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Abstract

Close coupling scattering calculations have been conducted for the para spin modi�cation of H2-

fHe, Ne and Arg. The XC(fit) potential energy surfaces for H2-Ne and H2-Ar have been used

for calculations for these two systems, while a newly �tted version of the Schaefer and K�ohler

potential energy surface was used for the H2-He system. The �tting procedure employs nine

modi�ed Lennard-Jones oscilator functions to describe accurately 90% of the original tabulated

potential energy surface to better than 12% error. The scattering calculations for H2-Ar failed at

higher energies due to the presence of a previously undocumented potential energy surface turn-

over at R < 1:0 �A. Manifold-to-manifold v = 1 vibrational relaxation calculations for each of these

systems are compared with other experimental and theoretical calculations. These comparisons

demonstrate a common discrepancy between previous calculations and the current calculations

for each system. The current vibrational relaxation rate constants are generally too small when

compared to low temperature values of Audibert et al. and Orlikowski, and the high temperature

values obtained by Flower et al. and Dove and Teitelbaum. The current calculations indicate the

presence of a dramatic up-turn in the low temperature H2-He rate constants. Other experimental

and theoretical treatments do not exhibit this same up-turn, which is puzzling. A set of follow-up

calculations featuring a larger basis set (such as the f16,12,10,8g Flower et al. basis set) and a

larger manifold of included relaxation pathways are needed to improve these calculations.
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Chapter 1

Introduction

Vibrational relaxation. What is it ? Why is it relevant ? What is gained by studying it ?

Before investing vast amounts of time, e�ort and money into studying a particular �eld, such as

vibrational relaxation, these three questions must be answered. At �rst glance these question seem

to be nothing more than simple queries about the problem. However, upon closer inspection the

larger meaning which they embody becomes clear. By answering the �rst question - What is it?

- the nebulous concept of problem takes a solid well-de�ned form. Attempting to solve problems

which lack de�nition is a duty best left to psychics and clairvoyants. The second question - Why

is it relevant ? - places the clearly-de�ned problem into a familiar context. A problem which

lacks a context can lead to academic pursuits and intellectual \wheel-spinning", neither of which

contribute to the general or scienti�c community at large. The third and �nal question - What is

gained by studying it ? - provides the motivation needed to propel the research forward. Without

an incentive, the original purpose of the research fades and the research stalls. In the following

sections, each of these questions will be addressed in terms of the current problem - noble gas

collision induced vibrational relaxation of (v = 1) para-H2.

1



CHAPTER 1. INTRODUCTION 2

1.1 What is it?

In the most general terms, vibrational relaxation can be de�ned as any mechanism which permits

a rotationally-vibrationally (henceforth condensed to \rovibrationally") excited molecule to un-

dergo a non-radiative transition to another less-energetic, less-vibrationally excited rovibrational

state. In terms of the work presented here, this de�nition will be limited to the atom-diatom

inelastic collision mechanism, with particular attention to noble gas atoms colliding with singly-

vibrationally excited states of the para spin modi�cation of H2. Such systems represent the

simplest systems which can undergo vibrational relaxation processes. These simpli�cations come

from several places; the isotropic electron charge distribution surrounding the noble gas atom, the

low reduced mass of H2, and the ortho-/para- spin modi�cation separability found in all homonu-

clear diatomic molecules, to name a few. The isotropic electron charge distribution of the noble

gas atom simply means that there is no intrinsic angular momentum carried by the noble gas

atom which would need to be taken into consideration during the scattering calculations. Low

reduced mass diatomic molecules possess larger rotational level spacings, which helps to reduce

the number of energetically accessible basis states that would need to be included in the scatter-

ing calculations. The ortho-/para- spin modi�cations of H2 also serve to reduce the number of

accessible basis states by separating the even and odd numbered rotational levels into two totally

independent species.

1.2 Why is it relevant ?

Studying noble gas collision-induced vibrational relaxation of para-H2 may seem somewhat aca-

demic, but the truth of the matter is that this topic has several important applications. Hydrogen

is the most abundant element, corresponding to approximately 90% of all visible matter in the

universe [1]. The next most abundant element is helium, a distant second representing only about

9% of the visible matter in the universe. Most of the hydrogen in the universe is found in dense

interstellar clouds in the energetically more-favourable diatomic molecular form, while helium is
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exclusively found in its atomic form. With diatomic hydrogen and atomic helium comprising the

bulk of the visible universe, studying H2-He and other H2-Ng (Ng = noble gas) systems in general

has many diverse applications in the �elds of astronomy, astrophysics, and cosmology.

1.3 What is gained by studying it?

The short answer to this question is simple, added knowledge about molecular hydrogen is gained

by studying its collision-induced vibrational relaxation. This in itself is reason enough to study it;

however, the longer answers to this question are much more satisfying. Since molecular hydrogen

is the most common molecule in the entire universe the application of this added knowledge are

potentially limitless. The vibrational relaxation rate constant data can be used to improve mod-

els of: the early hydrogen/helium rich universe, the dense molecular clouds in the present-day

universe, stars, and the atmospheres of gas giants, to name just a few astrophysical/cosmological

applications.

On a less grandiose scale, vibrational relaxation calculations can also serve as a valuable diag-

nostic tool to researchers attempting to generate accurate potential energy surfaces. In the case

of H2-Ar, Bissonnette et al. have spent a great deal of e�ort generating a spectroscopically accu-

rate XC(fit) potential energy surface [2]. While their test calculations using this potential energy

surface demonstrate good agreement with experimentally measured infrared spectral data, second

virial coeÆcients and Raman line-shifting coeÆcients, Waldron [3] has discovered a signi�cant dis-

crepancy between the polarised Q1(1) line-width coeÆcients calculated using their potential and

the experimental measurements of Berger et al. [4]. The Q1(1) Raman spectral line represents a

rotationally elastic, vibrationally inelastic diatomic transition from (v = 1; j = 1)! (v = 0; j = 1)

whose prediction depends on the accuracy of the diatom stretching dependence of the potential

energy surface. The discrepancy noted by Waldron suggests that the stretching dependence of the

XC(fit) H2-Ar potential energy surface may be inadequate. Vibrational relaxation calculations
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are also very sensitive to the diatom stretching dependence of the potential energy surface, and

can serve as another reliable independent method of assessing the quality of the H2-Ar surface.



Chapter 2

Theory

The complete theory describing vibrational relaxation of diatomic molecules can be expounded to

�ll several hundred pages. In some circles, such an attention to detail is crucial to the understand-

ing of the problems at hand. More often than not however, the subtleties documented in such

careful derivations can often serve to obfuscate the nature of the problem at hand, rather than

clarify it. In this chapter, a great deal of care has been employed to ensure that the discussion

incorporates a suÆcient level of detail so that a true representation of the problem at hand is

documented, while attempting to avoid the quagmire of unnecessary details.

Like most quantum mechanical discussions, it begins with the notion of a wavefunction. The

wavefunction, in perhaps the broadest de�nition, is simply a complete representation of a system.

All of the accessible information about the system is carried by the wavefunction, and any part

of this information can be extracted through the judicious use of the appropriate operator. An

operator is a mathematical device which performs a speci�c mathematical operation on another

object. This operation can be as simple as multiplying the target object by some factor, as is the

case for the x-position operator x̂ = x, or it can involve much higher level mathematics resulting

in a comparatively more complicated operator such as the magnitude of the angular momentum

5
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operator,

L̂2 =
1

sin �

@

@�

�
sin �

@

@�

�
+

1

sin2 �

@2

@�2
: (2.1)

The Third Postulate of Quantum Mechanics states that for every physical observable there exists

an operator which can extract information pertaining to this observable from the wavefunction

describing the system [5]. One such operator is the Hamiltonian Ĥ , which is used to extract the

total energy En from the wavefunction 	n describing a system in a particular state of the system

designated by the label n:

Ĥ	n = En	n (2.2)

This is the time-independent Schr�odinger equation, one of the most important equations of the

20th century. It is this equation that underpins innumerable quantum mechanical discussions, and

it is the best place to begin a discussion of quantum mechanical atom-diatom inelastic scattering.

2.1 Atom-Diatom Inelastic Scattering Theory

In the centre-of-mass frame of reference, let there be a structureless atom separated from the

centre-of-mass of a diatomic molecule by a position vector R. Similarly, let r represent the

position vector which de�nes the bond length and orientation of the diatomic molecule with

respect to the position of the atom. The relative orientation angle � created by these two vectors

is de�ned as � = arccos(eR � er), where eR and er are unit vectors pointing along the directions

of R and r respectively. The Hamiltonian for the atom-diatom system in this frame of reference

is given by

Ĥ = � �h2

2m
r2
r �

�h2

2�
r2
R + v(r) + V (R; r; �): (2.3)

Where m is the reduced mass of the diatomic molecule and � is the reduced mass of the atom

with respect to the diatomic molecule. The �rst term represents the internal kinetic energy

of the diatomic molecule (such as rotational and vibrational kinetic energy), the second term

represents the relative translational kinetic energy of the collision pair, the third term is the

internal potential energy function of the isolated diatomic molecule, and the fourth term is the
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Figure 2.1: Centre-of-mass frame of reference displaying the Jacobi coordinates and the direction

of the space-�xed z-axis.

atom-diatom interaction potential energy surface. Quantum states of the atom-diatom system

are labeled by the values of the diatomic vibrational quantum number v, the diatomic rotational

angular momentum quantum number j, and by the atom-diatom orbital angular momentum

quantum number l. It should be noted that due to the identical particle symmetry of H2 there

exist two independent spin modi�cations: one in which the rotational angular momentum quantum

number j is restricted to even values only (referred to as para-H2), and another in which j is

restricted to odd values only (referred to as ortho-H2). The research contained herein is exclusively

interested in the even rotational angular momentum levels of the para-H2 spin modi�cation. In

addition to the vjl quantum number labels, it is a common practise to also include the total

angular momentum jj � lj � J � j + l and its projection M = mj + ml on the space-�xed z-

axis, since the total angular momentum is a constant of motion. This means that a wavefunction

describing a state of the system can be written as 	JM
vjl (R; r; �). The time-independent Schr�odinger

equation (2.2) can now be rewritten as

�
� �h2

2m
r2
r �

�h2

2�
r2
R + v(r) + V (R; r; �)

�
	JM
vjl (R; r; �) = Evj	

JM
vjl (R; r; �): (2.4)

A common approach to solving this equation is to expand the total wavefunction as the summed

products of extramolecular and intramolecular pieces,

	JM
vjl (R; r; �) =

1

rR

1X
v0j0l0

uJvjlv0j0l0(R)�
JM
v0j0l0(r; �); (2.5)
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where u
Jvjl
v0j0l0(R) and �

JM
v0j0l0(r; �) represent the extramolecular and intramolecular parts of the total

wavefunction, respectively. By substituting this expanded version of the total wavefunction (2.5)

into the time-independent Schr�odinger equation (2.4) a considerable simpli�cation can be made,

ultimately resulting [6, 7] in

�
d2

dR2
� l(l + 1)

R2
+

2�

�h2
�vj

�
u
Jvjl
vjl (R) =

1X
v0j0l0

u
Jvjl
v0j0l0(R)hvjl; J jV (R; r; �)jv0j0l0; Ji; (2.6)

where,

hvjl; J jV (R; r; �)jv0j0l0; Ji � 2�

Z �

0

Z
1

0

�JMvjl (r; �)V (R; r; �)�
JM
v0j0l0(r; �)r

2 sin2 � drd�; (2.7)

and �vj represents the kinetic energy associated with the vjth state. Unfortunately, this equa-

tion is impossible to solve due to the in�nite summation over the quantum states of the system.

Within an acceptable level of inaccuracy (imposed by the user) however, this summation can

be truncated to include only those quantum states that are strongly coupled. The �nite set of

coupled di�erential equations resulting from this truncation of the summation in (2.6) is referred

to as the close-coupling equations. Solving the close-coupling equations is a pivotal step in creat-

ing the wavefunctions 	JM
vjl (R; r; �) that describe the system after a scattering event has occurred.

Experimentally, a scattering event occurs over a very small length scale as compared to the

distance the scattered particles must travel before arriving at some form of detector. Theoreti-

cally, this notion of interrogating the products of the scattering process after they have traveled

a large distance from the scattering region can be reproduced by examining the post-collision

wavefunction at asymptotically large values of the atom-diatom separation, R. The extramolec-

ular wavefunction u
Jvjl
v0j0l0(R), which is the only part of the total wavefunction 	JM

vjl (R; r; �) that

depends upon the atom-diatom separation R, will have two terms in its asymptotic form. One

term representing the incoming 
ux of particles in the state vjl, and a second term representing
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an outgoing 
ux of scattered particles in the state v0j0l0 [8, 9],

u
Jvjl
v0j0l0(R!1) = Ævv0Æjj0Æll0e

�i(kvjR�l�=2) � kvj

kv0j0
S
J
vjl!v0j0l0(E)e

i(k
v0j0

R�l�=2) (2.8)

Where Ævv0 , Æjj0 , and Æll0 represent Kronecker delta functions, while k2vj = 2�=�h2(E � �vj), and

the SJvjl!v0j0l0(E) are the scattering or S-matrix elements. Armed with the asymptotic form

of the extramolecular wavefunction u
Jvjl
v0j0l0(R), there is now suÆcient information to generate a

quantity called the state-to-state total integral cross section. These cross sections provide an

energy dependent description of the probability of a system in the initial diatomic \state" (v; j)

being inelastically scattered into the �nal diatomic \state" (v0; j0). The rather unwieldy name

given to these cross sections is unfortunately necessary so as to identify clearly these speci�c cross

sections from the plethora of other types of cross sections. The term integral cross section is used

to signify that an integral over all scattering angles has been used to accumulate numerically all

of the scattering products, irrespective of the direction in which they were scattered. The term

total integral cross section signi�es that a summation over all of the partial wave contributions

(analogous to classical \impact parameters") has also been incorporated. Finally, the term state-

to-state total integral cross section is a further delineation signifying that these cross sections only

represent the scattering from one particular diatomic \state" (v; j) to another diatomic \state"

(v0; j0) (integrated over all scattering angles, and summed over all partial waves). It should be

stated that in the strictest parlance, these cross sections would actually be referred to as level-to-

level total integral cross sections since there is no mj projection quantum number discrimination.

