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Abstract

Networks of coupled oscillators arise in a variety of areas. Clustering is a type of
oscillatory network behavior where elements of a network segregate into groups. Elements
within a group oscillate synchronously, while elements in different groups oscillate with a
fixed phase difference. In this thesis, we study networks of N identical oscillators with
time delayed, global circulant coupling with two approaches.

We first use the theory of weakly coupled oscillators to reduce the system of delay
differential equations to a phase model where the time delay enters as a phase shift. We
use the phase model to determine model independent existence and stability results for
symmetric cluster solutions. We show that the presence of the time delay can lead to the
coexistence of multiple stable clustering solutions.

We then perform stability and bifurcation analysis to the original system of delay dif-
ferential equations with ZN symmetry. We first study the existence of Hopf bifurcations
induced by coupling time delay, and then use symmetric Hopf bifurcation theory to de-
termine how these bifurcations lead to different patterns of symmetric cluster oscillations.
We apply our results to two specific examples: a network of FitzHugh-Nagumo neurons
with diffusive coupling and a network of Morris-Lecar neurons with synaptic coupling. In
the case studies, we show how time delays in the coupling between neurons can give rise to
switching between different stable cluster solutions, coexistence of multiple stable cluster
solutions and solutions with multiple frequencies.
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Chapter 1

Introduction

In this thesis we investigate the clustering behavior of networks of identical oscillators
with time delayed, circulant coupling. Networks of coupled oscillators arise in a variety
of areas, for example neural networks [59, 69], laser arrays [118, 119], flashing of fireflies
[83], and movement of a slime mold [112]. A fundamental question about these systems
is whether the elements will phase-lock, i.e., oscillate with some fixed phase difference,
and how the physical parameters affect the answer to this question. Clustering is a type
of phase locking behavior where the oscillators in a network separate into groups. Each
group consists of fully synchronized oscillators, and different groups are phase-locked with
nonzero phase difference. Symmetric clustering refers to the situation when all the groups
are the same size while non-symmetric clustering means the groups have different sizes.
The main subject of this thesis is to show that clustering behavior is a common feature
shared by a wide class of delayed, circulant coupled networks.

While clustering solutions are important in many applications. Experimental evidence
shows neural systems use cluster states to process environmental information and perform
neurocomputation [92]. That is, a group of neurons transiently act together to achieve
a particular purpose, which is called neural assembly. It has been proposed that neural
assemblies are formed not just due to external inputs of the system, but also due to the
intrinsic dynamics of the network. Mathematically, the intrinsic dynamics of the network
should support solutions with multiple different grouping of neurons, with different neurons
able to participate in multiple groupings. Further, switching between different groupings
should be able to be achieved by changing the inputs to the network. Thus, the study
of clustering behavior is a good candidate for this intrinsic dynamics in the formation of
neural assembly [48].

The behaviour of coupled systems cannot be determined by simply understanding in-
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dividual elements. The interaction between these elements may give rise to rich dynamical
systems. Examples include, in neuron systems the dynamics of a single neuron (its struc-
ture, the evolution of the membrane potential and the ion transport) is well understood, and
can be represented by a mathematical system of ordinary differential equations (ODEs).
For instance, the Hodgkin-Huxley, Morris-Lecar, FitzHugh-Nagumo models [63, 84, 43, 85].
Moreover, the coupling of neurons can also be incorporated into the mathematical system
directly, or by adding ODEs to describe the chemical/electrical processes. However, the
interactions and collections of coupled neurons can present complex dynamics such as clus-
tering, quasi-periodic solutions, chaos or even coexistence of the above solutions [91, 92, 93].
All such studies suggest that the system of globally coupled oscillators can exhibit unex-
pected rich behavior in spite of its simple form.

In these modelings, signal transmission is often considered to be instantaneous. In
this thesis, we consider the signal transmission between different elements is not instanta-
neous, and include the propagation time, as a time delay. This results in delay differential
equations (DDEs). Over the past decades, it has been shown that time delays are a fun-
damental reality for modeling of realistic biological and physical systems. Dynamically,
time delays can lead to instability and occurrence of cluster solutions, and they can also
stabilize unstable equilibrium points or cluster solutions, or even lead to multi-stability.

Phase models are one of the popular approaches used in the study of clustering in
networks of oscillators. By assuming weak coupling, we are able to exploit an powerful
analytic technique, phase model reduction. The phase models can be used to predict
clustering behaviors in networks with any form of coupling. The phase model method
allows one to reduce the dimension of differential equations for each element to a single
differential equation which describes its phase. The phase equations take the form of a
convolution of the input to the neuron via coupling and the neuron’s infinitesimal phase
response curves. The phase resetting curve measures the response to a small perturbation
and acts like an impulse response function for the oscillating elements [39]. In particular,
the effect of time delay can be neglected if the delay has the same magnitude as the period
of oscillation [65], which greatly simplifies the analysis. However, the phase model method
has its limits. To apply the phase model reduction, we need that the individual elements
are intrinsically oscillatory, and the coupling between each elements must be “weak” for
the prediction to be enough accurate.

With strong coupling if some of the elements in a network are not intrinsically oscilla-
tory, stability and bifurcation analysis is another useful approach. This approach enables
us to derive exact and explicit conditions of how the time delays affect the stability of
equilibrium points, existence, stability and patterns of bifurcating cluster solutions.

This thesis is organized into six chapters, which are listed and summarized as follows.

2



Chapter 1. Introduction

A general introduction of this thesis.

Chapter 2. Biological Preliminaries

In this chapter, we will introduce the typical structure of neurons and synapses, and
various ways of modeling single neurons, synapses, and networks of neurons. We will also
introduce the Morris-Lecar and FitzHugh-Nagumo models. We will apply the theoretical
analysis to those two models in chapters 4 and 5.

Chapter 3. Brief review of delay differential equations

In this chapter, we will introduce the mathematical prerequisites required in this thesis.
In particular, we introduce some important results about the Hopf bifurcation and phase
model reduction which will be required in later analysis.

Chapter 4. Phase models and clustering

In this chapter, we will apply the phase model analysis, and investigate the effect
of time delayed coupling on the clustering behavior of oscillator networks with circulant
coupling. Existence and stability of symmetric cluster solutions are determined. Moreover,
a particular application, a network of Morris-Lecar oscillators, is considered theoretically
and numerically.

Chapter 5. Symmetry, Hopf bifurcation and clustering

In chapter 5, we will investigate the Hopf bifurcations induced by the time delay in
networks with time delay and circulant coupling. Analytically, we derive the conditions
of Hopf bifurcation and patterns of bifurcating cluster solutions, and stability of bifurcat-
ing cluster solutions for specific models (networks of Morris-Lecar and FitzHugh-Nagumo
oscillators).

Chapter 6. Conclusion and future directions

This chapter summarizes the results presented above, and outline some possible direc-
tions for future research.
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Chapter 2

Biological Preliminaries

In this chapter, we present the biological background which is necessary in understand-
ing the problems that we study. In section 2.1, we introduce neurons and their general
functions. In section 2.2, we introduce a number of popular approaches that are used
in modeling neurons. Further, we discuss the modeling of synapses that couple neurons
together in section 2.3. From there, we develop the modeling for networks of neurons.
As the neurons couple together, it is inevitable that time delays arise in the connection.
Therefore, we introduce how to incorporate time delays in networks of neurons in section
2.4.

2.1 Neurons and synapses

The central nervous system of a human consists of two parts: the brain and the spinal
cord, The brain itself consists of neurons and glial cells. Neurons are the basic signaling
units of the nervous system, and glial cells are supportive units that maintain the health
and function of neurons. Neurons are coupled together at junctions called synapses or gap
junctions which are highly specialized for generating and transmitting action potentials
in response to chemical and other inputs. Although neurons come in incredible variety of
sizes and shapes, they share a typical structure (see Figure 2.1). The structure of a neuron
can be divided into three parts: the dendrites, the soma and the axon. The dendrites
branching out in a tree receive signals from other neurons, while the axon typically leaves
the soma and branches out in order to connect to other neurons.

The action potential represents the change in the neuron’s membrane potential, and is
initialized at the soma, propagates along the axon to axon terminal boutons, then synaps-
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Figure 2.1: Typical structure of a neuron and a synapse. Figure is taken from [98].

es onto the dendritic arbors of other neurons. Synapses may be chemical or electrical. A
chemical synapse consists of presynaptic and postsynaptic parts which are separated by
a synaptic cleft (see Figure 2.2). When an action potential reaches the axon terminal,
it triggers a chain of chemical reactions which lead to a release of a chemical substance,
neurotransmitter, into the synaptic cleft. The neurotransmitter then diffuses across the
synaptic cleft, combines with receptors of the postsynaptic neurons, and causes a change of
membrane potential of the postsynaptic neuron An electrical synapse is more straightfor-
ward. The presynaptic and postsynaptic neurons are connected physically through special
proteins, called gap junctions. The gap junction is a channel which allows ions to pass
through it if it is open.

2.2 Modeling neurons

Conductance based models have a long and important history in the study of neuroscience,
and are the most common formulation in neural modeling. They describe the initialization
and propagation of action potentials on neurons based on an equivalent circuit represen-
tation of a cell membrane.

Consider each component of a cell as an electrical component. For example, the lipid
bilayer are represented as a capacitance (Cm). Voltage-gated ion channels are represented
by electrical conductances with conductance ḡn, where n represents the specific ions (like

5



Figure 2.2: Typical structure of a chemical synapse. Figure is taken from [108].

Na+, K+, Ca2+, or Cl−). Denote Vm as the membrane potential. Therefore, the total
membrane current Im(t) is the sum of the capacitive current and the ionic current

Im(t) = IC(t) + Iionic(t).

Here IC is the current flowing through the lipid bilayer and can be described as

IC(t) = Cm
dVm
dt

and the current through an ion channel is

Iionic(t) = ḡn(Vm − Vn),

where Vn is the reversal potential of the “n” ion channel.

Based on the study of the squid giant axon where Hodkgin and Huxley carried out a
series of experiments and assuming there are voltage-gated K+ and Na+ channels and a

6



leak current, they [63] proposed a model consisting of four differential equations:

Cm
dVm
dt

= Iapp − INa − IK − IL

= Iapp − ḡNam3h(Vm − VNa)− ḡkn4h(Vm − Vk)− ḡL(Vm − VL)

dm

dt
= φ[αm(Vm)(1−m)− βm(Vm)m]

dh

dt
= φ[αh(Vm)(1− h)− βh(Vm)h]

dn

dt
= φ[αn(Vm)(1− n)− βn(Vm)n]

(2.1)

where m,n, h represent the activation and inactivation variable of the corresponding ion
channels, and α(Vm), β(Vm) are voltage-dependent rate constants for different ions. φ is
referred to as a temperature factor.

The Morris-Lecar model is a two dimensional “reduced” model developed by Morris and
Lecar [84] in the study of the muscle fiber of the giant barnacle. There are two voltage-
gated currents, Na+ and Ca2+. Assuming the calcium current depends instantaneously on
the voltage, the Morris-Lecar equation have the form

Cm
dVm
dt

= Iapp − ḡKM(Vm − Vk)− ḡCaC∞(Vm)(Vm − VCa)− ḡL(Vm − VL),

dM

dt
= φ(M∞(Vm)−M)λ(Vm).

(2.2)

where

C∞(V ) =
1

2
(1 + tanh

V − ν1

ν2

),

λ∞(V ) = cosh−1(
V − ν3

2ν4

),

M∞(V ) =
1

2
(1 + tanh(

V − ν3

ν4

)).

Here ν1, ν2, ν3 and ν4 are parameters chosen to fit voltage clamp data.

The Morris-Lecar equation generates action potentials, there is a threshold for firing and
there are several mechanisms for the generation of oscillatory behavior. Considering the
nullclines of (2.2) (see Figure 2.3 for examples), the Vm-nullcline has a cubic shape, while
the m nullcline is a monotonically increasing function. Fitzhugh and Nagumo [43, 85]
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Figure 2.3: Nullclines for the Morris-Lecar model for (a) Iapp = 60, (b) Iapp = 120. The
other parameters are as in [41, Table 3.1].

captured the essence of the cubic properties of the Vm nullclines and many other more
complicated behaviors of (2.1) and (2.2), proposed the model:

µ
dx

dt
= x− x3 − y + Iapp,

dy

dt
= x− a− by.

Here µ is a time scale parameter corresponding to fast activation variable V and slow
variable m when choosing µ to be small.

Beside the ones above, other conductance based models include the Connor-Stevens
model [25], the Wang-Buzsaki model [114] and Hindmarsh-Rose model [62]. A great ad-
vantage of the conductance based model is that one can incorporate many ion channels.
Furthermore, all the parameters inside can be fitted experimentally to a specific neuron.
These enable us to model a neuron accurately. However, the conductance based models
also have some draw backs. As the number of ion channels increases, the model becomes
difficult to analyze, therefore, to understand the dynamics.
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2.3 Modeling synapses and networks of neurons

To extend the modeling from a single neuron to networks, we need to understand and
model the synaptic current, Isyn. Therefore, any kind of synapse between neurons could
then be modeled as adding Isyn in the voltage equation of the post-synaptic neurons. We
introduce the modeling of synapses for chemical synapses and gap junction, respectively.
Finally, we state the full network equations.

2.3.1 Modeling of chemical synapses

A chemical synapse involves a sequence of chemical reactions in both the presynaptic and
postsynaptic neurons. See Figure 2.2. The simplest (and quite commonly used) model
considers the synapse as another ion channel on the membrane of the postsynaptic neuron
with a gating variable that depends on the voltage of the presynaptic neuron. Thus, the
synaptic current could be expressed as

Isyn = gsyns(t)(Vm − Vsyn), (2.3)

where gsyn represents the maximum conductance of the synapse, s(t) is the time-dependent
proportion of open channels, and Vsyn is the reversal potential for the synapse. Therefore,
s(t) is between [0, 1], and is zero if the presynaptic neuron is not firing.

Consider a network of N neurons, the total synaptic current the ith postsynaptic neuron
receives can be written as

Isyn,i =
N∑
j=1

gsyn,ijsij(t)(Vm,j − Vsyn,ij) (2.4)

where gsyn,ij is the maximum synaptic conductance of the synapse connecting neuron i and
neuron j. For more details of the modeling of sij(t), see [41].

2.3.2 Modeling of gap junctions

Considering the gap junction as a resistor connecting the presynaptic and post-synaptic
neurons, the gap junction current can be modeled by

Igap = ggap(Vpost − Vpre), (2.5)
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where ggap is the conductance, and Vpost−Vpre is the voltage difference of the postsynaptic
and presynaptic neurons.

Therefore, in a network of N neurons, the total synaptic current the ith neuron receives
can be written as

Igap,i =
N∑
j=1

ggap,ij(Vm,j − Vm,i) (2.6)

where gsyn,ij is the maximum synaptic conductance of the synapse connecting neuron i and
neuron j. For more details of the modeling of sij(t), see [41].

We now can state the general form of a network of neurons

Cm,i
dVm,i
dt

= Iapp,i − Iionic − Isyn,i( or Igap,i). (2.7)

2.4 Time delay in networks of neurons

Time delay is an inevitable and important factor in the modeling of biophysical models. In
particular, it plays an important role in improving our understanding of neural networks.
Considering the dynamical behavior, time delay may lead to oscillation, or destroy an
oscillation, or change stability of an existing oscillation. Campbell [16] gave a detailed
discussion of how to incorporate the time delay into models by delay differential equations.
We briefly summarize the results here.

We first formulate the general model for a network of N neurons:

x′i(t) = fi(xi(t)) +
N∑
j=1

fij(xi(t), xj(t)), i = 1, . . . , N. (2.8)

where xi represents all the variables that describes the state of the ith neuron in the network,
and fij is the coupling function which describes the dynamics between the ith neuron
and jth neuron. In model (2.8), the transmission of signals between different neurons is
simultaneous. That is, when an action potential is generated in neuron j, it is immediately
felt by all other neurons that connect to it. However, in reality, the action potential
must travel along the presynaptic neuron, and cross the synapse/gap junction to reach the
postsynaptic neuron, which are the two main sources of time delays in the neural network.

First, the axonal conduction delay is the time required for an action potential to travel
from its initiation site near the neuronal soma to the axon terminals [111]. To incorporate
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this aspect into the model, a simple way is to include a time delay in the coupling term.
Thus, the coupling function becomes

fij(xi(t), xj(t− τj)), (2.9)

where τj > 0 represents the time taken for the action potential to propagate along the
axon of the jth neuron.

Processing delay is the time delay due to the transmission of signals through the
synapse, that is, the time difference between the action potential of neuron j reaches
the synapse and an action potential is felt by neuron i. There are two ways of modeling
the processing delay. One way is to add an equation into the model equation to describe
the dynamical properties of the synapse as discussed in the previous section; another way
is to simply add another delay into (2.10), which can be achieved by adding another delay
term τij in (2.10)). That is, the coupling function becomes

fij(xi(t), xj(t− (τj + τij))), (2.10)

In above, we assume that the delays, τj, τij, are fixed constants. However, in reality,
they may vary slightly every time an action potential is propagated from neuron j to
neuron i even for identical neurons. Therefore, we may consider time dependent delays,
τj(t), τij(t) with 0 ≤ τj(t), τij(t) ≤ τij for some constant τij > 0.
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Chapter 3

Brief review of delay differential
equations

In this chapter, we introduce some important mathematical prerequisites needed to under-
stand the rest of the thesis. In sections 3.1 we define delay differential equations (DDEs)
and the corresponding initial value problem, then state existence and uniqueness theo-
rems. We then focus on DDEs with discrete delays, present the local and global stability
results for equilibrium points in section 3.2, and introduce concepts of stability for periodic
solutions in section 3.3. A general Hopf bifurcation theorem is provided in section 3.4.
Furthermore, Hopf bifurcation for networks with symmetry is introduced in section 3.5.
Finally, we present the weakly connected theory for phase model reduction.

3.1 Definition, initial value problem, existence and u-

niqueness theorem

A delay differential equation is a differential equation which has the past dependence
through the state variables and not the derivative of the state variables.

In order to state the formal definition of a DDE, we first introduce some terminology.
Let C = C([−τ, 0],RN) denote the Banach space of continuous functions mapping the
interval [−τ, 0] into RN with supremum norm, i.e., for φ ∈ C, ||φ|| = max−τ≤s≤0 |φ(s)|
with | · | the Euclidean norm in RN . Suppose x(t) ∈ C([−τ, A],RN). Then for any
t ∈ [0, A], define xt(θ) = x(t+ θ), θ ∈ [−τ, 0]. It is easy to see that since x(t) is continuous
from [−τ, A], then xt is a continuous function of t for t ∈ [0, A] [57]. For D ⊂ RN , let
CD = C([−τ, 0], D) denote the set of continuous functions mapping [−τ, 0] into D.
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A general type of DDE is in the following form

x′(t) = f(t, xt). (3.1)

In particular, a general equation with n discrete delays can be written as

x′(t) = f(t, x(t), x(t− τ1), x(t− τ2), · · · , x(t− τn)).

In this case, the above τ = max{τ1, τ2, · · · , τn}.
For a given t0 ∈ J ⊂ R and φ0 ∈ CD, the initial value problem associated with (3.1) is

x′(t) = f(t, xt), t > t0,

xt0 = φ0.
(3.2)

Definition 1. A function x(t) is said to be a solution of (3.2) on [t0 − τ, β] if there are
t0, β ∈ R such that x ∈ C([t0−τ, β], D), [t0−τ, β] ⊂ J and x(t) satisfies (3.2) on [t0−τ, β].

Theorem 1. [58, Lemma 1.1, section 2.1] Finding a solution of the IVP (3.2) is equivalent
to solving the integral equation

x(t) = φ0(0) +

∫ t

t0

f(s, xs)ds, t0 ≤ t ≤ β,

xt0 = φ0.

(3.3)

Definition 2. Let f : J ×CD → RN and let S ⊂ J ×CD. Then f is Lipschitz on S if there
exists a constant L ≥ 0 such that

|f(t, φ)− f(t, ψ)| ≤ L||φ− ψ|| (3.4)

whenever (t, φ), (t, ψ) ∈ S. f is called locally Lipschitz if for each given (t̄, ψ̄) there exists
numbers a > 0, b > 0 such that E = ([t̄− a, t̄+ a]∩ J)×{ψ ∈ CD, ||ψ− ψ̄|| < b} is a subset
of J × CD, and f is Lipschitz in E.

Theorem 2 (Local Existence). [58, Theorem 2.1, section 2.2] Assume J × CD is an open
set in R × C, and f : J × CD → RN is continuous on its domain. If (t0, φ0) ∈ J × CD,
then there exists a solution of the initial value problem (3.2) passing through (t0, φ0) on
[t0 − τ, t0 + δ) for some δ > 0.

Theorem 3 (Uniqueness). [58, Theorem 2.2, section 2.2] Suppose J × CD is an open set
in R×C, and f : J×CD → RN is continuous and Lipschitz on each compact set of J×CD.
If (t0, φ0) ∈ J × CD, then there exists a unique solution of the initial value problem (3.2)
passing through (t0, φ0).
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Definition 3 (Non-continuable solutions). [58, section 2.3] Define x(t) ∈ (t0 − τ, β1)
and y(t) ∈ (t0 − τ, β2) be two solutions for (3.2). If β2 > β1, and x(t) = y(t) for t ∈
[t0 − τ, β1), we say that y is a continuation of x(t). A solution is non-continuable if it has
no continuation.

Theorem 4 (Global Existence). [58, Theorem 3.3, section 2.3] Let f : (t0, α) × C → RN

be continuous and locally Lipschitz. If |f(t, φ)| ≤ M(t) + N(t)||φ|| on [t0, α) × C. Here
M and N are continuous, positive functions on [t0, α). Then the unique non-continuable
solution of (3.2) exists on the entire interval [t0, α).

3.2 Equilibrium, linearization, characteristic equation

An equilibrium point of (3.1) is a constant solution x(t) = x∗ for all t ∈ R that satisfies

f(t, x∗) = 0, for all t ∈ R.

Since all the systems that we consider in this thesis are autonomous, that is,

x′(t) = f(xt). (3.5)

we give the stability results for autonomous systems only. Therefore, without loss of
generality we drop the dependence on t0, and denote the solution of (3.5) passing through
(t0, φ0) by x(t;φ0).

Definition 4. Assume x∗ is an equilibrium point of (3.5).

1. x∗ is said to be stable if for any ε > 0, there is a δ = δ(ε) such that ||φ0 − x∗|| < δ
implies |x(t;φ0)− x∗| < ε for all t ≥ t0. Otherwise, it is called unstable.

2. x∗ is said to be asymptotically stable if it is stable and there is a b = b(δ) > 0 such
that ||φ0 − x∗|| < b implies limt→∞ |x(t;φ0)− x∗| = 0.

3. x∗ is called globally asymptotically stable if all solutions x(t;φ0) tend to x∗ as t→∞.

The general form of a linear autonomous DDE is

x′(t) = L(xt). (3.6)
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where L : C → RN is continuous and linear. According to the Riesz Representation
Theorem, (3.6) can be represented as

x′(t) =

∫ 0

−∞
[dη(θ)]x(t+ θ), (3.7)

where η is an N ×N matrix of functions of bounded variation on (−∞, 0] and the integral
is a Riemann-Stiltjes integral.

Definition 5. [109, Definition 1.4] The function given by

∆(λ) = Det(λI −
∫ 0

−∞
eλθdη(θ)). (3.8)

is the characteristic function corresponding to the linear autonomous system (3.6), where
I is the N ×N identity matrix.

For example, consider the discrete DDE

x′(t) = Ax(t) +Bx(t− τ), (3.9)

where A and B are N ×N matrices. The characteristic equation of (3.9) is

∆(λ) = Det(λI − A−Be−λτ ) = 0

The behavior of solutions of (3.5) in a neighborhood of equilibrium point x∗ can be
determined by the stability of zero equilibrium of the corresponding linearized system. See
Theorem 5 below.

The behavior of solutions of (3.6) can be more complicated than for linear ordinary
differential equations (ODEs) even when n = 1. This is because (3.6) may have infinite-
ly many linearly independent solution eλt with λ being an eigenvalue, i.e., a root of the
characteristic equation (3.8). In particular, the infinite-dimensional problem (3.6) leads
to a transcendental equation (3.8) rather than a polynomial as occurs for the ODE case.
Therefore, (3.8) may have multiple roots on the imaginary axis which will lead to compli-
cated critical cases. On the other hand, note that the number of zeros of the characteristic
equation on the imaginary axis must be finite.

In the rest of this chapter, we let (3.6) denote the linearization equation of (3.5) at
equilibrium x∗.
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Theorem 5. [72, Theorem 4.1, section 2.4] In equation (3.8), if sup{Re(λ) : ∆(λ) =
0} < 0, then x∗ is asymptotically stable. If Re(λ) > 0 for some λ satisfying (3.8), then x∗

is unstable. Moreover, if ∆(λ) has a non-simple root with zero real part, then x∗ is also
unstable.

The above theorem shows us how to determine the local stability of an equilibrium
point. We next introduce a result which uses the method of Liapunov functional to deter-
mine global stability of an equilibrium point of autonomous system (3.5). For simplicity,
we further assume that the equilibrium point is x∗ = 0.

Suppose f in (3.5) is completely continuous and solutions of (3.5) depend continuously
on the initial condition. Let V : C → R be continuous, and define the derivative of V along
the solutions of (3.5) as

V̇ = V̇ (φ) = lim sup
h→0+

1

h
(V (xh(φ))− V (φ)).

Definition 6. [57, Definition 3.1, section 5.3] We say V : C → R is a Liapunov functional
on a set G in C relative to equation (3.5) if V is continuous on CLG, the closure of G and
V̇ ≤ 0 on G. Let

S = {φ ∈ CLG : V̇ (φ) = 0},
M = Largest set in S which is invariant with respect to (3.5).

(3.10)

Theorem 6. [57, Theorem 3.1, section 5.3] If V is locally Lipschitz, and is a Liapunov
functional on G and x(t;φ0) is a bounded solution of (3.5) which remain in G, then
x(t;φ0)→M as t→∞.

Theorem 7 (Global asymptotic stability for autonomous systems). [57, Corollary 3.1,
section 5.3] Suppose f is completely continuous, and x∗ is an equilibrium point of (3.5).
Suppose there exist nonnegative functions w(s), u(s) such that w(s), u(s) > 0 for s 6= 0 and
w(0) = u(0) = 0. If there exists a continuous and locally Lipschitz functional V : C → R,
such that

1. u(|φ(0)|) ≤ V (φ), for any φ ∈ C,

2. V̇ (φ) ≤ −w(|φ(0)|), for any φ ∈ C

3. u(s)→∞ as s→∞.

