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Abstract

The discriminator of an integer sequence s = (s(n))n≥0, first introduced by Arnold,
Benkoski and McCabe in 1985, is the function Ds(n) that maps the integer n ≥ 1 to the
smallest positive integer m such that the first n terms of s are pairwise incongruent modulo
m. In this thesis, we provide a basic overview of discriminators, examining the background
literature on the topic and presenting some general properties of discriminators.

We also venture into various computational aspects relating to discriminators, such
as providing algorithms to compute the discriminator, and establishing an upper bound
on the discriminator growth rate. We provide a complete characterization of sequences
whose discriminators are themselves, and also explore the problem of determining whether
a given sequence is a discriminator of some other sequence with some partial results and
algorithms.

We briefly discuss some k-regular sequences, characterizing the discriminators for the
evil and odious numbers, and show that k-regular sequences do not necessarily have k-
regular discriminators. We introduce the concept of shift-invariant discriminators, i.e.
discriminators that remain the same even if the original sequence is shifted, and present a
class of exponential sequences with this property. Finally, we provide a complete charac-
terization of quadratic sequences with discriminator pdlogp ne for primes p 6= 3, and provide
some partial results for the case of p = 3.
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Chapter 1

Introduction

This thesis focuses primarily on the topic of discriminators of integer sequences. The
discriminator for a sequence of integers is the function that maps each positive integer n to
the smallest positive integer m such that the first n elements of the sequence are distinct
modulo m. This topic was first introduced by Arnold, Benkoski, and McCabe [2] in 1985.

Their motivation was a problem in computer simulation about quickly determining the
square roots of randomly generated positive perfect squares below a given upper bound.
The idea was to pre-calculate all the squares within the range only once beforehand and
then store them on an array where the entries indexed by perfect squares contain the
corresponding square roots. This allows for quick lookup of the square roots (significantly
faster than a square-root algorithm), but requires an array size of n2 to store n square roots.
A more space-efficient alternative is to store the square roots at indices corresponding
to their square modulo a fixed constant k. This requires an array of size k while still
performing fast lookups, so the only remaining question was how small k could be to ensure
that each square root is stored in a distinct array entry. This translates directly into the
problem of computing the discriminator for the sequence of positive perfect squares.

This idea could be applied to any arbitrary sequence, i.e., construct an array such that,
given an arbitrary integer from the sequence, a lookup after a modulo function returns the
index of that integer in the sequence. Regardless of the application, however, it is quite an
interesting problem in number theory to compute the discriminator of a given sequence.
Since its inception, several authors have published results relating to the discriminators of
various different sequences. Most of the work so far was focused on sequences of powers and
sequences of polynomials, along with a handful of results relating to exponential sequences.

This thesis provides a basic overview on the topic of discriminators while proving several
new results using elementary number theory techniques. Chapter 1 contains the formal
definitions and basic properties of discriminators, along with a review of previous work
and a short guide on approaching the problem of computing the discriminator of some
sequences. This is followed by a discussion on various different computational aspects of
discriminators in Chapter 2.
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The next three chapters are focused on the discriminators of different types of sequences.
Chapter 3 is about the discriminators of k-regular sequences, such as the sequences of
odious and evil numbers, respectively. Following that, Chapter 4 deals with exponential
sequences, particularly a class of exponential sequences whose discriminators are shift-
invariant, i.e., sequences whose discriminators are unchanged if the sequences are shifted
by a constant. Finally, Chapter 5 considers the sequences of polynomials, most notably
the quadratic sequences with discriminator pdlogp ne for a prime number p.

This thesis is based, in part, on a published paper [10], a submitted paper [11], and an
unpublished manuscript [9].

1.1 Discriminators

Let S be a set of integers. For any integer m such that the numbers in S are pairwise
incongruent modulo m, we say that m discriminates S. In other words, computing each
of the elements in S modulo m generates a set of the same cardinality as S.

Now let s be a sequence of distinct integers. The discriminator of the sequence s
is the function that maps each integer n ≥ 1 to the smallest positive integer m such
that m discriminates the set of the first n elements of s. The discriminator function is
denoted by Ds(n) for sequence s and argument n, while the discriminators themselves
can be represented as another sequence (Ds(n))n≥1. Note that while the definition for
the discriminator is not dependent on how the sequence is indexed, the corresponding
discriminator sequence generally begins with Ds(1), with 1 being the starting index unless
Ds(0) is separately defined.

Let us consider the example of the sequence of positive squares, (sq(n))n≥1 = (n2)n≥0 =
1, 4, 9, . . . and compute the first few terms of its discriminator sequence:

• For n = 1, we consider the set with the first term only, {1}. As this is a singleton, it
is discriminated by every positive integer, the smallest of which is 1. So Dsq(1) = 1.

• For n = 2, the set with the first two terms is {1, 4}. Since 1 ≡ 4 ≡ 0 (mod 1), the
number 1 does not discriminate {1, 4}. However, 1 6≡ 4 (mod 2), so the number 2
discriminates the set {1, 4}. There are other numbers which discriminate {1, 4}, such
as the number 5, since 1 6≡ 4 (mod 5), but the number 2 is the smallest such positive
integer amongst them, so Dsq(2) = 2.

• For n = 3, the set with the first three terms is {1, 4, 9}. We observe that the numbers
from 2 to 5 inclusive do not discriminate {1, 4, 9} since

9 ≡ 1 (mod 2),

4 ≡ 1 (mod 3),

9 ≡ 1 (mod 4),

9 ≡ 4 (mod 5).
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But the number 6 discriminates {1, 4, 9}, and so, Dsq(3) = 6.

The sequence (Dsq(n))n≥1 = 1, 2, 6, . . . represents the discriminator sequence of the
sequence of positive squares.

In this thesis, we use the following notation. For integers a and b, we denote a|b to
indicate that a divides b. Likewise, a - b denotes that a does not divide b. And for a set S,
we let |S| denote the cardinality of S, i.e., the number of elements in S.

1.2 Previous Work

The discriminator was first introduced by Arnold, Benkoski, and McCabe [2], who com-
puted the discriminator for the sequence, 1, 4, 9, . . . of positive squares. The motivation
was based on a problem in computer simulation based on quickly determining the square
roots of randomly generated perfect squares within a bounded range.

For n > 4, they proved that the discriminator is the smallest number greater or equal
to 2n which is either a prime or twice or prime. The approach was focused on numbers in
the range between 2n and 4n inclusive, showing that numbers less than 2n cannot be the
discriminator, and then analyzing various possible cases of numbers in this range to prove
that only those that are primes or twice a prime fail to divide the difference between any
two of the first n squares. The existence of a prime in this range was ensured by Bertrand’s
Postulate, thus proving the proposed characterization of the discriminator.

Shortly after the concept of discriminators was introduced with the sequence of squares,
it was followed by various results on discriminators of sequences of higher powers. Schumer
and Steinig [19] defined the function D(j, n) to represent the discriminator of the first n
terms of the sequence of j-th powers, for j ≥ 1 and n ≥ 1. They then considered the
case of j = 2h for h ≥ 2, i.e., the discriminators of sequences of the form 12h , 22h , 32h , . . .,
such as the sequence of 4th powers or the sequence of 8th powers. They showed that for
n 6∈ {1, 2, 4, 8}, the discriminator of the first n elements is the smallest number greater or
equal to 2n of the form p or 2p, where p is a prime number that is equivalent to 3 modulo
4. This characterization resembled the discriminator of the squares and was proved by a
similar approach, except with slightly more complicated cases. The additional constraint
of p ≡ 3 (mod 4) arose from the fact that if m = p or m = 2p while p ≡ 1 (mod 4), then
p = a2 + b2 for some positive integers a and b, which implies that a4 ≡ b4 (mod m), thus
disqualifying m from being a possible discriminator for these sequences.

Aside from powers of 2, Schumer [18] characterized the discriminators for the sequence
of cubes and the sequence of sixth powers, i.e., for j = 3 and j = 6. For the sequence
of cubes, D(3, n) is the smallest number m that is greater or equal to n such that m is
squarefree and m has no prime divisors congruent to 1 modulo 3. The proof followed the
same idea as the previous papers, but with the analyzed numbers ranging from n to 4n/3
instead. Schumer noted that b3 − a3 = (b − a)(a2 + ab + b2) for all integers a and b, and
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showed that the second factor, (a2 + ab+ b2), can only represent integers of the form s2n0,
where n0 is squarefree and not divisible by any prime p ≡ 2 (mod 3). This is why the
discriminator is required to be squarefree with no prime divisors congruent to 1 modulo
3. A result on primes in arithmetic progressions showed that for all n ≥ 32, there exists a
prime p ≡ 2 (mod 3) satisfying n ≤ p < 4n/3, thus ensuring that there is always at least
one discriminator candidate in all such intervals for sufficiently large n.

Schumer also characterized the value of D(6, n) as being the smallest number greater
than 2n of the form p or 2p for prime p ≡ 2 (mod 3). The approach was similar to the
previous papers on sequences of squares or powers of 2h, by analyzing numbers from the
range 2n to 4n. For any pair of integers a and b, we have b6 − a6 = (b − a)(a + b)(a2 +
ab+ b2)(a2 − ab+ b2), which is a multiple of b3 − a3, so the results from the discriminator
of cubes proved to be useful for eliminating many possible candidates.

These results on the discriminators of powers were generalized by Bremser, Schumer
and Washington [6], who characterized D(j, n) for all n sufficiently large and for all j ≥ 2.
For even j, the values of D(j, n) follow a similar pattern as the case of j = 2, namely that
for n sufficiently large:

D(j, n) = min{k|k ≥ 2n, k = p or 2p, p prime, gcd(ϕ(k), j) = 2}, (1.1)

where the constraint of gcd(ϕ(k), j) = 2 is a generalization that is consistent with the
previous results on j = 2h and j = 6. This characterization is guaranteed to hold as long
as there is a prime p with gcd(p− 1, j) = 1 in the range 2n < p < 3n. Likewise, if j is odd,
then the value of D(j, n) resembles the case of j = 3, with

D(j, n) = min{k|k ≥ n, k squarefree, gcd(ϕ(k), j) = 1}, (1.2)

for n sufficiently large, as long as there is a prime p with gcd(p−1, j) = 1 and n ≤ p < 4n/3.

All of the results on discriminators discussed so far involved characterizing D(j, n)
based on the value of n while j is fixed. A paper by Moree and Roskam [14] takes a
different approach; instead of fixing j, they fixed the value of n. The case of 1 ≤ n ≤ 3 is
easily characterized, so their focus was on n ≥ 4. The paper contained various interesting
results involving functions E(n) and e(n), and a sequence (ak)k≥1, which were linked to
the discriminator function D(j, n). The function E(n) maps n to the smallest number k
such that n|ϕ(k), while the function e(n) maps n to the maximum of the exponents in
the canonical prime factorization of n. Finally, (ak)k≥1 is the sequence such that ak is the
lowest common multiple of the first k totients, i.e., ak = lcm(ϕ(1), ϕ(2), . . . , ϕ(k)).

One of the notable results in this paper was that D(ae(pα)−1, n) = E(pα) for prime
p and integer α satisfying a specific set of conditions. Relaxing the conditions led to a
weaker but simpler result that D(a2p, n) = 2p+ 1 for all primes p such that p ≥ n ≥ 4 and
2p+1. Such primes are called Sophie Germain primes. The paper then proceeded to show
that for infinitely many values of n, there are primes p such that D(j, n) = pe for some
integers j and e, where p > n/2 was a necessary condition for such a result. A stricter set
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of sufficient conditions on p, involving Fermat quotients, was also presented in the paper.
Note that from Eqs. (1.1) and (1.2), the discriminator is squarefree for n sufficiently large,
so the cases of D(j, n) = pe for e ≥ 2 arise before n is sufficiently large enough for those
equations to be applicable.

The first venture into the discriminators of sequences other than powers was by Moree
and Mullen [13]. They observed a clear connection between the characterization of D(j, n)
and results about permutation polynomials over the ring Z/kZ of integers modulo k. In
particular, they noted that for j > 1, the power Xj induces a permutation on Z/kZ if and
only if k is squarefree and gcd(j, ϕ(k)) = 1, which leads to an upper bound on D(j, n) that
matches with the characterization for odd j. A similar observation was made for even j
as well. These observations led to the interest in considering the discriminators of general
cyclic polynomials, which are given by Dickson (Chebyshev) polynomials:

gj(X, a) =

bj/2c∑
i=0

j

j − i

(
j − i
i

)
(−a)iXj−2i,

where the sequence of Xj represents the case of a = 0. Before analyzing the discriminator
of Dickson polynomials, the authors first improved the scope of Eq.(1.2), showing that it
is applicable for n large enough such that there exists a prime p with gcd(p− 1, j) = 1 and

n ≤ p ≤ 2n− 5/2 + (−1)n/2.

This can be more simply relaxed to n ≤ p < 2n − 1, which is still an improvement from
the previous stricter condition of n ≤ p < 4n/3. This result led to a characterization
of the discriminator of Dickson polynomials for odd j such that 3 - j. Specifically, for
k =

∏
pi|k p

ei
i , they defined ψa(k) = ϕ(k)

∏
p|k,p-a(p + 1), and denoted the a-part of k as

being the product
∏

pi|a,pi|k p
ei
i , in order to construct the following function:

Ga(j, n) = min{k ≥ n| gcd(j, ψa(k)) = 1 and the a-part of k is squarefree}.

They then showed that if Ga(j, n) ≤ 2n − 5/2 + (−1)n/2 for odd j > 1 and 3 - j, then
the discriminator of the first n terms of the Dickson polynomial (gj(n, a))n≥1 is Ga(j, n).
In particular, this characterization holds if either n ≤ 3570, n is sufficiently large, or
6 - a. They further derived a characterization for the discriminator in the case of j even,
but only if j ≡ 2 (mod 12) or j ≡ 10 (mod 12). They remarked that the existence
of the discriminator is not even ensured for other even values of j, since the sequence
may contain duplicates. The paper concluded with some results on the growth of the
discriminator of Dickson polynomials and some open problems like the discriminators for
the cases of Dickson polynomials that were not considered, or for other types of polynomials
with similar properties.

A generalization of polynomials was considered by Moree [12] soon afterwards. It was
here that the discriminator function was generalized as Df (n) mapping n ≥ 1 to the
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discriminator of the first n terms of the sequence defined by f(n). The paper focused on
polynomials f ∈ Z[x] such that the discriminator is given by

Df (n) = min{k ≥ n|f permutes Z/kZ} (1.3)

for sufficiently large n. The powers xj for odd j and Dickson polynomials gj(x, a) for
odd j and 3 - j that were discussed in previous literature were special cases that permute
Z/pZ for infinitely many primes p. For these functions, there are thus infinitely many
primes in Kf = {k ≥ 1|f permutes Z/kZ}. For a function f , any integer k ≥ n in Kf is
an upper bound for Df (n), so only the lower bound remains to be proven, which can be
quite difficult. One of the useful parameters that proved to be relevant in establishing the
lower bound is denoted by γ(f) = lim supi→∞ ki+1/ki, where k1, k2, . . . are the consecutive
elements of Kf . This parameter indicates how “close” the asymptotically large values of
Kf are to each other.

Through various lemmas, Moree showed that for sufficiently large n, Eq. (1.3) is satisfied
by all functions f for which Kf either contains infinitely many primes, or contains all of
the powers of at least two primes. For both of these cases, γ(f) = 1. For functions in
which Kf contains all powers of exactly one prime, γ(f) > 1. If γ(f) ≤ 3/2, then Eq. (1.3)
is still satisfied, but otherwise there are known counterexamples. Eq. (1.3) is clearly not
applicable to functions for which Kf is finite (where γ(f) =∞), so characterizations of the
discriminator of such functions was noted to be an open problem. Moree also presented
some results on the densities of these different types of functions based on their degree.

Some of these results on functions satisfying Eq. (1.3) had references to manuscripts
by Zieve, which were published later to expand on those results. Zieve [22] elaborated on
various proofs involving functions for which γ(f) = 1 and improved the results for functions
in which Kf contains all powers of exactly one prime. In particular, Zieve improved the
sufficient condition of 1 ≤ γ(f) ≤ 3/2 to 1 ≤ γ(f) ≤ 2, while showing that there are
counterexamples for any higher values of γ(f), while also improving some other parameters
involved in the characterization. Another general result is that if n is even, or a sufficiently
large odd number, then Df (n) ∈ Kf if there is an element in Kf that is only slightly
greater than n.

Zieve also proposed some generalizations to the concept of discriminators. One of them
was to set the starting value of the sequence, by defining Df (a, n) as being the smallest
positive integer k such that the terms f(a+ 1), f(a+ 2), . . . , f(a+ n) are distinct modulo
k. For functions f in which Eq. (1.3) is satisfied for sufficiently large n, it is also the case
that Df (n) = Df (a, n) for all integers a and sufficiently large n.

Another generalization involved the discriminator of rational functions of the form
f(X) = g(X)/h(X) where g, h ∈ Z[X] are coprime, where the discriminator Df (n) was
defined to be the least positive integer k such that f(1), f(2), . . . , f(n) are distinct modulo
k, with the additional constraint that h(a) is coprime to k for all a ∈ Z. Zieve showed that
all of the results in the paper were applicable to the general case of rational functions.
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Quite a while later, Sun [21] started looking into discriminators while seeking functions
that take only prime values. Several results were based on a type of function that is closely
related to the discriminator. These functions map the integer n ≥ 1 to the smallest number
m > 1 such that the first n terms of a given sequence are pairwise incongruent modulo
m. These functions differ from the discriminator in that they enforce m > 1 instead of
m ≥ 1, which is only relevant for the case of n = 1, and are therefore referred to as
(m > 1)-discriminators.

Sun conjectured that the (m > 1)-discriminator of two sequences,
(
2k
k

)
k≥1 and (k!)k≥1,

is a prime number for all values of n ≥ 1, with the sole exception of n = 5 for the
second sequence (k!)k≥1. Other sources verified the conjecture for n ≤ 5000 for the first
sequence, and n ≤ 10000 for the second sequence. This conjecture also appears to be the
first case in the literature in which discriminators were considered for sequences that grow
exponentially.

Sun then proved various results relating to discriminators:

1. For n ≥ 1, the (m > 1)-discriminator of the first n terms of (2k(k − 1))k≥1 is the
least prime greater than 2n − 2. In particular, the set of (m > 1)-discriminators is
exactly the set of prime numbers.

2. For n ≥ 1, the (m > 1)-discriminator of the first n terms of (k(k− 1))k≥1 is the least
integer greater or equal to 2n− 1 which is either a prime or a positive power of 2.

3. For n ≥ 1, the discriminator (m ≥ 1) of the first n terms of (k(k − 1)/2)k≥1 (the
triangular numbers) is given by 2dlog2 ne.

4. For d ∈ {2, 3} and n ≥ 1, the discriminator of the first n terms of (k(dk − 1))k≥1 is
given by ddlogd ne.

5. For n ≥ 4, the discriminator of the first n terms of (18k(2k−1))k≥1 is the least prime
p > 3n such that p ≡ 1 (mod 3).

6. For d ∈ {4, 6, 12} and n ≥ 3, the (m > 1)-discriminator of the first n terms of
((2k − 1)d)k≥1 is the least prime p ≥ 2n− 1 such that p ≡ −1 (mod d).

7. For n ≥ 1 and q an odd prime, the (m > 1)-discriminator of the first n terms of
(kq(k − 1)q)k≥1 is the least prime p ≥ 2n− 1 such that p 6≡ 1 (mod q).

8. Define sn =
∑n

k=1(−1)n−kpk for all n ≥ 1, where pk denotes the k-th prime. Then,
for n ≥ 1, the first n terms of (2s2k)k≥1 are pairwise incongruent modulo pn+1.

The last result here gives an upper bound for the discriminator of (2s2k)k≥1, which was
also conjectured to be the lower bound as well, for n 6= 1, 2, 4, 9. This conjecture was verified
for all n ≤ 105. Sun also presented several other conjectures, relating to functions based on
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consecutive primes, and other specially defined functions, whose (m > 1)-discriminators
might take only prime values.

More results on the discriminators of exponential sequences were presented by Moree
and Zumalacárregui [15], who computed the discriminator of the Salajan sequence, which

is given by
(
|((−3)n−5)|

4

)
n≥1

and named after Sabin Salajan, who conjectured the result.

Moree and Zumalacárregui showed that the discriminator of the first n terms of the Salajan
sequence is given by min(2dlog2(n)e, 5dlog5(5n/4)e), through a rather long process. They started
by showing that both 2dlog2(n)e and 5dlog5(5n/4)e discriminate the first n terms of the Salajan
sequence, and also established an upper bound of 2n− 1 for the discriminator.

They then showed that all other numbers below 2n − 1 fail to be the discriminator.
This involved several steps, the first of which involved considering the period of a sequence
modulo d. A useful lemma showed that if the discriminator of sequence v is bounded from
above by some non-decreasing function g(n) for all n ≥ 1, and that g(ρv(d)) < d for some
d, where ρv(d) is the period of sequence v modulo d, then d cannot lie in the discriminator
sequence of v. They applied this result to the Salajan sequence to show that the number
3 does not divide any element in the discriminator of the Salajan sequence. They then
showed that the discriminator must be a prime power for all n ≥ 1.

They then proceeded to define a function related to discriminators known as the in-
congruence index. Given a sequence v, the incongruence index is the function which maps
the integer m to the integer k such that the first k terms of v are pairwise incongruent
modulo m. In other words, it returns the maximum number of consecutive terms of the
sequence that can be discriminated by the argument of the function. By analyzing the
incongruence index of the Salajan sequence, along with other techniques, they showed that
the discriminator cannot be the power of a prime number greater than 5. Since 3 was
already excluded earlier, the only remaining discriminator candidates are powers of 2 and
powers of 5, which leads to the desired result.