The absence of an external electric or magnetic �eld (which would lift some or all of the mj

degeneracy) serves to blur the distinction between level-to-level and state-to-state total integral

cross sections. In an e�ort to conform with the majority of other works in this �eld, the less

accurate term \state-to-state" will be adopted henceforth. Construction of these state-to-state

total integral cross section begins by forming the ratio of the asymptotic scattered probability 
ux

to the asymptotic incident probability 
ux. The actual mathematics involved in this derivation is

far beyond the scope of this research and would most likely only serve to confuse the author and

reader alike. A complete treatment of this and other related derivations can be found in work
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by people such as Lester [8] and Arthurs and Dalgarno [6]. The state-to-state total integral cross

section is hence de�ned as,

�vj!v0j0 (E) =
�

k2vj(2j + 1)

1X
J=0

(2J + 1)

J+jX
l=jJ�jj

J+j0X
l0=jJ�j0j

jÆvv0Æjj0Æll0 � SJvjl!v0j0l0(E)j2: (2.9)

These state-to-state total integral cross sections are the �nal product of a theoretical treatment of

an atom-diatom scattering process. However, for the current purpose at hand they are merely one

step in a sequence of calculations ultimately resulting in a rate constant for the collision induced

vibrational relaxation of the diatomic molecule.

2.2 Kinetic Theory

As demonstrated above, scattering theory can successfully describe, for a given energy, the prob-

ability that the initial state of a diatom (v; j) is scattered into a �nal state (v0; j0) by way of an

inelastic collision with an atomic projectile. The problem hitherto unaddressed is how a state-to-

state total integral cross section will become an experimentally measurable rate constant.

From simple second-order kinetics, the rate of depletion of the population of diatoms in the

initial state Ni is given by,

d

dt
[Ni] = �k(�)[Ni][M ]; (2.10)

where k(�) is the relative speed dependent collision rate constant, and M is the population of

atomic projectiles. All else being equal, the more numerous the population of systems in the

initial state, or the larger the collision rate constant, the greater the rate at which the population

of systems in the initial state is depleted. By increasing the number of systems in the initial

state there are essentially more targets to collide with, which results in an increased collision

rate and hence an increased rate of depletion. When the collision rate constant k(�) is increased

however, the number of targets remain unchanged, but the number of collisions as well as the

rate of depletion increases. Intuitively, the collision rate constant must incorporate some form of
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collision probability factor to control, for a given relative speed �, how likely it is that a collision

will occur. This notion of a collision probability is intimately related to the previous discussions of

scattering cross sections. The collision rate constant can be de�ned as the product of a scattering

cross section �(�) and the relative speed of the colliding pair � [10],

k(�) = �(�) �: (2.11)

By incorporating the state-to-state integral cross sections �vj!v0j0(�), a state-to-state collision

rate constant can be generated,

kvj!v0j0(�) = �vj!v0j0(�) �: (2.12)

Experimental collision rate constants are measured at constant temperature rather than at a

constant collision speed since it is physically impossible to generate a beam of particles having

exactly the same speed. To incorporate this experimental limitation the relative-speed dependent

state-to-state collision rate constants kvj!v0j0(�), must be thermally averaged. To accomplish

this thermal averaging, the distribution of systems having a relative speed between � and � + d�

for a given temperature T , must be determined. The well-known Maxwellian speed distribution

function f(�)d� describes such a distribution of systems [11],

f(�)d� =

�
�

2�kBT

�3=2
exp

�
� ��2

2kBT

�
4��2d�: (2.13)

The thermally averaged state-to-state collision rate constant can now be de�ned as,

hkvj!v0j0 (T )i =

Z
1

0

kvj!v0j0(�)f(�)d� (2.14)

= 4�

�
�

2�kBT

�3=2 Z 1

0

�vj!v0j0 (�) exp

�
� ��2

2kBT

�
�3d�: (2.15)

While integration over the relative collision speed of the system is acceptable, it is more convenient

for the task at hand to conduct this integration over the relative motion kinetic energyEk = ��2=2,
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and hence the state-to-state collision rate constant can be rewritten as,

hkvj!v0j0 (T )i =
s

8

��(kBT )3

Z
1

0

�vj!v0j0 (Ek)Ek exp

�
� Ek

kBT

�
dEk: (2.16)

The focus of this research is on vibrational relaxation rate constants; in particular, the v =

1! v = 0 vibrational relaxation rate constants. For a collision rate constant to be classi�ed as a

vibrational relaxation rate constant, there are two criteria that must be met. First, the vibrational

quantum number of the initial state must be greater than that of the �nal state (v > v0) and

second, the internal energy of the �nal state of the diatom must be less than the internal energy

of the initial state. The �nal rotational level in v = 0 is not of particular interest in this work,

so a summation over j0 has been incorporated to accumulate numerically all of the available

vibrational relaxation pathways from a given initial state in v = 1 to the manifold of all possible

�nal vibrationally relaxed states in v = 0. As the temperature increases, higher initial rotational

states will become thermally populated, and must be included in the manifold of initial states for

completeness.

Figure 2.2 illustrates the fractional population of �ve di�erent manifolds of initial states, varying

from a single state , to a �ve-state manifold. To incorporate the e�ect of a manifold of initial

states, a weighted sum over the states in the manifold is required. Simply put, each rotational

state in the manifold of initial states, will possess a certain fraction of the total initial population.

When incorporated into this sum over the manifold of initial states, this fractional population

factor Pj(T ) will weight each state-to-state vibrational relaxation rate constant based upon its

thermal initial-state fractional population. The resulting expression for the thermally averaged,

manifold-to-manifold vibrational relaxation rate constant is then expressed as

hkv=1!v0=0(T )i =
X
j

Pj(T )
Z
1

0

X
j0

k1j!0j0 (�)f(�)d�; (2.17)

where the fractional population factor Pj(T ) is given by

Pj(T ) = (2j + 1) exp(�Ev=1;j=kBT )P
j00 (2j

00 + 1) exp(�Ev=1;j00=kBT )
: (2.18)
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Figure 2.2: The percentage of the total population due to various initial state manifolds. Notice

that as the temperature increases more and more rotational states are required to account for the

bulk of the total population.

At lower temperatures (T < 75 K), the thermal population distribution of the initial states

is almost entirely (> 99%) represented by the single state (v = 1; j = 0), in which case the

thermally averaged state-to-manifold vibrational relaxation rate constant is given by

hkv=1;j=0!v0=0(T )i =
Z
1

0

X
j0

k1j!0j0 (�)f(�)d�: (2.19)

The state-to-manifold (Equation 2.19) and manifold-to-manifold (Equation 2.17) vibrational re-

laxation rate constants are quantities which are experimentally measurable. It should be noted

that some vibrational relaxation experiments occur at high temperatures, resulting in thermal

initial-state population distributions which not only span several rotational states in v = 1, but
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also several rotational levels in v = 2 and beyond. Experimental data collected at temperatures

in excess of � 2000K will be signi�cantly in
uenced by these highly vibrationally excited (v � 2)

species. The treatment heretofore discussed does not incorporate an initial state population dis-

tribution beyond v = 1; j = 6 and hence is not expected to describe reliably the results of any

such high temperature experiments.



Chapter 3

Calculations

With the theoretical discussion of vibrational relaxation now complete, all that is left is to solve

numerically the problems that these discussions have de�ned. Easier said than done. The elegance

of a theoretical description and the ease of generating numerical solutions are not necessarily re-

lated. As shown in x2.1, the asymptotic form of the extramolecular wavefunction is relatively

simple and straightforward, involving things like the 
uxes of incoming and outgoing particles

and S-matrix elements. The theoretical description of the asymptotic wavefunction is simple and

compact. However, from a numerical processing standpoint, generating the S-matrix elements can

be an exceedingly diÆcult task to accomplish. This chapter is dedicated to describing in detail

the manner in which the theoretically-de�ned quantities from the previous chapter are turned

into tangible numerical results. The roadmap of the calculations described herein is very simi-

lar to that of the previous theoretical discussion; scattering theory is employed to generate the

state-to-state total integral cross sections, and then kinetic theory transforms these cross sections

into the state-to-manifold/manifold-to-manifold vibrational relaxation rate constants. While the

theoretical description of this process split the scattering theory and kinetic theory discussions

into nearly equal sized sections, it will be shown that the actual numerical processing requirements

of these two sections are far from equal.

15
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There are two numerical packages [12, 13] available to the scienti�c community which can

be used to solve the close-coupling equations and generate the state-to-state total integral cross

sections that have been mentioned earlier. The calculations presented herein have been carried

out using the general molecular inelastic scattering code of Hutson and Green called MOLSCAT

[12]. The main reasoning behind this selection is that this package has been demonstrated to

be a reliable method of solving similar problems in the past. It is very con�gurable, o�ering a

great deal of control of the di�erent automatic convergence criteria, a wide selection of di�erent

wavefunction propagators, and has the ability to employ any of several di�erent approximation

methods should the close-coupling treatment turn out to be more challenging than anticipated.

MOLSCAT can be custom-built for each system by incorporating into the rest of the program a

subroutine that describes the potential energy surface for that system. Before embarking on a

discussion of the MOLSCAT calculations, the potential energy surfaces hitherto unexplained should

be described.

3.1 Potential Energy Surfaces

In order to scatter one object o� of another there must be a method of communicating some type

of force between the objects, otherwise they would just pass one another as if the other wasn't

even there. It may seem like a trivial point to mention, but it is the fundamental upon which all

of scattering theory is based. The force F can be related to the gradient of a scalar �eld U(r),

F = �rU(r); (3.1)

which simply states that the direction and magnitude of the force on an object located by r is

determined by the direction and steepness of the steepest \slope" of U(r). This scalar �eld is

commonly referred to as a scalar potential. The concept of potential energy is a direct result of

these scalar potentials. Instead of working in terms of forces which are vector quantities, quantum

mechanical discussions tend to work in terms of potential energies (scalar potentials) because of
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the simpler mathematics they require. Depending on the speci�c problem at hand, the potential

energy may be a function of one variable, such as the separation of two objects, or it may be a

function of several variables. When the potential energy depends on more than one variables, as

is the case with the research contained herein, the potential energy is referred to as a potential

energy surface (PES).

As alluded to earlier, it is the force communicated between two particles, and hence the po-

tential energy surface that ultimately will cause the scattering of the two particles. Without an

accurate description of the potential energy surface for the interaction, there can be no hope of

modeling the scattering event. Potential energy surfaces can be constructed using many di�erent

techniques. Some are determined from the deconvolution of experimental data [14, 15], some are

created from ab initio techniques [16, 17], and some potential energy surfaces are created using a

combination of these techniques [18, 2]. The atomic units of Bohr radii (a0) and Hartrees (Eh) are

the traditional units of length and energy (respectively) used by most ab initio quantum chemists

when working with potential energy surfaces, although the spectroscopic units of Angstroms (�A)

and wavenumbers (cm�1) seems to be gaining popularity as the spectroscopy becomes increas-

ingly pervasive. For consistency, atomic units will be used throughout the current discussion of

the various potential energy surfaces.

The potential energy surfaces used herein for both H2-Ar and H2-Ne have been generated by

starting with the Exchange Coulomb (XC) potential energy surface model which was then �ne

tuned by a �t to high resolution infrared spectroscopic, second virial coeÆcient and Raman pres-

sure shifting data. This �ne-tuned XC potential is referred to as an XC(fit) potential energy

surface. In the case of H2-He however, the Van der Waals attraction of this complex is so weak

that spectroscopic data are unavailable. The potential energy surface for this system has been

generated using the ab initio con�guration interaction (CI) technique [16, 19]. As will be discussed

shortly, these potential energy surfaces not only di�er in the manner in which they have been gen-

erated, but also in the way that they have been documented. The potential energy surfaces for
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H2-Ar and H2-Ne share a common lineage which allows a conjunctive discussion of their use in the

present work. The potential energy surface for H2-He will require a separate and more involved

discussion to document the added work required to prepare this potential energy surface for this

research.

3.2 The XC(fit) Potentials: H2-Ar and H2-Ne

The Exchange Coulomb (XC) model developed by Ng et al. is an ab initio potential energy

surface originally designed to model the interaction of closed shell atom-atom systems [20, 21, 22],

but has since been successfully adapted to diatom-noble gas systems such as N2-Ar [23], N2-Kr

[24], CO-He [25], H2-Ar [2] and H2-Ne [18]. The XC model is simply de�ned as the sum of two

terms: a short-range repulsive Heitler-London interaction term E
(1)

HL, and a long range attractive

induction/dispersion term �EC(R; �; �), viz.

