sitions of 1, 3, 7, 10, 13, 16, 19 and 22 mm.

In order to reduce the data, a third order polynomial was fit to each phase
curve. The fit coefficients vs. compressor setting are shown in figure 16.

The time domain pulses predicted by the SPIDER measurement showed mini-
mum duration around the middle of the compressor range. The optimized pulses
showed a power distribution in which small “pre-pulses” preceeded the main lobe.
Figure 16 shows a typical example of a time-reconstruction near the optimized
point. The main lobe has a 135 fs full width at half maximum (FWHM).

The amplified power spectrum used for temporal reconstruction is shown in
figure 16, along with the transform-limited temporal profile. This theoretical min-
imum duration pulse profile was determined numerically by assuming the power
spectrum amplitudes were all in perfect phase. It has a 73 fs FWHM, which is

narrower than the observed optimum by a factor of approximately 2.
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frequency (d) at the optimum compression. The amplified power spectrum used to derive time-

domain data (e) and its transform-limited intensity profile (f).



4.4 Enhanced Compression Experiment

A dispersive prism pair was added to the laser system in an attempt to improve
pulse compression. This was placed after the grating pair for experimental conve-
nience. The prisms were set at a fixed, antiparallel orientation (as in figure 3, page
3) and arranged so that the position of the second prism could be varied in two
dimensions. The prism separation was changed by moving the second prism along
the mounting holes of the optical breadboard. The insertion depth of the second
prism into the beam could be varied continuously using a translation stage.
With the added prism pair, the compressor had three degrees of freedom: grat-
ing separation, prism separation and prism insertion. The pulse spectral phase
was mapped out over the full range of compressor adjustment, using the control
parameter combinations summarized in table 2. 464 separate compressor states
were sampled. The units used to describe the compressor settings were the grating
micrometer reading ¢, the mounting hole offset between the prisms L, and the
prism insertion micrometer reading f,. At each setting an interference spectrum

was averaged over 2500 shots and used to reconstruct the spectral phase.

Table 2: The control settings used to characterize the combined

Hg Hp
5—-2017—-14 | 2

5—2016—-15 |12
3—-2015—-15125

grating and prism compressor. The grating and prism micrometer

ranges shown were covered inclusively in integer units.

A third order polynomial was fit to each measured phase. This was centered
at the intensity weighted mean frequency 372.9 THz. Whenever the measured
phase coefficients were plotted against a single one of the control variables (as in
figure 17), the results were seen to be linear to a good approximation. Further, the
slope of the traces was fairly consistent regardless of the constant values chosen
for the remaining control variables. To reduce the data, the coefficients were
fit to a 3 dimensional polynomial, the three dimensions being the compressor
control parameters. A linear relation was chosen in each dimension, based on the
behaviour seen in the single variable plots. The resulting empirical equations give

the quadratic and cubic phase coefficients:

by = —9.4x10%u, + —4.3 x 10°u, + 4.5 x 10°L 4 7.5 x 10°
b3 = 4.3 % 10%u, 4+ 1.2 x 10%u, + —2.7 x 10°L + 3.0 x 10°

A statistical parameter called the coefficient of determination describes the

quality of the polynomial fit, and ranges from 0 for a complete lack of correlation
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to 1 for a perfect fit. The coefficients of determination for the quadratic and cubic
phase fits were 0.987 and 0.955 respectively. This validates the chosen form of the

fitted empirical functions.
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Figure 17: Spectral phase coefficient plots for the enhanced compressor. Quadratic and cubic

coefficients are plotted on the ordinates while a single compressor parameter is varied on the

abscissa. The compressor parameters adjusted were grating spacing p, (a, b), prism insertion

tp (¢, d) and prism separation L (e, f).
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5 Data Interpretation and Analysis

5.1 SPIDER Verification

Most of the verification data is sound, but one of the tests suggests possible quan-

titative problems with cubic phase measurement.

