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Abstract 

The full manipulation of a quantum system can endow us with the power of computing in 

exponentially increased state space without exponential growth of physical resources. High-quality, 

innovative superconducting films plays a key role in the next stage of development of large-scale 

superconducting quantum computing protected by error correction. The further development of 

quantum error correction theory should also be tailored to the devices’ limitations brought by 

modern nanofabrication. Neither hardware nor software shall be absented for realizing efficient 

quantum information processor. In this thesis, we are dedicated to the development in the material 

of superconducting devices and its application in future large-scale quantum computation with 

error correction methods.  

For the hardware, we developed composite superconducting films for resonators in the 

application of low-temperature pulsed-ESR for quantum information processing making use of 

proximity effect. The superconducting resonator is also the key element in superconducting circuits 

for quantum storage and quantum bus. We compared the performance of superconducting 

resonators made from single Nb film with those of composite films, including Nb/NbN/Nb, 

TiN/tapering/NbN/tapering/TiN, and Al/Nb/Al. We found that the quality factor of resonators from 

Al/Nb/Al surpasses the previous best results from single Nb film under 0.35 T magnetic field. A 

formula was established for evaluating the surface impedance of composite superconducting film. 

It has been proved that adjusting phonon density of states in superconducting films can tailor the 

recombination time of Cooper pairs in thin films and hence affect the coherence time of qubits and 

Q values of resonators. For the software, we improved the surface code theory to make it resistant 

to sparse fabrication defects. A physically faulted qubit can be replaced with a working physical 

qubit near the defective one. Thereby sparse fabrication errors can be collected into one sacrificial 

layer and isolated from the working layers by turning off their controllable couplers. We proposed 

a two-dimensional quantum annealing architecture to solve the 4th order binary optimization 

problem by encoding four-qubit interactions within the coupled local fields acting on a set of 

physical qubits. We also designed a layout to implement quantum annealing with error correction 

through stabilizer codes. The stabilizers are realized with weak measurements for real-time, in-run 

monitoring of spins, to minimize or control the back-action. 
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Chapter 1                                                                                   
Introduction 

 

1.1 Motivation 

The full manipulation of a quantum system can endow us with the power of computing in 

exponentially increased state space without exponential growth of physical resources. While 

quantum computing could bring us a potential revolution for the computation in the future, it does 

require strict abilities to control quantum system. Since Feynman proposed the idea of computing 

with a quantum system, quantum computing has been developed for almost three decades. Spin 

resonance, ion trap, quantum dot, and superconducting circuits all show their advantages over 

controlling microscopic quantum system and their potentials in quantum computing. With 

tremendous efforts over the last few decades, the size of the quantum system which researchers 

can achieve has also grown from one or two qubits to dozens of qubits. Some of the most promising 

candidates for realizing scalable quantum computation is based on superconducting devices [1-4]. 

The developments in superconducting devices and layout design have played important roles in 

the future application of large-scale quantum computation with universal quantum circuit model 

and quantum optimization method.   

Because of their extremely low loss in microwave frequencies, superconducting resonators are 

of vital importance for quantum computation [4, 5], manipulating multiple remote qubits [6, 7], 

storing arbitrary quantum states [8], and implementing quantum algorithm [9, 10]. They are also 

widely used in studying the strong-coupling regime of cavity quantum electrodynamics in electrical 

circuits [4, 11], microwave kinetic inductance photon detectors (MKID) [12, 13], probing the 

microscopic mechanism of two-level systems [14], and manipulation of ensemble spin systems 

[15]. The microwave resonator is a device in which microwave can oscillate in resonance at some 

frequency with greater amplitudes than at others. The transmitted microwaves at resonant 

frequency will bounce back and forth between the sides of resonators and reinforce each other to 

create a pattern of standing microwaves in the resonator. The resonant frequency at which the 

device will exhibit resonant behavior is also called normal mode. A transmission line resonator is 

composed of a transmission line segment. A microwave transmission line is the structure that 
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allows the transmission of microwaves. Sudden changes to the impedance in a microwave 

transmission line causes the reflection of transmitted signal. The impedance changes can be 

resulted from open and short ends of the structure. If a transmission line has two such open or short 

ends, standing waves may be evoked in the device between two ends. Therefore, the transmission 

line segment can act as a one-dimensional resonator. The resonance frequency is determined by 

many factors such as the length of segment and the effective inductance and capacitance met by 

microwaves. Most commonly used planar resonators in quantum information processing are 

employed for superconducting coplanar and microstrip transmission lines. The planar 

superconducting resonators are widely used devices in superconducting circuits due to their 

compact size and much lower losses than normal conductor resonators. The quality factor of a 

resonator is a dimensionless parameter which describes how fast the energy stored in a resonator 

will decay. Because the quality factor Q is defined as /S SQ X R∝  ( sR  and Xs  are surface 

resistance and the corresponding reactance), studying surface impedance for resonators plays a 

major role in the development of future quantum technology.  

The spin ensemble is an important physical system for future quantum computing because of its 

longer coherence time than superconducting qubits. Pulsed electron spin resonance (pulsed-ESR) 

spectroscopy [16, 17] proceeds by probing an ensemble of spins coupled to a microwave resonator 

of frequency 0ω  and quality factor Q with sequences of microwave pulses which can perform 

successive spin rotations. The readout information about the number and properties of 

paramagnetic species is contained within the amplitude and shape of a microwave signal called a 

spin-echo. The emission of spin-echo signal is triggered by sequences of microwave pulses. The 

sensitivity of pulsed-ESR method is conveniently quantified by the minimal number of detectable 

spins minN . Conventional pulsed-ESR method use 3-D resonators with moderate quality factors in 

which spins are only weakly coupled to the microwave photons, and therefore 131 10minN ≈ ×  spins 

are obtained at 300 KT =  and X-band frequencies ( 0 / 2 9 10 GHzω π ≈ − ). The minimal number 

of detectable spins depends on the photon frequency ν  according to: 

 1
min 2 1/2

0 f

k VN
Q k Pν

= ,   (1.1) 
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where 1k  is a constant, V  is the sample’s volume, 0Q  is the unloaded quality factor of the 

microwave cavity (sample chamber), fk  is the cavity filling coefficient, and P  is the microwave 

power in the spectrometer cavity. Eq. (1.1) shows that smaller mode volume can increase fk  

which further leads to smaller sample’s volume V . Hence, minN  is decreased as we expect. Planar 

superconducting transmission line resonator can provide much smaller mode volume than a 3-D 

resonator, resulting in larger spin-microwave coupling [18, 19]. Combined with operation at 

4 KT =  and the use of low-noise cryogenic amplifiers and superconducting high-Q thin-film 

resonators, sensitivities up to 71 10minN ≈ ×  spins have been reported [20-22]. Further 

improvements in the sensitivity of pulsed-ESR spectroscopy can be achieved by cooling the sample 

and resonator down to millikelvin temperatures that satisfy 0 / BT kω   at X-band frequencies. 

As a result, both the spins and the microwave field reach their quantum ground state, which is the 

optimal situation for magnetic resonance because the spins are fully polarized and thermal noise is 

suppressed. For the bismuth-doped 28Si (28Si:Bi) sample with Al microwave resonator with a 

loaded quality factor 53 10Q = ×  for resonator frequency 0 / 2 7.24 GHzω π = , the sensitivity of 

31.7 10×  spins/Hz1/2 given the 1 Hz repetition rate has been obtained [23]. The required external 

magnetic field is only around 10 mT corresponding to the resonant frequency of around 7.4 GHz 

between the ground state and the low excited states of the electron-nuclear low energy states in the 
28Si:Bi system.  

Our ultimate goal is to make use of low loss superconductor resonators in pulsed-ESR, in order 

to implement scalable quantum information processor with hybrid nuclear-electron spins [24], as 

shown in Figure 1.1. Pulsed-ESR spectroscopy can be used for quantum computing [25]. A 

distributed, multimode scheme has been proposed for scalable QIP which can be applied to hybrid 

solid-state nuclear-electronic spin system [24, 26-31]. The requirement for such a scheme is that it 

needs to define an array of disjoint quantum processors with communication between local 

processors provided by a coupling between nodes. This requirement can be satisfied by the hybrid 

solid-state nuclear-electronic spin system with magnetic resonance technique. Thus, the hybrid 

system with magnetic resonance is applicable for scalable spin quantum computer in the near future. 
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Figure 1.1: Superconducting microstrip resonator for pulsed ESR of thin films [22] 

 

Low microwave loss, also manifested as a high resonance quality factor (Q), is essential for high-

sensitivity measurement and enables cavity cooling of ensemble spin systems [32]. Eq. (1.1) shows 

that larger Q value will also decrease minN . For our targeted pulsed-ESR experiments, the required 

magnetic field is around 0.35 T, corresponding to a g=2 electron resonant frequency of 9.8 GHz, 

and the field drastically reduces the quality factor of superconducting resonators. Thus, a higher Q 

of a resonator under such a strong magnetic field can be reached, better performance for quantum 

information processing is desired. Q will be limited by magnetic flux trapped in thin films in the 

form of vortices [33] which physically oscillate in microwave driving currents and induce losses. 

Vortex starts to be generated in aluminum (Al) thin film when a magnetic field is greater than a 

threshold thB  (for example, 0.3thB =  Gauss for 150 nm Al [34]). One requirement is a small 

reduced-field, the ratio of the applied magnetic field to the critical field of the superconductor 
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(H/HC2(0) ≤ 0.1). With the desired external magnetic field of 0.35T, there are only a few 

superconductors, such as niobium (Nb), that can be used to fabricate a high-Q resonator for low 

temperature pulsed ESR applications. The bulk critical field of Nb (HC2(0) ~ 0.5 T and HC2(4.2) ~ 

0.3 T) [35] is however not sufficiently large compared to the applied magnetic field B0 (~0.35 T). 

Though the critical field can be enhanced by using thin films [36] with the film plane kept parallel 

to the external magnetic field B0 [37], we are seeking more options to increase the Q values of 

superconductors under strong magnetic field (~0.35 T). In this thesis, we explored several ways to 

improve the performance of superconducting planar resonators for pulsed-ESR which can 

withstand high magnetic field.  

From the material aspects, there are two important considerations for improving the performance 

of a resonator placed in a magnetic field: the choice of materials and the quality of materials. The 

former depends on the intrinsic properties of the superconductor materials. The most popular 

material for superconducting resonators are aluminum (Al) [38], niobium (Nb) [39, 40], tantalum 

(Ta) [41], rhenium (Re) [42] and titanium nitride (TiN) [43] which all have low internal loss (δi), 

and therefore high internal quality factors (Qi = 1/δi) under zero magnetic field [44]. Nevertheless, 

a large magnetic field (~0.35 T) required by pulsed-ESR may destroy the superconducting states 

of most superconductors. Another important factor affecting the performance of a resonator is the 

material quality. Epitaxial films, free from structural defects, with smooth and clean 

surfaces/interfaces, are most desired for the application of superconducting resonators [44]. 

Furthermore, we can make use of the proximity effect to enhance the upper critical field of 

superconductors. In a trilayer structure, the core layer can improve the critical field and critical 

temperature of the coating layers through the proximity effect when both parameters of the core 

layer are significantly higher. Due to the skin effect of microwave propagation, the amplitude of 

the electromagnetic waves will decay exponentially inside the superconductors with a length scale 

of the penetration depth. So the main contribution to the microwave losses comes from the surfaces 

of the superconducting films as the significant amount of currents flow here [39]. Proximity effect 

will induce higher critical field, thereby suppressing the generation of vortices in the coating layers 

and reduce losses on the surfaces; also, higher induced critical temperatures exponentially reduce 

the population of quasiparticles, which also reduces losses in these layers. 
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Besides the improvement of superconducting devices, layout design is also important for large-

scale quantum computation. Two computing schemes are the current research interests: 

implementing quantum circuit model with high-threshold error correction methods such as surface 

codes, and quantum optimization through the annealing method. Surface code error correction tops 

other error correction methods by its experimentally accessible per step error threshold. While it is 

successfully demonstrated in experiments, it still requires thousands of physical qubits for an 

errorless logical qubit. Such a large qubits array will inevitably have some fabrication faults, which 

the original surface code theory cannot deal with. The other promising application of large scale 

computation with the quantum system is quantum optimization. The goal of quantum optimization 

is to find a solution to some optimization problem by using quantum adiabatic evolution. Two of 

the biggest problems facing the development of quantum optimization is how to express many-

body product terms beyond two-body interactions and how to implement error correction in such 

a computing scheme. 

1.2 Hybrid nuclear-electronic system for electron spin resonance 

The magnetic resonance is a well-developed technique for quantum information processing (QIP). 

The nuclear magnetic resonance (NMR) using the nuclear spins of an ensemble of molecules in 

solution at room temperature was one of the first experimental schemes for QIP [45, 46]. The 

liquid-state NMR has some cons such as small thermal spin polarization due to the small amount 

of energy separating two computational qubit states [47], decreased detected signals [48] and 

vanishing entanglement of system [49] when the number of qubits in the system is increased. Cory 

et al. outlined many advantages of solid-state NMR to liquid-state NMR [50]. The solid-state NMR 

QIP have: (a) stronger coupling between spins, (b) longer coherence times, (c) higher susceptibility 

to polarization and (d) ability to dynamically reset the qubits.  

Solid-state electron magnetic resonance (ESR) can also be used for QIP where the qubit is 

associated with the electron spin. Solid-state nuclear and electron spin-based QIP have their own 

pros and cons. Nuclear spin has longer coherence times than electron spin, but it is manipulated 

and measured much more slowly. On the contrary, the electron spin interacts more strongly with 

its environment than nuclear spin. Thus, the electron spin can be measured and manipulated at a 

rapid rate, while it will lose its coherence very quickly. It is straightforward to propose a hybrid 
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solid-state nuclear-electronic spin system for QIP. The nuclear spin is used as storage while the 

electron spin is used for manipulation and measurement.  

The most common nuclear-electronic spin systems for QIP with magnetic resonance are group 

V doped silicon such as phosphorus-doped silicon (Si:P) and bismuth-doped silicon (Si:Bi), and 

endohedral fullerenes on silicon surfaces with a scanning-tunnel-microscope tip [51].   

The best-known hybrid nuclear-electronic spin system with phosphorus-doped silicon (Si:P) for 

QIP was proposed by Bruce Kane in 1998 [27]. The phosphorus is used as a localized donor nuclear 

spin which is coupled to a localized donor electron spin by the hyperfine interaction. Each localized 

nuclear-electronic spin system can be considered as two coupled qubits. In 2003, Schofield et al. 

showed the controlled incorporation of P dopant atoms in Si(001) by using STM H lithography 

[52]. In the same year, Tyryshkin et al. presented spin echo measurements of isotopically purified 
28Si:P which showed transverse relaxation times 14 ms at 7 K [53]. Tyryshkin et al. measured the 

spin coherence in Si:P in 2006 [54]. They applied bang-bang decoupling of 31P nuclear spin using 

controlled flips of electron spin. Both electrons bound to donors and the donor nuclei exhibited 

low decoherence under the right circumstances. Morton et al. demonstrated the coherent transfer 

of a superposition state in an electron-spin qubit to a nuclear-spin qubit in 2008 [55]. They applied 

a combination of microwave and radio-frequency pulses to 31P donors in an isotopically pure 28Si 

crystal using pulsed electron paramagnetic resonance (EPR). In 2009, McCamey et al. 

demonstrated a method for obtaining more than 68% negative nuclear polarization of phosphorus 

donors in silicon by white light irradiation [56]. In 2010, Morley et al. showed that bismuth in 

silicon (Si:Bi) has electron spin coherence times at least as long as Si:P at comparable temperatures 

and 29Si concentrations [57]. In 2011, Simmons et al. reported the on-demand generation of 

entanglement between and ensemble of electron and nuclear spins in isotopically engineered Si:P 

[58]. They combined high-field, low-temperature ESR with hyperpolarization of the 31P nuclear 

spin to obtain an initial state of sufficient purity to create a non-classical state. In 2013, Morley et 

al. investigated ‘hybrid nuclear-electronic’ qubits using Si:Bi with pulsed magnetic resonance 

technique [59]. The large nuclear spin and hyperfine coupling of Si:Bi brought about the 

entanglement of the nuclear and electronic spin degrees of freedom in the magnetic field region 

smaller than 0.6 T.  
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The concept of quantum computation using endohedral fullerenes as spin-qubits were first 

proposed by Harneit [60], Suter and Lim [61], and Twamley [29]. Each molecule spin site consists 

of a nuclear spin coupled via a Hyperfine interaction to an electron spin. The quantum information 

is encoded on the nuclear spins while using the electron spins as a local bus. A thorough 

introduction on the synthesis of endohedral fullerenes and the concepts of spin quantum computing 

can be referred to the book edited by Alexey A. Popov [62]. 

1.3 Thesis outline 

In Chapter 1, the motivation for the overall research projects is described. Chapter 2 presents a 

brief introduction to the theories of superconductors and the development of the theories of 

proximity effect. The way to evaluate the surface impedance for composite superconducting films 

through extended Zimmermann formula is also included. In Chapter 3, we compare Nb/NbN/Nb 

trilayer structures with Nb single layer structures for their performance as superconductor 

resonators. Chapter 4 covers the performance of the resonators with 

TiN/tapering/NbN/tapering/TiN on c-cut sapphire substrates grown by reactive magnetron 

sputtering. Detailed film characterizations with different methods are included. A gradually-

changed tapering layer which eliminates the distinct boundaries between TiN and NbN is adopted 

to make the wavefunction change smoothly between NbN and TiN. Chapter 5 examines a model 

system of proximity-enhanced Al/Nb/Al heterostructures, and we consider the size effect of the 

ultrathin Al cladding layers. The two Al layers are thin enough such that the size effect of thin 

films becomes appreciable. The measured Q in 5/50/5 nm and 10/50/10 nm Al/Nb/Al 

heterostructures are compared. In Chapter 6, we propose a defect-tolerant surface code topology 

which is resistant to sparse fabrication defects. The circuit layout is a two-dimensional array of 

unit cells which is equivalent to a disk folded into N layers. Chapter 7 demonstrates a two-

dimensional quantum annealing architecture to solve the 4th order binary optimization problem by 

encoding four-qubit interactions within the coupled local fields acting on a set of physical qubits. 

It also covers a method to implement quantum annealing with error correction through stabilizer 

codes. The stabilizers are realized with weak measurements for real-time, in-run monitoring of 

spins, to minimize or control the back-action. 
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Chapter 2                                                                                    
Theoretical concepts 

 

2.1 Introduction of superconductor theory 

The Bardeen-Cooper-Schrieffer (BCS) theory [63, 64] has become the essential physical theory 

that clarifies how a coherent superconducting state can be formed by the condensation of the 

Cooper pairs. As a self-consistent, mean field treatment, it applies only to clean and homogeneous 

systems in three dimensions. To account for inhomogeneous systems, such as multilayer systems 

of superconductor-insulators, Bogoliubov [65], and de-Gennes [66], independently derived a 

system of coupled equations between electrons and holes that give the solutions for the fermionic 

quasiparticles above the superconducting condensate. The energies of the quasiparticles are 

separated from the condensate by ∆  which is the superconducting energy gap.  

Before the BCS microscopic theory, Ginzburg and Landau had developed a theory to explain 

superconductivity based on the Landau theory of second order phase transitions. The result is the 

celebrated Ginzburg–Landau (GL) theory of superconductivity [67]. The complex order parameter 

in the system of superconductivity is represented by the system’s free energy. Later, this theory 

was rigorously derived from the microscopic BCS theory near the phase transition temperature of 

the system cT  by Gorkov [68].  

Gorkov developed a powerful method to study the superconductivity by writing down a closed 

set of equations of motion with the Green’s functions [69]. Green functions carry the information 

of the transport probabilities of single particles. They describe how particles propagate through the 

system under the consideration of all kinds of interactions. The solutions to the set of equations 

yield all the results of the BCS theory. Furthermore, this methodology can be readily used to 

describe not only dirty systems with impurities, but also deal with dynamics of non-linearities. 

Hence, type-II superconductors can be studied.   

Although Gorkov Green’s functions can be used in many cases that BCS theory does not apply 

to, the functions are hard to solve. Eilenberger [70], as well as Larkin and Ovchinnikov [71], 
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independently applied the quasiclassical approximation to the Gorkov equations and developed an 

energy-integrated version of the Gorkov Green’s functions. A method to take into account the 

interaction between electrons and random impurities has been developed by Abrikosov and 

Gor’kov [72]. It has been considered that physical properties of superconductors incorporating a 

significant amount of random impurities can be obtained by averaging over realizations of the 

disordered impurity potentials.  

2.2 Usadel equation 

Usadel rewrote the Eilenberger equations as a fully isotropic one by averaging over momentum 

directions [73]. The Usadel diffusion equation is much simpler than the original Eilenberger 

equations and amenable to numerical implementations, enabling realistic experimental geometries 

and situations to be analyzed. 

Eilenberger introduces the functions ( , , )g r vω    and ( , , )f r vω    which are closely related to the 

Green’s functions of a superconductor [70]. These two quantities are the impurity-averaged 

Green’s functions integrated over the energy variable. Usadel considers only the superconductors 

with spherical Fermi surfaces. v  denotes the Fermi velocity. It is assumed that 

(2 1) 0n Tω π= + > . For a dirty superconductor, one expects that the functions ( , , )g r vω    and 

( , , )f r vω    become nearly isotropic on v  and can be expanded as: 

 ˆ( , , ) ( , ) ( , )f r v F r v F rω ω ω= + ⋅


    ,  (2.1) 

 ˆ( , , ) ( , ) ( , )g r v G r v G rω ω ω= + ⋅


    ,   (2.2) 

where Usadel neglects higher order terms, and ˆ /v v v=
  . ( , )G rω   is defined by  

 2( , ) 1 ( , )G r F rω ω= −
 

.   (2.3)  

By eliminating the currents ( , )F rω


 , ( , )G rω


 , and keeping the densities ( , )F rω  , ( , )G rω  , De 

Gennes’s diffusion equation is generalized by Usadel to arbitrary values of ∆  which is only valid 

in the dirty limit: 

 
21 ( , )ˆ ˆ2 ( , ) ( , ) ( , ) ( , ) 2 ( ) ( , )

2 ( , )
F rF r D G r F r F r r G r
G r
ωω ω ω ω ω ω
ω

 
− ∂ ∂ + ∂ = ∆ 

 





    



,  (2.4) 
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where D  is defined as the diffusion coefficient, ( )r∆
  is an order parameter. Hence, the self-

consistency conditions in terms of ( , )F rω   for the order parameter ∆  is,  

 
0

( )( ) ln 2 ( , ) 0
C

T rr T F r
T ω

π ω
ω>

∆ ∆ + − =  
∑



 

.   (2.5)  

For superconducting multilayer films, it is considered that the thi  superconducting film iS  in 

which the dirty limit condition 
i iS Sl ξ≤  is fulfilled. Here 

iSl  is the electronic mean free path. The 

coherence length 
iSξ  is related to the diffusion coefficient 

iSD  by the relation ,/ 2
i i iS S C SD Tξ π=

. The x-axis is defined as perpendicular to the film surface. Golubov et al. rewrite the Usadel 

equations as follows [74]:  

 * 2 2( ) [ ]i

i i i i i

i

C
S S S S S

S

T
G

G
π

ξ
ω

′ ′Φ = ∆ + Φ ,  (2.6) 

 
0

ln( / ) 2 ( ) / 0
i i i i iS C S S ST T T G

ω

π ω
>

 ∆ + ∆ −Φ = ∑ ,    (2.7) 

where 2 2 1/2/ ( )
i iS SG ω ω= +Φ  . Also, /

i i iS S SF GωΦ =  , 2 2 1/2/ ( )
i i iS S SF ω= Φ +Φ  . 

iS∆   is the order 

parameter for the thi   superconducting layer. ω   is the Matsubara frequency [75], 

(2 1) ( 0,1, 2, )n T n nω π= + =  , and the prime denotes differentiation with respect to the coordinate x.  
Let cos ( )

i iS SG xθ=  and  sin ( )
i iS SF xθ= , Eq. (2.6) and (2.7) can be rewritten as [76]: 

 2 ( ) sin ( ) ( ) cos ( ) 0
i i i i iS S S S Sx i x x xξ θ ε θ θ′′ + + ∆ = ,  (2.8) 

 
, ,

( )
( ) ln 2 sin ( , ) 0i

i i
ni i

S
S S n

C S C S n

xT Ts i x
T T ω

θ ω
ω

∆ 
∆ + − = 

 
∑ .   (2.9) 

Here, the function 
iSθ  has been introduced as a unique Green’s function which defines the quasiparticle 

density of states 
iSN : 

 ( , ) / (0) Re cos ( , )
i i iS S SN x N xε θ ε =   ,  (2.10)  

where (0)
iSN  is the electronic density of states in the normal state at the Fermi surface. By using 

the appropriate boundary conditions, the Usadel equations Eq. (2.8) and (2.9) can be solved in 

each layer for a multi-layer structure.  
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2.3 Proximity effect 

2.3.1 Development of theories for proximity effect 

Superconducting proximity effect refers to the situation that when a superconductor is placed in 

contact with a normal metal (or another kind of superconductor with lower critical temperature), 

weak superconductivity is observed in the normal material over a certain distances or the critical 

temperature of one layer of superconductor is increased while that of another layer is suppressed. 