These results on the Salajan sequence were generalized by Ciolan and Moree [7], who
computed the discriminator of Browkin-Salajan sequences, which is a generalization of
the Salajan sequence introduced by Jerzy Browkin. For a prime q ≥ 5 and setting q∗ =
(−1)(q−1)/2 · q, the Browkin-Salajan sequences are of the form

(sq(n))n≥1 =

(
3n − q∗(−1)n

4

)
n≥1

,

where the original Salajan sequence represents the case q = 5. Browkin conjectured that
the discriminator only takes values which are powers of 2 or powers of q. Ciolan and Moree
showed that this conjecture is true for all cases except when n = 5 and q ≡ ±1 (mod 28),
in which case the discriminator is 7. In particular, they characterized the discriminator
of all Browkin-Salajan sequences based on the value of q, specifically on whether it is an
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Artin, Mirimanoff, or Fermat prime. The discriminators were given as

Dsq(n) =


min{2e, qf : 2e ≥ n, qf ≥ q

q−1n} if q is Artin, but not Mirimanoff;

min{2e, q : 2e ≥ n, q ≥ n+ 1} if q is Artin, Mirimanoff, but not Fermat;

min{2e : 2e ≥ n} if q is Artin, Mirimanoff, and Fermat;

min{2e : 2e ≥ n} if q is not Artin,

except for when n = 5 and q ≡ ±1 (mod 28) as noted earlier. They further showed that for
the case in which q is Artin but not Mirimanoff, the value qf occurs as a discriminator if

and only if
{
f log q

log 2

}
> log(q/(q−1))

2
, where {x} denotes the fractional part of the real number

x.

The process of proving these results was very similar to the proof for the discriminator of
the Salajan sequence by Moree and Zumalacárregui [15], but with additional complications
for the general case, such as how the period of the general Browkin-Salajan sequence
modulo d can be odd for some d with 9 - d, whereas the proof for the Salajan sequence
depended on the periods being even for all such d. There were also more cases to consider
in some of the steps involved in proving the discriminator for the general Browkin-Salajan
sequences.

More recently, another infinite family of sequences, known as the Lucas sequences, was
studied by Faye, Luca, and Moree [8]. The Lucas sequences, denoted by (uk(n))n≥0 for
integers k ≥ 1, are defined by the recurrence uk(n + 2) = (4k + 2)uk(n + 1) − uk(n) with
initial values uk(0) = 0 and uk(1) = 1. For k = 1, they defined vn as being the smallest
power of 2 such that vn ≥ n, and wn as the smallest integer of the form 2a5b satisfying
wn ≥ 5n/3 for positive integers a and b. They showed that the discriminator for k = 1 is
given by Du1(n) = min{vn, wn}.

The case of k = 2 was relatively simple, with the discriminator being the smallest
integer greater or equal to n which is either a power of 2, or three times a power of 2. For
k > 2, the discriminator appears to be very different from the case k = 1, and is based on
the following sets:

Ak =

{
{m odd : if p|m, then p|k} if k 6= 6 (mod 9);

{m odd, 9 - m : if p|m, then p|k} if k ≡ 6 (mod 9),

Bk =

{
{m even : if p|m, then p|k(k + 1)} if k 6= 2 (mod 9);

{m even, 9 - m : if p|m, then p|k(k + 1)} if k ≡ 2 (mod 9).

Then the discriminator satisfies Duk(n) ≤ min{m ≥ n : m ∈ Ak ∪ Bk}, with equality
established under certain conditions.

The proofs began with showing that for n ≥ 1, all powers of 2 greater than n dis-
criminate the first n terms of any Lucas sequence. For the powers of other primes, a
useful parameter was introduced, denoted by z(m), and referred to as the index of appear-
ance of m in uk. Given m, the value of z(m) is the smallest positive integer such that
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uk(z(m)) ≡ 0 (mod m). Through a long process of utilizing the properties of z(m), and
establishing various results based on the structure of the Lucas sequences, the discrimina-
tors of the Lucas sequences were established. The case k = 1 was quite different from the
case k > 1, though the case k = 2 was especially simple and proved separately from the
case k > 2.

The paper concluded with an analogy of z(m) to polynomial sequences, noting how it
led to the earlier established results by Moree [12] and Zieve [22].

1.3 Some Properties of Discriminators

In this section, we list various general properties of discriminators of sequences. Let s =
(s(i))i≥0 be a sequence of distinct integers.

• Fact 1: Ds(n) is the smallest positive integer m such that m - s(j) − s(i) for all
0 ≤ i < j < n.

This follows from the fact that

s(i) ≡ s(j) (mod m) ⇐⇒ m|s(j)− s(i).

That is, m discriminates a set only when it does not divide the difference between any two
integers in the set. This results in an alternative definition for discriminators.

• Fact 2: Ds(1) = 1.

A singleton is discriminated by every positive integer, the smallest of which is the number
1.

• Fact 3: The discriminator sequence is non-decreasing.

This can be proven by contradiction. Suppose Ds(n) < Ds(n − 1) for some n ≥ 2. By
definition, the number Ds(n) discriminates the set

{s(0), s(1), . . . s(n− 1)},

so the numbers in this set are pairwise incongruent modulo Ds(n). But this implies that
Ds(n) also discriminates any subset of this set, such as the set of the first n− 1 terms,

{s(0), s(1), . . . , s(n− 2)}.

Since Ds(n) < Ds(n − 1), it follows that Ds(n − 1) is not the smallest number which
discriminates this subset, thus contradicting the definition of the discriminator.
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• Fact 4: Ds(n) ≥ n for all n ≥ 1.

By definition of discriminator, the first n terms of s are pairwise incongruent modulo
Ds(n). This implies that these n terms lie in n different residue classes modulo Ds(n). But
if Ds(n) < n, then there are fewer than n possible residue classes modulo Ds(n), which is
a contradiction.

• Fact 5: If s is non-decreasing, then Ds(n) ≤ s(n− 1)− s(0) + 1 for all n ≥ 1.

Since s is non-decreasing, it follows that from the set

{s(0), s(1), . . . , s(n− 1)},

the largest number is s(n − 1) and the smallest number is s(0). The largest difference
between two elements in the set is s(n − 1) − s(0). Any number that is greater than
s(n − 1) − s(0) does not divide s(n − 1) − s(0) or any of the pairwise differences in the
set, and so this number discriminates the sequence. Therefore, the discriminator can be
at most s(n− 1)− s(0) + 1.

• Fact 6: Let s′ be a sequence such that (s′(i))i≥0 = (s′(i) + a)i≥0 for a constant a.
Then Ds′(n) = Ds(n).

The difference between any two terms in s′ is

s′(j)− s′(i) = s(j) + a− s(i)− a = s(j)− s(i).

Therefore, for n ≥ 1, the smallest number which does not divide s′(j) − s′(i) for all
0 ≤ i < j < n is the same as the smallest number which does not divide s(j)− s(i) in the
same range. Thus, both the sequences s and s′ have the same discriminator.

• Fact 7: Let s′ be a sequence such that ((s′(i))i≥0 = (as′(i))i≥0 for a constant a. Then
for any n ≥ 1 such that gcd(a,Ds(n)) = 1, we have Ds(n) = Ds′(n).

This is proved in the following lemma:

Lemma 1. Given a sequence s(0), s(1), . . . , and a non-zero integer a, let s′(0), s′(1), . . . ,
denote the sequence such that s′(i) = as(i) for all i ≥ 0. Then, for every n such that
gcd(|a|, Ds(n)) = 1, we have Ds′(n) = Ds(n).
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Proof. From the definition of the discriminator, we know that for every m < Ds(n), there
exists a pair of integers i and j with i < j < n, such that m|s(j) − s(i). Thus, for this
same pair of i and j, we have

m|a(s(j)− s(i)) = as(j)− as(i) = s′(j)− s′(i).

Therefore, m cannot discriminate the set {s′(0), s′(1), . . . , s′(n−1)} and so Ds′(n) ≥ Ds(n).

But for m = Ds(n), we know that for all i and j with i < j < n, we have m - s(j)−s(i).
Since gcd(m, |a|) = 1, it follows that

m - a(s(j)− s(i)) = as(j)− as(i) = s′(j)− s′(i)

for all i and j with i < j < n. Therefore, m = Ds(n) discriminates the set

{s′(0), s′(1), . . . , s′(n− 1)}

and so Ds′(n) ≤ Ds(n).

Putting these results together, we have Ds′(n) = Ds(n).

1.4 Basic approaches in determining the discrimina-

tor of a sequence

In this section, we describe the basic approaches for computing the discriminator of a
sequence.

1.4.1 Initial Approach

In general, it is a good idea to begin with numerically computing the discriminator for
many terms in the sequence. This can be very useful to identify regular patterns while
catching exceptional cases with unusual behavior. It is worth noting that in many cases,
the discriminator sequence may not appear to follow any meaningful pattern until later on
in the sequence. It is often useful to note down the prime numbers or prime powers that
appear in the discriminator sequence, since they tend to play a significant role in governing
the discriminator.

1.4.2 Characterizations of the discriminator

Based on the literature, it seems that are generally two common ways of characterizing
discriminators, each with their own distinct but somewhat similar approaches. The first
is to characterize the discriminator of n terms as being the smallest number within some
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range (at least a lower bound) that satisfies certain conditions, with the range depending
on n. An example of this is the discriminator of the sequence of squares for n ≥ 4, where
Dsq(n) is the smallest number greater or equal to 2n which is either a prime or twice a
prime. The second type of characterization involves expressing the discriminator explicitly
in a formula based on n. An example of this is the discriminator of the first n terms of the
Salajan sequence, which is given by min(2dlog2(n)e, 5dlog5(5n/4)e).

1. For approaches based on the former case, the default lower bound for the discrim-
inator of n terms is n itself, which is applicable for all sequences. It is sometimes
possible to prove a higher lower bound, depending on the sequence. Although an
upper bound is not usually enforced in the characterization of the discriminator, it
is often the case that an implicit upper bound is established.

The upper bound tends to be closely related to the numbers that discriminate the
first n terms of a sequences. In many cases, it can be shown that numbers satisfying
certain conditions (which do not include an upper bound) discriminate the first n
terms of a sequence. Then the upper bound manifests when proving that there exists
at least one such number that lies below the upper bound. In some rare cases,
the process is reversed, in that the upper bound is enforced as a condition on the
discriminator, and is relied on to prove that numbers below the upper bound and
fulfilling other conditions discriminate the first n terms of the sequence.

Once the lower and upper bounds are established, and after finding sufficient con-
ditions for a number to discriminate the first n terms, what remains to be shown is
that the conditions are necessary. The upper and lower bounds are often important
here, so that only numbers within these bounds can be considered. By showing that
all numbers in this range that violate at least one of the given conditions fail to dis-
criminate the first n terms of the sequence, the conditions are proven to be necessary,
thus completing the characterization of the discriminator.

2. The second approach, which is based on an explicit formula to describe the discrimi-
nator, tends to have a more straightforward procedure. Each discriminator candidate
generated by the formula represents both an upper bound and a lower bound of the
discriminator, which are generally proven separately. The upper bound is established
by showing that the candidate discriminates the first n terms of the sequence. Mean-
while, the lower bound is proven by showing that all numbers below the candidate
fail to discriminate the same n terms of the sequence. This can sometimes be quite
tricky, because there are often numbers less than the candidate which share similar
properties to the candidate, so they need to be clearly distinguished.

Regardless of which type of characterization is pursued, it is often helpful to consider
a general formula for s(j) − s(i) for arbitrary integers i and j. This is because for any
sequence s and for all n ≥ 1, we have Ds(n) - s(j) − s(i) for all i and j in the range
0 ≤ i < j < n. Furthermore, for all m < Ds(n), we have m|s(j)− s(i) for at least one pair
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of i and j in the same range 0 ≤ i < j < n. It is also worth noting that the discriminator
is a nondecreasing sequence, so it is sufficient to consider only the values of m in the range
Ds(n− 1) ≤ m < Ds(n) to prove a lower bound for Ds(n).

The first type of characterization seems to occur more often in the literature, but the
results in this thesis tend to follow the second type.
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Chapter 2

Computational Aspects of
Discriminators

In this chapter, we consider discriminators from a computational perspective. We present
algorithms to compute the discriminator of the first n terms of a given sequence, and ana-
lyze the complexity of the algorithms. We also consider the computability of solving other
problems relating to discriminators, such as determining whether there exists a sequence
whose discriminator is a given sequence.

In this chapter, we use asymptotic order notations. The notation f(n) ∈ O(g(n))
indicates that there exists some c > 0 for which |f(n)| ≤ c|g(n)| for all n sufficiently large,
which means the growth rate of f(n) does not exceed g(n). Likewise, f(n) ∈ Ω(g(n))
indicates that there exists c > 0 for which |f(n)| ≥ c|g(n)| for all n sufficiently large.
The notation f(n) ∈ Θ(g(n)) means that f(n) and g(n) have the same growth rate, i.e.,
f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

For stricter bounds, the notation f(n) ∈ o(g(n)) indicates that |f(n)| < c|g(n)| for
all c > 0 and all n sufficiently large, which means f(n) grows strictly slower than g(n).
Likewise, f(n) ∈ ω(g(n)) indicates that |f(n)| > c|g(n)| for all c > 0 and all n sufficiently
large.

2.1 Discriminator Growth Rate

In the previous chapter, it was noted that the discriminator Ds(n) of the first n terms of
a sequence (s(i))i≥0 satisfies the inequality n ≤ Ds(n) ≤ s(n− 1) + 1. Depending on how
quickly the sequence (s(i))i≥0 grows, this can be a very broad range. As noted in Chapter
1, the discriminator was first introduced for the purpose of improving space complexity,
by reducing the size of an array from n2 to d, where d is the discriminator of the first
n positive squares, as studied by Arnold, Benkoski, and McCabe [2]. In that case, the
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discriminator of the squares grew linearly with n. Here we present a general result for the
growth rate of the discriminator of all integer sequences.

Theorem 2. Let (s(i))i≥0 be a non-negative integer sequence of distinct terms such that
s(n) ∈ O(f(n)) for a function f(n). Then

Ds(n) ∈ O(n2 log f(n)),

where Ds(n) is the discriminator function of the sequence (s(i))i≥0.

Proof. For n ≥ 1, we define the functions Bs(n) and Ps(n) as follows:

Bs(n) = max
0≤i<n

s(i),

Ps(n) =
∏

0≤i<j<n

s(j)− s(i).

Now, there exists a constant c such that for every positive integer N , there exists a number
t that does not divide N such that t ≤ c log2N . This is shown by Pomerance, Robson,
and Shallit [17] who established c ≤ 4.4. Setting N = Ps(n) implies that there exists
t ≤ c log2 Ps(n) such that t - s(j) − s(i) for all integers i and j such that 0 ≤ i < j < n.
It follows that t discriminates the set {s(0), s(1), . . . , s(n − 1)}, and thus, Ds(n) ≤ t ≤
c logPs(n). Now

Ds(n) ≤ c logPs(n) = c log

( ∏
0≤i<j<n

s(j)− s(i)

)

≤ c log

( ∏
0≤i<j<n

Bs(n)

)
= c

∑
0≤i<j<n

logBs(n) = c logBs(n)
∑

0≤i<j<n

(1)

= c
n(n− 1)

2
logBs(n) ∈ O(n2 logBs(n)).

We have Bs(n) ∈ O(f(n)) since s(n) ∈ O(f(n)). Therefore, Ds(n) ∈ O(n2 log f(n)).

This result can be used to establish an upper bound on the growth rate of the discrim-
inator of many sequences.

Corollary 3. For sequences with growth rates in O(nk) for k > 2, the growth rates of the
corresponding discriminator sequences are in O(n2 log n).

This result is also applicable for k ≤ 2, but we already know that Ds(n) ≤ s(n) + 1 for
all n ≥ 1 and so Ds(n) ∈ O(nk), which is a better upper bound for k ≤ 2.

Corollary 4. For exponential sequences with growth rate O(an) for a > 1, the growth rates
of their discriminators are in O(n3).

Corollary 5. Sequences with growth rate O(nn), such as n!, have discriminators with
growth rates in O(n3 log n).
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2.1.1 Discriminator growth rate of polynomials

As we have seen in Corollary 3, sequences with polynomial growth rate O(nk) have a
discriminator growth rate in O(n2 log n). However, it is not known whether there are
any sequences with polynomial growth whose discriminator grows faster than linear. Fur-
thermore, we can show that sequences of the form (q(n))n≥0 = (αn2 + βn + γ)n≥0 have
discriminators Dq(n) ∈ O(n).

Theorem 6. Let (q(n))n≥0 = (αn2 + βn + γ)n≥0 be an integer-valued sequence. Then
Dq(n) ∈ O(n).

Proof. By definition, the discriminator is the smallest number such that Dq(n) - q(j)−q(i)
for all integers i and j such that 0 ≤ i < j < n. It suffices to find a prime number p such
that p - q(j)− q(i) for all i and j in this range to show that Dq(n) ≤ p. Now

q(j)− q(i) = αj2 + βj − αi2 − βi = α(j2 − i2) + β(j − i)
= (j − i)(α(i+ j) + β). (2.1)

Note that j−i ≤ n and α(i+j)+β < 2αn+β. We define a constant k = max(1, 2α+β, 2α)
so that kn ≥ j − i and kn ≥ α(i+ j) + β. By Bertrand’s Postulate, we know there exists
a prime number p in the range kn ≤ p < 2kn. Since p > j − i and p > α(i + j) + β, it
follows that p - q(j)− q(i). Therefore, Dq(n) ≤ p < 2kn and thus, Dq(n) ∈ O(n).

Note that this proof applies only to sequences of the form (αn2 + βn + γ)n≥0 and not
to an arbitrary sequence with quadratic growth rate.

Conjecture 7. All sequences with growth rates in O(n2) have discriminators in Θ(n).

It is not known whether cubic sequences have discriminators with linear growth. The
following conjecture is based on empirical results:

Conjecture 8. The discriminators of the sequences (n3 + 11n2 − 6n − 7)n≥0 and (n3 +
16n2 − 39n+ 22)n≥0 are in ω(n).

2.2 Computing the discriminator of a given sequence

Given a sequence, we consider the problem of numerically computing the first n terms
of the corresponding discriminator sequence. In general, there are two cases in how the
input sequence is represented: either the first n terms are provided explicitly as input, or
the sequence is described by a formula or recurrence relation. In this section, we provide
algorithms for both scenarios.
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2.2.1 Computing the discriminator given the terms of the se-
quence

We propose the following algorithm to compute the first n terms of the discriminator of a
sequence for which the first n terms are given explicitly.

Algorithm 1: DiscFromSequence (n, (s(t))0≤t<n)

Input: Integer n, the values of the sequence s(0), s(1), . . . , s(n− 1).
Output: Discriminator sequence Ds(1), Ds(2), . . . , Ds(n).

1 Initialize d← 1, Ds(1)← 1, and i← 0;
2 Initialize R← ∅;
3 for t← 1 to n do
4 while i < t do
5 if s(i) mod d 6∈ R then
6 R← R ∪ {s(i) mod d};
7 i← i+ 1;

8 else
9 R← ∅;

10 d← d+ 1;
11 i← 0;

12 end

13 end
14 Set Ds(t)← d;

15 end
16 Return Ds(1), Ds(2), . . . , Ds(n).

There are various data structures that can be used for the set R. One possibility is the
binary trie, where each integer can be represented by traversing down a binary tree bit by
bit.

Theorem 9 (DiscFromSequence Correctness). The DiscFromSequence algorithm returns
the correct discriminator of the input sequence.

Proof. We observe from the algorithm that the value of d is maintained for as long as the
“else” condition is not reached. Within this duration, the set R is not cleared and the
index i takes distinct values at each iteration of the while loop. This implies that the
“else” condition is invoked if and only if there was an earlier value of i that added the
current value of s(i) mod d to the set R. The earlier addition must have been done for the
same value of d, because R would have been cleared otherwise. This means that there are
two values of i less than t for which s(i) mod d are equivalent, and therefore, Ds(t) 6= d for
all t and d for which the “else” condition is reached.

This “else” condition resets i to 0 and increments d by 1 whenever Ds(t) 6= d. It follows
that the “while” loop can only be exited by the smallest value of d for which the “if”
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condition is satisfied for all 0 ≤ i < t, i.e., the numbers s(i) mod d are distinct. In other
words, Ds(t) = d for all t and d in which the “while” loop terminates.

We now analyze the performance of the DiscFromSequence algorithm using the RAM
computational model.

Theorem 10 (DiscFromSequence Time Complexity). Let s(n) ∈ O(f(n)). If the Dis-
cFromSequence algorithm is implemented using a binary trie, then the runtime of the al-
gorithm, T (n, f(n)), is in O(n(log f(n))Ds(n)(logDs(n))).

Proof. For n ≥ 1, this algorithm for computing the first n terms of the discriminator
involves iterating the value of d from 1 to Ds(n). For each value of d, there are at most
n terms of the sequence being computed modulo d, with each result being looked up in
the data structure and inserted if it’s not present. Each mod operation is achieved in
O((log f(n))(log d)) time in the RAM computational model, while each search/insert is
achieved in O(log d) time (searching in a binary trie). So for each value of d, the runtime
is in O(n((log f(n))(log d) + (log d))) ∈ O(n(log f(n))(log d)).

Since d iterates from 1 to Ds(n), the runtime of the entire algorithm is bounded by

T (n, f(n) ∈
Ds(n)∑
d=1

O(n(log f(n))(log d)) ∈ O

n(log f(n))

Ds(n)∑
d=1

(log d)


∈ O(n(log f(n))Ds(n)(logDs(n))).

Corollary 11. The runtime of DiscFromSequence, T (n, f(n)), using a binary trie imple-
mentation, is in O(n3(log2 f(n))((log n) + (log log f(n)))).

Proof. Since Ds(n) ∈ O(n2 log f(n)), we have

T (n, f(n)) ∈ O(n(log f(n))Ds(n)(logDs(n)))

∈ O(n(log f(n))n2(log f(n)) log(n2 log f(n)))

∈ O(n3(log2 f(n))((log n) + (log log f(n)))).

It may be worth noting that the runtime is in O(n3+ε1(log2+ε2 f(n))) for all ε1, ε2 > 0.

The runtime is a polynomial function of the size of the input, where n is the number of
terms in the input sequence, and log f(n) is an upper bound on the number of bits needed
to represent each of the first n terms of the sequence. Therefore, the problem of computing
the discriminator of the first n terms of a given input sequence lies in the class P.

Theorem 12 (DiscFromSequence Space Complexity). Let s(n) ∈ O(f(n)). Then the
space complexity of DiscFromSequence, using a binary trie implementation, and excluding
the input and the output, is in O(Ds(n)).
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Proof. Aside from the input and output, the algorithm only stores a single value of d at
any time, which takes O(logDs(n)) space, and a binary trie of residues modulo d. The
space complexity of the binary trie depends on how many nodes it carries. At any time,
the maximum height of the binary trie is equal to the number of bits of the largest number
represented in it. The largest number is d−1 ≤ Ds(n), so the height is log2Ds(n) and thus,
the maximum number of nodes in the trie is in O(2log2Ds(n)) ∈ O(Ds(n)), which dominates
the complexity of storing a single value of d.

