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Abstract

For a hyperbolic plane tessellation there is a generating function with respect to the dis-
tance. This generating function is the same as the growth function of a group of isometries
of hyperbolic plane that acts regularly in the tessellation. For most of the tessellation the
generating functions have a symmetric form. In this thesis we will show the computation
of the generating function for the hyperbolic plane tessellation and find the tessellations
that have a symmetric form in the generating functions.
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Chapter 1

Introduction

For a finitely generated group G and a finite generating set Σ for G, we can define a norm
in G called the word norm. A word is a finite string of elements g1g2 · · · gn where each gi
satisfies either gi ∈ Σ or g−1

i ∈ Σ. For each element g in the group G, the word norm of g
is

|g| = min{n | g = g1 · · · gn, gi ∈ Σ or g−1
i ∈ Σ}.

Then we have a generating function for the word norm in the group

f(z) =
∑
g∈G

z|g|.

This generating function is called the growth function of the group G with respect to
generator set Σ. We have another equivalent form of the growth function

f(z) =
∑
n≥0

snz
n,

where sn is the number of elements in G with word norm n.

The growth function of a finitely generating group is generally difficult to compute. It
will help if we study the groups that reflect some geometry, and this has been studied by
many authors. Let us mention the Coxeter groups [2, 3, 22], surface groups and Fuchsian
groups [3, 27, 5, 12], and Weyl groups[18].

Our interest starts with the regular hyperbolic tessellations. Here a hyperbolic tessella-
tion, sometimes called a hyperbolic tiling, is a covering of the hyperbolic plane H2, without
gaps or overlappings, by polygons of the same shape and size. And we also require that
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there is a transitive group action on these polygons, that is to say, we have a group G of
hyperbolic plane automorphisms, that can map a polygon in the tessellation to any other
polygon. Regular tessellations are the tessellations such that the polygon is regular. It is
well-known that regular hyperbolic tessellations exist. A good reference with introduction
and lots of examples can be found in [7]. The basics about hyperbolic plane can be found
in [20].

We can also define a norm in a tessellation. First we will fix one polygon C0 as the
origin and let it have norm zero, then we will let each polygon have norm one plus the
minimum norm among its neighbors. So the norm |C| of a polygon C will be the minimal
d such that there exists a sequence of polygons C0, C1, . . . , Cd, where Cd = C and each Ci
neighbors Ci+1. Then we will have a generating function on the tessellation as

f(z) =
∑
C

z|C|.

Since the group action is transitive, this generating function doesn’t depend on the choice
of C0, and we will see that it coincides with the growth function of G if G acts regularly
on the tessellation, with respect to the geometric generator set. Here we say a group acts
regularly on the tessellation if it acts regularly on the face, which means for any two faces
on the tessellation, there are exactly one group element that maps one face to the other.
And we define the geometric generating set as Σ = {g ∈ G | gC0 ∩ C0 is an edge of C0}.

Since in this thesis we will mainly focus on the combinatorial information of the tes-
sellation, it will be convenient to use the terminology in graph theory to describe the
tessellation. We can consider the tessellation as an infinite planar graph, so each polygon
is a face, and each face has p edges and p vertices around it.

The growth function of regular hyperbolic plane tessellations was first studied in [27,
4, 3], then there are some more study by different approachs in [24, 23]. We will give a
new computation in Chapter 2, and we will see that the generating functions are reciprocal
and rational with denominator and numerator having the same degree, such that we have
a symmetry form in the generating function in terms of f(z) = f(z−1).

In [3, 4] Cannon shows that the growth functions of cocompact hyperbolic groups are
rational. This leads to the more general questions about the computation of the growth
function of general (usually not regular) hyperbolic tessellations and determining when will
the function still have a similar symmetry form f(z) = f(z−1). Following [12, 13], we will
give the complete computation in Chapter 3, the proof of the symmetry in Chapter 4, and
a brief discussion about some exceptional cases in Chapter 5.
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Chapter 2

Regular Hyperbolic Plane
Tessellations

2.1 Introduction

The simplest tessellations of the hyperbolic plane are the regular tessellations. The gener-
ating function of regular tessellations was first computed in [3] and in [27]. In this chapter
we will define them, discuss the corresponding groups, and give a proof of the generating
function.

We use the notation {p, q}, p, q ≥ 3, from [8], for a regular tessellation of a sphere,
an Euclidean plane or a hyperbolic plane with regular p-gons, q of them intersecting at
each vertex. There are five types of regular tessellations on sphere and three on Euclidean
plane. All the others with 1/p+ 1/q < 1/2 are tessellations on a hyperbolic plane, and we
will only consider the hyperbolic plane case.

In this chapter we will first introduce some types of groups that act regularly on the
regular tessellations, and the relation between growth functions of these groups and the
generating functions in section 2.2. Then we will prove a recursion relation on angles in
section 2.3 and calculate the generating function in section 2.4. The final result will be the
following theorem.

Theorem 1. For a regular hyperbolic plane tessellation {p, q}, when q is even, we let
m = q/2. Then we have the generating function

f(z) =
zm + 2zm−1 + · · ·+ 2z + 1

zm − (p− 2)zm−1 − · · · − (p− 2)z + 1
.
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When q odd, we let m = q − 1. Then we have the generating function f(z) equal to

zm + 2zm−1 + · · ·+ 2zm/2−1 + 4zm/2 + 2zm/2+1 + · · ·+ 2z + 1

zm − (p− 2)zm−1 − · · · − (p− 2)zm/2−1 − (p− 4)zm/2 − (p− 2)zm/2+1 − · · · − (p− 2)z + 1
.

2.2 Group Action and Dual Graphs

There are several types of groups that act regularly on the regular tessellations. Here we
give three examples of such groups and their geometric generating sets.