The proximity effect occurs at the interface between a superconductor and normal metal or between 

two superconductors with different critical temperatures. The proximity effect is first discovered 

by R. Holm and W. Meissner in 1932, but it is not understood as the proximity effect until R. 

Holm’s work in 1960 [77]. 

The electrons have different electron orders in normal conductors and superconductors. In a 

superconductor, there exist the well-known Cooper pairs of electrons which are called 

superconductor order. Moreover, the energy of electrons in a normal conductor are filled up to the 

Fermi level without a gap, which is referred to another electron order.  The reason why proximity 

effect happens is that the wave function of electrons at the interface between two layers of material 

cannot change abruptly because of the non-locality of the electrons in materials. The Cooper pairs 

in the superconducting film are carried to the normal conductor over a certain distance (which is 

called the coherence length) and then are destroyed by scattering events. In contrary, the normal 

electrons in one side can travel into the superconductor and find other electrons to be paired. 

Therefore, the gap energy of the superconductor is suppressed near the interface. 

Since the discovery of the superconducting proximity effect, the corresponding theories for the 

transport properties of superconductors have been attracted with intensive interest. Several kinds 

of theories are summarized in Figure 2.1.  



 

 13 

 

Figure 2.1: Three main methods that can be applied to calculate the properties of proximity effects. 

Each reference has been listed in the context. 

 

First, in the early 1960s, the proximity effect was analyzed with the full Gor’kov equations or 

simplified version of Ginzburg-Landau first equation [78] which is only valid close to critical 

temperature.  

Second, quasi-classical equations which are supplemented by suitable boundary conditions were 

developed with Keldysh Green functions based on Gor’kov equations [79, 80]. Of which, the 

stationary and equilibrium case was first derived by Eilenberger [70] in 1968. In 1970, Usadel 

simplified the equations of Eilenberger further [73] by assuming that the system is dirty and 

impurity-averaged Green’s functions can be defined; this approach came to its full maturity in the 

early 1970s by considering the non-equilibrium cases. Many people had contributed much to its 

progress, including Larkin and Ovchinnikov [71, 81, 82], Eliashberg [83], and Schmid et al. [84].   

Although many experimental problems can be studied with the help of the quasi-classical 

equations, some problems, in particular, those where ballistic electron transport can be assumed, 

can be understood more readily by using the Bogoliubov-De Gennes equations and using the 

concept of Andreev reflection [85]. That is the third theory on the proximity effect focusing on the 

Andreev reflections perspective [86]. The understanding of the proximity effect is based on the 
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following aspects. Andreev reflection is known to occur at the boundary between a superconductor 

and a normal metal. During the reflection process, electrons moving towards the interface above 

the Fermi level in the normal metal are converted into holes below the Fermi level and reflected 

backward, while a Cooper pair is formed inside the superconductor. This is one of the critical stages 

in the proximity effect and describes how the two electronic reservoirs are exchanging at the 

boundary itself. Another stage in the process of Andreev reflection is the electron-hole pair loses 

its correlated properties in the normal metal. The electron and the hole form phase-conjugated 

pairs, a property which will be lost at a certain distance from the interface. Therefore, the proximity 

effect is understood as such a process that the incident electrons propagate coherently and how this 

coherence is lost due to dephasing processes in the normal metal.   

2.3.2 Proximity effect in S1/S2 

Consider a simple case of two superconductors [78]. The two kinds of superconductors with 

slightly different critical temperatures ( cnT  and csT ) are placed in good contact. We let cs cnT T> , 

cs cn cnT T T−  , and then one of the layers with the critical temperature cnT  is in the normal state 

when the temperature is at cn csT T T< < . The flat interface coincides with the plane 0x = , and 

therefore we do not consider the inelastic scattering due to the rough interface. The superconductor 

occupies the semi-space 0x > , and the normal metal is at 0x < . 

The order parameter in the S region ( 0)x >  can be calculated by the first GL equation: 

 2 2 2 41( )
2

d C
dx
ψξ ψ ψ− − + = ,  (2.11) 

where C is the integration constant, ξ  is a temperature dependent parameter that 

2 2 / (4 | |)mξ α=   (   is the reduced Plank constant, m is the mass of electron, α  is the 

phenomenological expansion coefficient in GL equation which is characteristics of the material), 

and ψ  is the superconductor order in GL equation. Since at infx →  we have ( / ) 0d dxψ → , and 

1ψ →  on the assumption that the two superconductors are both semi-infinite, the integration 

constant is 1/ 2C = − . Substituting this into Eq. (2.11), and carrying out the integration, the result 

is:  
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 0tanh[( ) / 2 ]x xψ ξ= − .   (2.12) 
 

Here 0x  is the integration constant to be decided from the boundary condition at 0x = . In this 

case, there is: 

 1 1d
dx b
ψ

ψ
= .   (2.13) 

The value of b can be calculated with the microscopic theory. Its geometrical significance is shown 

in Figure 2.2. 

 

 

Figure 2.2: Order parameter ( )xψ  near the interface between a superconductor (x > 0) and a 

normal metal (x < 0) [78].   

 

After Eq. (2.12) is substituted into Eq. (2.13), we find the relation between the integration 

constant 0x  and b: 

 0sinh( 2 ) 2x b
ξ ξ

− = .   (2.14) 
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The order parameter ψ  in the normal region (x < 0) can also be studied by the first GL equation 

(see, for example, [87]). The expansion parameter ( )n cnT Tα ∝ −  so that 0nα <  at cnT T<  and 

0α >  at cnT T> . Hence, for the N region, the first GL equation subject to the condition 

cn cnT T T−   becomes: 

 
2

2 3
2( ) 0n

d
dx
ψξ ψ ψ− + + = ,   (2.15) 

where 2 2 / 4n nmξ α=  . The order parameter in the normal region is small ( 1)ψ  . Therefore, we 

neglect the cubic term of ψ : 

 
2

2
2( ) 0.n

d
dx
ψξ ψ− + =   (2.16) 

Subject to the condition 0ψ →  at infx → , the result is: 

 0 exp( | | / )nxψ ψ ξ= − .  (2.17) 

From Eq. (2.17), the order parameter goes into the normal metal region over the depth nξ  while 

decaying exponentially over this distance. Since cnT  and csT  are close to each other, ψ  and 

/d dxψ  can be considered continuous at the two layers’ interface. Then, we have nb ξ= . 

2.4 Evaluation of surface impedance for composite superconducting films 

2.4.1 Quality factors obtained from EM simulators 

The microwave loss of superconducting resonators or transmission lines can be explained by 

resistive loss from surface impedance [88]. Surface impedance reveals the input impedance per 

unit area of the whole structure toward the direction of wave propagation. The quality factor is 

defined as /S SQ X R∝  ( SX  and SR  are the total reactance and the resistive component of the 

surface impedance, respectively). However, this definition does not take into account many factors 

such as structure, lead, and parasitic coupling. Therefore, the best way to obtain the theoretical 

quality factor is to use the commercial electromagnetic simulator. Two frequently-used software 

are ANSYS HFSS and Sonnet Software. Using these kinds of simulators, we can extract the 

scattering matrix from the model with specific excitation which is set to be close the real 

experiments. The final results file is exported with the extension "s2p", which is just same as the 
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output file in our experiments with Agilent Technologies N5230A (Now is the Keysight 

Technologies). Then using the equivalent network in [89] for the transmission type measurement 

of the Q factor, we can get the loaded and unloaded quality factors from the simulation results. 

2.4.2 Cascade model for surface impedance of trilayer structure 

Because the field analysis of parallel propagation of a wave along the conductor yields the same 

solutions and surface impedance as that of the normal incidence scenario [90], transmission lines 

where the electric field travels along it can be modeled as that a TEM wave is normally incident 

upon the conductor. This applies to a single layer and trilayer structures. Therefore, the surface 

impedance of the microstrip superconducting resonator is the same as that of the perpendicular 

incidence scenario. The surface impedance SZ  of single superconducting layer with thickness d is 

given by 

 

0

( ) coth( )

,  

,

1 2 ,

S S
sc

S

sc

kZ kd R jX

jk

ω
σ

δ
δ ωµ σ

= = +

+
= =

                                                   (2.18) 

where ω  and 0µ  are the circular frequency and the permeability of vacuum, respectively.  

In the case of multilayers, the structure can be treated as the cascade of many single-layer films. 

Therefore, the surface impedance mZ  for the thm  superconducting layer after th( 1)m −  layer can 

be evaluated through [91]: 
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  (2.19) 

where 1j = − , mt  is the thm  layer thickness, (1 ) /m mjγ λ= +  is the complex propagation 

constant of the thm  layer, mλ  is the London penetration depth of the layer, mσ  is the complex 

superconducting conductivity for the frequency ω  and can be calculated by the extended 

Zimmermann formula, µ  is the permeability of the layer, 1Zm−  is the impedance of the load which 
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yields the input impedance of the total layers before the layer, and equals to 377 Ω  which is the 

characteristic impedance of free space when the layer is exposed to air.  

The result above is obtained when the whole trilayer film is represented as a pair of thin 

conducting sheets. The two-sheet representation is sufficiently accurate when the thickness of the 

superconducting film t   is much larger than its London penetration depth Lλ . In our experiment, 

Lλ  of Nb is 29 nm [92] which is not much thinner than the total thickness of the trilayer film. 

Therefore, the above two-sheet model has deviations from a real conductor. To correct the 

discrepancy between the real composite superconducting film and the above two-sheet model, a 

modified value of surface impedance can be used [91]. Let SZ  be the calculated surface impedance 

as given by the above formula, and let XZ  be the value of the surface impedance of the conducting 

sheets which will cause an effective surface impedance of  SZ  as seen by an incident wave, as 

depicted in Figure 2.3. 

 

Figure 2.3: Illustration of the modification for the two-sheet model (excerpted from [91]). 

  

In our case, Zη  is large compared with the other circuit elements, and can then be neglected. 

The analysis of the circuit gives an equation for XZ  whose solution is: 

 2 2
0 0

1 [(2 ) 4 ( ) ]
2X S SZ Z j t Z j tωµ ωµ= − ± + .   (2.20)  
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2.4.3 The extended Zimmermann formula 

For a real superconductor, the conductivity scσ  is a complex number. To calculate the complex 

conductivity, 1 2( )sc jσ ω σ σ= − , for a layer of superconductor with arbitrary purity, the 

Zimmermann formula [93] can offer an easy method when arbitrary mean free path length is 

considered. The integral of Green functions of energy has been applied to an expression for the 

complex conductivity of a homogeneous isotropic BCS superconductor with an arbitrary mean free 

path. By taking into account the gap energy of a BCS superconductor as a complex number, 

1 2j∆ = ∆ − ∆  [94], where 1∆  and 2∆  are real numbers, we generalize the Zimmermann 

expression for the conductivity of a homogeneous isotropic BCS superconductor with complex gap 

energy which can be applied to the samples with any purity. The explicit expression for the 

conjugate of the complex conductivity *
1 2( )sc jσ ω σ σ= +  reads: 

1 2
1 2( ),

2n

j j dE dEI I
ωσ σ

σ ωτ
+∆ ∞

∆ ∆

+
= × +∫ ∫



                                                       (2.21) 
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where 

 
2 2 2 2

( ) ,    ( ) ,Eg E f E
E E

∆
= − = −

−∆ −∆
   (2.24) 
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 2 2 2 2 2 2
1 2 3( ) ,    ,    ( ) ,P E P E P Eω ω= + −∆ = −∆ = − −∆     (2.25) 

nσ  is the normal conductivity of the superconductor before the superconducting transition 

happens. ( )g E  and ( )f E  are the diagonal and off-diagonal components of the quasi-classical 

2 2×  matrix Green’s function [95]. The factors in square brackets depend on the unperturbed 

propagators g and f. In a compact but not very transparent way, they describe the usual ingredients 

of a linear response formula, namely the density of initial and final states combined with the energy 

dependent coherence factors for the coupling of an electromagnetic field to quasiparticles. The 

factors such as 
1 2

1
/P P j τ− + 

 has the information about dynamical properties of quasiparticle 

excitations like their lifetime. They include the quasiparticle lifetime τ  due to impurity scattering. 

Note here that the integrations of two kernels 1I  and 2I  are both performed along the path running 

in parallel to the real axis. Furthermore, it is evident that this expression is free from the Fermi 

distribution function ( )f E , so there is no need to introduce an effective chemical potential *µ  to 

the Fermi function [96] which, at most of the time, is difficult to evaluate.  
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Figure 2.4: Surface resistance of single layer of Nb calculated by using (2.19) and (2.21) at 1.0 K 

when compared with the extended M-B theory developed by Noguchi et al. [97] 

 

For Nb film with a gap energy of 1 1.5∆ =  meV, the transition temperature of cT 9.2=  K at 

T 1.0= K c(T / T 0.11)=  and the mean free path 5.7=  nm [92], the surface resistances and 

reactance are calculated with (2.19) as a function of the normalized incident wave frequency for 

the different magnitude of the imaginary parts 2 1/δ ≡ ∆ ∆  and plotted in Figure 2.4. Compared 

with the results from [97] which uses the same parameters for Nb film except for the consideration 

of the mean free path, the calculation results of the two kinds of methods match well, and only a 

small difference exists between the numerical data when 410δ −=  and 610δ −=  which is due to 

the original deviation between Mattis-Bardeen conductivity and Zimmermann conductivity. 
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Figure 2.5: Calculated temperature dependence of the surface resistance and reactance as a 

function of δ  

 

The surface impedance is also plotted in Figure 2.5 with the same parameters being used in 

Figure 2.4 as a function of normalized temperature cT / T  for different magnitude of the imaginary 

parts 2 1/δ ≡ ∆ ∆ . The real part of the gap energy is chosen to be fixed at 1.5 meV, although it 

should fluctuate as the temperature rises. The reason for this assumption is that the range of the 

temperature is restricted within only c0.3 T× , so the change of the real part of the gap energy 

deviates slightly from its 0K value. The dependence of the resistance and reactance on the 

temperature are the same as being calculated with the extended M-B theory reported in [97], in 

which the reactance sX  becomes independent of temperature when below cT / 2  and the surface 

resistance is saturated at lower temperature regime due to the freeze of the frozen intra-gap 

quasiparticle density of states. 
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Figure 2.6: Calculated surface resistance compared with the standard and extended M-B theory 

against the experimental results in [98] 

 

In Figure 2.6, The solid circles show the NbN surface resistance measured using resistively and 

capacitively shunted junctions with an open stub tuner [99]. The open circles show the surface 

resistances estimated using the junction with a resonator shown in [98]. The coherence length of 

NbN is 35 nm [100], and the penetration depth is 375 nm [101]. The ratio of the imaginary part to 

the real part of the gap energy δ  is determined through the procedure as demonstrated in [102] 

and is set to be 38.1 10−×  [97]. The mean free path   is determined from the normal resistivity 

given in [98]. Therefore, we have matched the extended Zimmermann formula with the 

experimental data of the strong-coupling superconductor NbN [98], which is in the local ( 0λ ξ

) and clean limits ( 0ξ  ). The prediction of the standard Mattis-Bardeen theory is also plotted in 

Figure 2.6 as a function of frequency.  
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Chapter 3                                                                            

Superconducting resonators with Nb/NbN/Nb film 

 

3.1 Introduction 

The Mattis-Bardeen theory [103] is well-known for the calculation of the complex conductivity for 

the superconducting state in microwave field which can be used to compute the surface impedance. 

Recently, the Mattis-Bardeen (M-B) theory has been extended by Takashi, et al. [97] to include 

the contribution of quasiparticles in the subgap states of superconductors. Therefore, the 

improvement of the extended theory leads to a better approximation of the surface impedance for 

a homogeneous isotropic BCS superconductor than the standard M-B theory. However, the Mattis-

Bardeen conductivity does not take into account the purity of a superconductor which can be 

expressed by mean free path  . Since the coherence length is directly related to the electron mean 

free path in a given superconductor, the mean free path should play a major role in the evaluation 

of the complex conductivity of a given BCS superconductor. Furthermore, the original Mattis-

Bardeen conductivity is obtained under the extreme anomalous limit, for which the coherence 

length of a BCS superconductor should be much larger than its characteristic magnetic field 

penetration depth ( 0 effξ λ ) [103]. Under this limit, the Mattis-Bardeen conductivity will give a 

good approximation for the behavior of the superconductor. Otherwise, the use of the expressions 

of Mattis-Bardeen conductivity will not be appropriate when the coherence length is comparable 

or even smaller than the penetration depth. 

Two straightforward ways to decrease the surface resistance are to lower the temperature and 

grow high-quality epitaxial thick films. Here we introduce an alternative method. Due to the skin 

effect, the amplitude of the electromagnetic waves will decay exponentially inside the 

superconductors with a length scale of the penetration depth. Thus, the main contribution to the 

surface resistance comes from the surface of the thin film device. Thus, for Nb/NbN/Nb trilayer 

structures, the majority of the electromagnetic energy will be wrapped in the surface Nb layer, and 

only a small portion of the energy will go through into the NbN layer. This way we take benefit 
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from the intrinsic high-quality factor of Nb films. Because the inner NbN layer has much higher 

critical temperature cT  and upper critical field c2H , it can enhance the superconductivity of the 

surface Nb layers through proximity effect. When the critical temperature of the Nb film is raised 

due to the proximity effect [104], the effective temperature cT / T  is reduced which leads to 

smaller surface resistance and larger quality factor. The improved c2H  also leads to enhanced 

performance in high magnetic fields which is highly desirable in many practical applications. 

3.2 Comparison with the experimental data 

The superconducting microwave resonator [17, 105] are four / 2λ  microstrip line resonators in 

parallel rows which are separated by 65 mµ . Each line resonator is 5650 mµ  long, 15 mµ  wide, 

as shown in Figure 3.1. They are deposited on 430 mµ  thick c-cut sapphire wafers and then 

patterned with optical lithography followed by reactive ion etching etched in Oxford PlasmaLab 

100 ICP380 DRIE system. Figure 3.1 shows the Nb/NbN/Nb heterostructure on the substrate. Their 

central frequencies are both at 9.9 GHz. The 50-nm single layer Nb films and the 20/50/20 nm 

Nb/NbN/Nb trilayer films are grown by DC magnetron sputtering system with the base pressure 
81 10−×  Torr, and the growth is performed at room temperature with Ar pressure of 33 10−×  Torr. 

The NbN layer is grown by reactive sputtering optimized with 7.7%  nitrogen mixed in argon gas. 

 

 



 

 26 

Figure 3.1: The schematic diagram for Nb/NbN/Nb on sapphire, and Nb on the back side. 

 

Figure 3.2: R-T curves for the superconducting films on sapphire, 50 nm Nb and 20/50/20 nm 

Nb/NbN/Nb. 

In Figure 3.2, we compare the superconducting transition of the 20/50/20 nm Nb/NbN/Nb 

composite film with those of a pure 50 nm Nb film and a pure 50 nm NbN film. It is straightforward 

to expect that the Tc of the composite film falls somewhere higher than 50 nm Nb (7.7K) but lower 

than 50 nm NbN (11K) due to the proximity effect. 
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Figure 3.3: The surface impedance for the cases of single Nb film and Nb/NbN/Nb trilayer films 

 

The surface resistance and reactance of the 50 nm Nb film and the Nb/NbN/Nb trilayer films are 

plotted as a function of temperature in Figure 3.3. The surface impedance of single Nb film is 

calculated with the extended Zimmermann formula by considering its imaginary part of the gap 

energy and the material electron mean free path. Since the Nb film is polycrystalline which is 

determined from X-ray diffraction results, the dirty limit of the parameters of the Nb [92] is 

considered. For the trilayer films, the coherence length and the penetration depth of NbN layer 

refer to 35 nm  [100] and 375 nm [101], respectively. The real part of NbN gap energy at 0k is 

2.105 meV [106]. The cT  of trilayer films is 9.8 K, which is probed by four terminal measurements 

and should be the cT  for the NbN layer. cT  of 20 nm Nb alone is reduced to 5.5K due to its 

thinness. The rise of the transition temperature of Nb film due to proximity effect is taken into 

account by increasing its cT  to 9 K in order to fit the data best.   
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2 1/δ ≡ ∆ ∆  of all three layers in trilayer films are set to be 49.4 10−× , and that of the single Nb 

layer is determined to be 41.14 10−× . Both values are separately decided in order to fit the 

experimental data best. It has been shown that 2∆  should decrease with decreasing temperature 

[94]. The ratio of 2∆  to 1∆  is set to be dependent on temperature: 

 0
0

( ),Bk Texpδ δ=
∆

                                                                    (3.1) 

where 0δ  is the ratio of 2∆  to 1∆  at zero temperature, 0∆  is the real part of the gap energy at zero 

temperature, Bk  and T  are the Boltzmann constant and the temperature, respectively.  

The surface resistance of both single layer and trilayer films become bigger as the temperature 

rises, and the trilayer structure shows enhanced Q-factor throughout the whole temperature range. 

Furthermore, the surface resistance of the trilayer films only begins to increase above 2K while 

that of the single layer Nb film already does so at 1K. 
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Figure 3.4: The quality factor for the microstrip microresonator with single Nb and Nb/NbN/Nb 

trilayer     

 

In Figure 3.4, the solid and dotted curves represent the theoretical quality factor for 50 nm single 

Nb layer and 20/50/20 nm Nb/NbN/Nb trilayer films, respectively. Small circle dots are 

experimental data for corresponding microresonators. For a 40 nm single Nb layer, we can expect 

its quality factor to be even lower than the 50 nm thick one due to the reduced cT . Therefore, with 

the same total thickness of Nb layer, the proximity effect can improve the quality factor at least by 

30% . Note that the imaginary part of the gap energy for Nb and NbN is determined to give the 

best fit to the measured data. 

3.3 Summary 

We compare Nb/NbN/Nb trilayer structures with Nb single layer structures for their performance 

as superconductor resonators. The microwaves are wrapped inside the low loss Nb surface layers 

due to skin effect, while the superconductivity properties of these surface layers are enhanced 

through proximity effect from the middle layer. The quality factor of microstrip line resonators 

made of 20/50/20 nm Nb/NbN/Nb trilayer films has been calculated as microwave transmission 

through the cascade of three single layers, and in agreement with experimental data. Each layer is 

evaluated with an explicit extended Zimmermann expression. The formula is generalized from the 

regular expression by including electron mean free path and the imaginary part of the gap energy 

of the material. The quality factor of the microresonator consisting of a 50-nm thick single layer 

Nb film is also calculated by this compact expression and quantitatively agrees with the measured 

results as well. The quality factor of the microresonator made of trilayer films is shown to be larger 

than that of the microresonator with only a single Nb film. 
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Chapter 4                                                                        
Superconducting resonators based on 
TiN/Tapering/NbN/Tapering/TiN heterostructures 

 

4.1 Introduction 

In this work, niobium nitride (NbN) and titanium nitride (TiN) are chosen as our candidate 

materials. NbN has an extremely large upper critical field (~15T) [107] which allows it to withstand 

high magnetic fields, while TiN so far holds the highest record on resonator Q values in zero fields 

( 710 ) [108]. C-cut sapphire wafers were used as the substrate due to its high dielectric constant 

(~11.5), and its extremely low loss-tangent (~10-8 at low temperature) [109]  to minimize energy 

loss into the substrates.  