Corollary 13. The space complexity of DiscFromSequence, using a binary trie implemen-
tation, and excluding the input and the output, is in D(n2 log f(n)).

Proof. This follows immediately from the result that Ds(n) ∈ O(n2 log f(n).

It may be worth noting, however, that the result Ds(n) ∈ O(n2 log f(n)) is not known
to be tight, i.e., it is not known whether there are any sequences with discriminators in
Θ(n2 log f(n)). Therefore, the bounds that depend on Ds(n) may be more useful.

In particular, note that the space complexity for storing the input is O(n log f(n)), since
there are n terms, each of which are in O(f(n)). In some cases, this may actually dominate
the space complexity of the algorithm itself, which is in O(Ds(n)). For example, there are
known exponential sequences whose discriminators grow linearly. In some of these cases,
there may be a more space-efficient approach in computing the discriminators, as shown
in the next subsection.

2.2.2 Generating the discriminator of sequences described by a
formula

The second scenario is when the sequence is described by a formula or a set of formulas.
This includes recurrence relations as well. An obvious approach to computing the dis-
criminators of such sequences is to first compute the terms of the sequence and then call
DiscFromSequence.

Algorithm 2: DiscFromFormula (n, Description of s)

Input: Integer n, description of the sequence (s(n))n≥0.
Output: Discriminator sequence Ds(1), Ds(2), . . . , Ds(n).

1 Compute the first n terms of s, and store them as s(0), s(1), . . . , s(n− 1);
2 Return DiscFromSequence (n, (s(t))0≤t<n).

Theorem 14 (DiscFromFormula Time Complexity). Let s(n) ∈ O(f(n)) and let g(n)
denote the time complexity of computing s(n). Then the runtime of DiscFromFormula is
in O(n(log f(n))Ds(n)(logDs(n)) + ng(n)).
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Proof. The runtime for computing n terms of s(n) is bounded by O(ng(n)). Including
DiscFromSequence, the total runtime is in O(n(log f(n))Ds(n)(logDs(n)) + ng(n)).

Typically the runtime for computing all n terms of the sequence is dominated by the
runtime for DiscFromSequence.

Theorem 15 (DiscFromFormula Space Complexity). Let s(n) ∈ O(f(n)). Then the space
complexity of DiscFromFormula in in O(n(log f(n)) +Ds(n)).

Proof. Each term in the sequence can be represented by O(log f(n)) bits, so the storage
of n terms has a space complexity of O(n log f(n)). Combined with the space complexity
of DiscFromSequence, the total space complexity is in O(n(log f(n)) +Ds(n)).

As noted earlier, since discriminators tend to grow slower than the known upper bound
of O(n2(log f(n))), it is possible that the n log f(n) component of the space complexity
(which stores the terms in the sequence) dominates Ds(n). In some of these cases, however,
it may be possible to describe the sequence using a linear recurrence, or a convenient
formula composed of operations that are compatible with modular arithmetic. In these
cases, we can generate the terms of the sequence modulo d instead of computing the exact
terms.

Algorithm 3: DiscFromLinRec (n, Description of s)

Input: Integer n, the sequence s(0), s(1), . . . , s(n− 1) represented in binary.
Output: Discriminator sequence Ds(1), Ds(2), . . . , Ds(n).

1 Initialize d← 1, Ds(1)← 1, and i← 0;
2 Initialize R as an empty set;
3 for t← 1 to n do
4 while i < t do
5 Generate s(i) mod d;
6 if s(i) mod d 6∈ R then
7 R← R ∪ {s(i) mod d};
8 i← i+ 1;

9 else
10 R← ∅;
11 d← d+ 1;
12 i← 0;

13 end

14 end
15 Set Ds(t)← d;

16 end
17 Return Ds(1), Ds(2), . . . , Ds(n).

The algorithm is identical to DiscFromSequence, except s(i) mod d is computed at each
iteration of the while loop, since the values of s(i) are not given as input.
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In this case, the space complexity is no longer dependent on the growth rate of the
given sequence. The time complexity now depends on the runtime of generating the terms
modulo d, which may also be independent on the growth rate of the given sequence.

Theorem 16 (DiscFromLinRec Time Complexity). Let h(n, d) denote the time complexity
of computing s(n) mod d. Then the runtime for DiscFromLinRec satisfies

T (n, h(t, d)) ∈ O

Ds(n)∑
d=1

n(h(n, d) + log d)


Proof. For each value of d, there are n terms being generated modulo d, each having h(n, d)
runtime. Searching and inserting into the binary trie is in O(log d) time. Since d runs from
1 to Ds(n), the desired result follows.

If s(n) ∈ O(f(n)), then it is often the case that h(n, d) ∈ O(poly(log f(n)) log d). This
leads to a runtime that is comparable to the DiscFromSequence runtime.

Theorem 17 (DiscFromLinRec Space Complexity). The space complexity of DiscFrom-
LinRec is in O(Ds(n) + n(logDs(n))).

Proof. The space complexity of the binary trie is the same as in DiscFromSequence, which
is O(Ds(n)). In addition to that, each of the n terms in the sequence are stored modulo d
for some value of d ≤ Ds(n) at any time. Therefore, the space complexity of storing the
terms of the sequence modulo d is in O(n(logDs(n))). Thus the total space complexity is
in O(Ds(n) + n(logDs(n))).

We can use DiscFromLinRec to save space on many types of sequences. For example,
exponential sequences of the form (s(n))n≥0 = (an)n≥0 can grow very large very quickly,
but they can be represented by the linear recurrence s(n) = as(n − 1). Thus we can
apply DiscFromLinRec to achieve a space complexity of O(Ds(n) +n(logDs(n))), which is
better than the space complexity O(Ds(n)+n log f(n)) from DiscFromSequence, especially
if Ds(n) grows much slower than f(n).

2.3 Determining whether a given sequence is a dis-

criminator of some other sequence

In this section, we are concerned with the following problem: given a sequence of positive
integers (d(n))n≥1, does there exist another integer sequence with distinct terms (s(n))n≥1
such that Ds(n) = d(n) for all n ≥ 1? For this section, note that the sequences (d(n))n≥1
and (s(n))n≥1 both begin with the index 1, to maintain consistency.
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In order to have Ds(n) = (d(n))n≥1 for all n ≥ 1, an obvious condition is that d(1) = 1,
since Ds(n) = 1 for all integer sequences (s(n))n≥1. The following lemmas indicate the
sufficient and necessary conditions for d(2) and d(3).

Lemma 18. Let (d(n))n≥1 be a sequence of positive integers such that d(1) = 1. Then
there exists an integer sequence with distinct terms (s(n))n≥1 with Ds(2) = d(2) if and only
if d(2) = pk for prime p and integer k ≥ 1.

Proof. Suppose d(2) = pk for prime p and integer k ≥ 1. Then let (s(n))n≥1 be a sequence
such that s(2) = s(1) + lcm(2, 3, . . . , pk − 1). Then for all m < pk, we have m|s(2)− s(1).
Since pk - s(2)− s(1), if follows that Ds(2) = pk = d(2).

For the other direction, let us suppose, to get a contradiction, that there exists a
sequence of distinct integers (s(n))n≥1 such that Ds(2) = d(2) while d(2) cannot be written
in the form pk for prime p ≥ 2 and integer k ≥ 1. Since d(2) = Ds(2) ≥ 2, it follows that
d(2) can be written in the form d(2) = qr where q ≥ 2, r ≥ 2 and gcd(q, r) = 1. Then

d(2) = Ds(2) = qr - s(2)− s(1) =⇒ q - s(2)− s(1) =⇒ Ds(2) ≤ q,

which is a contradiction, since Ds(2) = d(2) = qr > q.

Lemma 19. Let (d(n))n≥1 be a sequence of positive integers such that d(1) = 1 and d(2) =
pk for prime p and integer k ≥ 1. Then there exists an integer sequence with distinct terms
(s(n))n≥1 with Ds(n) = d(n) for 1 ≤ n ≤ 3 if and only if d(3) ≥ pk, d(3) ≥ 3, and one of
the following conditions is true:

1. d(3) = q` for prime q and integer ` ≥ 1,

2. d(3) = apk for integer a ≥ 1 such that gcd(a, p) = 1.

Proof. The constraints that d(3) ≥ pk and d(3) ≥ 3 follow directly from the properties of
the discriminator, namely that the discriminator is non-decreasing and that Ds(n) ≥ n for
all n ≥ 1. We now show that satisfying either of the two conditions as well is enough to
ensure the existence of (s(n))n≥1, while choosing any arbitrary starting value of s(1).

1. d(3) = q` for prime q and integer ` ≥ 1. Let u1 = lcm(1, 2, . . . , pk − 1) and choose
s(2) = s(1) + u1, so that Ds(2) = d(2) = pk. If d(3) = pk as well, then choose s(3)
as any integer such that s(1), s(2), and s(3) are in separate residue classes modulo
d(3), ensuring that Ds(3) = Ds(2) = pk = d(3).

If q` 6= pk, let u2 = lcm(pk, pk + 1, . . . , q` − 1). Clearly q` - u1 and q` - u2. If
q` - (u1 + u2), then choose s(3) = s(2) + u2, so that q` is the smallest integer that
does not divide s(2)−s(1), s(3)−s(2), or s(3)−s(1), which are u1, u2, and (u1 +u2)
respectively, and so Ds(3) = q` = d(3). Note that q = 2 implies q` - (u1 + u2), since
the only multiple of 2`−1 in the range [1, 2`− 1] is 2`−1, which divides either u1 or u2,
but not both.
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If q`|(u1 + u2), which also implies q 6= 2, then choose s(3) = s(2) + 2u2, so that q` is
the smallest integer that discriminates {s(1), s(2), s(3)} and so, Ds(3) = d(3).

2. d(3) = apk for integer a ≥ 1 such that gcd(a, p) = 1. Let u1 = lcm(1, 2, . . . , pk −
1, a, 2a, . . . , a(pk−1)), i.e., the lcm of all numbers less than pk as well as all multiples
of a less than apk. Let u2 be the lcm of all numbers between pk and apk−1 inclusive,
but excluding every multiple of a.

With this construction, every number less than apk divides either u1 or u2, with
numbers less than pk dividing u1. Furthermore, we have a|u1, pk - u1, a - u2, and
pk|u2, which implies that apk does not divide either u1, u2, or (u1 + u2). Choose
s(2) = s(1) + u1 and s(3) = s(2) + u2 so that Ds(2) = pk = d(2) and Ds(3) = apk =
d(3).

For the other direction, we show that there does not exist any sequence (s(n))n≥1 with
Ds(3) = d(3) for 1 ≤ n ≤ 3 if neither of the two conditions are satisfied. By contradiction,
let us assume that such a sequence exists. For this sequence (s(n))n≥1, let v1 = s(2)−s(1),
v2 = s(3)− s(2), and v3 = s(3)− s(2) = v1 + v2. Since Ds(2) = d(2) = pk, it follows that
lcm(1, 2, . . . , pk − 1)|v1 and pk - v1. Note that any number that divides two of v1, v2, and
v3 divides the third as well.

If neither of the two conditions are satisfied, then there are several cases to consider:

Case 1: d(3) = bpt for 1 ≤ t < k and gcd(b, p) = 1. Since pt < pk, we have pt|v1. Since
Ds(3) > pk, we have either pk|v2 or pk|v3. Without loss of generality, assume pk|v2.
Since pt|pk, it follows that pt|v2. Since pt|v1 as well, we have pt|v3. Finally, since
Ds(3) > b, we have b dividing at least one of v1, v2, or v3. But since pt divides all
three of those, it follows that bpt divides at least one of those three as well, and so,
Ds(3) 6= bpt = d(3), a contradiction.

Case 2: d(3) = bpt for t > k and gcd(b, p) = 1. Since Ds(3) > pk, we have either pk|v2
or pk|v3, but not both, since pk - v1. Without loss of generality, assume pk|v2 and
pk - v3. Since pk|bpk and pk|pt, it follows that neither bpk nor pt divides either of v1
or v3. But since Ds(3) > bpk and Ds(3) > pt, it follows that bpk|v2 and pt|v2, which
implies bpt|v2 and so, Ds(3) 6= bpt, a contradiction.

Case 3: d(3) = qr, where q, r > 1, gcd(q, r) = 1, p - qr, and q < pk. Since q < pk, we
have q|v1. If r < pk, then we have r|v1 and so, qr|v1 and thus, Ds(3) 6= qr, a
contradiction. Therefore, we have r > pk. But then we have d(3) > qpk, so it follows
that qpk divides either v2 or v3. Since q|v1, this means q divides all three of v1, v2,
and v3. But d(3) > r implies r divides one of v1, v2, and v3, which means qr divides
one of those three as well and thus, Ds(3) 6= qr, a contradiction.

Case 4: d(3) = qr where gcd(q, r) = 1, p - qr, q > pk, and r > pk. Here, since Ds(3) >
pk, we have pk dividing either v2 or v3, but not both. Without loss of generality,
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assume pk|v2. Since Ds(3) > qpk, we have qpk|v2, and since Ds(3) > rpk, we have
rpk|v2. But this means qr|v2, and so Ds(3) 6= qr, a contradiction.

Therefore, Ds(3) 6= d(3) if neither of the two given conditions are satisfied.

This is a complete characterization for when the first three terms of a sequence can
represent the first three values of the discriminator of some other sequence. However,
generalizing the characterization to more than three terms proves to be quite a difficult
task and remains as an open problem.

2.3.1 A class of sequences which are discriminators of other com-
putable sequences

We consider the case when (d(n))n≥1 that satisfies the following conditions:

1. d(1) = 1;

2. d(i)|d(j) for all j > i ≥ 1;

3. d(n+ 1) - lcm(d(n), d(n) + 1, . . . d(n+ 1)− 1) for all n ≥ 1.

Examples of sequences that satisfy these conditions are the exponential sequences of
the form (pn−1)n≥1, where p is a prime number.

If these conditions are satisfied, we show that there exists a sequence (s(n))n≥1 which
can be computed sequentially such that Ds(n) = d(n) for all n ≥ 1.

Theorem 20. Let (d(n))n≥1 be an integer sequence that satisfies the above conditions, and
let (s(n))n≥1 be an integer sequence such that for n ≥ 1, the following recurrence relation
is satisfied:

s(n+ 1) = s(n) + lcm(d(n), d(n+ 1), . . . , d(n+ 1)− 1).

Then Ds(n) = d(n) for all n ≥ 1.

Proof. We prove this by induction on n.

Base Case For n = 1, we know Ds(1) = 1 = d(1) from the first property of d(n).

Inductive Step Suppose that for some n ≥ 1, we have Ds(n) = d(n). We show that
Ds(n+ 1) = d(n+ 1).

Since the discriminator is non-decreasing, we know Ds(n+1) ≥ Ds(n) = d(n). For all
integers m in the range d(n) ≤ m < d(n+1), we know m| lcm(d(n), d(n+1), . . . , d(n+
1)− 1) = s(n+ 1)− s(n). Therefore, m fails to discriminate the first n+ 1 terms of
(s(n))n≥1, and so, Ds(n+ 1) ≥ d(n+ 1).
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In order to show that Ds(n+1) ≤ d(n+1), it suffices to show that d(n+1) - s(j)−s(i)
for all 1 ≤ i < j ≤ n + 1. This can be done by considering each of the following
cases:

Case 1: j ≤ n The inductive hypothesis suggests that for all integers i and j such
that 1 ≤ i < j ≤ n, we have d(n) - s(j) − s(i). Since d(n)|d(n + 1), it follows
that d(n+ 1) - s(j)− s(i) for 1 ≤ i < j ≤ n.

Case 2: i = n, j = n+ 1 Here, we have s(j)− s(i) = s(n+ 1)− s(n). Note that

s(n+ 1)− s(n) = lcm(d(n), d(n+ 1), . . . , d(n+ 1)− 1).

The third condition on (d(n))n≥1 implies that d(n + 1) - s(n + 1) − s(n) and
thus d(n+ 1) - s(j)− s(i).

Case 3: 1 ≤ i < n, j = n+ 1 In this case,

s(j)− s(i) = s(n+ 1)− s(i) = (s(n+ 1)− s(n)) + (s(n)− s(i))
= lcm(d(n), d(n+ 1), . . . , d(n+ 1)− 1) + (s(n)− s(i)).

We know that d(n)| lcm(d(n), d(n + 1), . . . , d(n + 1) − 1), while it follows from
the inductive hypothesis that d(n) - s(n) − s(i). Therefore, it follows that
d(n) - s(j)− s(i) and thus, d(n+ 1) - s(j)− s(i).

Putting these together, we have Ds(n+ 1) = d(n+ 1).

Thus, by induction, we have Ds(n) = d(n) for all n ≥ 1.

This construction is applicable for any integer starting value of s(1). For n ≥ 1, the
term s(n+1) can be computed directly from the values of s(n), d(n), and d(n+1), using the
given recurrence relation. Note that this recurrence relation on s(n) provides a sufficient
condition for Ds(n) = d(n) for all n ≥ 1, but it may not be a necessary condition.

2.3.2 Other sequences as discriminators

For the class of sequences in the previous section, the condition that d(i)|d(j) for all
j > i ≥ 1 ensured that all finite sequence of integers that are distinct modulo d(i) are also
distinct modulo d(j). This allows (s(n))n≥0 to be constructed in a manner that ensures that
the choice of s(k) for any k ≥ 1 does not prevent a later element d(k) from discriminating
the the first k terms of (s(n))n≥1.

However, in general, a sequence (d(n))n≥1 may not have the property that later terms
are multiples of previous terms. As a result, even if a finite sequence s(1), s(2), . . . , s(k)
can be constructed such that Ds(n) = d(n) for 1 ≤ n ≤ k, it may be possible that a later
term, d(`) for ` > k might divide the difference s(j)− s(i) for some 1 ≤ i < j ≤ k, which
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means d(`) cannot be the discriminator for any sequence with the prefix s(1), s(2), . . . , s(k).
This makes it difficult to construct the terms of an infinite sequence (s(i))n≥1 from a given
general infinite sequence (d(n))n≥1 such that Ds(n) = d(n) for all n ≥ 1.

There are many well-known sequences that lack the property of d(i)|d(j) for all j >
i ≥ 1, such as the sequence of squares (or higher powers), the sequence of non-composite
positive numbers (basically 1 and the prime numbers, since d(1) = 1 is required), and the
sequence of Fibonacci numbers, and it is an open problem as to whether any of these se-
quences are discriminators of another sequence. More generally, it is also an open problem
as to whether it is possible to characterize the infinite sequences which are also discrimi-
nators of other sequences.

2.4 Determining whether a finite sequence is the dis-

criminator of a prefix of another sequence

The earlier section pointed out the difficulty of proving whether a general sequence is also
the discriminator of another sequence. However, instead of considering an infinite sequence,
it may be simpler to look at a finite prefix of a sequence. That is, given the first N terms
of a sequence (d(n))n≥1, find another sequence (s(n))n≥1 such that Ds(n) = d(n) for all
1 ≤ n ≤ N .

2.4.1 Proposed Algorithms

A simple approach for solving this problem is to perform an exhaustive search of bounded
integer sequences of length N and check if the discriminator for any sequence is (d(n))1≤n≤N
for all N terms.

Algorithm 4: DiscToSeqBruteForce (N , (d(n))1≤n≤N)

Input: Integer n, the values of the sequence d(1), d(2), . . . , d(N).
Output: Either a sequence s(1), s(2), . . . , s(N) such that Ds(n) = d(n) for all

1 ≤ n ≤ N , or “False” if none exist.

1 foreach sequence (s(n))1≤n≤N of distinct integers such that s(1) = 0 and
1 ≤ s(n) ≤ lcm(1, 2, . . . , d(N)) for all 2 ≤ n ≤ N do

2 if (d(n))1≤n≤N = DiscFromSequence (n, (s(n))1≤n≤N) then
3 Return s(1), s(2), . . . , s(N);
4 end

5 end
6 Return “False”;

This algorithm computes the discriminator of every sequence with values bounded
between 1 and lcm(1, 2, . . . , d(N)), except for s(1) = 0, until it finds a sequence whose
discriminator is d(1), d(2), . . . , d(N).
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Theorem 21. If there exists an integer sequence s(1), s(2), . . . , s(N) with discriminator
d(1), d(2), . . . , d(N), then there exists an integer sequence s′(1), s′(2), . . . s′(N) with dis-
criminator d(1), d(2), . . . , d(N) such that s′(1) = 0 and the values of s′(2), s′(3), . . . , s(N)
are bounded between 1 and lcm(1, 2, . . . , d(N)).

Proof. If (s(n))1≤n≤N already satisfies the required conditions, then let (s′(n))1≤n≤N =
(s(n))1≤n≤N . Otherwise, let (s′(n))1≤n≤N be a sequence such that s′(n) = (s(n)−s(1)) mod
lcm(1, 2, . . . , d(N)) for 1 ≤ n ≤ N . Clearly s′(1) = 0. Note that the subtraction of s(1) to
all terms of (s(n))1≤n≤N does not affect whether any two terms are congruent or incongruent
modulo m for any positive integer m.

Furthermore, for any two terms s(i) and s(j) which are congruent or incongruent
modulo some integer m, then s(i) and s(j) remain congruent or incongruent modulo m
even if a multiple of m is subtracted from either or both of s(i) and s(j). If we have
1 ≤ m ≤ Ds(N), then m| lcm(1, 2, . . . , d(N)), and so, s′(i) and s′(j) are congruent modulo
m if and only s(i) and s(j) are congruent modulo m, for all integers i and j. Therefore,
Ds′(n) = Ds(n) = d(n). Since the values of (s′(n))1≤n≤N are bounded between 1 and
lcm(d(1), d(2), . . . , d(N)), except for s(1) = 0, it follows that (s′(n))1≤n≤N satisfies the
required conditions.

Corollary 22. If there exists an integer sequence s(1), s(2), . . . , s(N) with discriminator
d(1), d(2), . . . , d(N), then the DiscToBruteForce algorithm returns at least one of them.

It is clear that this DiscToSeqBruteForce has very high time complexity, since the num-
ber of possible sequences being considered is (lcm(d(1), d(2), . . . , d(N))N−1. The runtime
could significantly be improved if the algorithm instead seeks to construct only a single
sequence while ensuring that the discriminator matches the input. Such an algorithm is
provided below, but it is not proven that the algorithm will always find such a sequence,
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even in cases where such a sequence exists.

Algorithm 5: DiscToSeqSeeker (N , (d(n))1≤n≤N)

Input: Integer n, the sequence d(1), d(2), . . . , d(N) represented in binary.
Output: Either a sequence s(1), s(2), . . . , s(N) such that Ds(n) = d(n) for all

1 ≤ n ≤ N , or “Failure”.