For the case when p = q = 4g for g ≥ 2, the tessellation can be seen as the universal
covering space (see chapter 1 in [17]) of an orientable closed surface of genus g. The
fundamental group of this surface is called the surface group:

Gg = 〈a1, . . . , ag, b1, . . . , bg |
g∏
i=1

[ai, bi] = 1〉.

This group can also be seen as the group of deck transformations of the universal cover-
ing space, or an automorphism group of the tessellation. There is an origin face on the
tessellation such that any ai, bi will take the origin face to a neighboring face, so the set
{a1, . . . , ag, b1, . . . , bg} is a geometric generating set. The growth function of this group was
first computed in [3] and [27], and it’s the first example of calculating generating functions
of regular hyperbolic plane tessellations.

We can also consider Coxeter group generated by the reflections along edges. A Coxeter
group (see [1]) is a group with the presentation

〈x1, . . . , xn | (xixj)mij = 1, 1 ≤ i, j ≤ n〉

where mii = 1 and 2 ≤ mij ≤ ∞ for i 6= j. If mij = ∞, then it means there no relation
of the form (xixj)

mij in the presentation. We will give further discussion about Coxeter
group in section 5.1. Now let’s fix one face, which will be called the origin face, and label
the edges of this face from 1 to p clockwise. Here we let xi be the reflection along the edge
i. Then we have a Coxeter group

〈x1, . . . , xp | x2
1, x

2
2, . . . , x

2
p, (x1x2)q, (x2x3)q, . . . , (xpx1)q〉

for q odd and

〈x1, . . . , xp | x2
1, x

2
2, . . . , x

2
p, (x1x2)q/2, (x2x3)q/2, . . . , (xpx1)q/2〉

4



for q even. When q is even, this Coxeter group acts regularly on regular tessellation {p, q}
with geometric generating set {x1, . . . , xp}.

More generally, we have the Fuchsian groups. A Fuchsian group is a finitely generated
discrete group of orientation-preserving noneuclidean automorphisms, which means a dis-
crete group of Möbius transformations that maps the hyperbolic plane to itself.(see [20,
II.7]) One example of Fuchsian groups that act on regular tessellations are groups gener-
ated by rotations around each vertex of a face. Again we fix an origin face and label the
vertices clockwisely, and let ai be the clockwise rotation around vertex i by 2π/q. Then
we have a Coxeter group

G = 〈a1, . . . , ap | aq1, . . . , aqp, (a1a2)p, . . . , (apa1)p〉

for p odd, and
G = 〈a1, . . . , ap | aq1, . . . , aqp, (a1a2)p/2, . . . , (apa1)p/2〉

for p even. Notice that these groups don’t always act regularly on the tessellation. In
[28] Robert shows an equivalent condition for the existence of a regular action by Fuchsian
groups.

Theorem 2 (Theorem 1 in [28]). The tessellation of type {p, q} is a tessellation of the
hyperbolic plane by fundamental domains of some Fuchsian group if and only if q has a
prime divisor less than or equal to p.

We will discuss more about fundamental domains in Chapter 3. For the more general
groups of discrete, co-compact groups of isometries of H2, we still don’t know what is the
condition on {p, q} such that a regular group action exists.

To describe the precise relation between the growth functions of the groups and the
generating functions of the tessellations, we will introduce the dual graph Γ of the tessel-
lation. By dual graph we mean a new graph Γ with the vertex set containing the faces of
the tessellation. Two vertices in Γ are adjacent if and only if the two faces share a common
edge in the tessellation. Any face in Γ will correspond to a vertex in the tessellation. If
the origin face D corresponds to a vertex u0 in Γ, then it’s easy to see that a face with
distance n to D in the tessellation will correspond to a vertex in Γ with distance n to u0.
So the generating function of tessellation is equal to f(z) =

∑
v∈V (Γ) z

d(u0,v), where d(u0, v)
is the distance between u0 and v in Γ.

When there is a group G acting regularly on the faces of a tessellation, we can see that
G also acts regularly on the vertices of the dual graph Γ of the tessellation. In this case
the graph Γ is exactly the undirected Cayley graph X(G,Σ∪Σ−1). An undirected Cayley

5



graph X(G,S) is a graph for G with respect to a subset S of G that is closed under taking
inverse. The vertex set of this graph X(G,S) is the set of elements of G, and two vertex
u and v are adjacent if and only if ug = v for some g ∈ S.

Proposition 3. The Cayley graph X(G,Σ ∪ Σ−1) is isomorphic to Γ.

Proof. Let’s fix a vertex u0 in Γ, then we want to show that the isomorphism ρ from
X(G,Σ∪Σ−1) to Γ can be given by mapping the vertex g in X(G,Σ∪Σ−1) to ρ(g) = gu0,
the image of u0 under g in Γ. It’s easy to see that ρ is a proper bijection on vertex sets,
so all we need to show is the correspondence between the edges. If h ∈ G map u0 to
hu0 in Γ, then since h is an isomorphism, h will also map the neighborhood of u0 to the
neighborhood of hu0. Notice that all neighboring vertices of u0 are in form of giu0 or g−1

i u0

for gi ∈ Σ, h will map giu0 to hgiu0. This will correspond to the edge between h and hgi
in the Cayley graph. Similar for g−1

i u0. On the other hand for each edge between h and
hgj in the Cayley graph, there is a corresponding edge hu0 and hgju0 on Γ because h is an
isomorphism. Thus ρ is an isomorphism.

Remark. Notice that in the proof of Proposition 3, the order of multiplication in the
definition of the Cayley graph is important. In Γ, for a gi ∈ Σ, vertex hu0 is always
adjacent to hgiu0, but hu0 is usually not adjacent to gihu0.