V (R; �; �) = E
(1)

HL +�EC(R; �; �): (3.2)

Where R represents the atom-diatom centre-of-mass separation, � describes the relative orienta-

tion of the diatom bond relative to the atom, and � = (r�r0)=r0 is the dimensionless diatom bond

stretching coordinate which is de�ned in terms of the diatom bond length r and its ground state

equilibrium value r0. This representation is often referred to as the XC(0) model to signify that

it is purely ab initio and does not contain any empirical parameters. The XC(0) surface, while

qualitatively correct, lacks the quantitative accuracy needed to model highly accurate modern ex-

perimental data such as that found in high resolution infrared spectra. To increase the 
exibility

of the XC model, an empirical scaling factor F is introduced to the Heitler-London term of the

XC(0) surface and subsequently optimised using high resolution infrared spectral data, second

virial coeÆcients, and Raman Q-branch line-shifting data. The resulting potential energy surface

is called XC(fit) to signify that the ab initio XC(0) model has been �ne-tuned by �tting the

scaled model to accurate experimental data.
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The analytical description of these XC(fit) potential energy surfaces means that MOLSCAT

potential subroutines can be created immediately without having to conduct any time-consuming

�tting procedures to transform the given potential into a more usable form. As can be seen by

the amount of work needed to �t a tabulated potential energy surface analytically (as described

in x3.3), the advantage of a potential energy surface already represented analytically is consid-

erable. More time can be saved by adapting the pre-existing MOLSCAT potential subroutines for

both H2-Ar [2] and H2-Ne [18] to suit the needs of the present research. The original subroutines

are not designed to handle calculations involving vibrationally inelastic processes as required by

the calculations found herein. However, a large majority of the code from these vibrationally

elastic subroutines has been adapted to construct vibrationally inelastic versions. Using these

adapted potential subroutines, scattering calculations can now be attempted. More details about

the speci�cs of these calculations can be found in x3.4.

A battery of trial scattering calculations have demonstrated that the H2-Ne XC(fit) poten-

tial energy surface shows no obvious problems; however, the same can not be said for the H2-Ar

surface. The low-energy ground vibrational state (vibrationally elastic) calculations of Bisson-

nette et al. [2] using the XC(fit) H2-Ar potential energy surface were probably unable to detect

a pathogenic potential turn-over located in the then inaccessible very small (R < 1:0 a0) atom-

diatom separation region. The present vibrationally inelastic calculations are much larger in scope

than the previous calculations of Bissonnette et al. [2] and Crowell [18], and consequently are

more likely to sample regions of the potential energy surface not previously tested. Figure 3.1

demonstrates the extent of the potential turn-over found with H2-Ar. Each curve in this �g-

ure represents a cut through a vibrationally-averaged H2-Ar potential energy subsurface where

r = r0 and � = 0Æ. These vibrationally-averaged potentials are heavily used in MOLSCAT and the

pathological turn-overs they possess are causing MOLSCAT to fail. In its current state, the H2-Ar

potential energy surface can not reliably be used for the large basis set, high kinetic energy cal-

culations that are required herein. Several ad hoc attempts to re�t this repulsive wall region to a
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Figure 3.1: An illustration of the pathological short-range potential turn-over for H2-Ar. Notice

the number of vibrationally-averaged potentials which turn over for values of R < 1:0 a0.

decaying exponential form have failed. Since a complete re�t of the entire surface (with particular

attention to the repulsive wall region) is beyond the scope of this work, a crude work-around

will have to suÆce. The turn-over has been removed by constraining each V�(R; r) component

of the surface at R < 1:0 a0 to 100,000 Eh, a value indicative of the magnitude of the potential

components in this region. This technique successfully removes the potential turn-over but intro-

duces an arti�cial isotropic \plateau" for R < 1:0 a0. The impact of this plateau on the scattering

calculations should be minimal since it is energetically well separated from the present calculations.
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3.3 The H2-He Potential

As mentioned earlier, XC(fit) potential energy surfaces are generated by ab initio calculations

and �ne-tuned using the inversion of infrared spectral data, second virial coeÆcients, and Raman

pressure shifting data [2]. In the case of H2-He, spectroscopic data does not exist because the

potential energy surface does not support any bound states. As a result, potential energy sur-

faces for H2-He are developed from ab initio techniques. The potential energy surface that was

chosen for this work is the three dimensional ab initio surface of Schaefer and K�ohler [16]. This

potential energy surface is a combination of two previously published ab initio potential energy

surfaces of Meyer, Hariharan and Kutzelnigg [19]. It is believed that the Schaefer and K�ohler

potential energy surface is one of the most accurate and reliable surfaces with which to carry out

vibrationally inelastic scattering calculations.

One major drawback to this potential energy surface is the tabular format with which it has

been reported. From a computational perspective, this tabular format is quite inconvenient in-

sofar as interpolation and extrapolation are concerned. Calculations using this potential energy

surface can (and in fact, will almost exclusively) interrogate the surface between the tabulated

points. Tabulated data can provide no information about nature of the data between or beyond

the tabulated points. For this reason an external interpolation and extrapolation scheme will

be required. However, interpolation and extrapolation schemes typically use arbitrary curves to

connect the tabulated data in an aesthetically pleasing, yet non-physical manner. In contrast,

if the tabulated potential energy surface were to be `�tted' to an analytic form which is based

(to some degree) on a physical model of the system at hand, the problems of interpolation and

extrapolation become less troublesome. An analytic form based on a physical model of the system

has built-in characteristics which provide a much more reliable ability to predict data between (or

beyond) the tabulated points.

The quality of these �ts can be assessed through the use of the quantity called the dimensionless
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standard error (DSE) ��f ,

��f =

(
1

N �M

NX
i=1

�
ycalc(i)� yobs(i)

u(i)

�2)1=2

; (3.3)

where each of the N tabulated data points yobs(i) has an uncertainty of u(i), and ycalc(i) is the

value of the datum i predicted by the M -parameter �t [26]. A �t in which the model represents

the original data to a level consistent with the uncertainties of the original data will result in a

DSE which is close to unity (��f � 1). Fits which result in DSE's larger than unity represent

poorer quality of �ts, while �ts which result in a DSE less than unity represent higher quality

�ts. The work of Schaefer and K�ohler does not document any values for the uncertainties of the

points that de�ne their surface. Using the number of signi�cant �gures reported in the tabulated

data as a guide, a modest arti�cial uncertainty of 1�10�6 Eh was assigned to each point on the

surface. Due to the somewhat subjective choice for the uncertainties of the points in the tabulated

data, the absolute value of the DSE is not as helpful as previously mentioned. Since the DSE is

inversely related to the data uncertainty (3.3), a larger choice for the uncertainty of the points in

the tabulated data will result in a smaller DSE, and vice versa. However, the relative values of the

DSE between di�erent �ts performed using the same uncertainties will provide a method to gauge

the relative \goodness" of the �ts. It should be noted that for some cases, such as the problem-

atic small atom-diatom separation region, some ad hoc manipulation of the arti�cial uncertainties

can be imposed on the tabulated data to facilitate the �tting of the tabulated data in these regions.

3.3.1 The Diatom Bond Length Coordinate, r

Before discussing the details of the diatom bond length coordinate �tting procedure, it is instruc-

tive to mention the format that has been used to tabulate the Schaefer and K�ohler potential

energy surface. A common practise when it comes to describing the angular dependence of poten-

tials possessing high levels of angular symmetry, such as that found in atom-homonuclear diatom
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systems, is to incorporate the angular dependence of the potential into a Legendre series such as

V (R; r; �) =

4X
�=0;2

V�(R; r)P�(cos �); (3.4)

where P�(cos �) are the Legendre polynomials, and V�(R; r) represent the potential component

sub-surfaces corresponding to the angular symmetry of P�(cos �). Schaefer and K�ohler have sup-

plied their potential energy surface in terms of a set of �ve tables, each table representing a slice

through each of these three potential component sub-surfaces V�(R; r) for a given value of the

diatom bond length (r=0.900, 1.280, 1.449, 1.618 and 2.000 a0) as a function of atom-diatom sep-

aration R. Since the angular dependence of the potential energy surface has been incorporated by

the Legendre series, this leaves only the diatom bond length r and the atom-diatom separation R

coordinates to be �t. Ideally a multi-dimensional surface �tting procedure will be used to �t these

last two degrees of freedom simultaneously, but such �tting procedures can be exceedingly diÆcult

to con�gure and proof. To avoid the pitfalls associated with such surface �tting, two consecutive

multi-dimensional curve-�tting procedures will be used. The �rst �tting procedure is responsible

for the diatom bond length dependence while the second �tting procedure is responsible for the

atom-diatom separation dependence of the potential energy surface. This sequential method of

�tting the surface is not without its drawbacks. Depending on the tabulated potential energy

data and the 
exibility of the functional forms that are used in the �tting procedure this method

may mistakenly �nd a locally optimised set of parameters instead of the true globally optimised

values. This problem, which plagues almost all multi-dimensional non-linear least-squares �tting

procedures, is slightly more problematic here because a poorly optimised parameter found in the

�rst step will passed to the second step, which will further the damage. By varying the initial trial

parameters the users can convince themselves that the optimised parameters found during the

�rst step of the �tting procedure correspond to the globally optimised values, and then proceed

to the second step of the process with con�dence.

Returning to the diatom bond length �tting procedure, a power series in the dimensionless
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stretching coordinate � = (r � r0)=r0 has been chosen to represent the diatom-bond length de-

pendence of the potential energy surface,

V�(R; r) =

NX
k=0

W�k(R)�
k =

NX
k=0

W�k(R)

�
r � r0

r0

�k
: (3.5)

Where W�k(R) are the coeÆcients of the �tted power series, and r0 represents the equilibrium

diatom bond length of H2 in its ground rovibronic state (r0 = 1:449 a0). A power series was

selected as the functional form for this �tting procedure for several reasons. The scattering

calculations which comprise the bulk of the computational e�ort of this research will require a

large number of matrix elements of the potential energy surface (2.6). Combining 3.4 and 3.5,

these intramolecular matrix elements can be rewritten as

Mvj!v0j0 = h�JMvjl (r; �)jV (R; r; �)j�JMv0j0l0(r; �)i (3.6)

=

2X
k=0

4X
�=0;2

W�k(R)h�JMv00j00l00(r; �)j�kP�(cos �)j�JMvjl (r; �)i: (3.7)

The angular portion of these matrix elements is readily soluble by MOLSCAT thanks to orthogonal-

ity and other properties of Legendre polynomials. The radial portion, however must be calculated

externally and supplied to MOLSCAT along with the rest of the input data. These radial matrix

elements can be calculated using the Le Roy LEVEL 7.0 program [27] with the Schwartz-Le Roy

H2 potential energy function [28]. As will be seen below, the power series functional form has the

added bene�t of being a linear function with respect to its parameters, which permits a simple

linear least-squares �tting procedure to be used.

The Schaefer-K�ohler potential energy surface has only been evaluated at �ve di�erent diatom

bond lengths, which means that a four-term (or smaller) power series should be used to provide

a reliable �t. Fitting data to analytic functions is somewhat of an art form, and great care must

be used to minimise the number of parameters so as to create as compact a representation of

the original data as possible without signi�cantly decreasing the quality of the overall �t. The
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linear least-squares �tting algorithm which has been used is the Le Roy linear least-squares �tting

program called llsqf [29]. In this case, it was found that a three term power series (N = 2)

generates a suÆciently compact representation of the Schaefer-K�ohler data with a minor impact

on the quality of the overall �t.

A total of 144 separate linear least-squares �ts are needed to represent the diatom-bond length

dependence of the potential energy surface. The overall potential energy surface has been parti-

tioned into three sub-surfaces V0(R; r), V2(R; r) and V4(R; r) according to the Legendre expansion

(3.4). Each of these sub-surfaces is tabulated at 48 di�erent atom-diatom separations ranging from

R = 1:6 a0 to R = 11:0 a0, creating 48 slices through each of these sub-surfaces. Every one of

these 144 slices has been �t to a three-term power series, generating a total of 432 parameters.

At small atom-diatom separations (R � 2:4 a0) the �tting procedure faltered and produced �ts

with larger uncertainties. Despite these larger uncertainties the data points at small values of the

atom-diatom separation have been shown to be an invaluable part of the potential energy surface,

and must be included in the �tting procedure in order to prevent any pathological behaviour of

the modi�ed Lennard-Jones oscillator radial functions during the next step of the �tting procedure.

The next stage in the surface �tting process is to take the �tted parametersW�k(R) with their

uncertainties and �t the remaining atom-diatom separation dependence of the overall PES to the

modi�ed Lennard-Jones (12,6) oscillator functional form. As will be shown in the following section,

the modi�ed Lennard-Jones (12,6) oscillator function has suÆcient 
exibility to incorporate the

long range C
�;k
6 dispersion coeÆcients which have been carefully calculated by Thakkar et al. [30].