5.1.1 Interferometer Imbalance

Because the interferometer substrate phase (figure 10, page 27) is small with re-
spect to typical pulse phases, it was initially assumed to be negligible. This
assumption might be reconsidered however, as the pulses make multiple passes
through the substrate, and the interference spectrum phase is integrated to deter-
mine the pulse phase.

The effect of the imbalance on the phase coefficients may be estimated, begin-

ning with a polynomial fit to the measured substrate dispersion ¢,:

b {r} = Gulv — 1) + da(v — )’ + Gualv —v)t + ...
= 3.2x10°A1? —8.0 x 10*Ar® — 1.6 x 10°Av* + ...

This is centered at the same point as the other measured phase expansions, so
that all have a common definition of Av = v — 0.3729.

The extra phase effects the individual pulse replicas differently due to both their
different spectral shifts and to their different number of passes through the sub-
strate. Dispersion contributions also appear in the measured background phase.
The first pulse makes three passes through the substrate in both the unknown
pulse measurement and the background phase measurement. The second pulse
makes a single pass through the substrate in each case. The phase difference

returned from the interference spectrum becomes:

alv} - a0} = (0ulv} +30,01) — (6l — Q) + 6y - 0}) = [36,{0} — 600} ]
= v} —ou{v -} + o {v} — o{v — O}

Where the background phase contribution is shown in square brackets. The error

may be expressed in terms of the dispersion polynomial. Because the shear 2 is

neccesarily small with respect to the range of wavelengths, terms containing shear

powers of two or more may be neglected in the expansions:

0t =0y =0} = (008 + 6587 1) = (Ga(Ar = O + du(Ar — 0P 4. )
N 2000AY + 30 AV + 406 AL 4
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The interference spectrum phase difference is divided by the shear to form the
pulse phase. The error contribution to the final pulse reconstruction ¢y is therefore

the above expression lowered one power in shear.

op{v} = 200Av +30sAV +4d AP+ ..
= 64 x10°Ar —2.4x 10°Ar? — 6.4 x 10°Av® + ...

The quadratic and cubic terms are the error estimates for the measured spectral
phase coefficients. The linear contribution is not significant to pulse shape, and
may be ignored.

The estimated errors may be interpreted with reference to typical coefficient
values observed in measurement (such as figure 16, page 32). Error in the quadratic
coeflicient is just less than 5% of the typical coefficient values, and is well within
reasonable limits. The estimated error in the cubic coefficient however is of the
same order of magnitude as the observed values. Cubic coefficient values may

therefore be questionable due to dispersion in the interferometer.

5.1.2 Fringe Sampling Rate

The interferometer phase traces (figure 10) illustrate the dependence of the ob-
served interference phase on sampling rate and fringe width. Where the fringe
width is small, the number of samples per fringe becomes small, and a ripple ap-
pears on the measured phase. As the fringes become larger, the ripple reduces.
For large fringe width, the measured phase begins to flatten.

The ripple was originally thought to be due to the sparse sampling of the fringes,
caused specifically by the sampled points cycling into and out of phase with the
fringe extrema. This does not seem to be the case however, as the ripple frequency
does not match the beat frequency which would be found between the spectrometer
sampling rate and the fringe width. The ripple frequency is different for each of
the traces, and changes much like the fringe width, increasing with pulse time
separation. This would suggest that the ripple might be fringe amplitude which
is passing through the filtering process and appearing as phase, except that once
again there is no numerical agreement. The fringe width and ripple differ by an
order of magnitude. Regardless of the cause, the ripple was observed to fade when
the fringes were made moderately larger. If very large fringes were avoided, the
ripple could be reduced while maintaining the general shape of the phase trace.

The flattening of the phase curve at large fringe widths is probably due to the
breakdown of the amplitude and phase approximation. When the fringes become

large, they approach the feature size of the pulse power spectrum, and are not
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properly isolated in the frequency domain. The phase effects are partially filtered
out, resulting in a smaller returned phase value.