In a Cayley graph X(G,Σ∪Σ−1), for any element g, the distance between g and 1 is the
same as the word norm of g with respect to Σ. Thus, following the discussion about the
dual graph Γ and the Cayley graph X(G,Σ ∪Σ−1), we know that the generating function
of the a tessellation is the same as the growth function of a group that acts regularly on
the tessellation with respect to a geometric generating set.

2.3 Angular Recursion

We will use recursion on angles to calculate the generating functions of the regular tessel-
lations. This idea comes from Floyd and Plotnick in [13].

First we define B(n) to be the part of regular tessellation consisting of faces with norm
at most n. And we use ∂B(n) to denote the boundary of B(n), which means the edges
separating faces with norm n and faces with norm n + 1. B(0) is the origin face. All the
angles on ∂B(0) are equal, which we will call the primitive angle. On the ∂B(n), every
angle will be the sum of some copies of the primitive angle. When q is even, we use αi to
denote an angle equal to sum of 2i− 1 primitive angles where 1 ≤ i ≤ q/2. When q is odd,
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we use αi to denote an angle equal to sum of 2i− 1 primitive angles where 1 ≤ i ≤ bq/2c
and αbq/2c+i to denote an angle equal to sum of 2i primitive angles where 1 ≤ i ≤ bq/2c.

We will let m = q/2 when q is even and m = q−1 when q is odd, so that we can always
call the last angle αm.

α3

α2

α1

a

B(n)

B(n + 1)B(n + 1)

B(n + 2)B(n + 2)

B(n + 3)

q = 6

α2

α1

a

α4

α3

b

B(n)

B(n + 1)B(n + 1)

B(n + 2)B(n + 2)

B(n + 3)B(n + 3)

B(n + 4)

q = 5

Figure 2.1: the local picture of two examples when q = 6 and q = 5.

In this thesis we will often use figures to show the local pictures of the tessellation or
the dual graph like Figure 2.1, and we will always let the upper side of the figure be closer
to the origin face and the lower side further from the origin face.

Every edge on ∂B(n) will be an edge of a face with norm n+ 1. Thus B(n+ 1) can be
seen as B(n) with new faces of norm n+ 1 glued onto the ∂B(n). For any n ≥ 0, take any
angle αi on ∂B(n) with endpoint a, then a will change to a new angle on ∂B(n + 1). We
will summarize these changes in the following proposition.

Proposition 4. Let αi be an angle on ∂B(n) with endpoint a, for n ≥ 1, .

(a)When q is even, if 0 ≤ i < m then a will be the endpoint of an angle αi+1 on ∂B(n).
If i = m, then a will no longer be on ∂B(n+ 1).
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(b)When q is odd, if 0 ≤ i < m and i 6= m/2 then a will be the endpoint of an angle
αi+1 on ∂B(n + 1). If i = m/2 or m, then a will no longer be on ∂B(n + 1). But when
i = m/2, a will be adjacent to the endpoint b of an angle αm/2+1 on ∂B(n+ 1).

Proof. We will use induction on n to prove both the statements (a) and (b), and also the
following two claims.

Claim 1. When p > 3, for any n ≥ 0 and any αi on ∂B(n + 1) where i > 1, both of the
two neighboring angles of αi are α1.

Claim 2. When p = 3 and q odd, for any n ≥ 0 and for any αm or αm/2 on ∂B(n + 1),
both of the two neighboring angles are α1.

First we discuss the case when p > 3, with q either even or odd. We will prove Claim
1 and statement (a) and (b) for p > 3. For the base case n = 0, all angles on ∂B(0) are
primitive angles α1.

a
x1

x2

x3

B(n + 1)

B(n)

B(n + 1)

B(n)

f1 f2

f3 b

a

x1

x2

x3

B(n + 1)

B(n)

B(n + 1)

B(n)

f1 f2

f3

Figure 2.2: local picture for the induction around point a

Now assume that Claim 1 is true for some n ≥ 0. We first check the statements (a) and
(b) for α1. Let’s use x1 to denote α1. The statements will not hold only if there are new
faces, other than the two new faces f1 and f2 with norm n+ 1 glued on the two sides of x1,
that intersect at a (or at b, a neighboring vertex of a when q odd and x1 = αm/2)(see figure
2.2). If there exists such a third new face f3, let’s use x2 to denote the angle neighboring
x1 on ∂B(n) on the side closer to the third new face, and x3 the angle neighboring x2 on
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∂B(n) such that x3 6= x1. Then we can see that x2 = αm, x3 = αm or αm/2, neither of
them is α1, which contradicts the Claim 1 on n. Notice that x3 can equal to α1 only if
m/2 = 1, in which case p = 4, q = 3 and x1 = α1, but {4, 3} is not a hyperbolic plane
tessellation.

Then we will check Claim 1 on ∂B(n + 1). So we assume that y1 is an angle on
∂B(n+ 1) that equal to αi+1 for 0 ≤ i < m, then from induction hypothesis we know that
y1 is generated from x1 = αi on ∂B(n). Let y2 be an angle neighboring y1 on ∂B(n + 1),
and again we use x2 to denote the angle neighboring x1 on ∂B(n) on the side closer to y2,
and x3 the angle neighboring x2 on ∂B(n) such that x3 6= x1. All we need to show is y2

is an angle α1. If not, then we have x2 = αm, x3 = αm or αm/2, neither of them is α1,
contradict to Claim 1 on n. Similarly, x3 can equal to α1 only if p = 4, q = 3 and x1 = α1,
which is not a hyperbolic plane tessellation. This conclude the induction on p > 3.