Although TiN is currently one of the best candidates for high-Q superconducting resonators, its 

performance in magnetic fields is limited by its relatively low critical field. In order to make the 

performance of the film suitable for use in magnetic fields, we take advantage of the proximity 

effect [86, 110-112] by inserting a NbN layer between two layers of TiN. The upper critical field 

Hc2 of bulk NbN is as large as 15 T [107], while the HC2 of TiN film (5 T for an 18 nm thick TiN 

film [113]) is much smaller. When coupled to a layer of superconductor NbN with higher HC2, TiN 

can stabilize its superconducting state to a larger magnetic field than at its intrinsic HC2.  

Moreover, the lattice structure of NbN is also fcc, the same as that of TiN. The lattice constants 

of NbN and TiN are 4.394 Å and 4.424 Å, respectively, and hence resulting in a lattice mismatch 

of 3.6%. Thus, stacking NbN on TiN is readily achieved with compatible deposition conditions. 

As the surface is not perfectly formed, there may be numerous physical anomalies in the 

core/peripheral interface. These points may increase the concentration of quasiparticles and 

weaken the pairing correlations. On the contrary, the proximity effect [114] will strengthen the 

pairing correlations at the surface layers and reduce quasiparticle generation. This effect has often 

been studied within approaches including an important parameter, the interface transparency 

parameter T [115, 116]. This parameter takes into account all factors which cause electrons to be 

reflected rather than transmitted at the interfaces, with the result that proximity effect is somewhat 
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screened. Interfaces between different materials are never completely transparent, and this may 

result from interface imperfections, and lattice mismatches [117]. To increase the interface 

transparency and enhance the proximity effect, we taper the interfaces between TiN and NbN. 

Tapering is a widely-used technique in waveguides to improve wave propagation (reduce 

reflection) across impedance mismatched interfaces. The gradual change allows for the 

propagating waves to distort only very slightly in each step, thus preventing massive reflections at 

a given boundary. Since NbN and TiN are fully compatible and can be mixed in any proportion, 

we can gradually vary the heterostructure from pure TiN into pure NbN through an intermediate 

(TixNb1-x)N layer (by varying composition ratio x), and vice versa. This tapering layer eliminates 

the distinct boundaries between TiN and NbN and makes the wavefunction change smoothly 

between NbN and TiN. This helps to reduce reflected waves on the interfaces and improves 

proximity coupling between the layers. 

In this work, the composite films consisting of TiN and NbN with tapering interfaces on c-cut 

sapphire substrates were grown by reactive magnetron sputtering. The crystal quality of the 

composite films was investigated with X-ray diffraction (XRD), energy-dispersive X-ray 

spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron 

spectroscopy (XPS). The heterostructures are further patterned into half-wavelength microstrip 

transmission line resonators for the microwave (~10 GHz) transport measurement from 16 mK to 

1 K, and under varying magnetic fields.  
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4.2 Film growth  

 
Figure 4.1: Schematic structure of TiN/tapering/NbN/tapering/TiN composite film on a c-cut 

sapphire. The back side is coated with 50 nm Nb. 

 

The structure of the composite film is TiN/tapering/NbN/tapering/TiN, where the tapering is 

achieved by continuously varying x in the (TixNb1-x)N compound. TiN and NbN films were grown 

with face-centered-cubic (fcc) structure on the c-cut hexagonal-close-packing (hcp) sapphire 

wafers. The films were deposited on the front side of a double-side-polished sapphire wafers, while 

the back side of the wafers was coated with 50 nm pure Nb as the ground plane of the 

superconducting transmission line resonators. Pure Nb, deposited at room temperature without pre- 

and post-annealing, was chosen as the ground plane in order to avoid heating damage to the 

materials already present on the front side. The samples were deposited in a reactive magnetron 

sputtering system (AJA International, USA) with the base pressure of 1x10-8 Torr. The substrates 

were first Ar-sputter cleaned for 5 minutes under substrate bias with 50W RF power, 5 milli-Torr 

chamber pressure and 30 sccm of Argon flow. Then they were annealed at 700°C for 1 hour, and 

let it cool down for 7 hours to room temperature in Argon. The annealing time is long enough to 
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ensure that the final temperature of a substrate is at room temperature. The deposition procedures 

were as follows. The chamber pressure was maintained at 3 milli-Torr, with the partial pressures 

of N and Ar being 0.2 and 2.8 milli-Torr, respectively. First, TiN was deposited at room 

temperature by sputtering 99.95% pure Ti. The sputtering power was 200 W, and the deposition 

rate of TiN was around 0.7 Å/s. Next, the tapering layers were created by gradually ramping down 

the power of the Ti target to 20 W over 5 minutes, while gradually increasing the power of two Nb 

targets from 30 to 100 W. Then, the pure NbN layer was deposited with two Nb targets at 100 W 

each. Finally, the structure was continued in a reversed order by growing another tapering 

interfacial layer from NbN to TiN and the top pure TiN layer. The deposited tapering layer does 

induce a small jump in composition near the starting and finishing sides (a jump of x around 0.1) 

because 30 W is the minimum power to strike a stable plasma on the sputtering targets in our 

reactive magnetron sputtering system.  

4.3 Characterization of the composite films 

4.3.1 X-Ray diffraction characterizations 

X-ray diffraction (XRD) was used to study the microstructure of the composite films grown on the 

c-cut sapphire. The measurement was carried out using a Bruker D8 Discover (Bruker AXS, 

Germany) system with a Cu Kα source. 
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Figure 4.2: (a) High-resolution XRD pattern of TiN/tapering/NbN/tapering/TiN composite film 

on the c-cut sapphire. (b) Azimuthal XRD data (“φ-scan”) reveals the six-fold symmetry of the 

off-axis (200) reflections from both NbN and TiN.   

 

Figure 4.2(a) shows the high-resolution 2θ-ω scan of the composite film. A 3-bounce 

monochromator was used in front of the source in addition to a Gobel mirror. There are two 

extremely sharp and intense peaks located at 41.68° and 90.72° representing diffraction from the 
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sapphire (006) and (0012) planes, respectively. The other two sharp peaks located at 20.50° and 

64.51° are the sapphire (003) and (009) diffractions. Because of destructive interference from 

structural extinction, these two peaks should be forbidden on the XRD pattern, but they still show 

up (albeit orders of magnitude weaker) due to imperfections crystal. Besides these peaks from 

sapphire, there are only (111) peaks from NbN at 35.59° and TiN at 36.67° and their second order 

diffraction (222) peaks. The appearance of only (111) peaks from the composite films indicates 

that the TiN and NbN are both in their pure phase and preferentially oriented along the (111) 

direction. Figure 4.2(b) is the azimuthal XRD data (“φ-scan”) from the 

TiN/tapering/NbN/tapering/TiN composite film by setting psi at 54.7° - the angle between the 

(111) plane and (200) plane in fcc structures. The detection angle 2θ was set to 41.1° in order to 

detect the NbN (200) reflections primarily. Since the mismatch of the lattice constants between 

TiN and NbN is only 3.6%, the TiN (200) reflection is very close to the NbN (200) reflection such 

that some diffraction from the TiN layers is also included in the φ-scan. Fully epitaxial NbN (111) 

should display three-fold symmetry in the φ-scan of (200) plane instead of the observed six-fold 

symmetry. The six peaks indicate two symmetrically equivalent growth orientations (twins) occur 

in the composite film structure. This is due to the stacking of three-fold symmetric fcc structures 

onto the six-fold symmetric hcp substrate. In other words, when placing the ABC type stacking 

(fcc) onto the AB type stacking (hcp), the growth could be either (ABC)n or (CBA)n with equal 

nucleation probabilities. These two twin variants differ by 60° about the [111] axis of NbN, and 

locally they are epitaxial with the substrate. Stacking faults will show up at the boundary between 

adjacent domains. We also recorded the 2θ-ω scan by fixing φ at 61.6° corresponding to one of the 

peaks in Figure 4.2(b). Bragg diffraction in this direction, 41.1° for NbN and 42.6° for TiN, well 

matches the NbN/TiN (200) reflections, which proves that the six-fold symmetry shown in Figure 

4.2(b) indeed originates from off-axis diffraction of NbN (200) and TiN (200) planes. The presence 

of twins for TiN and NbN on surfaces of hexagonal symmetry have been reported before [118, 

119]. From the off-axis XRD result, we can deduce the two twin variants are: 

Variant 1:  [101]TiN, NbN // [1010]sapphire, 

(111)TiN, NbN // (0001)sapphire, 

Variant 2:  [110]TiN, NbN // [1010]sapphire, 
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(111)TiN, NbN // (0001)sapphire. 

4.3.2 Energy dispersive X-ray spectroscopy mapping and transmission electron 
microscope characterizations 

To characterize the crystalline structures of the samples, scanning transmission electron 

microscopy (STEM) techniques with energy dispersive X-ray spectroscopy mapping (EDS) were 

utilized. The STEM imagines were recorded using an ARM-200F (JEOL, Tokyo, Japan) scanning 

transmission electron microscope operated at 200 kV with CEOS Cs corrector (CEOS GmbH, 

Heidelberg, Germany) to cope with the probe-forming objective spherical aberration. EDS spectra 

were collected simultaneously for mapping the distribution of Ti, Nb, and N throughout the film. 
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Figure 4.3: (a, upper left) Sample overview by cross-section transmission electron microscopy. (b, 

upper right) Close up view at the substrate-film interface showing a sharp interface and a clear film 

growth in the (111) orientation. (c, lower) Elemental distribution in the square area of  (a), different 

colors represent different elements, and the brightness indicates the concentration of these 

elements.  

 

Figure 4.3(a) is the STEM image of the composite. Periodic white and dark columnar features 

show up parallel to the growth direction. These lines indicate irregular columnar growth, which 

further validates the twin variants of the composite film. The STEM picture also presents no clear 

interface between the TiN and NbN layers because they are intentionally connected through 

gradually tapered layers. Figure 4.3(b) is a close-up at the substrate-film interface. Clear TiN 

crystal planes parallel to the interface can be seen in the figure, indicating (111) oriented growth. 

The twins that we have shown with XRD may cause the absence of long-range ordering in the in-
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plane directions. Figure 4.3(c) displays the distribution of Ti, Nb, and N within the square area of 

Figure 4.3(a) STEM graph. Brown colors in the lower left graph represents Ti, cyan colors in the 

lower middle graph represents Nb, and red colors in the lower right graph represents N. The 

distributions of Ti, Nb, and N clearly show that Ti forms the top and bottom layers of the 

heterostructure, while Nb constitutes the core of the sandwich. The distributions of Ti and Nb 

overlap at their boundaries corresponding to the tapering, while N is distributed quite evenly across 

the whole structure as expected.  

The brightness in the graph is related to the element concentration as well as material thickness. 

In Figure 4.3(c), there seems to be more TiN close to the substrate than at the top layer. The 

different brightness may be attributed to the different thickness of metal layer near the 

substrate. Most likely, during the cross-sectional TEM sample preparation process with FIB, the 

sapphire substrate is known to be very robust against etching and tends to stay slightly thicker, 

which also partially blocks the etching near the substrate, therefore TiN near the substrate tends to 

be slightly thicker than those further away, creating a higher chemical appearance. 
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4.3.3 X-ray photoelectron spectroscopy characterizations 
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Figure 4.4: (a) XPS spectrum after the composite film was Ar sputtered into one of tapering layers. 

(b) Depth profile of the whole composite film. 
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The composite film with tapering interfaces grown on the c-cut sapphire substrate has been 

analyzed by X-ray Photoelectron Spectroscopy (XPS) using SPHERA II analyzer (Omicron 

Nanotechnology GmbH, Germany). Mg Kα was used as the X-ray source, and the pass energy was 

set at 50eV.  Figure 4.4(a) shows a spectrum taken within one of the tapering layers between TiN 

and NbN. This layer was exposed after Ar ion sputtering on a patterned resonator device for 5 

minutes. Ti, Nb and N peaks shown in the figure come from the tapering film itself, while the Al 

and O peaks are from the substrate (exposed area outside the active resonator region). By coupling 

sputter etching with XPS, the depth profile of the whole composite film is also presented in Figure 

4.4(b). Ti and Nb concentrations in the film are consistent with a sandwich-like structure with 

tapering transitions, while the N condensation remains virtually unchanged throughout the film. It 

is noted that the condensations of both Ti and N are slightly smaller at the start of the ion milling. 

This is because the patterned sample surface has many contaminants (C, N, organic compounds, 

etc.) which lower all of the elements intensities. After sputtering for 120 seconds, the condensations 

of N and Ti reach their peaks, and this means the surface contaminants on the film are fully 

removed and the XPS spectrum is purely from the first TiN layer. The long tail of Ti, Nb, N 

intensity on the substrate side can be attributed to elements being stricken into, instead of being 

sputtered away from, the substrates.  

The nominal sputter rate of Ti is expected to be quite stable under given conditions, but we 

cannot completely rule out the possibility that the Ti concentration varies slightly during the 

process. On the other hand, the measured Ti intensity is not a sole function of the intrinsic Ti 

concentration. For example, when sputtering the top layer, the light Ti element can be readily 

sputtered into the next layer, causing seemingly more inter-diffusion between Ti and Nb and higher 

peak of Ti signals, but this is only an artifact caused by the sputter profiling. At the bottom 

interface, however, Nb is hard to be stricken into the next layer, and a cleaner interface and 

comparatively weaker signal are seen. As a comparison, the peak of N remains more or 

less unchanged indicating the sum of Ti and Nb together is roughly a constant. 

4.3.4 Transport characterizations 

We measured the superconducting transition temperature (Tc) for the 120 nm composite film with 

a DC four-terminal measurement. We find the Tc for the film is 10K. For bulk TiN and NbN, their 
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critical temperatures are 5.6K and 16K, respectively, and they both decrease in thin films. In Figure 

4.5, we compare the superconducting transition of the composite film with those of a pure 50 nm 

NbN film, a pure 50 nm TiN film, and a few 50 nm (TixNb1-x)N films. It is straightforward to 

expect that the Tc of the composite film falls somewhere higher than TiN (3.2K) but lower than 

NbN (11K) due to the proximity effect. The final Tc is loosely equivalent to that of a uniform 

(TixNb1-x)N film with x~1/5. As a comparison, the average concentration of Ti inside the 

composite film is about 1/2. The superconducting transition width for (Ti0.5Nb0.5)N sample is 

larger than others. This width depends on many factors such as the phase structure and the internal 

film strain. The Large internal strain may account for the gentle slope of a superconducting 

transition curve. In (Ti0.5Nb0.5)N sample, the mismatch between TiN and NbN results in larger 

strain than in their single crystal phase. The two critical transitions found in the curve for 

(Ti0.2Nb0.8)N sample may be due to the inhomogeneous growth of the film, since the plasma of a 

sputtering target in our system may be unstable at very low power.      

 



 

 42 

 

Figure 4.5: R-T curves of the composite film, 50 nm NbN, 50 TiN and 50 nm (TixNb1-x)N with 

varied concentration x (x = 0.2, 0.5, 0.8). 
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Figure 4.6: (a) The device consists of four parallel λ/2 microstrip line resonators, which are 

separated by 65 μm. One λ/2-resonator is 5650 μm, 15 μm wide. It is patterned on a 430 μm thick 

sapphire wafer, which has Nb ground plane on the other side. (b) Quality factor and resonant 

frequency of a superconducting resonator (in nm: 20 TiN / 20 tapering / 40 NbN / 20 tapering / 

20 TiN) versus the temperature. The measurement was performed under zero applied field. Inset, 

the plot of the normalized scattering matrix S21 around the resonance frequency. 

 

We used optical lithography and reactive ion etching to fabricate half-wavelength microstrip 

transmission line resonators from the composite films. The superconducting microwave resonator 

[105] are four λ/2 microstrip line resonators in parallel rows which are separated by 65 μm. Each 

line resonator is 5650 μm long, 15 μm wide, as shown in Figure 4.6(a). Compared to 3D cavities, 

or coplanar waveguides (CPW), microstrip line resonators see stronger loss mechanisms and show 
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lower Q values in general. For example, the dielectric loss, due to the concentrated electric fields 

passing through the substrate towards the ground plane, and the radiation loss, due to EM fields 

distributed in the vast open space around the resonator, are much more pronounced in microstrip 

line resonator structures. On the other hand, they offer small mode volume and uniform magnetic 

fields at microwave frequency and therefore are better suited for pulsed ESR.  

 

Table 4.1: The comparison of the Q values from the composite film and single Nb films with 

the same resonator design. 

      

  Q value 

Film At 0 field  At 0.35 T  

TiN/tapering/NbN/tapering/TiN 9162 at 16 mK 

5300 at 100 

mK 

single 40 nm Nb [120]   11240 at 10 mK – 

400 nm Nb [105]   43000 at 21 mK 6000 at 21 mK 

      

 

 

The measurement of the resonators was carried out with a CF dilution refrigerator (Leiden 

Cryogenics BV, BA Leiden, Netherlands). The resulting quality factor and the resonant frequency 

as a function of temperature are presented in Figure 4.6(b). The resonance frequency shift with 

temperature is a standard behavior of all superconductors as a result of the temperature dependence 

of the complex conductivity [121]. The observed quality factor drops with increasing temperature. 

This can be understood from the temperature dependence of the London penetration depth [122, 

123]. As temperature increases, the penetration depths of the materials also increase, and therefore 

more microwave can leave the surface layer and enter the core region, which induces more loss. In 

Table 1, the quality factors from the composite film are compared with those from single Nb films 

reported previously with the same resonator design. The internal quality factor under 16 mK is 
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over 9000 and comparable to our previous best results on 40nm pure Nb resonators of the same 

design [120].  

The quality factor may be degraded by the strain in the TiN layer and (TixNb1-x)N tapering layer. 

S Ohya et al. [124] have argued that in-plane stress of TiN film will negatively affect the quality 

factor of superconducting coplanar waveguide (SCPW) resonators. Their experiments show that 

the films with the films with in-plane stress 3.8 GPa correspond to the internal quality factors 

ranging from 2 × 104 to 5 × 104, while the quality factors are enhanced to the range of 8 × 105 to 5 

× 106 by films with 0.15 GPa in-plane stress. We targeted the in-plane stress (Pa) and the 

corresponding quality factors as two variables and calculated the Spearman’s rank correlation 

coefficient (a perfect Spearman correlation of +1 or −1 occurs when each of the variables is a 

perfect monotone function of the other) for the data in their paper. The coefficient ρ of the 

correlation between in-plane stress (Pa) and quality factors is -0.8460, which means a large 

negative correlation between the film in-plane stress and the quality factors of the resonators 

fabricated from the film. If we assume that the TiN layer is strained to the mean of the bulk TiN 

and NbN lattice constants, the strain is 1.8%. By considering that Young’s modulus of TiN (111) 

is 450 GPa [125], it can be easily estimated that the in-plane stress in our TiN film is 8.1 GPa. 

Therefore, considerable in-plane stress in our sample induced by the mismatch of lattice constants 

of NbN and TiN may deteriorate the quality factor.    

Under a magnetic field of 0.35 T, however, the quality factor dropped to around 5300. This can 

be attributed to the lower critical field (Hc1) of the chosen materials. 0.35T is not large enough to 

quench superconductivity completely (which requires the upper critical field Hc2), but sufficient to 

nucleate magnetic vortices throughout the device. The vortices vibrate under the microwave 

driving currents and dissipate energy from the resonator. 

In this work, we have made the first significant step towards enhancing Q values in magnetic 

fields. The top and bottom TiN films play crucial roles in determining the intrinsic Q values. 

Further optimizations on the structural quality and nitrogen concentration will further reduce the 

losses from these layers. Also, adjusting the thickness of the TiN layers and the tapering layers can 

also improve superconducting wavefunction distribution across the system and enhance Q values 

further. Too thick TiN layer and the tapering layer may lower the robustness against the magnetic 

field, while too thin layers will have little enhancement on the Q value. Though we have some 
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qualitative understanding of this system, to fully analyze the superconducting wavefunction in this 

complicated system turns out to be a formidable task. As discussed in the chapter, a single layer of 

TiN has already achieved high Q values but only under zero magnetic fields, and the composite 

system aims to combined the best qualities of TiN and NbN to yield better Q values for magnetic 

fields performances. We are very confident that the Q values can be significantly improved with 

continued fine tuning on this material system.     

4.4 Summary 

We fabricated a type of superconducting heterostructures, TiN/tapering/NbN/tapering/TiN, on c-

cut sapphire substrates by reactive magnetron sputtering. The goal is to achieve an x-band resonator 

that maintains a high Q in modest magnetic fields. We explored the details of the structures with 

X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron 

microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and transport measurements. The 

structure shows (111) orientation with local epitaxial correlation and global twin variation, because 

of stacking face-centered-cubic structures on top of hexagonal-close-packing substrates. The 

artificial tapering layers vary gradually from NbN into TiN and vice versa, creating a smooth 

transition so that no distinct interface exists. We also measured the quality factor of a transmission 

line resonator made of the composite film, and Q values over 9000 without field and 5300 under 

0.35 T magnetic field were recorded on these devices. The quantum devices with this type of 

superconducting heterostructures are promising candidates for quantum information processing 

with hybrid nuclear-electron spins. 
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Chapter 5                                                                                         
Phonon engineering in proximity enhanced Al/Nb/Al 
superconductor heterostructures 

 

5.1 Introduction 

As superconducting circuits scale up, the quality of superconducting thin films plays a more and 

more important role in determining the ultimate performance of the superconducting quantum 

networks. Because of the limited choices of superconductor materials for quantum devices, how to 

improve the existing superconducting materials becomes a major challenge for the further 

advancement of superconducting quantum information processing. In the Bardeen–Cooper–

Schrieffer (BCS) theory, the electron-phonon coupling is the most fundamental properties of 

superconductors. Adjusting phonon density of states (DOS) can, therefore, tailor the recombination 

time of Cooper pairs in superconducting thin films and hence affect the coherence time of qubits 

and Q values of resonators. Phonon spectra in superconducting thin films undergo considerable 

modifications as the phonon wave vectors out of the film plane are restricted by the film thickness, 

which causes phonon DOS to show discontinuities at specific energies. To the best of our 

knowledge, phonon engineering has not been realized in superconducting resonators since it can 

only occur in ultra-thin films which will induce significant microwave losses for resonators and 

decoherence for qubits. In a trilayer heterostructure consisting of one thick core layer and two thin 

cladding layers, the phonon quantization shows up in the cladding layers due to the local phonon 

DOS. Such superconductor heterostructure can be readily utilized for improving quantum devices.  

In this work, we examine a model system of proximity-enhanced Al/Nb/Al heterostructures, and 

we consider the size effect of the ultrathin Al cladding layers. The two Al layers are thin enough 

such that the size effect of thin films becomes appreciable. For thin enough films, the DOS shows 

discrete steps instead of the smooth curve ( 2∝Ω , where Omega is the phonon frequency) under a 

low-frequency approximation. When a phonon DOS step coincides with the superconducting gap 

edge, the size effect manifests as an anomalous peak of Q before it levels off with decreasing 

temperature. The Q reaches an unusual maximum because the inverse of quasiparticle lifetime is 
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proportional to the phonon DOS in the low-temperature approximation [126]. The reduction of 

phonon DOS below certain energies (before each jump on the phonon spectrum) may be utilized 

to reduce quasiparticles decay rate in thin Al layers for quantum circuits [127, 128].  

Furthermore, the proximity effect will enhance the performance of resonators under magnetic 

fields. In our Al/Nb/Al trilayer structures, the Nb core layer can enhance the critical field and 

critical temperature of Al films through the proximity effect as Nb [40] is significantly higher on 

both parameters. Proximity effect will induce higher critical field, thereby suppressing the 

generation of vortices in the Al layers and reduce losses on the surfaces. 