Then every solution of (3.5) approaches x∗ = 0 as t→∞, that is, the equilibrium solution
x∗ = 0 of (3.5) is globally asymptotically stable.
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3.3 Orbital stability of periodic solutions

In this section, we introduce the concept of orbital stability for periodic solutions. We
begin by defining a distance function d1 : RN × 2RN → R between a set A1 ⊂ RN and a
point x ∈ RN with respect to the Euclidean metric,

d1(x,A1) = inf
y∈A1

|x− y|. (3.11)

We call this the point-to-set distance. Similarly, we define a distance function d2 between
a set A2 ⊂ C and ψ0 ∈ C as the point-to-set distance with respect to the supremum norm,
that is

d2(ψ0, A2) = inf
y∈A2

||ψ0 − y||. (3.12)

A solution X(t) of the DDE (3.5) is called a periodic solution if it is not an equilibrium
point and there exists a T > 0 such that X(t+ T ) = X(t) for all t. Let Xt(θ) = X(t+ θ),
θ ∈ [−τ, 0]. Denote the orbit, {X(t) : t ∈ [0, T ]}, associated with a periodic solution X(t)
as X̂, and {Xt(θ) : t ∈ [0, T ]} as X̂t.

Definition 7. (Orbital stability)[42, Definition 5.1.1] Let X(t) be a periodic solution of
(3.5) with orbit X̂. The periodic orbit X̂ is orbitally stable, if for every ε > 0, there exists
a δ(ε) > 0 such that d2(ψ0, X̂t) < δ implies d1(x(t;ψ0), X̂) ≤ ε, ∀t ≥ 0.

Definition 8. (Asymptotic orbital stability)[42, Definition 5.1.2] Let X(t) be a periodic so-
lution of (3.5) with orbit X̂. The periodic orbit X̂ is asymptotically orbitally stable if it is or-
bitally stable and there is a δ > 0 such that d2(ψ0, X̂t) ≤ δ implies limt→∞ d1(x(t;ψ0), X̂) =
0.

Definition 9. (Exponential asymptotic orbital stability) Let X(t) be a periodic solution of
(3.5) with orbit X̂. The periodic orbit X̂ is exponentially asymptotically orbitally stable if
there exist constants c1, c2, δ ≥ 0 such that d2(ψ0, X̂t) ≤ δ implies that d1(x(t;ψ0), X̂) <
d2(ψ0, X̂t)c1e

−c2t.

3.4 Hopf bifurcation for DDEs

In this section, we present the well-known method of establishing non-constant periodic so-
lutions of autonomous DDEs - the so-called Hopf bifurcation. We consider a one parameter
family of DDEs in the form

x′(t) = f(xt, α), (3.13)
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where f(φ, α) has continuous first and secondary derivatives in φ, α for φ ∈ C and α ∈ R.
For simplicity, we assume x∗ = 0 is an equilibrium point of (3.13), that is, f(0, α) = 0.

Define L : C × R → RN where L(α) is the linear operator at x∗ = 0 of (3.13). Define
R(φ, α) = f(φ, α)− L(α)φ.

Theorem 8 (Hopf bifurcation theorem). [72, Theorem 9.1, section 2.9]

Assume f(φ, α) has continuous first derivatives with respect to φ and α, f(0, α) = 0
for all α, and

(H1) The linear system x′(t) = L(α0)xt has a simple pair of purely imaginary eigenvalues
λ±0 = ±iω0 6= 0 and all other eigenvalues λj satisfies λj 6= mλ±0 for any integer m.

(H2) Re
(
dλ
dα
|α=α0

)
6= 0.

Then there exists an ε > 0 such that for a ∈ R, |a| ≤ ε, there are functions α(a) ∈ R,
ω(a) ∈ R and an ω(a)-periodic function x∗(a) with all functions being continuously differ-
entiable with α(0) = α0, ω(0) = ω0 and (3.13) has a 2π/ω(a)-periodic solution x∗(a)(t).
Furthermore, for α−α0 < ε, 2π/ω(a)−2π/ω0 < ε, every 2π/ω(a)-periodic solution x(t) of
(3.13) with x(t) < ε must be of this type except for a translation in phase. That is, there
exists a ∈ (−ε, ε) and b ∈ R such that x(t) = x∗(a)(t+ b) for all t ∈ R.

We refer to the conclusions stated in this theorem as the Hopf bifurcation theorem. We
next present a normal form analysis of the standard Hopf bifurcation. Normal form theory
is a powerful tool in the study of nonlinear dynamical systems. In particular in the stability
and bifurcation analysis. The basic idea of normal form theory is using successive near-
identity nonlinear transformations that lead to a differential equation in a simpler form
which is quantitatively equivalent to the original system in the vicinity of an equilibrium
point. Please refer to [72, 56] for details of the development of the normal form for Hopf
bifurcation of DDEs. Here, we state the result with respect to the normal form of Hopf
bifurcation in polar coordinates directly:

r′ = α(a)r + β1(a)r3 +O(r5),

θ′ = ω(a) + β2(a)r2 +O(r4).
(3.14)

where α(0) = α0 and ω(0) = ω0. Since we are interested in the dynamics near a = 0, it
is natural to Taylor expand the right hand side of (3.14) at a = 0. Neglecting the higher
order parts, we have

r′ = d1ar + d2r
3,

θ′ = ω0 + d3a+ d4r
2.

(3.15)

where α′(0) = d1, β1(0) = d2, ω′(0) = d3, β2(0) = d4.
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Theorem 9. [117, section 20.2] Depending on the signs of d1, d2, system (3.15) has the
following behaviors.

1. d1 > 0, d2 > 0. The equilibrium point is unstable when a > 0 and asymptotically
stable for a < 0 with an unstable periodic orbit for a < 0.

2. d1 > 0, d2 < 0. The equilibrium point is asymptotically stable when a < 0 and
unstable when a > 0 with an asymptotically stable periodic orbit for a > 0.

3. d1 < 0, d2 > 0. The equilibrium point is unstable when a < 0 and asymptotically
stable for a > 0 with an unstable periodic orbit for a < 0.

4. d1 < 0, d2 < 0. The equilibrium point is asymptotically stable when a < 0 and
unstable for a > 0 with an asymptotically stable periodic orbit for a < 0.

3.5 Hopf bifurcation for symmetric DDEs

In this section, we briefly introduce results determining patterns of Hopf bifurcating peri-
odic solutions for DDEs with symmetry. We first write the DDE in the following form

x′(t) = f(xt, α) = L(α)xt +R(xt, α); (3.16)

where R(0, α) = 0 and ∂
∂φ
R(0, α) = 0 for α ∈ R and φ ∈ C.

It is well-known that [58] for each fixed α, the linear system (3.6) generates a strongly
continuous semigroup of linear operators with the infinitesimal generator A(α) given by

A(α)φ = φ̇, φ ∈ Dom(A(α)),

Dom(A(α)) = {φ ∈ C : φ̇ ∈ C, φ̇(0) = L(α)φ}.

Moreover, the spectrum of A(α) consists of eigenvalues which are solutions of the following
characteristic equation

Det∆(λ, α) = 0 (3.17)

with ∆(λ, α) the characteristic matrix which can also be rewritten as

∆(λ, α) = λI − L(α)(eλI) (3.18)

Assume that
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(A1) The characteristic matrix is continuously differentiable in α ∈ R and there exist
α0 ∈ R and ω0 > 0 such that

(i) A(α0) has eigenvalues ±iω±0 ;

(ii) The generalized eigenspace, denoted by Uiω0(A(α0)), of these eigenvalues ±iω±0 ,
consists of eigenvectors of A(α0);

(iii) All other eigenvalues of A(α0) are not integer multiple of ±iω±0 .

(A2) There exists a compact Lie group Γ acting on RN such that f is Γ-equivariant, i.e.
f(γφ, α) = γf(φ, α) for (α, γ, φ) ∈ R×Γ×C. Here γφ ∈ C is given by (γφ)(s) = γφ(s)
for s ∈ [−τ, 0].

(A3) There exists an m-dimensional absolutely irreducible representation V of Γ such that
Ker∆(iω0, α0) is isomorphic to V ⊕ V . Here a representation V of Γ is absolutely
irreducible if the only linear mapping that commutes with the action of Γ is a scalar
multiple of the identity.

(A4) Re
(
dλ
dα
|α=α0

)
6= 0.

Denote T = 2π
ω0

. Denote PT the Banach space of all continuous T -periodic mappings

x : R→ RN . Then Γ× S1 acts on P T by

(γ, θ)x(t) = γx(t+ θ), (γ, θ) ∈ Γ× S1, x ∈ PT .

Denote by SPT the subspace of PT consisting of all T periodic solutions of (3.16) when
α = α0. Then for each subgroup Σ ⊂ Γ× S1, the fixed point set

Fix(Σ, SPT ) = {x ∈ SPT : (γ, θ)x = x, for all (γ, θ) ∈ Σ.}

is a subspace.

Theorem 10. [120, Theorem 2.1] Assume that (A1)-(A4) are satisfied and dim Fix(Σ, SPT ) =
2 for some Σ ⊂ Γ×S1. Then for a chosen basis ε1, ε2 of Fix(Σ, SPT ) there exist constants
a0 > 0, a∗0 > 0, σ0 > 0, functions α : R2 → R, T ∗ : R2 → R and a continuous function
x∗ : R2 → RN , with all functions being continuously differentiable in a ∈ R2 with |a| ≤ a0,
such that x∗(a)(t) is a T ∗(a)-periodic solution of (3.16) with α = α(a), and

γx∗(a)(t) = x∗(a)(t− T
∗(a)

T
θ), (γ, θ) ∈ Σ,

x∗(0) = 0, T ∗(0) = T , α(0) = α0.

Furthermore, for |α − α0| < α∗0, |T ∗ − T | < σ0, every T ∗-periodic solution of (3.16) with
||xt|| < σ0, γx(t) = x(t− T ∗

T θ) for (γ, θ) ∈ Σ, t ∈ R, must be of the above type.
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3.6 Phase model reduction

In this section, we consider weakly connected networks of oscillators, which usually can be
written as

X ′i = Fi(Xi) + εGi(X1, . . . , XN), i = 1, . . . , N. (3.19)

where Xi ∈ Rm, and ε is a small parameter. When ε = 0, we obtain N uncoupled systems

X ′i = Fi(Xi), i = 1, . . . N. (3.20)

Assume that each subsystem of (3.20) has an exponentially orbitally stable limit cycle
attractor σi with period Ti which is the minimum positive number such that σi(t) =
σi(t+ Ti) for all t ∈ R. Ωi = 2π/Ti is called the natural frequency of limit cycle σi.

Note that the limit cycle σi is a closed periodic solution, and any solution Xi(t) of the
ith subsystem of (3.20) with initial condition Xi(0) ∈ σi stays on σi forever. Moreover, we
can parameterize the limit cycle by a single variable, the phase, in the phase space. Let
Xi(t) be any solution of the ith subsystem of (3.20) with initial condition Xi(0) = Xi0 ∈ σi.
Since the limit cycle σi is a Ti-periodic solution, for any t0 ∈ [0, Ti), there exists a unique
point, p ∈ σi such that p = Xi(t0). Based on that, we then define a map: θi : [0, 2π)→ Rm

as that θi(0) = Xi0, and θi(t) = Xi(θi(t)/Ω) (see Figure 3.1). As θi travels between 0
and 2π, the points with coordinates Xi(θ/Ω) makes one full trip along the limit cycle σi.
By similar analysis for all the other subsystems of (3.20), we have that system (3.20) is
equivalent to the next N scalar equations along the limit cycles:

θ1(t) = θ0
1 + Ω1t, mod 2π

θ2(t) = θ0
2 + Ω2t, mod 2π

...

θN(t) = θ0
N + ΩN t, mod 2π

Notice that in the definition of map θi, the initial value Xi0 is arbitrary. Therefore, we can
choose appropriate Xi0 such that θ0

i = 0, i = 1, . . . , N .

By the assumption that the limit cycles are exponentially orbitally stable, a limit cycle
still exists for the full system (3.19) under small perturbation (ε is sufficiently small) [64],
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Figure 3.1: The parametrization of the limit cycle σ by the points in an interval [0, 2π)

but with phase deviation

θ1(t) = Ω1t+ ϑ1(t),

θ2(t) = Ω2t+ ϑ2(t),
...

θN(t) = ΩN t+ ϑN(t),

where ϑi(t) is the phase deviation of the ith subsystem from its natual phase due to the
influence from other connected oscillators. To write the system in the form of a differential
equation, we have

θ′1 = Ω1 + εg1(θ1, . . . , θN)

θ′2 = Ω2 + εg2(θ1, . . . , θN)
... (3.21)

θ′N = ΩN + εgN(θ1, . . . , θN)

Hoppensteadt and Izhikevich [64] summarized the above discussion into the next the-
orem and gave a detailed theoretical proof based on the invariant manifold reduction.

Theorem 11. ([64, Theorem 9.1, section 9.2])

Consider a family of weakly connected systems (3.19) such that each equation in the
uncoupled system (3.20) has an exponentially orbitally stable limit cycle attractor σi ⊂ Rm
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having natural frequency Ωi 6= 0. Then the dynamical system (3.21) defined on the N-torus
TN = S1×S1×· · ·×S1 is a local model for (3.19). That is, there is an open neighborhood
W of M = σ1 × σ2 × · · · × σN ∈ RmN and a continuous function h : W → TN that maps
solutions of (3.19) to those of (3.21).

Remark 1. Since in the thesis research, we consider mainly the case that all the neurons
inside a network are identical, we then have F1 = F2 = · · · = FN ≡ F . Furthermore, we
have σ1 = σ2 = · · · = σN ≡ σ, T1 = T2 = · · · = TN ≡ T , and Ω1 = Ω2 = · · · = ΩN ≡ Ω.

Consider the weakly connected network of N identical neurons with time delay:

X ′i(t) = F (Xi(t)) + εGi(X1(t− τ1), . . . , XN(t− τN)), i = 1, . . . , N. (3.22)

Assume that each subsystem X ′i(t) = F (Xi(t)), Xi ∈ Rm, has an exponentially orbitally
stable limit cycle σ with natural frequency Ω = 2π/T . The next two results are origi-
nally taken from the main result and its proof in [65], and give an explicit formula for
computation of the phase models.

Theorem 12. ([64, Theorem 9.2, section 9.2.1], [68, Theorem 3.2.1])

Assume that there exists ε > 0, such that the normally hyperbolic invariant manifold
M = σ × · · · × σ ⊂ RmN of system (3.22) persists for all ε such that 0 < |ε| < ε0. Let
ρ = Ωt denote a scaled time variable, α = |ε|ρ = |ε|Ωt denote the corresponding slow scaled
time variable, and let functions θi(α), i = 1, . . . , N , denote the phase deviations of θi from
its natural phase Ωt mod 2π. Then

dθi
dα

= Hi(θ1(α− ζ1)− η1 − θi(α), . . . , θN (α− ζN )− ηN − θi(α)) +O(ε), i = 1, . . . , N, (3.23)

where ζi = |ε|Ωτi and ηi = Ωτi. The functions Hi(·) have the following form:

Hi(θ1(α− ζ1)− η1 − θi(α), . . . , θN(α− ζN)− ηN − θi(α))

=
1

2π

∫ 2π

0

QT (s)Gi(σ[θ1(α− ζ1)− η1 − θi(α)], . . . , σ[s],

. . . , σ[s+ θN(α− ζN)− ηN − θi(α)])ds, (3.24)

where σ[s] stands on the ith position, and Q(t) ∈ Rm is the unique nontrivial 2π periodic
solution to the linear system

dQ

dt
= − 1

Ω
DF (σ[ρ])TQ,

satisfying the normalization condition

1

2π

∫ 2π

0

QT
i (s)F (σ[s])da = 1.
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Using perturbation analysis, [65] proved that weakly connected networks with explicit
delays do not lead to phase models with time delays even when the delay is of the same
order of magnitude as the period of oscillators. Instead, it is appropriate to include the
time delay as a phase shift in the interaction function.

Theorem 13. ([65, Corollary 2], [68, Corollary 3.2.1])

There exists η0 > 0, such that for ηi < η0, i ∈ {1, . . . , N}, the delay terms in system
(3.23) can be neglected, and (3.23) takes form

dθi
dα

= Hi(θ1 − η1 − θi, . . . , θN − ηN − θi) +O(ε), (3.25)

where all phase deviations are computed at the point α, and the function Hi is defined by
integral in (3.24)
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Chapter 4

Phase models and clustering

4.1 Introduction

Assuming weak connection, a phase model represents each oscillator in a network with a
single variable. A differential equation for each phase variable indicates how the phase of
the oscillator changes in time:

dθi
dt

= Ωi +Hi(θ1, θ2, . . . , θN)

Here Ωi is the intrinsic frequency of the ith oscillator and the functions Hi described how
the coupling between oscillators influences the phases. Phase models have been used to
study the behaviour of networks of coupled oscillators beginning with the work of [73].
Phase models are sometimes posed as models for coupled oscillators [83, 73, 91, 76]. When
the coupling between oscillators is sufficiently weak, however, a phase model representation
of a system can be derived from a higher dimensional differential equation model, such as
one obtained from a physical or biological description of the system [41, 64, 70, 104]. The
low dimensional phase model can then be used to predict behaviour in the original high
dimensional physical model. This approach has proved useful in studying synchronization
properties of many different neural models [59, 8, 26, 37, 47, 60, 81, 126]. Phase models
can be linked to experimentally derived phase resetting curves [41, 104], thus this approach
has also been used to make predictions about synchronization properties of experimental
preparations [81].

[1, 91] were the first to use phase models to study clustering behaviour. Using the theory
of equivariant differential equations [1] studied a general network of identical oscillators of

25



arbitrary size with symmetric, weak coupling, corresponding to the symmetry groups Sn,
Zn, andDn. They determined which type of solutions are forced to exist by the symmetry in
each case. For the case of Sn symmetry they gave conditions for the stability of several types
of solutions, including symmetric cluster solutions, and determined which bifurcations are
forced by symmetry to occur. They also studied the existence of heteroclinic cycles and
tori for some special cases. By direct analysis of the phase model, [91] studied the following
network with global homogeneous coupling, (Sn symmetry)

θ′i(t) = Ω +
1

N

N∑
j=1

H(θi − θj). (4.1)

He established general criteria for the stability of all possible symmetric cluster solutions
as well as some nonsymmetric cluster solutions. Using numerical simulations, [91] further
showed that these results give a good prediction of stability for a variety of model networks.
More recently, [10] considered the existence and stability of cluster solutions and fixed tori
for phase models corresponding to networks with global homogeneous coupling. They
also considered the effect of additional absolute-phase product coupling. Using a similar
approach as [91] stability results have been obtained for inhibitory neural networks with
nearest-neighbour coupling [82]. Phase model analysis has also been extensively used
to study phase-locking in pairs of model and experimental neurons [70, 101, 81]. More
recently it has been used to study clustering in larger neural networks [66, 48]. A more
comprehensive review of the analysis of phase models and their application to the study
of synchronization is given in [31].

In many systems there are time delays in the connections between the oscillators due
to the time for a signal to propagate from one element to the other. In neural networks
this delay is attributed to the conduction of electrical activity along an axon or a dendrite
[26, 70]. Much work has been devoted to the study of the effect of time delays in neural
networks. However, the majority of this work has focussed on systems where the neurons
are excitable not oscillatory, (e.g., [14, 15, 13, 27, 95, 102]), the networks have only a few
neurons (e.g., [76, 18, 70, 77, 103]) or focussed exclusively on synchronization (e.g., [26, 78,
92, 93, 95]). Extensive work has been done on networks of Stuart-Landau oscillators with
delayed diffusive coupling (e.g., [24, 28]) where the model for the individual oscillators is
the normal form for a Hopf bifurcation and thus the system is often amenable to theoretical
analysis. Numerical approaches to study the stability of cluster solutions in delayed neural
oscillator networks have also been developed [93, 94]. We note that there is a vast literature
on time delays in artificial neural networks which we do not attempt to cite here.

Initial studies of phase models for systems with delayed coupling considered models
where the delay occurs in the argument of the phases [103, 78, 67, 90, 121]. However, it has
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been shown [70, 36, 65] that for small enough time delays it is more appropriate to include
the time delay as phase shift in the argument of the coupling function. Crook et al. [26]
use this type of model to study a continuum of cortical oscillators with spatially decaying
coupling and axonal delay. Bressloff and Coombes [8, 9] study phase locking in chains and
rings of pulse coupled neurons with distributed delays and show that distributed delays
result in phase models with a distribution of phase shifts. They consider phase models
derived from integrate and fire neurons and the Kuramoto phase model.

In this chapter, we consider a network of N identical oscillators with time delayed, and
circulant coupling. Our work draws on the previous works, however, extends their work
to more general cases. [1, 91, 10, 82, 70, 101, 81]. considered weakly connected networks
without time delay. In particular, [91] considered networks with global homogeneous cou-
pling and [82] mainly focused on networks with nearest neighborhood coupling and second
nearest neighborhood coupling. In this chapter, we consider networks with time delayed
and circulant coupling. Specifically, we discuss the special case of bi-directional coupling
and global homogeneous coupling. Our work is also an extension to [26, 78, 92, 93, 95]
since we determine not only the existence and stability of synchronizations, but also all
possible symmetric cluster solutions.

The plan for the rest of this chapter is as follows. In the next section we will review
how a general network model with delayed coupling may be reduced to a phase model.
In section 4.3 we use the phase model to determine conditions for existence and stability
of symmetric cluster solutions in a network with a circulant coupling matrix, extending
some prior results [1, 91, 82] to systems with time delays and more general coupling. In
section 4.4 we consider a particular application: a network of Morris-Lecar oscillators. We
derive the particular phase model for this system and compare the predictions of the phase
model theory to numerical continuation and simulation studies to determine when the weak
coupling assumption breaks down. We show that the time delay can induce multistability
between different cluster solutions and explore how changing the coupling matrix affects
this. In section 4.5 we explore the effects of breaking the symmetry of the connection
matrix and introducing multiple time delays on our results. In section 4.6 we discuss our
work.
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4.2 The model and phase model reduction

In this chapter, we consider the following network of identical oscillators with all-to-all,
time-delayed coupling

dXi

dt
= F (Xi(t)) + ε

N∑
j=1

wijG(Xi(t), Xj(t− τij)), i = 1, · · · , N. (4.2)

Here G : Rn × Rn → Rn describes the coupling between two oscillators, ε is referred to as
the coupling strength, and W = [wij] is the coupling matrix. Note that the εwij in the
above equation correspond to gsyn,ij ( or ggap,ij) in (2.4) (or (2.6)). Since the conductance
is always greater than 0, we assume wij ≥ 0.

We assume the model for the decoupled system, for a single oscillator,

dX

dt
= F (X(t)), (4.3)

admits an exponentially asymptotically stable periodic orbit, denoted by X̂(t), with period
T . Further, we denote by Z = Ẑ(t) the unique periodic solution of the system adjoint to
the linearization of (4.3) about X̂(t) satisfying the normalization condition:

1

T

∫ T

0

Ẑ(t) · F (X̂(t))dt = 1.

When ε is sufficiently small and the wij are of order 1 with respect to ε, we can apply
the theory of weakly coupled oscillators, and reduce (4.2) to a phase model [41, 64, 70].
The appropriate phase model with respect to the coupling strength ε is

dθi
dt

= Ω + ε
N∑
j=1

wijH(θj(t− τij)− θi) + O(ε2), i = 1, 2, · · · , N, (4.4)

where the interaction function H is a 2π-periodic function which satisfies

H(θ) =
1

T

∫ T

0

Ẑ(s) ·G(X̂(s), X̂(s+ θ/Ω)) ds.

with X̂, Ẑ as defined above.

As we discussed before, when the size of the time delays is small relative to other
time constants in the model, it is appropriate to enter time delays as phase shift into the
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corresponding phase model [70, 36, 65]. Let Ω = 2π/T . If the delays satisfy Ωτij = O(1)
with respect to the coupling strength ε, then the appropriate phase model can be written
as

dθi
dt

= Ω + ε

N∑
j=1

WijH(θj − θi − ηij) + O(ε2), i = 1, 2, · · · , N, (4.5)

where ηij = Ωτij. That is, the delays enter as phase lags.

To study cluster solutions we will make two simplifications. First, we assume that all
the delays are equal:

τij = τ, i.e., ηij = η. (4.6)

Second, we will assume the network has some symmetry. In particular, we will consider
the coupling matrix to be in circulant form:

W = circ(w0, w1, w2, · · · , wN−1), equivalently, Wij = w
j−i (mod N)

. (4.7)

Following [82], we will say the network has connectivity radius r, if wk > 0 for all
k ≤ r, and wk = 0 for all k > r. For example, a network with nearest neighbor coupling
has connectivity radius r = 1. Our results will be derived with the coupling matrix (4.7),
but can be applied to coupling with any connectivity radius by setting the appropriate
wk = 0.

We will also assume there is no self coupling, w0 = 0, as this generally the case in appli-
cations. The results are essentially unchanged if we include it [115]. These simplifications
will apply for the next two sections. In section 4.5, we will return to the general model
(4.5).

4.3 Existence and stability of cluster solutions

Rewriting (4.5) using the simplifications (4.6)-(4.7) and dropping the higher order terms
in ε we have

dθi
dt

= Ω + ε

N∑
j=1,j 6=i

wj−i mod NH(θj − θi − η), i = 1, 2, · · · , N. (4.8)

Now the right hand sides of equation (4.8) depend only on the difference of phases.
Thus, introducing the phase difference variables:

φi = θi+1 − θi, i = 1, . . . , N, (4.9)
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we can transform the phase equation (4.8), to the following system

dφi
dt

= ε
N−1∑
k=1

wk

(
H(

k−1∑
s=0

φ
i+s+1 (mod N)

− η)−H(
k−1∑
s=0

φ
i+s (mod N)

− η)

)
(4.10)

for i = 1, 2, · · · , N .

Note that the N phase difference variables are not independent but satisfy the relation

N∑
i=1

φi = 0 mod 2π. (4.11)

Thus, the N−dimensional system (4.10) could be reduced to system of dimension N − 1.
However, to take advantage of the symmetry, we choose instead to work with the full set
of N equations and apply the constraint (4.11).

As discussed above, a cluster solution of the DDE model (4.2) is one where all the
oscillators have the same waveform, but they separate into different groups or clusters.
Oscillators within a cluster are synchronized, while oscillators in different clusters are
phase-locked with some fixed phase difference. It follows that in a cluster solution the
difference between the phases of any two oscillators are fixed. Using (4.8) we can show
that, to order ε, these solutions correspond to the lines

θi = (Ω + εω)t+ θi0. (4.12)

See [91] for details of this calculation in the case that η = 0 and wk = w. The case we
are considering is completely analogous. Further, from the definition (4.9), it is clear that
cluster solutions correspond to equilibrium points of the phase difference equation (4.10).
Therefore, by studying the existence of the equilibrium points of the phase difference model
(4.10), we can obtain the existence of the corresponding cluster solutions of the original
DDE model.

We can now state our first result.