For the case p = 3 we are going to proof Claim 2 and statement (a), (b). Similarly if
statement (a) or (b) doesn’t hold near an angle x1 with endpoint a on ∂B(n), we have a
third new face and x2, x3 on ∂B(n) such that x2 is equal to αm and x3 is not α1. Since
q ≥ 7 we don’t need to worry about the case when m/2 = 1.

At last we will check Claim 2. Let’s take any two neighboring angles y1 and y2 on
∂B(n+ 1) and assume that Claim 2 fails, y1 is αm or αm/2, but y2 = αi but i 6= 1. First we
assume that i is also not m/2 + 1. We can see that the endpoint a of y1 is the endpoint of
an angle x1 equal to αm−1(when y1 = αm) or αm/2−1(when y1 = αm/2) on ∂B(n), otherwise
we can find two neighboring angles on ∂B(n− 1) that are not α1 just like the proof of (a)
and (b). Similarly the endpoint b of y2 is the endpoint of an angle x2 = αi−1 on ∂B(n).
Notice that the edge between a and b is the edge of a face f with norm k+1, and the other
two edges of f are sides of αm−1 and αi−1 respectively. Thus the third vertex c of f(other
than a and b) must be the endpoint of an angle x3 = αm on ∂B(n). This x3 is adjacent to
x1 on ∂B(n). But x1 is either αm−1 or αm/2−1, not α1, a contradiction.

The proof is similar when y2 is αm/2+1. The endpoint a of y1 is again the endpoint of
x1 equal to αm−1 or αm/2−1 on ∂B(n). Now the endpoint b of y2 is adjacent to c, where
c is the endpoint of an angle x2 = αm/2 on ∂B(n) and the third vertex of the face f with
norm k + 1 containing both a and b. So we have x2 = αm/2 adjacent to x1, which is not
α1, a contradiction.

Corollary 5. For any face f with norm n + 1, f will be either adjacent to one face in
B(n), or adjacent to two faces f1, f2 in B(n), where f ∩ f1∩ f2 is the endpoint of an angle
αm on ∂B(n).
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Proof. If f is a face with norm n+1, and f intersect with B(n) on at least three consecutive
edges, then any two neighboring edges in intersection will be the sides of an angle αm on
∂B(n). By Claim 1 and 2 in proof of Proposition 4, there are no neighboring αm on ∂B(n).
Thus there are at most two edges in the intersection.

2.4 Generating Function

Finally we are going to prove Theorem 1. First we will calculate the number of angles of
each type on ∂B(n) for each n by showing that there are recursive relations among them.
Let Ni(n) be the number of angles of type αi on the boundary of B(n), where 1 ≤ i ≤ m.
The reason we try to compute Ni(n) comes from the following proposition.

Proposition 6. For every n ≥ 0 we have sn+1 =
∑m−1

i=1 Ni(n).

Proof. By Corollary 5, every face with norm n + 1 will intersect with B(n) on either one
edge, which corresponds to two non-αm angles on the two end of the edge, or on the
two side of an angle αm, which correspond to an αm neighboring two α1 on ∂B(n). On
the other hand, from P position 4 we know that each αi with i < m on ∂B(n) has two
faces with norm n + 1 glued on the two sides. In conclusion, each face with norm n + 1
correspond to two non-αm angles, and each αi that is not αm also correspond to two faces
with norm n + 1. So sn+1 is equal to the total numbers of αi on ∂B(n) for i < m, or
sn+1 =

∑m−1
i=1 Ni(n).

We want to find, for each αi on the boundary of B(n), how many angles of each type
will it contribute on the boundary of B(n+ 1). From the previous analysis we know that
there are two new faces corresponding to each angle αi for i < m, and no new faces for αm.
Each new face has p α1’s before it is glued on B(n). Thus each αi with i < m corresponds
to 2p/2 = p α1’s since each face corresponds to two αi with i < m.

Now we discuss what happens when we glue the new faces. In general, when i 6= q−1
2

or m, we have two new faces glued on the two sides of αi, and two angles α1 on the new
faces glued at αi, generating a new angle αi+1(see Figure 2.3). Thus αi on the boundary
of B(n) generates (p − 2) α1’s and one αi+1 on ∂B(n + 1). When q is odd and i = q−1

2
,

the two new faces have four angles glued into new angles. So in this case we have (p− 4)
α1’s and one αi+1. When i = m, only one angle is glued so αm corresponds to (−1) α1,
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xx

αi

B(n)

B(n + 1)

i 6= q−1
2
,m

xx
xx

αi

B(n)

B(n + 1)

i = q−1
2

x

αi

B(n)

B(n + 1)

i = m

Figure 2.3: The angles that disappear after gluing(mark by x)

meaning we only lose one α1.
Now, for n > 0, we have the following recursive relations:

Ni(n) = Ni−1(n− 1) (2.1)

where i > 1,

N1(n) = (p− 2)N1(n− 1) + · · ·+ (p− 2)Nm−1(n− 1)−Nm(n− 1) (2.2)

when q is even, and

N1(n) = (p− 2)N1(n− 1) + · · ·+ (p− 2)Nm/2−1(n− 1) + (p− 4)Nm/2(n− 1)

+ (p− 2)Nm/2+1(n− 1) + · · ·+ (p− 2)Nm−1(n− 1)−Nm(n− 1)

when q is odd.