3.3.2 The MLJ and the Atom-Diatom Separation Coordinate, R

The Van der Waals force is the dominant interaction in H2-Ng systems (Ng = fHe,Ne,Ar...g). It
is also the dominant interaction in noble gas dimer (Ng2) systems. In the 1930's and up until the

mid 1960's the Lennard-Jones (2n,n) potential energy function (equation 3.8) was considered to
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be an adequate potential energy function for describing these types of weakly interacting Van der

Waals systems [31]. The standard Lennard-Jones (12,6) function can be represented as

VLJ(R) = De

�
1�

�
Re

R

�n�2
�De; (3.8)

where De is the well depth at the equilibrium bond distance Re. The value of n will determine

the type of Lennard-Jones potential energy functions, for example if n = 6 (as is the case herein)

the familiar Lennard-Jones (12,6) potential energy curve is produced. The Lennard-Jones (2n,n)

potential energy function has long since been replaced by more sophisticated and accurate po-

tential energy functions. However with a few modi�cations the usefulness of the Lennard-Jones

potential energy functional form can be revitalized to a certain extent. In 2000, Hajigeorgiou et

al. introduced a new variation on the Lennard-Jones potential energy function called the modi�ed

Lennard-Jones (MLJ) oscillator function [32],

VMLJ(R) = De

�
1�

�
Re

R

�n
e��(z)z

�2
�De; (3.9)

where

�(z) =

NX
m=0

�mz
m; (3.10)

and z = (R�Re)=(R+Re). This potential energy function, like its predecessor, has a form which

readily permits it to be constrained to an inverse-power form at large values of R. In the long

range, R ! 1 and z ! 1 which will make the beta function collapse to a sum of its coeÆcients

(referred to as �1)

�1 = lim
z!1

�(z) =

NX
m=0

�m: (3.11)

The long range form of the MLJ potential function can now be written as the familiar inverse-

power relationship,

lim
R!1

VMLJ(R) = �2De

�
Re

R

�n
e��1 = �Cn

Rn
; (3.12)
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where

Cn = 2DeR
n
e e
��1 : (3.13)

It should be noted that the MLJ potential energy function was designed to handle potential energy

curves, not necessarilyW�k(R) potential energy components per se. Potential energy components

usually exhibit potential curve-like properties such as repulsive walls, attractive long range tails

and potential wells, but there are no guarantees that these features will be found in the W�k(R)

potential components. For the most part it is expected that the MLJ (12,6) potential energy

function will describe the W�k(R) potential component functions reliably, but it should be ex-

pected that some of these potential component functions may require some additional attention

in order to facilitate the �tting procedure. Based on the previous successes of the MLJ potential

energy function demonstrated by Hajigeorgiou and Le Roy [32] and its convenient inverse-power

long range form, the modi�ed Lennard-Jones (12,6) potential energy function has been chosen to

represent the atom-diatom separation dependence of the tabulated potential energy surface.

The atom-diatom separation dependence of the potential energy surface is the only coordinate

which still requires analytical representation. Equation 3.5 demonstrates that the atom-diatom

separation coordinate appears only in the coeÆcientsW�k(R) of the power series expansion. These

coeÆcients and their uncertainties generated during the diatom bond length �tting procedure, in

conjunction with the long range C
�;k
6 dispersion coeÆcients of Thakkar et al. [30], can now be

�tted to the modi�ed Lennard-Jones (12,6) oscillator function. In contrast to the linear least-

squares procedure used to �t the diatom bond length dependence to a power series expansion,

a non-linear least square �tting procedure is required to �t the atom-diatom separation depen-

dence to the modi�ed Lennard-Jones (12,6) oscillator function. A non-linear least-squares �tting

procedure is required whenever the �tting function does not depend linearly upon its parameters

[33]. This (non-)linearity can be demonstrated by examining the partial derivatives of the �tting

function with respect to its parameters. For example, the diatom bond length �tting procedure

involved a three-term power series �tting function, (Equation 3.5). The partial derivatives of this
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power series with respect to the parameters W�k(R) are,

@V�(R; r)

@W�k

= �k; (3.14)

which do not depend on the values of any of the W�k parameters. This means that the power

series functional form depends linearly upon its parameters, and consequently a linear least-

squares �tting procedure is suÆcient. However, the atom-diatom separation dependence of the

potential energy surface is to be �t to the modi�ed Lennard-Jones (12,6) �tting function,

W�k(R) = De
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The partial derivatives of this �tting function with respect to its parameters (De; Re; f�ig; C�;k
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are given by
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Each of these partial derivatives has an explicit dependence upon some or all of the parameters.

This implies that the modi�ed Lennard-Jones (12,6) functional form does not depend linearly

upon its parameters, and hence a non-linear least-squares �tting procedure is required. These

partial derivatives of the �tting function with respect to its parameters are important to the �t-

ting process because it is these partial derivatives which serve to \navigate" the �tting algorithm

through parameter space in search of the set of parameters which minimises ��f , the dimension-

less standard error (DSE). In linear least-squares �tting procedures the parameter-independent

partial derivatives permit a single-step simultaneous optimisation of all parameters. However, for

non-linear least-squares procedures in which the partial derivatives depend on some or all of the

parameters, an iterative algorithm is required to optimise all of the parameters using a variable

step-size gradient search-type method. The non-linear least-squares �tting algorithm nllssrr of

Le Roy [26] has been used for all non-linear least squares �ts calculated herein.

The diatom bond length �tting procedure has generated nine distinct potential component

functions W�k(R) where � = f0; 2; 4g and k = f0; 1; 2g. Each of these functions is de�ned at 48

di�erents atom-diatom separations ranging from R = 1:6 a0 to R = 11:0 a0. Instead of allowing

the �tting procedure to vary the long range C
�;k
6 dispersion coeÆcient parameters, these coef-

�cients are �xed using the ab initio C
�;k
6 coeÆcients calculated by Thakkar et al. [30]. These

parameters, henceforth referred to as constants, are removed from the �tting procedure. Hereto

unaddressed has been the number of parameters de�ning the beta function. As discussed earlier,

the goal when �tting data to analytical forms is to minimise the number of parameters without

introducing any signi�cant negative impact to the quality of the �t. The number of parameters in

the beta function was determined by comparing a series of di�erent �ts having di�erent numbers

of parameters. When the optimised value of the n-th parameter became smaller than its uncer-

tainty, the beta function �(z) was terminated at the (n � 1)-th term. When a parameter value

is overshadowed by its uncertainty, the �t is said to be insensitive to this parameter. Removing

an insensitive parameter from the �t will typically only produce a minor impact on the overall

quality of the �t. For the most part it was found, using this technique, that a three-parameter
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f�0; �1; �2g beta function was suÆcient.

During the �tting procedure it became clear that certain potential component functions

W�k(R) could not be represented by a modi�ed Lennard-Jones (12,6) oscillator function. Origi-

nally it was hoped that all nine potential component functions could be expressed by nine separate

modi�ed Lennard-Jones (12,6) oscillator functions containing the same number and con�gura-

tion of parameters. Such a representation is aesthetically pleasing, as well as making computer

programming tasks slightly more manageable. Unfortunately, the current form of the modi�ed

Lennard-Jones (12,6) oscillator function can not be successfully �t to four of the nine potential

energy components: W02(R) and all of the W4k(R) components. Non-linear �tting procedures

require a great deal of human intervention in order to work properly. The choice of the initial trial

parameters, the data uncertainty and model 
exibility all combine to determine whether or not

a �t will converge or not. Model 
exibility is something that can't be changed without changing

the model, but the choice of the initial trial parameters and the data uncertainty are things which

can be changed in order to help improve the success of a model in representing the data as accu-

rately as possible. Many di�erent sets of initial trial parameters were unsuccessful in generating

a useable �t of the tabulated data to the modi�ed Lennard-Jones (12,6) oscillator function. In

addition, several ad hoc manipulations of the input data uncertainties were also unable to help

produce useable �ts. Almost the only recourse left was to adapt the model.

The W02(R) Potential Component Function

In the case of the W02(R) potential component, the problem is found to be that the long range

behaviour of the model, described by the C
�;k
6 dispersion coeÆcient, does not resemble the long

range data. This potential component possesses a primary well-like feature at R � 2:2 a0, a

barrier-like feature at R � 4:0 a0 and a very shallow secondary well-like feature at R � 8:8

a0. The secondary well cannot be modelled by a Lennard-Jones-like potential energy function.

However, the barrier-like feature can be duplicated by a MLJ (12,6) potential energy function
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if the �tting procedure is allowed to vary the parameters of the model beyond their physically

reasonable limits. A barrier can be produced by allowing De, the well-depth (usually a positive

quantity) to become negative (now representing a barrier height), and forcing the MLJ (12,6)

oscillator function to model the primary well using the otherwise-pathological potential turn{

over behaviour. While the barrier can be modelled particularly accurately using this method,

the primary well is very poorly represented. It is believed that the manifestations of the second

well and the barrier are minor relative to the other features present on the potential component

function, such as the repulsive wall, primary well and attractive long range tail. The barrier

and secondary well occur at relatively large atom-diatom separation distances where the C
0;2
6

dispersion coeÆcient parameter is becoming dominant. Because these features do not correlate

with the inverse power model of the long range behaviour of the �tting function, the �tting

procedure fails. In order to increase the 
exibility of the model, the C
0;2
6 dispersion coeÆcient

constraint was removed from this �t and the data uncertainty was modestly increased in the

regions of the barrier and secondary well features. With this added 
exibility W02(R) can be

�tted using three �m parameters. Figure 3.2C demonstrates the unusual shape of the W02(R)

potential component and the best �t MLJ (12,6) function that could be found.

The W4k(R) Potential Component Functions

The W4k(R) potential components functions are undeniably the most disappointing results from

this �tting procedure. All of the W4k(R) components exhibit very unusual features which made

�tting them to MLJ (12,6) oscillator functions exceedingly diÆcult. For example, the W40(R)

potential component has no signi�cant well-like feature, the W41(R) component has a very broad

and shallow well-like feature located at a large distance R � 9:5 a0, and the W42(R) component

possesses an extremely shallow well-like feature centred at R � 7:4 a0 followed by a short barrier-

like feature at R � 9 a0. In addition there are several oddly-shaped kinks and bends in the

repulsive wall of each of these potential components, becoming progressively more dramatic as k

increases. It became clear after dozens of failed �tting attempts that the MLJ (12,6) oscillator

functions were just not 
exible enough to represent these potential components, and that another
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�tting function was required. Undoubtedly, experts in the �elds of data reduction and non-linear

�tting have tried and true methods for selecting appropriate �tting functions based on the data

at hand and the 
exibility of various di�erent functional forms. Without expert guidance the

only option available was to cut and try di�erent combinations of functional forms until a usable

�tting function is found. This is an extremely painstaking process. For each new combination

of functional forms, a new set of partial derivatives are required, and a considerable amount of

time must be spent massaging the initial trial parameters. The functional form which seemed

to provide the best results was found by selectively removing various components from the MLJ

(12,6) oscillator function, leaving

W4k(R) = De exp(�B(z)); (3.21)

where

B(z) =
NX

m=1

Bmzm; (3.22)

and z = (R � Re)=(R + Re). The parameters in this functional form do not have the same

meaning as their respective equivalents in the MLJ (12,6) oscillator form. However, since all of

the parameters are derived from the MLJ (12,6) parameters they have been named to re
ect

the parameter to which they are most closely related. This functional form, like the MLJ (12,6)

oscillator functions, depends non-linearly upon its parameters, and hence will require the Le Roy

nllssrr program to carry out the non-linear least-squares �tting. The partial derivatives of this

exponential function with respect to its parameters are:

@W4k(R)

@De

= exp (�B(z)) ; (3.23)
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2DeR

(R+Re)(R �Re)
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The best �ts using this exponential �tting function were achieved with the Re parameter �xed

at Re = 2:00000 a0 or 3:00000 a0 For the W40(R) and W42(R) potential components three Bm
parameters were needed, while W41(R) only required two. It is unclear why Re-constrained �ts

would provide better results than wholly unconstrained �ts; in addition, the special signi�cance

of Re = 2:000000 a0 and Re = 3:000000 a0 is a mystery. Perhaps with more experience a better

�tting function could be chosen for these potential components, but for the time being this expo-

nential �tting function is the best form available. Despite the mysteriousness of the constrained

Re values, the troublesomeW4k(R) potential component functions have been �t to analytic func-

tions. As shown in �gure 3.4 the �ts are far from perfect, but given the fact that the un�ttable

features are very small relative to the other features in each potential component, it is hoped that

these un�ttable features are of minor importance to the overall potential energy surface.

Combined, all nine potential component functions W�k(R) form the analytical representation

of the tabulated Schaefer and K�ohler potential energy surface. The optimised parameters corre-

sponding to the best �t of the potential energy surface can be found in Appendix A tables A.1

and A.2. Before proceeding to any calculations using the newly �tted version of the potential

energy surface, it should be tested against the original tabulated data. Ideally, the �tted surface

and the tabulated surface should be identical, but since some of the features in the W02(R) and

W4k(R) potential components could not be fully modelled by the �tting functions, the �tted and

tabulated potential energy surfaces will be slightly di�erent. To gauge this di�erence, a point-by-

point comparison of the two surfaces is needed.

The original tabulated potential energy surface consists of 240 data points. The �tted po-

tential can be evaluated to recreate these 240 points for the point-by-point analysis of the two

surfaces. Figure 3.5 illustrates such a point-by-point absolute di�erence between the original

tabulated form of the potential and the newly �tted version. The components V�(R; r) shown

in this �gure correspond to the previously mentioned slices of the original tabulated potential

energy surface for a given � = f0; 2; 4g and r = f0:900; 1:280; 1:449; 1:618; 2:000 a0g. The largest
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Figure 3.2: The W0k(R) potential components. The Æ symbols represent the tabulated data

of Schaefer and K�ohler, while the line represents the corresponding �tted MLJ (12,6) oscillator

function. (A) illustrates the W00(R) potential component, (B) illustrates the W01(R) potential

component and (C) illustrates the W02(R) potential component.