Theorem 14 (Existence of cluster solutions). For any values of H and the wk, the phase
difference model (4.10) admits N equilibrium points of the form φi = ψ, i = 1, . . . , N :

(i) ψ = 0 corresponds to the 1-cluster or fully synchronized solution.

(ii) ψ = 2pπ
N

where p,N are relatively prime corresponds to an N-cluster solution, also
called a splay or rotating wave solution.
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(iii) ψ = 2mπ
n

where N = nk for some positive integers n, k > 1, 1 ≤ m < n, and m,n
are relatively prime corresponds to a symmetric n-cluster solution.

If ψ is a solution then so is 2π−ψ and they have the same number of clusters. The ordering
of the clusters of the 2π− ψ solution is the reverse of the ψ solution. For generic weights,
these are the only model independent equilibrium points.

Proof. The proof of this result is similar to the proof of [82, Theorem 3.1], which considers
the case of no delays (η = 0).

It is clear from Eq. (4.10) that, for any H and wk, there are equilibrium points given
by φi = ψ, i = 1, . . . , N , subject to the constraint

Nψ = 0 mod 2π. (4.13)

The basic idea is that the above constraint determines the possible values for ψ. Using
these values in the solution (4.12) determines the number and ordering of clusters in the
solution. Notice that we only need consider the cases of Nψ = 2kπ, k = 1, 2, · · · , N
since other values of k give solutions which are equivalent to those which k ≤ N . Let
gcd(N, k) = p.

If p = 1, then (N, k) are relatively prime. The corresponding solution is ψ = 2kπ
N

, which
corresponds to a splay solution where the oscillators are equally separated over k periods.
Note that 2π−ψ = (N −k)2π

N
. If (N, k) are relatively prime, so are (N,N −k). Therefore,

N − k < N also corresponds to a N -cluster solution.

If p > 1, let N = np. Therefore, we have k = mp for some m < n, and gcd(m,n) = 1.
In this case, the corresponding solution is ψ = 2πm

n
. In terms of the original phase variables,

we have

θi+1(t)− θi(t) =
2πm

n
, i = 1, 2, · · · , N.

It follows that

θn+1 − θ1 = φn + φn−1 + · · ·+ φ1 = 2mπ.

That is, the (n+1)-th oscillator is synchronized with the 1-st oscillator. Similarly, we have
that oscillators with indices 1, n+ 1, 2n+ 1, (p− 1)n+ 1 form one cluster, oscillators with
indices 2, n + 2, 2n + 2, (p− 1)n + 2 form another cluster, and the rest of the oscillators
separated into another n− 2 clusters. Thus, we conclude that ψ = 2πm

n
corresponds to an

n-cluster solution. Note that in this case 2π − ψ = (n−m)2π
n

. Since (m,n) are relatively
prime, so are (n−m,n). Therefore, (n−m)2π

n
is another n-cluster solution.
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In the case of generic weights, i.e., no further symmetry in the connection matrix,
model-independent equilibrium points exist if and only if there are constant values of the
φi satisfying

φi+k − φi = 0 mod 2π, i = 1, . . . , N, k = 1, . . . , N − i.

Analysis of these equations shows that the only possible solutions are in the form φi = ψ,
i = 1, . . . , N .

Note that different values of ψ can have the same number of clusters with different
oscillators in the clusters and/or a different ordering of the clusters in the solution. We
shall see some examples of this in section 4.4.

We next analyze the stability of the equilibrium points φi = ψ.

Theorem 15 (Stability of cluster solutions). Let ε > 0 and define

µj =
N−1∑
k=1

wkH
′(kψ − η) (1− cos (2πkj/N)) . (4.14)

The equilibrium point ψ = 2πk
N

, k ∈ {0, · · · , N − 1}, and the corresponding cluster solution
is asymptotically stable when µj > 0 for j = 1, . . . ,

⌊
N
2

⌋
, and unstable if at least one µj < 0.

Proof. The Jacobian matrix of the linearization of (4.10) about the equilibrium point
φi = ψ, i = 1, . . . , N , is the circulant matrix εJ = circ(c0, c1, . . . , cN−1) with c0 =
−
∑N−1

s=1 wsH
′(sψ − η) and ck = wkH

′(kψ − η), k = 1, · · · , N − 1. A standard result
for circulant matrices [51] shows that the eigenvalues of J are ελj, j = 0, 1, . . . , N where

λj = −
N−1∑
k=1

wkH
′(kψ − η)(1− e

2πi
N
kj).

Thus there is always one zero eigenvalue, corresponding to λ0. This is because the
phase differences in (4.10) are not all independent. It can be verified that if the constraint
(4.11) is used to reduce the phase difference model (4.10) to N − 1 equations then the
linearization yields only the eigenvalues ελj, j = 1, . . . , N − 1. A simple calculation shows
that λN−j = λj, j = 1, . . . ,

⌊
N
2

⌋
and Re(λj) = −µj. The result follow.

Recall that a cluster solution corresponds to a line in the phase model (4.8). The zero
eigenvalue corresponds to the motion along this line.
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Remark 2. Due to the periodicity of H, the stability of the cluster solutions is 2π−periodic
in the parameter η. Recall that η = 2πτ/T where τ is the time delay in the coupling and
T is the intrinsic period of the uncoupled oscillators. Thus the stability is T−periodic in
τ . That is, if a given solution is asymptotically stable (unstable) for τ = τ0 then it is
asymptotically stable (unstable) for τ = τ0 + kT, k = 1, 2, . . . This will carry over to the
original delay differential equation model so long as τ is sufficiently small that the phase
model is a valid approximation, i.e., 2πτ

T
= O(1) with respect to ε.

From the two theorems above we can obtain some general results about certain common
solutions.

Corollary 1 (Synchronized solution). The phase difference model (4.10) always admits
the 1−cluster solution, ψ = 0, corresponding to the solution where all the oscillators are
synchronized. The stability of this solution is independent of the size of the network and
coupling between oscillators (wk). In particular, the synchronized solution is asymptotically
stable when H ′(−η) > 0, and unstable when H ′(−η) < 0.

Proof. Following from the proof of Theorem 15, it is clear that when ψ = 0, the circulant Ja-
cobian matrix of the corresponding linearization system εJ satisfies c0 = −

∑N−1
s=1 wsH

′(−η)
and ck = wkH

′(−η), k = 1, 2, · · · , N − 1. Therefore, the eigenvalues of εJ are ελj,
j = 0, 1, · · · , N − 1, where

λj = −H ′(−η)
N−1∑
k=1

wk(1− e
i2π
N
kj).

Simple calculation follows that Re(λj) = −H ′(−η)
∑N−1

k=1 wk(1 − cos( i2π
N
kj)). Therefore,

the results follows.

Corollary 2 (Anti-phase solution). If N is even the phase difference model (4.10) admits
2−cluster solution, ψ = π, which corresponds to the anti-phase solution where adjacent
oscillators are out of phase by one half period. The stability of this solution is independent
of the coupling. For N = 2 it is asymptotically stable (unstable) if H ′(π − η) > 0 (< 0).
For all N > 2 this solution is asymptotically stable if H ′(−η) > 0 and H ′(π − η) > 0 and
unstable if H ′(π − η) < 0.

Proof. Following from the proof of Theorem 15, it is clear that when ψ = π, the circulant
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Jacobian matrix of the corresponding linearization system εJ satisfies

c0 = −
N−1∑

k=1, k odd

wkH
′(π − η)−

N−1∑
k=2, k even

wkH
′(−η)

ck = wkH
′(−η), if k is even, and

= wkH
′(π − η), if k is odd.

Therefore, the real parts of the eigenvalues are εµj, j = 0, 1, · · · , N − 1, with

λj = −H ′(π − η)
N−1∑

k=1,k odd

wk(1− cos(
i2π

N
kj))−H ′(−η)

N−1∑
k=1,k even

wk(1− cos(
i2π

N
kj)).

Simple calculation follows that Re(λj) = −H ′(−η)
∑N−1

k=1 wk(1 − cos( i2π
N
kj)). Therefore,

the results follow.

Remark 3. In the above stability results, we assume ε > 0. If ε < 0, the stability of
asymptotically stable solutions and totally unstable solutions will be reversed, and the saddle
type solutions will remain of saddle type.

4.3.1 Stability analysis for bi-directional, distance dependent cou-
pling

In this section, we consider a special case where the coupling strength is distance-dependent
and bi-directional. In real neural networks, coupling strength is not necessarily determined
by the physical distance. However, the “distance” here can be generalized to include func-
tional distance [76]: the degree of correlation in the activity of coupled neurons. Therefore,
we consider a coupling matrix that satisfies

W = circ(0, w1, w2, . . . , wN/2, . . . , w2, w1) (4.15)

if N is even, and

W = circ(0, w1, w2, . . . , w(N−1)/2, w(N−1)/2, . . . , w2, w1) (4.16)

if N is odd. Applying Theorem 15 to this system leads to the following.

Corollary 3. Consider (4.10) with bi-directional, distance dependent coupling. Define

µj =

N−1
2∑

k=1

wk [H ′(kψ − η) +H ′(−kψ − η)] (1− cos(2πkj/N))
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for N odd and

µj = wmH
′(mψ − η)(1− (−1)j) +

m−1∑
k=1

wk [H ′(kψ − η) +H ′(−kψ − η)] (1− cos(2πkj/N))

for N = 2m, even. The equilibrium point ψ = 2πk
N

, k ∈ {0, · · · , N − 1}, and the cor-
responding cluster solution is asymptotically stable when µj > 0 for j = 1, . . . ,

⌊
N
2

⌋
, and

unstable if at least one µj < 0.

Recall that ψ and 2π−ψ correspond to the same type of cluster solution. For a network
with bi-directional coupling, these solutions have a stronger relationship.

Corollary 4. For the phase model with coupling matrix given by (4.15) or (4.16), the
solutions φi = ψ and φi = 2π − ψ have the same stability.

Proof. This follows by replacing ψ by 2π − ψ in the expressions for µj in Corollary 3 and
using the 2π−periodicity of H.

A special case of bi-directional coupling is when the only nonzero coupling coefficient is
w1. This is commonly called nearest-neighbour coupling. In this case the stability of any
symmetric cluster solution is easily determined.

Corollary 5. For the phase model with coupling matrix given by (4.15) or (4.16) with w1 6=
0 and wj = 0, j = 2, . . . , N , the symmetric cluster solution with φi = ψ is asymptotically
stable if H ′(ψ − η) +H ′(−ψ − η) > 0 and unstable if H ′(ψ − η) +H ′(−ψ − η) < 0.

Proof. In this case we have

µj = −w1 [H ′(ψ − η) +H ′(−ψ − η)] (1− cos(2πj/N)).

The result follows.

This extends the result in [82, Section 3.2] to systems with time delayed coupling.
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4.3.2 Stability analysis for global homogeneous coupling

We next consider a special case: Wh = circ(0, 1, · · · , 1). That is, all the coupling weights
are the same. A straightforward calculation shows that, in this case, for a symmetric
n-cluster solution we have

λ0 = 0,

λ
(n)
0 = −N

n

n−1∑
k=0

H ′(
2πk

n
− η), multiplicity N − n,

λ
(n)
j = −N

n

n−1∑
k=0

H ′(
2πk

n
− η)(1− ei2πkj/n), j = 1, · · · , n− 1.

(4.17)

where λj is as defined in the proof of Theorem 15.

This result is an extension to systems with time delayed coupling of results in [1, Section
6.1], [91, Section 2]. In [115] they made the following observation. The stability of an n-
cluster solution (with n < N) depends on the number of clusters and the phase differences,
not the size of the network. For example, any network with N = 3m (m a positive integer)
has a 3-cluster solution with ψ = 2π/3. The stability of this solution is the same for all
networks with m > 1.

As discussed in [115, 1], since networks with global homogeneous coupling are un-
changed by any rearrangement of the indices, there are many more cluster solutions. For
example, consider a network where N > 2 is even. When the connection matrix is circulant
with different wk, there is one 2-cluster solution with oscillators 1, 3, 5, . . . , N − 1 forming
one cluster and oscillators 2, 4, . . . N forming the second cluster. For a network with global
homogeneous coupling, any division of the oscillators into two groups of N/2 oscillators is
an admissible 2-cluster solution with stability described by (4.17) with n = 2.

4.3.3 Stability analysis for general synchronization

Recall that in section 3.6, (4.4) is further reduced to an ordinary differential equation (4.8)
when the time delay satisfies Ωτ = O(1) with respect to the coupling strength ε. Based on
this condition, we discussed the stability for synchronization solutions and summarized the
results in Corollary 1. It turns out that the stability of synchronization solutions depends
on the sign of εH ′(−η).

In this section, we try to extend this analysis to be with respect to system (4.4), i.e.
for any time delay. The analysis would involve studying eigenvalues of an infinite system.
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Recall that when ε = 0, the synchronization solution is θi(t) = Ωt. Therefore, we assume
that a general inphase synchronization solution is described by

θi(t) = Ω̃t, i = 1, 2, · · · , N. (4.18)

Substituting (4.18) in to (4.4), we find that the collective frequency Ω̃ is determined im-
plicitly by the following equation

Ω̃ = Ω + εw̄H(−η̃), (4.19)

where η̃ = Ω̃τ , and w̄ =
∑N−1

k=1 wk.

We then perform a linear stability analysis to determine the local stability of solution
described in (4.18) by adding a small perturbation

θi(t) = Ω̃t+ εθ̃i(t), i = 1, 2, · · · , N. (4.20)

where ε is a sufficiently small positive parameter. Substituting (4.20) back into (4.4),
and taking the first order with respect to ε, we have the following linear delay differential
equation for θ̃i(t):

θ̃′i(t) = εH ′(−η̃)
N∑
j=1

Wij(θ̃j(t− τ)− θ̃i(t)), (4.21)

Note that if εH ′(−η̃) = 0, we have neural stability at linear order. In this case, higher
order terms need to be considered for further details. From now on, we focus on the case
that εH ′(−η̃) 6= 0. To find a characteristic equation for (4.21), we substitute θ̃i(t) = eλtei
into (4.21), and obtain

(λ+ εw̄H ′(−η̃))eλτei = εH ′(−η̃)
N∑
j=1

wijej, (4.22)

where w̄ = w1 + w2 + · · ·+ wN−1 =
∑N

j=1wij, for any i = 1, 2, · · · , N . Define

δ =
(λ+ εw̄H ′(−η̃))eλτ

εH ′(−η̃)
. (4.23)

Thus we can rewrite equation (4.22) in the following matrix form

WE = δE. (4.24)

37



It is clear that δ is an eigenvalue of the coupling matrix W . By the property of circulant
matrices, the eigenvalues of W are

δk =
N−1∑
j=1

wje
2πi
N
kj, k = 0, 1, · · · , N − 1. (4.25)

Note that δ0 = w̄. Before introducing the stability results, we need the following properties.

Lemma 1. The eigenvalues of W satisfies |δk| ≤ w̄, k = 1, · · · , N − 1.

Proof. The above result is a direct conclusion from the Gershgorin’s circle theorem . The
theorem [110] states that every eigenvalue of a matrix B = (Bij)N×N lies in at least one
of the circles O1, O2, · · · , ON , where Oi is has its center at the diagonal engry bii and
radius equal to the absolute sum along the rest of the row, that is, the radius equal to∑N

j=1,j 6=i |Bij|.

Applying Gerschgorin’s theorem to the coupling matrix W , we find that all these circles
are the same with center at the origin (since Wii = w0 = 0, for all i = 1, 2, · · · , N), and
with radius w̄. Therefore, all the eigenvalues of W lie within this circle. Thus, we have
|δk| ≤ w̄.

In conclusion, we have that δ ∈ {δ0, δ1, · · · , δN−1}, and satisfies |δ| ≤ w̄. Now we are
ready to prove the stability theorem for solutions described in (4.18).

Theorem 16 (General synchronization solution). The phase model (4.4) admits the 1-
cluster solution θi = Ω̃t if there exists a solution of (4.19). The stability of this solution is
independent of the size of the network and coupling between oscillators (W ). In particular,
the synchronization solution is asymptotically stable when εH ′(−η̃) > 0 and unstable when
εH ′(−η̃) < 0.

Proof. As we know, the stability of synchronization described in (4.23) depends on the
sign of the real parts of the eigenvlaues λ in (4.24). That is, the synchronization solution
is stable if and only if Re(λ) < 0. Therefore, to proof the theorem, it is equivalent to prove
that Re(λ) < 0 if and only if εH ′(−η̃) > 0.

Let λ = x+ iy, and δ = α+ iβ, and separate the real and imaginary parts of equation
(4.23):

εH ′(−η̃)e−xτ (α cos(yτ) + β sin(yτ)) = x+ εH ′(−η̃)w̄,

εH ′(−η̃)e−xτ (−α sin(yτ) + β cos(yτ)) = y.
(4.26)
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Squaring and adding yields

(εH ′(−η̃))2e−2xτ (α2 + β2) = x2 + y2 + 2εH ′(−η̃)w̄x+ (εH ′(−η̃))2w̄2. (4.27)

We first prove that if εH ′(−η̃) > 0, then Re(λ) < 0 by contradiction. Suppose that
there exists a λ satisfies (4.23) such that x ≥ 0 and εH ′(−η̃) > 0. In this case, (4.27) can
be rewritten as

e−2xτ (α2 + β2) = w̄2 +
x2 + y2 + 2εH ′(−η̃)w̄x

(εH ′(−η̃)2)
. (4.28)

Note that by Lemma 1, we have that (α2 + β2) ≤ w̄. Since x ≥ 0, the left hand side of
(4.28) must be between [0, w̄]. The right hand side of (4.28) is greater than or equal to w̄.
Therefore, the equality is true only if x = y = 0, that is, λ = 0. This special case corre-
sponds to δ = w̄ = δ0 with corresponding eigenvector to be (1, 1, · · · , 1)T . This eigenvalue
reflects the rotation symmetry of (4.4). The system is neurally stable to perturbations in
which each phase is changed by the same constant amount. This is, however, the only
neutral perturbation. Hence, for all other perturbation, λ 6= 0. Therefore, the right-hand
side of (4.28) is strictly greater than w̄, which contradicts the properties of the left hand
side.

We next prove that if Re(λ) < 0 then εH ′(−η̃) > 0 by contradiction. Assume that
εH ′(−η̃) < 0. Therefore, we have

−|εH ′(−η̃)|e−xτ
√
α2 + β2 cos(yτ − arg(δ)) = x− |εH ′(−η̃)|w̄. (4.29)

Note that p =
√
α2 + β2 cos(yτ − arg(δ)) is between [−w̄, w̄]. First consider the case that

p is between [0, w̄]. Graphically, the plot of the right hand side of (4.29) is a line across
the first, third and forth quadrants, while the left hand side goes through the third and
fourth quadrants. By the property of the exponential function, the only intersection of
the curves is in the fourth quadrant, i.e., x > 0. Next consider the case that p ∈ [−w̄, 0).
Thus, (4.29) can be rewritten as

|εH ′(−η̃)||p|e−xτ + |εH ′(−η̃)| = x. (4.30)

The left hand side of the above equation is always greater than 0. Therefore, we have
x > 0. Thus, the proof is complete.

Remark 4. The result of Theorem 16 can be extended to the cases that the coupling matrix
W is not circulant but satisfies Wii = 0 and

∑
j=1,j≤iWij = K, i = 1, · · · , N . That is,
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the signals that each oscillator receives from all the other oscillators are the same. By a
similar proof as for Lemma 1, we obtain that the eigenvalues of W in this case are still
within the circle centered at the origin with radius K. Therefore, we can get the same result
by replacing w̄ by K in the proof for Theorem 16.

4.3.4 Stability analysis for other types of cluster solutions

If more conditions are put on the coupling matrix then different cluster solutions may occur.
For example, consider a 2-cluster solution where the phase differences between adjacent
elements is not the same, but is described by

φ1 = φ3 = · · · = φN−1 = 0, and φ2 = φ4 = · · · = φN = π, (4.31)

or
φ1 = φ3 = · · · = φN−1 = π, and φ2 = φ4 = · · · = φN = 0. (4.32)

In this situation the elements group into pairs, so that each element is synchronized with one
of its nearest neighbours and one-half period out of phase with its other nearest neighbour.
As shown by the next result, these solutions exist under appropriate conditions on the
connectivity matrix.

Theorem 17. For a network with a circulant connectivity matrix, the system (4.10) admits
solutions of the form (4.31) and (4.32) if N = 4p for some integer p, and

∑p−1
k=0 w4k+1 =∑p−1

k=0w4k+3. These two solutions have the same stability.

Proof. Applying the constraint condition (4.11) to (4.31) or (4.32), we have that, for some
integer p,

N

2
· π = 2pπ.

Therefore, N = 4p, for some integer p.

Substituting solution (4.31) or (4.32) into the system (4.10), we have that

p−1∑
k=0

w4k+1

(
H(π − η)−H(−η)

)
=

p−1∑
k=0

w4k+3

(
H(π − η)−H(−η)

)
.

To satisfy this for any H, we must have
∑p−1

k=0 w4k+1 =
∑p−1

k=0 w4k+3.
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The Jacobian matrix of the linearization of system (4.10) at (4.31) is in the form

L =



α0 α1 α2 α3 · · · αN−1

βN−1 β0 β1 β2 · · · βN−2

αN−2 αN−1 α0 α1 · · · αN−3

βN−3 βN−2 βN−1 β0 · · · βN−4
...

...
...

...
. . .

...
α2 α3 α4 α5 · · · α1

β1 β2 β3 β4 · · · β0


, (4.33)

with αk, βk as defined as follows

α0 = β0 = −H ′(−η)
( p−1∑
k=0

w4k+1 +

p−1∑
k=1

w4k

)
−H ′(π − η)

p−1∑
k=0

(w4k+2 + w4k+3),

and, for k = 1, · · · , N − 1 and appropriate s values

αk =

{
wkH

′(π − η) +B1(s)
(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 1, 4s+ 2

wkH
′(−η) +B2(s)

(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 3, 4s

βk =


wkH

′(−η)−B2(s)
(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 1,

wkH
′(π − η)−B2(s)

(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 2,

wkH
′(π − η)−B1(s)

(
H ′(π − η)−H ′(−η)

)
, k = 4s+ 3

wkH
′(−η)−B1(s)

(
H ′(π − η)−H ′(−η)

)
, k = 4s

where

B1(s) =
( p−1∑
j=s+1

w4j+1 −
p−1∑
j=s+1

w4j+3

)
, B2(s) =

( p−1∑
j=s+1

w4j+1 −
p−1∑
j=s

w4j+3

)
.

For k = 0, 1, · · · , p− 1, define

Lk =


α4k α4k+1 α4k+2 α4k+3

β4k+3 β4k β4k+1 β4k+1

α4k+2 α4k+3 α4k α4k+1

β4k+1 β4k+2 β4k+3 β4k


Therefore, L can be rewritten as a block circulant matrix

L =


L0 L1 · · · Lp−1

Lp−1 L0 · · · Lp−2
...

...
. . .

...
L1 L2 · · · L0
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Based on the block circulant structure, we calculate the eigenvalues of L based on the
method introduced on [107, 113]. Recall that λ is an eigenvalue of L if and only if there is
a non-zero vector E such that

LE = λE. (4.34)

Let ρ be any N -th root of unity, that is

ρ ∈ {ρ0, ρ1, · · · , ρN−1}, with ρk = ei
2π
N
k, k = 0, 1, · · · , N − 1.

Let ξ ∈ R4. Then the compound vector

E =


ξ
ξρ4

...
ξρ4(p−1)


satisfies (4.34) if and only if ξ satisfies Hξ = 0 where

H = λIp − (L0 + ρ4L1 + ρ8L2 + · · ·+ ρ4(p−1)Lp−1) =


M0 M1 M2 M3

ρN3 N0 N1 N2

ρM2 ρM3 M0 M1

ρN1 ρN2 ρN3 N0


with Ip to be the p × p identity matrix, and for s = 0, 1, 2, 3, Ms =

∑p−1
k=0 α4k+sρ

4k, Ns =∑p−1
k=0 β4k+sρ

4k. Therefore, the N eigenvalues of L are, for k = 0, 1, · · · , p− 1,

λ±1,k =

√
2

2

(
(M0 + ρ2

kM2 +N0 + rho2
kN2)

±
√

(M0 + ρ2
kM2 −N0 − ρ2

kN2)2 + 4ρ2
k(M1 + ρ2

kM3)(N1 + ρ2
kN3)

)
,

λ±2,k =

√
2

2

(
(M0 − ρ2

kM2 +N0 − rho2
kN2)

±
√

(M0 − ρ2
kM2 −N0 + ρ2

kN2)2 − 4ρ2
k(M1 − ρ2

kM3)(N1 − ρ2
kN3)

)
.

(4.35)

Thus, we have the following results.

Theorem 18. Let ε > 0. The 2-cluster solutions described by (4.31) and (4.32) are stable
when all the λ±1,k and λ±2,k (k = 0, 1, · · · , p− 1) defined in (4.35) have negative real parts.

42



Remark 5. The Jacobian matrix of the linearization of system (4.10) at (4.32) is in the
form

L̂ =



β0 β1 β2 β3 · · · βN−1

αN−1 α0 α1 α2 · · · αN−2

βN−2 βN−1 β0 β1 · · · βN−3

αN−3 αN−2 αN−1 α0 · · · αN−4
...

...
...

...
. . .

...
β2 β3 β4 β5 · · · β1

α1 α2 α3 α4 · · · α0


, (4.36)

which is equivalent to L. Therefore, The 2-cluster solutions described by (4.31) and (4.32)
have the same stability.

Remark 6. Note that, for networks with bi-directional coupling or global homogeneous
coupling, the second condition,

∑p−1
k=0 w4k+1 =

∑p−1
k=0 w4k+3, is automatically satisfied if

N = 4p.

We were not able to obtain more general results about the eigenvalues of L and L̂.
Thus, we are not able to make any conclusions about the stability of solutions (4.31) and
(4.32) directly with respect to the coupling matrix W . However, we can use the expressions
for λ±1,k and λ±2,k in the next section.

4.4 Application to networks of Morris-Lecar oscilla-

tors with global synaptic coupling

In this section, we apply our results to a specific network: globally coupled Morris-Lecar
oscillators. Since the nondimensional form of Morris-Lecar equation is more convenient to
work with, we adopt the dimensionless Morris-Lecar model which is formulated by Rinzel
and Ermentrout in [99]. We briefly introduce the idea of non-dimensionalization here.
Please see [68] for details of the non-dimensionalization procedure. From (2.2), we first
introduce the dimensionless parameters v = Vm/Vca, andm = M . Then define vn = Vn/VCa
where n ∈ {Ca, K, L}, gn = ḡn/ḡref , Iapp = Īapp/(VCaḡref ). VCa is chosen to normalize
the calcium ionic channel so that we will have vCa = 1. The conductance parameters are
normalized towards a reference value ḡref = 4ms/cm2. Then introduce ḡref t/Cm → t as
the dimensionless time variable. Thus, we have a dimensionless Morris-Lecar oscillators
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with the form

v′ = Iapp − gCaC∞(v)(v − vCa)− gKmi(v − vK)

m′ = ϕλ(v)(m∞(v)−m),

where

C∞(v) =
1

2
(1 + tanh((v − ν1)/ν2)),

λ(v) = cosh((v − ν3)/2ν4),

m∞(v) =
1

2
(1 + tanh((v − ν3)/ν4)).