For n ≥ m and q even, we can make it more uniform by using (2.1) and (2.2):

Ni(n) = N1(n− i+ 1)

= (p− 2)N1(n− i) + · · ·+ (p− 2)Nm−1(n− i)−Nm(n− i) (2.3)

= (p− 2)Ni(n− 1) + · · ·+ (p− 2)Ni(n−m+ 1)−Ni(n−m)

Since sn+1 =
∑m−1

i=1 Ni(n), we have

sn = (p− 2)sn−1 + · · ·+ (p− 2)sn−m+1 − sn−m (2.4)
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for q even and n ≥ m+ 1. Similarly, for q odd and n ≥ m+ 1, we have

sn = (p− 2)sn−1 + · · ·+ (p− 4)sm/2 + · · ·+ (p− 2)sn−m+1 − sn−m.

For q even, we can get rid of the constraint on n by defining bi as

bn = sn − (p− 2)sn−1 − · · · − (p− 2)sn−m+1 + sn−m (2.5)

where we let sn = 0 and Ni(n) = 0 for n < 0 and 1 ≤ i ≤ m. Then bn = 0 for n ≥ m+ 1.
Standard results in rational generating functions shows that (2.5) is equivalent to∑

n≥0

snz
n =

bmz
m + · · ·+ b1z + b0

zm − (p− 2)zm−1 − · · · − (p− 2)z + 1

by clearing the denominator and comparing the coefficients.

Similarly, for q odd we have

f(z) =
∑
n≥0

snz
n =

bmz
m + · · ·+ b1z + b0

zm − (p− 2)zm−1 − · · · − (p− 2)zm/2−1 − (p− 4)zm/2 − (p− 2)zm/2+1 − · · · − (p− 2)z + 1

At last we need to solve bi for 0 ≤ i ≤ m. For the even case, first we observe that
s0 = 1 and s1 = p. These are the only initial conditions that make (2.1) and (2.2) fail. We
can see that s1 = N1(0) comes from the p α1’s on the boundary of B(0) which can not be
deduced from Ni(−1) = 0, and s0 is initial condition that can’t be deduced from smaller
si.

Thus when we try to use (2.4) for n ≤ m, we implicitly use (2.3). But (2.3) doesn’t
hold for n = i− 1 since N1(0) is not obtained from (2.2), so in the (2.3) the left-hand side
Ni(i − 1) = p but the right-hand side is 0. This will cause, on the left-hand side of (2.4)
for n < m, the sn is larger than it should be by p. Notice that this will not affect n = m
since there is no term Ni(i−1) in the sum sm =

∑m−1
i=1 Ni(m−1). For s0, it should appear

as 0 in (2.4) for 1 ≤ n ≤ m since it do not contribute to any angles on boundary of B(n).

To correct these error, in (2.4) we replace s0 with s′0 = s0−1 = 0 and sn with s′n = sn−p
for 1 ≤ n < m. Now we have a new version of (2.4) for 1 ≤ n < m:

s′n = (p− 2)sn−1 + · · ·+ (p− 2)s1 + (p− 2)s′0
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which implies

bn = sn − (p− 2)sn−1 − · · · − (p− 2)s1 − (p− 2)s0 = 2.

When n = m we have

bm = sm − (p− 2)sm−1 − · · · − (p− 2)s1 + s0 = 1.

At last we have b0 = s0 = 1. Thus we have conclude that when q is even

f(z) =
zm + 2zm−1 + · · ·+ 2z + 1

zm − (p− 2)zm−1 − · · · − (p− 2)z + 1
.

Similarly when q odd we have f(z) equal to

zm + 2zm−1 + · · ·+ 2zm/2−1 + 4zm/2 + 2zm/2+1 + · · ·+ 2z + 1

zm − (p− 2)zm−1 − · · · − (p− 2)zm/2−1 − (p− 4)zm/2 − (p− 2)zm/2+1 − · · · − (p− 2)z + 1
.

Thus we prove the Theorem 1.
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Chapter 3

General Hyperbolic Plane
Tessellations

3.1 Introduction

In general, on tessellations that are not regular, which means the polygon are not regular,
we can’t expect describing the recursion in one single equation like (2.4).

We will define the tessellations of the hyperbolic plane by the action of discrete, co-
compact groups G of isometries of H2. The detail of the following construction can be
found in [16] and [20]. A group acting on H2 is discrete if whenever a subset K ⊆ H2

is compact, {g ∈ G | gK ∩ K 6= ∅} is finite. A group acting on H2 is cocompact if
H2/G is compact. For such a group G, we have a fundamental polygon D(also called the
fundamental domain), which is a polygon in H2, that satisfies:

(a) GD = H2, the orbit of D covers H2;

(b) The interior of D doesn’t intersect with any image of D under a non-identity element
of G. We can see that (a) and (b) together require the group G acts regularly on the
tessellation, as in chapter 1 and 2;

(c) For each edge s of D, there is a g ∈ G such that D ∩ gD = s, and

(d) A compact set K ⊆ H2 intersects only finitely many elements in the orbit of D.
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One classic construction of a fundamental polygon on H2 is the Dirichlet region D with
center x. Here we choose a point x in H2 that is not fixed by any non-identity elements of
G, then we have

D = {z ∈ H2 : d(z, x) ≤ d(z, gx) for all g ∈ G},

where d is the standard distance in hyperbolic plane. From the definition of the fundamen-
tal polygon D we can see that the orbits of D under the action of G form a tessellation of
H2. Since we only consider G finitely generated, the polygon D has finitely many edges.
So we have a finite set Σ = {g ∈ G | gD∩D is an edge of D}. And Σ is a finite generating
set of G closed under taking inverse. Again we call Σ the geometric generating set.

Here is an example of one type of tessellations and the corresponding groups. A Coxeter
triangle group is a group ∆∗(p, q, r) with the presentation

∆∗(p, q, r) = 〈x, y, z | x2, y2, z2, (xy)p, (yz)q, (zx)r〉.