1 Set s(1)← 0;
2 for 2 ≤ n ≤ N do
3 Initialize s(n)← 1;
4 while True do
5 if s(n) > lcm(1, 2, . . . , d(N)) then
6 Return “Failure”;
7 end
8 Initialize FirstCond ← True, SecondCond ← True;
9 for 1 ≤ m < d(n) do

10 if m discriminates the set {s(1), s(2), . . . , s(n)} then
11 FirstCond ← False;
12 Break;

13 end

14 end
15 if FirstCond is True then
16 for n ≤ i ≤ N do
17 if d(i) does not discriminate the set {s(1), s(2), . . . , s(n)} then
18 SecondCond ← False;
19 Break;

20 end

21 end

22 end
23 if both FirstCond and SecondCond are True then
24 Break;
25 else
26 s(n)← s(n) + 1;
27 end

28 end

29 end
30 Return s(1), s(2), . . . , s(N);

The basic idea of the DiscToSeqSeeker is that for each n from 2 to N , the value
of s(n) is initialized to 1 and then two conditions (recorded by FirstCond and Second-
Cond) are checked. The value of s(n) is incremented until both conditions are satisfied,
and the process is repeated for the next value of n. If s(n) exceeds the upper bound
of lcm(1, 2, . . . , d(N)), then the algorithm failed to find a sequence within the expected

29



bounds and returns “Failure”.

Theorem 23. If DiscToSeqSeeker returns a sequence (s(n))1≤n≤N , then this sequence is
the lexicographically least non-negative sequence with discriminator Ds(n) = d(n) for all
1 ≤ n ≤ N .

Proof. The first value s(1) is set to 0. For 2 ≤ n ≤ N , the value of s(n) is initialized
to 1 and incremented until both of the given conditions are satisfied. If FirstCond is
violated, then there is some m < d(n) which discriminates {s(1), s(2), . . . , s(n)}, and so
Ds(n) ≤ m, which means Ds(n) 6= d(n). If the second condition is violated, then there
is some n ≤ i ≤ N for which d(i) does not discriminate {s(1), s(2), . . . , s(n)}. Since d(i)
needs to discriminate the first i terms in order to be a candidate for Ds(i), and we have
i ≥ n, it follows that Ds(i) 6= d(i).

On the other hand, if both conditions are true, then FirstCond ensures that Ds(n) ≥
d(n), while SecondCond confirms that Ds(n) ≤ d(n) from the case of i = n. Therefore, the
sequence returned by DiscToSeqSeeker is the lexicographically least non-negative sequence
(s(n))1≤n≤N whose discriminator is Ds(n) = d(n) for all 1 ≤ n ≤ N .

Note that once the algorithm finds a prefix sequence s(1), s(2), . . . , s(i − 1) for some
1 ≤ i < N , for which each value satisfies FirstCond and SecondCond, these values are not
modified again.

If there exists a sequence with discriminator (d(n))1≤n≤N , then FirstCond and Second-
Cond are necessary conditions on (s(n))1≤n≤N . However, even if there exists a sequence
with discriminator (d(n))1≤n≤N , it is not proven that enforcing these two conditions on
s(1), s(2), . . . , s(i−1) for some 1 ≤ i < N is sufficient to find an integer s(i) for which both
FirstCond and SecondCond are true. As a result, it might be possible for DiscToSeqSeeker
algorithm to return “Failure” when there actually does exist a sequence with the desired
discriminator. However, there are no known examples for which DiscToSeqSeeker produces
this false negative result.

Conjecture 24. If DiscToSeqSeeker returns “Failure” for some input, then there does not
exist any sequence of distinct integers whose discriminator sequence matches this input.

Let us apply the DiscToSeqSeeker algorithm to find a finite sequence whose discrimi-
nator is (n2)1≤n≤10. The lexicographically least such sequence is as follows:
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s(1) = 0,

s(2) = 6,

s(3) = 280,

s(4) = 1710,

s(5) = 552,

s(6) = 526350,

s(7) = 103230,

s(8) = 1378,

s(9) = 22014,

s(10) = 47259.

2.4.2 Sequences whose prefixes are discriminators of other se-
quences

The algorithms above can be used to determine whether a length-N prefix of an input se-
quence is a discriminator of the length-N prefix of another sequence. Rather than consider
a specific value of N , it is an interesting problem to ask whether every prefix of a given
input sequence is a discriminator of the prefix of some other sequence. Here we show that
this property is maintained by the sequence of non-composite positive numbers, i.e., the
sequence of 1 and the prime numbers.

Theorem 25. Let (d(n))n≥1 = 1, 2, 3, 5, 7, . . . , be the sequence of non-composite positive
integers, i.e., d(1) = 1 and d(n) is the (n− 1)-th prime number for n ≥ 2. Then for each
integer N ≥ 1, there exists a finite sequence (sN(n))1≤n≤N such that DsN (n) = d(n) for all
1 ≤ n ≤ N .

Proof. We construct the first N terms of sN(n) by setting sN(n) = n for 1 ≤ n ≤ 3 and
enforcing the following conditions for 3 ≤ n < N :

1. sN(n+ 1) > sN(n)

2. sN(n+ 1) ≡ sN(n) (mod lcm(d(n), d(n) + 1, . . . , d(n+ 1)− 1))

3. sN(n+ 1) 6≡ sN(a) (mod d(b)) for all integers a and b such that 1 ≤ a ≤ n < b ≤ N .

First, we show that there exists a sequence that can satisfy these three conditions. This
can be seen by observing that lcm(d(n), d(n)+1, . . . , d(n+1)−1), from the 2nd condition,
is not divisible by any prime number that is greater or equal to d(n + 1), and that the
modulus d(b) in the third condition refers to a prime number greater or equal to d(n+ 1).
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It follows that the modulus in each of the constraints in the second and third conditions
are all co-prime with each other, and thus, the Chinese Remainder Theorem can be applied
to confirm the existence of a solution.

We induct on n to show that DsN (n) = d(n) for 1 ≤ n ≤ N .

Base Case For 1 ≤ n ≤ 3, we have DsN (n) = n = d(n).

Inductive Step Suppose that for all n ≤ k < N , we have DsN (n) = d(n). We show that
DsN (k + 1) = d(k + 1).

Since the discriminator is non-decreasing, we have DsN (k + 1) ≥ DsN (k) = d(k).
For all integers m in the range d(k) ≤ m < d(k + 1), we know m| lcm(d(k), d(k) +
1, . . . , d(k + 1)− 1)|sN(k + 1)− sN(k) from the second condition, thus disqualifying
m from being the discriminator. So DsN (k + 1) ≥ d(k + 1).

In order to establish DsN (k + 1) ≤ d(k + 1), we show that d(k + 1) - sN(j) − sN(i)
for all integers i and j in the range 1 ≤ i < j ≤ k + 1. For all values in this
range, we can apply the third condition for n = j − 1, a = i, and b = k + 1 to
see that sN(j) 6= sN(i) (mod d(k + 1)) and thus, DsN (k + 1) ≤ d(k + 1). Since
DsN (k + 1) ≥ d(k + 1) as well, it follows that DsN (k + 1) = d(k + 1).

Therefore, DsN (n) = d(n) for all 1 ≤ n ≤ N .

From this, we can deduce that every finite prefix of the sequence of non-composite
integers is the discriminator of some finite sequence. An example of the construction of
(sN(n))1≤n≤N , for N = 8, is as follows:

sN(1) = 1,

sN(2) = 2,

sN(3) = 3,

sN(4) = 39,

sN(5) = 279,

sN(6) = 10359,

sN(7) = 10755,

sN(8) = 98115.

However, it is not known whether there is an infinite sequence whose discriminator is
the sequence of non-composite integers. If such a sequence (s(n))n≥1 were to exist, then
it would mean that for all n ≥ 2, the set {s(1), s(2), . . . , s(n)} is discriminated by every
prime number greater or equal to Ds(n), which is the (n − 1)-th prime number. In other
words, the difference s(j)−s(i) for all 1 ≤ i < j does not contain any prime factors outside
of the first j−2 primes. Constructing such an infinite sequence appears to be very difficult,
and is conjectured to be impossible.
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Conjecture 26. There does not exist an infinite sequence whose discriminator is the se-
quence of non-composite integers.

2.5 Self-Discriminators

An interesting problem to consider is to find sequences (s(n))n≥1 such that Ds(n) = s(n)
for all n ≥ 1. These are referred to as self-discriminators. In this section, we give a
complete characterization of all self-discriminators.

Theorem 27. Let (s(n))n≥1 be an increasing sequence of integers. Then (s(n))n≥1 is its
own discriminator, i.e., Ds(n) = s(n) for all n ≥ 1, if and only if either s(n) = n for all
n ≥ 1, or the following three conditions hold:

1. There exists an integer t ≥ 1 such that s(n) = n for 1 ≤ n ≤ t but s(t+ 1) 6= t+ 1,

2. t+ 2 ≤ s(t+ 1) ≤ 2t+ 1, and

3. 1 ≤ s(n+ 1)− s(n) ≤ t for all n > t.

Proof. Note that Ds(1) = 1 for all sequences, so any self-discriminating sequence (s(n))n≥1
should have s(1) = 1. If s(n) = n for all n ≥ 1, then it’s clear that Ds(n) = n for all
n ≥ 1, since we know Ds(n) ≥ n and the first n terms of (s(n))n≥1 are all less than n,
except the last one, which is 0 modulo n. Otherwise, the first condition is satisfied, where
t+ 1 represents the index of the first element in which s(n) 6= n.

Clearly, Ds(n) = n = s(n) for all 1 ≤ n ≤ t. We show that, given the first condition,
we have Ds(n) = s(n) for all n ≥ 1 if and only if the second and third conditions are also
satisfied. There are two cases to consider here.

Case 1: n = t+ 1. If the second condition is satisfied, then for every m in the range
t+ 1 ≤ m < s(t+ 1), we have 1 ≤ s(t+ 1)−m ≤ (2t+ 1)− (t+ 1) = t+ 1. That is,
1 ≤ s(t + 1)−m ≤ t, and so, m = s(t + 1)− s(i) for some 1 ≤ i ≤ t. Therefore, m
fails to discriminate the first t+ 1 terms and so, Ds(n) ≥ s(t+ 1). However, s(t+ 1)
discriminates the first t + 1 terms, since the first t terms are less than s(t + 1) and
the last term is 0 modulo s(t+ 1). Therefore, Ds(t+ 1) = s(t+ 1).

If the second condition is not satisfied, then s(t + 1) ≥ 2t + 2. In this case, choose
m = s(t + 1) − (t + 1). Since s(t + 1) ≥ 2t + 2, we have m ≥ t + 1. So the first t
terms are less than m while s(t+ 1) ≡ t+ 1 (mod m), which means m discriminates
the first t+ 1 terms. Therefore, Ds(t+ 1) ≤ m and so, Ds(t+ 1) 6= s(t+ 1).

Case 2: n > t+ 1. If the third condition is satisfied, then for every m in the range s(t+
1) ≤ m < s(n), there exists an index i ≤ n such that 1 ≤ s(i) −m ≤ t and so, m
fails to discriminate the first n terms. The s(n) discriminates the first n terms since
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they’re all less than s(n) except the last term, which is 0 modulo s(t+ 1). Therefore,
Ds(n) = s(n).

Otherwise, if the third condition is not satisfied, then there is an integer i > t such
that s(i+1)−s(i) > t. Then choosem = s(i+1)−(t+1) ≥ s(i). Thenm discriminates
the first i+ 1 terms of the sequence, since s(i+ 1) ≡ t+ 1 (mod m), which is not in
the sequence, and all other terms of the sequence are less than m, unless m = s(i),
in which case s(i) ≡ 0 (mod m), which is also not in the sequence and is distinct
from t+ 1 (mod m). Therefore, Ds(i+ 1) ≤ m and thus, Ds(i+ 1) 6= s(i+ 1).

Corollary 28. There are uncountably many increasing sequences of positive integers that
are their own discriminators.

Corollary 29. For 1 ≤ t ≤ n, the number of length-n finite self-discriminating sequences
such that s(i) = i for all 1 ≤ i ≤ t while s(i) 6= i for t < i ≤ n, is tn−t. Hence the total
number of finite sequences of length n that are self-discriminators is

∑
1≤t≤n t

n−t.

Proof. For these sequences, we have s(i) = i for all 1 ≤ i ≤ t. If t = n, there is exactly one
such sequence. Otherwise, there are t possible values of s(t+ 1), from t+ 2 to 2t+ 1. For
any subsequent terms (if there are any) of s(i) for i > t + 1, there are also t possibilities,
from s(i− 1) + 1 to s(i− 1) + t. After s(t), there are n− t remaining terms, which gives
tn−t possible extensions of length n.

Note that the number of finite sequences of length n that are self-discriminators is given
by sequence A026898 in Sloane’s On-Line Encyclopedia of Integer Sequences [20].

2.6 Empirical results of common discriminators

We conclude this chapter with some empirical results that were obtained when trying to
compute the discriminator prefixes of various sequences. These results are not particularly
strong, with fewer than a hundred terms being considered for each sequence, but they can
provide some insight on the complete discriminator sequences.

2.6.1 Discriminators of sequences in the OEIS

The first notable result arose by computing the discriminator prefix of the sequences in
Sloane’s On-Line Encyclopedia of Integer Sequences [20], and comparing them with other
sequences in the OEIS. Out of the first 270,000 sequences in the OEIS, there were over 350
sequences with the discriminator sequence given by (2dlog2 ne)n≥0, which is A062383 in the
OEIS.
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Conjecture 30. For all sequences of infinite length that are among the first 270,000 se-
quences in the OEIS, the most common discriminator sequence is (2dlog2 ne)n≥0.

Of course, there are many different types of sequences in the OEIS, so it may be more
useful to consider only certain classes of sequences. The later chapters in this thesis consider
various sequences with discriminator (2dlog2 ne)n≥0.

2.6.2 Discriminators of general bounded sequences

For the more general case of considering all sequences, regardless of whether they are
in the OEIS or not, it seems that the sequence (2dlog2 ne)n≥0, while still quite a popular
discriminator sequence, does not seem to be the most common. In particular, we computed
the discriminator of every possible finite increasing sequence of ten integers such that the
first term is 1 and the remaining nine terms are bounded between 2 and 40 inclusive.
There were 211,915,132 such sequences. Table 2.1 lists down the twenty most common
discriminator sequences that were found.

Rank Sequence Frequency

1 1, 2, 4, 4, 8, 8, 8, 16, 16, 16 36,509
2 1, 2, 4, 7, 7, 7, 14, 14, 14, 14 36,360
3 1, 2, 4, 4, 8, 8, 16, 16, 16, 16 30,446
4 1, 2, 4, 4, 8, 8, 15, 15, 15, 15 24,516
5 1, 2, 4, 4, 8, 8, 14, 14, 14, 14 22,335
6 1, 2, 4, 7, 7, 7, 7, 14, 14, 14 22,244
7 1, 3, 5, 7, 7, 7, 14, 14, 14, 14 21,795
8 1, 2, 4, 4, 8, 8, 13, 13, 13, 13 20,418
9 1, 3, 3, 7, 7, 7, 14, 14, 14, 14 19,294
10 1, 2, 5, 7, 7, 7, 14, 14, 14, 14 19,121
11 1, 2, 3, 6, 6, 12, 12, 12, 12, 12 18,660
12 1, 2, 4, 4, 8, 8, 8, 15, 15, 15 18,586
13 1, 2, 3, 7, 7, 7, 14, 14, 14, 14 18,360
14 1, 2, 4, 7, 7, 14, 14, 14, 14, 14 18,312
15 1, 2, 5, 5, 7, 7, 14, 14, 14, 14 18,156
16 1, 2, 4, 8, 8, 8, 8, 16, 16, 16 17,721
17 1, 2, 4, 4, 7, 7, 14, 14, 14, 14 16,855
18 1, 3, 3, 6, 6, 12, 12, 12, 12, 12 16,556
19 1, 2, 4, 8, 8, 8, 15, 15, 15, 15 16,385
20 1, 2, 4, 4, 8, 8, 8, 8, 16, 16 16,369

Table 2.1: Most common discriminators of sequences bounded from 1 to 40
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The most common discriminator sequence here is 1, 2, 4, 4, 8, 8, 8, 16, 16, 16. This was
also the most common discriminator sequence when the bound was lowered to 30. This is
the prefix of an infinite sequence, that we denote as (d1(n))n≥0 = 1, 2, 4, 4, . . ., which is the
sequence with d1(0) = 1 followed by the positive powers of 2 such that each power 2i for
i > 0 is repeated i times.

Conjecture 31. Let N and B be positive integers. For all length-N increasing sequences
with values bounded between 1 and B, the most common discriminator sequence is given
by (d1(n))0≤n<N .

The sequence (d1(n))n≥0 does not seem to appear in the OEIS, but another sequence,
A207872, is in the OEIS, which is similar to (d1(n))n≥0 except each power 2i repeats F (i)
times instead of i times, where (F (n))n≥0 = 1, 1, 2, 3, . . ., is the sequence of Fibonacci
numbers.
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Chapter 3

Discriminators of k-Regular
Sequences

We now turn our attention to the discriminators of specific sequences or types of sequences.
In this chapter, we consider the k-regular sequences. We characterize the discriminators
for two 2-regular sequences, the so-called evil and odious numbers. In particular, we show
that the odious numbers are the lexicographically least sequence with discriminator given
by 2dlog2 ne, which empirically seems to be the discriminator for many other sequences, as
noted in the previous chapter. The discriminators for both the odious and evil numbers
are also 2-regular, but we show that it is not necessarily the case that the discriminator of
k-regular sequence is always k-regular, based on a counterexample. Finally, we conclude
the chapter with a conjecture about the discriminator of Cantor numbers, which are also
2-regular sequences.

For this chapter, we use the following notation. Let Σk denote the k-letter alphabet
{0, 1, . . . , k − 1}. If x ∈ Σ∗k is a string of digits, then [x]k denotes the value of x when
considered as a base-k number. If n is an integer, then (n)k is the string giving the
canonical base-k representation of n (with no leading zeroes). If x is a string of digits, then
|x| denotes the length of the string x, and |x|a denotes the number of occurrences of the

letter a in x. Finally, xn =

n︷ ︸︸ ︷
xx · · ·x for n ≥ 0.

By S + i, for S a set of integers and i an integer, we mean the set {x + i : x ∈ S}.
For sets S and T , we write S t T to denote the union of S and T , as well as the assertion
that this union is actually disjoint.

3.1 k-regular sequences

Let k ≥ 2 be an integer. The k-regular sequences, first introduced by Allouche and Shallit
in 1992 [1], are an interesting class of sequences with notable closure properties. There are
several equivalent ways of defining them, and here we provide three:
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• They are the class of sequences (s(n))n≥0 such that the set of subsequences of the
form

{(s(ken+ i))n≥0 : e ≥ 0 and 0 ≤ i < ke}

is a subset of a finitely-generated Z-module.

• They are the class of sequences (s(n))n≥0 for which there exist an integer r ≥ 1, a
1× r row vector u, an r× 1 column vector w, and an r× r matrix-valued morphism
µ with domain Σ∗k such that s(n) = uµ(v)w for all strings v with [v]k = n.

• They are the class of sequences (s(n))n≥0 such that there are a finite number of
recurrence relations of the form

s(ken+ i) =
∑
j

ajs(k
ejn+ ij)

where e ≥ 0, ej < e, 0 ≤ i < ke, and 0 ≤ ij < kej , that completely determine all but
finitely many values of s.

The k-regular sequences also carry the following closure properties, as shown by Al-
louche and Shallit [1]:

Theorem 32. Let r = (ri)i≥0 and s = (si)i≥0 be two k-regular sequences of integers, and
let m ≥ 1 be an integer. Then so are

(a) r + s = (ri + si)i≥0;

(b) rs = (risi)i≥0;

(c) r mod m = (ri mod m)i≥0.

Note that the k-regular sequences are traditionally indexed as n ≥ 0 whereas the
discriminator is defined for n ≥ 1. To maintain consistency for this chapter, we consider
the discriminator sequence as being indexed as n ≥ 0 as well, by setting Ds(0) = 0 for all
integer sequences (s(n))n≥0.

3.2 The evil and odious numbers

The so-called “evil” and “odious” numbers are two examples of 2-regular sequences; they
are sequences A001969 and A000069 in Sloane’s On-Line Encyclopedia of Integer Sequences
[20], respectively. These numbers were named by Richard K. Guy c. 1976, and appear in
the classic book Winning Ways [5, p. 431].
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The evil numbers (ev(n))n≥0 are

0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, 39, 40, 43, . . .

and are those non-negative numbers having an even number of 1’s in their base-2 expansion.

The odious numbers (od(n))n≥0 are

1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, . . .

and are those non-negative numbers having an odd number of 1’s in their base-2 expansion.

The names “evil” and “odious” are puns derived from “even” and “odd”. Clearly the
union of these two sequences is N, the set of all non-negative integers.

To show that these two sequences are 2-regular, we note that both sequences satisfy
the recurrence relations

f(4n) = −2f(n) + 3f(2n)

f(4n+ 1) = −2f(n) + 2f(2n) + f(2n+ 1)

f(4n+ 2) =
2

3
f(n) +

5

3
f(2n+ 1)

f(4n+ 3) = 6f(n)− 3f(2n) + 2f(2n+ 1),

which can be proved by an induction using the characterization in [1, Example 12].

Let On = {od(i) : od(i) < n} (resp., En = {ev(i) : ev(i) < n}) denote the set of all
odious (resp., evil) numbers that are strictly less than n. The following lemma presents
some properties of these sets.

Lemma 33. (a) For i ≥ 1 we have |O2i | = |E2i | = 2i−1.

(b) For i ≥ 1 we have O2i+1 = O2i t (E2i + 2i).

(c) For i ≥ 1 we have E2i+1 = E2i t (O2i + 2i).

Proof. (a) Let 0 ≤ n < 2i. These n can be placed in 1–1 correspondence with the binary
strings w of length i, using the correspondence [w]2 = n. For each binary string x
of length i− 1, either x0 is odious and x1 is evil, or vice versa. Thus there are 2i−1

odious numbers less than 2i, and 2i−1 evil numbers less than 2i.

(b) Let 2i ≤ n < 2i+1. Consider n− 2i. Since the base-2 expansion of n− 2i differs from
that of n by omitting the first bit, clearly n− 2i is evil iff n is odious.