This chapter is organized as follows: A model of Q from the trilayer Al/Nb/Al resonators is 

introduced first, which considers the size effect of the thin cladding Al layers. The measured Q in 

5/50/5 nm and 10/50/10 nm Al/Nb/Al heterostructures are compared in the following section. The 

Q from the 5/50/5 nm heterostructure has a clear peak at 1.2 K, which is due to the reduced surface 

losses from suppressed phonon DOS in the thin Al layers. The physical growth of Al/Nb/Al 

heterostructure and their structural characterization are discussed at last. 

5.2 Results and discussion 

5.2.1 Microwave losses induced by quasiparticle-lifetime broadening 

To employ the suppressed phonon DOS in proximity enhanced Al/Nb/Al trilayer films, we build a 

model to show how the local phonon DOS in the thin Al layers could affect the resonator Q of the 

whole structure. The Q values may be affected by quasiparticles losses which are induced by the 

smearing of quasiparticles states at the gap energy edge. The response of a superconductor, when 

driven away from equilibrium in microwave frequency, is dependent upon the various electron 

relaxation times. Central to the relaxation phenomenon is the recombination time Rτ . In order to 

explain the lifetime-broadened energy gap edge, Dynes et al. proposed to add a parameter DjΓ  (

1j = − ) to quasiparticle energy E in the formula of excitation spectrum given by BCS theory 

2 2 1/2( , ) Re{( ) / [( ) ] }D D DE E j E jρ Γ = − Γ − Γ −∆  [129]. It was justified by Kaplan et al. that the 

parameter 2 DΓ  could be interpreted as the inverse of the quasiparticle recombination lifetime 

[126]. Mitrovic et al. proposed an alternative form of the excitation spectrum by including a 
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complex gap energy 0 2j∆ = ∆ − ∆  from the first principles [130]. Indeed, ( , )Eρ Γ  is replaced by 

2 2 1/2
2 0 2( , ) Re{ / [ ( ) ] }E E E jρ ∆ = − ∆ − ∆  and 02 Im ( , )E− ∆ = ∆k  is equal to the inverse 

quasiparticle lifetime with k  on the Fermi surface. It is well known that the imaginary part of the 

gap energy is nonzero at a finite temperature as a result of quasiparticle damping [131]. Per the 

modified formula for excitation spectrum, if 2∆  becomes larger, there will be an increase in the 

gap smearing as shown in the inset of  Figure 5.2(a). Defining 2 0/θ ≡ ∆ ∆ , we plot the 

quasiparticle DOS at T=0K for 4
1 6 10θ −= ×  and 4

2 10θ −=  from the upper curve to the lower curve 

in the inset, respectively. The values of θ  are decided for the purpose of demonstrating the effect 

of a complex gap energy on the edge smearing. Thus, there is more density of states for 

quasiparticles inside the gap. The total density of quasiparticles near the gap will be increased, 

causing more losses.   

5.2.2 Quasiparticle decay rate 

The decay rate 2 ( )ωΓ  of a quasiparticle with energy ω  is equal to 2 ( ) 2 ( )s rω ωΓ + Γ , where 

2 ( )s ωΓ  corresponds to quasiparticle scattering processes with the emission or absorption of a 

phonon, and 2 ( )r ωΓ  is the recombination rate corresponding to a process in which one 

quasiparticle recombines with another to form a Cooper pair with the excess energy emitted as a 

phonon. For quasiparticle scattering processes at low temperatures, the important phonon energies 

are near zero, not 2 (0)∆ , so the change of phonon DOS for phonons with energies at gap edge has 

no impact on the scattering rate. On the other hand, according to the Eliashberg formulation [132], 

the expression for 2 ( )r ωΓ  is [126]:  

 
2

2
2 2 1/2

12 ( , ) ( ) ( ) Re( )(1 )[ ( ) 1] ( ),
1 ( ) [( ) ] ( )r T d F n f

f ω

ωω α ω
ω ω ω ω

∞

+∆

Ω− ∆
Γ ∝ Ω Ω Ω + Ω + Ω−

− Ω− −∆ Ω−∫  

(5.1) 

where Ω  is the energy of phonon, 2 ( )r ωΓ  is related to the low-frequency part of the phonon DOS 

( )F Ω  weighted by the square of the matrix element of the electron-phonon interactions 2 ( )α Ω , 

( )f ω  and ( )n Ω  are the state occupations for quasiparticles and phonons, respectively. Hence, the 
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imaginary part 2∆  of the complex gap energy ∆  is obtained by (5.1), which is 2 r∆ = Γ . The 

proportional parameter in Eq. (5.1) is determined by fitting the calculations with experimental 

results. ( )f ω  is the sum of thermal occupation and an exponentially decaying occupation due to 

the non-equilibrium quasiparticles, 0//( ) 1/ (1 ) 1/ (1 )TTf e eωωω = + + + , where 0T  is a fitting 

parameter. The total state occupation for quasiparticles is then finite at zero temperature. As was 

pointed out by Martinis et al. [128], non-equilibrium quasiparticles are expected in a 

superconductor well below the critical temperature and result in finite state occupation ( )f ω  of 

quasiparticles even at very low temperatures. By assuming 2 ( )α Ω  to be constant in the vicinity of 

2 ( 0)TΩ = ∆ =  for Al [126], the transition probability for this relaxation process should be 

nonzero at any finite temperature and is directly proportional to the phonon DOS at the gap edge.  

5.2.3 Local phonon DOS 

The local phonon DOS in a thin metal film backed by a semi-infinite metal substrate is close to 

that of an isolated metal film, except for some smearing on sharp structures [133]. In our case, the 

core Nb layer is indeed much thicker and heavier than the cladding Al layers. Thus, we can 

approximate the local DOS of the Al coating layers with that of isolated thin Al films with free 

boundary conditions. In a thin film, the phonon DOS gains discrete steps at characteristic energies 

[134]. Here we adopt the equation of motion for elastic vibrations in an anisotropic medium to 

calculate the local phonon DOS in the Al cladding layer [135], 

 
2

2 ( , 1, 2,3),m n

n

mU m n
t x

σρ ∂ ∂
= =

∂ ∂
  (5.2) 

where 1 2 3( , , )U U U U


 is the displacement vector, ρ  is the mass density of the material, mnσ  is the 

elastic stress tensor given by mn mnkj kjc Uσ = . mnkjc  is the elastic module, and 

1 ( )
2

jk
kj

j k

UUU
x x

∂∂
= +

∂ ∂
 is the strain tensor. We consider that Al layer is uniform along the 3X  axis. 

The axis 3X  is assumed to be perpendicular to the superconducting film plane. Considering the 

Al is highly textured along [111] direction, we can reduce the number of subscript indexes in the 
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coefficients mkkjc . We can write down the following equalities by adopting the two-index notations 

according to the prescription: 

 1111 2222 11 1122 12 1133 13

3333 33 1313 2323 44 1212 66

;  ;  ;  
;  ;  ;

c c c c c c c
c c c c c c c

= = = =
= = = =

   (5.3) 

Thus, we could have six independent elastic constants to characterize our highly-textured Al film. 

The specifics of Al lattice structure can be included in an anisotropic continuum model. We choose 

1 2( , )X X  as the plane where the three-layered structure is homogeneous, as is shown in Figure 5.1.  

 

 

Figure 5.1: The structure of Al/Nb/Al tri-layer film. The coordinate is displayed in the graph. 

 

Since the thickness of the tri-layered structure is approximately equal to the sound wavelength in 

Al and Nb, the propagation of the most phonons is parallel to the plane of the film. The axis 1X  is 
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assumed to be along the propagation direction of the acoustic waves. We look for the solution to 

the (5.2) in the following form 

 1( )
1 3 3( , , ) ( )        ( 1, 2,3)i t kx

n nU x x t u x e nω −= = ,   (5.4)  

where nu  are the amplitudes of the displacement vector components, ω  is the phonon frequency, 

k  is the phonon wavevector and i  is the imaginary unit. Let the thickness of Al layer be 1d , 

3 1[0, ]x d∈ .   

The shear polarization, of which the displacement vector is parallel to the structure surfaces, can 

be distinguished from the others using the following definition  

 
2

22
2 .n

n

U
t x

σρ ∂∂
=

∂ ∂
   (5.5) 

By substituting (5.4) with 2n =  to (5.5) and taking into account (5.3), one can turn the partial 

differential equation (5.5) into an ordinary second order differential equation 

 
2

2 2 2 3
2 3 66 2 3 44 2

3

( )( ) ( ) d u xu x c k u x c
dx

ρω− = − +    (5.6) 

For the two other vibrational polarizations ( n  = 1, 3) with the displacement vector components 

1U  and 3 3U iU′ = − , we can get the system of two interrelated equations using (5.2) and (5.4). 

These equations are given as follows: 

 
2

2 2 1 3 3 3
1 3 11 1 3 44 13 442

3 3

( ) ( )( ) ( ) ( )d u x du xu x k c u x c k c c
dx dx

ρω
′

− = − + + + ,  (5.7) 
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2 2 3 3 1 3
3 3 44 3 3 33 13 442

3 3

( ) ( )( ) ( ) ( )d u x du xu x k c u x c k c c
dx dx

ρω
′

′ ′− = − + − + .                        (5.8) 

The film we consider is a 5 or 10 nm cladding Al layer. The two surfaces of an isolated Al layer 

is assumed to be free. As a result, the force components along all coordinate axes are equal to zero, 

i.e. 1 2 3 0P P P= = =  where n nk kP xσ ′=  and x′  is the vector normal to the surfaces of the film 

3(0,0, )x x′ =


. The boundary condition for the shear modes is  

 344 2 44 2
2

3 2 3

( ) 0
2 2

Uc U c UP
x x x

∂∂ ∂
= + = =

∂ ∂ ∂
.  (5.9)  

Using (5.4), the following relationship is satisfied 
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 2

3

0du
dx

= .  (5.10) 

 
The boundary conditions for the two other vibrational modes are given as 

 344 1
1

3 1

( ) 0
2

Uc UP
x x

∂∂
= + =

∂ ∂
,  (5.11)  

 31
3 13 33

1 3

0UUP c c
x x

∂∂
= + =

∂ ∂
.  (5.12)  

The following equations are satisfied for the boundary conditions on the surfaces of an isolated Al layer: 

 1
3

3

0du ku
dx

′+ = ,  (5.13) 

 3
13 1 33

3

0dukc u c
dx
′

− + = .   (5.14)  

                   
The equations of motions for elastic vibrations are numerically solved by finite difference 

method [136]. The total phonon DOS is obtained by summing over all phonon modes, 

( )1( ) ( )
2

n
n

n

dkF k
dπ
Ω

Ω = Ω
Ω∑  ( n  is the index of phonon modes). The material parameters used in 

our calculations are taken from the literature [137], and the calculations have considered that the 

Al layers in our actual heterostructure are oriented in the (111) direction.  
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Figure 5.2 (a) Calculated total phonon density of states as a function of phonon energy for 5 nm 

and 10 nm Al films. The vertical line shows where the gap energy 2 (0)∆  for 5 nm Al in the 

heterostructure is located. The inset illustrates how quasiparticle DOS at T=1.2K broadens when 

θ  varies from 410−  (cyan curve) to 46 10−×  (red curve). The vertical line shows where the 
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quasiparticle energy equaling to (0)∆  for 5 nm Al in the heterostructure is located. (b) Calculated 

superconducting pair potential distribution with depth for 5/50/5 and 10/50/10 nm Al/Nb/Al 

heterostructure. The dashed line is the gap energy for a single 50 nm Nb layer determined from our 

experiment. The inset is the schematic illustration of the Al/Nb/Al heterostructure on a double-

side-polished c-cut sapphire. The back side is coated with 50 nm Nb. 

 

Figure 5.2 (a) shows the calculated phonon DOS for 5 nm and 10 nm Al thin films. In the 10 nm 

Al film, the phonon DOS shows a nearly smooth dispersion curve, which leads to a gradual increase 

in losses. On the other hand, the 5nm Al film clearly shows noticeable jumps in the phonon spectra 

due to the strong size effect. The inset in Figure 5.2(a) illustrates how the increasing theta can 

increase the sub-gap quasiparticle DOS. The imaginary part is increased from T=1.2K to T=0.2K. 

Because of a larger imaginary part of gap energy, there exist more quasiparticle DOS inside the 

gap which causes more losses at the lower temperature.  

The pair potential defines the strength of BCS pairing interaction and is spatially dependent. 

Since the density of states in Al and Nb is modified due to the proximity effect [86, 110], the pair 

potential experiences strong variations along the thickness of the film. Though the pair potential at 

Al layer is lifted while the pair potential at Nb layer is lowered by proximity effect, it has a 

discontinuity at the interface between Al and Nb because the physical presence of interfaces 

ensures the presence of scattering centers. To clarify the effect of the local phonon DOS on 

quasiparticle induced losses, we calculate the local pair potential inside the 5 nm cladding Al film 

from the Usadel equations [73, 76]. The interface parameters between Al and Nb are assumed with 

literature values [138]. If the interfaces affect several atomic layers of both superconductors, the 

boundary conditions make the position dependence of pair potential look like steps as in Figure 

5.2(b). The pair potential is 1.3 meV for 5 nm Al and 1.1 meV for 10 nm Al in the trilayer structure, 

which are close to the calculated values reported by Brammertz et al. [76] for a similar Al/Nb/Ta 

structure. The gap energy 1.3 meV matches the second phonon DOS jump in Figure 5.2(a). When 

the pair potential increases beyond the first phonon DOS jump with decreasing temperatures, the 

effect of sudden increased phonon DOS is shadowed by the fast reduction of quasiparticle 

population. As the quasiparticle population begins to level off at lower temperatures, the second 
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sudden jump of phonon DOS will result in a fast increase in losses when the gap edge falls upon 

the phonon steps. Therefore, by adjusting the thickness of the cladding Al layers, we can observe 

phonon induced Q variation with temperature.  

5.2.4 Film characterization 

 

 

Figure 5.3: X-ray reflectivity (XRR) pattern for the 5/50/5 nm Al/Nb/Al trilayer film on the c-cut 

sapphire. 

 

The structure of the composite film is based on Al/Nb/Al trilayer, as shown in the inset of  Figure 

5.2(b). The films were deposited on the front side of a double-side-polished sapphire wafer, while 

the back side of the wafer was coated with 50 nm pure Nb as the ground plane of the 

superconducting transmission line resonators. Pure Nb, deposited at room temperature without pre- 

and post-annealing, was chosen as the ground plane to avoid heating damage to the materials 

already present on the front side. The samples were deposited in a reactive magnetron sputtering 
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system (AJA International, USA) with the base pressure of 81 10−×  Torr. The substrates were first 

Ar-sputter cleaned for 5 minutes under substrate bias with 50W RF power, 5 milli-Torr chamber 

pressure and 30 sccm of Argon flow. Then they were annealed at 700 o C  for 1 hour and cooled to 

room temperature before the actual film growth starts. The thickness of each layer is confirmed by 

fitting a tri-layer model with the data obtained from X-ray reflectivity pattern, which is shown in 

Figure 5.3. 

 

 

Figure 5.4: (a) High-resolution XRD pattern of the Al/Nb/Al trilayer film on the c-cut sapphire. 

(b) Azimuthal XRD data (“φ -scan”) reveals the six-fold symmetry of the off-axis (200) reflections 

from Al and Nb, respectively. 

 

X-ray diffraction (XRD) was used to study the crystal structures of the composite films grown 

on the c-cut sapphire. The measurement was carried out using a Bruker D8 Discover (Bruker AXS, 

Germany) system with a Cu Kα  source. Figure 5.4(a) shows the high-resolution 2θ ω−  scan of 
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the composite film. A 3-bounce monochromator was used in front of the source in addition to a 

Gobel mirror. Besides four extremely sharp peaks from the sapphire substrate, there are only peaks 

from Al (111) at 38.47 o , Nb (110) at 38.51 o  and their second order diffractions. Al (111) and Nb 

(110) are so close that they cannot be well distinguished from each other, but the Al (222) and Nb 

(220) clearly revealed the presence of both peaks. The appearance of only Al {111} and Nb {110} 

peaks indicate that Al and Nb are both textured. Figure 5.4(b) is the azimuthal XRD data (“φ -

scan”) from the Al/Nb/Al composite film. The upper panel is the φ -scan for Al (200) by setting 

ψ  at 54.7 o  – the angle between Al (111) plane and Al (200) plane in an fcc structure. The 

detection angle 2θ  was set at 44.74 o  which is for Al (200) reflections. Fully epitaxial Al (111) 

should display three-fold symmetry in the φ -scan of (200) planes. The appearance of six peaks 

indicates two symmetrically equivalent growth orientations (twins) occur in the Al layers, as a 

result of stacking three-fold symmetric fcc structures onto the six-fold symmetric hcp substrate 

[139]. The lower panel of Figure 5.4(b) is the φ -scan for Nb (200) by setting ψ  at 45 o - the angle 

between Nb (110) plane and Nb (200) plane in a bcc structure. The six-fold symmetry from Nb 

(200) can also be attributed to the twin growth of the bottom Al layer.  
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Figure 5.5: 2θ ω−  scans by fixing 30oφ =  for Al/Nb/Al tri-layer film. (a) 2θ ω−  scans for 

Al (200) by setting 54.7oψ = . (b) 2θ ω−  scans for Nb (200) by setting 45oψ = . 
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We also performed 2θ ω−  scans by fixing φ  at one of the off-axis peaks, such as 30 o  in Figure 

5.4(b). The results are shown in Figure 5.5. The Bragg diffractions confirmed the φ  peaks come 

from 2θ  of 44.7 o  for Al and 55.5 o  for Nb, well matching the Al (200) and Nb (200) reflections. 

It proves that the six-fold symmetry shown in Figure 5.4(b) indeed originates from the off-axis 

diffractions from Al (200) and Nb (200) planes. An additional peak at 2 38.3oθ =  is observed in  

Figure 5.5(a), which corresponds to Al (111) plane. This peak may be explained by the fact that Al 

layer in the trilayer structure is texture.  

5.2.5 Resonator measurement 

We used optical lithography and reactive ion etching to fabricate the composite half-wavelength 

microstrip transmission line resonators [105] from these trilayer structures, as shown in Figure 

5.6(a). Compared to 3D cavities, or coplanar waveguides (CPW), microstrip line resonators offer 

small mode volume and can produce homogeneous magnetic fields above the resonator at 

microwave frequency, and therefore are better suited for pulsed ESR based quantum circuits.  

The resonator measurement was carried out in a closed-flow dilution refrigerator (Leiden 

Cryogenics BV, BA Leiden, Netherlands) with a vector network analyzer (Agilent N5230A) to 

record the transmission through our feedline, 21S . Every data point was obtained by averaging over 

measurements. The resulting Q as a function of temperature is presented in Figure 5.6(b). The filled 

circles and squares represent the Q for 5/50/5 nm and 10/50/10 nm Al/Nb/Al resonators, 

respectively, without external magnetic field. Both films show similar Q of 22000 at 1.2 K, and it 

is also the highest Q for the 5/50/5 nm resonator. The two samples behave very differently as the 

temperature lowers further. The resonator with 5 nm Al cladding layers has its Q slowly dropped 

to 20800 at 30 mK, while the other one shows gradually increased Q. The different behavior 

between 5/50/5 nm and 10/50/10 nm resonators can be explained by the size effect of the Al 

cladding layers. From the earlier discussions, the proximity-enhanced energy gap of the 5 nm Al 

layers is estimated to be 2 (0) 1.3∆ ≈  meV. It happens to be right above the second phonon step as 

shown in Figure 5.2(a). As the temperature rises from 0 K, the gap gradually narrows. At a 

temperature T (1.2 K in this case), the gap edge moves below the phonon step, and the phonon 
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density dropped significantly leading to reduced loss and improved Q. As a comparison, the size 

effect for 10 nm Al layers is negligible. Therefore, the 10/50/10 nm Al/Nb/Al resonator shows 

continuously decreasing Q as the temperature goes up, while the 5/50/5 nm resonator has an 

anomalously increased Q around 1.2 K. It is noted that Martinis et al. [128] observed an 

improvement in quasiparticle damping when tuning the temperature for superconducting qubits. 

The unusual reduction in damping rate is explained with the redistribution of the state occupation 

( )f ω  for non-equilibrium quasiparticles as temperature decreases. In our experiments, 5/50/5 nm 

and 10/50/10 nm Al/Nb/Al trilayer films have almost same gap energy and are grown on the same 

kind of substrates. The resonators with same design were also measured in the same environment. 

We can further deduce from the Figure 5.6 that the devices suffer from the same non-equilibrium 

quasiparticle density as the Q values begin to level off at the same temperature T=1.2K. Only by 

the changes in ( )f ω  cannot the experimental results for 10/50/10 nm and 5/50/5 nm resonators be 

explained at the same time. Indeed, both of ( )f ω  and ( )F Ω  will affect quasiparticle damping 

rate. Thus, they may cause the same unusual peak as observed in experiments.  

We can more quantitatively model the Q in our resonators with surface impedance calculations 

[140]. The trilayer structure can be treated as the cascade of three single-layer films, and the total 

surface impedance can be evaluated by concatenating the surface impedance of each layer through 

the traditional transmission line theory. The solid lines shown in Figure 5.6(b) are the best fit 

obtained with this model. Without external magnetic fields applied, resonators with Al cladding 

showed clearly enhanced performance over resonators with only 50 nm Nb fabricated in the same 

way (Q ≈  15000). Pure Al does have better resonator performance than pure Nb in zero fields, and 

our Al cladding allows a significant portion of microwaves to transport in the surface Al layers 

instead of the core Nb layer.   
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Figure 5.6: (a) Layout of the resonator device. It consists of four parallel / 2λ  microstrip line 

resonators separated by 60 mµ . Each / 2λ -resonator is 5650 mµ  long, 15 mµ  wide. (b) The 

Q values of 5/50/5 nm and 10/50/10 nm Al/Nb/Al trilayer structures. The filled circles and squares 

are measured values for 5/50/5 and 10/50/10 Al/Nb/Al resonators without external fields; the 

empty circles and squares are measured values under a 0.35T in-plane field. The solid lines are 

fitted curves from our model. 

 

When an in-plane magnetic field of 0 0.35B = T is applied in parallel to the resonator lines, both 

resonators show lower Q than in the zero-field situation because of weakened pairing. For the 

10/50/10 Al/Nb/Al sample, maximum Q significantly drops from 23800 to 8800. The proximity 

effect between Nb and Al may not be robust enough to enhance the 10 nm Al layers entirely, and 

thicker Al layers are also more susceptible to vortices formation. Therefore, it performs worse than 

the device with thinner Al cladding layers. The 5/10/5 Al/Nb/Al device maintains Q as high as 
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19800 at 15 mK and the maximum Q = 20100 at 1.2 K when a 0.35B =  T field is applied. 

Compared with the case of zero magnetic fields, the Q is only moderately decreased because of a 

small reduced-field (for 50nm Nb thin film, the reduced-field is 0 2/ (0) 0.1cB B ≈  [22]). The peak 

Q at 1.2 K drops slightly larger than the Q at lowest temperatures. This is due to the losses generated 

by the movement of quasiparticles at a higher temperature (>1K). Nevertheless, this result has 

surpassed the previously reported best results of 6000 on 400 nm Nb resonators [105] and 15000 

on 50 nm Nb resonators under the same magnetic field with the same resonator design.  

In this work, we identified the effects of local phonon DOS on the performance of the proximity-

enhanced Al/Nb/Al trilayer resonators. We modeled and observed an unusual increase in Q with 

temperature when the superconductor gap edge moves below a phonon DOS step. Moreover, Q 

values higher than 20000 were achieved under a 0.35T in-plane magnetic field, making them 

suitable for operations when magnetic fields are necessary.  

5.3 Summary 

In this research, we tailor the phonon density of states (DOS) in thin superconducting films to 

suppress quasiparticle losses. We examine a model system of a proximity-enhanced three-layered 

Al/Nb/Al heterostructure and show that the local quantized phonon spectrum of the ultrathin Al 

cladding layers in the heterostructure has a pronounced effect on the superconducting resonator’s 

quality factors. Instead of a monotonic increase of quality factors with decreasing temperatures, 

we observe the quality factor reaches a maximum at 1.2K in 5/50/5 nm Al/Nb/Al microstrip 

resonators, because of a quantized phonon ladder. The phonon DOS may be engineered to enhance 

the performance of quantum devices. 
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Chapter 6                                                                                          
Robust surface code topology against sparse fabrication defects  

 

6.1 Introduction 

Superconducting qubits are becoming the most popular choice in the practical implementation of 

quantum information processing, especially with quantum error correction [3, 141, 142]. 