It can be seen as the group generated by reflections in the three edges of a triangle, with
the angle between the edge reflected by x and the edge reflected by y is π/p, and similarly
the other two angles equal to π/q and π/r. Figure 3.1 is an illustration of part of the
tessellation generated by ∆∗(2, 3, 8). We let ∆(p, q, r) denotes the subgroup of ∆∗(p, q, r)
consisting of all elements that are product of even number of reflections. Thus we can see
that ∆(p, q, r) preserves the orientation of the H2, so ∆(p, q, r) is a Fuchsian group. We
will call ∆(p, q, r) the triangle group.

Once we have a group G acting on the tessellation, we can determine a presentation
of this group with respect to the geometric generating set, from the fundamental polygon
D(see [21]). For any element gi in the geometric generating set Σ, it will map D to giD
with D ∩ giD an edge e of D. If we let e′ = g−1

i e be the edge in D mapped by gi to e,
then we have paired e with e′. Each edge of D is paired by a unique element in Σ to an
edge of D(can be the same edge), because we assume that the action of G is regular. Now
start from any vertex a1 in D, and an edge e1 on D that is incident with a1. Let g1 ∈ Σ be
the element that pair (e1, a1) with (g1(e1), g1(a1)) where g1(e1) is another edge on D. Let
a2 = g1(a1), and let e2 be the other edge on D that is incident with a2 other than g1(e1).
Let g2 ∈ Σ maps (e2, a2) to (g2(e2), g2(a2)) for g2(e2) an edge on D, a3 = g2(a2) and e3

the other edge on D incident with a2. Continuing in this fashion, we obtain a sequence of
edges e1, e2, . . . and of vertices a1, a2, . . . on D. Let r be the smallest positive integer so
that er+1 = e, and ar+1 = grgr−1 · · · g1a1 = a1. We will call the sequence (a1, a2, . . . , ar) a
vertex cycle through a. Notice that G acts transitively on the vertices on a vertex cycle, so
every vertex in a vertex cycle has the same degree. Also notice that if gi in the sequence is
a reflection in an edge of D, then exactly two of g1, . . . , gr are reflections, and each vertex
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Figure 3.1: part of the tessellation generated by ∆∗(2, 3, 8)

in the cycle appears exactly twice. If none of the gi is a reflection, then each vertex appears
only once.

If we consider the H2 as topological space and D correspond to the quotient space
of H2 by the action of group G(with some vertices and edges of D identified), then the
vertices on a vertex cycle will all correspond to a vertex of the quotient surface. Thus we
can have a partition of the vertices of D by vertex cycles [a1], . . . , [am]. For a vertex cycle
[ai], the sequence we construct above will determine a word ci = gr · · · g1, well-defined up
to cyclic permutation or inversion. Notice that this ci is an element in G that preserves
the orientation of H2 and fixes vertex ai, so it is a rotation about ai of order ni. Assume
that f1, . . . , fs are all the reflection on edges in Σ, then we can conclude that G has the
presentation

G = 〈Σ | (f1)2, . . . , (fs)
2, (c1)n1 , . . . , (cm)nm〉. (3.1)

Here we give an example in figure 3.2, where e is a reflection and f, g, h are orientation
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preserving isometry. Then the group G will have a presentation:

G = 〈e, f, g, h | e2, f−1g−1egfe, f 3, (hg)2, h2〉

e

f

g
h

Figure 3.2: fundamental polygon and the generating set of G

If ci contains two reflections, say e and f(we may have e = f), then we have ci = g−1egf
up to a cyclic permutation of the word ci, for some word g. Also, since G is discrete, we
can sum up the internal angles of word (ci)

ni and get 2π. More specifically, for the word
ci = gr · · · g1 and the sequence (a1, . . . , ar), we can take the sum of the internal angles of
D at all the a1, . . . , ar. Then we repeat the sum for ni times, and the result should be
2π, since (ci)

ni = 1 means we complete the angle around the vertex. Conversely, suppose
that we are given a polygon D with edge pairings Σ satisfying the cycle condition: the
interior angles of D in a vertex cycle sum to 2π/ni for some positive integer ni. Then
the Poincaré’s Theorem for Fundamental Polygons in [21] shows that the edge pairings
generate a discrete group with presentation as (3.1).

In this chapter we will give the computation of the generating functions of tessellations
except for several exceptional cases, following [12] and [13]. We will first discuss the dual
graph of the tessellation and propose a proposition that characterize the dual graph in
section 3.2, then we will put the entire proof of this proposition in section 3.3. At the end
we will give the angular recursion generalize the recursion in section 2.3 and summarize
the result in a formula.
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3.2 Building the Dual Graph

To calculate the generating function we first need to prove some properties of the tessel-
lation. Describing these properties require using the dual graph Γ of the tessellation we
define in Chapter 2. Recall that the vertex set of the dual graph of the tessellation is the
set of faces of the tessellation, and each vertex in the tessellation correspond to a face in
the dual graph. For our convenience we define a map ϕ from a tessellation to its dual
graph, by mapping a face of the tessellation to the corresponding vertex, and a vertex to
the corresponding face. To avoid confusion we will only use u, v, w to denote vertices in Γ,
and Λa(or just Λ) to denote the face in Γ corresponding to a vertex a in the tessellation.

Again we can see that this graph Γ is isomorphic to the undirected Cayley graph
X(G,Σ∪Σ−1), and the norm generating function of the tessellation is equal to the growth
function of the group on word norm with respect to the geometric generating set.