(c) Just like (b).

This gives the following corollary:
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Corollary 34. For integers n ≥ 0 and i ≥ 1 we have od(n) ∈ O2i and ev(n) ∈ E2i if and
only if n < 2i−1. Furthermore

od(2i−1) = 2i; (3.1)

ev(2i−1) = 2i + 1. (3.2)

3.2.1 Discriminator of the odious numbers

We now turn our attention to the discriminators for the evil and odious numbers, starting
with the odious numbers. First, we need to prove the following useful lemma.

Lemma 35. Let i ≥ 1 and 1 ≤ m < 2i. Then there exist two odious numbers j, ` with
1 ≤ j < ` ≤ 2i such that m = `− j.

Proof. Let w = (m)2. There are three cases according to the form of w.

1. No 1 follows a 0 in w. Then w = 1a0b, where a ≥ 1, b ≥ 0, and a + b ≤ i. So
m = 2b(2a − 1). Take ` = 2a+b and j = 2b.

2. w = x01y, where |xy|1 is odd. Take j = 2|y|+1 and ` = m+ 2|y|+1. Now (`)2 = x11y,
and clearly |x11y|1 is odd, so ` is odious.

3. w = x01y, where |xy|1 is even. Take j = 2|y| and ` = m+ 2|y|. Now (`)2 = x10y, and
clearly |x10y|1 is odd, so ` is odious.

With the help of this lemma, we can compute the discriminator for the sequence of
odious numbers.

Theorem 36. For the sequence of odious numbers, the discriminator Dod(n) satisfies the
equation

Dod(n) = 2dlog2 ne (3.3)

for n ≥ 1.

Proof. The cases n = 1, 2 are left to the reader. Otherwise, let i ≥ 1 be such that
2i < n ≤ 2i+1. We show Dod(n) = 2i+1. There are two cases:

Case 1: n = 2i + 1. We compute the discriminator of od(0), od(1), . . . , od(2i) = 2i+1. By
Lemma 35, for each m < 2i+1, there exist two odious numbers j, ` with 1 ≤ j ≤
` ≤ 2i+1 with ` − j = m. So m does not discriminate {od(0), od(1), . . . , od(2i)} for
m < 2i+1. On the other hand, each of the numbers od(0), od(1), . . . , od(2i) are less
than 2i+1 except od(2i) = 2i+1 ≡ 0 (mod 2i+1), where 0 is not odious, thus implying
that 2i+1 discriminates {od(0), od(1), . . . , od(2i)}.
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Case 2: 2i + 1 < n ≤ 2i+1. Since the discriminator is nondecreasing, we know Dod(n) ≥
2i+1. It suffices to show that 2i+1 discriminates

O2i+2 = {od(0), od(1), . . . , od(2i+1 − 1)}.

Now from Lemma 33(b), we have

O2i+2 = O2i+1 t (E2i+1 + 2i+1).

If we now take both sides modulo 2i+1, we see that the right-hand side is just O2i+1 t
E2i+1 , which represents all integers in the range [0, 2i+1).

As noted in the previous chapter, empirical results imply that there are many sequences
of positive integers with discriminator 2dlog2 ne. However, of all such sequences, the odious
numbers play a special role: they are the lexicographically least.

Theorem 37. The sequence of odious numbers is the lexicographically least increasing
sequence of positive integers s such that Ds(n) = 2dlog2 ne.

Proof. We prove this by contradiction. Suppose there exists a sequence of increasing
positive integers, s(0), s(1), . . ., that is lexicographically smaller than the sequence of odious
numbers but shares the same discriminator, Ds(n) = 2dlog2 ne.

Let j denote the first index such that s(j) 6= od(j), i.e., s(j) < od(j), since s is a
lexicographically smaller sequence than the odious numbers. We can see that s(j) must be
evil, because od(j) is the next odious number after od(j − 1) = s(j − 1). Note that since
od(0) = 1 is the smallest positive integer, necessarily j ≥ 1.

Now let i ≥ 0 be such that 2i ≤ j < 2i+1. In that case, the discriminator of the sequence
s(0), s(1), . . . , s(j) is Ds(j + 1) = 2dlog2(j+1)e = 2i+1. However, s(j) also discriminates this
sequence, which implies that s(j) ≥ Ds(j+1) = 2i+1. Note that by the definition of j, this
means that all odious numbers less than 2i+1 are present in the sequence s(0), s(1), . . . , s(j).

Furthermore, we have s(j) < od(j) < od(2i+1) = 2i+2. So 2i+1 ≤ s(j) < 2i+2, which
means that the largest power of 2 appearing in the binary representation of s(j) is 2i+1.
Therefore s(j) mod 2i+1 = s(j) − 2i+1 is odious. However, s(j) mod 2i+1 < 2i+1. But the
sequence s(0), s(1), . . . , s(j) contains all odious numbers less than 2i+1, which therefore
includes the result of s(j) mod 2i+1. In other words, s(j) is congruent to another number
in this sequence modulo 2i+1, i.e., Ds(j + 1) 6= 2i+1, which is a contradiction.

3.2.2 Discriminator of the evil numbers

We now focus on the discriminator for the sequence of evil numbers. Here, we need to
utilize a similar lemma as before.
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Lemma 38. Let i ≥ 3 and 1 ≤ m < 2i − 3. Then there exist two evil numbers j, ` with
0 ≤ j < ` ≤ 2i + 1 such that m = `− j.

Proof. Let w = (m)2. There are several cases according to the form of w.

1. The number m is evil. Take ` = m and j = 0.

2. There are no 0’s in w. Then m = 2a− 1 where 0 < a < i. Note that a 6= i. If m = 1,
then take ` = 6 and j = 5. Otherwise, take ` = 2a + 2 and j = 3.

3. No 1 follows a 0 in w and |w|0 > 0. Then w = 1a0b, where a ≥ 1, b ≥ 1, and a+b ≤ i.
So m = 2b(2a − 1). Take ` = 2a+b + 1 and j = 2b + 1.

4. There is exactly one 0 in w and w ends with 01. Then w = 1a01, where 1 ≤ a ≤ i−3.
So m = 2a+2 − 3. Take ` = 2a+2 + 2 and j = 5.

5. There is exactly one 0 in w and w ends with 11. Then w = 1a01b, where a ≥ 1,
b ≥ 2, and a+ b ≤ i− 1. So m = 2a+b+1− 2b− 1. Take ` = 2a+b+1 + 1 and j = 2b + 2.

6. w = x01y0z, where |xyz|1 is even. Take j = 2|y|+|z|+1+2|z| and ` = m+2|y|+|z|+1+2|z|.
So (`)2 = x10y1z. We can see |x10y1z|1 is even, so ` is evil.

7. w = x0y01z, where |xyz|1 is even. Take j = 2|y|+|z|+2+2|z| and ` = m+2|y|+|z|+2+2|z|.
So (`)2 = x1y10z. We can see |x1y10z|1 is even, so ` is evil.

With the help of this lemma, we can compute the discriminator for the sequence of evil
numbers.

Theorem 39. For the sequence of evil numbers, the discriminator Dev(n) satisfies the
equation

Dev(n) =


2i+1 − 3, if n = 2i + 1 for odd i ≥ 2;

2i+1 − 1, if n = 2i + 1 for even i ≥ 2;

2dlog2 ne, otherwise,

(3.4)

for n ≥ 1.

Proof. The cases n = 1, 2, 3, 4 are left to the reader. Otherwise, let i ≥ 2 be such that
2i < n ≤ 2i+1. We show Dev(n) satisfies the given equation. There are three cases presented
in the equation:
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Case 1: n = 2i + 1 for odd i ≥ 2. We compute the discriminator of ev(0), ev(1), . . . ,
ev(2i) = 2i+1 + 1. By Lemma 38, for each m < 2i+1− 3, there exist two evil numbers
j, ` with 1 ≤ j ≤ ` ≤ 2i+1 + 1 with ` − j = m. So m does not discriminate
{ev(0), ev(1), . . . , ev(2i)} for m < 2i+1 − 3.

Note that for odd i ≥ 2, the only evil numbers in the range [2i+1 − 3, 2i+1 + 1] are
2i+1 − 1 and 2i+1 + 1, easily observed from their binary representations. We can see
that 2i+1 − 1 ≡ 2 (mod 2i+1 − 3) and 2i+1 + 1 ≡ 4 (mod 2i+1 − 3), where neither 2
nor 4 are evil. All the other numbers in the sequence ev(0), ev(1), . . . , ev(2i) are less
than 2i+1 − 3, so it follows that 2i+1 − 3 discriminates {ev(0), ev(1), . . . , ev(2i)}.

Case 2: n = 2i + 1 for even i ≥ 2. We compute the discriminator of ev(0), ev(1), . . . ,
ev(2i) = 2i+1 + 1. Just as in the previous case, Lemma 38 ensures that integers
m < 2i+1 − 3 do not discriminate {ev(0), ev(1), . . . , ev(2i)}.
For even i ≥ 2, we see that both 2i+1 − 3 and 2i+1 − 2 are evil from their binary
representations. Neither of them can discriminate the sequence since m mod m = 0
for either m = 2i+1 − 3 or m = 2i+1 − 2, while 0 is evil. Thus the discriminator
must be at least 2i+1 − 1. Since neither 2i+1 − 1 nor 2i+1 are evil, we can see
that each of the integers ev(0), ev(1), . . . , ev(2i) are all less than 2i+1 − 1 except
ev(2i) = 2i+1 + 1 ≡ 2 (mod 2i+1 − 1), where 2 is not evil. Therefore, 2i+1 − 1
discriminates {ev(0), ev(1), . . . , ev(2i)}.

Case 3: 2i + 1 < n ≤ 2i+1. From the previous two cases, we know that Dev(2i + 1)
is either 2i+1 − 3 or 2i+1 − 1. Since the discriminator is nondecreasing, we know
Dev(n) ≥ 2i+1− 3. We see that the sequence ev(0), ev(1), . . . , ev(n− 1) must include
ev(2i + 2) = 2i+1 + 2, the next evil number after 2i+1 + 1. We then observe that

2i+1 + 2 ≡ 5 (mod 2i+1 − 3),

2i+1 + 1 ≡ 3 (mod 2i+1 − 2),

2i+1 + 2 ≡ 3 (mod 2i+1 − 1),

where the numbers 3 and 5 are evil. Therefore, the discriminator must be at least 2i+1.
It suffices to show that 2i+1 discriminates E2i+2 = {ev(0), ev(1), . . . , ev(2i+1−1)}. Now
from Lemma 33(c), we have

E2i+2 = E2i+1 t (O2i+1 + 2i+1).

If we now take both sides modulo 2i+1, we see that the right-hand side is just E2i+1 t
O2i+1 , which represents all integers in the range [0, 2i+1). Thus we have Dev(n) =
2i+1 = 2dlog2 ne for 2i + 1 < n ≤ 2i+1.
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3.3 A k-regular sequence whose discriminator is not

k-regular

The discriminators for the odious and evil numbers were 2-regular. This might raise the
question of whether the discriminator of a k-regular sequence is always k-regular. In this
section, we present a counterexample to show that this is not the case. In particular, the
sequence of perfect squares, (sq(n))n≥0 = ((n+ 1)2)n≥0 = 1, 4, 9, 16, . . . , is k-regular for all
integers k ≥ 2 [1, Example 5], but we show that its discriminator is not k-regular. Recall
that the discriminator for the sequence of squares, given by Arnold, Benkoski, and McCabe
[2], is given by

Dsq(n) =



1, if n = 1;

2, if n = 2;

6, if n = 3;

9, if n = 4;

min{k : k ≥ 2n and (k = p or k = 2p for some prime p)}, if n > 4.

Theorem 40. The discriminator sequence of the perfect squares is not k-regular for any
k.

Proof. We prove this by contradiction. Suppose Dsq(n) is k-regular. Then from Theo-
rem 32 (c) we know that the sequence A given by A(n) = Dsq(n) mod 2 is k-regular. From
Theorem 32 (b) we know that the sequence F (n) = A(n)Dsq(n) is k-regular. From Theo-
rem 32 (a) we know that the sequence B(n) = 2 − 2A(n) is k-regular. From Theorem 32
(a) we know that the sequence E(n) = F (n) +B(n) is k-regular. It is now easy to see that
for n > 4 we have E(n) = 2 if B(n) is even, while E(n) = Dsq(n) if Dsq(n) is odd. Thus
E(n) takes only prime values for n > 4.

We now argue that (E(n))n≥0 is unbounded. To see this, it suffices to show that there
are infinitely many indices n such that Dsq(n) is prime. By Dirichlet’s theorem on primes
in arithmetic progressions there are infinitely many primes p for which p ≡ 1 (mod 4). For
these primes consider n = (p − 1)/2. Then 2n = p − 1 is divisible by 4 and hence not
twice a prime, but 2n+ 1 = p. Hence for these n we have Dsq(n) = p = 2n+ 1, and hence
E(n) = Dsq(n). Thus (E(n))n≥0 is unbounded.

Finally, we apply a theorem of Bell [4] to the sequence E. Bell’s theorem states that any
unbounded k-regular sequence must take infinitely many composite values. However, the
sequence (E(n)) is unbounded and takes only prime values for n > 4. This contradiction
shows that Dsq(n) cannot be k-regular.
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3.4 Discriminator of the Cantor numbers

In this section, we present a conjecture about the discriminator of another k-regular se-
quence, namely the Cantor numbers (C(n))n≥0

0, 2, 6, 8, 18, 20, 24, 26, 54, 56, 60, 62, 72, 74, 78, 80, 162, 164, 168, 170, 180, . . .

which are the numbers having only 0’s and 2’s in their base-3 expansion. This is sequence
A005823 in Sloane’s On-Line Encyclopedia of Integer Sequences [20]. It is 2-regular, as it
satisfies the recurrence relations

C(2n) = 3C(n)

C(2n+ 1) = 3C(n) + 2.

Based on some numerical computations, we have the following conjecture about the
discriminator sequence DC(n) of the Cantor numbers:

DC(8n) =
13

3
DC(4n)− 2DC(4n+ 1) +

2

3
DC(4n+ 2)

DC(8n+ 1) =
3

2
DC(2n) +

7

2
DC(4n)− 2DC(4n+ 1) +DC(4n+ 2)

DC(8n+ 2) =
10

3
DC(4n)− 2DC(4n+ 1) +

5

3
DC(4n+ 2)

DC(8n+ 3) =
9

2
DC(2n) +

11

6
DC(4n)− 3DC(4n+ 1) +

8

3
DC(4n+ 2)

DC(8n+ 4) = 6DC(2n)− 2DC(4n) + 2DC(4n+ 1) +DC(4n+ 2)

DC(8n+ 5) = 6DC(2n)− 2DC(4n) +DC(4n+ 1) + 2DC(4n+ 2)

DC(8n+ 6) =
3

2
DC(2n)− 1

2
DC(4n)−DC(4n+ 1) + 4DC(4n+ 2)

DC(16n+ 7) = −3DC(2n) +DC(4n) + 7DC(4n+ 1) + 2DC(4n+ 2)

DC(16n+ 15) = −9DC(n) +
27

2
DC(2n)− 15

2
DC(4n) + 9DC(4n+ 1)

− 6DC(4n+ 2) + 10DC(4n+ 3).

If true, this would mean that DC(n) is also 2-regular.
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Chapter 4

Sequences with Shift-Invariant
Discriminators

In the previous chapters, and in most of the previous work on discriminators, it is gen-
erally the first n terms of a sequence that is being considered, for n ≥ 2. Therefore, the
discriminator can depend crucially on the starting point of a given sequence. For example,
although the discriminator for the first three positive squares, {1, 4, 9}, is 6, we can see
that the number 6 does not discriminate the length-3 “window” into the shifted sequence,
{4, 9, 16}, since 16 ≡ 4 (mod 6).

This chapter defines a special property in some sequences in that their discriminators
are shift-invariant, i.e., independent of the starting point of the sequence. In other words,
for all n ≥ 1, the discriminator for the first n terms of a sequence with this property
is also the discriminator for every n consecutive terms of this sequence. This idea was
briefly introduced by Zieve [22], who considered sequences with discriminators that are
shift-invariant for sufficiently large values of n.

This chapter presents a class of exponential sequences that are shift-invariant for all
values of n ≥ 1. There has been very little work on the discriminators of exponential
sequences, with Sun [21] presenting some conjectures concerning certain exponential se-
quences, while Moree and Zumalacárrequi [15] computed the discriminator for the sequence(
|(−3)j−5|

4

)
j≥0

.

The discriminator for this class of exponential sequences is also of the form 2dlog2 ne,
which seems to be a popular discriminator sequence as seen from previous chapters. It may
be worth noting that this discriminator sequence grows only linearly, despite discriminating
a class of sequences that grow exponentially.
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4.1 Shift-Invariant Discriminators

We say that the discriminator of a sequence is shift-invariant if the discriminator for
the sequence is the same even if the sequence is shifted by any positive integer c, i.e.,
for all positive integers c the discriminator of the sequence (s(n))n≥1 is the same as the
discriminator of the sequence (s(n+ c))n≥0.

As a simple example, all sequences of the form (αn+β)n≥0 have shift-invariant discrimi-
nators. This is easily seen by observing that for any c > 0, the sequence (α(n+c)+β)n≥0 =
(αn + β + αc)n≥0 can be formed by adding αc to each term of the original sequence,
(αn + β)n≥0, and so the discriminator is the same. The next chapter on quadratic se-
quences contains some more examples of sequences with shift-invariant discriminators.

The following lemma presents an interesting property of sequences with shift-invariant
discriminators, though this property is not utilized anywhere in this thesis.

Lemma 41. Let n0 ≥ 1 be an integer and let (s(n))n≥0 be an integer sequence with a
shift-invariant discriminator Ds(n). Then the sequence of residues (s(n) mod Ds(n0))n≥0
is periodic for all n0 ≥ 1. Furthermore, the size of the period is the positive integer n1 such
that Ds(n0) = Ds(n1) and Ds(n1) 6= Ds(n1 + 1).

Proof. From the property that the discriminator is shift-invariant, we know that for all
n ≥ 0, the integers s(n+ 1), s(n+ 2), . . . , s(n+ n1) are distinct modulo Ds(n1) = Ds(n0).
Therefore, s(n+ n1) 6≡ s(n+ i) (mod Ds(n1)) for all 1 ≤ i ≤ n1 − 1.

Now, we know that the integers s(n), s(n+1), . . . , s(n+n1−1) are also distinct modulo
Ds(n1) = Ds(n0). If we suppose that s(n) 6≡ s(n+ n1) (mod Ds(n1)), then it follows that
Ds(n1) discriminates {s(n), s(n + 1), . . . , s(n + n1)}. But since the discriminator is shift-
invariant, this means that Ds(n1 + 1) = Ds(n1), which is a contradiction. Therefore, we
have s(n) ≡ s(n + n1) (mod Ds(n1)) for all n ≥ 0, and so, the sequence of (s(n) mod
Ds(n1))n≥0 = (s(n) mod Ds(n0))n≥0 is periodic with period n1.

4.2 A class of exponential sequences whose discrimi-

nators are shift-invariant

The main result of this chapter is to show that the discriminator of a certain class of
exponential sequences is shift-invariant. We define this class as follows:

(ex(n))n≥0 =

(
a

(t2)n − 1

2b

)
n≥0

for odd positive integers a and t, where b is the smallest positive integer such that t 6≡
±1 (mod 2b). A typical example is the sequence

(
9n−1
8

)
n≥0. We show that the discrimi-

nator for all sequences of this form is Dex(n) = 2dlog2 ne. Furthermore, we show that this
discriminator is shift-invariant, i.e., it applies to every sequence (ex(n+ c))n≥0 for c ≥ 0.
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Our approach involves proving the upper bound for the discriminator of the sequence(
(t2)n−1

2b

)
n≥0

and all of shifts, and then separately proving some lemmas that are essential to

establishing the lower bound of the discriminator, before combining the results to determine
the discriminator of (ex(n))n≥0 and all of its shifts.

4.2.1 Upper bound

In this section, we derive an upper bound for the discriminator of the sequence
(

(t2)n−1
2b

)
n≥0

and all of its shifts. We start with some useful lemmas.

Lemma 42. Let t be an odd integer, and let b be the smallest positive integer such that
t 6≡ ±1 (mod 2b). Then t2 ≡ 2b + 1 (mod 2b+1).

Proof. Note that since every odd integer equals ±1 modulo 4, we must have b ≥ 3. From
the definition of b, we have t ≡ 2b−1±1 (mod 2b). Hence t = 2bc+2b−1±1 for some integer
c. By squaring both sides of the equation, we get

t2 = 22bc2 + 22(b−1) + 22bc± 2b+1c± 2b + 1

= 2b+1
(
2b−1c2 + 2b−3 + 2b−1c± c

)
± 2b + 1,

=⇒ t2 ≡ ±2b + 1 (mod 2b+1),

=⇒ t2 ≡ 2b + 1 (mod 2b+1).

Lemma 43. Let t be an odd integer, and let b be the smallest positive integer such that
t 6≡ ±1 (mod 2b). Then we have

t2
k ≡ 2k+b−1 + 1 (mod 2k+b) (4.1)

for all integers k ≥ 1.

Proof. By induction on k.

Base case: From Lemma 42, we have t2 ≡ 2b + 1 (mod 2b+1).

Induction: Suppose Eq. (4.1) holds for some k ≥ 1, i.e., t2
k ≡ 2k+b−1 + 1 (mod 2k+b).

This means that t2
k

= 2k+bc+ 2k+b−1 + 1 for some integer c. Once again, by squaring
both sides of the equation, we get(

t2
k
)2

= t2
k+1

= 22k+2bc2 + 22k+2b−2 + 1 + 22k+2bc+ 2k+b+1c+ 2k+b

= 2k+b+1
(
2k+b−1c2 + 2k+b−3 + 2k+b−1c+ c

)
+ 2k+b + 1,

=⇒ t2
k+1 ≡ 2k+b + 1 (mod 2k+b+1).

This shows that Eq. (4.1) holds for k + 1 as well, thus completing the induction.
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This gives the following corollary.

Corollary 44. Let t be an odd integer, and let b be the smallest positive integer such that
t 6≡ ±1 (mod 2b). Then for k ≥ 1, the powers of t2 form a cyclic subgroup of order 2k in
(Z/2k+b)∗.

Proof. Let ` = k + 1. Since ` ≥ 1, we can apply Eq. (4.1) to get

(t2)2
`−1

= t2
` ≡ 2`+b−1 + 1 (mod 2`+b),

=⇒ (t2)2
`−1 ≡ 1 (mod 2`+b−1),

=⇒ (t2)2
k ≡ 1 (mod 2k+b).