CHAPTER 3. CALCULATIONS 35

0 1 2 3 4 5 6 7 8 9 10 11
-50

-30

-10

0 1 2 3 4 5 6 7 8 9 10 11
-50

-30

-10

R / a0

0 1 2 3 4 5 6 7 8 9 10 11
-50

-30

-10

101

102

103

104

105

106

Tabulated and Fitted W2k(R) Potential Component Functions

(A) W20(R)

101

102

103

104

105

106

(B) W21(R)

101

102

103

104

105

106

(C) W22(R)

W
22

(R
)

/µ
E

h
W

21
(R

)
/µ

E
h

W
20

(R
)

/µ
E

h

Figure 3.3: The W2k(R) potential components. The Æ symbols represent the tabulated data

of Schaefer and K�ohler, while the line represents the corresponding �tted MLJ (12,6) oscillator

function. (A) illustrates the W20(R) potential component, (B) illustrates the W21(R) potential

component and (C) illustrates the W22(R) potential component.
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Figure 3.4: The W4k(R) potential components. The Æ symbols represent the tabulated data

of Schaefer and K�ohler, while the line represents the corresponding �tted MLJ (12,6) oscillator

function. (A) illustrates the W40(R) potential component, (B) illustrates the W41(R) potential

component and (C) illustrates the W42(R) potential component.
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discrepancies of � 0:05 Eh are shown on the V2(R; 0:900) and V2(R; 2:000) components at small

atom-diatom separations where the value of these potential components is only � 0:04 Eh and

� 0:37 Eh, respectively. The corresponding deviation of these two components relative to their

tabulated counterparts is a disturbing 125% and a tolerable 13%, respectively. However, these

potential components only represent a small fraction of the total potential energy surface and

by comparing these seemingly large discrepancies to the value of the total potential energy, the

actual impact on the potential energy is much smaller at 9% and 5% respectively. These numbers

represent the worst discrepancy between the �tted and tabulated potential components, and since

there are three such symmetry components which de�ne the entire potential energy surface, the

worst-case error estimate for the repulsive wall of the potential is up to 27% error.

Better agreement is found in the well region of the potential energy surface R � 6:4 a0. The

�tted potential energy surface is more reliable here, with potential component deviations ranging

from � 2� 10�8 � 2� 10�6 Eh. The V�(R; r) tabulated potential components are much smaller

in this region � 3�10�5 Eh, which means these discrepancies correspond to 0.1-7% deviation. In

comparison to the value of the total potential energy surface, which is also � 3� 10�5 Eh, these

deviations result in a worst-case error estimate in the well region of the total potential energy

surface of up to 21% error. These numbers are large, but it must be stressed that they represent

the absolute worst case in which the errors from each of the V�(R; r) components share the same

sign, creating the largest possible error. In reality, the sign of the errors from each potential com-

ponent need not be the same and the positive and negative errors from the various components

can cancel to yield a net error which is smaller than the errors quoted here.

Figure 3.5 illustrates the spatial distribution of the error between the �tted and tabulated

potential energy surface, but it does not give a good indication of the quality of the �tted potential

energy surface as a whole. The percent error between the �tted and tabulated versions of the
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Figure 3.5: The absolute di�erence between the previously tabulated and newly �tted versions of

the potential energy surface for each of the three symmetry components � = f0; 2; 4g at each of

the �ve diatom bond length slices, r = f0:900; 1:280; 1:449; 1:618; 2:000 a0g.
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potential energy surface can be evaluated using,

%error =
jV �t
� (R; r)� V tab

� (R; r)j
V tab
� (R; r)

� 100: (3.26)

Figure 3.6 presents a histogram of these point-by-point percent errors. Each bar represents the

number of data points (percentage of the total number of data points) whose error lies in the

interval [x; (x+Æx)]%. The width of each of these bars (also called bins) is Æx = 1% except for the

right-most bin which represents all errors greater than 40%. The Æ symbols represent the accumu-
lated number of data points (also in percentage of the total number of data points) whose error lie

in the interval [0; x]%. This �gure illustrates that � 75% of 240 data points possess an error of less

than 6%, and that 90% of the 240 data points possess an error of less than 12%. This shows that

a vast majority of the potential energy surface is adequately modelled, and that the problematic

points are relatively few in number. For completeness it should be mentioned that the � 3% of

data points which possess errors greater than 40% is mostly arti�cial. Whenever the denominator

of equation 3.26 becomes vanishly small the value of the percent error will correspondingly become

very large. The potential energy surface is de�ned such that V (R ! 1; r; �) = 0. Under this

convention each potential component may possess a root where repulsive wall meets the potential

well. At these roots the percent error is arti�cially enlarged, generating most of the data points

which possess errors greater than 40%.

Generally speaking, the �tting procedure has been a success. The disagreements shown at

small atom-diatom separations for all V�(R; r) are disappointingly large, but not fatal. At small

atom-diatom separations, where the �tted potential has some of the largest discrepancies, the

value of the full tabulated potential energy surface is very large, e.g., V (1:6 a0; r; �) � 0:5 Eh.

These energies are so large that the scattering calculations, at kinetic energies between 0.01-0.05

Eh, are anticipated to be relatively insensitive to these problematic regions of the potential en-

ergy surface. It is naive to expect that any subsequent calculations involving this �tted version of

the potential energy surface to be completely insensitive to the errors that the �tting procedure

has introduced. However, before condemning the �tting procedure, a closer look at the entire
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Figure 3.6: A histogram of the point-by-point percent errors of the �tted H2-He potential energy

surface. The bars represent the number of data points (in percent of the total number of data

points) which possess an error in the interval [x; (x + 1)]%. The Æ symbols represent the accu-

mulated number of data points (in percent of the total number of data points) which possess an

error in the interval [0; x]%.
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problem is in order. The tabulated potential energy surface data can not be directly incorporated

into any calculation without introducing some mechanism to interrogate the surface between (and

beyond) the tabulated points. Whether this mechanism is based on interpolation and extrapo-

lation methods or a �tted analytical representation, the original tabulated data is only used to

synthesize an arti�cial version of the potential energy surface for the calculations. Without being

able to conduct calculations on the tabulated potential directly, it is impossible to determine the

impact of these mechanisms on the subsequent calculations. Regardless of the mechanism used to

generate the synthetic potential energy surface, the fact that synthetic potential energy surfaces

must be generated indicates that misrepresentation errors are inevitable.

3.4 MOLSCAT

The general purpose inelastic molecular scattering program MOLSCAT by Hutson and Green [12]

was used for all of the present scattering calculations. It is con�gurable, 
exible and familiar,

making it the best choice for the calculations at hand. HIBRIDONTM, another general purpose

inelastic molecular scattering program by Alexander et al. [13], was unable to be successfully

built on any of the SGI research computers available, thereby eliminating its candidacy. All of the

MOLSCAT calculations have been carried out using one of two separate computers: an SGI Origin

200 (dual tower) [34] with 270 MHz MIPS R12000 processors and MIPS R12010 FPUs, and an

SGI Origin 2000 (deskside) [35] with 250 MHz MIPS R10000 processors and MIPS R10010 FPUs.

Using these machines a scattering calculation takes between 15 and 90 minutes, depending on the

size of the basis set and the kinetic energy.

A detailed description of the numerical solution to the close coupling equations is beyond the

scope of this work, and has been previously detailed by Hutson [36], Gordon [37], Dunker and

Gordon [38], Johnson [39] and Shapiro and Balint-Kurti [40]. In its place, a terse but informative

description of some of the inner workings of MOLSCAT is supplied so as to give the reader a better

feel for the decision-making process involved in the con�guration of the scattering calculations
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presented here. From this point forth, the natural units of molecular scattering will be used. Dis-

tances are conveniently expressed in terms of Angstroms (�A) while energies are expressed in terms

of wavenumbers (cm�1). The relationship between atomic units, which have been exclusively used

thus far, and the scattering units is

1 a0 = 0:5291772083 �A:

1 Eh = 219; 474:6315 cm�1:

With a thorough discussion of the importance of the potential energy surface completed in the

previous sections, it is now time to expound upon other important aspects of the scattering calcu-

lations, such as basis set convergence, convergence of the other input parameters, and the choice

of propagator.

3.4.1 The Scattering Basis Set

Mathematically, a basis set is a collection of objects which, when assembled in di�erent linear

combinations, can span the entire object-space. Basis sets can be comprised of vectors, functions

or, as is the present case, quantum states. In the present context, a basis set is de�ned as a

collection of isolated H2 molecular quantum states representing all of the diatomic states signi�-

cantly involved in the scattering process. These basis states dictate the size and labelling of the

most important entity in scattering theory: the S-matrix. Given the importance of the selection

of the basis set, it is not suprising that the accuracy of the solutions to the close coupling equa-

tions will be directly related to the size and composition of the basis set. Accurate calculations

require that all energetically accessible diatom quantum states must be present in the basis set.

Additionally, several low-lying energetically inaccessible diatom quantum states must be included

to ensure the completeness of the basis set. The larger the basis set is, the more complete the

description of the scattering problem, and the more accurate scattering calculations will be. As

the energy of the individual basis state become increasingly distant (relative to the scattering
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Energy Included in

v j in cm�1 basis set ?

0 0 0.000
p

0 2 354.374
p

0 4 1168.798
p

0 6 2414.897
p

0 8 4051.943
p

1 0 4161.147
p

1 2 4497.820
p

1 4 5271.364
p

0 10 6030.919

1 6 6454.376

1 8 8007.573

0 12 8298.597

Table 3.1: The \rule of thumb" basis set from rotational relaxation calculations, naively extended

into vibrational relaxation calculations.

energy), their involvement in the scattering process typically becomes increasingly insigni�cant.

This allows the basis set to be truncated when the user is satisi�ed that the omitted high energy

diatomic states are not signi�cantly relevant to the scattering problem at hand. The higher ac-

curacy gained by use of a larger basis set is obviously more favourable than the reduced accuracy

obtainable from a smaller basis set. However there is more to consider than just the calculational

accuracy. Large basis sets beget large S-matrices, and the computational e�ort required to solve

such problems can be formidable. A balance must be struck between having slower more accurate

calculations using a large basis set, and quicker less accurate calculations using a smaller basis set.

The basis set selection begins by investigating the basis sets used for previous v = 0 rotation-

ally inelastic scattering calculations, such as the standard basis set as described by Clark [41]. In

his work, Clark describes a \rule of thumb" method where all energetically accessible diatomic

molecular states plus the 2j + 1 degenerate states of the next highest molecular energy level are

included in his basis set. This is a standard method for selecting a basis set for v = 0 rotationally

inelastic scattering problems. Now consider the basis set for a vibrationally inelastic scattering

calculation at E = 5000 cm�1, according to this \rule of thumb" criteria. Table 3.1 shows a few of

the low-lying rovibrational states of para-H2. In the v = 0 vibrational manifold, the j = 0; 2; 4; 6;
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and 8 rotational levels are energetically accessible, as well as the j = 0 and 2 rotational levels in

the v = 1 manifold. The j = 4 rotational level in the v = 1 vibrational manifold is also included

in this basis set as the �rst energetically inaccessible level.

For the sake of simplicity, a more compact representation of the rovibrational levels in the

basis set is needed. The basis set notation fj0; j1; j2; � � � ; jng represents the maximum values of

the rotational quantum numbers in each vibrational manifold. Using this notation implies that

all rotational levels in the interval [0; ji] for the i-th vibrational manifold are included in the

basis set. For instance, the basis set described above can be represented using this notation as

f8; 4g. Each of these levels possess a 2j + 1 degeneracy of states, which means that these eight

rovibrational levels correlate to a 60 state basis set. Figures 3.7A,B and C illustrate a sequence

of calculations at E = 5000 cm�1 for the three systems of interest using increasingly larger basis

sets. While the f8; 4g basis set described above does not appear in these �gures, results for the

substantially larger basis set f14; 8g are shown. The values of �ve vibrationally inelastic cross

sections calculated using the f14; 8g basis set show large deviations (up to 25%) relative to other

calculations of the same cross sections using larger basis sets. It is quite clear that the \rule of

thumb" method for selecting the elements of a v = 0 rotationally inelastic scattering basis set can

not be transplanted into a vibrationally inelastic problem.

The iterative method used to generate �gure 3.7 has produced information which can be used

to selected an adequately converged basis set. In each vibrational manifold, new j rotational

levels are added to the basis set until scattering calculations become insensitive to the addition

of another rotational level from this vibrational manifold. At this point the j=0 rotational level

from the next highest vibrational manifold is added to the basis set, and the process is repeated.

All of these �gures illustrate a region where inelastic cross sections (1; 0) � (0; j) level out and

become insensitive to the addition of further basis elements. The onset of this region typically oc-

curs when the basis set is f14; 8; 8g. This basis set represents 210 basis states, corresponding to a
much larger problem than the 60 basis states of the f8; 4g basis set. Figure 3.9 illustrates the scat-
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Figure 3.7: The basis set convergence tests at E = 5000 cm�1 for; (A) H2-He, (B) H2-Ne and

(C) H2-Ar.
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Figure 3.8: The basis set convergence tests at E = 6000 cm�1 for; (A) H2-He, (B) H2-Ne and

(C) H2-Ar.
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tering calculation duration in minutes as a function of the basis set size. Notice that the duration

of the scattering calculations depends on the basis set size as well as the noble gas collision partner.

Another basis set convergence test at E = 6000 cm�1 was conducted to determine if there

was a basis set dependence on the scattering energy. Figure 3.8 illustrates the same convergence

behaviour starting at f14; 8; 8g as that found in �gure 3.7, showing that the basis set does not

signi�cantly depend upon modest changes in the scattering energy. In general, the basis set size

is dependent upon the scattering energy, the higher the scattering energy, the more energetically

accessible states there will be, and hence additional higher energy basis states will be required.