Consider the vertex u0 in Γ, which is ϕ(D) for the fundamental polygon D in the
tessellation. If D has p vertices and we denote them cyclically by {1, . . . , p}, then there
are p faces in Γ containing u0, and we will call them Λ1, . . . ,Λp corresponding to the p
vertices of D. We can consider them as p faces around the vertex u0. If we look back at the
presentation of G and the vertex cycles, we will see that each face around u0 correspond to,
possibly under a cyclic permutation or taking inversion, a word (ci)

ni in the presentation.
Here figure 3.3 is a example coming from the presentation in figure 3.2. In figure 3.3 the
dashed line denote the fundamental polygon D in the tessellation, and the solid line denote
the edges in the dual graph, corresponding to the elements marked in Figure 3.2.

Since the action of G is transitive on Γ, for every vertex v in Γ, which is the image
of u0 under the action of an element g of G, we always have p faces around v. And we
can always cyclically denote these faces by Λ′1, . . . ,Λ

′
p properly, so that we can have Λ′i the

image of Λi under action of g.

Now we will construct the graph Γ by a different approach and prove some condition
on it. It’s similar to the induction for B(n) in chapter 2, but this time, instead of B(n),
we will use a series of subgraphs Γ(n) that satisfy Γ(0) ⊆ Γ(1) ⊂ · · · ∪∞n=0 Γ(n) = Γ. We
will fix a vertex u0 and let Γ(0) be u0. So u0 is in every Γ(n), and we will use u0 as the
origin vertex on every Γ(n). This means for each Γ(n) we will define a norm | · |n, and let
|v|n be the distance between u0 and v in Γ(n). We will show later in Lemma 7 that for a
vertex v and any n such that v is in Γ(n), |v|n are actually the same as |v| defined on Γ.

We already have Γ(0) is a single vertex u0. Then the Γ(1) will be u0 with the p faces
Λ1, . . . ,Λp around it. Assume that we have Γ(n − 1). To obtain Γ(n) we will look at all
the vertices v on Γ(n− 1) that have norm |v|n−1 = n− 1. For each v if the p faces around
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Figure 3.3: The p faces around u0 in the dual graph

v are not all in Γ(n − 1), we will attach them to Γ(n − 1)(we will give the detail later).
Then Γ(n) will be Γ(n− 1) with all the new faces attached.

Now we can unify the norm we use in all Γ(n).

Lemma 7. Each Γ(n) contains all the vertices v with norm at most n. For a vertex u with
norm |u| = n, if u is in Γ(m) for some m, then |u|m = |u|.

With this lemma, we can always use the norm | · | in all Γ(n), since it is equal to the
norm | · |n inside Γ(n).

Proof. First we will use induction to prove the first part. We already know that Γ(0) has
only one vertex u0 with |u0| = 0. Observe that if |v| > 0 then v is adjacent to some w
with |w| = |v| − 1, and we will call w a predecessor of v. If for n > 0 we have Γ(n − 1)
already contains all vertices u with norm at most n− 1, then for any v with norm n, v has
predecessor w in Γ(n− 1), and the edge vw is in two faces around w. By the construction
of Γ(n), v is in Γ(n).

For the second part, all we need to show is that, if u ∈ Γ(m), then |u|m = |u|m+1.
Because if so, then |u|m = |u|n for any n > m. For large enough n such that n ≥ |u|m, we
know that Γ(n) contain all vertices v with |v| at most n, then we have |u|m = |u|, since
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Γ(n) must contain the shortest path from u0 to u in Γ. In Γ(m), one shortest path from
u to u0 will go through a face around u, which must contain a vertex v with least norm
|v|m < m. But if |u|m+1 < |u|m, then the only possible change is that the new shortest
path go through a new face attached to a vertex w with norm |w|m = m in the face, then
there will be a vertex in the new face with norm greater than |u|m already, so the new path
will be longer than the previous shortest path, a contradiction.

We will inductively show that all Γ(n) will satisfies five conditions. But these conditions
will fail when the fundamental polygon D has three edges. So we will always assume that
D has at least four edges in the following, and we will complete the analysis of triangular
D in Chapter 5. Let V (n) denote the vertices of Γ(n). If u is a vertex with norm n, recall
that we define the predecessors of u as any vertex v adjacent to u with norm n − 1. We
will call the vertices v with smallest norm in Λ the base vertices of Λ.

Proposition 8. For any n, Γ(n) satisfies the following five conditions.

1. each Λ of Γ(n) has base vertices in V (n− 1).

2. An edge in Γ(n) joining a vertex of norm ≤ n to one of norm < n belongs to exactly
two of the Λ’s in Γ(n).

3. An edge of Γ(n) joining two vertices of norm ≥ n belongs to exactly one Λ in Γ(n).

4. Except for the case of ∆(2, 3, q) with a five-sided D, a vertex u in Γ(n) of norm m has
at most two predecessors. If it has two predecessors, then all three vertices belong
to the same Λ in Γ(n), where u has the largest norm in Λ. For the ∆(2, 3, q) some
vertices of norm m have three predecessors.

5. Except for the case ∆(3, 3, r) with a four-sided D, at most two vertices of a Λ can
have equal norm. If Λ has two minimal(or maximal) norm vertices, then they are
connected by an edge. For ∆(3, 3, r) some Λ can have three minimal norm vertices,
which are the base vertices.

We will give the proof of Proposition 8 in section 3.3. Here we illustrate the two
exception cases and see how they fail some of the conditions. First we have a figure for the
tessellation of the group ∆(3, 3, 8) in figure 3.4. The numbers on some faces denote the
norm of those faces, with the face denoted 0 the origin face. Notice that there three faces
with norm 4 around the vertex a. So in the dual graph, the face Λa corresponding to a will
have three base vertices with norm 4, violating the condition 5 in Proposition 8. We can
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see that one of the three faces with norm 4 around a has no neighboring faces with norm
greater than 4, and we will call it a buried domain. In general, gD is a buried domain for
|g| = n, if gD is a subset of int(B(n)), the interior of B(n). We will see that the buried
domain is the reason that cause the generating function fail to be reciprocal.