An intermediate value of 2 ps time separation was used for most of the re-
maining data collection. The intermediate value should avoid both the ripple and
flattening problems encountered in phase measurement. This is particularly true
because the spectrometer had a higher spectral sampling rate at the doubled pulse

frequency, which either allows more points per fringe and/or smaller fringes.

5.1.3 Spectral Shift Adjustment and Shear Calibration

The different values of spectral shift and shear tested showed no significant differ-
ence in returned phase (figure 11). The shear was therefore set toward the lower
end of the range of tested values, in order to improve the pulse phase sampling
rate. The spectral shift was adjusted to place the interferometer pulse replicas
near the centre of the stretched replica.

The two methods of shear calibration (figure 12) do not result in significantly
different pulse phases. The method based on grating geometry calculation was
favoured for remaining measurements. This method gives the most accurate results
in the neighbourhood of the optimum pulse compression, where the assumption
of a transform limited pulse becomes increasingly valid. The alternative method
gives the most accurate results at whatever arbitrary pulse compression existed

during calibration.

5.1.4 Shear Approximation Error

The measured and approximate shear reconstructions (figure 13) show expected
trends. The measured phase reconstruction shows a linear dependence between
the phase coefficients and the micrometer distance, as predicted by theory [11].
Further, the slope of the quadratic coefficient is negative, which is consistent with
the known negative dispersion of a grating system and the sign conventions used.

The quadratic coefficient vs. micrometer setting shows curvature in the case
of the approximated shear. This is an expected result. There will always be
one compressor position for which the calibrated shear value is strictly correct.
Error in the shear will be proportional to the offset of the compressor from this
position, and will show sign dependence. This error results in stretching and
compression of the apparent frequency scale and changes the phase curvature.
The quadratic coefficient is therefore overestimated for reduced compressor length

and underestimated for increased compressor length, as seen in the plot. The error
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increases with offset, giving the approximated coefficient plot the observed curve.

The phase coefficients returned by the two calibration methods are reasonably
similar. The validity of the approximate shear method is consistent with its com-
mon use [5], and may be explained by comparing the laser compressor and SPIDER
stretcher. The residual chirp of the pulse over the entire compressor range tested
remains small relative to the chirp introduced by the SPIDER. The relative er-
ror in the shear is therefore small, allowing the approximate shear method. This

method is applied in taking the remaining data.
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5.2 Pulse Variation

The set of measured single-shot phase coefficients (figure 14 and table 1) can be
used to estimate statistical error in the multi-shot phase measurements. The sta-

tistical fluctuation error F in an averaged measurement is given by the formula [4]:
_zo  2.58¢0
S Vn n

where n is the number of samples taken to form the average and o is the standard

E

deviation of the quantity being measured. The factor z describes the quality of
the error estimate. Average values determined from a limited number of samples
will vary, forming a statistical distribution about the true mean. The factor z is
the half width of the statistical distribution falling within the determined error
range. It is expressed in standard deviations. A value of z = 2.58 will result in
error limits which are correct in 99% of all cases.

The above formula was used to estimate the statistical sampling error in the
phase coefficients for various sampling sizes. Table 3 lists the estimated errors.
Based on this calculation, sample sizes were set to 2500 shots when measuring
phase coefficients. This should result in coefficient measurements where 99% of

the measured values have statistical sampling errors below 1%.

Samples | Quadratic Error (fs?) | Cubic Error (fs*) Table 3: Estimated phase
5 25 % 10° 33 % 10° coefficient errors caused by
statistical fluctuation.

10 1.8 x 10* 2.4 x 10°
100 5.6 x 103 7.4 x 10°
500 2.5 x 103 3.3 x 10°
1000 1.8 x 10° 2.4 x 10°
2500 1.1 x10° 1.5 x 10°
5000 7.9 x 102 1.1 x 10°

5.3 Target System Characterization

SPIDER systems are usually verified against autocorrelation data. The auto-
correlator available in this case was known to have bandwidth problems, giving
results of limited resolution. The autocorrelation could only locate the optimum
compressor setting within a few millimeters.