However, for the purposes of this research, MOLSCAT calculations are limited to scattering energies

between 4161.147 and 7000 cm�1 due to time constraints. In this energy range the optimum basis

set for the scattering calculations has been chosen to be f14; 8; 8g, since it generates adequately
converged vibrationally inelastic cross sections relatively quickly. Should higher energy cross

sections be required, their smooth energy dependence, as demonstrated for E > 6000 cm�1 in

�gure 3.12, lend themselves well to extrapolation using Pad�e approximants [42].

3.4.2 Integration Parameters

One of the attractive features of MOLSCAT is the variety of methods which can be used to solve

the close-coupling equations. Version 14 of MOLSCAT includes eight di�erent solution methods,

referred to as propagators. Hutson and Green recommend the Alexander-Manolopoulos modi�ed

log-derivative/Airy propagator [43] as a reliable general purpose propagator adequate for most

scattering cross section calculations [12]. This propagator is discussed in detail by Alexander and

Manolopoulos and, for the sake of brevity, will not be explained here.

Most MOLSCAT propagators share three parameters which must be carefully optimised before

attempting any calculations; RMIN, RMID and RMAX. The RMIN and RMAX parameters control, re-

spectively, the near and far atom-diatom separation limits for wavefunction propagations. As

mentioned in x2.1, the ultimate goal for any molecular scattering calculation is to determine the
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S-matrix. This is achieved by carefully comparing the asymptotic forms of the wavefunctions

evaluated in the presence of the scattering potential to those evaluated in its absence. Clearly

if RMAX is not set large enough, the wavefunctions will not be propagated to large enough atom-

diatom separations to yield a reliable description of the asymptotic part of the wavefunction. The

default value of RMAX is 10 �A, which is used automatically if RMAX is not de�ned by the user. As

demonstrated by the convergence tests at E = 5000 and 6000 cm�1 (shown in �gures 3.10 and

3.11 respectively), this default value represents a nicely converged value for all system of interest,

except H2-Ar at E = 5000 cm�1. For the sake of uniformity, RMAX has been set to 16 �A for all

three systems.

The value of RMIN is more of a user-de�ned guess, and as such, the calculations are much

less sensitive to its value. During a calculation, MOLSCAT uses the value of RMIN provided by the

user as a �rst guess in order to �nd the inner-turning point of the potential. Once found, it

recalculates the wavefunction iteratively at decreasing values of the atom-diatom separation until

it �nds a converged value of the wavefunction to serve as a starting point for propagation into

the classically-allowed region. Because the value RMIN isn't directly involved in the calculations,

it is not surprising that the resulting cross sections are relatively insensitive to it. Inappropriate

values of RMIN which are too far away from the inner turning point of the potential will cause an

abnormal termination of MOLSCAT. Values of RMIN = 0:9{1:2 �A have been found to be adequate

for the three systems of interest.

The parameter RMID is the most nebulous of the three. It represents the atom-diatom separa-

tion at which two halves of the propagated wavefunction are matched. Because it is numerically

more stable to propagate a wavefunction from a classically-forbidden region into a classically-

allowed region than the reverse [12], the inner and outer parts of the wavefunction are respec-

tively propagated from the converged value found near RMIN to RMID, and from RMAX to RMID. Any

discrepancies between the values and derivatives of the two halves of the wavefunction at RMID

are used to re�ne the two halves so that when re-evaluated the two halves match exactly. The
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exact location of RMID is never clearly de�ned anywhere in the MOLSCAT documentation. The best

description found in the documentation states that RMID should be located \somewhat beyond

the potential minimum" [12]. As long as the value RMID is chosen to be at, or slightly beyond,

the minimum of the potential well (i.e. RMID = 3{4 �A), the calculated cross sections are found

not to be signi�cantly sensitive to its exact value.

A set of test scattering calculations of the H2-He system using the Alexander-Manolopoulos

hybrid log-derivative/Airy propagator demonstrates some unpredictable behaviour at low scat-

tering energies (E < 5000 cm�1). Figure 3.12 shows �ve vibrationally inelastic state-to-state

cross sections calculated using two di�erent propagators: the hybrid log-derivative/Airy (HLDA)

propagator of Alexander and Manolopoulos [43], and the less sophisticated diabatic modi�ed

log-derivative (DMLD) propagator of Manolopoulos [44]. At higher scattering energies the two

methods produce results which are nearly indistinguishable. However, as the scattering energy

drops below 5000 cm�1 the methods begin to produce con
icting results. In particular, the (1,0)-

(0,0) and (1,0)-(0,2) state-to-state total integral cross sections calculated using the two methods

exhibit distinctly di�erent behaviours in this low energy region. In this region, these cross sections

demonstrate a broad resonance-like oscillatory behaviour when calculated using the hybrid log-

derivative/Airy propagator, or a smooth near-exponential increase when calculated using the dia-

batic modi�ed log-derivative propagator (Figure 3.12). To reconcile this di�erence, vibrationally

inelastic scattering calculations of Balakrishnan et al. [45], which use the R-matrix propagator of

Stechel et al. [46], has been investigated. The Balakrishnan et al. calculations do not exhibit the

same oscillatory low energy cross section behaviour that is present in the cross sections calculated

using the hybrid log-derivative/Airy propagator. The best qualitative agreement with the Balakr-

ishnan et al. data is found to be the cross section calculated using the DMLD propagator. It is

unclear what is responsible for these low energy oscillations seen in the (1,0)-(0,0) and (1,0)-(0,2)

cross sections calculated using the HLDA propagator. However, because these oscillations are not

found in any of the other calculations, it is believed that they are artifactual and demonstrate a

shortcoming of the HLDA propagator in the context of these vibrationally inelastic calculations.
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Figure 3.10: RMAX convergence tests at E = 5000 cm�1 for; (A) H2-He, (B) H2-Ne, and (C)

H2-Ar.
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Figure 3.11: RMAX convergence tests at E = 6000 cm�1 for; (A) H2-He, (B) H2-Ne, and (C)
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Figure 3.12: Test calculations of H2-He using two di�erent propagators; the hybrid log-

derivative/Airy (HLDA) propagator of Alexander and Manolopoulos [43] (lines), and the diabatic

modi�ed log-derivative (DMLD) propagator of Manolopoulos [44] (symbols). Note the discrep-

ancy between the two calculations in the (1,0)-(0,0) and (1,0)-(0,2) cross sections at E < 5000

cm�1.
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For this reason, the hybrid log-derivative/Airy propagator has been abandoned in favour of the

more reliable diabatic modi�ed log-derivative propagator.

As an example of the calculations using this propagator, �gure 3.13 illustrates the energy

dependence of the manifold of state-to-state total integral cross sections used in the H2-Ne cal-

culations. Notice that there is one additional cross section originating from the initial state

v = 1; j = 6. This is due to the fact that the v = 0; j = 10 rovibrational state only satis-

�es the vibrational relaxation criteria for initial rovibrational levels greater than (or equal to)

v = 1; j = 6. Final state v0 = 0; j0 = 8 and v0 = 0; j0 = 10 rovibrational levels have also been

included on this �gure to provide the reader with a better understanding as to the energetically-

and rotationally-closest �nal rovibrational states.

3.5 Thermal Averaging and Rate Constants

The calculated state-to-state total integral cross sections must now be thermally averaged and

converted into rate constants. Theoretically, the expression for the thermally averaged state-

to-state rate constant involves the energy integration of the product of the state-to-state total

integral cross sections and an energy-dependent population factor. Strictly speaking, integration

requires that the integrand be a continous function over this range. While the energy-dependent

population factor is a continuous function over the range of integration, the discrete representation

of the state-to-state total integral cross sections are not. These cross sections are generated by

individual MOLSCAT calculations performed at a particular scattering energy. This discrete repre-

sentation of the energy dependence of the cross sections indicates that a straight-forward analytic

integration can not be employed to evalute these integrals. In its place a numerical integration

method must be used. There are dozens of di�erent methods of performing numerical integration

which range in complexity and accuracy [42, 47]. One of the simplest methods is called trapezoidal

integration, where the value of the integrand between two discrete values is approximated by a

linear line segment. By connecting all of the discrete values of the integrand by such line seg-
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Figure 3.13: An illustration of the manifold of state-to-state total integral cross sections used

to construct the manifold-to-manifol vibrational relaxation rate constant for H2-Ne. Notice the

extra cross section originating in the v = 1; j = 6 initial rovibrational state.
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ments, a piece-wise analytical integration of the integrand can be performed. The spacing of these

discrete values is very important. The more discrete points used in the integration routine, the

more accurate the ultimate value of the integral will be. However, since each discrete point of the

integrand requires one complete MOLSCAT calculation, and these calculations can take anywhere

between 15 and 90 minutes to complete, this added numerical accuracy requires a considerable

investment in cpu time.

Equations 2.19 and 2.17 both involve integration over the energy interval [0,1). Clearly, the

in�nite upper limit is going to pose a problem for the iterative trapezoidal integration method.

The integrand in these expressions contains a thermal population factor which has some useful

properties. At low temperatures this population factor reaches its maximum value at relatively

low energies and decays to zero fairly quickly, while at higher temperatures the maximum occurs

at higher energies and decays to zero much slower. Figure 3.14 illustrates the integrand at three

di�erent temperatures, T = 100; 200 and 250 K. Notice that at E = 7000 cm�1 the integrand

corresponding to T = 250 K is adequately converged and the lower temperature integrands are

also highly converged. By ensuring that the integrand corresponding to the highest temperature

is adequately converged, the convergence of all lower temperature integrands is assured. The

highest temperature required herein is 1500 K, requiring an upper integration limit of � 25; 000

cm�1 for convergence. The rate constants for all temperatures have been evaluated with this new

upper limit. Directing attention now to the lower integration limit, it can be seen in �gure 3.14

that the integrand is equal to zero until the scattering energy reaches the energy threshold of

the v = 1; j = 0 H2 rovibrational level. Since the integrand below this energy is zero, it will not

contribute anything to the value of the rate constant and the lower integration limit can be safely

set from 0 to 4161.147 cm�1.
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Chapter 4

Results and Discussion

Before proceeding into a thorough discussion of the present results, a brief account of previous

research e�orts in this �eld is in order. Research in the �eld of H2-Ng vibrational relaxation was

quite active in the mid- to late seventies; at that time modern scienti�c computing was still in

its infancy and the processing power available was inadequate for the tasks at hand. The advent

of various approximation schemes such as the coupled states [48], in�nite order sudden [49] and

e�ective potential [50] methods o�ered researchers a mechanism to reduce the needed computer

power by sacri�cing a certain amount of accuracy. Judging by the general lack of publications,

H2-Ng vibrational relaxation seemed to be an unfashionable topic for most of the eighties and

the early nineties. Only recently, with the unprecedented leaps in technology, has the process-

ing power been available to solve the un-approximated close coupling equations in a reasonable

amount of time. Now as the theorists' interest in this �eld grows, one would hope that it would

only be a matter of time before experimentalists follow suit.

For the sake of brevity, graphical representations of the previous experimental and theoretical

data will be suppressed until the current results are ready to be discussed (x4.3). This will con-
solidate all of the various pieces of data onto one plot for each system.

58
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4.1 Previous Experimental Results

In the mid 1970's Dove and Teitelbaum carried out an extensive set of H2-fHe,Ne,Ar,Kr,Xe and
H2g vibrational relaxation measurements using a high temperature shock-tube apparatus [51].

The shock tube method employs a supersonic shockwave to thermally populate vibrationally

excited states of the H2 diatom. As the shockwave passes, the translational and rotational exci-

tations quickly relax back to their thermal equilibrium distributions leaving only the vibrational

motion of the diatom in a state out of thermal-equilibrium. This vibrational motion corresponds

to a small but measurable decrease in the index of refraction of the sample gas. When the vi-

brationally excited diatoms relax back to their thermal equilibrium distribution, the rate of this

relaxation process can be monitored by studying the corresponding changes to the index of refrac-

tion of the sample gas. The shock-tube method has a few drawbacks which should be mentioned.

Shock-tube methods can only produce high temperature shock waves; this is problematic because,

as described earlier in SS2.2, high temperature systems require relatively high energy scattering

calculations to ensure that the integrand in the rate constant expression is adequately converged.

This means that high temperature experimental data is very cpu-intensive to model. In addition,

some of these high temperature shock waves have suÆcient thermal energy to excite H2 diatoms

into multiply-excited, v > 1, vibrational levels, which for other theoretical treatments is not a

problem, but lies beyond the current theoretical treatment.

In their work, Dove and Teitelbaum only carried out measurements for a 75% ortho-H2 and

25% para-H2 mixture which is referred to as normal-H2. Only the para spin modi�cation of H2

has been investigated in this work, which means that any comparison between theory and ex-

periment must take into consideration the e�ect of these di�erent spin modi�cations. At higher

temperatures (> 300 K), the relative contributions of the ortho and para spin modi�cations of

H2 to the overall relaxation rate are equivalent [52], thereby making the overall relaxation time

identical to that of either ortho-H2 or para-H2. This means that the high temperature normal-

H2-Ng relaxation times measured by Dove and Teitelbaum will serve as a good comparison for

the calculated para-H2-Ng data presented here. At temperatures lower than 300 K, the relaxation
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times for ortho- and para-H2-Ng are di�erent, and the low temperature extrapolations of Dove

and Teitelbaum will not be useful. Not all of the systems that Dove and Teitelbaum measured

are relevant to the current work.