Topological planar codes, in particular, the surface codes [143-145], are some of the most 

promising approaches to building a universal quantum computer. One advantage of surface codes 

is their relatively high tolerance to local errors, as first described by Preskill et al. [146]. The 

tolerance of surface codes to errors, with a per-operation error rate as high as 1% [147, 148], is far 

less stringent than other quantum computational approaches. For example, a theoretical analysis 

on the error tolerance of the Steane and Bacon-Shor codes, implemented on two-dimensional 

lattices with nearest-neighbor coupling, found per-operation thresholds of about 52 10−×  [149, 

150]. Hence their safe operation demands three orders of magnitude lower error rates than the 

surface codes. 

However, the price paid for the high error tolerance is that the implementation of surface codes 

requires a large number of physical qubits, as do many other approaches of error correction [149, 

150]. It takes a minimum of 13 physical qubits to implement a single logical qubit. A reasonably 

fault-tolerant logical qubit that can be effectively applied in a surface code requires an order of 
310  to 410  physical qubits [151]. As the size of the superconducting qubit array grows larger and 

larger, some qubits in the large array will inevitably fail in the fabrication processes. For example, 

the quantum annealing processor composed of 128 superconducting flux qubits ended up with 108 

working qubits [152]. To implement the surface codes successfully, failed physical qubits have to 

be isolated by disconnecting the couplings between faulty qubits and functional ones. For a block 

of failed physical qubits, we can abandon the whole affected area. However, defective physical 

qubits that are scattered across the whole two-dimensional (2D) array cannot all be turned off. 

Although logical qubits in surface codes can be arbitrarily defined in the whole array of qubits, the 

holes left behind by sporadic failed physical qubits will affect all the steps of the surface codes 
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implementation. They may reduce the accessible area of the array, disrupt the error correction from 

existing syndromes, destabilize the logical qubits, limit the scaling of logical qubits, as well as 

hinder the movement of logical qubits.  

In this thesis, we introduce a robust surface code topology which can amend sporadic fabrication 

defects. The topology is based on a virtual sub-lattice structure which is similar to the leakage-

resilient version of the surface-code-based superconducting architecture proposed by Ghosh and 

Fowler [153]. Our implementation layout is a two-dimensional array of unit cells. Each unit cell is 

a complete graph nK  consisting of n physical qubits. The 2D array of qubits can be viewed as a 

folded disk with n layers. Scattered defective qubits (density 1≤   per unit cell) can be swapped 

with the spare qubits in the same cell and then cast onto a designated sacrificial layer of the 

topology. The whole layer full of holes left by defective physical qubits can be readily discarded. 

In this method, we can maintain a large defect-free surface composed of several layers of workable 

physical qubits.  

The remaining part of the article is organized as follows. In Sec. 6.2, we first analyze the impact 

of faulty physical qubits on the implementation of surface codes, and then we propose a robust 

topology for the surface codes error correction, which is resilient to such fabrication errors. The 

detailed implementation of the proposed topology is described. In Sec. 6.4, we introduce two 

schemes to realize this topology: an array of flux qubits which can be coupled by ferromagnetic 

coupling, and an array of Xmon qubits with tunable inductive couplers. For the scheme of Xmon 

qubits, we propose a modified quantum circuit of the stabilization cycle to realize the robust 

topology. Next, we calculate and compare the per-operation error thresholds for the two schemes. 

The realization of the intersecting connections between qubits on the circuit level will also be 

discussed.  

6.2 Robust surface code topology 

6.2.1 Impact of a faulty physical lattice 

Surface codes are robust against random local errors on physical qubits, but the method is not 

resistant to fabrication defects or physically failed qubits in many cases.  
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Firstly, the success of decoding syndromes relies on the fact that an error chain E is homotopic 

to a corrected chain E' and they belong to the same element in the fundamental group as shown in 

the left part of Figure 6.1(a). For an error chain E with given measure-Z syndromes Syn1 and Syn2, 

we choose any minimum distance recovery E' with E E′∂ = ∂ . When applying X̂ 's to all the data 

qubits on E', the product D EE′=  should be 0D∂ = , a trivial element of the first homology group 

or the first co-homology group, which means the 1-cycle or 1-cocycle is homologically equivalent 

to the null cycle or null cocycle.  Since the first homology group and first co-homology group are 

both isomorphic to the group 2Z , a failed qubit will change a trivial cycle loop into a nontrivial 

loop as shown in the right part of Figure 6.1(a). Thereby the product D acts nontrivially on the 

code space, with 0D∂ ≠ , rendering the error correction ineffective.  
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Figure 6.1: Four cases in which the implementation of surface codes error correction is disrupted 

by the appearance of faulty physical qubits. For each square unit, circles on the edges represent 

data qubits, dots on the lattice vertexes stand for measure-X qubits, and dots in the plaquettes are 

measure-Z qubits. Capital letter F is a failed physical qubit. (a) A faulty qubit invalidates the 

decoding and correcting processes for the surface codes. (b) A failed physical qubit makes an ˆ
LX  

operator for a double z-cut logical qubit ineffective. (c) A defective physical qubit destroys a z-cut 

logical qubit with a five-stabilizer hole. (d) A flawed measure-X qubit leaves an unacceptable hole 

in the enclosed stabilized cells and fails a logical controlled-NOT (CNOT) operator.  

 

Secondly, in a defect-based surface code, a logical qubit is composed of one or two cut holes 

created by turning off a certain number of measure-Z qubits and measure-X qubits. For a single cut 

logical qubit, a defective physical qubit may induce unwanted degrees of freedom so that the 

desired logical qubit is no longer stabilized. For a double cut logical qubit, the logical operator 

ˆ
LX  or ˆ

LZ  cannot manipulate the two-qubit holes in a correlated fashion in the presence of any 

dysfunctional measure qubits. For example, in Figure 6.1(b), the logical ˆ
LX  for a double z-cut 

qubit is the operator chain linking the internal X̂  boundary of the left qubit to the internal X̂  

boundary of the right qubit. It replaces the operator 1 2
ˆ ˆ

L LX X  which is the product of the logical 

operators for each single z-cut logical qubit. The product 1 2
ˆ ˆ ˆ

L L LX X X  is equal to the product of all 

the X̂  stabilizers enclosed by these three operators [these stabilizers are represented by blue 

circles in Figure 6.1(b)]. If some of the measure qubits fail, the product 1 2
ˆ ˆ ˆ

L L LX X X  is no longer 

equal to the product of all the stabilizers in the enclosed array and ˆ
LX  is not equivalent to 1 2

ˆ ˆ
L LX X  

within 1± . Thereby the logical operator ˆ
LX  is not accurately established.  

Thirdly, the internal data qubits in a multi-cell hole of a logical qubit have to be measured for 

error tracking during the logical qubit operations. A Z-cut qubit with a five-stabilizer hole is shown 

in Figure 6.1(c). Failed physical qubits may cause failure of the error correction of the logical 

qubits and affect the size of the multi-cell hole in the logical qubit.  
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Fourthly, moving the hole of a fist logical qubit around another hole of a second logical qubit on 

the 2D array to entangle them is an essential functionality of the surface codes. This operation is 

called braiding. On the path of the movement, the measurement qubits have to be turned off and 

on sequentially, thereby no failed qubit is allowed on the path for a successful movement. In 

addition, a braid is equivalent to a CNOT operator in the sense that it can transform all the 16 

possible two-qubit operator combinations correctly, such as 1 2 1 2
ˆ ˆ ˆ ˆ

L L L LX I X X⊗ → ⊗ . If a flawed 

measure qubit appears within the area enclosed by the motion trail, the expected logical gate 

operator will fail. For example, a braid of a Z-cut logical qubit around another X-cut qubit is shown 

in Figure 6.1(d). The original 1
ˆ

LX  operator is extended in length to 1
ˆ

LX ′  along the moving trail. 

1
ˆ

LX ′  includes the original chain linking the two-qubit holes plus a closed loop of operators. The 

loop part of the operator 1
ˆ

LX ′  should be moved through the enclosed stabilized cells by X̂  

operators. The loop of X̂  data qubit operators is equivalent to a 2
ˆ

LX  on the second qubit. The 

appearance of a flawed measure-X qubit denoted by 'F' will leave a hole among the enclosed 

stabilized cells and fail the expected logical operation. Furthermore, faulty physical qubits may 

induce decoherence onto its neighboring qubits if no isolation circuits are adopted. 
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6.2.2 Implementation of the robust topology 

 

Figure 6.2: The robust surface code topology layout. Capital letter D stands for a data qubit; X 

means a measure-X qubit; Z denotes a measure-Z qubit. Each unit cell is a complete graph 2K  

consisting of two physical qubits. Intra-cell couplings on the far right side connect the two 

otherwise independent qubit layers into a folded topology. 

 

To implement the surface codes more successfully, we introduce a robust topology against failed 

physical qubits. Our defect-tolerant circuit is designed on a two-dimensional array of unit cells as 

shown in Figure 6.2. Capital letter D stands for a data qubit; X means a measure-X qubit, and Z 

denotes a measure-Z qubit. For simplicity, each unit cell is a complete graph 2K  consisting of two 

physical qubits. Both qubits in a cell are connected with each other by intracell couplings. Each 

qubit is further connected to four same-type qubits located in the four nearest-neighbor cells by 

intercell couplings. The couplings can be turned off to isolate the two qubits from each other. By 

switching on every intercell coupling and turning off all the intra-cell couplings except the ones at 

the right-side boundary of the array Figure 6.2, the topology can be viewed as a disk folded in two. 
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The coordinate of a physical qubit is denoted by ( , , )i j k , where i and j represent the position of 

the qubit's unit cell within the array, and k is the qubit's layer number within the cell. For example, 

the qubit from the second layer in the top left cell of the topology is labeled (1,1,2). Let ( , )m n  be 

the coordinate of a qubit in a planar square lattice for the surface codes. In addition, we denote X, 

Y as the planar square lattice structure and the folded structure for the surface codes, respectively. 

We can easily find a function : ( , ) ( , , )f X i j Y i j k→ , where f is a bijection, continuous over X and 

1f −  is continuous over Y. Thereby our folded structure is homeomorphic to the planar square 

lattice structure. All logical qubits and operations defined in the folded structure are the same as 

those in the planar structure.  

 

 

Figure 6.3: A faulty data qubit indicated by a black 'F' is isolated from the rest of the array. It is 

replaced by another functional qubit in the same cell. 
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A defective qubit can be replaced by another functional qubit in the same cell. Suppose that a 

data qubit in the first layer (3,3,1) is defective as shown in Figure 6.3. To prevent the failed qubit 

from affecting other qubits in the array, we turn off all the couplings connected to it. The intra-cell 

couplings between the two qubits in the four nearest-neighbor cells should be turned on. In Figure 

6.3, we switch on the couplings between the qubits (2,3,1) and (2,3,2), (4,3,1) and (4,3,2), (3,2,1) 

and (3,2,2), and (3,4,1) and (3,4,2). Each pair of qubits coupled by the intracell couplings 

correspond to either a measure-Z qubit or a measure-X qubit, and together they are used as bridges 

to connect the qubits in the first layer of the surrounding cells and the replacement qubit in the 

second layer. This spare qubit replaces the failed one in the first layer and now functions as a data 

qubit. After the replacement, there is a cross-shaped empty area left behind in the second layer. 

The benefit of this robust topology is that all the faulty qubits in one layer can be swapped to other 

layers and preserve an intact layer of qubits for quantum error correction. Furthermore, when all 

the defect qubits are collected into one designated defect layer (readily achievable as long as the 

defect density is 1≤  per unit cell), the rest layers remain defect-free and can be coupled to form a 

large folded lattice structure so that the functional units are well utilized.  

6.3 Ẑ  and X̂  stabilizer circuits 

 

Figure 6.4: (a) The schematic graph of a unit cell consisting of two data qubits, one measure-X 

qubit, and one measure-Z qubit. (b) The quantum circuits for one stabilization cycle for the unit 

cell. 
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To further explain the operations of the Z and X stabilizers in the case of logical measure qubits 

coupled by quantum circuits, we walk through the quantum circuits of a system with just two data 

qubits, a and b, stabilized by one logical measure-Z and one logical measure-X. Its generalization 

to the full four-qubit stabilization is straightforward. The simplified layout and corresponding 

stabilizer circuits are shown in Fig. 6, which now involve two CNOT gates for each logical 

measure-X and logical measure-Z.  

The circuit stabilizes the two data qubits a and b in a simultaneous eigenstate of ˆ ˆ
a bX X  and 

ˆ ˆ
a bZ Z , which is one of the four Bell states. The measurement outcomes from the same pair of 

measure qubits are the same as each other and correspond to the eigenvalues 1± . We use an 

arbitrary entangled state of the two data qubits as an input to the circuit. The two qubits 

corresponding to a logical measure-X will be entangled during the first stage, as well as the two 

corresponding to a logical measure-Z. The next four CNOT gates will entangle all the qubits 

together. We denote the quantum states in the form 1 2 1 2  x x a b z zΨ Ψ ⊗ Ψ Ψ ⊗ Ψ Ψ : the first 

two elements are the state of the measure-X qubits, the third and fourth are the states of data qubits 

a and b, respectively, and the last two are the states of the measure-Z qubits. 

The input state to the circuit is in the form: 

 1  ( )gg A gg B ge C eg D ee ggΨ = ⊗ + + + ⊗ .  (6.1) 

After the first stage, the state of all the qubits becomes 

 2 ( ) ( ) ( )gg ee A gg B ge C eg D ee gg eeΨ = + ⊗ + + + ⊗ + .  (6.2) 

Four CNOT gates are performed subsequently between the measure qubits and data qubits. Two 

CNOTs have the measure-X as the control qubits and the data qubits as the target qubits. The other 

two have the data qubits as the control qubits and the measure-Z as the target qubits. After the 

second stage, the state of this small system evolves to 

 

3 ( ) ( )

        ( ) ( )

        ( ) ( )

        ( ) ( ).

gg A gg D ee gg ee

gg B ge C eg eg ge

ee A ee D gg gg ee

ee B eg C ge eg ge

Ψ = ⊗ + ⊗ +

+ ⊗ + ⊗ +

+ ⊗ + ⊗ +

+ ⊗ + ⊗ +

  (6.3) 

  



 

 74 

Before we conduct the final projective measurement, we apply the final stage operations on the 

measure qubits. The state of the six physical qubits before the final measurement is 

 

4 ( ) ( )

        ( ) ( )

        ( ) ( )

        ( ) ( ) .

A D gg gg ee gg

A D ee gg ee gg

B C gg ge eg ee

B C ee ge eg ee

Ψ = + ⊗ + ⊗

+ − ⊗ − ⊗

+ + ⊗ + ⊗

+ − ⊗ − ⊗

  (6.4) 

 

6.4 Realization of the robust topology 

6.4.1 Two schemes 

The key to success lies in the fine-tuned operation of the logical measure qubits. We consider two 

schemes of coupling two physical qubits as one logical measure qubit bridging two different layers.  

An array of scalable compound-compound Josephson junction (CCJJ) flux qubits [154] coupled 

by inductively tunable couplers [155, 156] is one option. It is possible to continuously tune the 

induced coupling from anti-ferromagnetic to ferromagnetic. Two physical flux qubits located in 

the same cell are coupled by ferromagnetic coupling ijJ  and form a logical qubit. The Hamiltonian 

is 1 2 12 1 2z z z zH Jσ σ σ σ= + + , where 12 1J = − . By making use of ferromagnetic coupling between 

qubits, the proposed topology composed of an array of the complete graph 4K  can be readily 

mapped onto a square lattice structure of complete bipartite graphs 4,4K . Each unit cell of 4,4K  

consists of four logical qubits, which can be used to realize our robust surface code topology.  

A chain of Xmon qubits [157] coupled with direct capacitors have been shown to satisfy the 

error correction code threshold [3]. By replacing the direct capacitive coupling with fast tunable 

coupler [158], a logical measure qubit can be defined with quantum gates including Hadamard and 

CNOT gates. The complete stabilization cycles have to be modified for a logical measure-X qubit 

and a logical measure-Z qubit as shown in Figure 6.5. Every stabilization cycle consists of three 

stages. The first stage includes step 1 to step 3. Two physical qubits corresponding to a logical 

qubit are initialized in their ground state gg , and then the pair is entangled into the Bell state 
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1 ( )
2

gg ee+  with a Hadamard gate and a CNOT gate (where g  and e  are the 

computational bases for the qubit). Step 4 to step 6 are the second stage. The two physical qubits 

require four CNOT operations to be coupled to their four nearest-neighbor data qubits. For the 

measure-X stabilization, each of the four CNOT gates targets one of the four data qubits with one 

of the two measure qubits as the control. For the measure-Z operation, every CNOT operation 

targets one of the two measure qubits with one of the four data qubits as the control. It is noted that 

step 6 includes two simultaneous CNOT operations on two different pairs of qubits. Before the 

final projective measurement, we apply two CNOTs and a Hadamard gate to ensure that the two 

physical measure qubits do act as one logical qubit, of which the readouts are the same; the 

projective measurement yields an eigenstate of  ˆ ˆ ˆ ˆ
a b c dX X X X  for the case of X̂  stabilizer and an 

eigenstate of ˆ ˆ ˆ ˆ
a b c dZ Z Z Z  for the case of Ẑ  stabilizer. Hence, after the projective measurement of 

all the measure qubits in the array, the state Ψ  of all the data qubits simultaneously satisfies 

ˆ ˆ ˆ ˆ
a b c d abcdZ Z Z Z ZΨ = Ψ , with eigenvalues 1abcdZ = ± , and ˆ ˆ ˆ ˆ

a b c d abcdX X X X XΨ = Ψ  with 

eigenvalues 1abcdX = ± . It should be noted that two data qubits of different layers cannot be directly 

coupled by quantum gates to bridge the first layer and the second layer. In case a measure qubit 

happens to fail, the bridges connecting physical qubits across layers should be placed at the four 

next-nearest-neighbor cells instead of the four nearest-neighboring cells. 
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Figure 6.5: (a) The schematic graph of a logical measure-X qubit connected with four nearest-

neighbor data qubits. The corresponding quantum circuits for one stabilization cycle are shown on 

the right. (b) The schematic graph and the corresponding quantum circuits for the case of a logical 

measure-Z qubit connected with four nearest-neighbor data qubits. 

 

6.4.2 Comparison of error thresholds 

Next, we compare the per-operation error threshold for an array of flux qubits with an array of 

Xmon qubits. For measure qubits coupled by ferromagnetic coupling, the measurement circuits do 

not need modification. Therefore, the per-operation error threshold for the surface code is not 

different from that of the planar square-lattice. Meanwhile, logical measurement qubits with 

nonferromagnetic coupling require additional CNOT and Hadamard gates to finish the stabilizer 

measurement circuits. Involving more steps will surely lower the per-step error threshold. Using 

the minimum weight perfect matching algorithm [159, 160], we can calculate the different per-step 

error thresholds of these two types of coupling. We consider the following errors:  
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(1). To perform a data qubit identity Î , but instead applied one of the single-qubit operations X̂ ,  

Ŷ  , or  Ẑ , each occurring with probability / 3p ;  

(2). To initialize a qubit to g , but instead prepared e  with probability p; 

(3). To perform a measure qubit Hadamard operation Ĥ , but in addition performed one of the 

single-qubit operations X̂ ,  Ŷ  , or  Ẑ , each occurring with probability / 3p ;  

(4). To perform a measure qubit-data qubit CNOT or a measure qubit-measure qubit CNOT, but 

instead performed one of the two-qubit operations ˆ ˆI X⊗ , ˆ ˆI Y⊗ , ˆ ˆI Z⊗ , ˆ ˆX I⊗ , ˆ ˆX X⊗ , ˆ ˆX Y⊗

, ˆ ˆX Z⊗ , ˆ ˆY I⊗ , ˆ ˆY X⊗ , ˆ ˆY Y⊗ , ˆ ˆY Z⊗ , ˆ ˆZ I⊗ , ˆ ˆZ X⊗ , ˆ ˆZ Y⊗ , ˆ ˆZ Z⊗ , each with probability 

/15p . 

(5). Performing a measure qubit Ẑ  measurement, but reported a wrong value and projected to the 

wrong state with probability p . 

The errors are assumed to be not intercorrelated and occur randomly during the simulation. The 

probability p is the per-step error in the surface code cycle. There are totally 10 steps in a cycle of 

error correction (Figure 6.5), so the overall error rate per cycle of the surface code is approximately 

10p for the logical measure qubit case.  
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Figure 6.6: Numerical simulation of surface code error rates and how these error rates scale with 

the distance d of the array. The dashed vertical line shows the per-step threshold error rate. The 

dots represent the calculated results, while the curves are the fitting results. For a given per-step 

error rate p less than the per-step threshold error rate, the lines from top to bottom are for distances 

d from 3 to 25, which means that the surface code logical error rate LP  vanishes rapidly with 

increasing d. (a) In the case of logical measure qubits with ferromagnetic coupling, the per-step 
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threshold error rate is thp  = 0.88% (dashed vertical line). (b) Numerical simulation of surface code 

error rates for the case of logical measure qubits coupled with quantum circuits. The per-step 

threshold error rate is thp  = 0.76%. 

Numerical simulation of surface code error rates and the dependence of the per-step threshold 

on the distance d of the array are shown in Figure 6.6. Note that the distance d of the surface code, 

the minimum weight of the set of nonidentity logical Pauli operators, is determined by the width 

or height (whichever is smaller) of the qubits array. The measurement circuit for both cases are 

considered. For the case with ferromagnetic coupling, the per-step threshold error rate is found to 

be thp  = 0.88%, which is close to the threshold of 0.9% in Ref. [148]. When the actual per-step 

error rate p is less than the per-step threshold error rate, the surface code logical error rate LP  

rapidly vanishes with increasing d. After considering more steps in each cycle of measurement for 

the entangled two measure qubits, we can get the calculated per-step threshold error rate thp  = 

0.76%. This threshold is only around 0.1% smaller than the single measure qubit case.  When the 

logical measure qubits coupled with quantum gate circuits are measured during each stabilization 

cycle, in case any decoupling processes happened to the logical measure qubit, we should choose 

the measurement value from the qubit on which three CNOT gates are applied. In this way, the 

error induced by the decoupling of the two measure qubits is similar to the CNOT gate error in the 

single measure qubit case, where the expected measure qubit-data qubit CNOT is wrongly replaced 

with one of the two-qubit operations such as ˆ ˆX Y⊗ . Therefore, larger threshold error rate similar 

to the single measure qubit case can be realized.  

6.4.3 Realizable circuit layouts 

The proposed robust topology is readily achievable for both flux qubits and Xmon qubits on the 

circuit level. One advantage of the CCJJ flux qubits scheme is the number of fan-outs. The fan-

outs of each qubit not only permit single qubit operations and readouts, but also enable the all-to-

all connections in each cell. It has been demonstrated that one qubit can be successfully coupled to 

six other qubits with direct couplers [152]. An architecture composed of over 1000 CCJJ flux qubits 

has already been demonstrated in the superconducting annealing processor D-Wave 2x made by 
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D-Wave Inc. [161]. However, the quantum annealing processor cannot be used for universal 

quantum computing because it is designed for cracking a very specific type of optimization 

problems.  

A universal quantum computer composed of Xmon qubits is more promising and attractive for 

realizing the surface codes error correction because Xmon qubits have comparatively longer 

coherence time and higher gate operation fidelity [141]. A complete graph consisting of nonlocal 

interactions for more than dozens of superconducting qubits is nearly impossible to achieve with 

current technology. However, a complete graph for a small number of qubits is technically feasible. 

To realize the robust folded lattice structure, we can adopt the fast tunable couplers developed by 

Chen et al. [158] for Xmon qubits and replace the direct electrical connection of each Xmon qubit 

to a coupler circuit wire with an inductive coupling to the wire [162]. The inductive coupler wiring 

is similar to those used in the quantum annealing processor made by D-Wave Inc. [163]. Thereby 

the intersecting connections of couplers can be realized by adding several Nb wiring layers 

separated by planarized plasma enhanced chemical vapor deposited (PECVD) SiO 2 . Meanwhile, 

due to the large footprints of the dispersive measurement circuits and X, Z control lines [3, 142], it 

is not easy to design a purely planar circuit layout for the Xmon qubits array without causing 

intersecting connections. The obstacle may also be overcome by adding several Nb wiring layers. 