Furthermore, by applying Eq. (4.1) directly, we get

(t2)2
k−1

= t2
k ≡ 2k+b−1 + 1 6≡ 1 (mod 2k+b),

=⇒ (t2)2
k−1 6≡ 1 (mod 2k+b).

Therefore, the order of the subgroup generated by t2 in (Z/2k+b)∗ is 2k.

Lemma 45. Let t be an odd integer, and let b be the smallest positive integer such that
t 6≡ ±1 (mod 2b). Then for k ≥ 0, the number 2k discriminates every set of 2k consecutive

terms of the sequence
(

(t2)n−1
2b

)
n≥0

.

Proof. For every i ≥ 0, it follows from Corollary 44 that the numbers

(t2)i, (t2)i+1, . . . , (t2)i+2k−1

are distinct modulo 2k+b. By subtracting 1 from every element, we have that the numbers

(t2)i − 1, (t2)i+1 − 1, . . . , (t2)i+2k−1 − 1

are distinct modulo 2k+b. Furthermore, these numbers are also congruent to 0 modulo 2b

because t2 ≡ 1 (mod 2b) from Lemma 42. It follows that the set of quotients{
(t2)i − 1

2b
,
(t2)i+1 − 1

2b
, . . . ,

(t2)i+2k−1 − 1

2b

}

consists of integers that are distinct modulo 2k+b

2b
= 2k.

Such a set of quotients coincides with every set of 2k consecutive terms of the sequence(
(t2)n−1

2b

)
n≥0

. Since the numbers in each set are distinct modulo 2k, the desired result

follows.
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4.2.2 Lower bound

In this section, we establish some results useful for the lower bound on the discriminator

of the sequence
(

(t2)n−1
2b

)
n≥0

. We start with the following technical lemma:

Lemma 46. Let m be a positive integer. Then log3m ≤ m
3

.

Proof. First, we prove that m3 ≤ 3m by induction for integers m ≥ 1.

Base Case: By observation, this is true for 1 ≤ m ≤ 3.

Induction: Suppose for some m ≥ 3, it is true that m3 ≤ 3m. We show that (m + 1)3 ≤
3m+1 as well. Clearly, (m+1)3 = m3 +3m2 +3m+1. From the inductive hypothesis,
we know m3 ≤ 3m. Furthermore, since m ≥ 3, we have

3m2 ≤ m3 ≤ 3m,

3m+ 1 ≤ 3m+ 6m = 9m = 32m ≤ m3 ≤ 3m.

It follows that

(m+ 1)3 = m3 + 3m2 + 3m+ 1 ≤ 3m + 3m + 3m = 3(3m) = 3m+1.

Therefore, we have m3 ≤ 3m. This implies that

m3 ≤ 3m =⇒ m ≤ 3m/3 =⇒ log3m ≤
m

3
.

The main lemma for proving the lower bound is as follows:

Lemma 47. Let t be an odd integer, and let b be the smallest positive integer such that
t 6≡ ±1 (mod 2b). Then for all k ≥ 0 and 1 ≤ m ≤ 2k+1, there exists a pair of integers, i
and j, where 0 ≤ i < j ≤ 2k, such that (t2)i ≡ (t2)j (mod 2bm).

Proof. Let the prime factorization of m be

m = 2x
∏

1≤`≤u

py``
∏

1≤`≤v

qz`` ,

where u, v, x, y`, z` ≥ 0, while p1, p2, . . . , pu are the prime factors of m that also divide t,
and q1, q2, . . . , qv are the odd prime factors of m that do not divide t. For each ` ≤ u, let
e` be the integer such that pe`` ||t, i.e., we have pe`` |t but pe`+1

` - t.
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We need to find a pair (i, j) such that (t2)i ≡ (t2)j (mod 2bm). From the Chinese
remainder theorem, we know it suffices to find a pair (i, j) such that

(t2)i ≡ (t2)j (mod 2x+b),

(t2)i ≡ (t2)j (mod py`` ), for all 1 ≤ ` ≤ u,

and (t2)i ≡ (t2)j (mod qz`` ), for all 1 ≤ ` ≤ v.

For the first equation, we know from Corollary 44 that (t2)i ≡ (t2)i+2x (mod 2x+b). In
other words, it suffices to have 2x|(j − i) to satisfy (t2)i ≡ (t2)j (mod 2x+b).

Next, we consider the u equations of the form (t2)i ≡ (t2)j (mod py`` ). Since pe``
is a factor of t, it follows that (t2)y`/2e` is a multiple of (p2e`` )y`/2e` = py`` . Therefore,
(t2)y`/2e` ≡ 0 (mod py`` ). Any further multiplication by t2 also yields 0 modulo py`` . Thus,
it suffices to have j > i ≥ y`

2e`
in order to ensure that (t2)i ≡ (t2)j (mod py`` ).

Finally, there are v equations of the form (t2)i ≡ (t2)j (mod qz`` ). In each case, q` is

co-prime to t, which means that (t2)ϕ(q
z`
` )/2 = tϕ(q

z`
` ) ≡ 1 (mod qz`` ), where ϕ(n) is Euler’s

totient function. Now
ϕ(q

z`
` )

2
=

q
z`−1

` (q`−1)
2

. Thus, it is sufficient to have
q
z`−1

` (q`−1)
2

|(j − i) in
order to ensure that (t2)i ≡ (t2)j (mod qz`` ).

Merging these ideas together, we choose the following values for i and j:

i = max
1≤`≤u

⌈
y`
2e`

⌉
,

j = max
1≤`≤u

⌈
y`
2e`

⌉
+ 2x

∏
1≤`≤v

qz`−1` (q` − 1)

2
,

to ensure that (t2)i ≡ (t2)j (mod 2bm). It is clear that 0 ≤ i < j. In order to show that
j ≤ 2k, we first observe that

j = max
1≤`≤u

⌈
y`
2e`

⌉
+ 2x

∏
1≤`≤v

qz`−1` (q` − 1)

2
= max

1≤`≤u

⌈
y`
2e`

⌉
+

2x

2v

∏
1≤`≤v

qz`−1` (q` − 1)

≤ max
1≤`≤u

⌈y`
2

⌉
+

2x

2v

∏
1≤`≤v

qz`` = max
1≤`≤u

⌈y`
2

⌉
+

m

2v
∏

1≤`≤u p
y`
`

.

We now consider the following two cases:

Case 1: u = 0. If v = 0 as well, then j = 2x = m < 2k+1, which means that x ≤ k and
thus j ≤ 2k. Otherwise, if v ≥ 1, then we have

j ≤ max
1≤`≤u

⌈y`
2

⌉
+

m

2v
∏

1≤`≤u p
y`
`

=
m

2v
≤ m

2
<

2k+1

2
= 2k.
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Case 2: u ≥ 1. Let r be such that yr = max1≤`≤u y`, and thus, pr is the corresponding
prime number with exponent yr. Since pyrr ≥ pr ≥ 3, we have

j ≤ max
1≤`≤u

⌈y`
2

⌉
+

m

2v
∏

1≤`≤u p
y`
`

≤
⌈yr

2

⌉
+
m

pyrr
≤ yr + 1

2
+
m

3
≤ yr

2
+

1

2
+
m

3
.

Note that yr ≤ logpr m ≤ log3m ≤ m
3

from Lemma 46, which means that

j ≤ yr
2

+
1

2
+
m

3
≤ m

6
+

1

2
+
m

3
=
m

2
+

1

2
=
m+ 1

2
.

Since both m and j are integers, this implies that

j ≤
⌈m

2

⌉
≤
⌈

2k+1

2

⌉
≤ 2k.

In both cases, we have j ≤ 2k, thus fulfilling the required conditions.

4.2.3 Discriminator of (ex(n))n≥0 and its shifted counterparts

In this section, we combine the results of the previous sections to determine the discrimina-
tor for (ex(n))n≥1, as well as its shifted counterparts. First, we recall the following lemma
from Chapter 1:

Lemma 1. Given a sequence s(0), s(1), . . . , and a non-zero integer a, let s′(0), s′(1), . . . ,
denote the sequence such that s′(i) = as(i) for all i ≥ 0. Then, for every n such that
gcd(|a|, Ds(n)) = 1, we have Ds′(n) = Ds(n).

We now compute the discriminator for (ex(n))n≥0 =
(
a (t2)n−1

2b

)
n≥0

, and also for its

shifted counterparts, which we denote by (exs(n, c))n≥0 = (ex(n + c))n≥0 for some integer
c ≥ 0.

Theorem 48. Let t, a, b, and c be integers such that a and t are odd, c ≥ 0, and let b be
the smallest integer such that t 6≡ ±1 (mod 2b). Then the discriminator for the sequence

(exs(n, c))n≥0 =
(
a (t2)n+c−1

2b

)
n≥0

is

Dexs(n) = 2dlog2 ne. (4.2)

Proof. First we compute the discriminator for a = 1, where the sequence is of the form

(exs(n))n≥0 =
(

(t2)n+c−1
2b

)
n≥0

.

The case for n = 1 is trivial. Otherwise, let k ≥ 0 be such that 2k < n ≤ 2k+1. We
show that Dexs(n) = 2k+1.
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From Lemma 45, we know that 2k+1 discriminates the set,

{ex(c), ex(c+ 1), . . . , ex(c+ 2k+1 − 1)},

as well as every smaller subset of these numbers. Therefore, 2k+1 discriminates

{exs(0, c), exs(1, c), . . . , exs(n− 1, c)}.

In other words, Dexs(n) ≤ 2k+1.

Now let m be a positive integer such that m < 2k+1. By Lemma 47, we know that
there exists a pair of integers, i and j, such that

(t2)i ≡ (t2)j (mod 2bm) =⇒ (t2)c(t2)i ≡ (t2)c(t2)j (mod 2bm),

=⇒ (t2)i+c − 1 ≡ (t2)j+c − 1 (mod 2bm).

Note that since (t2) ≡ 1 (mod 2b) from Lemma 42, we have (t2)i+c − 1 ≡ (t2)j+c − 1 ≡
1− 1 ≡ 0 (mod 2b). Therefore,

(t2)i+c − 1 ≡ (t2)j+c − 1 (mod 2bm) =⇒ (t2)i+c − 1

2b
≡ (t2)j+c − 1

2b
(mod m).

In other words, exs(i, c) ≡ exs(j, c) (mod m) while both numbers are in the set

{exs(0, c), exs(1, c), . . . , exs(n− 1, c)}

since i < j ≤ 2k < n. Therefore, m fails to discriminate this set. Since this applies for all
m < 2k+1, we have Dexs(n) ≥ 2k+1.

Since we have 2k+1 ≤ Dexs ≤ 2k+1, this means that Dexs(n) = 2k+1 and thus Dexs(n) =
2dlog2 ne, provided that a = 1.

Even for a 6= 1, we observe that the value of 2dlog2 ne is a power of 2 for all n, and so it
is co-prime to all odd a. Therefore, we can apply Lemma 1 to prove that the discriminator
remains unchanged for odd values of a, thus proving that the discriminator for the sequence,

(exs(n, c))n≥0 =
(
a (t2)n+c−1

2b

)
n≥0

is Dexs(n) = 2dlog2 ne.
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Chapter 5

Quadratic sequences with

discriminator pdlogp ne for prime p

So far, we encountered a few sequences whose discriminator is given by 2dlog2 ne, most
notably the odious numbers in Chapter 2 and the class of exponential sequences discussed
in Chapter 3 such as

(
9n−1
8

)
n≥0. As noted in Chapter 2 from empirical results, there seem

to be many sequences whose discriminators are given by 2dlog2 ne.

In this chapter, we examine sequences given by a quadratic formula, and provide a
complete characterization of all such sequences that have the discriminator 2dlog2 ne. We
then extend this idea to the general discriminator sequence of the form pdlogp ne for any prime
p. In particular, we show that there are no quadratic sequences with integer coefficients
with such a discriminator for p ≥ 5, and provide some necessary and sufficient conditions
for the case of p = 3.

5.1 Approach

We denote quadratic sequences by (q(n))n≥0 = (αn2+βn+γ)n≥0, for rational numbers α, β,
and γ. Our approach involves exploiting the property that for any n ≥ 1, the discriminator
Dq(n) is the smallest integer that does not divide q(j)− q(i) for all pairs of integers i and
j such that 0 ≤ i < j < n. Here we can see that

q(j)− q(i) = αj2 + βj − αi2 − βi = α(j2 − i2) + β(j − i)
= (j − i)(α(i+ j) + β). (5.1)

Eq. (5.1) is used to prove various results in later sections. Some of these results are used
to show that some quadratic sequences have discriminator Dq(n) = pdlogp ne for some prime
p. This is accomplished by applying the following lemma:
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Lemma 49. Let p ≥ 2 be a prime number and let (s(n))n≥0 be a sequence of distinct
integers that satisfies the following conditions:

1. For all pairs of integers k and m such that k ≥ 0 and 0 ≤ m < pk+1, there exists a
pair of integers i and j such that 0 ≤ i < j ≤ pk and m|s(j)− s(i);

2. For all integers k, i, and j such that k ≥ 0 and 0 ≤ i < j < pk+1, we have
pk+1 - s(j)− s(i).

Then Ds(n) = pdlogp ne for n > 0.

Proof. The case n = 1 follows from the fact that Ds(1) = 1 regardless of the given con-
ditions. Otherwise, let k ≥ 0 be such that pk < n ≤ pk+1. From the first condition,
we know that for all 0 ≤ m < pk+1, there exists a pair of integers i and j such that
0 ≤ i < j ≤ pk ≤ n − 1 and m|s(j) − s(i). This means that m does not discriminate the
set

{s(0), s(1), . . . , s(n− 1)},

and thus, Ds(n) ≥ pk+1 for all pk < n ≤ pk+1.

Furthermore, from the second condition, we know that pk+1 - s(j) − s(i) as long as
0 ≤ i < j < pk+1. So for pk < n ≤ pk+1, we know pk+1 cannot divide s(j)− s(i) for all i, j
in the range 0 ≤ i < j ≤ n− 1 since n− 1 < pk+1. Therefore, Ds(n) = pk+1 = pdlog2 ne.

Other results in later sections involve scenarios in which Ds(n) 6= pdlogp ne for some
prime p and integer n ≥ 1. This is achieved with the help of the following lemma:

Lemma 50. Let p ≥ 2 be a prime number and let (q(n))n≥0 = (αn2 + βn + γ)n≥0 be
a quadratic sequence such that α, β, and γ are integers that satisfy any of the following
conditions:

1. p - α;

2. p|β;

3. α = pkc for some integer c such that c - β.

Then there exists a value of n > 0 such that Dq(n) 6= pdlogp ne.

Proof. We can assume γ = 0 since the discriminator does not depend on γ. We now
consider the conditions one by one, while recalling from Eq. (5.1) that q(j) − q(i) =
(j − i)(α(i+ j) + β) for all pairs of integers i and j.
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Case 1: p - α. For any integer ` ≥ 2, we show that there exists a pair of i and j such that
0 ≤ i < j < p` and p`|q(j)−q(i). Since p - α, this implies that α and p` are co-prime.
We choose i = 0 and j = −β(α)−1 mod p`. Then

q(j)− q(i) = j(αj + β) ≡ j(α(−β)(α)−1 + β) (mod p`)

≡ j(−β + β) ≡ 0 (mod p`).

Since p`|q(j) − q(i) while 0 ≤ i < j < p`, it follows that Dq(p
`) 6= p` and so,

Dq(n) 6= pdlogp ne for n = p`.

Case 2: p|α and p|β. Again, for any integer ` ≥ 2, we show that there exists a pair of i
and j such that 0 ≤ i < j < p` and p`|q(j)− q(i). Here, we choose i = 0 and j = p`−1

to get

q(j)− q(i) = (j − i)(α(i+ j) + β) = p`−1(p`−1α + β) = p`(p`−2α +
β

p
),

noting that p`−2 and β
p

are integers. Just as with Case 1, this implies that Dq(p
`) 6= p`

and so Dq(n) 6= pdlogp ne for n = p`.

Case 3: p|α, p - β, but c - β, where α = pkc for p - c. Let r be any prime number such
that r|c and r - β. For any pair of integers i and j such that 0 ≤ i < j < r, we
have q(j) − q(i) = (j − i)(α(i + j) + β). Since j < r, we have r - (j − i). We also
have r - α(i + j) + β since r|α but r - β. Therefore, r - q(j) − q(i). It follows that
Dq(r) ≤ r < pdlogp re, i.e., Dq(n) 6= pdlogp ne for n = r.

In all cases, we have Dq(n) 6= pdlogp ne for at least one value of n ≥ 1.

Furthermore, to help generalize some results, we recall the following lemma from Chap-
ter 1.

Lemma 1. Given a sequence s(0), s(1), . . . and a non-zero integer c, let s′(0), s′(1), . . .
denote the sequence such that s′(i) = cs(i) for all i ≥ 0. Then we have Ds′(n) = Ds(n) for
every n such that gcd(|c|, Ds(n)) = 1.

Finally, we also consider the cases in which the quadratic coefficients are not integers.
Discriminators are only applicable to integer sequences, so we are interested in quadratic
polynomials that are integer-preserving i.e. polynomials such that q(n) is an integer if n is
an integer. From a result of Pólya [16], we deduce that every integer-preserving quadratic
polynomial can be written in the form

q(n) = c1
n(n− 1)

2!
+ c2n+ c3(1) =

c1
2
n2 +

2c2 − c1
2

n+ c3,
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for integers c1, c2, and c3. Note that if c1 is even, then 2c2− c1 must also be even, and vice
versa. Thus, we can express all integer-valued quadratic polynomials in the form

q(n) =
α′

2
n2 +

β′

2
n+ γ,

for integers α′, β′, and γ, where α′ and β′ are either both even, or both odd. We denote

this sequence as (qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

. Here, for any integers i and j, we have

qr(j)− qr(i) = (j − i)(α(i+ j) + β) =
(j − i)(α′(i+ j) + β′)

2
(5.2)

We can extend Lemma 50 to apply to quadratic sequences with rational coefficients,
except with odd primes p ≥ 3 instead of p ≥ 2.

Lemma 51. Let p ≥ 3 be a prime number and let (qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

for

integers α′, β′, and γ be a quadratic sequence such that α′ and β′ are odd, and any of the
following conditions are satisfied:

1. p - α′;

2. p|β′;

3. α′ = pkc for some integer c such that c - β′.

Then there exists a value of n > 0 such that Dqr(n) 6= pdlogp ne.

Proof. The argument is identical to Lemma 50. For the first two cases, since p is odd, it
follows that p|(j − i)(α′(i+ j) + β′) implies p| (j−i)(α

′(i+j)+β′)
2

= qr(j)− qr(i). For the third

case, it is clear that r - (j − i)(α′(i + j) + β′) implies r - (j−i)(α′(i+j)+β′)
2

= qr(j) − qr(i).
Thus the same arguments apply.

5.2 The case p = 2

In this section, we provide a complete characterization of all integer-valued quadratic se-
quences with discriminator 2dlog2 ne. These quadratic sequences can be divided into two
types, based on whether the quardatic coefficients are integers or not, i.e., whether α and
β are integers for sequences of the form (q(n))n≥0 = (αn2 + βn+ γ)n≥0.
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5.2.1 Integer quadratic coefficients

First we focus on the case in which α and β are integers. We begin by considering quadratic
sequences of the form (qd(n))n≥0 = (2tn2 + bn)n≥0 for an integer t > 0 and odd integer b,
and then extend the result later. For these sequences, we can apply Eq. (5.1) to get

qd(j)− qd(i) = (j − i)(2t(i+ j) + b). (5.3)

We compute the discriminator for (qd(n))n≥0 using Lemma 49 for p = 2. The first
condition for Lemma 49 is established by another lemma:

Lemma 52. Let k ≥ 0. For all positive integers m < 2k+1, there exists at least one pair
of integers, i and j, such that 0 ≤ i < j ≤ 2k and m| qd(j)− qd(i).

Proof. We consider the different possible cases for the value of m.

1. m is a power of 2, i.e., m = 2` where ` ≤ k. Set i = 0 and j = 2i so that j − i = 2`.

2. m is odd. Since m and 2t are co-prime, this implies that 2t has a multiplicative
inverse modulo m. Let x = −b(2t)−1 mod m. If x ≤ 2k, then we choose i = 0 and
j = x. Otherwise, if x > 2k, we choose j = 2k and i = x−2k. Since x < m < 2k+1, it
follows that i < 2k+1 − 2k = 2k = j. In both cases, we have i+ j = x, and therefore,

qd(j)− qd(i) = (j − i)(2tx+ b) ≡ (j − i)(2t(−b)(2t)−1 + b) (mod m)

≡ (j − i)(−b+ b) ≡ 0 (mod m).

3. m is even, but not a power of 2. In this case, we can write m = 2` · r < 2k+1 for 0 <
` < k, and odd r > 2. This implies r < 2k+1−`. This time, let x = −b(2t+1)−1 mod r,
and choose i = (x− 2`−1) mod r and j = i+ 2`, to get

qd(j)− qd(i) = (i+ 2` − i)(2t(i+ i+ 2`) + b) = 2`(2t(2i+ 2`) + b)

= 2`(2t+1(i+ 2`−1) + b),

which is divisible by 2`. Also,

qd(j)− qd(i) = 2`(2t+1(i+ 2`−1) + b) ≡ 2`(2t+1x+ b) (mod r)

≡ 2`(2t+1(−b)(2t+1)−1 + b) ≡ 2`(−b+ b) ≡ 0 (mod r).

We now verify the conditions on i and j. It is clear that 0 ≤ i < j. Furthermore, we
have i < r < 2k+1−` and 0 < ` < k. For ` = 1, we have j = i + 2 ≤ (r − 1) + 2 =
r + 1 ≤ (2k+1−1 − 1) + 1 = 2k. For ` > 1, we have r < 2k+1−2 = 2k−1, and so,
j = i + 2` < r + 2` < 2k−1 + 2` ≤ 2k−1 + 2k−1 = 2k. Therefore, the condition
0 ≤ i < j ≤ 2k is fulfilled and qd(j) − qd(i) is divisible by both 2` and r, and thus
m| qd(j)− qd(i).
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In all cases, we have m| qd(j)− qd(i) for some i and j in the required range.

The second condition of Lemma 49 is also satisfied, as shown by the next lemma:

Lemma 53. Let k ≥ 0. For all integers i and j satisfying 0 ≤ i < j < 2k+1, we have
2k+1 - qd(j)− qd(i).