Considering N identical Morris-Lecar oscillators with delayed synaptic coupling, we have
the following model

v′i = Iapp − gCaC∞(vi)(vi − vCa)− gKmi(vi − vK) (4.37)

−gL(vi − vL)− ε
N∑

j=1,j 6=i

wijs(vj(t− τ))(vi(t)− Esyn),

m′i = ϕλ(vi)(m∞(vi)−mi),

where i = 1, . . . , N and

s(v) =
1

2
(1 + tanh(10v)).

Using the parameter set I from [18, Table 1], when there is no coupling in the network
each oscillator has a unique exponentially asymptotically stable limit cycle with period
T ≈ 23.87 corresponding to Ω = 0.2632.

4.4.1 Phase model analysis

The calculation of the phase model interaction function, H, described in sections 3.6 and
4.2 , may be carried out numerically. We used the numerical simulation package XPPAUT
[38] to do this for model (4.37) with τ = 0, and to calculate a finite number of terms in
the Fourier series approximation for H. This gives an explicit approximation for H:

H(φ) ≈ a0 +
K∑
k=1

(ak cos(kφ) + bk sin(kφ)). (4.38)
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Parameter Name value

vCa Calcium equilibrium potential 1
vK Potassium equilibrium potential -0.7
vL Leak equilibrium potential -0.5
gK Potassium ionic conductance 2
gL Leak ionic conductance 0.5
ϕ Potassium rate constant 1

3

ν1 Calcium activation potential -0.01
ν2 Calcium reciprocal slope 0.15
ν3 Potassium activation potential 0.1
ν4 Potassium reciprocal slope 0.145
gCa Calcium potential conductance 1
Iapp Applied current 0.09

Table 4.1: Parameters used in system (4.37) [18, Table 1]

The first nine terms of Fourier coefficients are shown in Table 4.2. Figure 4.1 shows the
plot of the interaction function (red solid), H, together with the approximations using
one (black solid) and 20 terms (green dashed) of Fourier Series. Obviously, the one term
approximation is not enough to explain the behavior of H. However, the 20-term approx-
imation is indistinguishable with the numerically calculated H. Therefore, we adopt the
20-term approximation for subsequent calculations.

k ak bk k ak bk

0 -2.0214064 0 5 -0.01054942 0.010251001
1 1.994447 -0.93897837 6 -0.002131111 0.0046384884
2 0.010604496 0.27575842 7 9.9814584e-05 0.0013808256
3 -0.051657807 0.042355601 8 0.00015646126 7.391713e-05
4 -0.029127343 0.01801952 9 -8.1846403e-05 -0.00024995379

Table 4.2: Fourier coefficients of the interaction function for model (4.37).

With the explicit approximation for H (4.38) and the value of the coefficients aj, bj,
we can determine the asymptotic stability of any possible symmetric cluster states for any
N using the eigenvalues calculated in the last section. In this section, we consider two
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Figure 4.1: Interaction function for model (4.37) and the approximations using 1 and 20
terms of Fourier Series

coupling matrices

Wb = circ(0, 1,
1

2
,
1

3
, · · · , 1

2
, 1), bi-directional, distance dependent (4.39)

Wh = circ(0, 1, 1, · · · , 1), global homogeneous. (4.40)

With the coupling matrices Wb and Wh, various values of ε and the time delay τ , we
used our phase model results above to predict the stability of all possible symmetric cluster
solutions for N = 2, · · · , 10. The results are shown in Tables 4.3 and 4.4. Comparing the
phase model prediction and DDE-BIFTOOL continuation for the full model, we observe
that the agreement gets better as ε gets smaller. The disagreements appear usually on
the endpoints of intervals. For the full model, some extra intervals of stability appear as ε
varies. For example for networks with b-directional coupling, the 3-cluster solutions with
N = 6, the 7-cluster solutions corresponds to ψ = 2π

7
and ψ = 12π

7
, and the 8-cluster

solutions correspond to ψ = π
4

and ψ = 7π
4

have extra intervals of stability comparing
to the phase model prediction. Note that, in all cases, for τ = 0 only the synchronous
(1−cluster) solution is asymptotically stable. However, increasing τ may destabilize this
solution and/or stabilize other cluster solutions. In particular, for some values of τ multi-
stability between different cluster solutions occurs. Further, changing the coupling matrix
from Wb (bi-directional, distance dependent coupling) to Wh (global homogeneous cou-
pling) can cause significant changes in stability. For example, when N is a prime number,
the only clustered states are splay states (rotating waves). With Wh all the splay states for
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a given N have the same stability (Table 4.4), while with Wb splay states corresponding
to different ψ can have quite different stabilities (Table 4.3).

4.4.2 Numerical studies

In this section, we perform numerical continuation studies of the full model (4.37) for two
cases. When τ is not to large, i.e. Ωτij = O(1) with respect to the coupling strength
ε, we use DDE-BIFTOOL [35] in MATLAB to numerically compute branches of periodic
orbits and their stability as parameters are varied. Furthermore, we carry out numerical
simulations to determine the stability of general synchronization solutions as defined in
section 4.3.3 for any time delay τ values.

Numerical simulation and continuation when τ is not too large

Taking the time delay as a continuation parameter, we use this package DDE-BIFTOOL
to compute the stability of all possible symmetric cluster solutions for N = 2, 3, · · · , 10
with the two different coupling matrices Wb, Wh and four different values of ε, ε =
0.001, 0.01, 0.05, 0.1. These results indicated that the phase model prediction is accurate
up to ε = 0.01. The results for ε = 0.01, 0.05 are summarized in Tables 4.3 and 4.4. Some
of the plots are shown in Figures 4.2 4.3, and 4.4. The red circles denote a stable cluster
solutions while the green circles denote unstable ones. The x-axis of each diagram corre-
sponds to the value of τ , while the y-axis shows the maximum amplitude of v1(t) for each
cluster solution. In the simulation, we can see that for ε = 0.001 and ε = 0.01, the profiles
of the cluster solutions are relatively unaffected by time delay τ , while for ε = 0.05, 0.1 the
solution profiles varies with τ (see Figure 4.2 for example). In particular we observe that
the synchronous solution is stable for approximately the same τ−interval in all networks
(cf. Figure 4.3 ) and the 2−cluster solution is stable for approximately the same τ−interval
in all networks with N > 2 and even (cf. Figure 4.4), which agrees with Corollaries 1 and
2.

Using dde23 in MATLAB, we are able to numerically simulate the solution for larger
sizes of networks. In the following, we use dde23 in MATLAB, and numerically simulate the
solutions for networks with larger sizes. we show several numerical simulations that verify
the predictions of the phase model for the case of a network with N = 140 oscillators.
This network admits 1-cluster, 2-cluster, 5-cluster, 7-cluster, 10-cluster, 14-cluster, 35-
cluster, 70-cluster, and 140-cluster solutions. The initial conditions that we use for n-cluster

47



N
n

ψ
P

h
as

e
m

o
d

el
p

re
d

ic
ti

on
F

u
ll

m
o
d

el
ε

=
0.

01
ε

=
0.

05

4
1

0
(0
,1
.5

3)
∪

(1
4.

28
,2

3.
87

)
(0
,1
.4

4)
∪

(1
2.

75
,2

3.
87

)
(0
,1
.6

2)
∪

(8
.8

3,
23
.8

7)
2

π
(2
.4

7,
10
.4

6)
(2
.2

0,
10
.2

1)
(1
.6

8,
9.

32
)
∪

(1
7.

47
,2

3.
87

)
4

π 2
,

3
π 2

(0
.5

7,
3.

22
)∪

(8
.6

9,
14

.6
9)

(0
,2

.9
6)
∪(

8.
36

,1
4.

16
)

(0
,2

.2
6)
∪(

6.
86

,1
2.

36
)

5
1

0
(0
,1
.5

3)
∪

(1
4.

28
,2

3.
87

)
(0
,1
.4

1)
∪

(1
2.

51
,2

3.
87

)
(0
,1
.6

7)
∪

(8
.1

9,
23
.8

7)
5

2
π 5
,

8
π 5

(1
.2

6,
2.

48
)∪

(1
0.

84
,1

3.
46

)
(0

,2
.2

1)
∪(

10
.3

1,
12

.7
1)

(0
,1

.5
1)
∪(

8.
71

,1
0.

81
)

5
4
π 5
,

6
π 5

(1
.6

6,
3.

66
)∪

(4
.2

6,
13

.0
9)

(1
.5

13
,1

2.
61

)
(0

.7
0,

11
.4

9)

6

1
0

(0
,1
.5

3)
∪

(1
4.

28
,2

3.
87

)
(0
,1
.4

1)
∪

(1
2.

31
,2

3.
87

)
(0
,1
.7

0)
∪

(7
.8

2,
23
.8

7)
2

π
(2
.6

4,
9.

45
)

(2
.3

0,
9.

10
)

(1
.5

8,
7.

79
)
∪

(1
6.

59
,2

7.
31

)
3

2
π 3
,

4
π 3

(0
.4

1,
12
.9

1)
(0
.3

1,
13
.0

1)
∪

(2
3.

11
,2

3.
87

)
(0
,4
.1

9)
∪

(5
.3

0,
11
.4

0)
∪

(1
7.

41
,2

0.
9)
∪

(2
2.

31
,2

3.
87

)
6

π 3
,

5
π 3

(0
.5

8,
0.

87
)∪

(1
2.

32
,1

4.
10

)
(0

,1
.5

1)
∪(

12
.0

1,
13

.1
1)

(0
,1

.1
1)
∪(

9.
21

,1
0.

31
)

7

1
0

(0
,1
.5

3)
∪

(1
4.

28
,2

3.
87

)
(0
,1
.4

9)
∪

(1
2.

19
,2

3.
87

)
(0
,1
.6

8)
∪

(7
.5

2,
23
.8

7)
7

2
π 7
,

1
2
π 7

(1
2.

82
,1

3.
86

)
(0

,1
.2

1)
∪(

12
.1

1,
12

.8
1)

(0
,1

.1
0)
∪(

8.
82

,9
.8

2)
7

4
π 7
,

1
0
π 7

(2
.3

3,
4.

37
)∪

(7
.5

9,
13

.8
3)

(0
.5

1,
3.

91
)∪

(7
.2

1,
13

.1
1)

(0
,2

.7
1)
∪(

5.
81

,1
1.

11
)

7
6
π 7
,

8
π 7

(2
.5

1,
3.

45
)∪

(4
.0

4,
4.

93
)∪

(5
.4

8,
5.

96
)∪

(7
.4

7,
13

.1
3)

(2
.5

1,
4.

91
)∪

(6
.9

1,
12

.1
1)

(1
.7

0,
3.

81
)∪

(5
.7

0,
10

.8
2)

8

1
0

(0
,1
.5

3)
∪

(1
4.

28
,2

3.
87

)
(0
,1
.4

4)
∪

(1
2.

04
,2

3.
87

)
(0
,1
.7

4)
∪

(7
.2

7,
23
.8

7)
2

π
(2
.6

3,
9.

53
)

(2
.2

5,
9.

05
)

(1
.5

5,
7.

45
)
∪

(1
5.

73
,2

3.
87

)
4

π 2
,

3
π 2

(1
.7

1,
3.

22
)
∪

(8
.6

9,
14
.5

7)
(0
.3

1,
2.

81
)
∪

(8
.1

1,
13
.7

1)
(0
,1
.8

0)
∪

(6
.2

1,
11
.2

0)
8

π 4
,

7
π 4

(1
3.

34
,1

3.
95

)
(0

,1
.0

1)
∪(

12
.3

1,
12

.7
1)

(0
,1

.0
0)
∪(

8.
52

,9
.4

2)
8

3
π 4
,

5
π 4

(3
.9

6,
13

.1
3)

(3
.4

1,
12

.4
1)

(0
.1

1,
0.

71
)∪

(2
.6

1,
10

.8
2)

9

1
0

(0
,1
.5

3)
∪

(1
4.

28
,2

3.
87

)
(0
,1
.6

6)
∪

(1
1.

93
,2

3.
87

)
(0
,1
.7

3)
∪

(7
.0

6,
23
.8

7)
3

2
π 3
,

4
π 3

(0
.4

1,
5.

04
)
∪

(8
.0

8,
12
.9

3)
(0
.4

1,
4.

61
)
∪

(7
.7

1,
12
.4

1)
(0
,3
.3

0)
∪

(5
.8

0,
10
.6

0)
∪

(1
6.

61
,1

9.
31

)
9

2
π 9
,

1
6
π 9

(1
3.

46
,1

4.
01

)
—

—
9

4
π 9
,

1
4
π 9

(2
.5

0,
2.

57
)∪

(9
.8

1,
13

.9
4)

(0
.4

1,
2.

61
)∪

(9
.1

1,
13

.0
1)

(0
,1

.7
1)
∪(

6.
51

,1
0.

41
)

9
8
π 9
,

1
0
π 9

(2
.9

0,
3.

77
)∪

(8
.0

8,
11

.3
8)

(2
.6

1,
4.

01
)∪

(7
.5

1,
11

.0
1)

(1
.6

0,
3.

12
)∪

(5
.9

2,
8.

81
)

T
ab

le
4.

3:
C

om
p
ar

is
on

of
p
h
as

e
m

o
d
el

p
re

d
ic

ti
on

of
τ
-i

n
te

rv
al

s
of

as
y
m

p
to

ti
c

st
ab

il
it

y
fo

r
n

-c
lu

st
er

so
lu

ti
on

w
it

h
n
u
m

er
ic

al
of

th
e

fu
ll

m
o
d
el

.
T

h
e

co
u
p
li
n
g

m
at

ri
x

is
W
b
.

O
th

er
p
ar

am
et

er
va

lu
es

ar
e

gi
ve

n
in

T
ab

le
4.

1.

48



N
n

P
h
as
e
m
o
d
el

p
re
d
ic
ti
on

F
u
ll
m
o
d
el

ε
=

0.
0
1

ε
=

0.
05

2
1

(0
,1
.5
3)
∪
(1
4.
28
,2
3.
87

)
(0
,1
.4
6)
∪
(1
3.
5
6
,2
3.
8
7
)

(0
,1
.4
3
)
∪
(1
1.
5
3
,2
3.
87

)
2

(2
.3
5,
13

.4
6)

(2
.2
3
,1
3
.4
3
)

(1
.9
2,
13

.3
2)

3
1

(0
,1
.5
3)
∪
(1
4.
28
,2
3.
87

)
(0
,1
.4
8)
∪
(1
3.
0
9
,2
3.
8
7
)

(0
,1
.5
2)
∪
(9
.5
3
,2
3
.8
7)

3
(0
.4
1,
13

.7
4)

(0
.5
0
,1
3
.4
0
)

(0
,1
2
.6
)

4
1

(0
,1
.5
3)
∪
(1
4.
28
,2
3.
87

)
(0
,1
.4
7)
∪
(1
2.
5
7
,2
3.
8
7
)

(0
,1
.7
0)
∪
(8
.1
1
,2
3
.8
7)

2
(2
.7
3
,9
.1
9)

(2
.4
1,
8
.9
1
)

(1
.7
1
,7
.7
1
)
∪
(1
7.
5
3
,2
3.
8
7)

4
(1
.9
3,
3
.2
2)
∪

(8
.6
9,
14

.4
7)

(0
.9
7
,2
.8
7
)∪

(8
.4
7
,1
3.
97

)
(0
,1
.9
6)
∪(

6.
97

,1
2.
27

)

5
1

(0
,1
.5
3)
∪
(1
4.
28
,2
3.
87

)
(0
,1
.4
9)
∪
(1
1.
9
9
,2
3.
8
7
)

(0
,1
.7
9)
∪
(7
.2
2
,2
3
.8
7)

5
(1
.5
7,
2.
69

)∪
(9
.7
6,
13

.2
0)

(0
.9
3
,2
.2
3
)∪

(9
.1
3
,1
2.
43

)
(0
,1
.3
2)
∪(

6.
13

,1
0.
42

)

6

1
(0
,1
.5
3)
∪
(1
4.
28
,2
3.
87

)
(0
,1
.4
6)
∪
(1
1.
5
6
,2
3.
8
7
)

2
(2
.7
3
,9
.1
9)

(2
.3
0,
8
.5
1
)

(1
.4
8,
6.
29

)
∪
(1
5.
0,
2
3
.1
9)

3
(0
.4
1
,4
.8
3)
∪
(8
.2
9,
12
.7
9)

(0
.2
8,
4.
1
8
)
∪
(7
.9
8
,1
1
.9
8
)

(0
,3
.0
3)
∪
(5
.5
4
,9
.8
3)
∪
(1
5.
9
4,
18
.4
4
)

6
(1
2.
26

,1
3.
86

)
(1
1
.9
6
,1
2
.7
2
)

(0
,0
.9
1)
∪(

9
.2
1,
9.
91

)

7
1

(0
,1
.5
3)
∪
(1
4.
28
,2
3.
87

)
(0
,1
.4
9)
∪
(1
1.
0
1
,2
3.
8
7
)

(0
,1
.9
4)
∪
(6
.1
0
,2
3
.8
7)

7
(1
2.
47

,1
3.
54

)
(1
1
.9
2
,1
2
.3
2
)

(0
,0
.9
2)
∪(

8
.5
2,
9.
32

)

8

1
(0
,1
.5
3)
∪
(1
4.
28
,2
3.
87

)
(0
,1
.5
0)
∪
(1
0.
7
0
,2
3.
8
7
)

(0
,2
.0
0)
∪
(5
.7
0
,2
3
.8
7)

2
(2
.7
3
,9
.1
9)

(2
.2
2,
8
.2
2
)

(1
.3
4
,5
.4
4
)
∪
(1
3.
2
4
,2
0.
3
4)

4
(1
.9
4,
3
.2
2)
∪
(8
.6
9,
9.
35

)
∪
(1
2.
37
,1
4
.4
7)

(0
.5
3,
2
.6
3)
∪
(7
.5
3,
8.
4
3
)
∪
(1
1.
1
3
,1
3
.0
3
)
∪
(2
2.
6
3
,2
3
.2
3
)

(0
,1
.3
3
)
∪
(5
.1
3
,6
.0
3)
∪
(7
.3
3
,9
.1
4)
∪
(1
9.
04
,2
0.
34

)
∪
(2
0.
94
,2
1
.6
4)

8
A
ll
u
n
st
ab

le
(0
,1
.3
5
)∪

(6
.1
5,
6.
95

)∪
(1
6
.3
6
,1
7.
56

)
(0
,0
.9
5)
∪(

7
.9
5,
8.
75

)

9
1

(0
,1
.5
3)
∪
(1
4.
28
,2
3.
87

)
(0
,1
.4
8)
∪
(1
0.
2
2
,2
3.
8
7
)

(0
,2
.0
8)
∪
(5
.4
0
,2
3
.8
7)

3
(0
.4
1
,4
.8
3)
∪
(8
.2
9,
12
.7
9)

(0
.1
9
,4
.0
0
)
∪
(7
.4
9,
1
1
.2
9
)
∪
(2
1.
3
9
,2
3.
8
7
)

(0
,2
.7
8
)
∪
(5
.0
0,
8.
2
9)
∪
(1
4.
3
9,
15
.8
0
)
∪
(1
7.
5
0
,2
2.
4
0)

9
(1
3.
30

,1
3.
65

)
(0
.5
6
,1
.1
6
)∪

(1
1
.3
6
,1
1
.9
6
)

(0
,0
.9
6)
∪(

7
.5
6,
8.
37

)

T
ab

le
4.

4:
C

om
p
ar

is
on

of
p
h
as

e
m

o
d
el

p
re

d
ic

ti
on

of
τ
-i

n
te

rv
al

s
of

as
y
m

p
to

ti
c

st
ab

il
it

y
fo

r
n

-c
lu

st
er

so
lu

ti
on

w
it

h
n
u
m

er
ic

al
of

th
e

fu
ll

m
o
d
el

.
T

h
e

co
u
p
li
n
g

m
at

ri
x

is
W
h
.

O
th

er
p
ar

am
et

er
va

lu
es

ar
e

gi
ve

n
in

T
ab

le
4.

1.

49



0 5 10 15 20
0.5

0.55

0.6

0.65

0.7
m

ax
 v

1(t
)

(a) ε = 0.001, 3-cluster
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(b) ε = 0.01, 3-cluster
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(c) ε = 0.05, 3-cluster
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Figure 4.2: Branches of 3-cluster solutions with respect to τ for system (4.37) with N = 9
and homogeneous coupling. (a) 3-cluster solution with ε = 0.001, (b) 3-cluster solution
with ε = 0.01, (c) 3-cluster solution with ε = 0.05 (d) 3-cluster solution with ε = 0.1
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(a) ε = 0.01, N = 2
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(b) ε = 0.01, N = 4
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(c) ε = 0.01, N = 6
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(d) ε = 0.01, N = 8

Figure 4.3: Branches of the synchronization solutions with respect to τ for system (4.37)
with N = 2, 4, 6, 8, bidirectional coupling and ε = 0.01. (a) N = 2, (b) N = 4, (c) N = 6,
(d) N = 8.
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(a) ε = 0.05, N = 2
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(b) ε = 0.05, N = 4
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(c) ε = 0.05, N = 6
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Figure 4.4: Branches of 2-cluster and 3-cluster solutions with respect to τ for system (4.37)
with N = 6, bidirectional coupling. (a) N = 2, (b) N = 4, (c) N = 6, (d) N = 8.
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n ψ
Stability w.r.t. τ

Wb Wh

1 0 (0, 1.52) ∪ (14.28,23.87) (0, 1.52) ∪ (14.28,23.87)
2 π (2.73, 9.19) (2.73, 9.19)

5
2π
5
, 8π

5
(1.52, 2.61) ∪ (10.78, 12.55)

4π
5
, 6π

5
(1.61, 2.81) ∪ (6.21, 7.77) ∪ (10.03, 12.55) (1.57, 2.69) ∪ (10.03, 12.54)

7

2π
7
, 12π

7
(12.77, 13.29)

4π
7
, 10π

7
(8.13, 9.81 ) ∪ (11.12, 13.28) (12.47, 13.28)

6π
7
, 8π

7
(8.45, 9.88) ∪ (11.11, 13.13)

10
π
5
, 9π

5
All unstable

3π
5
, 7π

5
(7.85, 7.86) ∪ (11.80, 12.62) All unstable

Table 4.5: Phase model prediction of intervals of τ where stable 1-, 2-, 5-, 7-, and 10-cluster
solutions exist. The network has 140 oscillators and the coupling matrix Wb or Wh.

solutions are in the following form

vN
n
l+k(t) = −0.5 +

n

N
+ 0.1RD, k = 1, · · · , N

n
, l = 0, · · · , n− 1.

mi(t) = 0, i = 1, · · · , N.
(4.41)

for t ∈ [−τ, 0]. Here RD is a random number between [0, 1].

From the phase model analysis, we are able to predict the stability regions for all the
cluster states. Table 4.5 summarize the stability intervals with respect to τ for the first
five cluster types.

The phase model predicts that, for bidirectional coupling, there should be four stable
5-cluster solutions when τ = 12 corresponding to ψ = kπ

5
, k = 1, 2, 3, 4. In these 5-cluster

solutions, the clusters are the same and given by

C1 = {1, 6, 11, . . . , 136},
C2 = {2, 7, 12, . . . , 137},

...

C5 = {5, 10, 15, . . . , 140}.

but each solution has a different cluster ordering. The ordering is C1 −C2 −C3 −C4 −C5

with ψ = 2π/5 (see Figure 4.5 (a)), C1−C4−C2−C5−C3 with ψ = 4π/5 (see Figure 4.5
(b)), C1−C3−C5−C2−C4 with ψ = 6π/5(see Figure 4.5 (c)) and C1−C5−C4−C3−C2
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(a) ψ = 2π/5
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(b) ψ = 4π/5
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(c) ψ = 6π/5
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(d) ψ = 8π/5

Figure 4.5: Raster plots showing a stable 5-cluster solutions in a network with N = 140
neurons and bi-directional coupling (connectivity matrix Wb). τ = 12 and ε = 0.001 all
other parameters values are given in Table 4.1. (a) ψ = 2π/5, cluster ordering C1 − C2 −
C3−C4−C5 (b) ψ = 4π/5, cluster ordering C1−C4−C2−C5−C3 (c) ψ = 6π/5, cluster
ordering C1 − C3 − C5 − C2 − C4 (d) ψ = 8π/5, cluster ordering C1 − C5 − C4 − C3 − C2
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with ψ = 8π/5 (see Figure 4.5 (d)). Note that in Figure 4.5 we reorder the indices so that
oscillators that belong to the same cluster are plotted together.

Now consider the 7-cluster solution with connection matrix Wb. The phase model
predicts that when τ = 13 there exist six stable 7-cluster solutions with clusters:

C1 = {1, 8, 15, . . . , 134},
C2 = {2, 9, 16, . . . , 135},

...

C7 = {7, 14, 21, . . . , 140}.
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(a) ψ = 8π/7
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(b) ψ = 6π/7

Figure 4.6: Raster plots showing stable 7-cluster solutions with τ = 13, ε = 0.01 in a
network with N = 140 neurons and bi-directional coupling (connectivity matrix Wb). (a)
ψ = 6π

7
, cluster ordering C1 − C6 − C4 − C7 − C5 − C3. (b) ψ = 8π

7
, cluster ordering

C1 − C3 − C5 − C7 − C2 − C4 − C6.

For ψ = 6π
7

, the cluster ordering is C1 − C6 − C4 − C2 − C7 − C5 − C3 (see Figure
4.6(a)), while for ψ = 8π

7
, the cluster ordering is C1 − C3 − C5 − C7 − C2 − C4 − C6 (see

Figure 4.6(b)). In Figure 4.6, we reorder the oscillator indices so that oscillators that be-
long to the same cluster are plotted together. We were unable to find the other 7-cluster
solutions numerically. There may be two reasons. First, it is caused by the multistability,
and the basin of attraction for the other 7-cluster solutions are smaller that some other
cluster solutions. The other reason is that we choose the initial conditions in the numer-
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ically studies to be constants for t ∈ [−τ, 0]. Modifying the initial conditions to be other
functions may help on finding the other 7-cluster solutions.