Therefore, the proposed topology can be realized on a planar square-lattice structure with several 

additional wiring layers.  

6.5  Summary 

Here we propose a defect-tolerant surface code topology which is resistant to sparse fabrication 

defects. The circuit layout is a two-dimensional array of unit cells which is equivalent to a disk 

folded into N layers. Each unit cell is a complete graph NK  consisting of N physical qubits. In this 

architecture, a physically defective qubit can be replaced with another physical qubit in the same 

cell from a different layer. Thereby sparse fabrication errors can be collected into one sacrificial 

layer and isolated from the working layers by turning off their controllable couplers.  We propose 

two schemes to realize this robust topology. One is to use flux qubits, and the other is based on 

Xmon qubits. For an array of Xmon qubits, we develop a modified quantum circuit for the 

stabilization cycle. The per-step error threshold of this scheme is estimated to be 0.76%, which is 
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close to the value for the unmodified quantum circuit. A possible way to implement the intersecting 

connections between different Xmon qubits on the circuit level is also provided. 
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Chapter 7                                                                                                
Quantum annealing with four-body interactions and error 
corrections through stabilizer codes 

   

7.1 Introduction 

Among all the non-universal quantum computation schemes, quantum annealing (QA) [164, 165] 

is one of the most promising approaches to demonstrate quantum speed-up shortly [166]. Since 

QA is easier to be realized on quantum hardware [167] than other schemes such as quantum circuit 

model and adiabatic quantum annealing, it has attracted substantial academic and industrial interest 

and inspired a rich body of literature on QA theories [164, 166, 168-170], applications [171-175], 

and experiments [152, 167, 176, 177]. The general paradigm of quantum annealing is to encode an 

optimization problem onto an objective Hamiltonian function of the K-spin model )(σPH . Its 

general form is  

 )()1(
,,1

1=,,11=
=)( kj

z
j

zkjj

N

kjj

K

k
P JH σσσ 





∑∑− , (7.1) 

where N  is the problem size, )( j
zσ  is the Pauli-Z matrix associated with the thj  spin and the 

couplings 
kjjJ ,,1 

 are real scalars. The task of finding the optimal solution to this optimization 

problem is converted into finding the ground state of PH . If the evolution is sufficiently slow, 

quantum annealing can smoothly transfer an experimental qubits system from a trivial initial state, 

for example, the ground state of )(
1=

= j
x

N

jIH σ∑ , to the ground state of the objective Hamiltonian 

PH . The whole time-dependent Hamiltonian of the system is  

 ),(0)/()/(=)( TtHTtHTttH PI ≤≤+ βα  (7.2) 

where t is the time, T is the total time of the sweep, and )/( Ttα , )/( Ttβ  could be any functions 

with 0=(0)1,=(0) βα , and 1=(1)0,=(1) βα . Under adiabatic evolution, a programmable 
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quantum annealer eventually reaches the ground state of PH  with the aid of quantum tunneling, 

and one has thus found the desired result of the optimization problem. 

Quantum tunneling can help QA penetrate high and narrow barriers which SA can hardly 

overcome, thereby exponential speedup may be achieved for certain types of problems. Among the 

numerous hard problems, Kth order binary optimization problem with K > 2 is perhaps the best 

example problem to which quantum annealing offers a runtime advantage [161]. Kth order 

optimization problem is NP-hard and has many real-world applications in engineering and 

computational tasks. Its energy landscape gets more rugged with higher K. There are many 

concerns over the implementation of QA on a practical quantum system. 

One of the key challenges to map a Kth order optimization problem onto an analog quantum 

annealer is to realize the K-body coupling terms. The quantum annealing hardware to-date is built 

from superconducting qubits [154], and couplers [155, 156], and only supports pairwise qubit 

couplings (K = 2). Therefore, it is difficult to lay out K local couplers on a two-dimensional chip 

or in a three-dimensional architecture for K > 2. Lechner et al. [178] have proposed a scalable 

architecture with all-to-all connectivity for two-qubit interactions. Although it can be extended to 

four-body and higher-order K-body interaction terms, it is impossible to arrange the constraints in 

three-dimensional space. Even for three-qubit interaction terms, the qubits have to be arranged in 

an infinite three-dimensional architecture. The superconducting researchers usually try to avoid 

three-dimensional implementations because there are many problems that need to be addressed, 

such as the placement of measurement circuitry, etc., let alone the requirement for infinite space 

along z-axis. 

Another major concern is its lack of an elaborate theory of fault-tolerant QA with a clearly-

defined noise threshold for fault tolerance. There are several proposed ways to tackle the error 

correction for QA, such as adding a penalty term in a problem Hamiltonian and encoding qubits 

with repetition codes [179, 180].  

In the chapter, we first propose a two-dimensional architecture implementing a Hamiltonian for 

the 4th order optimization problem including four-qubit coupling terms formed with only local 

pairwise couplings. All possible four-body interactions for an N-qubit system can be encoded into 

this architecture and are realizable with existing programmable quantum annealers. The four-spin 
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model studied in this chapter was firstly proposed by F.Wegner in the context of statistical physics 

in 1971, which is called “Ising gauge model” [181, 182]. There exist a profound result that yields 

the equivalence between the two-dimensional Ising gauge model and one-dimensional Ising model. 

This architecture may provide an opportunity to study open challenges in quantum annealing such 

as the role of the two-dimensional nature of the plaquette constraints during the sweep, and the 

scaling of quantum fluctuations on an existing programmable quantum annealer. The detailed 

implementation of this architecture is introduced in the next section, followed by the comparison 

between the energy spectrum of the problem Hamiltonian and the executable Hamiltonian.  

Second, we propose a quantum annealing protocol which can correct runtime errors during a 

sweep process with stabilizer codes. A quantum annealing architecture with all-to-all connectivity 

is first described by Lechner, Hauke, and Zoller (LHZ) [178]. N logical spins and their interaction 

terms in an annealing problem are translated to a larger spin array with only on-site energies and 

local constraints. Our proposal is based on the fact that the constraints of the above quantum 

annealing construction correspond to a set of stabilizers [183]. In this case, each stabilizer is a 

tensor product of pauli-z operators. Stabilizer codes [184] append measure qubits to data qubits. 

When the measurement outcome changes, one or more bit-flip or phase-flip errors have occurred. 

With the help of proper decoding algorithms, one can further determine which data qubits have 

errors. Checking the stabilizers with weak measurements [185, 186] has provided a viable way to 

extract average state information without fully collapsing the system. It has been demonstrated that 

with gentle measurements, one can measure the maximally entangled Bell state with minimal 

entanglement collapse [187], by violating the Bell-Leggett-Garg inequality (BLGI) [188]. 

Integrating weak measurements of stabilizers into a quantum annealer would correct most errors 

while offering an alternative source of quantum fluctuations in addition to the driver Hamiltonian. 

Sec.7.3 is organized as follows: The first subsection introduces the quantum circuits for 

implementing the weak measurements of stabilizer operators with an ancilla spin on each plaquette. 

The next subsection is to demonstrate how to extract the syndromes of stabilizers through weak 

measurements with the help of Lindblad master equation and the stochastic equation of motions. 

The following subsection shows that a jump from the instantaneous ground state to low-lying 

excited states can be identified through stabilizer measurements by adopting a modest constraint 
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strength. The last subsection introduces the processes to correct the flip errors caused by error 

channels as well as the accidental jumps to excited states. 

7.2 2D implementation of fourth order binary optimization problems 

The 4th order binary optimization problem can be mapped onto an objective Hamiltonian of a four-

spin model consisting of arbitrary four-qubit interaction terms 
)4()3()2()1(

43211=4,,1
= j

z
j

z
j

z
j

zjjjj
N

jjP JH σσσσ∑−


, where )( j
zσ  is the Pauli-Z matrix of j th qubit. The 

solution to the optimization problem is then transformed to finding the ground state of the objective 

Hamiltonian. Since their off-diagonal matrix elements in the standard product basis are all zero, it 

is easy to find that the ith eigenstate 〉iψ|  to this kind of stochastic Hamiltonian is a separable state. 

It takes the form 〉⊗⊗〉⊗⊗〉〉 Nji φφφψ ||=|| 1  , and 〉jφ|  is one of the two computational 

bases of single qubit. Thus, 〉iψ|  is also the eigenstate to every four-qubit coupling term 

)4()3()2()1(= j
z

j
z

j
z

j
zP Jh σσσσ− . We have 〉±〉 iiP Jh ψψ |=| . The main insight is that the contribution 

of a four-qubit coupling term to the energy of the whole problem Hamiltonian is determined by the 

product of the eigenvalues to the four single-qubit states in the computational basis 

〉〉 jjj
j

z φλφσ |=|)( , where 1= ±jλ . The energy change applied by each coupling term to the whole 

system is thus J+  if 
4321 jjjj λλλλ  contains odd numbers of -1; otherwise, the energy change 

should be J− . 

Inspired by Lechner et al. [178], we use 1)/2(= +NNM  physical qubits from gauge constraints 

to represent N logical qubits and any pair of them in the problem Hamiltonian, where the 

eigenvalue of each physical qubit encodes the eigenvalues of 
)2()1( j

z
j

z σσ  in the computational bases. 

Thus, a four-qubit interaction term Ph  is encoded with a two-qubit coupling term 

)4,3()2,1( ~~=~ jj
z

jj
zP Jh σσ− . When one of the two physical qubits represents a single logical qubit, we 

can also encode a three-qubit interaction term into a two-qubit coupling term. All possible three- 

and four-qubit interactions for an N-qubit system can be mapped onto two-qubit interactions and 
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realized with existing quantum circuit technologies. The Hamiltonian of the four-spin model PH  

is encoded in the executable Hamiltonian  

 .~~=~
1=

)4,3()2,1(

4321
1=4,,1
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jj
z

jj
zjjjj

N

jj
P CJH ∑∑
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+− σσ


 (7.3) 

where M is the number of physical qubits and lC  is the local constraint that keeps the energy 

spectrum of the executable Hamiltonian consistent with the original problem Hamiltonian. 

 

 

Figure 7.1: Illustration of the two-dimensional architecture. (A) New encoding qubit variables 

are introduced for each of the N logical qubits and each of the N(N-1)/2 interactions, which take 

the value 1 if the two connected logical spins point in the same direction and -1 otherwise. (B) The 

aim is to encode a system of N logical spins consisting of three- and four-qubit interactions. A part 

of the interactions is shown with solid lines. (C) The two-dimensional architecture corresponds to 

five logical qubits consisting of four-qubit interactions. The blue circles are physical qubits; red 
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dots are ancillary qubits for each plaquette. Solid bonds between two qubits are the pairwise 

couplings to realize the local constraints. The bold solid bond between qubits 14, 23 represents the 

sum of the couplings for the local constraints and a four-qubit interaction term (4)(3)(2)(1)
zzzz σσσσ . 

The four-qubit interaction term can also be realized by the coupling between qubits 13, 24. 

7.2.1 Local constraints 

The successful transformation from four-qubit coupling terms into two-qubit interactions relies on 

the consistency of the spin values among all physical qubits. We encode two connected spins 

pointing in the same direction as 1, and -1 otherwise (Figure 7.1A). The spin direction of a single 

qubit is also encoded as 1± . Thus the relative spin directions of a pair of encoding qubits should 

be equal to any other ways of pairing the same four logical qubits. For example, the relative 

alignment of (3,4)(1,2)
zz σσ  should be equal to (2,4)(1,3)

zz σσ  and (2,3)(1,4)
zz σσ . This constraint should 

cover all encoding qubits and demands either none, two, or all four encoding qubits in a closed 

loop to be antiparallel. That is, the number of -1’s in the four encoding qubits (1,3)~
zσ , (2,3)~

zσ , (1,4)~
zσ

, (2,4)~
zσ  has to be even (bold circles in Figure 7.1C).    

The consistency is achieved by introducing a configuration space in which a set of consistent 

qubit states are specified. Similar state subspace is also relevant in the context of the gauge-

invariant subspace in lattice gauge theories [189]. The subspace is generated by applying local 

constraints on each plaquette of four qubits in a two-dimensional array, which is an individual tile 

enclosed by a set of edges - here a square of four physical qubits. 

In order to realize the local constraints with existing superconducting qubits and couplers, we 

propose to use an ancillary qubit for each plaquette in the qubits array. The form of the constraint 

is  

 2)(),(),(
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l CC σσσ −−+ ∑ , (7.4) 

where C  denotes the energy scale for the constraint term, and the letters w, n, and e represent the 

qubits on the west, north, east. The sum runs over any three members of each plaquette and then 

subtracts the spin value of the last one. )(l
zσ  is an ancillary qubit for the thl  constraint. 
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Next, the boundaries of the architecture have to be taken care of. We introduce a separate 

constraint on the hypotenuse of the triangle array (Fig. 1C) which consists of triangles instead of 

squares. The constraint enforces the condition that the number of 1’s in each of these triangles is 

odd and its form is    

 2)(),(

,,=
)2~(= Ι−−+ ∑ �l

z
ml

z
enwm

l CC σσ , (7.5) 

The sum runs over all three members of each triangle and Ι  is an identity matrix. Only one 

ancillary qubit is used. Note that the constraint also involves local fields of physical qubits in each 

triangle. These two forms of constraints can be readily implemented by existing pairwise couplers 

and superconducting qubits. 

7.2.2 Implement the required four-qubit interactions 

As a final step, encoding all possible four-qubit interactions with two-qubit coupling terms in the 

physical qubits array needs long-range interactions that cannot be realized with the current 

technology. For the case of five logical qubits, to implement one of the four-qubit interaction terms 
(5)(3)(2)(1)
zzzz σσσσ  requires a coupling such as (3,5)(1,2) ~~

zz σσ .  The needed physical qubits are not 

neighboring to each other (Figure 7.1C). To realize the four-qubit interactions required by the 

optimization problem, we have two proposals to overcome the challenge. 

First, since both four-qubit interactions and all local constraints are implemented by pairwise 

couplings, we can treat the resultant one as a new problem Hamiltonian and encode the physical 

qubits with a set of new physical qubits. With the same architecture, a second-time encoding can 

allow all four-qubit couplings required in the original problem Hamiltonian to be realized by the 

local fields of new physical qubits. The overhead of physical qubits is O(N4), which is on the same 

order as the previously proposed architecture in four-dimensional space [178]. Every logical qubit 

and every two-qubit interaction term are encoded N times, while every three- or four-qubit 

interaction term is encoded 3  times. Although this kind of repetition coding alleviates the error rate 

and makes the annealing process more robust against spin flips from decoherence, there are also a 

large portion of physical qubits which not only encode the ancillary qubits in the first-time 

encoding architecture but also all four-qubit interactions repeatedly, which decreases the minimal 
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energy gap on the spectrum of the final Hamiltonian. Furthermore, The O(N4) overhead of physical 

qubits places a limit on the problem scale of the real applications which can be solved. 

Second, many real optimization problems will necessitate only L=O(N) coupling terms. Thus 

not all possible high-order interactions are needed. We can split the final encoding Hamiltonian 

into several executable parts, and implement each part with a triangle array and concatenate them 

along their catheti with ferromagnetic couplings. For example, all possible four-qubit interactions 

in a Hamiltonian of five qubits can be split into two part: 
5432

3
5421

2
4321

11 = zzzzzzzzzzzzp JJJH σσσσσσσσσσσσ −−−  and 5431
5

5321
42 = zzzzzzzzp JJH σσσσσσσσ −− . 

Each part is embedded into a triangle array, and two arrays are combined with ferromagnetic 

couplings (Fig. 2). The permutation of physical qubits can transform a long-range interaction of 

one array into a nearest-neighbor interaction in the other. Each triangle qubit array can be coupled 

on either of its catheti because either chain of qubits is a determining solution to the objective 

Hamiltonian. Thus this architecture is suitable for any required four-qubit couplings. 

This architecture can be scaled up to Kth order multi-qubit interactions for K > 4 and K is even. 

The overall overhead of physical qubits is O(NK). With increasing order of the coupling terms, the 

requirement for implementation precision surges because the energy scale of local constraints will 

dominate the problem Hamiltonian. Both the qubits cost and the demanding constraints energy 

scale pose challenges for the required programmable quantum annealer. However, future 

technology development on qubit, coupler designs, and superconducting materials can eventually 

overcome these obstacles. 
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Figure 7.2: Scalable scheme. The scheme can be scaled to realize any four-qubit interactions in a 

4th order binary optimization problem. The problem consists of five qubits. The big blue circles 

represent the physical qubits; the small red circles denote ancillary qubits in each plaquette. The 

required four-qubit interactions are implemented by bold bonds between physical qubits. The two 

triangle arrays are coupled through ferromagnetic couplings (double lines) among physical qubits 

on one of the two catheti. 

7.2.3 Readouts  

The two schemes need different ways of readouts. For the first scheme, an appropriate way of 

decoding the encoded results is to make use of repetition codes and a majority-vote method. For 

simplicity, we focus on decoding the physical qubits representing single logical qubits and two-

qubit interactions. Both are repeatedly encoded N  times. First, we decode spin values of the single 

logical qubit and state configurations of two-qubit interactions out of the N-repetition codes. We 

can have robust readouts by decoding each N-repetition code. Second, we make use of a majority-

vote method to obtain the final spin configuration for the original problem Hamiltonian.  

After the first step of decoding, there are N(N+1)/2 spin values. The solution of the optimization 

can be fully determined by reading out an adequate choice of N among the N(N+1)/2 spin values. 

For example, in the case of N=5, one of the straightforward choices of readouts is the spin values 

for each logical qubit 1, 2, 3, 4, and 5. Other chains of relative configurations of pairs such as 5, 

15, 25, 35, and 45, also hold the same information. A majority-vote method can be used among all 
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possible combinations of N(N+1)/2 spin values to improve the accuracy. For the second scheme, 

each triangle array holds N(N+1)/2 spin values. We can get the readout of each triangle block and 

apply a majority-vote method afterward.  

7.2.4 Fault tolerance  

The 2D architecture can be interpreted as a standard error-correcting code because of its redundant 

encoding of the logical qubits information in the physical qubits [190]. Thus it is highly robust 

against weakly correlated bit-flip noise. We use the product of PaPb to determine the probability 

of retrieving errors from reading out all physical qubits when some spins are flipped as a result of 

decoherence. Pa is the probability that an erroneous readout of a spin value is obtained after the 

adiabatic sweep. Pb is the probability that a measurement indicates an erroneous solution due to 

this error. 

For the first scheme, we do not take into account the ancillary qubits used in the first-time 

encoding because their readouts do not affect the solution. With N-repetition codes, the error rates 

for the readouts of the single logical qubit and two-qubit interaction terms are 
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)1( , where ΓΤ=eP  is the probability for a spin flip of a physical qubit 

due to decoherence, and Γ  is the decoherence rate, and T is the total time of the adiabatic sweep. 

We have N(N+1)/2 robust readouts and get Pa = PrN(N+1)/2 . The information content of a single 

readout of a spin value is given by the ratio between the determining solutions that contain the 

given readout, Ng, and the total number of possible determining solutions Nall, Pb = Ng/Nall = 2/N. 

The product PaPb = (N+1)Pr is the probability for errors (dashed lines in Figure 7.3). A majority-

vote method on the N(N+1)/2  robust readouts will give the correct answer as long as less than N/4 

readouts from the N-repetition codes are faulty. 

In the second scheme, each triangle array can be decoded independently. Suppose there are M 

triangle arrays combined, then 2/)1( +Γ= NTMNPa  and  MNPb /2= . Thus the error rate scales 

linearly with the problem size N: TNPP ba Γ+= )1( (solid lines in Figure 7.3). Applying a 

majority-vote method on all MN(N+1)/2 readouts can give the correct answer as long as less than 

MN/4 readouts are compromised. 
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Figure 7.3: Error tolerance. For the first scheme, the total error depends on ΓΤ=eP , the 

probability for a spin flip due to decoherence. When 5.0<eP , the N-repetition codes for single 

logical qubit and two-qubit interactions decrease the error of the final decoding, and the total error 

decreases with increasing N (dashed blue). When 5.0≥eP , the total error rises with increasing N 

(dashed orange). For the second scheme, the total errors in both schemes scale linearly with N 

(solid red and solid purple). 

 

7.2.5 Energy spectrum 

The protocol to find the ground state of an executable Hamiltonian is the same as in the original 

K-spin quantum annealing described in Eq. (7.2). We choose the ground state of a simple 
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Hamiltonian that can be adiabatically transformed into Eq. (7.3). The simplest form of illustration 

could be  

 )(

1=

~=~ m
xm

M

m
I hH σ∑ , (7.6) 

where M = N2 is the number of all qubits including the ancillary qubits for the constraints. The 

adiabatic sweep is described by the time-dependent Hamiltonian  

 )(0~)/(~)/(=)(~ TtHTtHTttH PIsweep ≤≤+ βα . (7.7) 

In this architecture, the constraints should be modulated by )/( Ttβ . Otherwise, the low-energy 

levels are so closed to each other that the minimal gap is almost zero at the beginning of the sweep. 

In the second scheme of combining several triangle arrays, the three- and four-qubit interactions 

are realized through the couplers which also implement the couplings for the constraints. Those 

couplings will be dominated by the energy terms from the constraints. Usually, the couplings have 

to be normalized by a factor to within the range [-1,1], which is the operational range in current 

annealer chips. Thus the couplers must be able to achieve high precision when implementing the 

interaction terms.  

The new time-dependent Hamiltonian is embedded in a larger Hilbert space and restricted in a 

gauge invariant subspace by the local constraints. It has a different spectrum, and the sweep is 

associated with a different quantum path compared to the adiabatic optimization in Eq. (7.2). The 

difference between the two sweeps is illustrated in Figure 7.4. The lowest states in the final 

Hamiltonian are identical in both representations of the optimization problem. However, the 

minimal gap in the direct implementation using interacting logical qubits is larger than the minimal 

gap in the executable architecture, and the ratio between these gaps increases with the energy scale 

C/J, see Figure 7.5. The calculated gap ratio is larger than what is obtained in [178] because we 

use ancillary qubits instead of four-qubit interactions to realize the local constraints.  

Instead of calculating the energy levels of the second scheme, we compare the spectrum of the 

executable architecture implemented by single triangle array with an ideal sweep realized by 

logical qubits. Due to the limited technical progress on superconducting couplers at the moment, 

no other realistic way to tackle a Hamiltonian with high-order interactions on a large scale has been 

proposed, so this comparison should only serve as a benchmark. The second scheme uses more 
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physical qubits, but it is supposed to be applied to sparse high-order interactions. In this scenario, 

only several times more qubits are consumed. Compared with the architecture consisting of a single 

triangle array, the second scheme should lead to smaller but comparable energy gaps. 

  
 

 

Figure 7.4: Time-dependent spectrum. (A) The energy spectrum of a typical adiabatic passage 

with N=4 logical qubits with four-qubit interactions in a fictitious implementation of the logical 

qubits. (B) The evolution of the executable Hamiltonian for the same problem implemented with 

ancillary qubits. Here, t is the time, and T is the total time of the sweep. Instantaneous eigenenergy 

E i  is measured with respect to the ground state, 0= EEE i −∆ . The coupling strengths for two-, 

three-, and four-qubit interactions and the local field of every logical qubit are random numbers 

uniformly taken from the interval [-J, J], and the constraint strength is C/J = 2. At the end of the 

evolution, an exact correspondence is achieved between the lowest levels of the two-dimensional 

architecture and the original model of classical spins (dashed lines). 
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Figure 7.5: Ratio of energy gap. The ratio χ  of the minimal gap during the adiabatic 

optimization between the logical system and the executable architecture, as a function of C/J, for 

N=4. 