Proof. We know qd(j)−qd(i) = (j− i)(2t(i+ j) + b), where t > 0. Here, the second factor
is the sum of an even number and an odd number, and therefore must itself be odd and
not divisible by 2. Therefore, any powers of 2 that divide qd(j) − qd(i) must divide the
first factor, (j − i). But j − i ≤ j < 2k+1. Therefore, 2k+1 - qd(j)− qd(i) for all i and j in
the range 0 ≤ i < j < 2k+1.

Therefore, the two conditions in Lemma 49 are satisfied for (qd(n))n≥0 = (2tn2+bn)n≥0
for every integer t > 0 and odd integer b. It follows from Lemma 49 that Dqd(n) = 2dlog2 ne

for n > 0. Along with Lemma 50 and Lemma 1, this is sufficient to characterize all
quadratic sequences with integer coefficients that have discriminator 2dlog2 ne, as shown in
the following theorem:

Theorem 54. For all quadratic sequences with integer coefficients, i.e., (q(n))n≥0 = (αn2+
βn + γ)n≥0 for integers α, β, and γ, the discriminator Dq(n) is equal to 2dlog2 ne for all
n ≥ 0 if and only if all of the following conditions are satisfied:

1. α is even, i.e., α = 2t · r for some t ≥ 1 and odd r;

2. β is odd;

3. r|β.

Proof. We assume γ = 0 since the discriminator does not depend on it. Now suppose
conditions (1)-(3) hold. Then the resulting sequence, (q(n))n≥0 = (2trn2 + βn)n≥0 is
equivalent to the sequence (r · qd(n))n≥0 = (r(2tn2 + bn))n≥0 with b = β

r
. For r = 1, we

know Dqd(n) = 2dlog2 ne by an application of Lemma 49 for p = 2, with Lemmas 52 and 53
verifying that the conditions are fulfilled.

Since r is odd, it is co-prime to Dqd for all n ≥ 1, and so we can apply Lemma 1 to
show that Dq(n) = Dqd(n) = 2dlog2 ne.

For the other direction, we observe that the violation of any one of these conditions
implies the violation of a corresponding condition of Lemma 50 for p = 2, which showed
that there exists a value of n ≥ 1 for which Dq(n) 6= 2dlog2 ne.

Thus, we have provided a complete characterization of quadratic sequences with integer
coefficients that have discriminator 2dlog2 ne. We can further show that the discriminator for
these sequences are shift-invariant. As defined in the previous chapter, the discriminator
of (q(n))n≥0 is said to be shift-invariant if it shares the same discriminator as (q(n+ c))n≥0
for all c ≥ 0.
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Theorem 55. For quadratic sequences (q(n))n≥0 = (αn2 + βn + γ)n≥0 for integers α,
β, and γ with discriminator Dq(n) = 2dlog2 ne, the discriminator of the shifted sequence,
(qs(n, c))n≥0 = q(n+ c) for any integer c also satisfies Dqs(n) = 2dlog2 ne.

Proof. From Theorem 54, we know that α = 2t · r for some t ≥ 1 and odd r, β is odd, and
that r|β. Now, for any integer c, we have

qs(n, c) = q(n+ c) = α(n+ c)2 + β(n+ c) + γ

= αn2 + 2αnc+ αc2 + βn+ βc+ γ

= αn2 + (2αnc+ β)n+ (αc2 + βc+ γ).

The coefficient of n2 is α = 2t · r, which is even, while the coefficient of n is 2αnc + β,
which is odd. Furthermore, since r|α and r|β, we have r|2αnc + β. Therefore, the three
conditions in Theorem 54 are fulfilled by (qs(n, c))n≥0 and so Dqs(n) = 2dlog2 ne.

5.2.2 Half-integer quadratic coefficients

We now consider quadratic sequences of the form (qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

for

odd α′ and β′. Recall from Eq. (5.2) that

qr(j)− qr(i) = (j − i)(α(i+ j) + β) =
(j − i)(α′(i+ j) + β′)

2
. (5.2 revisited)

To characterize the discriminator of (qr(j))n≥0, we first consider the sequence of trian-
gular numbers, (tr(n))n≥0 =

(
1
2
n2 + 1

2
n
)
n≥0 and extend the result to all (qr(j))n≥0. The

discriminator for the sequence of triangular numbers was already shown by Sun [21] to be
2dlog2 ne, but here we present an alternate proof that utilizes Lemma 49.

For the sequence of triangular numbers, Eq. (5.2) becomes

tr(j)− tr(i) =
(j − i)(i+ j + 1)

2
.

The first condition for Lemma 49 is established by the following lemma:

Lemma 56. Let k ≥ 0. For all positive integers m < 2k+1, there exists at least one pair
of integers, i and j, such that 0 ≤ i < j ≤ 2k and m| tr(j)− tr(i).

Proof. We consider the different possible cases for the value of m.

1. m is a power of 2, i.e., m = 2` where ` ≤ k. Set i = 2` − 1 and j = 2` to get

tr(j)− tr(i) =
(2` − 2` + 1)(2` − 1 + 2` + 1)

2
=

2`+1

2
= 2` = m.
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2. m is odd. For m = 1, we set i = 0 and j = 1. Otherwise, we set i = bm
2
c − 1 and

j = dm
2
e to get

tr(j)− tr(i) =
(dm

2
e − bm

2
c+ 1)(bm

2
c − 1 + dm

2
e+ 1)

2
=

2m

2
= m.

3. m is even, but not a power of 2. In this case, we can write m = 2`(2r+ 1) < 2k+1 for
0 < ` < k and r > 0. This implies r < 2k−` ≤ 2k−1. We have two further cases here.
If r ≥ 2`, set i = r − 2` and j = r + 2` to get

tr(j)− tr(i) =
(r + 2` − r + 2`)(r − 2` + r + 2` + 1)

2

=
(2`+1)(2r + 1)

2
= 2`(2r + 1) = m.

Otherwise, if r < 2`, set i = 2` − r − 1 and j = r + 2` to get

tr(j)− tr(i) =
(r + 2` − 2` + r + 1)(2` − r − 1 + r + 2` + 1)

2

=
(2r + 1)(2`+1)

2
= 2`(2r + 1) = m.

In both cases, it is clear that 0 ≤ i < j. Furthermore, since r < 2k−` and 0 < ` < k,
we have j = r + 2` < 2k−1 + 2` ≤ 2k−1 + 2k−1 = 2k, thus fulfilling the required
constraints on i and j.

In all cases, we have tr(j)− tr(i) = m for some i and j in the required range.

The second condition of Lemma 49 is established by the following lemma.

Lemma 57. Let k ≥ 0. For all pairs of integers i and j satisfying 0 ≤ i < j < 2k+1, we
have 2k+1 - tr(j)− tr(i).

Proof. If, for some i and j, we have 2k+1| tr(j)−tr(i) = (j−i)(i+j+1)
2

, it follows that 2(2k+1) =
2k+2|(j − i)(i+ j + 1). Note that between the factors (j − i) and (i+ j + 1), one of them
must be odd while the other is even. Therefore, at most only one of those factors can be
a multiple of 2k+2 for any i and j. However, if 0 ≤ i < j < 2k+1, then j − i < i + j + 1 ≤
2j < 2(2k+1) = 2k+2, and therefore, 2k+2 cannot divide either of those factors. In other
words, 2k+1 - tr(j)− tr(i) for all i and j such that 0 ≤ i < j < 2k+1.

Thus, the two conditions of Lemma 49 are established for the sequence of triangu-
lar numbers through Lemma 56 and Lemma 57 respectively. Therefore, we can apply
Lemma 49 to show that Dtr(n) = 2dlog2 ne for n > 0.

We now characterize all sequences of the form (qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

for

odd integers α′ and β′, and any integer γ, that have the discriminator Dtr(n) = 2dlog2 ne.
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Theorem 58. For all quadratic sequences of the form (qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

for odd integers α′ and β′, and any integer γ, the discriminator Dqr(n) is equal to 2dlog2 ne

for all n ≥ 0 if and only if α′ = β′.

Proof. We know Dtr(n) = 2dlog2 ne from applying Lemma 49. Furthermore, since α is odd,
we have gcd(|α|, Dtr(n)) = 1 for all n ≥ 0. Therefore, we can apply Lemma 1 to show that
Dqr(n) = Dtr(n) = 2dlog2 ne.

On the other hand, if α′ 6= β′, we have two cases to consider:

Case 1: |α′| 6= |β′|. Let k be any integer such that 2k > |α′| and 2k > |β′|. We show that
there exists a pair of i and j such that 0 ≤ i < j < 2k and 2k| qr(j) − qr(i). Let
x = −β′(α′)−1 mod 2k+1. If x < 2k, we choose i = 0 and j = x. Otherwise, we
choose j = 2k − 1 and i = x− j. In both cases, we have i+ j = x, and so,

α′(i+ j) + β′ ≡ α′(−β′)(α′)−1 + β′) ≡ −β′ + β′ ≡ 0 (mod 2k+1),

which implies that 2k|α
′(i+j)+β′

2
and therefore, 2k| qr(j)− qr(i) = (j−i)(α′(i+j)+β′)

2
.

It is clear that j < 2k and i ≥ 0 for both cases, and that i < j if x < 2k. We now verify
that i < j for x ≥ 2k. Since |α′| 6= |β′|, and both |α′| and |β′| are less than 2k, it follows
that α′ 6≡ ±β′ (mod 2k+1). Therefore, x = −β′(α′)−1 mod 2k+1 6≡ ±1 (mod 2k+1), and
so, x < 2k+1−1. Also, since both α′ and β′ are odd while 2k+1 is even, it follows that
x is odd and thus, x ≤ 2k+1−3. Therefore, i = x−j ≤ 2k+1−3−2k+1 = 2k−2 < j.

Since 2k| qr(j)−qr(i) for some i and j such that 0 ≤ i < j < 2k, we have Dqr(2
k) 6= 2k,

and therefore, Dqr(n) 6= 2dlog2 ne for n = 2k.

Case 2: α′ = −β′. In this case, we have qr(0) = qr(1) = 0, and so, the sequence cannot
even be discriminated.

Therefore, we have Dqr(n) = 2dlog2 ne if and only if α′ = β′.

Unlike the case with integer coefficients, the discriminators for sequences of the form
(qr(n))n≥0 =

(
α′

2
n2 + α′

2
n+ γ

)
n≥0 are not shift-invariant. This is because for any integer

c, we have

qr(n+ c) =
α′

2
(n+ c)2 +

α′

2
(n+ c) + γ =

α′

2
(n2 + 2nc+ c2) +

α′

2
(n+ c) + γ

=
α′

2
n2 +

(
2α′c

2
+
α′

2

)
n+

(
α′

2
c2 +

α′

2
c+ γ

)
.

where the coefficient of n2 is α′

2
while the coefficient of n is 2α′c

2
+ α′

2
6= α

2
. Therefore, by The-

orem 58, the discriminator for (qr(n+ c)n≥0 cannot be 2dlog2 ne, and thus, the discriminator
is not shift-invariant.
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5.3 The case p ≥ 5

We leave the case of p = 3 to the next section, since the case of p ≥ 5 is more straightforward
and contains some results that are used for p = 3 as well.

In this section we show that for any prime p ≥ 5, there are no sequences of the form
(q(n))n≥0 = (αn2 + β + γ)n≥0 with α 6= 0, whose discriminator is Dq(n) = pdlogp ne for all
n ≥ 1.

5.3.1 Integer quadratic coefficients

We begin by considering sequences of the form (qp(n))n≥0 = (c(pkn2 + bn))n≥0, for integers
k, p, c, and b, where p is prime, pk ≥ 5, and gcd(b, p) = 1. From Eq. (5.1), we see that for
all i and j,

qp(j)− qp(i) = (j − i)(α(i+ j) + β) = c(j − i)(pk(i+ j) + b).

First, we present a lemma concerning the factor of pk(i + j) + b in the equation for
qp(j)− qp(i).

Lemma 59. Let p, k, b, r be integers such that p and r are prime, pk ≥ 5, gcd(p, b) = 1,

r > |b|, and r ≡ −b (mod pk). Then z = (pk−1)r−b
pk

is the smallest non-negative integer such

that pkz + b ≡ 0 (mod r).

Proof. Since r ≡ −b (mod pk) and gcd(b, p) = 1, it follows that gcd(r, p) = 1. Now, for
the equation pkz + b ≡ 0 (mod r), it is clear that z ≡ (−b)(pk)−1 (mod r), and thus, there
is only one solution of z in the range 0 ≤ z < r. We now show that this single solution is

z = (pk−1)r−b
pk

.

First, we observe that for z = (pk−1)r−b
pk

, the numerator is pkr−(r+b) ≡ 0 (mod pk), since

r ≡ −b (mod pk), thus ensuring that z is an integer. It is also clear that if z = (pk−1)r−b
pk

,

then pkz + b ≡ (pk − 1)r ≡ 0 (mod r).

Now, since pk ≥ 5, it follows that (pk− 1)r ≥ r, which further implies (pk− 1)r− b > 0
since r > |b|. Furthermore, it is clear that r+ b > 0 and thus, pkr− (r+ b) < pkr. In other

words, we have 0 < z < pkr
pk

= r. Hence the result follows.

We now consider primes whose base-b representation, for some base b, have specified
prefixes and suffixes. We let Σb denote the alphabet {0, 1, . . . , b − 1}. The notation [x]b
refers to the number that would be written as the string x in base-b.

Lemma 60. Let b ≥ 2 be an integer and let x and y be finite strings in Σ∗b such that
gcd(b, [y]b) = 1. Then there exist infinitely many strings w ∈ Σ∗b such that [xwy]b is prime.

63



Proof. For an integer n ≥ 1, let Px,y,b,n denote the set of primes of the form [xwy]b for
strings w ∈ Σ∗b such that |wy| = n. These numbers can be represented as [x]b · bn + [wy]b.
Therefore, they are congruent to [y]b mod b and lie in the interval from [x]b·bn to ([x]b+1)·bn
exclusive.

From Dirchlet’s theorem on primes in arithmetic progressions, the number of primes
less or equal to [x]b · bn and congruent to [y]b mod b, denoted by π([x]b · bn, b, [y]b), is
approximated by

π([x]b · bn, b, [y]b) ≈
1

ϕ(b)
li([x]b · bn),

where ϕ(b) is Euler’s totient function, and li(m) is the logarithmic integral function where
li(m) =

∫ m
2
dt/ log t ≈ m

logm
. Therefore,

|Px,y,b,n| = π(([x]b + 1) · bn, b, [y]b)− π([x]b · bn, b, [y]b)

≈ 1

ϕ(b)
(li(([x]b + 1) · bn)− li([x]b · bn))

≈ 1

ϕ(b)

(
([x]b + 1) · bn

log([x]b + 1) + log bn
− [x]b · bn

log[x]b + log bn

)
≈ ([x]b + 1) · bn − [x]b · bn

ϕ(b)(log[x]b + n log b)

=
bn

ϕ(b)(log[x]b + n log b)
.

As n grows large, this value approaches bn

ϕ(b)n log b
. The error term for the approximation is

known to be bounded by O([x]b · bne−cλ([x]b·b
n)), where λ(m) = (logm)3/5(log logm)−1/5.

λ([x]b · bn) = (log[x]b · bn)3/5(log log[x]b · bn)−1/5

= (log[x]b + n log b)3/5(log(log[x]b + n log b))−1/5

=

(
(log[x]b + n log b)3

log(log[x]b + n log b)

)1/5

.

As n grows large, we have

λ([x]b · bn) =

(
(n log b)3

log(n log b)

)1/5

,

=⇒ [x]b · bn · exp(−cλ([x]b · bn)) =
bn

1
[x]b

exp(c
(

(n log b)3

log(n log b)

)1/5
)

.

Here, the denominator of the error term is an exponential function, with growth rate in
Ω(ecn

2/5
). This grows much faster than the denominator of bn

ϕ(b)n log b
, i.e., ϕ(b)n log b, which
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grows only linearly with n. In other words, as n grows large, the upper bound of the error
term grows much slower than the approximation |Px,y,b,n| ≈ bn

ϕ(b)n log b
.

In other words, we have |Px,y,b,n| > 0 for n sufficiently large, i.e. Px,y,b,n is non-empty.
As there are infinitely many sets Px,y,b,n with n large enough, it follows that there are
infinitely many primes of the form [xwy]b for strings w ∈ Σ∗b .

We use this lemma to prove the following lemma:

Lemma 61. Let p, k, c, and b be integers such that p is prime, p ≥ 3, pk ≥ 5, and
gcd(p, b) = 1. Then for all sequences of the form (qp(n))n≥0 = (c(pkn2 + bn))n≥0, there
exists a pair of integers, r and ` such that r < p`+1 and r - qp(j)− qp(i) for all i and j in
the range 0 ≤ i < j ≤ p`.

Proof. Here, we consider the prime numbers such that their first digit in base pk is pk − 1
and their last digit is equivalent to −b modulo pk. From Lemma 60, we know that there
are infinitely many such primes that fulfil these conditions, so we choose r to be any of
these primes such that r > max(|b|, |c|). Since the first digit of r in base pk is pk − 1, this
means that there is an integer u such that (pk−1)(pk)u ≤ r < (pk)u+1. Let ` = k(u+1)−1
so that (pk)u+1 = p`+1 and (pk)u = p`−k+1. Therefore, we have (pk − 1)p`−k+1 ≤ r < p`+1.

We now show that r - qp(j) − qp(i) = c(j − i)(pk(i + j) + b) for all i and j in the
range 0 ≤ i < j ≤ p`. It is clear that r - c since r > |c|, and that r - (j − i) since
j− i ≤ j ≤ p` < r. Thus, it suffices to show that r - pk(i+ j) + b to prove r - qp(j)−qp(i).

By contradiction, let us assume that there is some i and j in the range 0 ≤ i < j ≤ p`

such that r|pk(i+ j) + b. This implies that pk(i+ j) + b ≡ 0 (mod r). Since i+ j must be

non-negative, we can apply Lemma 59 to show that i+ j ≥ (pk−1)r−b
pk

. Noting that r > |b|,
r ≥ (pk − 1)p`−k+1, and pk ≥ 5, we can deduce that

i+ j ≥ (pk − 1)r − b
pk

=
pkr − r − b

pk
≥ pkr − r − r

pk
=

(pk − 2)r

pk
,

≥ (pk − 2)(pk − 1)p`−k+1

pk
=
p`+1(p2k − 3pk + 2)

p2k
≥ p`+1(p2k − 3pk)

p2k

= p`+1

(
1− 3

pk

)
.

Now, if p = 3, then we have pk ≥ 9, and so

i+ j ≥ p`+1

(
1− 3

pk

)
≥ 3p`

(
1− 3

9

)
= 2p`.

Otherwise, if p ≥ 5, then

i+ j ≥ p`+1

(
1− 3

pk

)
≥ 5p`

(
1− 3

5

)
= 2p`.
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In both cases, we have i+ j ≥ 2p`, which is a contradiction since 0 ≤ i < j ≤ p`. It follows
that for all i and j in the range 0 ≤ i < j ≤ p`, we have r - qp(j)− qp(i).

Although this section is about the case of p ≥ 5, the proof for Lemma 61 includes the
case of p = 3, which is relevant to the next section.

We now show that the discriminator for (qp(n))n≥0 is not characterized by pdlogp ne.

Lemma 62. Let p, k, c, and b be integers such that p is prime, p ≥ 3, pk ≥ 5, and
gcd(p, b) = 1. Then, for every sequence of the form (qp(n))n≥0 = (c(pkn2 + bn))n≥0, there
exists at least one value of n ≥ 1 such that Dqp(n) 6= pdlogp ne.

Proof. From Lemma 61, we know there exists a pair of integers r and ` such that r < p`+1

and r - qp(j) − qp(i) for all i and j in the range 0 ≤ i < j ≤ p`. This implies that r
discriminates the first p` + 1 terms of (qp(n))n≥0. Therefore, Dqp(p` + 1) ≤ r. But since

r < p`+1, it follows that Dqp(p` + 1) < p`+1 = pdlogp(p
`+1)e. Thus, for n = p` + 1, we have

Dqp(n) 6= pdlogp ne.

With Lemma 62, along with Lemma 50, we can show that there are no quadratic
sequences with integer coefficients with discriminator pdlogp ne for primes p ≥ 5.

Theorem 63. Let p ≥ 5 be a prime number. Then for every quadratic sequence with
integer coefficients, denoted by (q(n))n≥0 = (αn2 + β + γ)n≥0 with α 6= 0, there exists a
value of n ≥ 1 such that Dq(n) 6= pdlogp ne.

Proof. We can apply Lemma 50 to show that there exists a value of n ≥ 1 such that
Dq(n) 6= pdlogp ne if any of the following conditions are satisfied:

1. p - α;

2. p|β;

3. α = pkc for some integer c such that c - β.

If neither of these conditions are satisfied, then it follows that (q(n))n≥0 is of the form
(qp(n))n≥0 = (c(pkn2 + bn))n≥0 for k ≥ 1, and gcd(p, b) = 1. We can then apply Lemma 62
to show that Dq(n) 6= pdlogp ne for some n ≥ 1.

This means that for primes p ≥ 5, there are no integer-valued quadratic sequences of
the form (q(n))n≥0 = (αn2 + β + γ)n≥0 such that Dq(n) = pdlogp ne for all n ≥ 1.
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5.3.2 Half-integer quadratic coefficients

We further show that for the general case of (qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

, there are

still no such sequences with Dqr(n) = pdlogp ne for all n ≥ 1 for any prime p ≥ 3. Recall
from Eq. (5.2) that for all integers i and j, we have

qr(j)− qr(i) = (j − i)(α(i+ j) + β) =
(j − i)(α′(i+ j) + β′)

2
. (5.2 revisited)

Lemma 64. Let p ≥ 3 be a prime number and let (qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

for

odd integers α′, β′, and γ be a quadratic sequence such that α′ and β′ are odd, and any of
the following conditions are satisfied:

1. α′ = β′;

2. p - α′;

3. p|β′;

4. α′ = pkc for some integer c such that c - β′;

5. α′ = pkc for some integer c such that c|β′ and pk ≥ 5.

Then there exists a value of n > 0 such that Dqr(n) 6= pdlogp ne.

Proof. If α′ = β′, then it was shown in Theorem 58 that the discriminator is Dqr(n) =
2dlog2 ne. Thus the discriminator does not take values other than powers of 2. Otherwise,
the middle three conditions are shown by Lemma 51.