The SPIDER results are consistent with the autocorrelation, in that they pre-

dict an optimum compressor setting which is within the range specified by the
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autocorrelator. The setting varies in day to day operation, but is usually around
the mid-range of the compressor adjustment, near 12 mm.

The measured phase coefficients agree qualitatively with the values predicted
by theory [11]. Specifically, both coefficient curves are linear in grating separation
and of opposite sign. The sign of the coefficient slopes is consistent with the
conventions adopted and the fact that the grating pair produces negative quadratic
dispersion. The magnitude of the coefficient slopes do not agree with theory. This
discrepancy may be due to the quality of the optical gratings. These have physical
features which are only accurate to a quarter wavelength, and may not be a good
approximation to the ideal gratings assumed in deriving the theoretical result.

The jagged features observed in the amplified pulse spectrum (figure 16) could
be the source of a constant error in the measured phase, though this is unlikely.
These spikes appear primarily in the amplifier stage, and could not be eliminated
by tuning the laser system. They are of even spacing, as if caused by multiple
reflections. Theoretically, they should produce two overlapped sets of constantly
spaced spikes in the upconverted pulse. Even if these spikes were interpreted as
interference effects however, they should not result in a contribution to the phase
coefficients because their pattern would not change across the spectrum.

The phase curves and the observed and transform limited time profiles suggest
that pulse compression is being limited by pre-pulsing due to third order phase.
While there is a large measurement uncertainty in the actual value of the residual
phase, its existence is reasonably certain since the false contribution due to in-
terferometer dispersion should actually reduce the observed value, being opposite
in sign. The estimated third order phase coefficient (with the assumed conven-
tions) is on the order of 107. This residual third order phase may result from the
fact that the target system stretcher and compressor are not matched such that
their second and third order phases may cancel simultaneously. Dispersion in the

amplifier may also contribute to this problem.

5.4 Enhanced Compression Experiment

The phase measurements for the enhanced compressor allow the effect of the con-
trol parameters to be compared. The empirical phase coefficient equations are
used. The rate of change (slope) for each degree of freedom may be multiplied by
the allowed range of parameter values. This gives an estimate of how much control
each parameter exerts over each order of phase. Table 4 lists the estimated effects
for the compressor controls.

For either order of phase, the grating is the dominant control parameter. The
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Parameter Order | Coetlicient Range Table 4: Hstimated effect of
Grating Separation 2 2.4 x 10° fs? Zid;hecos?irterzslorphzzlerazigf
Prism Insertion f, 2 4.3 x 10* fs? cients.
Prism Separation L 2 1.2 x 10° fs?
Grating Separation 3 1.1 x 10% fs3
Prism Insertion f, 3 1.2 x 107 fs3
Prism Separation L 3 7.0 x 106 fs3

coefficient change due to the grating is an order of magnitude greater than the
change due to either of the prism parameters. This is in spite of the fact that the
grating separation varies by only 2 ¢m compared to a 55 ¢m range for the prism
separation. Because the prisms can have only a weak effect on the pulse phase
relative to the gratings, the improvement in pulse compression will probably be
marginal; when set to eliminate quadratic phase, the residual phase left by the
gratings is large with respect to the range of third order phase spanned by the
prisms. To determine this with more certainty requires an analysis which can find
the optimum compressor setting given the observed data.

In the most general case, the parameter optimization would have to take into
account the measured pulse amplitudes. The amplitude weighting is significant
when comparing two phase functions. The pulse spectrum was largely symmetric
however, and showed some change over the beam cross section. For these reasons,
a phase-only analysis is preferable.

First note that the pulse has a narrow fractional bandwidth:

AN Av .