Remark 7. We have observed other types of stable cluster solutions. For example, Fig-
ure 4.7 shows solutions of the type (4.31) and (4.32) which appear to be stable. With N = 8
and bidirectional coupling in (4.39), the phase model predicts that the solutions of the type
(4.31) and (4.32) are unstable for all τ when ε > 0, and stable for τ ∈ (1.5, 2.0]∪(13.8, 14.1)
when ε < 0. This prediction is consistent the numerically observed solution which occurs
for ε = −0.01, and τ = 2.
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Figure 4.7: 2-cluster solutions of the form (4.31) (a) and (4.32) (b) for N = 8, ε = −0.01,
τ = 2 and connectivity matrix Wb.

From Tables 4.3 and 4.4 it is clear that the system exhibits multistability for a large
of range of τ values. To further investigate the multistability, we carried out numerical
simulations of the model (4.37) with N = 6 and coupling matrix Wb using XPPAUT [38].
We start with constant initial conditions (vi(t) = vi0, wi(t) = wi0, −τ ≤ t ≤ 0), and apply a
small perturbation to the input current of one or more neurons during the simulation. The
perturbations could cause switching between two different cluster types or between different
realizations of the same cluster type. Figure 4.8 show two examples, where the dark bars
indicate when a particular neuron spikes. When τ = 8, both the 2-cluster solutions and
3-cluster solutions are stable. Figure 4.8 (a) shows that when τ = 8, a perturbation to
neurons 1, 2, 3, 4 and 6 for 600 ≤ t ≤ 650 switches the networks from a 3-cluster solution
(with clusters (1, 4), (2, 5) and (3, 6)) to a 2-cluster solution (with clusters (1, 3, 5), and
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(2, 4, 6)). Figure 4.8 (b) shows when τ = 8, a perturbation to neuron 2, 4, 5, and 6 for
600 ≤ t ≤ 650 switches the network from a 3-cluster solution with clusters ordering (1,
4)-(3, 6)-(2, 5) to a 3-cluster solution with clusters ordering (1, 4)-(2, 5)-(3, 6).

(a) τ = 8 (b) τ = 8

Figure 4.8: Numerical simulations showing multi-stability in a 6 neuron network with
bidirectional coupling. (a) Switching from a 3-cluster solution to a 2-cluster solution. (b)
Switching from a 3-cluster solution to a 3-cluster solution. τ = 8 and ε = 0.001. All other
parameters are given in Table 4.1.

We further investigate the model (4.37) with N = 6 and coupling matrix Wh. The initial
conditions are same as above, and a small perturbation. Table 4.4 show that when τ = 3
both the 2-cluster solutions and 3-cluster solutions are stable. When τ = 8 the 2-cluster
solutions are the only stable solutions. Figure 4.9 shows theses two examples. Figure
4.9(a) shows that when τ = 3, a small perturbation to neurons 3 and 4 for 600 ≤ t ≤ 620
switches the network from a 3-cluster solution to a 2-cluster solution. Figure 4.9(b) shows
that when τ = 8, a small perturbation to neurons 2 and 5 for 600 ≤ t ≤ 620 switches the
network from a 2-cluster solution with cluters 1, 3, 5 and 2, 4, 6 to a 2-cluster solution
with clusters 1,2, 3 and 4, 5, 6.
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(a) τ = 3 (b) τ = 8

Figure 4.9: Numerical simulations showing multistability in a 6 neuron network with ho-
mogeneous coupling. (a) Switching from a 3-cluster solution to a 2-cluster solution when
τ = 3. (b) Switching from a 2-cluster solution to a 2-cluster solution when τ = 8. ε = 0.001
and all other parameters are given in Table 4.1.
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Numerical simulation for any time delay τ

In the above, we have an approximate expression for the interaction function H. The
collective frequency Ω̃ of the 1-cluster solution (4.18) is determined by (4.19) which can be
rewritten as

Ω̃τ

εw̄τ
− Ω

εw̄
= H(−Ω̃τ). (4.42)

The solution can be graphically seen in Figure 4.10. The left hand side of (4.42)
is a line with slope 1/εw̄τ and horizontal intercept Ωτ . Applying the stability theorem
(Theorem 16) for positive ε values, we see that if the line intersects the positive slope of
the H(−Ω̃τ) curve (displayed by solid circles in Figure 4.10), the synchronization solution
at that particular Ω̃ is stable. The synchronization solution is unstable if the line intersects
the negative slope of the curve which is denoted by empty circles. Figure 4.11 plots Ω̃ as a
function of the time delay for two ε values. Branches with stable and unstable synchronous
frequencies alternate with each other. For small coupling strength ε = 0.001, it is only
possible to have one stable synchronous solutions for τ ∈ [0, 100]. However, for ε = 0.01,
it is possible to have two, or three synchronous solutions for larger τ values. Increasing
coupling strength induces multistability.

From equation (4.42) we can get more insight about how the coupling strength ε and
time delay τ affect stability of the synchronization solutions. Fixing Ω, τ and increasing
ε corresponds to rotating the line counterclockwise about its horizontal intercept. For
very small and positive ε, the line is approximately vertical, and intersects the periodic
H(−Ω̃τ) curve only once (see Figure 4.10 (a) for example). That means that there is
only one synchronous frequency Ω̃ whose stability depends on the horizontal intercept
Ωτ . In particular, as Ωτ is varied, the stability of the synchronization solution changes
periodically as the line alternates from an intersection at a negative slope to an intersection
at a positive slope. As ε increases, the line is approximately horizontal and there are more
intersections with the H(−Ω̃τ) curve (see Figure 4.10 (b) for example). In this case, there
exists at least one stable synchronous solution. From Theorem 16, it is clear that only the
local extreme points of H are needed in determine the stability analysis. Thus, we plot
the stability diagram in the (τ, ε)-plane in Figure 4.4.2. It is interesting to note that the
stability regions of instability becomes thiner as increasing of τ .
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(a) ε = 0.001 (b) ε = 0.01

Figure 4.10: Graphical determination of (4.42) for τ = 100, and (a) ε = 0.001; (b) ε = 0.01.
The intersections with solid circles denote stable states, and those with empty circles denote
unstable states.

Figure 4.11: The frequences Ω̃ as a function of τ for ε ∈ (0, 0.01]. The green curves
corresponds to stable in-phase solutions, the red curves correspond to unstable in-phase
solutions.

60



0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time delay τ

ε

Figure 4.12: Stability diagram in the (τ, ε)-plane. In the white region, at least one stable
synchronous solution exists. In the red regions, no stable synchronous states exist.

4.5 Persistence under symmetry breaking.

By the weakly connected theory [64], the phase model analysis should persist under ε-
perturbation of the original model. From the steps of phase model reduction, we can
see that if we perturb the connectivity matrix W = (wij) as W̃ = wij (1 + εmij), the
ε-perturbation term will finally add to O(ε2) term in the phase model (4.8). A similar
conclusion is obtained if we perturb the time delay τ as τij = τ (1+ε σij). Here M = (Mij),
and S = (σij) are N × N matrices with elements which are O(1) with respect to ε. τij
represents transmission time from the jth oscillator to the ith oscillator. Note that, after
the perturbation, system (4.2) no longer possesses any symmetry. To O(ε) the symmetry
persists, however. We thus expect that, for ε sufficiently small, the analysis of section 4.3
should still predict the behaviour of the system.

In order to investigate the effect of the ε-perturbation on the connectivity matrix and
time delay, we carried out sets of numerical simulations. For each set, we compare the
original model with W and τ , to a model with W̃ and τ , and a model with W and τij.
Take N = 6, W = circ{0, 1, 1/2, 1/3, 1/2, 1}, and Mij, σij to be random numbers between
0 and 1. We simulate the original model and two perturbed models with τ = 1, · · · , 15,
and ε = 0.001, 0.01, 0.05, 0.1, respectively. From the simulation results, we see that for
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τ PMP
ε = 0.001 ε = 0.01 ε = 0.05 ε = 0.1

original W̃ τ̃ original W̃ τ̃ original W̃ τ̃ original W̃ τ̃
1 1C/3C 1C 1C 1C NC NC NC NC NC NC 6C NC NC
2 3C 6C 6C 6C 3C 3C 3C 2C 2C 2C 2C 2C 2C
3 2C/3C 2C 2C 2C 3C 3C 3C 2C 2C 2C 2C 2C 2C
4 2C/3C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C
5 2C/3C 3C 3C 3C 2C 2C 2C 2C 2C 2C 2C 2C 2C
6 2C/3C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C NC
7 2C/3C 2C 2C 2C 2C 2C 2C 2C 2C 2C 1C 1C 1C
8 2C/3C 2C 2C 2C 2C 2C 2C 3C 3C NC 1C 1C 1C
9 2C/3C 3C 3C 3C 2C 2C 2C NC 1C 1C 1C 1C 1C
10 3C 3C 3C 3C 1C 1C 1C 1C 1C 1C 1C 1C 1C
11 3C NC NC NC NC NC NC 1C 1C 1C 1C 1C 1C
12 3C NC NC NC NC NC NC 1C 1C 1C 1C 1C 1C
13 3C/6C 6C 6C 6C 1C 1C 1C 1C 1C 1C 1C 1C 1C
14 6C 6C 6C 6C 1C 1C 1C 1C 1C 1C 1C 1C 1C
15 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 2C NC

Table 4.6: Comparison of the original model and the two perturbed models for τ =
1, 2, · · · , 15 with N = 6. The first column shows the stable cluster solutions predicted
by the phase model for each τ .

ε = 0.001, 0.01, 0.05 the behavior of the perturbed models are the same as the unperturbed
one for large time t. More accurately, the perturbed models take longer to settle at steady
states than the original model. For ε = 0.1, the behavior of unperturbed model almost
captures the behavior of the perturbed ones. However, the system is sensitive to the τ
values where steady states switch stability. Therefore, we conclude that for a network with
6 oscillators, the analysis of the original model is valid under perturbation with ε up to
0.05. Furthermore, for a network with N oscillators, the analysis of the system (4.2) should
persist under sufficiently small ε-perturbation.

4.6 Conclusions and future work

In this chapter, we studied a general system of identical oscillators with global circulant,
time-delayed coupling and showed that clustering behavior is a quite prevalent pattern
of solution. We classified different clusters by the phase differences between neighboring
oscillators, and investigated the existence and linear stability of clustering solutions. We
focussed on symmetric cluster solutions, where the same number of oscillators belong to
each cluster. In particular, we showed that certain symmetric cluster solutions exist for any
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type of oscillator and any value of the delay – their existence depends only on the presence
of circulant coupling. We gave a complete analysis of the linear stability of these cluster
solutions. In the case of global bidirectional coupling and global homogeneous coupling,
more details about how the stability changes with parameters could be obtained using the
symmetry. Our results extend some previous work [1, Section 6.1], [91, Section 2], [82,
Section 3.2] to the case with time delayed and more general circulant coupling.

Further exploration was done through numerical continuation and numerical simulation
studies of a specific example: circulantly coupled Morris-Lecar oscillators. We considered
both small (N = 6, 8) and large (N = 140) networks and two types of coupling: homo-
geneous and bi-directional, distance dependent. As expected, the numerical studies agree
with the theoretical predictions of the phase model, so long as the strength of the coupling
(ε) was sufficiently small. For the parameters we explored this was ε . 0.05. In all cas-
es we explored, the 1−cluster (synchronous) solution was the only asymptotically stable
solution when there was no delay in the system. For non-zero delay, this solution could
become unstable and other cluster solutions became stable. We found ranges of the delay
for which the system exhibits a high degree of multistability. The multistability persisted
even under in perturbations of the coupling matrix (W ), and time delay (τ) which break
the symmetry of the model. The perturbed model agreed with the phase model prediction
for ε . 0.01.

Delay-induced multistability has been observed in Hopfield neural networks (e.g., [80,
127]), in networks of spiking neurons [79, 44, 46], and even in experimental systems [45],
where it has been postulated as a potential mechanism for memory storage. The multista-
bility we observe has similar potential. It also provides the network with a simple way to
respond differently to different inputs, without changing synaptic weights. Switching be-
tween solutions with a different number of clusters changes the network average frequency,
which could then change how the network affects downstream neurons.

Multistability between different cluster solutions also has potential connections with the
concept of neural assemblies. A neural assembly is a group of neurons which transiently
act together to achieve a particular purpose [32, 61, 97]. A network with multiple stable
cluster solutions provides a basic model for such behaviour. As the system switches between
different cluster solutions different neurons become synchronized with each other. As we
have shown, it possible for network to possess multiple stable solutions with the same
number of clusters but with different groupings of the neurons.

In the future, it would be interesting to pursue a variety of the directions suggested by
our results. The switching of stability of the cluster solutions as the delay is varied should
be associated with bifurcations in the model. In the case of system with two neurons it has
been shown that delay induced stability changes of the 1− and 2− cluster solutions are
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associated with pitchfork and saddle-node bifurcations in the phase model and sometimes
involve other phase-locked solutions [18]. It would be interesting to explore the delay
induced bifurcations that occur in our network model. Preliminary numerical investigations
of the phase model (not shown) indicate a quite complex bifurcation structure. It would
also be interesting to compute the bifurcation structure of the cluster solutions in the (τ, ε)
parameter plane to get a better understanding of the limits of the validity of the phase
model.
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Chapter 5

Symmetry, Hopf bifurcation and
Emergence of Cluster Solutions in
Time Delayed Neural Networks

5.1 Introduction

In recent years, there has been considerable research studying clustering in systems with
time delays using a variety of techniques. Among all the clustering solutions, synchroniza-
tion, where the phase difference between any two oscillators is zero, (see, e.g., the review
paper of Dörfler and Bullo[27] and references therein) is of great interest. However, syn-
chronization is just one of many possible phase-locked solutions that can occur in coupled
oscillator systems. Further, synchronization is not always a desirable state [96].

Phase model analysis can be used in the case where the uncoupled elements are intrin-
sically oscillating and the coupling is weak [8, 9, 115, 20, 26]. Alternatively, the stability of
cluster solutions can be analyzed directly using Floquet theory and the properties of the
connection matrix [22, 24, 28, 92, 93, 94]. When the uncoupled elements are not oscillato-
ry, the emergence of in-phase and anti-phase (1-cluster and 2-cluster) solutions in two cell
networks has been studied by bifurcation analysis [14, 13, 17, 107].

In many cases, cluster solutions occur in networks of coupled oscillators with symmetry.
Symmetric bifurcation theory was first developed by Golubitsky et al. [50] for systems of
ordinary differential equations and later extended by Wu [120] to systems with time delays.
The key point in such symmetric bifurcation theories is that the patterns of bifurcated equi-
libria and typical oscillators can be predicted in terms of their symmetry. There has been

65



great interest in applying these results to artificial neural network models with DN symme-
try (especially nearest neighbour coupling)[19, 53, 54, 89, 11, 55, 122, 123]. However, little
has been done on more general neural oscillator models or on systems with other symme-
tries. A notable exception is the work of Song and Xu [107] who use symmetric bifurcation
theory to study the existence of 1-cluster and 2-cluster solutions in a two cell network
of FitzHugh-Nagumo neurons. Further, Buono et al. [12] studied rings of delay-coupled
lasers with unidirectional and bidirectional coupling. They use group-theoretic techniques
to classify symmetric compound laser modes (CLMs) according to isotropy subgroups, and
further study the symmetry-breaking bifurcations from maximally symmetric solutions.
We note also the related work of Blyuss et al. [7, 5, 6] which uses symmetric bifurcation
theory to study the cluster solutions arising in various disease models. In this chapter, we
extend [107] to networks with arbitrary N identical neurons with circulant coupling.

In order to determine the properties of bifurcating periodic solutions, normal form cal-
culation is important. As we know, center manifold reduction [23, 117, 74] and multiple
time scales [86, 87, 88, 124] are two useful techniques for computing the normal forms.
To apply the center manifold reduction to a delay differential equation, one needs to first
rewrite the delay differential equation in an operator form, and then decompose the so-
lution space of the corresponding linear equation into stable and center manifolds, finally
compute the normal form on the center manifold by the adjoint operator equation. The
calculation is complex, while the method of multiple time scales can be applied directly
to delay differential equations. Yu et al. [125] proved the equivalence of the multiple time
scales method and the center manifold reduction method for delay differential equation,
i.e. the normal forms, derived using the multiple time scales and center manifold reduction
methods, are identical up to third order.

In this chapter we investigate how symmetric bifurcation theory can help predict the
cluster periodic solutions occurring in time delayed neural oscillator systems. We consider
a network of arbitrary size with arbitrary oscillators and time delayed, global circulant
coupling. The general model is as follows

X ′i(t) = F (Xi(t), Xi(t− τs)) +
N∑
j=1

wijG(Xi(t), Xj(t− τ)), i = 1, · · · , N, (5.1)

where Xi denotes the variables of a m-dimensional subsystems, τs is the self-feedback
delay, and τ is the coupling time delay between different nodes. F and G are smooth
functions that describe the internal and coupling behavior of the subsystems, respectively.
We will focus on models which are relevant to neural networks. Denote W = (wij) =
circ(w0, w1, · · · , wN−1). In particular, we take w0 = 0, all wi to be positive and wi 6= wj,
if i 6= j. As we show below, the structure of W means that the system has ZN symmetry.
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The rest of this chapter is organized as follows. In section 5.2, we determine the critical
values of the delay in (5.1) which lead to Hopf bifurcation. In section 5.3, we investigate the
synchronization patterns of the periodic solutions generated by the Hopf bifurcation using
the symmetric local Hopf bifurcation theory for delay differential equations. In sections
5.4 and 5.5, we apply the results obtained in previous sections to two particular exam-
ples: a FitzHugh-Nagumo network with diffusive coupling and a Morris-Lecar network
with synaptic coupling. We use the method of multiple time scales to determine the sta-
bility of bifurcating periodic solutions and compare the theoretical results with numerical
simulations for specific parameter values.

5.2 Hopf bifurcations induced by the coupling time

delay

Let E∗ = (X∗1 , · · · , X∗N) be a symmetric equilibrium point of (5.1). That is, X∗1 = · · · =
X∗N = X∗ where X∗ satisfies F (X∗, X∗) + w̄G(X∗, X∗) = 0 with w̄ =

∑N−1
k=0 wk. The

linearization of (5.1) about E∗ is given by

X ′i = A1Xi(t) + A2Xi(t− τs) +
N∑
j=1

wijBXj(t− τ), i = 1, · · · , N. (5.2)

Here A1, A2 are the Jacobian matrix of F (Xi, Xi(t − τs)) +
∑N

j=1wijG(Xi(t), Xj(t − τ))
with respect to Xi, Xi(t− τs), evaluated at E∗, respectively. B is the Jacobian matrix of
G(Xi(t), Xj(t−τ)) with respect to Xj(t−τ), evaluated at E∗. Therefore, the characteristic
matrix of the linearization (5.2) is given by

M(λ, τ) =


λI − A1 − A2e

−λτs −e−λτw1B · · · −e−λτwN−1B
−e−λτwN−1B λI − A1 − A2e

−λτs · · · −e−λτwN−2B
...

...
. . .

...
−e−λτw1B −e−λτw2B · · · λI − A1 − A2e

−λτs


where I is the m × m identity matrix. Note that M(λ, τ) is a block circulant matrix.
We use this structure, inspired by the work of [107, 113], to simplify the characteristic
equation.

Recall that λ is a root of the characteristic equation if and only if Ker M(λ, τ) is
nontrivial, i.e., there is a non-zero vector E such that

M(λ, τ)E = 0. (5.3)
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Let ρ be any N -th root of unity, that is

ρ ∈ {ρ0, ρ1, · · · , ρN−1}, and ρk = ei
2π
N
k, k = 0, 1, · · · , N − 1.

Let ξ ∈ IRm. Then the compound vector

E =


ξ
ρξ
...

ρN−1ξ


satisfies (5.3) if and only if ξ satisfies Hξ = 0 where

H = λI − A1 − A2e
−λτs − eλτ (w1ρ+ w2ρ

2 + · · ·+ wN−1ρ
N−1)B.

Using the form of the vectors E with ρ = ρk, k = 0, . . . , N − 1, then shows that the
characteristic equation of the linearization (5.2) is

∆(λ, τ) = det(M(λ, τ)) =
N−1∏
k=0

∆k(λ, τ) = 0, (5.4)

where

∆k(λ, τ) = det(λI − A1 − A2e
−λτs − e−λτδkB). (5.5)

Here δk =
∑N−1

j=1 wjρ
j
k, k = 0, 1, · · · , N − 1, are eigenvalues of the connectivity matrix W .

Define δk = αk + iβk and note that δN−k = δk.

For the rest of the paper we will focus on the case of neural oscillators which can be
written in the form:

V ′i = FV (Vi, Vi(t− τs), Ui(t)) +
N∑
j=1

wijG(Vi(t), Vj(t− τ))

U ′i = FU(Vi, Ui(t))

where the variable Vi ∈ IR corresponds to the voltage and the variables Ui ∈ IRm−1 cor-
respond to gating and other variables (such as intracellular ionic concentrations). This
includes artificial neural networks with delayed self feedback as considered in [19, 21] and
networks of conductance based models such as those we consider in sections 5.4 and 5.5.
Since the connectivity is always through the first variable in these models, the matrix B
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in (5.2) has all components 0 except the B1,1. In this situation we can describe explicitly
how coupling delay gives rise to Hopf bifurcations.

Suppose that the characteristic equation has a pair of pure imaginary eigenvalues.
Specifically, for some value of τ , let iωk be a root of ∆k(λ, τ) for some k ∈ {0, 1, · · · , N−1}.
In this situation we have

∆k(iωk, τ) = L(iωk) +H(iωk)δke
−iωkτ

Separating into real and imaginary parts we have

(HRαk −HIβk) cos(ωkτ) + (HIαk +HRβk) sin(ωkτ) = −LR
(HIαk +HRβk) cos(ωkτ)− (HRαk −HIβk) sin(ωkτ) = −LI

(5.6)

where LR, LI , HR, HI denote the real and imaginary parts of L(iωk), and H(iωk), respec-
tively. Note that LR, HR are even functions of ω while LI , HI are odd. Squaring and
adding the above two equations yields

L2
R + L2

I − (H2
R +H2

I )(α2
k + β2

k) = 0. (5.7)

There are several possibilities. If δk is complex, then ∆k(λ, τ) has a root iωk and ∆N−k(λ, τ)
has a root −iωk, corresponding to the roots ±ωk of (5.7). If δk is real, then ∆k(λ, τ) has a
pair of pure imaginary roots (±iωk) corresponding to the roots±ωk of (5.7). This is the case
for k = 0 and k = N

2
(forN even). If δk is real and k 6= 0, N

2
then ∆k(λ, τ) = ∆N−k(λ, τ) and

both have a pair of purely imaginary roots (±iωk), thus ∆(λ, τ) has a repeated pair of pure
imaginary roots. This will occur, for example, if the connection matrix W is symmetric
as well as circulant. In all cases, it is enough to consider ∆k(λ, τ), k = 0, 1, . . . ,

⌊
N
2

⌋
to

determine all the roots of ∆(λ, τ) with pure imaginary real parts.

Provided that ωk exists, (5.6) may be solved for the corresponding value of τ

τk,j =
1

ωk

(
2πj − ψk + arccos(

−LR√
(H2

R +H2
I )(α2

k + β2
k)

)

)
, if LI > 0

=
1

ωk

(
(2π(j + 1)− ψk − arccos(

−LR√
(H2

R +H2
I )(α2

k + β2
k)

)

)
, if LI < 0.

(5.8)

with

ψk = arg(H(iω)δk).

We now have the following result.
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Theorem 19. Assume that the characteristic equation (5.4) has a simple pair of pure
imaginary roots ±iωk when τ = τk,j as defined in (5.8), and all other roots λ satisfy
λ 6= liωk for any integer l. Assume

|L(iω)|2[HR(ω)H ′R(ω) +HI(ω)H ′I(ω)]− |H(iω)|2[LR(ω)L′R(ω) + LI(ω)L′I(ω)] 6= 0.

Then, (5.1) undergoes a Hopf bifurcation near the equilibrium point E∗ at each critical
value τk,j.

Proof. Straightforward calculations show that

Re

[
dλ(τ)

dτ

∣∣∣∣
τ=τk,j

]
6= 0

if and only if

|L(iω)|2[HR(ω)H ′R(ω) +HI(ω)H ′I(ω)]− |H(iω)|2[LR(ω)L′R(ω) + LI(ω)L′I(ω)] 6= 0.

The result then follows from the standard Hopf bifurcation theorem for delay differential
equations [58].

5.3 Patterns of bifurcating periodic solutions

In this section, we investigate the patterns of periodic solutions arising in the Hopf bi-
furcation described above. To do this, we must reformulate (5.1) and study its symme-
try. Set u(t) = (X1(t), · · · , XN(t))T and define ut(ϑ) = u(t + ϑ), for ϑ ∈ [−τ, 0]. Let
ut ∈ C = C([−τ, 0],RmN), the Banach space of continuous mapping from [−τ, 0] to RmN

equipped with supremum norm. Then (5.1) can be rewritten

u′(t) = h(ut) (5.9)

where

hi(φ) = Fk(φl(0), φl(−τs)) +
N∑
j=1

wljGk(φl(0), φj(−τ)) (5.10)

with i = lm+ k, l = 0, . . . , N − 1, k = 0, . . . ,m− 1. Similarly, the linearization (5.2) may
be rewritten

u′(t) = L(τ)ut (5.11)
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where
L(τ)φ = (A1 ⊗ Im)φ(0) + (A2 ⊗ Im)φ(−τs) + ε(W ⊗B)φ(−τ) (5.12)

where Im is the m × m identity matrix, and “⊗ ” represents the Kronecker product of
matrices. From standard theory [58], this linear system generates a strongly continuous
semi-group of linear operators on C with infinitesimal generator, A, defined by

A(τ)φ = φ̇, φ ∈ Dom(A)

Dom(A(τ)) = {φ ∈ C : φ̇ ∈ C, φ̇(0) = L(τ)φ}.

Let Γ be a group acting on RmN . It follows from [50, 120] that (5.9) is Γ-equivariant
if h(γut) = γh(ut) for all γ ∈ Γ. From (5.10), the symmetry of (5.9) is determined by the
symmetry of the connection matrix W . We will focus on the case where W is circulant
but does not possess any other symmetry. Thus we consider Γ = ZN , the cyclic group of
order N , with generator γ, where the action of ZN on RmN is given by

(γu)i = ui−m, for i, i−m mod Nm,

where ui is the ith component of u. Then it is easy to verify that both (5.9) and (5.11) are
ZN equivariant.

Suppose that when τ = τk,j the characteristic equation (5.4) has a pair of pure imaginary
roots, ±iωk, with corresponding vectors, ξk, ξ̄k ∈ Ker M(iω, τk,j), as described in the
previous section. Then A(τk,j) has eigenvalues ±iωk and the corresponding generalized
eigenspace, Uiωk , is spanned by the eigenfunctions Re(eiωkθξk), Im(eiωkθξk) [58, 120].