For the final condition, we can express (qr(n))n≥0 = (1
2

qp(n))n≥0 = (1
2
c(pkn2 + bn))n≥0,

where k ≥ 1 and b and c are integers with gcd(p, b) = 1. From Lemma 61, we know
that there exists a pair of integers r and ` such that r < p`+1 and r - qp(j) − qp(i)
for all i and j such that 0 ≤ i < j ≤ p`. It follows that r - 1

2
(qp(j) − qp(i)) and so,

Dqr(p
` + 1) ≤ r < p`+1 = (p` + 1)dlogp(p

`+1)e, and so, Dqr(n) 6= pdlogp ne for n = p` + 1.

Corollary 65. Let p ≥ 5 be a prime number. Then for all quadratic sequences of the form

(qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

for integers odd integers α′ and β′, and any integer γ,

there exists a value of n ≥ 1 such that Dqr(n) 6= pdlogp ne.

Proof. For p ≥ 5, all possible cases are covered by Theorem 64.
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5.4 The case p = 3

We finally turn to quadratic sequences with discriminator 3dlog3 ne. In this section, we
present a set of necessary conditions and a set of sufficient conditions for a quadratic
sequence with integer coefficients to have discriminator 3dlog3 ne.

5.4.1 Necessary conditions with integer quadratic coefficients

We begin with the set of necessary conditions, as described in the following theorem.

Theorem 66. Let (q(n))n≥0 = (αn2 + β + γ)n≥0 be a quadratic sequence with integer
coefficients such that Dq(n) = 3dlog3 ne for all n ≥ 1. Then there exist integers b and c such
that α = 3c, β = bc, and 3 - bc. Furthermore, if b is even, then c is also even.

Proof. From Lemma 50, we know that Dq(n) 6= 3dlog3 ne for some n ≥ 1 if certain conditions
are satisfied. Violating the conditions of Lemma 50 implies that p - β and α = pkc for
integers k and c such that k ≥ 1 and c|β. It follows that Dq(n) = 3dlog3 ne implies that
(q(n))n≥0 = (pkcn2 + bcn)n≥0 where 3 - bc.

Now, from Lemma 62, we know that if pk ≥ 5, then Dq(n) 6= pdlogp ne for some n ≥ 1.
Therefore, we must have 3k = pk < 5 in order for Dq(n) 6= 3dlog3 ne. Since k ≥ 1, it follows
that k = 1 and thus, α = 3c.

Finally, if (q(n))n≥0 = (3cn2 + bcn)n≥0, then q(0) = 3c(0) + bc(0) = 0 and q(1) =
3c(1) + bc(1) = c(3 + b). If b is even, then 3 + b is odd. If c is also odd, then q(1) is odd,
which means that the number 2 discriminates {q(0), q(1)}, and so, Dq(2) = 2 6= 3, which
contradicts Dq(2) = 3dlog3(2)e = 3. Therefore, if b is even, then c must also be even.

These conditions are not sufficient, however. For example, the discriminator of the first
four terms of (3n2+7n)n≥0 is 7 instead of 3dlog3 4e = 9, even though the necessary conditions
are fulfilled.

5.4.2 Sufficient conditions with integer quadratic coefficients

We now derive a set of sufficient conditions by considering the class of sequences of the form
(qt(n))n≥0 = (3cn2 + bcn)n≥0. Provided that b and c satisfy certain restrictions, we show
that the discriminator sequence is Dqt(n) = 3dlog3 ne. Some examples of such sequences are
(3n2 + n)n≥0, (6n2 − 4n)n≥0, and (21n2 + 49n)n≥0.

Applying Lemma (5.1) to sequences of the form (qt(n))n≥0 = (3cn2 + bcn)n≥0 yields

qt(j)− qt(i) = (j− i)(α(i+ j) +β) = (j− i)(3c(i+ j) + bc) = c(j− i)(3(i+ j) + b). (5.4)

Before proving any results relating to the discriminator of such sequences, we first establish
the following general lemmas:
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Lemma 67. For all positive integers ` and k such that ` < 2(3k), there exists a pair of
integers i and j such that i+ j = ` and 0 ≤ i < j ≤ 3k.

Proof. If ` ≤ 3k, choose i = 0 and j = `. Otherwise, if ` > 3k, choose i = ` − 3k and
j = 3k. In this case, we have i < j since ` < 2(3k).

Lemma 68. Let u and v be integers such that u ≥ 3, v ≥ 5 and v is odd, and let k ≥ 2 be
such that 3k ≤ uv < 3k+1. Then u+ v − 1 ≤ 3k.

Proof. We leave the finitely many cases of k = 2 to the reader. Otherwise, if k ≥ 3, we
have 3k ≥ 27. There are two cases here:

Case 1: u = 3. Since v is odd, we have v ≤ 3k−2. Therefore, u+v−1 ≤ 3+3k−2−1 = 3k.

Case 2: u ≥ 4. Since v ≥ 5, it follows that (u− 4)(v − 4) ≥ 0. This implies that

u+ v ≤ uv + 16

4
<

3k+1 + 16

4
≤ 3k · 3

4
+ 4.

Since 3k ≥ 27, we have 3k · 3
4

+ 4 ≤ 3k + 1 and thus, u+ v − 1 ≤ 3k.

We now present the following lemma which enforces a set of constraints on the values
of b and c in order to prove the lower bound of Dqt(n) for n ≥ 1.

Lemma 69. Let k ≥ 0 and let (qt(n))n≥0 = (3cn2 + bn)n≥0 be a quadratic sequence such
that b and c are non-zero integers that satisfy all of the following conditions:

1. b ≥ −2.

2. 3 - bc.

3. If b is even, then c is also even.

4. If b is odd and there exists an integer x such that 2(3k) < 2x < 3k+1, 2x ≤ |b|, and
(b mod 2x) ≡ 0 (mod 3), then c is even.

5. For every prime number p such that 2(3k) < p < 3k+1, p ≤ |b|, and (b mod p) ≡
0 (mod 3), we have p|c.

Then for all positive integers m < 3k+1, there exists integers i and j such that 0 ≤ i < j ≤
3k and m| qt(j)− qt(i).

Proof. Let m = 2x3yr for x ≥ 0, y ≥ 0, 2 - r and 3 - r.
There are several cases to consider for the value of m.
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1. m ≤ 3k. Choose i = 0 and j = m so that m|(j − i)| qt(j)− qt(i).

2. m is a positive power of 2. We can split this further into three cases.

(a) m = 2x < 2(3k). Let ` = −b(3)−1 mod 2x, so that m|(3` + b). If ` 6= 0, then
apply Lemma 67 so that i + j = `. Otherwise, if ` = 0, then apply Lemma 67
so that i+ j = 2x. In both cases, we have m| qt(j)− qt(i) and 0 ≤ i < j ≤ 3k.

(b) m = 2x ≥ 2(3k), c is even. The case of m = 2 is trivial. Otherwise, for m > 2,
let ` = −b(3)−1 mod 2x−1. Note that m|2(3`+b). If ` 6= 0, then apply Lemma 67
so that i+j = `. Otherwise, if ` = 0, then apply Lemma 67 so that i+j = 2x−1.
In both cases, we have m| qt(j)− qt(i) and 0 ≤ i < j ≤ 3k.

(c) m = 2x ≥ 2(3k), c is odd. Note that from conditions 3 and 4 of the lemma
statement, we have b odd and (b mod 2x) 6≡ 0 (mod 3). For m = 2, choose i = 0
and j = 1 so that 3(i + j) + b is even. Otherwise, we have m > 2. If b < 0, let
z = b. Otherwise, let z = b mod 2x. Then it suffices to have 2x|3(i + j) + z so
that m| qt(j)−qt(i). Note that z must be odd since b is odd. If 2x ≡ z (mod 3),
then let ` = 2x−z

3
. Otherwise, if 2x 6= z (mod 3), we have 2x+1 ≡ z (mod 3)

since 2x 6= 0 (mod 3) and z 6= 0 (mod 3) , so we let ` = 2x+1−z
3

. For both cases,
note that ` > 0 since z is odd, and also that z ≥ −1. Therefore,

` ≤ 2x+1 − z
3

≤ 2x+1 + 1

3
=

2(2x) + 1

3
≤ 2(3k+1 − 1) + 1

3

=
2(3k+1 − 1)

3
<

2(3k+1)

3
= 2(3k).

Thus, we can apply Lemma 67 so that i+ j = ` and so, we have m| qt(j)−qt(i)
and 0 ≤ i < j ≤ 3k.

3. m is a prime ≥ 5 or twice such a prime. We also have three cases here.

(a) m is prime and 5 ≤ m < 2(3k). Let ` = −b(3)−1 mod m so that m|(3` + b).
If ` 6= 0, then apply Lemma 67 so that i + j = `. Otherwise, if ` = 0, then
apply Lemma 67 so that i+ j = m. In both cases, we have m| qt(j)− qt(i) and
0 ≤ i < j ≤ 3k.

(b) m is prime and m > 2(3k). If (b mod m) ≡ 0 (mod 3), we have m|c, and so,
m| qt(j) − qt(i) for any choice of i and j. Otherwise, we have (b mod m) 6≡
0 (mod 3). If b < 0, let z = b. Otherwise, let z = b mod m. Then it suffices
to have m|(3(i + j) + z) so that m| qt(j) − qt(i). If m ≡ z (mod 3), then let
` = m−z

3
. Otherwise, if m 6= 0 (mod 3) and z 6= 0 (mod 3), then we have

2m ≡ z (mod 3), so we let ` = 2m−z
3

. For either case, since −2 ≤ z < m, we
have ` ≤ 2m−z

3
≤ 2m+2

3
and that m < 3k+1 − 1, since m is odd. Therefore,

` ≤ 2m+ 2

3
=

2(m+ 1)

3
<

2(3k+1 − 1 + 1)

3
=

2(3k+1)

3
= 2(3k).
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Thus, we can apply Lemma 67 so that i+ j = ` and so, we have m| qt(j)−qt(i)
and 0 ≤ i < j ≤ 3k.

(c) m = 2p for some prime p ≥ 5. Let ` = −b(3)−1 mod p so that p|3` + b. We
observe that

` < p =
m

2
<

2m

3
<

2(3k+1)

3
= 2(3k).

Now, if ` = 0, we apply Lemma 67 so that i + j = p. Otherwise, if ` 6= 0,
we apply Lemma 67 so that i + j = `. For either case, we have p|3(i + j) + b.
If b is even, then c is also even. Otherwise, if b is odd, then either (j − i) or
(3(i+ j) + b) is even. Therefore, m = 2p| qt(j)− qt(i).

4. m does not have any prime factors except 2 and 3. We split this into four cases.

(a) m = 3y or m = 2(3y). Clearly y ≤ k. Choose i = 0 and j = 3y. If b is odd, then
3(i+ j) + b is even. Otherwise, c is even. Therefore, m| qt(3y)− qt(0).

(b) m = 4(3y), b is even. Clearly y < k. Choose i = 0 and j = 2(3y) < 3y+1 ≤ 3k.
Since b is even, c must also be even, and so m|c(j − i).

(c) m = 2x3y, x ≥ 3, and b is even. Choose i = 0 and j = 2x−23y = m
4
< 3k+1

4
<

3k. Then j − i = 2x−23y while both c and 3(i + j) + b are even. Therefore,
m| qt(j)− qt(i).

(d) m = 2x3y, x ≥ 2, and b is odd. Clearly y < k. Let ` = (−b(3)−1−3y) mod 2x so
that 2x|3(`+ 3y) + b. Note that ` is even. If ` = 0, choose i = 2x−1. Otherwise,
choose i = `

2
. In both cases, choose j = i+3y so that j−i = 3y while i+j = 2i+

3y ≡ `+3y (mod 2x), and therefore, m|(j−i)(3(i+j)+b) = qt(j)−qt(i). To verify
that j ≤ 3k, note that i ≤ 2x−1 and so, j ≤ 2x−1 +3y. Since m = 2x3y < 3k+1, it

follows that 2x−1 ≤ m
6
< 3k+1

6
= 3k

2
and so, j ≤ 2x−1+3y < 3k

2
+3k−1 = 5(3k)

6
< 3k.

5. For all other possible cases of m, we can write m = uv such that u ≥ 3, v ≥ 5,
and gcd(v, 6) = 1. In this case, let ` = (−b(3)−1 − u) mod v where (3)−1 is the
multiplicative inverse of 3 modulo v, so that v|3(`+ u) + b. If ` is even, then choose
i = `

2
. Otherwise, if ` is odd, choose i = `+v

2
. In both cases, choose j = i+ u so that

j − i = u and

3(i+ j) + b = 3(2i+ j) + b ≡ 3(`+ u) + b ≡ 0 (mod v).

Therefore, m = uv|(j − i)(3(i + j) + b)| qt(j) − qt(i). To verify that j ≤ 3k, note
that 0 ≤ i < v and so, j ≤ u + v − 1. Thus, we can apply Lemma 68 to show that
j ≤ u+ v − 1 ≤ 3k.

In all cases, we have m| qt(j)− qt(i) for some i and j in the required range.

Before we move on to the upper bound, we provide some insight on the choices of
conditions in Lemma 69.
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• Condition 4 is due to the argument in Case 2c, where m is a power of 2 such that
2(3k) < m < 3k+1, e.g., m = 64. Since b is odd, it is impossible for 2 to divide both
(j− i) and (3(i+ j) + b), so we need m|c(3(i+ j) + b). If z 6≡ 0 (mod 3) as described
in Case 2c, then there is no problem. Otherwise, the smallest non-negative solution
for 3`+ b ≡ 0 (mod m) can have ` being anywhere from 0 to m− 1, which might be
bigger than 2(3k), thus making it impossible for ` = i+ j in some cases. So we need
c to be even to allow m|c(3(i+ j) + b) then.

• Likewise, Condition 5 is due to case 3b, through similar logic. An example that illus-
trates the need for both Conditions 4 and 5 is (3n2+75n)n≥0, where the discriminator
of the first nineteen terms is 61 (a prime), while the discriminator of the first twenty
terms is 64 (a power of 2).

• Conditions 4 and 5 also include 2x ≤ |b| and p ≤ |b| respectively. This is because if
b is positive and greater than 2x or p respectively, then we have z = b, which implies
z 6≡ 0 (mod 3) due to Condition 2, making Cases 2c and 3b applicable. Furthermore,
for any positive b, there are finitely many primes p such that p ≤ |b|, so Condition 5
still ensures that c is bounded.

• However, if b is negative, there are some potential problems. This is because even
if 3 - b, there are infinitely many values of m such that b mod m ≡ 0 (mod 3) while
m = 2x or p as described in Conditions 4 and 5, if b is negative. The constraints
of 2x ≤ |b| and p ≤ |b| would no longer be sufficient to capture all such scenarios.
Even if we try to expand these constraints, there might be infinitely many primes
p for which the only solution of 3` + b ≡ 0 (mod p) involves ` > 2(3k), making it
impossible to bound c then.

• Despite this, the arguments in Cases 2c and 3b still work for z ≥ −2. So if b is
negative, we can let z = b, but we add Condition 1 to ensure that z = b ≥ −2 in
such cases.

Justification for Conditions 2 and 3 are covered by Theorem 66. We now move on to
the upper bound on the discriminator of (qt(n))n≥0, which is handled by the following
lemma.

Lemma 70. Let k ≥ 0. For all pairs of integers i and j satisfying 0 ≤ i < j < 3k+1, we
have 3k+1 - qt(j)− qt(i) if 3 - bc.

Proof. For qt(j) − qt(i) = c(j − i)(3(i + j) + b), it is given that 3 - c. Since 3 - b, it
follows that 3(i + j) + b ≡ b 6≡ 0 (mod 3), and so, 3 - 3(i + j) + b. Therefore, any powers
of 3 that divide qt(j) − qt(i) must divide the (j − i). But j − i ≤ j < 3k+1. Therefore,
3k+1 - qt(j)− qt(i) for all i and j in the range 0 ≤ i < j < 3k+1.

We now compute the discriminator of (qt(n))n≥0 = (3cn2 + bn)n≥0 with the same
conditions as Lemma 69.
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Theorem 71. Let (qt(n))n≥0 = (3cn2 + bn)n≥0 be a quadratic sequence such that b and c
are non-zero integers that satisfy all of the following conditions:

1. b ≥ −2.

2. 3 - bc.

3. If b is even, then c is also even.

4. If b is odd and there exists a pair of positive integers x and k such that 2(3k) < 2x <
3k+1 , 2x ≤ |b|, and (b mod 2x) ≡ 0 (mod 3), then c is even.

5. For every prime number p such that 2(3k) < p < 3k+1 for a positive integer k, p ≤ |b|,
and (b mod p) ≡ 0 (mod 3), we have p|c.

Then the discriminator Dqt(n) satisfies the equation

Dqt(n) = 3dlog3 ne (5.5)

for n ≥ 1.

Proof. This follows directly from an application of Lemma 49 on (qt(n))n≥0 for p = 3,
where the two conditions of Lemma 49 are fulfilled by Lemmas 69 and 70 respectively.

We presented a set of conditions for which Dqt(n) = 3dlog3 ne. These conditions, however,
are not necessary. A simple example to illustrate this is (3n2 + 25n)n≥0, which satisfies
all five conditions except Condition 5 for p = 19, where 2(32) < 19 < 33, 19 ≤ |25|,
and 25 mod 3 ≡ 0 (mod 3), but 19 - 1. The discriminator is still 3dlog3 ne, however. This
can be shown by observing that all cases in Lemma 69 are still applicable, except the
case of m = 19 with k = 2. But even then, we can still set i = 6 and j = 7 to get
3(i+j)+25 = 38 ≡ 0 (mod 19), and so, m| qt(7)−qt(6), satisfying the result of Lemma 69.

It remains an open problem to close the gap between the necessary and sufficient
conditions in order to provide a complete characterization of all quadratic sequences with
discriminator 3dlog3 ne.

5.4.3 Half-integer quadratic coefficients

We briefly discuss the case of (qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

for odd α′ and β′. Recall

Lemma 64,

Lemma 64. Let p ≥ 3 be a prime number and let (qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

for

odd integers α′, β′, and γ be a quadratic sequence such that α′ and β′ are odd, and any of
the following conditions are satisfied:
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1. α′ = β′;

2. p - α′;

3. p|β′;

4. α′ = pkc for some integer c such that c - β′;

5. α′ = pkc for some integer c such that c|β′ and pk ≥ 5.

Then there exists a value of n > 0 such that Dqr(n) 6= pdlogp ne.

This covers most cases of (qr(n))n≥0 for odd α′ and β′. The only remaining case is
when α′ = 3c for some integer c such that c|β′ and 3 - c. Unlike with integer coefficients,
we were unable to find any examples for which Dqr(n) = 3dlog3 ne.

Conjecture 72. Let b and c be non-zero integers such that 3 - bc. For all sequences of the
form (qr(n))n≥0 = (3c

2
n2 + bc

2
n)n≥0 such that b and c are non-zero integers with 3 - bc, there

exists at least one value of n ≥ 1 such that Dqr(n) 6= 3dlog3 ne.

Proving this conjecture would prove that Dqr 6= 3dlog3 ne for all sequences of the form

(qr(n))n≥0 =
(
α′

2
n2 + β′

2
n+ γ

)
n≥0

with odd α′ and β′.
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Chapter 6

Conclusion

In this chapter, we summarize the main results of the thesis and present some open prob-
lems and areas for future research.

6.1 Summary

Chapter 1 introduces the concept of discriminators, provides a background of past literature
on the topic, and lists several basic properties of discriminators in general before concluding
the chapter with a simple guide on the standard approaches to computing the discriminator
of a sequence.

Chapter 2 discusses various different computational aspects of discriminators, such as
providing bounds on the discriminator growth rate and providing several algorithms for
computing the discriminator of a given sequence. The chapter also explores the problem of
determining whether a given sequence, either an infinite sequence or a finite prefix, is the
discriminator of any other sequence. Finally, the chapter concludes with a characterization
of self-discriminators and some empirical results relating to discriminators.

Chapter 3 focuses specifically on k-regular sequences, which includes the characteri-
zation of the discriminators of odious and evil numbers respectively, and proving that a
k-regular sequences do not necessarily have k-regular discriminators.

Chapter 4 introduces the concept of shift-invariant discriminators, and provides a spe-
cific class of exponential sequences whose discriminators are all shift=invariant.

Finally, Chapter 5 studies quadratic sequences with discriminator pdlogp ne for prime
p, where the case of p = 2 appears as a common discriminator in previous chapters. The
chapter provides a complete characterization of the quadratic sequences with discriminator
pdlogp ne for p = 2, shows that there are no such quadratic sequences with this discriminator
for p ≥ 5, and provides partial results for the case of p = 3.
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6.2 Open Problems

There are many open problems in the area of discriminators. In particular, every sequence
of distinct integers has a discriminator sequence, and there are many notable sequences
whose discriminators were not examined before. The literature so far contains detailed
characterizations on the discriminators of sequences of fixed powers (squares, cubes, etc)
and significant contributions on sequences of various polynomials, but very few results on
exponential sequences and on other types of sequences.

Aside from the discriminator of specific sequences, it is also an open problem to seek
and establish general properties of the discriminator. In particular, it would be interesting
to find other conditions for which the discriminators of two different sequences would be
the same or related in some other manner.

There are also several open areas in the computational side of discriminators, such as
improving the upper bound on the growth rate for discriminators in general, or for specific
types of sequences like cubic sequences. The problem of determining whether a given
sequence is a discriminator of some other sequence is also open, with many finite or infinite
sequences that could be explored, such as the conjecture that there are no infinite sequences
whose discriminator is the sequence of non-composites. The current algorithms for checking
if a finite sequence is a discriminator can be improved on either efficiency or proving
correctness. The empirical results presented about common discriminator sequences are
also open to improvement, or they can be solidified with theoretical justification.

Chapter 3 also considered the discriminators of k-regular sequences, raising several
questions like on when the discriminator of a k-regular sequence is also k-regular, or on
whether there are any properties of the discriminators of k-regular sequences. There are
many k-regular sequences whose discriminators were not studied yet, with this chapter
providing a conjecture on the discriminator of the sequence of Cantor numbers specifically.

The topic of shift-invariant discriminators is rarely touched on in the literature. There
are many open questions in this area, such as on what other sequences have shift-invariant
discriminators, and on what other properties are shared by such sequences.

Finally, Chapter 5 presented partial results on quadratic sequences with discriminator
3dlog3 ne, so a complete characterization is still open. The results in Chapter 5 also lead to
the natural problem of considering polynomials of higher degree, and characterizing those
with discriminator pdlogp ne.
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