 

7.2.6 Optimal energy scale 

The role of the energy scale JC/=β  is important for the successful implementation of the 

quantum annealing procedure. When 1β , the constraints have no effect. When 1β  the 

constraint dominates the problem scale and the comparatively small interaction terms implemented 

by the couplers can be easily affected by noises. Thus, there should be an optimal β  for different 

problem Hamiltonian, which we denote as optβ . We expect optβ  to be around 2. To understand 

the role of optβ , consider first how increasing β  affects the size and position of the gap E∆ . The 

excitations relevant to our local constraints are from the first excited state and above. In Figure 

7.6A, we show that the relevant gap dwindles with increasing β  when 2≤β , and remains 

unchanged when β is increased further. The minimum gap position also develops over a shorter 

time, which is advantageous since it leaves less time for thermal excitations to act while the 
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transverse field dominates. However, the role of β  is more subtle than suggested by considering 

only the gap. The energy states outside the gauge invariant subspace may also emerge in the low-

energy spectrum. These additional energy levels are also determined by β . More impurity states 

may emerge in the low-energy spectrum with decreasing β . Figure 7.6B shows the dependence 

of the lowest impurity state on β , which encourages us to choose a larger β . On the other hand, 

Figure 7.5 shows the ratio of the minimal gap during the adiabatic optimization between the logical 

system and the executable architecture grows with increasing β . The real optimal value should 

be determined by experiments, with the above considerations in mind. 

 

 

Figure 7.6: Effect of the energy scale of local constraints. (A) The relative first excited state 

varies with increasing β . (B) The dependence of the lowest impurity state (induced by constraint 

terms) on β . The energy of the impurity state increases with increasing beta and surpasses all 

energy levels of the problem Hamiltonian (dashed lines) at 2.2=β  

 

7.2.7 Potential barrier for encoding Hamiltonian  

There is a concern on the role of ancillary qubits over the energy landscape of the Hamiltonian 

[161]. In quantum annealing, spin tunneling can be described in mean field spin models using the 

path integral over spin-coherent states [191-193]. The dynamics are dominated by the paths 
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through the mean field energy landscape that has the highest transition probabilities. The mean-

field potential is of the form 

 〉ΨΨ〈= mm tHmV ˆˆ |)(~|)ˆ( , (7.8) 

where )(~ tH  is the time-dependent QA Hamiltonian (6) and 〉Ψm|  is a product state 

 ]1|
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m

je
θθ φ . (7.9) 

The coherent state of the jth spin is defined by a vector on the Bloch sphere 

 )cos,sinsin,cos(sin jjjjjjn θφθφθ= , (7.10) 

moreover, the corresponding state of the N-qubit system is defined by the tensor 

)(ˆ N21 nnnm ，，， = .  

The mean-field potential can be split into two parts 〉ΨΨ〈= ∑ m
l

lm CttHmV ˆˆ1 |)(-)(~|)ˆ( β  and 

∑ 〉ΨΨ〈=
l

mlm CtmV ˆˆ2 ||)()ˆ( β . Each ancillary qubit appears only in one term of )ˆ(2 mV . We 

rewrite each constraint term as ( ) 8I= )2(1 ++ lll CCC , where ( ) ( )l
z

sl
z

ml
z

enwm
l CC σσσ )~~(-4 ),(),(

,,=

1 −= ∑  

is the part involving an ancillary qubit, )2(
lC  is the rest part of the constraint term. The form of 

( )1
lC  is similar to the energy penalty terms used in the quantum annealing error correction codes 

[179, 180]. Both the constraints and the energy penalty terms are to restrict the whole system into 

a specified code space and to punish the states outside this space.   

  The effect of the two-dimensional local constraints on the energy landscape of an N-qubit 

system is an open question. The width of a potential barrier is measured with the change of the 

state of an N-qubit system between two local minima. For a rugged energy landscape, a narrow 

barrier means small changes of the state of the N-qubit system. Since every ancillary qubit is only 

coupled with three- or four-nearest neighbor qubits, small changes of the N-qubit states may leave 

most of the ancillary qubits unvaried.   
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7.3 Error correction for quantum annealing  

7.3.1 LHZ annealer 

 

 

Figure 7.7: The topology for a 5-logical-spin LHZ annealer with stabilizers (azure patches). 

The lattices of ( 1) / 2N n n= +   physical spins are used to encode the all-to-all connected two-body 

interactions for n logical spins. The open and solid circles are the physical spins; each open circle 

corresponds to the local field acting on a logical spin, whereas the spin at each solid circle 

corresponds to a two-body coupling between logical spins. The round bracket of indices (p, q) is 

used to denote the position of each physical spin while the bracket [p, q] labels the position of a 

stabilizer acting on three or four adjacent data spins. Red dots represent ancillary spins for stabilizer 

measurements.  

 
The topology for a 5-logical-qubit LHZ annealer is shown in Figure 7.7. The spins located on 

the cathetus of the triangle array represent the logical spins. The rest spins denote the two-body 

terms. The topology is designed as follows [183]: if a physical spin represents a two-body term in 

a logical Hamiltonian, then the lines representing the two associated logical x operators must cross. 

Each chain with the same color is a logical x operator ( , ) ( , )k i k k j
X X X

i j

σ σ σ=∏ ∏  , where k=1,2, …, 

N, and the logical k
Xσ  operator is the product of Pauli operators of the set of data spins with a 

label of either i= k or j = k. The spin located at the intersect of two logical x chains represents the 
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two-body term for the two logical spins. Each logical x operator should commute with all 

stabilizers represented by azure plaquette.  

Let’s consider a quantum system Q that evolves slowly according to the Hamiltonian

0( ) [1 ( )] ( ) fH t f t H f t H= − + , where (0) 0f = , ( ) 1f τ = , and τ  is the final time. Our target 

optimization problem 
1

1 1 1

n n n
q p q

T q Z pq Z Z
q p q p

H h Jσ σ σ
−

= = = +

= +∑ ∑ ∑  can be mapped onto a new problem 

Hamiltonian 
1

(0, ) ( , )

1 1 1

n n n
q p q

f q Z pq Z C
q p q p

H h J Hσ σ
−

= = = +

= + +∑ ∑ ∑


  . Zσ  is the Pauli-Z operator for each 

physical spin in Figure 7.7. 
CH  is the constraint Hamiltonian that forces the physical spins to 

evolve in the subspace defined by the stabilizers. A simple form of 
CH  is chosen as 

[ , ]

[ , ]
(1 )

2
p q

C pq Z
p q

CH Sν= −∑ , where C is the constraint strength, [ , ]p q
kS  is the stabilizer for each 

plaquette, 
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, ( , )k X Z=  (7.11) 

and 1pqν = ± , also known as parity value, is the expected eigenvalue of [ , ]p q
ZS  for the final 

ground state. Given a certain form of 
CH , ph  and pqJ  are equal to ph  and pqJ  up to 1± , 

respectively. The initial Hamiltonian 0H  has to be carefully chosen because it should not 

commute with fH . We design the initial Hamiltonian as 
1

( , )
0

0 1

n n
p q

X
p q p

H σ
−

= = +

= −∑ ∑  .    

7.3.2 Quantum feedback control 

Our protocol combines weak measurements of the stabilizers with feedback control to implement 

continuous error correction in an LHZ quantum annealer. The weak measurements will have 

unobtrusive effects on the physical system and give error specific information when the state of 

the system is not in the code space.  Also, the filtering process is introduced to smooth out some 

of the noise in the measurement currents. Such filtering makes the noise in the feedback signal at 
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time t is dependent on the system state at time t. Thus, smoothing procedure results in the quantum 

Bayesian feedback, instead of Markovian feedback. One reason for the feasibility of the continuous 

error detection through stabilizer measurement is that whether the state of the system is inside or 

outside the code space can be determined by the signatures of the stabilizer measurements (whether 

they are plus or minus one). Such a quantity is robust under the influence of noise.  

The stochastic master equation (SME) describing the evolution of a system with feedback under 

the error control protocol is [194]:  

 

[ ]
( , )

( , )

[ , ] [ , ] [ , ]

, [ , ]

( , ) ( , )

( , )

( ) ( ), ( )

               + [ ] ( )
3

               + [ ] ( ) [ ] ( )

             ( )[ , ( )]

c c

p q
k c

k p q

p q p q p q
k c k c k

k X Z p q

p q p q
k k c

k p q

d t i H t t dt

E t dt

S t dt S t dW

i G t F t dt

ρ ρ

γ ρ

κ ρ κ ρ

ρ

=

= −

+

−

∑∑

∑ ∑

∑∑

D

D H
 ,  

 (7.12) 

where cρ  is the system density operator conditioned on the measurement records of  [ , ]}{ p q
kS , 

( , ) ( , )
, ,{ }p q p q

k k k X Y ZE σ ==  is a collection of generic balanced depolarizing error channels for N 

physical spins, γ  is the per-spin error rate which corresponds to a per time step error rate of dtγ , 

κ  is the measurement strength (assumed to be the same for all measurements [ , ]p q
kS , D  and H

are the superoperators for decoherence and stochastic process, respectively, and given by 

 † † †1[ ] ( )
2

A A A A A A Aρ ρ ρ ρ= − +D ,   (7.13) 

 
† †[ ] tr[ ]A A A A Aρ ρ ρ ρ ρ ρ= + − +H ,   

 (7.14) 

for any operator A ,  [ , ]p q
kdW  are the Weiner increments (Gaussian distributed random variables 

with zero mean and autocorrelation ( ) ( ) ( )dW s dW t s t dtδ= − ) [195],  ( , )  ( , )q
k

pF k X Z=  are 

the correcting feedback Hamiltonian acting on the physical spin at ( , )p q  corresponding to Xσ  

and Zσ  terms in ( )H t , respectively, and ( , )
k

p qG  is the corresponding conditional function of the 
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signatures of all the smoothed stabilizer measurement, [ , ]}{ p q
kS . The measurement current for 

[ , ]}{ p q
kS has the form: [ , ] [ , ] [ , ]2 ( )p q p q p q

k k kc
dQ S dt dW tκ κ= + , where tr( )cc

a aρ= .  The 

simple filter we choose to smooth out the noise on the measurement current is a convolution in 

time between the measurement signal and an exponentially decaying signal:  

 ( ')1( ) ( ')
t r t t

t T
R t e dQ t− −

−
= ∫ .  

 (7.15) 
In frequency space, this acts as a low pass filter, and thus the output of the operation is a smoothed 

version of the measurement current with high-frequency oscillations removed. The filter 

parameters r and T determine the decay rate and length of the filter, respectively, and 

2 (1 )rTe
r
κ −= −  serves to normalize ( )R t  such that it is centered around 1± . 

7.3.3 Detection of bit-flip and phase-flip errors 

The phase-flip (Z) errors can be detected by XS  measurements alone, and the bit-flip (X) errors 

can be detected by ZS  measurements alone, while the Y errors are to be detected by both XS  and 

ZS  measurements. The signatures of the stabilizer measurements can be used to identify the error 

chains with the standard algorithms such as Edmonds’ minimum-weight perfect matching 

algorithm [159], which has been used in other error correction methods such as surface codes [151].  

The difference in the measurement stages between the surface codes and our error correction 

proposal is the arrangement of measurements. In the surface codes, each plaquette is measured by 

either XS  or ZS . The two kinds of the stabilizers have a staggered arrangement on a square lattice. 

In our scheme, every plaquette (which is equivalent to the combination of plaquettes and vertices 

in the surface codes) should be weakly measured by both ZS  and XS stabilizers. This measurement 

scheme is based on the following considerations. First, the parity value pqν  in each plaquette’s 

constraint Hamiltonian should be determined by the corresponding ZS  measurement, while XS  is 

needed to correct the Z errors on each plaquette. Second, measuring every plaquette with two kinds 
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of stabilizers can eliminate the 1-cycles inside the triangular spin array. These 1-cycles lead to the 

ambiguity when identifying an error chain in the surface codes because the syndromes for an error 

chain are not changed by adding a 1-cycle to the existing error chain. Although this ambiguity does 

not have effects on the correction in the surface codes, it will hamper successful error corrections 

in quantum annealing since any irrelevant corrections may deviate the quantum system from its 

instantaneous ground state. The remaining 1-cycles which cannot be removed are the chains of 

logical X operators. All of these chains run through the whole array and have the lengths of the 

number of logical spins. As the size of spins array grows, the possibility of such a long error chain 

will be exponentially small. Thus, there may be no ambiguity for determining error chains through 

the measurement signatures when long chains of errors do not show up during an annealing 

process. Figure 7.8 shows a typical X-error chain with its syndromes around it. 

 

Figure 7.8: A bit-flip error chain detected by the syndromes. Black circles represent wrongly 

flipped data qubits, and red dots are the signatures from the ZS  measurements. The plaquettes 

encircled by blue lines are relevant to the X error correction at spin (1,4). The brown lines enclose 

an area in which the stabilizers’ signatures are responsible for correcting the error at spin (3,6).  
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Figure 7.9: The time dependence of 2
[ , ]

[ , ]

p q
X c

p q
S∑  and 2

[ , ]

[ , ]

p q
Z c

p q
S∑  averaged over 1000 

simulations on four logical spins with random couplings h and J which are uniformly distributed 

within the interval [-1,1]. 

 

It has to be noted that the expectation values of XS  and ZS  are not constants during the sweep. 

Given the initial state as the ground state of 0H , [ , ]p q
X c

S  changes from 1 at the beginning of the 

sweep to 0 at the end of the sweep, while [ , ]p q
Z c

S  changes from 0 to 1. Correspondingly, the sum 

of the square of every stabilizer’s expectations in the instantaneous ground state changes between 

0 and n(n-1)/2 (n is the number of logical spins) as shown in Figure 7.9. At a given moment t, if 

the change of expectations 2
c

S induced by error channels is bigger than that induced by 

measuring errors and noises, it is possible to identify these errors through stabilizer measurements. 

The error syndromes are determined by the difference between the signatures of the measured 

currents and the expected values. The expected signatures for [ , ]p q
X c

S  and [ , ]p q
Z c

S  are 

determined by choice of 0H  and parity values pqν  at the beginning of the annealing protocol. 

Further, the system is robust against X errors at the start of a sweep when 0 fH H , because X 

errors do not alter the eigenstates of 0H ; similarly, Z errors have negligible effects on the system 
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when the sweep approaches the end. Since the measurement itself will induce errors, we do not 

want the measurements to destroy the systems' state. Thus, we apply XS  measurements from the 

beginning to / 0.6t τ = , while ZS  stabilizers are measured from / 0.4t τ =  to the end. The start 

time and end time of  ZS  and XS  measurements can be adjusted according to specific logical 

problem and error rate. 

7.3.4 Detection of low-lying excited states 

Whether a jump from the ground state to an excited state during a sweep is detectable depends on 

the parity values of the low-lying excited states. Let R = C/J. As discussed by Rocchetto et al. 

[183], if R is too large, it will appear that the low-lying excited states have the same parity values 

as the ground state, therefore, jumps from the ground state to these excited states are undetectable 

via parity. On the other hand, a small R makes the spectra of the several parity subspaces overlap 

and may permit the low-lying excited states to violate the parity constraints and conceivably allow 

us to detect them using weak measurements. However, such a change to the energy levels may 

decrease the smallest gap between the ground state and the excited states during a sweep. Hence 

the overlap of the spectra of several parity subspaces may come at the cost of a smaller energy gap, 

as shown in Fig. 4 (a). A modest R value is thus best suitable to serve our purpose. 
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Figure 7.10: (a) Energy spectra of the low-lying excited states for constraint strengths R = 0.6 

(solid lines) and R = 2 (dashed lines) in a typical adiabatic sweep with N=4 logical qubits. The 

instantaneous excited energy iE  is measured in the instantaneous ground state, and the plotted 

0iE E E∆ = − . The elements of the qh  and pqJ  matrix are numbers randomly taken from the 

interval [-J, J]. (b) The differences between the signatures of eight lowest-energy excited states 

and the ground state are tracked during the same annealing process with R = 0.6 in (a). The distance 

d is defined in the main body. 
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To illustrate the idea of detecting erroneous excited states during a sweep through weak 

measurements on stabilizers, we define a parameter md  for the mth level (zeroth level is the ground 

state) 
[ , ]

[ , ] [ , ] [ , ] [ , ]
0 0( ) ( ) (0) ( ) ( )p q p q p q p q

m mm
p q

t x t z zxd t τ= − + −∑  to distinguish the instantaneous 

ground state from the low-lying excited states. ( )[ , , ]] [( ) sgn ( )p qp q
m X m

t Sx t= and 

( )[ , , ]] [( ) sgn ( )p qp q
m Z m

t Sz t=  are the signatures of the measurements of the stabilizers for the mth 

level at a given time t . [ , ]
0 (0)p qx  and [ , ]

0 ( )p qz τ  are the signatures of [ , ]p q
XS  for the initial state 

and of [ , ]p q
ZS  for the final state, respectively, which are determined by choice of initial 

Hamiltonian 0H  and parity values pqν . The calculated results are shown in Figure 7.10(b) for R 

= 0.6. The distance d for the ground state remains zero throughout the annealing sweep. Hence, we 

can monitor the signatures from both operators [ , ]i j
XS  and [ , ]i j

ZS  at successive measurements to 

identify a jump from the instantaneous ground state. If the state of the system deviates from its 

instantaneous ground state, the measured signatures will change. It is possible that the signatures 

of some excited states overlap with that of the instantaneous ground state during a sweep, which is 

shown in Figure 7.10(b) as two dips of ( )d t .  It is caused by the overlaps of several parity 

subspaces. As R increases, there will be more low-lying excited states staying in the same subspace 

as the ground state does, which makes it impossible to distinguish them from the ground state 

through this method. However, if R is a modest value, a part of the transition from the ground state 

to excited states can be identified, which is an advancement over the existing quantum annealing. 

7.3.5 Error corrections 

Bit-flip and phase-flip errors can be corrected by performing physical gate operations on the data 

spins; however, applying such gates will take a long time and pause the quantum annealing sweep, 

thus causing a higher error rate. There are two requirements for a successful correction of X or Z 

errors. The corrections should keep the instantaneous state in the ground state of the system while 

making the final Hamiltonian still represent a correct map of the logical Hamiltonian. To restore 

the erroneously bit-flipped state to the instantaneous ground state, we can change the sign of the 
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on-site energy pq pqJ J′ = −   or q qh h′ = −   in the following time of the same annealing process. 

Suppose 0 ( )tψ  is the instantaneous ground state of the total Hamiltonian 

0( ) [1 ( )] ( ) fH t f t H f t H= − +  at time t. We can have:  

 ( , ) ( , ) ( , )
0 0 0 0( ) ( ) ( ) ( ) ( ) ( )p q p q p q

X X XH t t H t t E t tσ ψ σ ψ σ ψ′= = , 
 (7.16) 
where   
 0( ) [1 ( )] ( ) fH t f t H f t H′ ′= − + , 
 (7.17) 

 (0, ') ( ', ') ( , )
' ' '

' 1 ( ', ') ( , )

n
q p q p q

f q Z p q Z pq Z C
q p q p q

H h J J Hσ σ σ
= ≠

′ ′ ′= + + +∑ ∑
 

   . 

 (7.18) 

Since CH  includes the stabilizer [ , ]i j
ZS , the parity values pqν  for the affected stabilizer terms 

also have to be changed according to the measured signatures. Then it is evident that ( , )
0 ( )i j

X tσ ψ  

becomes the ground state of the new evolving Hamiltonian.  

The Ising interaction p q
pq Z ZJ σ σ  in the logical Hamiltonian is mapped to ( , )p q

pq ZJ σ   in the model 

up to a sign determined by the values of stabilizers,  

 ' '' 1 ' ' 1

p q
pq pq p qp q p

J J ν
= = +

= ∏ ∏ .  

 (7.19) 
All the plaquettes corresponding to the signs of spin (i, j) are within the area enclosed by logical 

operators p
Xσ  and q

Xσ . In Figure 7.8, the on-site energy for the data spin (1,4)
Zσ  is  14 12 13 14 14J Jν ν ν=

. The affected plaquettes are enclosed by blue lines. Therefore, if we change the signs of 

12 13 14,  ,  ν ν ν  and 14J  at the same time, we can still keep the final Hamiltonian as a true map of the 

logical Hamiltonian. As long as there exists a chain of n spins which can be used as a readout 

sequence free from errors, the two requirements can be met simultaneously by flipping the on-site 

energies of the affected spins and the corresponding parity values in the constraint Hamiltonian. 

The number of possible readout sequences of spin chains that can be used for this purpose 

exponentially increases with N. Hence; there is a significant possibility that the way of correction 

is effective. 
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The same procedure may be easily adapted to also correct Z errors. Instead of applying a Z gate 

on the affected spin, we change the sign of the corresponding energy term ( , )p q
Xσ  in 0H . Thus, the 

wrongly flipped state should be the ground state of the new evolving Hamiltonian while the map 

from logical problem to physical Hamiltonian remains the same. Recovering a detected deviation 

from the instantaneous ground state is the same as that for correcting X and Z errors since the 

erroneous excited state is identified through the difference of the signatures between the measured 

values and the expected values.   

7.3.6 Simulation results 

We simulate the dynamics of Eq. (7.12) by way of an associated stochastic Schrodinger equation 

(SSE) as it is less computationally intensive and allows us to look at individual trajectories of the 

system.  The form of this associated SSE is as follows: 

 

( )

( )

( )

( , ) ( , )

( , )

2[ , ] [ , ]

, [ , ]

[ , ] [ , ] [ , ]

, [ , ]

( ) ( ) ( ) ( )

                 1 ( ) ( )
2

                 + ( ) ( ) ( )

                 ( ) ( )

p q p q
c k c c k

k p q

p q p q
k k c

k X Z p q

p q p q p q
k k c k

k X Z p q

c

d t E t t dM t

S t S t dt

S S t t dW t

iH t t dt

ψ ψ ψ

κ ψ

κ ψ

ψ

=

=

= + −

− −

−

′−

∑ ∑

∑ ∑

∑ ∑
,   (7.20) 

where ( )dM t  is a point process increment (in the number of errors) described by 

2( ) ( )dM t dM t= , and [ ]( ) .
3

E dM t dtγ
=  Thus, ( )dM t  is a random variable that is either 0 or 1 

at each time step and is distributed according to the error rate / 3γ . A graph of the process ( )dM t  

would be a sequence of Poisson distributed (with parameter / 3γ ) spikes. ( )H t′  is the corrected 

Hamiltonian defined in Eq. (7.17) according to the smoothed measurements { }[ , ] ( )p q
kR t .  

In the continuous feedback based error correction scheme, the information of stabilizer 

measurements is obtained at a finite rate. To protect a fragile quantum state in the surface codes, 

the finite duration of the detection and correction window means that we must choose the parameter 

T  in Eq. (7.15) small enough that the probability of an error we cannot correct is negligible. On 
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the contrary, we may still get improvements in the success rate for quantum annealing even if errors 

occur during the finite window T since quantum annealing is more robust against the X and Z 

errors. Therefore, it is possible to do the error corrections when the rate at which we gain 

information (characterized by measurement strength κ ) is about the same as or lower than the 

rate γ  at which errors happen.    

 

Figure 7.11: The trajectories for 3 logical spins are computed with stochastic evolution equation 

under different measurement strengths κ  and error rates γ . The dark red curve shows the time 

evolution of the system with 5MHzκ =  and 50MHzγ = , while the light green curve is the time 

evolution with the same error rate but no feedback control. The blue curve illustrates the time 

evolution with 5MHzκ =  without errors. The dashed curve shows the whole evolution without 

errors and feedbacks.  

 

A sample simulation run for a realistic noise process, also known as a trajectory, is calculated 

using the stochastic evolution Eq. (7.20) for 3 logical spins. The energy evolutions of the system 

under different κ  and γ  are shown in Figure 7.11. The stochastic differential equation was solved 

using Euler numerical integration with time step 42 10−×  ns. The total annealing time is min40 / ∆

. The qubit transition frequency /2 0.5 GHzqω π =  and 1R = . The filtering window time is 2T =  

ns, 5 GHzr = . γ  is chosen much larger than κ  for the purpose of demonstrating error corrections 
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during the annealing process. The red curve shows the smooth trend at the beginning as XS  has 

little effects on the system. The spikes are resulted from the error-induced transitions but corrected 

by the control feedback. At last, the system which is protected by the error correction scheme is 

still close to the ideal final state which is shown by the dashed curve. On the contrary, under the 

same error rate, the system deviates from the ideal ground state more and more as time passes. In 

contrast, the measurements will affect the evolution of the system as shown by the blue curve. It 

almost overlaps with the red curve except for the correction-induced spikes.  