Lemma 2. Assume that for one and only one k ∈ 0, 2, . . . ,
⌊
N
2

⌋
and some j ∈ Z+

0 , τ =
τk,j > 0 as defined in (5.8), i.e., the characteristic equation (5.4) has a simple pair of pure
imaginary roots ±iωk. Then

dim Ker M(±iωk, τk,j) = 2,

and the restricted action of ZN on Ker M(iωk, τk,j) is isomorphic to the action of ZN on
R2.

Proof. It follows from the discussion of the previous section that

Ker M(iωk, τk,j) = {(y1 + iy2)ξk; y1, y2 ∈ R}.

From [50], R is an absolutely irreducible representation of ZN . Define J : Ker M(iωk, τk,j) ∼=
R2 as

J((y1 + iy2)ξk) = (y1, y2)T .
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Clearly, J is a linear isomorphism. Note that

γ((y1 + iy2)ξk) = (y1 + iy2)γ(ξk) = ρN−1
k (y1 + iy2)ξk.

Consequently

J [γ((y1 + iy2)ξk)] = γ[J((y1 + iy2)ξk)].

This completes the proof.

Let T = 2π
ωk

, and denote by PT the Banach space of continuous T -periodic mappings,

u : R → RmN , and by SPT the subspace of PT consisting of all T -periodic solutions of
(5.11) when τ = τk,j. Specifically,

SPT =
{
x1ε1(t) + x2ε2(t), x1, x2 ∈ R

}
, (5.13)

where

ε1(t) = cos(ωkt)Re(ξk)− sin(ωkt)Im(ξk),

ε2(t) = sin(ωkt)Re(ξk) + cos(ωkt)Im(ξk).

Let S1 be the circle group. Then ZN × S1 acts on PT (and hence, SPT ) as follows

(γ, θ)u(t) = γu(t+ θ), γ ∈ ZN , θ ∈ [0, T ). (5.14)

For any θ ∈ (0, T ), let Σθ be the subgroup of ZN × S1 generated by (γ, θ). Its fixed point
set is given by

Fix(Σθ, SPT ) =
{
u ∈ SPT , (γ, θ)u(t) = u(t)

}
. (5.15)

Lemma 3. Assume that the characteristic equation (5.4) has a simple pair of pure imag-
inary roots ±iωk. If θ = k

N
T , then Fix(Σθ, SPT ) = SPT , otherwise Fix(Σθ, SPT ) = 0.

Moreover,

dim(Fix(Σθ, SPT )) =

{
2, if θ = k

N
T ,

0, otherwise.

Proof. To begin, note that

γ(Re(ξk)) = cos
2πk

N
Re(ξk) + sin

2πk

N
Im(ξk),

γ(Im(ξk)) = − sin
2πk

N
Re(ξk) + cos

2πk

N
Im(ξk).
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Therefore,

γ(x1ε1(t) + x2ε2(t)) = x1 cos(ωkt)γ(Re(ξk))− sin(ωkt)γ(Im(ξk))

+ x2 sin(ωkt)γ(Re(ξk)) + cos(ωkt)γ(Im(ξk))

= (x1 cos
2πk

N
− x2 sin

2πk

N
)ε1(t) + (x1 sin

2πk

N
+ x2 cos

2πk

N
)ε2(t).

Further, straightforward calculations show that

(x1ε1 + x2ε2)(t+ θ) = (x1 cos(ωkθ) + x2 sin(ωkθ))ε1(t) + (−x1 sin(ωkθ) + x2 cos(ωkθ))ε2(t).

Now consider

γ(x1ε1(t) + x2ε2(t)) = (x1ε1 + x2ε2)(t+ θ). (5.16)

In order for this to hold we must have

x1 cos
2πk

N
− x2 sin

2πk

N
= x1 cos(ωkθ) + x2 sin(ωkθ),

x1 sin
2πk

N
+ x2 cos

2πk

N
= −x1 sin(ωkθ) + x2 cos(ωkθ).

Solving the above two equations, we obtain

θ =
(N − k)T

N
and x1, x2 ∈ R, or

θ 6= (N − k)T
N

and x1 = x2 = 0.

Note that γu(t) = u(t+ (N−k)T
N

) if and only if γu(t+ kT
N

) = u(t). The conclusion follows.

From Lemma 2, and 3, we can apply the symmetric local Hopf bifurcation theorem for
delay differential equation in [120, Theorem 2.1] to obtain the following results.

Theorem 20. Assume the conditions of Theorem 19 are satisfied. The spatio-temporal
symmetry of the periodic solution of (5.1) arising in the Hopf bifurcation at τ = τk,j is
determined by Fix(Σθ, SPT ) as described in Lemma 3. Specifically, we have the following

(1) For τ = τ0,j > 0, there exists a bifurcation of periodic solutions of (5.1) with period
near 2π

ωk
, and satisfying

ui−pm(t) = ui(t), i = 1, 2, . . . ,m, p = 1, . . . , N − 1,

which is the in-phase (1-cluster) periodic solution.
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(2) For τ = τk,j > 0 such that k and N are relatively prime, there exists a bifurcation of
N-cluster periodic solutions of (5.1). These solutions satisfy

ui−pm(t) = ui(t− pkTN ), i = 1, 2, . . . ,m, p = 1, . . . , N − 1.

where T is near 2π
ωk

.

(3) For τk,j such that k and N have greatest common factor b > 1, there exists a bifur-
cation of n-cluster periodic solutions of (5.1). These solutions satisfy

ui−pm(t) = ui(t− p lTn ), i = 1, 2, . . . ,m, p = 1, . . . , N − 1.

where n = N/b, l = k/b and T is near 2π
ωk

.

Remark 8. We have focussed on the case of minimal symmetry in W . The case that W
has more symmetry can be dealt with analogously. For example, when W is symmetric and
circulant the system (5.1) has Dn symmetry. In this case, the additional symmetry leads
to multiple pairs of pure imaginary eigenvalues and the standard Hopf bifurcation theorem
does not apply. However, analysis similar to that carried out in this section can be done
and the symmetric local Hopf bifurcation theorem [120, Theorem 2.1] may be applied. See
[120, 54, 21] for examples of this in the case of artificial neural network models with delay.

5.4 Application to a FitzHugh-Nagumo network

In this section, we apply the theory of the previous sections to the following network of
FitzHugh-Nagumo neurons:

µx′i = xi −
x3
i

3
− yi + ε

N∑
j=1

wij(xj(t− τ)− xi(t))

y′i = xi + a, i = 1, 2, · · · , N.

(5.17)

where xi, yi correspond to single neurons which are linearly coupled with coupling strength
ε and coupling matrix W . Here a is an excitability parameter whose value defines whether
the system is excitable (|a| > 1), or exhibits self-sustained periodic firing (|a| < 1), and
µ > 0 is the time-scale parameter, which is usually chosen to be much smaller than unity,
corresponding to fast activator variables, xi, and slow inhibitor variables, yi [43, 85]. The
coupling between two different neurons is modeled as a diffusive or electrical coupling. The
time delay τ in the coupling is motivated by the propagation delay of action potentials
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between different neurons. The connectivity matrix W = (wij) describes how information
is distributed between neurons. Notice that in the simplification from the four dimensional
Hodkgin-Huxley equation to the two dimensional FitzHugh-Nagumo model, the activation
variable x is taken to represent the effect of the membrane potential Vm and sodium
activation variable m, and y is “recovery” variable that represents the combined effect of
sodium channel deinactivation (1−h) and potassium channel deactivation (n). Therefore,
yi depends on xi. Thus there is no time delay on yi variables.

Each neuron is described by a simplified FitzHugh-Nagumo system [43, 85]. In [27,
102], the authors numerically studied the networks with two neurons, i.e. N = 2. They
took the time delay τ as parameter, and found when a > 1, the existence of bistability
between the stable fixed point and periodic solutions for sufficiently large delay τ and
coupling strength ε. In addition, [102] found the antiphase (2-cluster) solutions. Song et.al
[107] further investigated the problem theoretically. They studied the existence of a Hopf
bifurcation induced by τ , and then investigated the influence of τ on different patterns of
Hopf bifurcating periodic solutions.

In this section, we systematically study the stability and Hopf bifurcation of the delay-
coupled FitzHugh-Nagumo system (5.17), and theoretically investigate the oscillation pat-
terns induced by coupling delay. In particular, we specify the relation between oscillation
patterns and coupling delay, and further study how the critical time delays depends on
the coupling strength ε. Finally, we investigate the stability of Hopf bifurcating periodic
solutions explicitly in terms of τ and ε

5.4.1 Stability and Hopf bifurcations induced by the coupling
time delay

In the model (5.17) there is a unique symmetric equilibrium point given byE∗ = (x∗, y∗, · · · ,
x∗, y∗)T with x∗ = −a, y∗ = −a+ a3

3
. The linearization of (5.17) at this equilibrium point

is given by (5.2) with

A1 =

(
1
µ
(1− a2 − εw̄) − 1

µ

1 0

)
, A2 = 0, B =

(
ε
µ

0

0 0

)
.

Hence the characteristic equation is given by (5.4) with

∆k = λ2 + prλ+ r − εrδkλe−λτ (5.18)

where p = a2 − 1 + εw̄, r = 1
µ
> 0, w̄ =

∑N−1
j=1 wij =

∑N−1
k=1 wk, and δk is as defined in

section 5.2.
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It is well-known that the number of roots (counting their multiplicity) of equation (5.4)
in the open right half plane {λ ∈ C, Reλ ≥ 0} can change only if a root appears on, or
crosses the imaginary axis. Thus, the condition guaranteeing that (5.4) has a root with
zero real part will play a key role in the analysis of the distribution of roots.

Straightforward calculations lead to the following

Lemma 4. Assume that τ = 0 and let IN = {0, 1, . . . ,
⌊
N
2

⌋
}. Then we have

1. All 2N roots of (5.4) have negative real parts if ε(αk − w̄) < a2 − 1, for all k ∈ IN .

2. At least one root of (5.4) has positive real part if ε(αk− w̄) > a2−1 for some k ∈ IN .

3. If ε(αk − w̄) = a2 − 1, for k = 0 or k = N/2 (N even), (5.4) has a pair of purely
imaginary roots ±i

√
r.

4. If ε(αk − w̄) = a2 − 1, for some k = 1, · · · ,
⌊
N−1

2

⌋
, then (5.4) has two pairs of purely

imaginary roots ±i εβk±
√
ε2β2

k+4µ

2µ

In the following, we seek the condition such that (5.4) has purely imaginary roots when
τ > 0. That is, for some k ∈ IN , ∆k has purely imaginary roots. Noting that

L(iω) =
1

µ
− ω2 + i

ωp

µ
, H(iω) = −iωε

µ

we define ω±k and τ±k,j, as follows:

ω±k =

√
2

2µ

√
(2µ− p2 + ε2|δk|2)±

√
(2µ− p2 + ε2|δk|2)2 − 4µ2 (5.19)

and

τ+
k,j =

1

ω+
k

[
2π(j + 1)− ψk − arccos

(
a2 − 1 + εw̄

ε|δk|

)]
,

τ−k,j =
1

ω−k

[
2πj − ψk + arccos

(
a2 − 1 + εw̄

ε|δk|

)]
,

(5.20)

and τ̂±k,j = τ±k,j −
2ψk
ω±
k

, where

ψk = arg(δk).

Then, Lemma 4 and the results of section 5.2 give the following.
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Lemma 5. for k ∈ IN and j ∈ Z+
0 = {0, 1, . . .},

1. If |ε||δk| < µ|p|, the equation ∆k = 0 has no purely imaginary roots for all τ ≥ 0.

2. If |ε||δk| > µ|p|, the equation ∆k = 0 has purely imaginary roots iω±k (−iω±k ) at
τ = τ±k,j (τ̂±k,j) and the equation ∆N−k = 0 has purely imaginary roots −iω±k (iω±k ) at

τ = τ±k,j (τ̂±k,j).

3. If ε|δk| = −µp then ω+
k = ω−k =

√
r and τ+

k,j = τ−k,j. If ε|δk| = µp then ω+
k = ω−k =

√
r

and τ+
k,j = τ−k,j+1.

4. Let λ(τ) = η(τ) + iω(τ) be a solution of the equation ∆k = 0 satisfying η(τ±k,j) = 0

and ω(τ±k,j) = ω±k , then we have

Re

(
dλ

dτ

∣∣∣∣
τ=τ+k,j ,τ̂

+
k,j

)
≥ 0, Re

(
dλ

dτ

∣∣∣∣
τ=τ−k,j ,τ̂

−
k,j

)
≤ 0,

with equality occurring only when |ε||δk| = µ|p|.

Remark 9. When ε < 0, the above statements remain true with

τ+
k,j =

1

ω+
k

[
2πj + ψk + arccos

(
a2 − 1 + εw̄

ε|δk|

)]
,

τ−k,j =
1

ω−k

[
(2j + 2)π + ψk − arccos

(
a2 − 1 + εw̄

ε|δk|

)]
,

If ε|δk| = µp then ω+
k = ω−k =

√
r and τ+

k,j+1 = τ−k,j.

We can now completely describe the stability of E∗ and the Hopf bifurcations.

Theorem 21. Assume that ω±k and τ±k,j are defined as in (5.19) and (5.20), respectively.

1. If |a| > 1 and ε > 1−a2
2w̄

, then the equilibrium point E∗ is asymptotically stable for all
τ ∈ [0,∞).

2. If either |a| > 1 and ε < 1−a2
w̄−|δk|

for some k ∈ IN \ {0}, or |a| < 1 and ε < 1−a2
w̄+|δk|

for

some k ∈ IN , then the equilibrium point E∗ is unstable for all τ ∈ [0,∞).

3. If either |a| > 1 and ε < 1−a2
2w̄

or |a| < 1 and ε > 1−a2
2w̄

then the system undergoes Hopf
bifurcation at the equilibrium point E∗ for τ = τ+

0,j and τ = τ−0,m, for all j,m ∈ Z+
0

such that τ+
0,j 6= τ±p,s for any p ∈ IN , s ∈ Z+

0 and τ−0,m 6= τ±q,t for any q ∈ IN , t ∈ Z+
0 .
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4. If either |a| > 1 and 1−a2
w̄−|δk|

< ε < 1−a2
w̄+|δk|

for some k ∈ IN \ {0}, or |a| < 1 and

ε > 1−a2
w̄+|δk|

for some k ∈ IN \ {0}, then system (5.17) undergoes Hopf bifurcation

near the equilibrium point E∗ at τ = τ+
k,j and τ = τ−k,m, for all j,m ∈ Z+

0 such that

τ+
k,j 6= τ±p,s for any p ∈ IN , s ∈ Z+

0 and τ−k,m 6= τ±q,t for any q ∈ IN , t ∈ Z+
0 .

Proof. The proof follows from Lemma 5 and consideration of the distribution of roots of
the characteristic equation.

We now use a Lyapunov functional to establish a global stability result for the equi-
librium point E∗. First, letting xi + a 7→ x̃i, yi + a − a3

3
7→ ỹi, and dropping the ˜ for

simplicity, we transform E∗ to a zero equilibrium point for the following system

x′i =
1

µ

[
(1− a2 − εw̄)xi − yi + ε

N∑
j=1

wijxj(t− τ) + ax2
i −

x3
i

3

]
y′i = xi.

(5.21)

Theorem 22. If |a| > 2 and ε > 4−a2
8w̄

, the equilibrium point E∗ of (5.17) is globally
asymptotically stable.

Proof. Consider system (5.21), and define

V (x, y)(t) = µ
N∑
i=1

x2
i (t) +

N∑
i=1

y2
i (t) + |ε|

N∑
i=1

( N∑
j=1

wij

∫ t

t−τ
x2
j(v)dv

)
.
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Thus

dV

dt
= 2µ

N∑
i=1

xi(t)x
′(t) + 2

N∑
i=1

yi(t)y
′(t) + |ε|

N∑
i=1

( N∑
j=1

wij(x
2
j(t)− x2

j(t− τ))

)

= 2
N∑
i=1

(1− a2 − εw̄)x2
i − 2

N∑
i=1

xiyi + ε

N∑
i=1

N∑
j=1

2wijxixj(t− τ) + 2a
N∑
i=1

x3
i

− 2/3
N∑
i=1

x4
i + 2

N∑
i=1

yixi + |ε|
N∑
i=1

( N∑
j=1

wij(x
2
j(t)− x2

j(t− τ))

)

≤
N∑
i=1

2(1− a2 − εw̄)x2
i + |ε|

N∑
i=1

( N∑
j=1

wij(x
2
i (t) + x2

j(t− τ))

)
− 2/3

N∑
i=1

x4
i

+
N∑
i=1

(3a2/2x2
i + 2/3x4

i ) + |ε|
N∑
i=1

( N∑
j=1

wij(x
2
j(t)− x2

j(t− τ))

)

=
N∑
i=1

(2− 1/2a2 − 2εw̄ + 2|ε|w̄)x2
i (t).

If ε ≥ 0, the zero equilibrium point of (5.21) is globally asymptotically stable if 2 −
1/2a2 < 0; and if ε < 0, the zero equilibrium point is globally asymptotically stable if
2 − 1/2a2 − 4εw̄ < 0. Since the zero equilibrium point has the same stability as E∗ of
(5.17), we have the conclusion of the theorem.

The Hopf bifurcations described by Theorem 21 create cluster periodic solutions, as
described by Theorem 20. To understand how this effects the dynamics of the system, we
need to determine the stability of these solutions, which we do in the next section.

5.4.2 Direction and stability of Hopf bifurcations

In this section, we first derive the normal form of Hopf bifurcation by using the multiple
time scales method taking the time delay or the coupling strength ε as the bifurcation
parameter, and then give a bifurcation analysis based on the normal form.

As discussed above, system (5.17) undergoes Hopf bifurcation at τ±k,j. Here we denote

τ±k,j = τk for simplicity. In this section, we assume that the characteristic equation (5.4)
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has a pair of pure imaginary roots ±ω±k at τk, and all the other eigenvalues have negative
real parts.

Defining u(t) = (u1(t), · · · , u2N(t))T = (x1(t), y1(t), · · · , xN(t), yN(t))T , system (5.21)
can be rewritten as

u′ = N0u(t) +N1u(t− τ) + f(u(t)), (5.22)

where

N0 =


M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M

 , N1 =
ε

µ


0 w̄1 w̄2 · · · ¯wN−1

¯wN−1 0 w̄1 · · · ¯wN−2
...

...
...

. . .
...

w̄1 w̄2 w̄3 · · · 0

 , and

f(u(t)) =
1

µ


au2

1 −
u31
3

0
...

au2
2N−1 −

u32N−1

3

0


with

M =

[
1−a2−εw̄

µ
− 1
µ

1 0

]
, and w̄i =

[
wi 0
0 0

]
, i = 1, · · · , N − 1.

Defining

τ = τk + ζ2τ2, (5.23)

we seek a second-order uniform expansion of the solution of equation (5.22) in the neigh-
borhood of τ = τk in the form

u(t, ζ) = ζu1(T0, T2) + ζ2u2(T0, T2) + ζ3u3(T0, T2). (5.24)

Here T0 = t, T1 = ζt, T2 = ζ2t, and ζ is a dimensional bookkeeping parameter. Note that,
the solution does not depend on the slow scale T1 because secular terms first appear at
O(ζ3). In this case, the derivative with respect to t is transformed into

d

dt
=

∂

∂T0

+ ζ2 ∂

∂T2

= D0 + ζ2D2,
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with Di = ∂
Ti

, i = 0, 2. Substituting (5.24) into f(u(t, ζ)) yields

f(u(t, ζ)) =
∑
k≥2

ζkfk(u1(T0, T2), u2(T0, T2), u3(T0, T2)). (5.25)

Moreover, we express u(t− τ) in terms of the scales T0 and T2 as

u(t− τ, ζ) = ζu1(T0 − τ, T2 − ζ2τ) + ζ2u2(T0 − τ, T2 − ζ2τ) + ζ3u3(T0 − τ, T2 − ζ2τ)

which upon expansion for small ζ becomes

u(t− τ, ζ) = ζu1τ + ζ2u2τ + ζ3(u3τ − τ2D0u1τ − τkD2u1τ ) (5.26)

with uiτ = ui(T0 − τk, T2), i = 1, 2, 3. Substituting equations (5.24) - (5.26) into equation
(5.22), and equating coefficients of like powers of ζ yields

D0u1 −N0u1 −N1u1τ = 0, (5.27)

D0u2 −N0u2 −N1u2τ = f2, (5.28)

D0u3 −N0u3 −N1u3τ = −D2u1 − τ2N1D0u1τ − τkN1D2u1τ + f3, (5.29)

The general solution of equation (5.27) is

u1 = Ak(T2)pke
iωkT0 + Āk(T2)p̄ke

−iωkT0 , (5.30)

where pk is given by

pk = (iωk, 1, iωkρk, ρk, · · · , iωkρN−1
k , ρN−1

k )T , (5.31)

with ρk = e
i2π
N
k. Substituting equation (5.30) into equation (5.28) yields

D0u2 −N0u2 −N1u2τ =
aω2

k

µ

[
− A2e2iωkT0α + AĀβ

]
+ c.c, (5.32)

where c.c stands for the complex conjugate of the preceding terms and

α = (1, 0, ρ2
k, 0, · · · , ρ

2(N−1)
k , 0)T ,

β = (1, 0, 1, 0, · · · , 1, 0)T .

A particular solution of (5.32) has the form

u2 = α1e
2iωkT0 + β1 + c.c. (5.33)
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Substituting (5.33) into (5.32), and balancing similar terms, we have

u2 = γe2iωkT0



1
1

2iωk

ρ2
k

1
2iωk

ρ2
k

...

ρ
2(N−1)
k

1
2iωk

ρ
2(N−1)
k


+ aω2

kAĀ



0
1
0
1
...
0
1


+ c.c, (5.34)

where

γ =
−aω2

k

µ[2iωk − 1−a2+εw̄
µ

+ 1
2iωkµ

− ε
µ
e−2iωkτk(w1ρ2

k + · · ·+ wN−1ρ
2(N−1)
k )

. (5.35)

Substituting (5.30) and (5.34) into (5.29), we have that

D0u3 −N0u3 −N1u3τ = −
[
(pk − τkN1pke

−iωkτk)A′k − iωkτ2N1pke
−iωkτkAk

− (
iω3

k

µ
+

2iωkaγ

µ
η)A2

kĀk
]
eiωkT0 + c.c+NRT

(5.36)

Here η = (1, 0, ρk, 0, · · · , ρN−1
k , 0)T , and NRT stands for non-secular terms that do not con-

tribute the normal form. Because the homogeneous part of (5.36) has nontrivial solutions,
the nonhomogeneous equation has a solution only if a solvability condition is satisfied. To
determine this solvability condition, we seek a particular solution of (5.36) in the form

u3(T0, T2) = φφφ(T2)eiωkT0 + c.c. (5.37)

and obtain

(−iωkI +N0 +N1e
−iωkτk)φφφ =

(pk − τkN1pke
−iωkτk)A′k − iωkτ2N1pke

−iωkτkAk − (
iω3

k

µ
+

2iωkaγ

µ
η)A2

kĀk)
(5.38)

Note that the problem of finding solvability condition for the system of different equations
(5.36) has been transformed into finding the solvability condition for the system of algebraic
equation (5.38). Again, because iωk is an eigenvalue of the homogeneous part, (5.38) has
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solutions if and only if a solvability condition is satisfied. The condition is that the right-
hand side of (5.38) be orthogonal to every solution of the adjoint homogeneous problem.
In this case, the adjoint problem is

(NT
0 +NT

1 e
iωkτk + iωkI)qk = 0. (5.39)

Note that qk is not unique. To make it unique, we impose the condition

〈qk,pk〉 = q̄k
Tpk = 1. (5.40)

Thus, we have

qk =
1

N(w2
k + 1

µ
)
(iωk,

1

µ
, iωkρk,

ρk
µ
, · · · , iωkρN−1

k ,
ρN−1
k

µ
))T . (5.41)

Taking inner product of the right-hand side of (5.38) with qk yields the solvability condi-
tion, normal form

A′k = D1τ2Ak +D2A
2
kĀk, (5.42)

where

D1 = − iω3
kεδke

−iωkτk

ω2
k(µ+ εδkτke−iωkτk) + 1

, D2 = − ω4
k + 2ω2

kaγ

ω2
k(µ+ εδkτke−iωkτk) + 1

.

Let Ak = rke
iθk , substituting these expressions into (5.42), we have

r′k = d1τ2rk + d2r
3
k

θ′k = d3τ2 + d4r
2
k,

(5.43)

where d1 = Re(D1), d2 = IR(D2), d3 = Im(D1), d4 = Im(D2).

This normal form determines both the direction of the Hopf bifurcation (supercritical
when d1d2 < 0, and subcritical when d1d2 > 0), and the stability of bifurcating periodic
solutions (stable if d2 < 0, and unstable if d2 > 0).

Normal form calculation taking ε as bifurcation parameter

Similarly, by the multiple time scale method, and taking the coupling strength ε as bifur-
cation parameter, we seek a second order uniform expansion of the solution of (5.17) in

83



the neighborhood of εc. Assume ε = εc + ζ2ε2. The normal form with ε as the bifurcation
parameter is as follows:

r′k = dε,1ε2rk + dε,2r
3
k

θ′k = dε,3ε2 + dε,4r
2
k,

(5.44)

with where γ1 = Re(Γ1), γ2 = Re(Γ2), γ3 = Im(Γ1), γ4 = Im(Γ2). Here

Γ1 = − ω2
k(δke

−iωkτk − w̄)

ω2
k(µ+ εcδkτe−iωkτ ) + 1

,

Γ2 = − ω4
k + 2ω2

kaγ̄

ω2
k(µ+ εcδkτe−iωkτ ) + 1

.

and γ̄ is defined as in (5.35) with ε 7→ εc, and τk 7→ τ , that is,

γ̄ =
−aω2

k

µ(2iωk − 1−a2−εcw̄
mu

+ 1
2iωkµ

− εc
µ
e−2iωkτ (w1ρ2 + · · ·wN−1ρ2(N−1)))

.

Similarly, we have that system undergoes supercritical Hopf bifurcation at ε = εc when
dε,1dε,2 < 0, and subcritical Hopf bifurcation when dε,1dε,2 > 0). Furthermore, the stability
of bifurcating periodic solutions are stable if dε,2 < 0, and unstable if dε,2 > 0.

5.4.3 Example: FitzHugh Nagumo network with 6 neurons

In this section, we illustrate our results by considering specific parameter values: µ = 0.1,
N = 6 neurons and coupling matrix W = circ(0, 1, 1

2
, 1

3
, 1

4
, 1

5
).

From Theorems 21 and 22, for a fixed µ value, the delay independent stability regions
can be plotted in the plane of parameters a and ε. This is done in Figure 5.1. In the region
marked by GAS, the equilibrium point E∗ is globally asymptotically stable for all τ ≥ 0.
In the region marked by AS, E∗ is asymptotically stable. In the region marked by US, E∗

is unstable and there is no Hopf bifurcation for any τ ≥ 0. In the white region, E∗ may
be unstable, or experience stability switching when Hopf bifurcation occurs at τ = τk.