— = — ~ 107" x 1

A v
The frequency differences Av appearing in the phase expansion will therefore
be small over the pulse bandwidth, resulting in a rapidly converging series. We
may assume that it is more important to reduce the quadratic coefficient than the
cubic coefficient. Based on this, assume that the optimized pulse has the minimum
quadratic coefficient available in the allowed range of compressor parameters. In
this case, a zero value is possible. There will be a whole family of compressor
settings which result in the minimum quadratic value, so next assume that the
optimized setting is that member of the subset which has the minimum cubic
phase coefficient.

The physical parameter limits and the zero quadratic phase requirement form

constraints over which the cubic phase function must be minimized. The best

approach would usually be a numerical evaluation over the range of allowed pa-
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rameters, except that in this case the constraints and objective function may all
be expressed as linear in the control parameters. Constrained linear optimization
is analytically tractable, whereas constrained non-linear optimizations often are
not.
The grating parameter is independent, so that its physical limits form simple
constant inequalities:
0 < py and gy < 25

Due to beam spreading and the geometry of the prism pair mounts, the working
range limits of the 2 prism parameters are dependent. For example, at the lowest
and middle prism separations L = 2 and L = 12, the prism insertion minimum
limits were different, being 7 < p, and 6 < p,, respectively. These limits may be

expressed as linear inequations:

2—12 2—12
L > —_— Ly — ———u,;
> (=0.1) g, + 12.6

where the equal limit of the inequation is the line formed by the two points. Six
such inequations are required to describe the allowed prism parameter ranges.
The final constraint is the requirement that the quadratic coefficient be zero.

The empirical coefficient equation is used:
0 = ¢ = —9.4x10%u, +—4.3 x 10°u, + 4.5 x 10°L + 7.5 x 10°

The cubic coefficient equation may be optimized according to the constraints.
The resulting optimum phase setting results in a residual cubic phase of 4 x
107 fs® at (ug, up, L) = (8.9, 5, 25). The optimization was performed using the
“simplex” linear programming algorithm. This was implemented by the symbolic
math program Maple, version 5.1. The Maple code used is included in appendix C.

As suggested by the empirical equation, the prism pair provides little correc-
tion to the grating phase. The optimized pulse data is shown in figure 18. The
quadratic coefficient observed was 6.1 x 10* fs?, which is a small relative value.
The cubic coefficient is 4.2x10% fs3, similar to the predicted optimum. A temporal
reconstruction at the calculated optimum setting (figure 18) is virtually identical
to the optimized pulse observed without the prism pair (figure 16). This has
several pre-pulses and a 135 fs FWHM.
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Figure 18: Optimized spectral phase (a) and temporal intensity (b) for the enhanced compressor.
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6 Conclusions and Recommendations

6.1 SPIDER

The beamsplitter in the SPIDER interferometer is a potentially significant source
of error. Reliability could be improved by replacing the beamsplitter with a less
dispersive model. The use of a beamsplitter/compensating plate combination
would probably result in some improvement, but will not completely remove dis-
persion errors, even when the interferometer arms are perfectly identical. A very
low dispersion pellicle (membrane) beamsplitter was used initially, but was aban-
doned due to the poor quality of the split beams. If a pellicle must be used to
eliminate dispersion, a type II non-linear crystal is recommended. This would
allow collinear sum frequency generation, which would reduce the sensitivity to
split beam quality. As an added benefit, this geometry is easier to align.
The calibration procedures for SPIDER are consistent.

6.2 Target Laser System

The pulse width of the laser system studied is limited by a large cubic dispersion
which cannot be eliminated by the grating compressor. The output pulse is ex-
pected to show a series of pre-pulses. The best means of correction is probably
to eliminate this phase at it’s source by switching the target CPA system to a
matched stretcher/compressor pair. Improved measurement reliability and pulse
generation could also result from laser system improvements which would generate
a smoother and more spatially uniform power spectrum. The amplifier would be
the primary candidate for improvement.