Below are the results of their measurements for normal-H2-He, normal-H2-Ne and normal-H2-

Ar represented in terms of the standard relaxation time, p� (with units of atm�s), as a function

of temperature T (in K),

p�H2�He = exp
h
(41:35� 0:80)T�1=3 � (8:984� 0:063)

i
; (4.1)

p�H2�Ne = exp
h
(28:43� 0:47)T�1=3 � (8:094� 0:036)

i
; (4.2)

p�H2�Ar = exp
h
(45:09� 0:56)T�1=3 � (8:956� 0:044)

i
: (4.3)

Back in the 1970's, the standard relaxation time was the preferred quantity used by physicists to

describe relaxation phenomenon but now, with the increased in
uence of chemical kinetics, the

standard relaxation time has largely been superseded by the notion of rate constants measured in

cm3s�1. A method of converting results quoted in terms of standard relaxation times (in atm�s)
to rate constants (in cm3s�1) begins with the relation,

k =
1

n�
; (4.4)

where k is the rate constant in cm3s�1, n is the H2 number density in cm
�3 and � is the relaxation

time in s. To determine the value of the number density, consider the isochoric ideal gas relation,

P

P0
=

nT

n0T0
; (4.5)

where P , n and T are pressure (in atm), number density (in cm�3) and temperature (in K)

respectively, and the remaining parameters P0, n0 and T0 represent the standard pressure of 1 atm,

Loschmidt's number 2.6867775�1019 cm�3 and the standard temperature 273.15 K, respectively.
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Rearranging for n, gives

n =
n0T0p

T
; (4.6)

where p = P=P0. Substituting back into equation 4.4,

k =
T

n0T0p�
=

T

7:3389327� 1021p�
: (4.7)

This relation will be used henceforth to convert all experimental data documented in terms of the

standard relaxation time into rate constants.

A moderately low temperature study of normal-H2-fHe,Arg by Audibert et al. [53] using

Raman excitation methods reports values of the standard relaxation times for both systems at

300 K. Their measurements were performed by directing a ruby laser beam into a cell �lled with

H2 gas. Raman scattering of the laser beam from the H2 gas in this cell produces an intense

Stokes beam which is then redirected into the sample cell containing the H2-fHe,Arg gas mixture
where it induces vibrational excitations of the H2 molecules therein. A second laser is passed

through this sample cell to measure the index of refraction changes as the vibrationally excited

H2 molecules relax back to their ground vibrational states. Audibert et al. do not isolate the two

independent spin modi�cations of H2 in their experiments, and hence the data represent the com-

bined relaxation of both para-H2 and ortho-H2. At 300K, the e�ect of these two independent spin

modi�cations of H2 is diÆcult to determine, since at this temperature the vibrational relaxation

rate constants for the two spin modi�cations begin to diverge, according to Flower et al. [52].

Nonetheless, these data may still be signi�cant to the present work, and hence will be included

in the analysis. The standard relaxation times for H2-He and H2-Ar are reported as 2.280�10�3

atm�s and 7.150�10�3 atm�s respectively. In 1976, Audibert et al. conducted another similar

set of low temperature vibrational relaxation measurements in which they isolated the two spin

modi�cations of H2 and conducted individual measurements of both ortho- and para-H2-He for

temperatures between 50 and 300 K [54]. The ortho-H2-He results are not relevant to the current

discussion and will not be discussed here. The para-H2-He measurements are hoped to be of suf-
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�cient quality to provide a reliable indicator of the low temperature behaviour of the vibrational

relaxation rate constant, since the reliability of the extrapolated Dove-Teitelbaum data at such

low temperatures is unknown.

Unfortunately there has been very little experimental interest in studying the vibrational

relaxation of H2-Ne. The measurements of Dove and Teitelbaum [51] seem to be the only source

of experimental measurements available for this system.

4.2 Previous Theoretical Results

Comparison between theoretical and experimental data is a truism of nearly all scienti�c disci-

plines and this �eld is no exception. Hence, it should not be surprising that the level of interest

in these H2-Ng system exhibited by the experimental community is mirrored to a certain extent

by the theoretical community.

In 1981, Orlikowski carried out close-coupling vibrational relaxation calculations [9] for para-

H2-He using a variant of the Tsapline-Kutzelnigg potential energy surface [55] which had been

modi�ed using data from Raczkowski and Lester [56]. His scattering calculations ranged in total

energy from 0.54 eV (� 4355 cm�1) to 1.5 eV (� 12; 100 cm�1), and employed the numerical

techniques of Gordon [37, 57]. These calculations incorporated two di�erent basis sets; one for

0:54 < E < 0:9 eV consisting of f6,5[sic],0g, and another for total energies of 0:9 < E < 1:5 eV

consisting of f8,6,4,0g. One must assume that v=1 j=5 rotational level in the low energy basis

set is a typo, as such it assumed to be v=1, j=6 instead. Six manifold-to-manifold vibrational

relaxation rate constants were calculated at temperatures 50, 83, 111, 152, 208 and 296 K using

the same thermal averaging treatment that is found in x2.2. His calculations seem to compare

well with the experimental data of Audibert et al. [58] and Dove and Teitelbaum [51], despite the

unusual energy and temperature ranges used in his calculations. The low temperature calcula-

tions are suspicious because of the rather large value of the total energy at which he has chosen to
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begin his calculations. The lowest total energy he used is E � 4355 cm�1, which corresponds to

a kinetic energy of Ek � 200 cm�1. Several ultra-low kinetic energy scattering calculation studies

by Balakrishnan et al. [45, 59, 60] and Forrey et al. [61] indicate a signi�cant increase in the

magnitude of the state-to-state total integral cross sections in this low kinetic energy region that

has been omitted by Orlikowski. By omitting the low kinetic energy region from his scattering

calculations, Orlikowski has lost all of the information that these low kinetic energy cross sections

would have supplied to the rate constant expression. The behaviour of these cross sections at

low kinetic energies is very important when it comes to calculating low temperature vibrational

relaxation rate constants, because at these low temperatures, only the low energy regions of the

state-to-state total integral cross sections are signi�cantly weighted. As a result, Orlikowski's low

temperature rate constants should be treated with caution.

Another calculation of the manifold-to-manifold vibrational relaxation rate constant of para-

H2-He has been carried out by Flower et al. [52]. Like Orlikowski, they conducted close-coupling

scattering calculations. However, instead of using the modi�ed Tsapline-Kutzelnigg potential en-

ergy surface they chose to employ the ab initio Muchnick-Russek potential energy surface [17]

instead. For their calculations they have constructed a large scattering basis set which includes

all rovibrational levels of para-H2 with energies less than 20,000 K (� 14,000 cm�1). This cor-

responds to a basis set of f16,12,10,8g in the brace notation, some 355 individual basis states!

Using this basis set, their scattering calculations have been distributed unevenly over a range

of kinetic temperatures from 100 to 60,000 K. These kinetic temperatures correspond to total

energies of approximately 4230 cm�1 to 42,000 cm�1 respectively. The original publication does

not contain the entire dataset needed to reproduce their calculations, but upon request Flower

graciously supplied their entire dataset for para-H2-He for use in the present analysis [62]. They

have carried out their calculations using the de Vogelaere [63], hybrid log-derivative / Airy [43],

and R-matrix [46] propagators using the same energy mesh and basis set for each propagator, and

obtained mutually consistent results. Their calculations seem to compare well with both the high

temperature experimental work of Dove and Teitelbaum and low temperature experimental work
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of Audibert et al.. However, as discussed below, the low temperature agreement with Audibert

et al. is likely a coincidence, since there is a signi�cant portion of the important low energy cross

section data missing from their calculations. By starting their calculations at a total energy of

4230 cm�1 Flower et al. have regrettably made the same mistake that Orlikowski made 17 years

earlier. This choice of starting energy is too high to incorporate the near-threshold structure of

the state-to-state total integral cross sections; consequently, the low temperature rate constants

calculated by Flower et al. may be of dubious quality. While Flower et al. have incorporated

lower energies than Orlikowski did, the bulk of the near-threshold cross section information is

still left unaccounted for by starting their calculations at 4230 cm�1. For this reason, their 100

K manifold-to-manifold rate constant is probably unrealistic.

At higher temperatures however, the Flower et al. calculated rate constant data is thought

to be very reliable because of the large basis set that they have used. This basis set includes

many highly rotationally excited H2 states that are not found in the present work. These addi-

tional rotational levels provide more initial rovibrational levels from which the H2 molecule can

vibrationally relax. In order to simplify the discussion, let's introduce the notion of a relaxation

pathway. A relaxation pathway, in the context of this work, is henceforth de�ned as any diatomic

rovibrational transition which meets the vibrational relaxation criterion which was de�ned ear-

lier. It will also be useful to de�ne the \energy" of these vibrational relaxation pathways as the

energy of the initial rovibrational level associated with a pathway. By including more initial ro-

tational levels in the v = 1 manifold, Flower et al. have incorporated more vibrational relaxation

pathways. In comparison to the current work, Flower et al. have included all of the relaxation

pathways which the current work does, plus 21 additional relaxation pathways. While these addi-

tional relaxation pathways (table 4.1) provide many more vibrational relaxation pathways for the

H2 molecule, they only become meaningful when the initial rovibrational level for the pathway is

energetically accessible. For rovibrational levels (1,8), (1,10) and (1,12) the corresponding energies

of the initial rovibrational levels for these additional relaxation pathways are 8007.573, 9883.733

and 12,031.608 cm�1, respectively. Despite the fairly large energies seen here, these relaxation
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(vi; ji)!(vf ; jf ) (vi; ji)!(vf ; jf ) (vi; ji)!(vf ; jf )

(1,8)!(0,0) (1,10)!(0,0) (1,12)!(0,0)

(1,8)!(0,2) (1,10)!(0,2) (1,12)!(0,2)

(1,8)!(0,4) (1,10)!(0,4) (1,12)!(0,4)

(1,8)!(0,6) (1,10)!(0,6) (1,12)!(0,6)

(1,8)!(0,8) (1,10)!(0,8) (1,12)!(0,8)

(1,8)!(0,10)y (1,10)!(0,10) (1,12)!(0,10)

(1,10)!(0,12)y (1,12)!(0,12)

(1,12)!(0,14)y

Table 4.1: Additional vibrational relaxation pathways included in the calculations by Flower et

al. [52]

pathways will be shown to be very important to the overall relaxation process.

The transitions in table 4.1 labelled with a dagger (y) represent vibrational relaxation path-

ways which the Flower et al. calculations indicate to be the dominant relaxation pathway from

that initial rovibrational level. Their data suggest that relaxation pathways which transfer the

smallest amount of kinetic energy to the noble gas collision partner are far more probable than the

relaxation pathways which transfer larger amounts of kinetic energy. These dominant pathways

are shown to be 20{200,000,000 times more probable than any other pathway originating from

the same initial rovibrational level! The consequence of these large probabilities is that, despite

the small thermal populations of the initial rovibrational levels associated with these relaxation

pathways, their contribution to the overall relaxation process can be signi�cant, even at modest

temperatures. This seems to indicate the presence of an additional basis set convergence criterion

which has been hitherto unaddressed. Not only must the scattering basis set be selected suÆ-

ciently large so that the scattering calculations produce converged cross sections, but the basis

set must also incorporate suÆcient rovibrational levels so that a converged representation of all

accessible vibrational relaxation pathways can be constructed.

The low temperature close-coupling work of Lin [64] on H2-He does not compare well with

the other works mentioned here, and as such has been excluded from the current analysis. Other

indirectly related works [65, 66, 67, 68, 69, 70] are worth mentioning but do not warrant detailed
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Version Elower Eupper

full 4162.000 25,000.000

Orlikowski 4355.000 25,000.000

Flower 4231.000 25,000.000

Units cm�1 cm�1

Table 4.2: Energy integration ranges of the \full", \Orlikowski" and \Flower" version of the

current vibration relaxation rate constant data.

discussion, due to the various approximation methods which they incorporate.

An exhaustive search of the literature produced no previous theoretical treatments of the

(v = 1) manifold-to-manifold vibrational relaxation of either H2-Ar or H2-Ne.

4.3 The Current Results

As mentioned earlier, graphical representations of the data from previous vibrational relaxation

studies has been withheld until the current data were ready to be discussed. In order to o�er the

best comparison between data sets, the reader may �nd that several slightly di�erent incarnations

of the same data set appear on the same �gure. This is done in order to provide a more meaningful

comparison of similar sized datasets, as opposed to just the simplistitic comparison of the overall

results.

The accumulated results for H2-fHe,Ne and Arg are illustrated in �gures 4.1, 4.2, and 4.3

respectively. Notice that in �gure 4.1, there are three di�erent versions of the current results,

and two di�erent versions of the Flower et al. results. With regards to the present results, the

di�erent versions represent outcomes of the current calculations when di�erent energy integration

ranges are used. All three calculations have used slightly di�erent energy ranges, and by mod-

elling the current data using each of these energy ranges a better comparison between datasets

is anticipated. Table 4.2 summarises the energy ranges used for each version. Figure 4.1 clearly
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illustrates that when the near-threshold state-to-state total integral cross sections are omitted

from the calculation, qualitatively more correct low temperature rate constants are produced.