 

Figure 7.12: Comparison of the success probabilities for 3 logical spins problems with and without 

error corrections. The red dashed curves are the calculated results without error corrections, while 

the blue solid curves are applied with error correction method. (a) and (b) are computed for two 

randomly chosen logical problems by averaging over 500 trajectories. The parameters of the two 

problems are randomly taken from the interval [-J, J]. 
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Figure 7.12 shows the comparison of the success probabilities for 3 logical spins problems with 

and without error corrections. All parameters except the error rate are the same as for Figure 7.11. 

The measurement strength κ  and error rate γ  are taken from the experimental parameters [194]. 

The success probability is computed as the probability of occupation of the correct ground state at 

t τ= .  From both of (a) and (b), the curves with and without error corrections cross each other at 

3.5 MHzγ ≈ . For 3.5 MHzγ < , the average success rate for the annealing protocol without error 

correction method is higher than that with error corrections. This is due to the errors induced by 

continuous weak measurements. The finite measurement strength κ  will result in unexpected 

errors and degrade the final readouts. Decreasing κ  can reduce the unwanted errors but will lead 

to longer information-collecting time. When 3.5 MHzγ >  the control feedback method surpasses 

the one without error corrections and higher averaged success probability can be obtained. As the 

error rate is larger than the information-collecting rate, both curves exhibit decreasing success 

probabilities as the error rate grows. However, the results from the error correction method are 

much better and more stable than the other one, which shows the superiority of the error correction 

method.   

7.3.7 Discussions 

Besides the driver Hamiltonian, the back-action brought by the measurements may offer an 

alternative source of quantum fluctuations for the system to escape local minima and find the global 

minimum of a given objective function. The effect of the finite measurement strength on enhancing 

the probability of jumping out of local minima is still an open question. More relevant work is 

expected to take the effects of weak measurements into considerations for quantum annealing. 

Further, we do not use other error correction methods during the readout stage as suggested by 

Fernando Pastawski and John Preskill [196]. With the help of the post-processing method, we can 

make quantum annealing more robust against errors. 

7.3.8 Methods 

Realization of continuous weak measurements of stabilizers. There are two ways to realize 

weak measurements for stabilizers. One way is to use ancillary-based weak measurements [197] 

which require a quantum circuit composed of several Controlled-NOT and Controlled-Z gates.  
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Figure 7.13: The quantum circuit for the ancillary-based weak measurements of (a) Z Z Z Zσ σ σ σ      

and (b) X X X Xσ σ σ σ     on neighboring four data qubits. The measurement consists of a variable-

amplitude Y rotation by an angle ϕ, which controls the strength of the measurement. The following 

four CZ gates or CNOTs entangle the ancilla spin with the data spins. Finally, the ancilla is rotated 

by an angle − π/2, bringing it into the desired measurement basis. 

 

The ancilla measurement protocol is shown in Figure 2. Initially, an ancilla qubit is Y-rotated at 

an angle 0 / 2φ π≤ ≤  from its ground state to set the measurement strength. For a weak 

measurement of ZS , four control phase gates are performed between the measure spin and data 
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spins, causing a Z rotation of / 2π  in the ancilla qubit depending on the target qubits’ state. We 

define the operator [ , ]i j
XS  for each plaquette as:  

   

  

( , ) ( , 1) ( 1, ) ( 1, 1)

[ , ]
( , ) ( 1, 1) ( 1, )

      if   2

                 if   2

i j i j i j i j
X X X Xi j

X i j i j i j
X X X

i j
S

i j

σ σ σ σ

σ σ σ

− − − −

− − −

 + ≤= 
 + >

.     (7.21) 

Four CNOTs are applied between the measure spin and data spins if a weak measurement of XS  

is desired. Finally, a Y rotation of / 2π−  is performed on the ancilla qubit to rotate it into the 

correct measurement basis. The “visibility” of this measurement is then proportional to the 

distance of the ancilla state vector from the equator of the Bloch sphere. For / 2φ π= , this 

operation implements a projective measurement. As 0φ → , the ancilla states become 

degenerate and no information is extracted. As the final position of the ancilla state is dependent 

on the measurement strength, the ancilla readout is imperfectly correlated with the target qubit. 

The visibility of an ancilla Z-average, [ , ]sin( ) i j
ZZ S

α
φ  or [ , ]sin( ) i j

XZ S
α

φ  is 

compressed from the expectation value of the target stabilizer by a factor of approximately sin( )φ

. 

The other way to implement the continuous weak measurement of stabilizers is to measure the 

multi-qubit parity in circuit quantum electrodynamics directly, such as the scheme proposed by 

David P DiVincenzo and Firat Solgun [198]. In the proposal, coupling four qubits to a common 

resonator which holds three closely spaced resonances enables us to extract the parity information 

about the four qubits through the reflected phase function ( )Sθ ω . Thus, directly measuring the 

parity operator can simplify the process of error correction, and improve its error robustness 

without the need of ancilla qubits and quantum circuits. 

Computation of success probability: In the simulations, the success probability is computed as 

the probability of occupation of the correct ground state in the reduced density matrix ˆ ( )rρ τ  at 

t τ= . We choose the spins located at (0,1), (0,2), and (0,3) as the readout chain and obtain the 

reduced density matrix ˆ ( )rρ τ  from the final density matrix ˆ ( )ρ τ  of the physical spins array. The 

correct ground state which is computed from the target optimization problem 
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1

1 1 1

n n n
q p q

T q Z pq Z Z
q p q p

H h Jσ σ σ
−

= = = +

= +∑ ∑ ∑  will be modified according to the flipped sign of the on-site 

energy 1h , 2h , and 3h .   

In this work, we propose to use weak measurements on stabilizer codes to monitor the sweep of 

the LHZ quantum annealer with all-to-all connectivity. Bit-flip and phase-flip error chains 

occurring during an annealing sweep can be determined by decoders and then corrected by 

changing the following evolving Hamiltonian. By applying a proper constraint strength R, it is also 

possible to distinguish and remedy the jumps from the instantaneous ground state to low-lying 

excited states. Simulated results are computed with stochastic Schrodinger equations with 

experimental parameters. 

7.4 Summary 

We propose a two-dimensional quantum annealing architecture to solve the 4th order binary 

optimization problem by encoding four-qubit interactions within the coupled local fields acting on 

a set of physical qubits. All possible four-body coupling terms for an N-qubit system can be 

implemented through this architecture and are readily realizable with the existing superconducting 

circuit technologies. The overhead of the physical qubits is O(N4), which is the same as previously 

proposed architectures in four-dimensional space. The optimization problem is encoded in local 

fields acting on the qubits and the interactions between them. This allows one to implement an 

objective Hamiltonian for a high-order binary optimization problem, whose solution is encoded in 

the topology of the physical qubits. The equivalence between the optimization problem 

Hamiltonian and the executable Hamiltonian is ensured by a gauge invariant subspace of the 

experimental system. A scheme to realize local gauge constraint by single ancillary qubit is 

proposed. This architecture may be used to solve a valuable class of NP-hard problems - the Kth 

order binary optimization problems.  

We also propose a method to implement quantum annealing with error correction through 

stabilizer codes. The stabilizers are realized with weak measurements for real-time, in-run 

monitoring of spins, to minimize or control the back-action. X and Z error chains occurred during 

an annealing sweep and jump to low-lying excited states from the instantaneous ground state can 
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both be identified by decoders and corrected. Furthermore, back-action offers an alternative source 

of quantum fluctuations in addition to the driver Hamiltonian.  
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Appendix A 
Effective constraint Hamiltonian 

A unitary encoding circuit rotates the state of the spins array into a subspace of a larger Hilbert 

space, which is equivalent to an effective constraint Hamiltonian applied on all of the data qubits. 

Using quantum Zeno dynamics (QZD) [199, 200], we may realize an effective constraint 

Hamiltonian with infinite strength with repetitive stabilizer measurements on a square-lattice spins 

array topology. The infinite-strength constraints can ensure that the low energy spectrum of the 

Hamiltonian of the mapped all-to-all connectivity is the same as the original logical Hamiltonian.   

The time-evolution of a state | ( )tψ  is governed by the Schrodinger equation. In particular, an 

evolution during a short time t∆  is written using a single time-evolution operator as
( )| ( ) | ( )i t tt t e tψ ψ− ∆+ ∆ ≅  . If we consider a period from 0t =  to t T= , the evolution is 

described by the unitary operator  1

0
( ) { exp[ ( ) ]}N

k
U T i k t t−

=
≅ − ∆ ∆∏  , where the Trotter number 

N satisfies N t T∆ = ,  denotes time ordering. Denote H  as the Hilbert space of ( )t  and 

P P P=H H    is the subspace spanned by the eigenstates of P. Let the density matrix 

0 0 0ρ ψ ψ=  belongs to PH  at 0t = . To be noted here, the projection operator P is multi-

dimensional. We perform a series of observations P at times  (k 0, , 1)kt k t N= ∆ = − . The state 

of Q after the N measurements reads 0( ) ( ) ( )N NT V T V Tρ ρ += , where 

1 ( )
0

( ) { [ ]}k
N i t t

N k
V T Pe P− − ∆

=
= ∏  . The probability to find the system in PH   is given by

0( ) Tr[ ( ) ( )]N N Np T V T V Tρ += , which is the probability that the system remains in PH  . There is a 

likelihood 1 Np−  that the system has made a transition outside PH  , and its state has changed into 

'( )Tρ . The state ( )Tρ  and '( )Tρ  together make up a block diagonal matrix: The initial density 

matrix is reduced to a mixture, and any possibility of interference between the states inside and 

outside PH  is destroyed (complete decoherence). It is shown that repeated observations in 

succession modify the dynamics of the quantum system; under general conditions, if N is 
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sufficiently large, all transitions outside PH   are inhibited. It should be noted that the dynamics 

are not reversible.  To consider the N →∞  limit (‘continuous observation’), we assume that 

t T∞ =  and the limit ( ) lim ( )NN
T V T

→∞
≡V  exists. The final state of Q is then 

0( ) ( ) ( )T T Tρ ρ +=V V , and the probability to find the system in PH  is 

( )
0( ) lim ( ) Tr[ ( ) ( )]N

N
T P T T Tρ +

→∞
≡ =P V V . By time-reversal invariance ( ) ( )T T+ = −V V , so 

that ( ) ( )T T P+ =V V . This implies that 0 0( ) Tr[ ( ) ( )] Tr[ ] 1T T T Pρ ρ+= = =P V V . The 

equations show that Q is evolving in the subspace PH  , instead of evolving in the total Hilbert 

space H  .  

The evolution of Q in Schrodinger equations is transformed to Feynman integral. The propagator 

from a state Φ  to another Ψ  at the time kt , when a measurement is carried out, reads 

*
,

( , ; ) ( , ; )k kG t K C G tϕ φϕ φ
ϕ φΨ ∆ Φ = ∆∑ , where { }, 0,1 Nϕ φ ∈  are the chosen spin basis, the state 

Cφφ
φΦ =∑  and Kϕϕ

ϕΨ =∑ . Then we have 

 ( ) ( )( , ; ) ( )k ki t t i t t
k PG t Ee eϕ φ ϕ φ χ ϕ ϕ φ− ∆ − ∆∆ ≡ =  ,   (A.1) 

where Pχ  is the characteristic function,   

 
1    for 

( )
0    otherwise

P
P

ϕ
χ ϕ

 ∈= 


H  
.   (A.2) 

For an imaginary time i tτ = ∆ , we get the Green function ( ) exp( ( ))ki t t
ke tϕ φ ϕ τ φ− ∆ = − 

. So, the propagator for a single ‘step’ reads   

 ( , ; ) ( , ; ) ( ) exp( ( ))k k P kW G i tϕ τ φ ϕ τ φ χ ϕ ϕ τ φ≡ − = −  .   (A.3) 

The resulting propagator for total time T is ( , ; ) ( )N f i f N iG T V Tϕ ϕ ϕ ϕ= . For imaginary 

iT=T   , this becomes  
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1 1

1 1 0 1
, ,

( , ; ) ( , ; )

                        ( , ; ) ( , ; ) ( )
N

N f i N f i

N f N i E i

W G i

W W
ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ τ ϕ ϕ τ ϕ χ ϕ
−

− −

≡ −

= ∑




T T

,   (A.4)  

whose relationship with Wiener integration is manifest. We apply a trick that is often used when 

one endeavor to relate probability and potential theory [148]. We first rewrite the characteristic 

function regarding a potential, which is infinite outside PH , so that the Brownian paths of the 

Wiener process can never leak out of PH : 

 ( ) exp( ( ))P PVχ ϕ τ ϕ= −  with 
0    for 

( )
+     otherwise

P
PV

ϕ
ϕ

 ∈= 
∞

H  
,  (A.5) 

Hence, the one-step propagator becomes ( )( , ; ) e e kP tV
kW ττϕ τ φ ϕ φ−−=  . As ( )PV ϕ  is 

equivalent to [ , ]
[ , ]

(1 )
2C i j

i j
S∆

= −∑  with ∆ = +∞ , we can get ( )( , ; ) e eC kt
kW τ τϕ τ φ ϕ φ− −=   , 

and return to real time 

 ( )( , ; ) ( , ; ) e eC ki t i t t
k kG t W i tϕ φ ϕ φ ϕ φ− ∆ − ∆∆ = ∆ =   .   (A.6) 

Consider now the limit of continuous observation N →∞ . The limiting propagator reads 

 1
/ ( ) /

0

( , ; ) lim ( , ; )

                     = lim | { (e e )}C k

f i N f iN
N

i T N i t T N
f iN k

G x T x G T

P

ϕ ϕ

ϕ ϕ

→∞

−
− −

→∞
=

=

〈 ∏  
   (A.7) 

which, by using the Trotter product formula, yields 

 

1
( ( ) ) / 2

0

2

( , ; ) lim { (e )} (( ) )

                     = ( ) (( ) )

k C

N
i t T N

f i f iN
k

f i

Tx T x P O
N

TT O
N

ϕ ϕ

ϕ ϕ

−
− +

→∞
=

= +

+

∏  G

V

,   (A.8) 

where the evolution operator is 
1

0

( ) lim { exp( ( ) / )}
N

kN
k

T i t T N P
−

→∞
=

= −∏ V with ( )= ( ) Ct t +   . 

The above formula shows that the dynamics within Zeno subspace PH   is governed by the 

operators ( )TV  and ( )t . In the above derivation, we have implicitly assumed the validity of 

the Trotter product formula. The constraint C  which contains four-body interactions is in the 
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same form of the constraint Hamiltonian as proposed by Lechner et al. [178], and it is now 

generated by repeated projective measurement P.  

Next, we try to write down the real-time evolution of quantum annealing when considering the 

tunneling effect. Let ( ) ( ) ( )Ct t t= +   , where [0, ]t T∈ . { ( )}jE t  is the set of eigenvectors of 

( )t  and { ( )}mE t  is the set of eigenvectors of ( )t , in which the subscripts j and m denote the 

energy levels. ( ) ( ) ( )j j
j

t t E tε=∑ , and ( ) ( ) ( )j j
j

t t E tε=∑ 

 . The time-evolution operator for 

( )t  is written as [201]: 

 
,

( ) ( ) ( ) exp[ ( )]A
T T Tjk

j k
U t A t V t i F t∑    (A.9) 

where ( )( )= (0)ji sA
T j

j
V t e Eφ−∑ , †( ) ( ) (0) ( )j jE t A t E A t= , ( ( ) ( ))

0
( )= ( )j m

t i A
Tjm jmF t d e Kφ σ φ σσ σ−∫ ,  

0
( ) ( )

t

j jt dφ σε σ= ∫ . ( )A
jmK t  is the matrix element of ( )AK t  which is defined by 

( ) ( ) ( )di A t K t A t
dt

= . Rewrite the evolution operator as a series of single-time operators: 

 
1

,0

( ) { [ ( ) ( ) exp( ( ))]}
N

A
T k T k Tjk k

j kk

U t A t V t i F t
−

=
∑∏  ,   (A.10) 

where 
1

0

( ) { ( ( ))}
N

k
k

A t A t
−

=

= ∏ , 
1 1

( )

0 0

( )= { ( ( ))} { ( (0))}j k
N N

i t tA A
T T k j

jk k

V t V t e Eε
− −

− ∆

= =

= ∑∏ ∏  , and 

1 1
( ( ) ( ))

, , ,0 0

exp( ( )) { exp( ( ))} { exp( ( ) )}j k m k
N N

i t t A
Tjm Tjm k jm k

j m j m j mk k

i F t i F t i e K t tφ φ
− −

−

= =

= = ∆∑ ∑ ∑∏ ∏  .  

By making repeated measurements P, the evolution operator is expressed as 

 
1

,0

( ) { ( ( ) ( ) exp( ( )) )}
N

A
T k T k Tjm k

j mk

U t PA t V t i F t P
−

=
∑∏

  ,                              (A.11) 

We define 
1

0

( ) { ( ( ) )}
N

k
k

A t PA t P
−

=

= ∏  , 
1 1

( )

0 0

( ) { ( ( ) )} { ( (0))}j k
N N

i t tA A
T T k j

jk k

V t PV t P e Eε
− −

− ∆

= =

= = ∑∏ ∏ 

  

and  
1 1

( ( ) ( ))

, , ,0 0

exp( ( )) { ( exp( ( ) )} { exp( ( ) )}j k m k
N N

i t t A
Tjm Tjm k jm k

j m j m j mk k

i F t P i F t P i e K t tφ φ
− −

−

= =

= = ∆∑ ∑ ∑∏ ∏
 

   . It 
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is noted that the phase 
0

( = ( )kt

j k jt dφ σε σ∫

）  corresponds to the eigenvalues of ( )t  since the initial 

state is one of the eigenstates of ( )t  and the system would be kept in the space of ( )t  by 

repeated measurements. 
,

( ) ( ) ( ) exp( ( ))A
T T Tjk

j k
U t A t V t i F t∑  

  is the real-time operator for ( )t .  

It is concluded that repeated projective measurements can be equivalent with a constraint 

Hamiltonian ( )C t  applied on the physical spin system and the system will stay in the ground 

state of the effective Hamiltonian ( )t  if the total annealing time meets the criterion of the validity 

of adiabatic approximation.  
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Appendix B 
Stochastic process 

It is not possible to perform a time evolution on the data qubit array alone without referring to the 

state of the measure qubits. The data qubits evolve into mixed states which are the average over all 

possible measurement outcomes. Since the interaction between the data qubits and measure qubits 

has a simple form and the initial states of measure qubits are defined, one can find some effective 

evolution equations for the data spins alone. We consider a Markovian process: the evolution of 

the qubit array is solely determined by its state at present, with no retarded contributions. In the 

limit of small 1φ  , an approximate Lindblad master equation can be written down for the qubit 

array: 

 

† †

† †

' 1[ , ] ([ , ] [ , ])
2

1        ([ , ] [ , ])
2

n n n n

m m m m

S S S S
n

E E E E
m

i H L L L L
t

L L L L

ρ ρ ρ ρ ρ
δ

ρ ρ

−
= − + +

+ +

∑

∑



   (B.1)           

where tδ  is the time between interactions of successive environment qubits, ( )tρ ρ= , 

' ( )t tρ ρ δ= + , SL  and EL  are two separate groups of channels. SL  is a collection of stabilizer 

channels. From the ancilla measurement protocol, we can get SL  with equal coupling strength 

determined by φ : 2 [ , ]
,/ 4 { }i j

S m m X ZL t Sφ δ == , where [ , ]i j  is for each plaquette. EL  is a 

collection of error channels which depend on the chosen error model. For generic balanced 

depolarizing channels, the error coupling vector for a collection of N data qubits with a per-spin 

error rate of γ  is: ( ) [1, ]
, ,/ 3{ }j j N

E m m X Y ZL γ σ ∈
== , this corresponds to a per time step error rate of tγδ  

for each data qubit.  

The Lindblad operator SL  can be obtained with simple calculations. Let 0E  and 1E  be the 

computation basis for a single spin, 0 [1,0]TE =  and 1 [0,1]TE = . We have two projective 

operators 0 0 0P E E=  and 1 1 1P E E= . The unitary evolution in Figure 7.13(a) can be written 

as 3 2 1U U U U= ,  where:  
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 1 ( ( ))yU I I I I R θ= ⊗ ⊗ ⊗ ⊗ , 
  

 

2 0 1

0 1

0 1

0 1

( )
       ( )
       ( )
       ( )

Z

Z

Z

Z

U I I I P I I I I P
I I P I I I I P I
I P I I I I P I I
P I I I I P I I I

σ
σ
σ
σ

= ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗
⋅ ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗
⋅ ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗
⋅ ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗

 ,   (B.2) 

 3 ( ( ))
2yU I I I I R π

= ⊗ ⊗ ⊗ ⊗ − .  

The evolution operator U  can be rewritten as 
4

1
i i

i
U A B

=

= ⊗∑ , where  

 
1

4
1 1 1

{even number of }

2cos( / 2) ,      ( )
2m m Y

P
A P B I iθ σ== ⊗ = +∑ , 

 
1

4
2 1 2

{odd number of }

2cos( / 2) ,      ( )
2m m Z X

P
A P Bθ σ σ== ⊗ = −∑ ,   (B.3) 

 
1

4
3 1 3

{even number of }

2sin( / 2) ,      ( )
2m m Y

P
A P B I iθ σ== ⊗ = −∑ ,  

                            
1

4
4 1 4

{odd number of }

2sin( / 2) ,      ( )
2m m Z X

P
A P Bθ σ σ== ⊗ = − −∑ ,  0 1{ , }mP P P∈ . 

 The state of the system after the unitary transformation is  

 

†
env

† †
env ' 0 0 '

, '

† †
' 0 ' 0

, '

Tr { }

     = Tr {( ) ( )}

     = .

S

j j j j
j j

j j j j
j j

U U

A A B E E B

A A E B B E

ρ

ψ ψ

ψ ψ

′ = Ψ Ψ

⊗∑

∑

   (B.4) 

The self-adjoint matrix †
0 0|jj j jM E B B E′ ′≡ 〈  has a set of orthonormal eigenvectors { }k kjµ µ=

  

with real eigenvalues kλ  such that  

 *
' ' ' '

'
.jj kj k kj jj k kj kj

j k
M Mµ λ µ λ µ µ= ⇒ =∑ ∑    (B.5) 

We get 1,2 0λ =  and 3,4 2λ = . For non-zero eigenvalues 3,4λ , we have 3 [0,0, 1/ 2,1/ 2]Tµ = −
  

and 4 [1/ 2,1/ 2,0,0]Tµ =
 . We define new operators  

 1 3 3 3 4 sin( / 2)j j Z Z Z Z
j

O A A Aλ µ θ σ σ σ σ≡ = − + = − ⊗ ⊗ ⊗∑  , 
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 2 4 4 1 2 cos( / 2)j j
j

O A A A I I I Iλ µ θ≡ = + = ⊗ ⊗ ⊗∑ .    (B.6) 

The expression in Eq. (B.4) then simplifies to  

 

2
† †

env
1

2 2 1 2 3 4 1 2 3 4

2 2 1 2 3 4 1 2 3 4

Tr { }

     =cos ( / 2) sin ( / 2)

    (1 / 4) / 4 ,

S k k
k

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z

U U O Oρ ψ ψ

θ ψ ψ θ σ σ σ σ ψ ψ σ σ σ σ

θ ψ ψ θ σ σ σ σ ψ ψ σ σ σ σ

=

′ = Ψ Ψ =

+

≈ − +

∑
   (B.7) 

where the tensor product ⊗  is neglected. Let 0ρ ψ ψ= , we then have  

 † †0
0 0

1 ([ , ] [ , ])
2

S L L L L
t

ρ ρ ρ ρ
δ
′ −

= + ,  (B.8) 

where   

 
2

1 2 3 4

4 Z Z Z ZL
t

θ σ σ σ σ
δ

= .  (B.9)  

For the quantum circuits in Figure 7.13(b), we can have  

 
2

1 2 3 4

4 X X X XL
t

θ σ σ σ σ
δ

= .   (B.10)  
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