The prism pair added to the compressor did not have strong enough dispersion
effects to make a significant improvement in pulse duration. An increase in prism
separation would be required to achieve the desired effect with this prism pair.
This increase is not possible due to space restrictions. A practical alternative
would be to use a double-pass geometry in the prism pair. This would double the

dispersive effects.
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A The Fourier Transform

A.1 Definition

The Fourier transform is a common integral transform which maps a given function
to a new representation in a reciprocal space. The Fourier transform f,{w} of a
function f;{t} may be defined by the following:

flw} = FIAY] = / f{them ity

Other definitions of the transform are sometimes used by convention. These
involve changing the sign of the exponential argument or multiplying the integral
by some normalizing constant.

The inverse Fourier transform:
FURY = = [ fdaher™de = 5

may be applied to a transformed function, returning it to the original space and
basis. The form chosen for the inverse operation must be consistent with the
conventions assumed for the original transform (as above).

The Fourier transform relates functions uniquely, so that the representation in
either basis contains all information required to produce the remaining function.
Two functions related by a Fourier transformation are referred to as a Fourier

transform pair.

A.2 Shift Theorem

Modifying one member of a Fourier transform pair will necessarily result in changes
to the remaining function. The shift theorem demonstrates that moving a func-
tion with respect to its coordinate system is equivalent to phase modulating its
transform pair function. For example, when a temporal function f; is delayed by

some time 7,

ity — ity = fft -7}
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the related spectral function is phase modulated:
fule}y = FlaA

1 i »
= E / ft{t — T}e_lwtdt
1 o0 :
— e—zwtﬁ / ft{t o T}e—zwt—rdt
1 o0 :
= e"“’t—_27T / fi{t — T}e_’w(t_r)d(t —7)

—iwti - e—iwt
= ¢ | \/ﬂ/_oo fi{t} dt
= G_Wtfw{w}

By a similar argument, shifting a function of frequency results in modulation

of the transform pair temporal function:

fitty = FHflw -9}
= emtft{t}

A.3 Sampling Theorem

In many practical control, analysis or measurement applications, the signal of
interest is sampled periodically, resulting in a discrete set of data points. Fourier
transformations may be applied to a discrete data set to generate a transform pair
function, which is also discrete. Matching transform pairs have the same number
of sample points.

The discrete sample and transformed function are an approximation to the con-
tinuous signal and its continuous transform. The accuracy of the approximation
is determined by the number of samples taken. Specifically, the sampling rate of
either function is inversely proportional to the domain over which its counterpart
function is defined. For example, the rate at which a time signal is sampled de-
termines the domain over which its frequency representation extends. Similarly,
the total duration over which the time signal is sampled determines the resolution
(spacing) of the frequency function samples.

The Whittaker-Shannon sampling theorem states that a continuous function
which is non-zero over a finite span may be exactly reproduced over that span by
any discrete counterpart function having a sampling rate equaling or exceeding

the inverse width of the span. Increases in sampling rate beyond the limiting case
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simply extend the reproduced function to include zero-value points on either side

of the non-zero range.
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B SPIDER Software Description

The following is an operational description of the LabView program used to im-
plement SPIDER. LabView programs are referred to as “virtual instruments” or
simply “VI”s. These may operate alone, or as subroutines for larger VIs. Larger
programs are typically divided into several subroutines. Each VI consists of a
graphical user interface called the “Front Panel” and a “Wiring Diagram” which

describes the data processing schematically.

B.1 Spectrometer Readout

The SpecGraph VIreads the LineSpec spectrometer detector through the GageScope
Oscilloscope. Three voltage signals are used. Channel A is the transduced CCD
charge, channel B is a synchronisation trigger which indicates the start of each
pixel and the Trigger is connected to the detector Sync to signal the start of each
readout sequence. The pixel values are read into a one-dimensional array of 2048
elements.

A set of spectral calibration data points are entered on the SpecGraph front
panel. These are used to interpolate wavelength values for each of the pixels. A
fit polynomial is used for interpolation.

Several options are available when using SpecGraph:

A dark-current background may be subtracted from the pixel values. This is
read from a file and then stored in memory.