The low temperature up-turn of the rate constant seen in the \full" version of the current data

is washed away when the near-threshold cross sections are omitted, as is demonstrated by the

other versions of the same data. However, neither Orlikowski nor Flower et al. ever comment

on why they have chosen to omit the near-threshold cross sections from their calculations, and

there are no mathematical or physical arguments that have been found to support this omission

either. Although the current calculations are more rigorous than the other two (at least in terms

of the low temperature, low energy treatment), the improved comparison between the other two

calculated results and the experimental measurements suggests the low temperature up-turn of

the rate constant may be arti�cial.

The \full version" of the Flower et al. data represents the unmodi�ed results found in table 3

of [52], while the \Weir version" represents a subset of the Flower et al. data treated so that only

the vibrational relaxation pathways which have been used in the current work are incorporated.

This treatment should provide an indicator of the relative importance of the additional relaxation

pathways used by Flower et al.. The e�ect of these addition relaxation pathways is quite dramatic,

as indicated by the large discrepancy between these two versions of the Flower et al. data at high

temperatures. The \full" version of the Flower et al. data compares quite well with the extrap-

olated results of Dove and Teitelbaum at higher temperatures, but as the temperature drops,

the extrapolated curve of Dove and Teitelbaum and the Flower et al. data points begin to di�er,

which suggests that extrapolation of the Dove and Teitelbaum data below 300{400 K is dangerous.

The discrepancy illustrated by �gure 4.1 between the \Flower" version of the current data and

the \Weir" version of the Flower et al. data is not so easy to quantify. Despite various manipula-

tions which have been attempted in order to make each dataset emulate the other, there still exist

two major irreconcilable di�erences between them, speci�cally, the di�erence of potential energy

surfaces and the di�erence in size of the basis sets.
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It is diÆcult, if not impossible, to say which of these is the dominant e�ect seen here without

further investigation. Some follow-up calculations using the Russek-Muchnick H2-He potential

energy surface with the current f14,8,8g basis set, and/or calculations using the Schaefer-K�ohler
potential energy surface with the f16,12,10,8g basis set used by Flower et al. could provide valu-

able information regarding the source of the discrepancy between these two calculations. Until

such calculations are performed one can only speculate as to the true source of the discrepancy. In

the meantime, some insight may be gained by considering a statement made by Alexander during

a previous treatment of this system [65]. He noted that, within the context of his approximate so-

lutions of the close-coupling equations, vibrationally inelastic processes appeared to be extremely

sensitive to the choice of potential energy surface. This could suggest that the slightly di�erent

representations of the diatom stretching dependence of the Muchnick-Russek, and Shaefer-K�ohler

potential energy surfaces could be responsible for the discrepancies seen here. The only way to

con�rm such a statement would be to carry out the previously mentioned follow-up calculations.

Due to the general lack of interest in the vibrational relaxation of H2-Ne there is only so

much information that can be extracted from �gure 4.2. The experimental work of Dove and

Teitelbaum as seen in �gure 4.1 agrees well with the \full" version of the Flower et al. data

thereby lending credibility to both data sets. Since there are no other theoretical or experimental

data for H2-Ne, the normal-H2-Ne experimental data from Dove and Teitelbaum is assumed to

share the same level of credibility that their data for the H2-He system enjoys. In order to

improve the agreement with the Dove and Teitelbaum measurements, a follow-up vibrational

relaxation calculation of H2-Ne using the expanded basis set f16,12,10,8g used by Flower et al.

would be useful. While the Dove and Teitelbaum experimental data are believed to be reliable at

moderate and high temperatures, the low temperature results (T < 500 K) will su�er from the

low temperature spin modi�cation issues mentioned earlier, in addition to extrapolation errors.

Another set of experimental measurments akin to the H2-He measurements by Audibert et al.

[53, 58] are needed to provide reliable low temperature vibrational relaxation rate constant data
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Figure 4.1: (v = 1) Manifold-to-manifold vibrational relaxation rate constants for H2-He.
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to complete the experimental description.

The H2-Ar vibrational relaxation rate constant calculations have not been as successful as

they were once hoped they would be. The pathological repulsive wall turn-over found on the

H2-Ar XC(fit) potential energy surface was thought to be remedied using a crude ad hoc patch.

While this was not the best solution, it was the only solution which could be implemented under

the given time restrictions. This patched surface enabled successful scattering calculations to

be carried out at energies which were previously unattainable. However, despite this patch the

scattering calculations still fail, now at a higher energy. During these high energy calculations

MOLSCAT falters and starts to return very noisy state-to-state total integral cross sections, or fails

to report entire cross sections altogether. Generally speaking, at energies beyond 6000 cm�1 the

state-to-state total integral cross section which it produces are completely unusuable. Of all the

cross sections calculated before the scattering calculations failed, only two manifolds of vibrational

relaxation cross sections, (1; 0) ! (0; j) and (1; 2) ! (0; j) were salvagable. Because only these

two manifolds of relaxation pathways are available, the temperature range of the vibrational

relaxation rate constant must be limited to T < 400 K (as shown by �gure 2.2). At 400 K, this

manifold of two initial states can account for 90% of the total initial state population, increasing

to 100% as the temperature decreases.

As seen in �gure 4.3, the normal-H2-Ar vibrational relaxation rate constant datum of Audib-

ert et al. at 300 K agrees well with the extrapolated normal-H2-Ar shock tube measurements

of Dove and Teitelbaum. The calculated rate constants from the current work are larger than

the experimental results of Dove and Teitelbaum at temperatures below 180 K, but smaller than

these results at higher temperatures. At 300 K the rate constants for ortho- and para-H2-Ar are

likely to begin to di�er in the same manner described by Flower et al. in their work on ortho-

and para-H2-He. This means that one should not expect agreement between the normal-H2-Ar

experimental measurements and the calculations for para-H2-Ar relaxation times below 300 K.

While this spin modi�cation e�ect can be signi�cant at lower temperatures, it is not believed to
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Figure 4.2: (v = 1) Manifold-to-manifold vibrational relaxation rate constants for H2-Ne.
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Figure 4.3: (v = 1) Manifold-to-manifold vibrational relaxation rate constants for H2-Ar.
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be the major source of the discrepancy seen here, however. By examining �gures 4.1, 4.2 and

4.3 some interesting common characteristics emerge. In the high temperature region (T > 1000

K) the calculated rate constants for H2-He and H2-Ne are approximately one order-of-magnitude

below the Dove and Teitelbaum data (as well as the Flower et al. data in the case of H2-He).

The H2-Ar calculations appear to exhibit a similar general trend, which when extended to higher

temperatures would lead to a similar order of magnitude discrepancy. Additionally, looking at

lower temperatures (T < 200 K), the calculated rate constants for H2-Ne and H2-Ar cross over

the Dove and Teitelbaum data around 100{150 K (as do the \Orlikowski" and \Flower" versions

of the H2-He data). These shared features seem to suggest that the bulk of the discrepancy seen

here is caused by a problem which is common to all three systems. The scattering calculations

require a di�erent potential energy surface for each system, and it is unlikely that such dissimi-

lar potential energy surfaces could manifest the uniform deviations seen in each of these �gures.

This may suggest that something else which these systems share in common is the cause of the

problems seen here. The two most obvious cultprits are the choice of basis set and manifold of

vibrational relaxation pathways.

All three systems share the same basis set and manifold of vibrational relaxation pathways. If

one (or both) of these entities were accidentally miscon�gured, one would expect to see the e�ect

of this miscon�guration mirrored in the calculations for each system. Unfortunately, there is ad-

equate information to suggest that both the basis set and the manifold of vibrational relaxation

pathways used in the current calculations are adequate for the range of energies for which calcu-

lations have been made. The basis set convergence tests shown in �gures 3.7 and 3.8 indicate that

the basis set used here is adequately converged, and �gure 2.2 demonstrates that most (> 90 %)

of the population of vibrationally excited diatoms is accounted for by the manifold of vibrational

relaxation pathways used in this work. It is possible that there could be yet another source of

error, hitherto unaddressed, which is cause of the problems seen here, but �rst attention should

directed toward the basis set and manifold of relaxation pathways shortcomings mentioned here.

As mentioned before, further calculations using larger basis sets, higher energies, and larger mani-
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folds of relaxation pathways are required to determine the de�ciency of the calculations presented

here.

In terms of assessing the stretching dependence of the XC(fit) H2-Ar potential energy surface

(the motivation which spurred this entire treatise on H2-Ng vibrational relaxation), it is diÆcult

to say at the present time whether or not the stretching dependence of this surface is inade-

quate. Further improved calculations featuring larger basis sets and larger manifolds of relaxation

pathways are required in order to produce more meaningful data. It would perhaps be unwise

to speculate at this point whether or not the work of Bissonnette et al. [2] is at fault until the

problems associated with the current work are solved.



Chapter 5

Summary

Calculations of the vibrational relaxation manifold-to-manifold rate constant are much more com-

plicated than they were originally thought to be. While similar in principle to rotational re-

laxation, vibrational relaxation is not just a simple extension which incorporates an additional

quantum number. In fact it is a labyrinth of subtle complexity. Concepts like basis-set selection

which were steadfastly de�ned in the context of rotational relaxation, become nebulous and open

to interpretation when the discussion shifts to vibrational relaxation. The work presented here

represents an informative preliminary attempt at entering the complicated realm of vibrational

relaxation, including a bene�cial glimpse of some of the pitfalls associated with it.

The calculated vibrational relaxation rate constants for all three systems exhibit a similar

discrepancy relative to previous experimental and theoretical works. The relative uniformity of

these deviations suggests that a source common to each system is responsible for the problems

manifested in �gures 4.1, 4.2 and 4.3. The force communicated between scattering partners is

described using a potential energy surface. These potential energy surfaces are unique to each

system and it is unlikely that they are all de�cient in such a way as to produce the relatively

uniform discrepancies seen here. However, two potential sources of the problem which are com-

mon to all three systems are: (i) the scattering basis set, and (ii) the manifold of relaxation
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pathways. Although the f14,8,8g basis set used in this work is believed to be adequate for the

energies considered here, the more-extensive basis set used by Flower et al. has demonstrated

that higher energies and hence large basis sets may well be required. Originally it was believed,

based upon thermal population considerations, that these high energy relaxation pathways would

be less important than the lower energy pathways. For the temperatures considered in this work,

the initial state populations of these high energy relaxation pathways is small but, as the Flower

et al. data suggest, these relaxation pathways are between 20 and 200,000,000 times stronger

than any other relaxation pathway from the same initial state. This means that not only must

the scattering basis set be made large enough to provide numerically converged cross sections,

but it must also be large enough to include a numerically converged representation of all of the

important relaxation pathways.

To improve this work, a set of follow-up calculations are required to further delineate the source

of the discrepancy seen in �gures 4.1, 4.2 and 4.3. Calculations using larger basis sets such as the

f16,12,10,8g used by Flower et al. and larger manifolds of relaxation pathways in conjunction with
the same potential energy surfaces used here would be immensely helpful. Additional vibrational

relaxation calculations of H2-He featuring the Muchnick-Russek potential energy surface could

help highlight the role of the potential energy surface on these calculations - o�ering quantitative

results to the apparent\extreme sensitivity" of such calculations to the potential energy surface

[65]. The curtailed results of H2-Ar are proof positive that a close inspection of the repulsive

wall of the XC(fit) H2-Ar potential energy surface is required. Once this potential is repaired

the high-energy, larger-basis-set calculations can be performed on this system. Finally, there is a

considerable level of underexposure demonstrated by these systems in both the experimental and

theoretical communities. The more data collected on these systems, the better our understanding

of H2-Ng vibrational relaxation will be.



Appendix A

H2-He Parameters

The tables of data presented here represent the complete list of parameters which are needed to re-

produce completely the �tted version of the Schaefer-K�ohler H2-He potential energy surface. This

�tted potential energy surface is a collection of nine atom-diatom separation functions W�k(R);

six of which are represented as modi�ed Lennard-Jones (12,6) potential energy curves, and three

of which are represented by repulsive exponential potential energy curves. Table A.1 represents

the parameters for the modi�ed Lennard-Jones (12,6) functions while table A.2 represents the

parameters for the repulsive exponential functions.

W�k(R) Parameters

� k De Re �0 �1 �2 C
�;k
6

0 0 4.26813(-5) 6.41987 -2.73456(-1) 7.31308 -5.47135 3.06848

0 1 2.00251(-5) 7.15733 4.45680(-1) 9.29232 -7.71810 3.79508

0 2 2.62754(-5) 1.94785 -2.96265 1.89624(+1) 3.56123(+1) 0.00000

2 0 4.64155(-6) 6.85353 1.10391 9.9428 -5.35070 5.67202(-1)

2 1 8.42029(-6) 7.21824 1.83289 1.16304(+1) -5.47720 1.13977

2 2 7.85607(-6) 7.31394 3.20182 1.92500(+1) -2.58445 5.20131(-1)

units: [Eh] [a0] [0] [0] [0] [Eh�a60]

Table A.1: Parameters for the modi�ed Lennard-Jones (12,6) potential components W�k(R).

Quantities in parentheses represent powers of 10 in scienti�c notation representation.
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� k De Re B0 B1 B2
4 0 5.53125(-4) 3.00000 1.39835(+1) -4.74600(-1) 1.26365(+1)

4 1 1.57933(-3) 3.00000 1.86265(+1) 2.68669 0.00000

4 2 8.79434(-2) 2.00000 2.04201(+1) 2.28832(+1) -3.79061(+1)

units: [Eh] [a0] [0] [0] [0]

Table A.2: Parameters for the exponential potential components W4k(R). Quantities in paren-

theses represent powers of 10 in scienti�c notation representation.
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