From Theorem 21, the characteristic equation has at least one root with positive real
part for all τ ≥ 0 when (a, ε) is located on the region marked by US. It follows that
periodic orbits created in Hopf bifurcations from E∗ in this region are always unstable.
Thus, Hopf bifurcations creating stable periodic orbits can occur only in the white region.
To investigate in further detail, we fix the µ and a values, and plot the Hopf bifurcation
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Figure 5.1: Delay independent stability of E∗ and Hopf bifurcation regions in the a − ε
plane for a network of 6 FitzHugh-Nagumo oscillators with µ = 0.1 and connectivity
matrix W = circ(0, 1, 1

2
, 1

3
, 1

4
, 1

5
). GAS stands for globally asymptotically stable, AS stands

for asymptotically stable and US is unstable. In the white regions stability depends on the
delay.
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curves and stability region in the plane of the coupling strength ε and time delay τ . See
Figures 5.2 and 5.3. Then, using Theorem 21, we can determine how many pairs of positive
eigenvalues there are in each region of the ε− τ plane. Hence we can determine the region
of stability of E∗; shown by the shaded region in Figures 5.2 and 5.3. For a > 1 (a < 0),
region of stability looks similar but as a increases/decreases the Hopf bifurcation curves
move to the left/right (right/left). Note that the Hopf bifurcation is only possible when
ε > 0 (ε < 0) when a < 1 (a > 1). When a < 1 equilibrium point is unstable for all ε when
τ = 0, but the delay induced Hopf bifurcation stabilizes the equilibrium point in the region
shown. As a decreases the curves reorganize and this region of stability is completely lost
for a < 0.82.

Numerical study taking τ as bifurcation parameter

From the expressions derived in the previous section, we can calculate the sign of the
coefficients d1, d2 of the normal form (5.42), at each critical τ value along the Hopf bi-
furcation curves of Figure 5.3. Note that the sign of d1 is the same as that of dRe(λ)/dτ
thus it is positive at the τ+

k,j bifurcations (solid curves in Figure 5.3) and negative at the

τ−k,j bifurcations (dashed curves in Figure 5.3). The sign of d2 varies. For a = 0.98, all the

τ−k,j bifurcations have d2 < 0. However, d2 changes sign along the τ+
k,j bifurcation curves.

For the 1-cluster Hopf (red, dashed curve) d2 > 0 for most of the curve, while for the
other Hopfs generally d2 < 0 on the portions of the curves which formed the boundary of
the stability region. This indicates that the 2, 3 and 6-cluster Hopf bifurcations that lie
next to the region of stability give rise to stable periodic orbits while the 1-cluster Hopf
bifurcations gives rise to stable periodic orbits along the solid curves and unstable periodic
orbits along the dashed curves. See Figure 5.4 for an example.

In the following, we illustrate how the coupling time delay affects the stability of the
equilibrium point E∗ and the cluster periodic solutions arising in the Hopf bifurcations
by considering a = 0.98 and four values of ε. We compare predictions of the theory with
numerical simulations for τ = 0.1, 0.2, · · · , 5.0 with initial conditions

xi(t) = x∗ + 0.5RD − 0.5RD,

yi(t) = y∗ + 0.5RD − 0.5RD, t ∈ [−τ, 0],
(5.45)

where RD is any random number between [0, 1].

For ε = 0.04, the sequence of τ bifurcation values (rounded to two decimal places) is

0 < τ−0,1(0.35) < τ+
0,1(1.49) < τ−0,2(2.58) < τ+

0,2(3.26) < τ−0,3(4.82) < τ+
0,3(5.02).
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(a) a = 0.98 (b) a = 0.95

(c) a = 0.75 (d) a = 0.5

Figure 5.2: Hopf bifurcation curves for the system (5.17) with N = 6 neurons for a < 1.
Red, green, magenta, blue curves are Hopf bifurcation curves for k = 0, 1, · · · , 3, (corre-
sponding to 1-cluster, 6-cluster, 3-cluster and 2-cluster periodic solutions), respectively.
Thin (thick) dashed curves correspond to τ−k,j(τ̂

−
k,j). Thin (thick) solid curves correspond

to τ+
k,j(τ̂

+
k,j) . Parameter values are µ = 0.1, W = circ(0, 1, 1

2
, 1

3
, 1

4
, 1

5
) and a values as shown.

The shaded regions correspond to the equilibrium point being asymptotically stable.
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(a) a = 1.01 (b) a = 1.05

(c) a = 1.10 (d) a = 1.20

Figure 5.3: Hopf bifurcation curves for the system (5.17) with N = 6 neurons for a > 1.
Red, green, magenta, blue curves are Hopf bifurcation curves for k = 0, 1, · · · , 3, (corre-
sponding to 1-cluster, 6-cluster, 3-cluster and 2-cluster periodic solutions), respectively.
Thin (thick) dashed curves correspond to τ−k,j(τ̂

−
k,j). Thin (thick) solid curves correspond

to τ+
k,j(τ̂

+
k,j) . The shaded regions correspond to the equilibrium point being asymptotically

stable.
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Normal Form calculation for Hopf bifurcation, a = 0.98

Figure 5.4: Normal form calculation for the Hopf bifurcation of (5.17) with N = 6 neurons
for a = 0.98 considering τ as the bifurcation parameter. The stars and empty circles
indicate supercritical and subcritical, respectively, Hopf bifurcations which produce a stable
periodic solution. The plus sign indicates that an unstable periodic solution is bifurcating
from the critical Hopf bifurcation value.
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The theory predicts that the equilibrium pointE∗ is stable for τ ∈ (0.35, 1.49)∪(2.58, 3.26)∪
(4.82, 5.02) and unstable elsewhere. Further, stable 1-cluster periodic orbits are predict-
ed for τ greater than but sufficiently close to τ+

0,1, τ
+
0,2, τ

+
0,3 and unstable 1-cluster peri-

odic orbits for τ greater than but sufficiently close to τ−0,1, τ
−
0,2, τ

−
0,3. These prediction-

s are confirmed by the numerical simulations. See Table 5.1. The simulations also
show that a stable 1-cluster solution or other, nonsymmetric cluster solutions exist for
τ ∈ (0, τ−0,1) ∪ (τ+

0,1, τ
−
0,2) ∪ (τ+

0,2, τ
−
0,3). We conjecture the stable 1-cluster solution is created

by a saddle node of limit cycles associated with the Hopf bifurcation creating the periodic
orbit.

For ε = 0.0285, we focus on τ < 1.7. The sequence of τ critical values is

0 < τ−0,1(0.41) < τ+
1,0(0.46) < τ−1,0(0.61) < τ̂+

1,1(1.37) < τ−0,2(1.47).

The theory predicts a stable equilibrium for τ ∈ (0.61, 1.37), and stable 6-cluster periodic
orbit bifurcating for τ ' 0.41, τ / 0.46, and τ ' 1.37, and stable 1-cluster periodic orbits
bifurcating for τ ' 1.47. This is confirmed by the numerical simulations. See Table 5.1
and Figure 5.5.

When ε = 0.0266, the bifurcation values are

τ−1,0(0.71) < τ+
2,0(0.76) < τ−2,0(0.83) < τ̂+

2,1(1.15) < τ̂−2,1(1.24) < τ̂+
1,1(1.263).

the theory predicts stable 6-cluster solutions for τ / 0.71, τ ' 1.263 and stable 3-cluster
solutions for τ ' 0.76, τ / 0.83, τ ' 1.15, τ / 1.24. For ε = 0.0263, the theory predicts
stable 3-cluster solutions for τ ' 0.94 and τ / 1.04, and stable 6-cluster solutions for
τ ' 1.11 and τ / 0.87. Taking τ = 0.825, 0.850, · · · , 1.200, we summarize the simulation
results in Table 5.1 and Figure 5.6.

Numerical study by taking ε as bifurcation parameter

We then similarly calculate the sign of the coefficients dε,1 and dε,2 in the normal form
(5.44) at each critical εc value along the Hopf bifurcation curves of Figures 5.2 and 5.3.
Take a = 0.98 for example (see figure 5.7). For the τ ranges shown in Figure 5.7, dε,1 < 0
and dε,2 < 0, that is, the 2, 3, 6-cluster Hopf bifurcations lie on the left side next the region
of stability give rise to stable periodic orbits along the Hopf bifurcation curves.

We next investigate how the coupling strength ε affects the stability od the equilibrium
points E∗ and the cluster periodic solutions arising in the Hopf bifurcation by considering
two values of τ . The initial conditions for simulation are taken as in (5.45).
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Figure 5.5: Numerical simulations showing stable behaviour for ε = 0.0285 and τ values as
shown. (a) In-phase (1-cluster) periodic orbit. (b) 6-cluster periodic orbit. (c) Equilibrium
point, E∗. (c) In-phase periodic orbit.
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Figure 5.6: Numerical simulations showing stable behaviour for ε = 0.0263 and τ values
as shown. (a) 3-cluster periodic orbit. (b) Equilibrium point, E∗. (c) 2-cluster periodic
orbit. (d) 3-cluster periodic orbit.
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(a) τ = 0.98

Figure 5.7: Normal form calculation for the Hopf bifurcation of (5.17) with N = 6 neurons
for a = 0.98 considering ε as a bifurcation parameter. The stars and empty circles indicate
supercritical and subcritical, respectively, Hopf bifurcation which produce a stable periodic
solution. The plus sign indicates that an unstable periodic solutions is bifurcating from
the critical Hopf bifurcation ε value.

93



(a) ε = 0.4

E∗ 1-cluster Other

0.4 - 1.4, 2.6 - 3.2, 4.9, 5.0 0.1 - 0.3, 1.5 - 1.7, 2.4 - 2.5, 3.3 - 4.8 1.8 - 2.3

(b) ε = 0.0285

E∗ 1-cluster 6-cluster

0.7 - 1.3 0.1 - 0.4, 1.5 - 1.7 0.5, 0.6, 1.4

(c) ε = 0.0266

E∗ 6-cluster 3-cluster

0.9 - 1.1 0.6, 0.7, 1.3, 1.4 0.8

(d) ε = 0.0263

E∗ 3-cluster 2-cluster

0.9, 0.925, 1.125 0.825, 0.85, 0.875, 1.175, 1.2 0.95, 0.975, 1.0, 1.025

Table 5.1: Summary of numerical simulations for τ = 0.1, 0.2, · · · , 5.0.

For τ = 1, we have εc = 0.0263. The theory predicts that the equilibrium point
E∗ is stable for ε > 0.0263, and stable 2-cluster periodic solutions are predicted for ε /
0.0263. These predictions are confirmed by the numerical simulations. See Figure 5.8.
The simulations also show that as decreasing of ε, the amplitude of 2-cluster solutions are
increasing. For the summary in Table 5.1 we can see that when τ = 1 and ε > 0.0263, E∗

is stable.
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Figure 5.8: Numerical simulations stable behaviour for τ = 1 and ε values as shown.
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For τ = 0.6, we have εc = 0.0286. The theory predicts that the equilibrium point E∗

is stable for ε > 0.0286, and stable 6-cluster solutions bifurcate for ε / 0.0286. These
predictions are confirmed by the numerical simulation. See Figure 5.9 (a), (b), and (c).
From Figure 5.2 (a) we see that as decreasing of ε reaches another critical point points at
εc = 0.0246. The simulation shows that the 6-cluster solution is still stable at ε = 0.023.

5.5 Application to a Morris-Lecar network

In this section, we apply the theory to the model we considered in chapter 4 section 4.4, a
network of N identical delay-coupled Morris-Lecar neurons. We write the model here for
completeness

v′i = Iapp − gCaC∞(vi)(vi − vCa)− gKmi(vi − vK)− gL(vi − vL)

− ε
N∑
j=1

wijs(vj(t− τ))(vi(t)− Esyn) , F (vi,mi), i = 1, · · · , N

m′i = ϕλ(vi)(m∞(vi)−mi),

(5.46)

where i = 1, . . . , N and

C∞(v) =
1

2
(1 + tanh((v − ν1)/ν2)), λ(v) = cosh((v − ν3)/2ν4),

m∞(v) =
1

2
(1 + tanh((v − ν3)/ν4)), s(v) =

1

2
(1 + tanh(10v)).

In the following, we systematically study the Hopf bifurcations of this delay-coupled
Morris-Lecar system to determine the oscillation patterns induced by coupling delay.

5.5.1 Stability and Hopf bifurcations induced by the time delay

It is clear from the symmetry of (5.46) that it has an equilibrium pointE∗ = (v∗,m∗, · · · , v∗,m∗)T ,
where

F (v∗,m∗) = 0 and m∗ = m∞(v∗). (5.47)

The linearization of (5.46) at E∗ is given by (5.2) with

A1 =

(
f10 f01

g10 g01

)
, A2 = 0, B =

(
h01 0
0 0

)
,
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Figure 5.9: Numerical simulations showing stable behaviour in the FitzHugh-Nagumo
model (5.17) for τ = 0.6 and ε values as shown.
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where

f10 = −gCaC∞(v∗)− 1

2ν2

gCa(v
∗ − vCa)[1− tanh2 v

∗ − ν1

ν2

]− gkm∗ − gL − εs(v∗)w̄,

f01 = −gk(v∗ − vk),
h01 = −5ε(v∗ − Esyn)(1− tanh2(10v∗)),

g10 =
ϕ

2ν4

cosh
v∗ − ν3

2ν4

(1− tanh2 v
∗ − ν3

ν4

),

g01 = −ϕλ(v∗).

It follows that the characteristic equaiton of the linearization is given by (5.4) with

∆k(λ, τ) = (λ− f10)(λ− g01)− f01g10 − (λ− g01)h01e
−λτδk,

and δk is defined as in section 5.2.

In the decoupled case, i.e., when ε = 0, the individual dynamics of the independent
neuron is determined by the internal parameters. One can show that the equilibrium point
is asymptotically stable if f10 + g01 < 0 and f10g01 − f01g10 > 0, and unstable otherwise.

In the following, we investigate how the coupling strength ε and the coupling time delay
affect the stability of this equilibrium point and Hopf bifurcations induced by the coupling
time delay. To begin, we first study the distribution of roots of the characteristic equation
(5.4). Using the notation from section 5.2, we have

L(iωk, τ) = −ω2
k − i(f10 + g01)ωk + f10g01 − f01g10, H(iωk, τ) = (g01 − iωk)h01

Lemma 6. Assume that τ = 0, k ∈ IN , and define

H1,k = f10 + g01 + h01αk;

H2,k = (f10 + g01 + h01αk)
2(f10g01 − f01g10 + h01g01αk) + (f10 + g01 + h01αk)h

2
01g01β

2
k

H3,k = f10g01 − f01g10 + h01g01αk

This leads to the following

1. All 2N roots of (5.4) have negative real parts if H1,k < 0 and H2,k > 0 are satisfied
for all k ∈ IN ;

2. At least one root of (5.4) has positive real part if H1,k ≥ 0 or H2,k ≤ 0 (and both are
not zero at the same time) for same k ∈ IN ;
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3. If H1,k = 0 and H3,k > 0 for k = 0 or N
2

(N even), (5.4) has a pair of pure imaginary
roots ±i

√
f10g01 − f01g10 + h01g01αk;

4. If H1,k = H2,k = 0 for k ∈ IN and k 6= 0, N
2

(N even), (5.4) has two pairs of pure

imaginary roots ±ih01βk+
√
h201β

2
k+4(f10g01−f01g10+h01g01αk)

2
.

Proof. When τ = 0, the characteristic equation is in the form of (5.4) with

∆k(λ, τ) = (λ− f10)(λ− g01)− f01g10 − (λ− g01)h01δk,

k = 0, 1, · · ·N − 1, which is a 2N-degree polynomial. The results is a direct result by
considering the real parts of the roots of the above polynomial.

Lemma 7. For k ∈ IN , and j ∈ Z+
0 , define ω±k and τ±k,j as follows

ω±k =

√
2

2

√
Bk ±

√
B2
k − 4Ck,

τ±k,j =
1

ω±k

(
2πj − ψ±k + arccos(

ω2
k − f10g01 + f01g10

h01‖δk‖
√
ω2
k + g2

01

)

)
, if

(f10 + g01ωk)

h01

< 0;

=
1

ω±k

(
2π(j + 1)− ψ±k − arccos(

ω2
k − f10g01 + f01g10

h01‖δk‖
√
ω2
k + g2

01

)

)
, if

(f10 + g01ωk)

h01

> 0;

(5.48)

with Bk = h2
01‖δk‖2 − f 2

10 − g2
01 − 2f01g10, Ck = (f01g10 − f10g01)2 − g2

01h
2
01‖δk‖2, and

ψ±k = arg((g01h01 − iω±k h01)δk). (5.49)

Note that ω±N−k = −ω±k and ψN−k = −ψk, which imply τ+
N−k,−j−1 = τ+

k,j and τ−N−k,−j−1 =

τ−k,j.

1. If ω±k in (5.48) exists, the equation ∆k = 0 has purely imaginary roots iω±k at τ = τ±k,j
and the equation ∆N−k = 0 has purely imaginary roots −iω±k at τ = τ±N−k,j.

2. If we let λ(τ) = η(τ)+iω(τ) be a solution of the equation ∆k = 0 satisfying η(τ±k,j) = 0

and ω(τ±k,j) = ω±k , then we have

Re

(
dλ

dτ

∣∣∣∣
τ=τ+k,j

)
> 0, Re

(
dλ

dτ

∣∣∣∣
τ=τ−k,j

)
< 0.
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Note that by the nonlinearity of F (v∗,m∗), we can not solve for v∗ or m∗. Therefore,
we could not determine how the existence and stability of Hopf bifurcation depend on
the coupling strength, ε. However, we are able to calculate these conditions numerically
for a specific set of parameters. As an example in section 5.5.3 we consider a system of
N = 6 neurons with coupling matrix W = circ(0, 1, 1

2
, 1

3
, 1

4
, 1

5
), as in the Fitzhugh-Nagumo

example.

5.5.2 Direction and stability for Hopf bifurcation

In this section, we derive the normal form of Hopf bifurcation of (5.46) by taking the time
delay τ as bifurcation parameter. Using the same notation as in section 5.4.2, we define
u(t) = (v1(t),m1(t), · · · , vN(t),mN(t))T . The Taylor expansion of (5.46) truncated at the
cubic term is as follows

u′ = N0u(t) +N1u(t− τ) + f(u(t)), (5.50)

with

N0 =


M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M

 , N1 = h01


0 w̄1 w̄2 · · · ¯wN−1

¯wN−1 0 w̄1 · · · ¯wN−2
...

...
...

. . .
...

w̄1 w̄2 w̄3 · · · 0

 ,

with

M =

[
f10 f01

g10 g01

]
, w̄i =

[
wi 0
0 0

]
, i = 1, · · · , N − 1.

For an odd i, we have

(f(u(t)))i = f20u
2
i + f11uiui+1 + h11ui

N∑
j=1

wiju2j−1(t− τ) + h02

N∑
j=1

wiju
2
2j−1(t− τ)

+ f20u
3
i + h12ui

N∑
j=1

wiju
2
2j−1(t− τ) + h03

N∑
j=1

wiju
3
2j−1(t− τ),

(f(u(t)))i+1 = g20u
2
i + g11uiui+1 + g30u

3
i + g21u

2
iui+1,
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where

f20 = −gCa
2ν2

(1− tanh2(
v∗ − ν1

ν2

))(1 + (v∗ − vCa) tanh(
v∗ − ν1

ν2

)),

f11 = −gk,

f30 =
gCa
6ν3

2

(1− tanh2(
v∗ − ν1

ν2

))

(
3ν2 tanh(

v∗ − ν1

ν2

)

+ (v∗ − vCa)(1− sinh2(
v∗ − ν1

ν2

))(1− tanh2(
v∗ − ν1

ν2

))

)
,

g20 =
φ

16ν2
4

(
(4ν4 sinh(

v∗ − ν3

2ν4

)− 8 cosh(
v∗ − ν3

2ν4

))(1− tanh(
v∗ − ν3

ν4

))

+ cosh(
v∗ − ν3

2ν4

)(1 + tanh(
v∗ − ν3

ν4

)−m∗)
)
,

g11 = − φ

2ν4

sinh(
v∗ − ν3

2ν4

),

g30 =
φ

96ν4

(
sinh(

v∗ − ν3

2ν4

)(1 + tanh(
v∗ − ν3

ν4

)−m∗) + (1− tanh2(
v∗ − ν3

ν4

))
(
6 cosh(

v∗ − ν3

2ν4

)

− 48 sinh2(
v∗ − ν3

ν4

)− 16(1− 4 sinh4(
v∗ − ν3

ν4

))(1− tanh2(
v∗ − ν3

ν4

))
))
,

g21 = − φ

8ν2
4

cosh(
v∗ − ν3

ν4

),

h11 = −5(1− tanh2(10v∗)),

h02 = 50ε(v∗ − Esyn) tanh(10v∗)(1− tanh2(10v∗)),

h03 =
500

3
ε(v∗ − Esyn)(1− 2 sinh2(10v∗))(1− tanh2(10v∗))(1− tanh2(10v∗)),

h12 = 50ε tanh(10v∗)(1− tanh2(10v∗)).

We seek a second-order uniform expansion of the solution of equation (5.50) in the
neighborhood of τ = τk in the form

u(t, ζ) = ζu1(T0, T2) + ζ2u2(T0, T2) + ζ3u3(T0, T2), (5.51)

and let

τ = τk + ζ2τ2. (5.52)

Here T0, T2, and ζ are defined as in section 5.4.2. Substituting (5.51) and (5.52) into (5.50)
and collecting terms of like powers of ζ, we end up with the same equations for u1(T0, T2),
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u2(T0, T2) and u3(T0, T2) as in (5.27)(5.28) and (5.29). By further calculation, the solutions
of u1(T0, T2), u2(T0, T2) and u3(T0, T2) in (5.51) have similar forms as those for the FHN
model.

The general solution of u1(T0, T2) in (5.51) is

u1(T0, T2) = Ak(T2)pke
iωkT0 + Āk(T2)p̄ke

−iωkT0 , (5.53)

where pk is given by

pk = ((iωk − g01), g10, (iωk − g01)ρk, g10ρk, · · · , (iωk − g01)ρN−1
k , g10ρ

N−1
k )T , (5.54)

with ρk = e
i2π
N
k. The general solution of u2(T0, T2) is

u2(T0, T2) = A2
ke

2iωkT0(Γ1,Γ2, · · · ,Γ1ρ
2(N−1)
k ,Γ2ρ

2(N−1)
k )T + AĀ(Γ3,Γ4, · · · ,Γ3,Γ4)T , (5.55)

with

Γ1 =
η1 + f01

2iωk−g01
η2

2iωk − f01 − f01g10
2iωk−g01

− h01e−2iωkτk(w1ρ2
k + · · ·+ wN−1ρ

2(N−1)
k )

,

Γ2 =
Γ1g10 + η2

2iωk − g01

,

Γ3 =
g10η3 − f01η4

f01g10 − f10g10 − g10h01w̄
,

Γ4 = − g10η3 − f01η4

f01g10 − f10g01 − g01h01w̄

where

η1 = (iωk − g01)2

(
f20 +

f11g10

iωk − g01

+ h11δke
−iωkτk + h02e

−2iωkτk(w1ρ
2
k + · · ·+ wN−1ρ

2(N−1)
k )

)
,

η2 = (iωk − g01) (g20(iωk − g01) + g11g10) ,

η3 = (ω2
k + g2

01)

(
f20 −

f11g10

iωk + g01

+ h11δ̄ke
iωkτk + h01w̄

)
,

η4 = (ω2
k + g2

01)g20 + (iωk − g01)g10g11.

Finally, substituting (5.53) and (5.55) into the equation of u3(T0, T2) and solving for
u3(T0, T2), we obtain the normal form of (5.50) for taking τ as bifurcation parameter

A′k = D1τ2Ak +D2A
2
kĀk, (5.56)
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with

D1 = − iωk(iωk − g01)2h01δke
−iωkτk

(iωk − g01)2(1 + τkδkh01e−iωkτk) + f01g10

,

D2 =
(iωk − g01)η5 + f01η6

(iωk − g01)2(1 + τkδkh01e−iωkτk) + f01g10

where

η5 = 2f20

(
(iωk − g01)(Γ3 + Γ̄3)− (iωk + g01)Γ1

)
+ f11

(
(iωk − g01)(Γ4 + Γ̄4)− (iωk + g01)Γ2

)
+ h11

(
(iωk − g01)(Γ3 + Γ̄3)w̄ − (iωk + g01)Γ1e

−2iωkτk(w1ρ
2
k + · · ·+ wN−1ρ

2(N−1)
k )

)
+ h11

(
(iωk − g01)(Γ3 + Γ̄3)δke

−iωkτk − (iωk + g01)δ̄kΓ1e
iωkτk

)
+ f11

(
g10(Γ3 + Γ̄3) + g10Γ1

)
+ 2h02

(
(iωk − g01)(Γ3 + Γ̄3)δke

−iωkτk − (iωk + g01)δkΓ1e
−iωkτk

)
− 3f30

(
(iωk − g01)2(iωk + g01)

)
− 3h03

(
(iωk − g01)2(iωk + g01)δke

−iωkτk
)

− h12(iωk − g01)2(iωk + g01)
(
2w̄ + e−2iωkτk(w1ρ

2
k + · · ·+ wN−1ρ

2(N−1))
k

)
,

η6 = 2g20

(
(iωk − g01)(Γ3 + Γ̄3)− (iωk + g01)Γ1

)
+ g11

(
(iωk − g01)(Γ4 + Γ̄4)− (iωk + g01)Γ2

)
+ g11

(
g10(Γ3 + Γ̄3) + g10Γ1

)
− 3g30

(
(iωk − g01)2(iωk + g01)

)
+ g21(iωk − g01)

(
(iωk − g01)g01 − 2(iωk + g01)g10

)
.