Successive readouts may be averaged together to allow statistical noise reduc-
tion. This is particularly useful when recording weak calibration spectra.

The VI may be set to update its output spectrum only when the maximum
pixel intensity exceeds a threshold value. This is useful when working with an
asynchronous chopper.

Data may be saved to a tab-delimited ASCII text file. Data may also be

repeated for the purposes of recording to file.

B.2 Calibration

When shift and shear values are calculated using pulse mean spectral amplitudes,
the pulse spectra are recorded and saved to file with the SpecGraph VI. The
ReadSpec VI then reads these files into memory and converts the spectrum abscissa
to frequency.

Front panel graph cursors are used to set a spectral region of interest. The
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intensity weighted average frequency is calculated within the region of interest.
The calculated centres are used to determine shift and shear values manually.
These are entered into the CalValue VI, which stores global variables.

The ReadSpec VI may also be used for wavelength calibration of the spectrom-
eter. The spectrum abscissa may be expressed in pixel number and the weighted
pixel centres of the spectral lines determined. Wavelength values may be added
to the data set which is then exported to the SpecGraph VI.

When shift and shear values are calculated from the grating geometry, grating
parameters are entered into the GratDisp VI, which determines the grating dis-
persion. The time separation is determined using the FTSI VI and entered into
the CalValue VI.

The background phase is measured using the FTSI VI. This analyzes the second
harmonic crystal output and determines the phase of the fringe spectrum. The
derivative background phase is recorded to file. The CalValue VI must then be set
to specify the location of the file. It may also specify a phase correction file which
is applied to the final spectral phase. This feature was implemented but not used

or tested extensively.

B.3 Determining Spectral Phase

The SpecPhse VI determines spectral phase. Calibration values are read from
the CalValue and GratDisp VIs. The background spectral phase and the spectral
intensity are read from the file specified in the CalValue VI.

Graph cursors are set to determine the region over which the spectral phase will
be reconstructed. The fringe pattern amplitude is shifted down by the calibration
shift frequency and displayed as an aid.

The fringe phase is determined using the built in LabView Fourier Transform
VIs and a custom signal filtering VI called FreqFilt. Concatenation is performed.
The SpecPhse front panel may be used to determine the number of phase data
sets reconstructed and to fit a polynomial to the phase. The spectral phase or the
polynomial fit to the spectral phase may be saved to file.

B.4 Temporal Reconstruction

When a time domain reconstruction is desired, the SpecPhse VI is called from a
higher level VI called simply SPIDER. A switch on the SPIDER front panel allows
the time domain calculation to be toggled on or off, as it effects execution speed.

When calculating the time domain pulse, this VI passes the spectral phase to a
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the Freq2Tim VI, which determines the pulse amplitude from a power spectrum
file and performs an inverse Fourier transform using the given spectral phase.
Front panel values may be set to cause Freq2Tim to assume zero spectral phase,
in which case it calculates the transform limited time domain pulse for the given

power spectrum.
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C Optimization Code for the Enhanced Compressor

The following code was used to perform optimization for the analysis of the en-

hanced compressor. It was executed by the Maple symbolic math program.

Clear environment.

> restart;

Define the compressor parameter space. Note the prism parameter limits are

dependent.
> paramlimits:= { 5<=Ug, Ug<=20, \
> 2¢<=L, L<=25, Up<=15, \
> L >= -0.0769*%Up + 25.385, \
> L >= -0.1%Up + 12.6, \
> L >= 0.1*%Up + 10.5 }:

Add C2 = 0 to form the full set of constraints.
> constraints := {-4280*Up+4450%L-94100%Ug+7.47e5=0} union

paramlimits;
Set the objective function C3.

> objective := 1.18e6*Up -2.67eb*L +4.29e6*Ug + 2.97e6;
Optimize. Check the sign to ensure a minimum absolute value.

> optpoint := simplex[minimize] (objective, constraints union
{objective>=0});

> assign(optpoint);

> evalf(objective);
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