Let Ak = rke
iθk , substituting these expressions into (5.56), we have

r′k = d1τ2rk + d2r
3
k

θ′k = d3τ2 + d4r
2
k,

(5.57)

where d1 = Real(D1), d2 = Real(D2), d3 = Imag(D1), d4 = Imag(D2). Therefore, we
can determine the direction of the Hopf bifurcation (supercritical when d1d2 < 0, and
subcritical when d1d2 > 0) and the stability of the bifurcating periodic solutions (stable
when d2 < 0, and unstable when d2 > 0)

5.5.3 Example: Morris Lecar network with 6 neurons

In this section, we numerically investigate the Hopf bifurcation induced by the time delay
for a network of six Morris-Lecar oscillators. We adopt the parameters for vCa, vk, vL,
gK , gL, φ, ν1, ν2, ν3, ν4 fixed as in Table 4.1, gCa = 1, Iapp = 0.25, and two sets of Esyn
values: Esyn = 0 and Esyn = −0.5. In addition, the coupling matrix W is taking as
W = circ(0, 1, 1

2
, 1

3
, 1

4
, 1

5
).
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We first investigate the behavior of (5.46) with N = 6, Esyn = 0 and the other pa-
rameters as described above. We start with the existence of E∗, and its dependence on
parameters. Figure 5.10 is produced by XPPAUT, and shows the dependence of E∗ with
respect to ε and Iapp, respectively. Figure 5.10 shows the dependence of v∗ with respect to
ε and Iapp. We can see that for a fixed Iapp value, E∗ exists and is stable for ε < −0.5104
unstable for ε < −0.5104. ε = −0.5104 is a Hopf bifurcation point which we investigate
further later. Similarly, for a fixed ε values, system (5.46) undergoes SNIC bifurcation with
respect to Iapp. Furthermore, the solid black curve of Figure 5.11 represents the fold or
saddle node of equilibria bifurcation in the (Iapp, ε)-plane.
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0.8

1

V1

-1 -0.5 0 0.5 1 1.5 2
epsilon

(a) Iapp = 0.25
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
i

(b) ε = 0.01

Figure 5.10: Bifurcation diagram of the inphase equilibrium point E∗ of system (5.46)
with respect to (a) ε and (b) Iapp.

According to Lemma 6 and 7 and eigenvalue calculation, we obtain the Hopf bifurcation
curves in the (Iapp, ε) plane, which are shown by the red, green, blue and magenta curves
in Figure 5.11. Therefore, E∗ is the only equilibrium point in the region outside the area
bounded by the cusp bifurcation curve and the Hopf bifurcation curves, and it is stable
in that region. In the region inside the Hopf bifurcation curves, E∗ may be stable or
experience stability switch. Furthermore, Hopf bifurcation occurs at critical values of τ±k,j.
There are three equilibrium points in the region bounded by the fold bifurcation and Hopf
bifurcation curves. Notice that SNIC bifurcations occur near the fold points.

To investigate further, we fix Iapp, and plot the Hopf bifurcation curves in (ε, τ) plane
(Figure 5.12 (a)). The red, green, magenta, blue, curves shows the Hopf bifurcation curves
for k = 0, 1, · · · , 3, which corresponding to 1-cluster, 6-cluster, 3-cluster, and 2-cluster
Hopf bifurcations, respectively. The thin (thick) dashed curves correspond to τ−k,j (τ̂−k,j),
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Figure 5.11: Two parameter (Iapp, ε) bifurcation diagram. for the Morris-Lecar model
(5.46) with N = 6, and τ = 0.

while the thin (thick) solid curves correspond to τ+
k,j (τ̂+

k,j). By Lemma 7, we can determine
how many pairs of positive eigenvalues there are at each region for fixed ε, or τ values.
Furthermore, from the normal form calculation, we obtain Figure 5.12. The “ ∗ ” indicates
the cases where d1 > 0 and d2 < 0; “o” indicates the cases where d1 < 0 and d2 < 0;
and “ + ” indicates the cases where d2 > 0. That is, the system undergoes supercritical
Hopf bifurcations near E∗ at “ ∗ ” points, and subcritical Hopf bifurcations at “o” points.
It is observed that d2 is always negative, and d1 is negative along τ−k,j (τ̂−k,j), and positive

along τ+
k,j (τ̂+

k,j). This indicates that the equilibrium point is stable in the shaded region,
and stable 1, 2, 3, 6-cluster periodic solutions are bifurcating through supercritical Hopf
bifurcation along the solid curves and subcritical Hopf bifurcation along the dashed curves.

In the following, we illustrate how the coupling time delay affects the stability of the

104



equilibrium point E∗ and the cluster periodic solutions arising in the Hopf bifurcation for
some values of ε. All the numerical simulations are performed with initial conditions as
follows

vi(t) = 0.2RD,

mi(t) = 0.8RD,

where RD is any random number between [0, 1]. Here 0.2 (0.8) is chosen because the v∗

(w∗) of stable equilibrium point is roughly between (0, 0.2) ((0.3, 0.8))

(a)

−0.26 −0.24 −0.22 −0.2 −0.18 −0.16
0

2

4

6

8

10

12

ε

τ

Normal form calculation for Hopf bifurcation, I
app

 = 0.25

(b)

Figure 5.12: Hopf bifurcation diagram in the (ε, τ) plane with Iapp = 0.25.

Take ε = −0.18 . The critical values of the coupling delay are

0 < τ−0,1(0.553) < τ+
0,1(3.798) < τ−0,2(5.529) < τ+

0,2(8.486) < τ−0,3(10.51) · · ·

The theory predicts that the equilibrium point E∗ is stable for τ ∈ (0.553, 3.298) ∪
(5.529, 8.486)∪(10.51, 13.180), and unstable for τ ∈ (0, 0.553)∪(3.798, 5.529)∪(8.486, 10.51).
Furthermore, by the normal form calculation, there is a supercritical Hopf bifurcation at
3.798, 8.486, and subcritical Hopf bifurcation at 0.553, 5.529 and 10.51. This is confirmed
by the numerical simulations. The simulations are carried out for τ = 0.5, 1.0, 1.5, · · · , 12.0.
See Table 5.2 and Figure 5.13. The simulation also shows that a stable 3, 6-cluster solution

105



E∗ 1-cluster Other

1.0 - 3.5, 6.0 - 8.0, 11.0 - 12.0 4.0 - 5.0 0.5, 5.5, 9.0 - 10.5

Table 5.2: Summary of numerical simulations for ε = −0.18 and τ = 0.5, 1.0, · · · , 12.0.
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Figure 5.13: Numerical simulations showing stable behaviour for ε = −0.18 and τ values
as shown. (a) Stable E∗. (b) In-phase periodic orbit. (c) Nonsymmetric solution. (d)
Stable 3-cluster periodic orbit. The y-axis shows only v1, · · · , v6 for clarity.
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exist for τ = 9.0 and τ = 10, 10.5, respectively. And nonsymmetric cluster solutions exist
such as Figure 5.13(c) exist for τ = 0.5, 5.5.

When ε = −0.195, the critical values of the coupling time delays are

τ−0,1(0.739) < τ−1,1(0.840) < τ−1,1(1.390) < τ̂+
1,1(3.049)

The theory predicts that the equilibrium point is stable for τ ∈ (0.739, 0.84)∪(1.391, 3.049).
Stable 1-cluster solutions exist for τ / 0.739, and stable 6-cluster solutions exist for τ '
0.84, 3.049 and τ / 1.391. Figure 5.14(a, b, c) confirm the prediction, while nonsymmetric
cluster solution appears for τ = 3.1. In the simulation, we observe that it is difficult to get
the predicted symmetric cluster solutions by random initial conditions. The above plots
are chosen from various simulations from random initial conditions. We conjecture that
the multistability of different cluster solutions is created by the saddle node on an invariant
circle at the solid black curve in Figure 5.11 associated with the Hopf bifurcation.

In this part, we focus on Esyn = −0.5. According to Lemma 6 and 7 and eigenvalue
calculation, we obtain the Hopf bifurcation curves in the (ε, τ)-plane for various values of
Iapp (Figure 5.15). The equilibrium point E∗ is stable in the shaded region to the right
of the Hopf bifurcation curves. Note that the region of stability for E∗ look similar for
the four Iapp values, but the Hopf bifurcation curves move to the left as Iapp decreases.
Furthermore, by the normal form calculation, we are able to calculate the sign of d1, d2 at
every critical τ value along the Hopf bifurcation curves. Figure 5.16 shows an example of
the normal form calculation. We observed that on the region where stable Hopf bifurcating
periodic solutions may occur, d2 is always negative, and d1 is negative along τ−k,j (τ̂−k,j) and

positive along τ+
k,j (τ̂+

k,j).

In the following, we illustrate how the coupling time delay affects the stability of E∗

and the Hopf bifurcating cluster solutions by considering Iapp = 0.25.

Considering ε = 0.04, the sequence of τ bifurcation values is

0 < τ+
0,1(1.46) < τ−0,1(3.16) < τ+

0,2(6.12) < τ−0,2(8.36)τ+
0,3(10.78), · · · ,

The theory predicts that the equilibrium point E∗ is stable for τ ∈ (0, 1.46)∪ (3.16, 6.12)∪
(8.38, 10.78), while stable 1-cluster solutions exist for τ ' 1.46, 6.12, 10.78 and τ / 3.16, 8.36.
Simulations for τ = 0.1, 0.2, · · · , 12.0 are carried out. For τ = 0.1, 0.2, · · · , 1.3, 3.4, 3.5, · · · ,
6.0, 8.6, 8.7, · · · , 10.7, we find that the equilibrium point E∗ is stable, which is as predicted
theoretically (See Figure 5.17 (a) for example). And for τ = 1.5, 1.6, · · · , 2.7, 10.8, we find
that 1-cluster solutions exist as expected (See Figure 5.17 (b) for example). However, for
all the other τ values, the simulation results does not match with prediction, and all the
simulation solutions are nonsymmetric (See Figure 5.17 (c, d) for example).
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Figure 5.14: Numerical simulations showing stable behaviour for ε = −0.195 and τ values
as shown. (a) Stable in-phase periodic orbit. (b) Stable E∗. (c) Stable 6-cluster periodic
orbit (d) Nonsymmetric cluster solutions. The y-axis shows only v1, · · · , v6 for clarity.
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(a) ε = 0.25 (b) ε = 0.22

(c) ε = 0.15 (d) ε = 0.10

Figure 5.15: Hopf bifurcation curves for system (5.46) with N = 6 and Iapp values as
shown. Red, green, magenta, blue curves are Hopf bifurcation curves for k = 0, 1, 2, 3 which
correspond to 1-cluster, 6-cluster, 3-cluster and 2-cluster periodic solutions, respectively.
Thin (thick) dashed curves corresponds to τ−k,j (τ̂−k,j). Thin (thick) solid curves corresponds

to τ+
k,j (τ̂+

k,j).
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Figure 5.16: Normal form calculation for the Hopf bifurcation of (5.46) with N = 6 for
Iapp = 0.25 considering τ as the bifurcation parameter. The stars and empty circles indicate
supercritical and subcritical, respectively, Hopf bifurcation which produce a stable periodic
solution. The plus sign indicates that an unstable periodic solution is bifurcating from the
critical Hopf bifurcation value.
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Figure 5.17: Numerical simulations showing stable behavior for ε = 0.04 and τ values
as shown. (a) Stable equilibrium point E∗. (b) Stable 1-cluster periodic solution. (c)
Nonsymmetric cluster solution. (d) Stable 1-cluster periodic solution, not Hopf bifurcating
periodic solutions.
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We then consider ε = 0.046. In this case, the τ bifurcation values are

0 < τ̂+
1,0(0.69) < τ̂−1,0(1.20) < τ+

0,1(1.26) < τ+
1,1(3.33) < τ−0,1(3.43) < τ−1,1(3.94) < τ̂+

1,1(5.57)

The theory predicts that the equilibrium point E∗ is stable when τ ∈ (0, 0.69)∪(1.20, 1.26)∪
(3.94, 5.57), stable 1-cluster solutions exist for τ ' 1.26, and stable 6-cluster solutions
exist for τ ' 0.69, 5.57 and τ / 1.20. Numerical simulations are performed for τ =
0.1, 0.2, · · · , 6.0, and the simulation results are summarized in Table 5.3. As above, we
observe the coexisting stable of symmetric cluster solutions and nonsymmetric cluster
solutions.

E∗ 6-cluster 1-cluster Other

0.1 - 0.7, 3.9 - 4.9, 5.3 - 5.5 0.9 - 1.2 1.6 - 2.8, 3.1, 3.2 All other values

Table 5.3: Summary of numerical simulations for ε = 0.046 and τ = 0.1, 0.2, · · · , 6.0.

5.6 Conclusion

In this chapter, we investigated Hopf bifurcations of a general network of N globally cou-
pled identical nodes with time delayed coupling. We derived expressions for all delay
induced Hopf bifurcations from a symmetric equilibrium point and used symmetric bi-
furcation theory to determine the cluster periodic solutions which are created by these
bifurcations. Our results apply to most typical neural network models, including both
biophysical (conductance-based) and artificial networks.

We applied our results to two particular models: a network of FitzHugh-Nagumo neu-
rons with delayed, diffusive coupling and a network of Morris-Lecar neurons with delayed,
synaptic coupling.

For the FitzHugh-Nagumo model, we completely described the delay independent sta-
bility of the symmetric equilibrium point and the delay induced Hopf bifurcations, and
gave explicit expressions for the critical delay values, showing how these depend on other
parameters, including the coupling strength and the parameter (a) that induces oscillations
in the uncoupled neural model. Further, using the method of multiple scales, we explicitly
derived the normal forms at Hopf bifurcation critical points, which determine the direction
of Hopf bifurcation and stability of bifurcating periodic orbits.

Due to the nonlinearity of the Morris-Lecar model, we were unable to give explicit
expressions. However, we numerically described the delay independent stability of the
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symmetric equilibrium points for various sets of parameter values and the delay induced
Hopf bifurcations. Again, normal forms at Hopf bifurcation critical points are calculated
by the method of multiple scales, and the direction of Hopf bifurcation and stability of
bifurcating periodic solutions are numerically calculated.

We illustrated our results for specific parameter values in the two example models, fo-
cussing on the case of 6 neurons. We presented curves of Hopf bifurcations in the parameter
space consisting of the coupling delay and coupling strength and studied how these curves
change as the parameter a (Iapp) is varied. We showed that Hopf bifurcations leading to
stable cluster solutions could occur both in the case where the neurons are intrinsically
oscillating and when they are not. Theoretical results, confirmed by numerical simulations,
indicate that increasing the time delay can cause the stable solution to switch between the
equilibrium solution and 1, 2, 3 or 6− cluster periodic orbits.

We note that symmetric bifurcations exist in the coupled system with no delay, but
occur in a strict ordering in parameter space. The delay causes variation in the ordering
of the curves, allowing for bifurcation of stable solutions of all cluster types. Further,
this reordering gives rise to intersection points of the various Hopf bifurcations, which
correspond to co-dimension two Hopf-Hopf bifurcation points. Such points, which are
quite common in delay systems [4, 123], can lead to coexistence of multiple stable periodic
solutions or tori [52]. Indeed, in other numerical simulations we have found stable torus
solutions (Figure 5.18(a)) and parameter values where two or more stable symmetric cluster
solutions co-exist (not shown). As previously noted, other solutions not predicted by our
results occur (see Figure 5.18(b)). The origin of such solutions is a topic for future work.

For the FitzHugh-Nagumo model, the delay-induced Hopf bifurcations in the case study
we considered are linked to supercritical Hopf bifurcations in the uncoupled neurons. This
can be seen as follows. Taking τ±k,0 to zero, implies that ε(αk − w̄) + 1 − a2 = 0, which
is the Hopf bifurcation condition for the nondelayed system (see Lemma 4 and Figure
5.2). Further, as ε goes to zero we obtain the Hopf bifurcation condition in the uncoupled
neuron, 1 − a2 = 0. Thus the cluster patterns can be thought of as emanating from an
interaction of the delay with the intrinsic oscillation mechanism of the neurons. In neural
models exhibiting Type II excitability, where oscillations are created by a subcritical Hopf
bifurcations, we expect that a similar mechanism for creating cluster patterns can occur.
For the network of Morris-Lecar oscillators, the parameters that we choose such that a
saddle node on an invariant circle (SNIC) bifurcations occur for a single oscillator. That
is, oscillations are created by the SNIC bifurcations. Interaction of the Hopf bifurcation
and SNIC bifurcation causes complexities in the solution patterns. However, delay induced
cluster patterns are still observed ([115]). In general, since most Type I model neurons
have a Hopf bifurcation involved in the destruction of limit cycles we conjecture that the
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Figure 5.18: Numerical simulations showing stable solutions not predicted by theory. (a)
Torus. (b) Non-symmetric cluster periodic orbit.

mechanism we have discussed may still come into play.
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Chapter 6

Discussion and future directions

In this thesis, we study clustering behaviour in networks with time delayed, circulant
coupling.

The analysis in chapter 4 is an extension to the work of [91, 82, 76]. It determines
the existence and stability for all symmetric cluster solutions of networks of arbitrary size
with time delay coupling. Our work provides explicit dependence of the eigenvalues that
determine stability of symmetric cluster states on the coupling strength and time delay.
An important question that arises in this analysis is how small the coupling strength
ε should be to guarantee the accuracy of the phase model prediction. The question is
answered numerically for the specific network of Morris-Lecar oscillators. Another question
is whether these results can be applied to networks with arbitrary global coupling. The
answer is positive but several new problems arise. First, the stability conditions become
more complicated and difficult to calculate. Intuitively, we utilize the circulant property
of the coupling matrix W in the stability analysis of clustering solutions. For a coupling
matrix without any symmetry, the existence conditions of symmetric cluster solutions will
remain the same while the stability conditions will be more complicated and highly depend
on the coupling matrix.

In chapter 5, we investigate the stability of the steady state and Hopf bifurcation in-
duced by the time delay. The relation between the critical values of delay τ and patterns of
Hopf bifurcating cluster solutions are found explicitly. For the FitzHugh-Nagumo model,
the regions that are asymptotically stable, globally stable and absolute unstable are deter-
mined in the plane of the excitability parameter a and the coupling strength ε. Further-
more, we use the method of multiple time scales to calculate the normal form of the Hopf
bifurcation at critical τ (ε) values. We find that just by decreasing the coupling strength,
the dynamics of the system can change from the equilibrium point to any symmetric clus-
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ter solutions. By increasing the time delay, the dynamics of the system can switch from
the equilibrium point to symmetric cluster solutions and back to the equilibrium point or
other symmetric cluster solutions, and so on.

The stability of clustering behaviour in this thesis supports the hypothesis that cluster
solutions play a role in neural assembly. First, the variation of stability with coupling is
one of the key results. For example, our numerical studies of a network of six Morris-Lecar
oscillators for ε = 0.01 (Tables 4.3 and 4.4) show that there exist stable 2-cluster solu-
tions and stable 3-cluster solutions with bi-directional coupling and τ ∈ (4.18, 8.00), while
with homogeneous coupling the 3-cluster states lose stability and leave only the 2-cluster
solutions. Thus switching from bi-directional coupling to homogeneous coupling gives a
mechanism that the system can switch from 3-cluster solutions to 2-cluster equations, i.e.,
reorganizing which neurons spikes together. On the other hand, the simulation studies
in Figures 4.8 and 4.9 suggests another way of producing neural assembly, which is via
varying the inputs to the neurons. In Figures 4.8 and 4.9, we can get different cluster solu-
tions without varying the network connections. Thus, it is possible for networks to possess
multiple stable solutions with the same number of clusters but with different grouping of
neurons.

The work in this thesis also provide actual evidence that the axonal conduction delays
play a more important role in time dependencies than generally recognized. It is well
known that axonal conduction delays are very precisely timed. They vary greatly in the
mammalian nervous system, from less than 0.1 milliseconds in very short axons to greater
than 0.1 milliseconds in very long non-myelinated central axons [111]. However, it is usu-
ally thought that they cannot give rise to delays more than 10 milliseconds. Therefore,
the impact of axonal conduction time is usually neglected. On the contrary, we show that
axonal conduction delays have a profound influence on the clustering behaviour. Take the
Morris-Lecar networks as a example. Based on the non-dimensionalization procedure, we
get that the dimensionless time delay τ in the thesis corresponds to a time delay of 5 ×τ
milliseconds. That is, τ = 1 corresponds to 5 milliseconds and τ = 2 corresponds to 10
milliseconds. Recall that in section 2.4 we discuss that the time delay τ here include two
parts: the axonal conduction delay and the processing delay. By the Hopf bifurcation anal-
ysis in section 5.5.3, we see that by increasing the time delay from 0 to 10 milliseconds, the
simple system with six Morris-Lecar neurons switches between the equilibrium, 6-cluster
solutions, 3-cluster solutions and 2-cluster solutions for different coupling strength. For
networks with more neurons, the time delay can lead to more complex dynamic behaviour.

For future study, we would like to extend our work in the following directions.

1. Extend all the results to networks with time delayed, general global coupling.
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2. Extend all the results to networks with different oscillators instead of identical ele-
ments.

3. Extend the stability analysis for general synchronization solutions in section 4.3.3 to
any symmetric cluster solutions.

4. Seek the existence and stability conditions for non-symmetric cluster solutions.

5. Extend the Hopf bifurcation analysis for networks with more symmetry, for exam-
ple, networks with bidirectional coupling (DN symmetry) and global homogeneous
coupling (SN symmetry).
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[15] N. Burić and D. Todorović. Bifurcations due to small time-lag in coupled excitable
systems. Int. J. Bifurc. Chaos, 15(5):1775–1785, 2005.

[16] S.A. Campbell. Time delays in neural systems. In R. McIntosh and V. K. Jirsa,
editors, Handbook of Brain Connectivity. Springer-Verlag, New York, 2007.

[17] S.A. Campbell, R. Edwards, and P. van den Dreissche. Delayed coupling between
two neural network loops. SIAM J. Applied Mathematics, 65(1):316–335, 2004.

[18] S.A. Campbell and I. Kobelevskiy. Phase models and oscillators with time delayed
coupling. Dynamics of Discrete and Continuous Systems, 38(8):2653–2673, 2012.

[19] S.A. Campbell, I. Ncube, and J. Wu. Multistability and stable asynchronous periodic
oscillations in a multiple-delayed neural system. Physica D, 214(2):101–119, 2006.

[20] S.A. Campbell and Z. Wang. Phase models and clustering in networks of oscillators
with delayed coupling. arXiv preprint arXiv:1607.05759, 2016.

[21] S.A. Campbell, Y. Yuan, and S.D. Bungay. Equivariant Hopf bifurcation in a ring
of identical cells with delayed coupling. Nonlinearity, 18(6):2827, 2005.

[22] J.D. Cao and L.L. Li. Cluster synchronization in an array of hybrid coupled neural
networks with delay. Neural Networks, 22(4):335–342, 2009.

[23] J. Carr. Applications of Center Manifold Theory. Springer-Verlag, New York, 1981.

119
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citable neural systems. International Journal of Bifurcaion and Chaos, 19:745–753,
2009.
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[32] G. Dragoi and G. Buzsáki. Temporal encoding of place sequences by hippocampal
cell assemblies. Neuron, 50(1):145–157, 2006.

[33] M.G. Earl and S.H. Strogatz. Synchronization in oscillator networks with delayed
coupling: a stability criterion. Physical Review E, 67:036204, 2003.

[34] A.K. Engel, P. Fries, and W. Singer. Dynamic predictions: oscillations and synchrony
in top–down processing. Nature Reviews Neuroscience, 2(10):704–716, 2001.

[35] K. Engelborghs, T. Luzyanina, and G. Samaey. DDE-BIFTOOL v. 2.00: a MATLAB
package for bifurcation analysis of delay differential equations. Technical Report TW-
330, Department of Computer Science, K.U. Leuven, Leuven, Belgium, 2001.

[36] G.B. Ermentrout. An introduction to neural oscillators. In F. Ventriglia, editor,
Neural Modelling and Neural Networks, pages 79–110. Pergamon, Oxford, UK, 1994.

120



[37] G.B. Ermentrout. Type I membranes, phase resetting curves, and synchrony. Neural
Comput., 8:979–1001, 1996.

[38] G.B. Ermentrout. Simulating, analyzing, and animating dynamical systems: a guide
to XPPAUT for researchers and students, volume 14. SIAM, Philadephia, PA, 2002.

[39] G.B. Ermentrout and N. Kopell. Frequency plateaus in a chain of weakly coupled
oscillators I. SIAM J. Applied Math., 15:215–237, 1984.

[40] G.B. Ermentrout and N. Kopell. Multiple pulse interactions and averaging in couple
neural oscillators. J. Math. Biol., 29:195–217, 1991.

[41] G.B. Ermentrout and D.H. Terman. Mathematical Foundations of Neuroscience.
Springer, New York, NY, 2010.

[42] M. Farkas. Periodic Motions. Springer Science + Business Media, LLC, New York,
1994.

[43] R. FitzHugh. Impulses and physiological states in theoretical models of nerve mem-
brane. Biophysical J., 1:445–466, 1961.

[44] J. Foss, A. Longtin, B. Mensour, and J. Milton. Multistability and delayed recurrent
feedback. Phys. Rev. Lett., 76:708–711, 1996.

[45] J. Foss and J. Milton. Multistability in recurrent neural loops arising from delay. J.
Neurophysiol., 84:975–985, 2000.

[46] J. Foss, F. Moss, and J. Milton. Noise, multistability and delayed recurrent loops.
Phys. Rev. E, 55:4536–4543, 1997.

[47] R.F. Galán. The phase oscillator approximation in neuroscience: an analytical frame-
work to study coherent activity in neural networks. In Coordinated Activity in the
Brain, pages 65–89. Springer, 2009.

[48] R.F. Galán, G.B. Ermentrout, and N.N. Urban. Predicting synchronized neural
assemblies from experimentally estimated phase-resetting curves. Neurocomputing,
69(10):1112–1115, 2006.

[49] D. Golomb and J. Rinzel. Clustering in globally coupled inhibitory neurons. Physica
D, 72:259–282, 1994.

[50] M. Golubitsky, I. Stewart, and D. G. Schaeffer. Singularities and Groups in Bifur-
cation Theory. Springer-Verlag, New York, 1988.

121



[51] R.M. Gray. Toeplitz and circulant matrices: A review. Now Publishers Inc, 2006.

[52] J. Guckenheimer and P.J. Holmes. Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.

[53] S. Guo, L. Huang, and L. Wang. Linear stability and Hopf bifurcation in a two
neuron network with three delays. Internat. J. Bifur. Chaos, 14:27992810, 2004.

[54] S.J. Guo and L.H. Huang. Hopf bifurcating periodic orbits in a ring of neurons with
delays. Physica D, 183(1):19–44, 2003.

[55] S.J. Guo and L.H. Huang. Stability of nonlinear waves in a ring of neurons with
delays. J. Differential Equations, 236(2):343–374, 2007.

[56] S.J. Guo and J.H. Wu. Bifurcation Theory of Functional Differential Equations.
Springer, New York, 2013.

[57] J.K. Hale. Theory of Functional Differential Equations. Springer-Verlag, New York,
1977.

[58] J.K. Hale and S.M. Verduyn Lunel. Introduction to Functional Differential Equations.
Springer Verlag, New York, 1993.

[59] D. Hansel, G. Mato, and C. Meunier. Phase dynamics for weakly coupled Hodgkin-
Huxley neurons. Europhys. Lett., 23(5):367–372, 1993.

[60] D. Hansel, G. Mato, and C. Meunier. Synchrony in excitatory neural networks.
Neural Computation, 7:307–337, 1995.

[61] K.D. Harris, J. Csicsvari, H. Hirase, G. Dragoi, and G. Buzsáki. Organization of cell
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