0

1

1
2

3

4

3

2

4

a

4

Figure 3.4: tessellation generated by ∆(3, 3, 8)

For the second exceptional case ∆(2, 3, q), we give an example of q = 8 in figure 3.5.
Here the dashed lines are the edges of tessellation of ∆∗(2, 3, 8) in figure 3.1, and the solid
line are the edges of tessellation of ∆(2, 3, 8). Again the numbers denote the distance of
the faces to the origin face marked by 0. Notice that the face marked by 5 has three
predecessors, which violates the condition 4.

Now let’s ignore the exception cases and complete the detail of construction of the
dual graphs. For n > 0 assume that we have constructed the Γ(n − 1) satisfying the five
conditions. Then a vertex v ∈ Γ(n− 1) of norm n− 1, which is the image of u0 under the
action of an element g ∈ G, has either one or two predecessors.

Since we have exclude the case when D is a triangle, in Figure 3.6 the faces Λ, Λ′, Λ′′

are faces around v, but among the p faces around v we always miss some of them, unless
we have triangle fundamental polygon D. We now add the remaining faces around v so
that, under some proper cyclically labeling, we have Λ′1, . . . ,Λ

′
p. And each Λ′i is the image

of Λi around u0 under the action of g. Notice that besides adding the faces we also identify
the edges for pair of neighboring faces on their intersection on Γ, in particular the edges
vw1 and vw2 are identified with two edges from the new faces.
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Figure 3.5: tessellation generated by ∆(2, 3, 8)

v

u

w1 w2

Λ′

Λ′′

case (a)

v

u2u1

w2w1

Λ′ Λ′′

Λ

case (b)

Figure 3.6: local picture around v

We will repeat this process for every v ∈ Γ(n−1) of norm n−1, adding all the remaining
faces around v, and call the resulting graph Γ(n). If w1(or w2) has |w1| = n−1(|w2| = n−1),
then w1(w2) will also add faces around it, including one neighboring face of Λ′(Λ′′). Since
this face is also around v, we will identify this face with the one we add around v that
is adjacent to Λ′(Λ′′). We can see that no further identification of edges or faces near v
should be made.
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3.3 Verification of the Five Conditions

Now we should prove Proposition 8 about the five conditions. All five conditions are
satisfied when n = 0. So we let n > 0 and assume that Γ(n − 1) has been constructed
satisfying the five conditions.

It’s easy to see that condition 1 will hold in Γ(n). For the other four conditions, we will
consider the condition 5 first. Assume that there is a face Λ1 which has at least three base
vertices. If we consider the first time the face Λ1 is added into Γ(n) at v, then in figure
3.6, we can see that all three of v, w1, w2 has norm n − 1 and are base vertices of Λ1. In
the case (a) of Figure 3.6, D will be forced to be three-sided, so we must have case (b),
and D is four sided. By assumption v has minimal norm among all vertices producing Λ
that has at least three base vertices, then both Λ′ and Λ′′ has length 3 or 4. We have the
following lemma:

Lemma 9. If the both vertices w1 and w2 in figure 3.6 has the same norm as v, then both
Λ′ and Λ′′ are 3-cycles, unless G is ∆(2, 4, q) with presentation 〈a, b, c | a2, c4, bq, abc〉 and
D is five sided.

Proof. Without loss of generality we can assume that Λ′′ is 4-cycles, and we can also assume
that v has minimal norm among all vertices such that we have |v| = |w2| with Λ′′ length 4
in the figure 3.6. Then Λ′′ has two base vertices, and we have the figure 3.7.

v w2

u1

u2 u3
Λ

Λ′′

Figure 3.7: local picture around v

• Case 1: u2 has one predecessor in Λ, which means Λ has length greater than 3. If
u2 has no other predecessor then we immediately have the fundamental polygon D
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v w2

u1

u2
u3Λ

Λ′′

Λ1

Λ2

Figure 3.8: local picture around v

three sided. Hence u2 has two predecessors and D has four sides. The local picture
becomes figure 3.8

By minimality, Λ1 is a 3-cycle. And Λ has length 4 or 5. Thus if we consider the
the lengths of the cycles around u2, we have two possibility (3, 4, 4, ∗) and (3, 4, 5, ∗)
where ∗ is the length of the face Λ2.

The four sided fundamental polygon is relative simple, there are only 6 possible
groups of isometry of H2 that don’t have elements of order 2 and 17 possible groups
with order 2 elements. By examining these lists(see [13, Appendix] and [12, fig.9]),
we can see that there is no such group fitting into the only possible configurations
(3, 4, 4, ∗) and (3, 4, 5, ∗).

• Case 2: u2 has no predecessor in Λ, which implies Λ is a 3-cycle. By condition 5
on induction hypothesis, there are only two subcases with x2 has totally one or two
predecessors.

• Case 2.1:u2 has only one predecessor. So instead we have figure 3.9.

Now one of Λ1 and Λ2 has length 3 or 4. Again checking the list, the only possibility
is that Λ2 has length 4, and we also know that Λ1 has length at least 6, otherwise
G will be finite. By transitivity of the G action on vertices, we can know the local
picture around each vertices in Λ1, which turns out to be the figure 3.10. And we
have w contradicts the minimality of v.
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v w2

u1

u2
u3

Λ Λ′′

Λ1Λ2

Figure 3.9: local picture around v

v

w

Figure 3.10: local picture around v

• Case 2.2: u2 has totally 2 predecessor, so D is five sided. By the minimality we have
figure 3.11.

v w2

u1
u2

u3

Λ

Λ1

Figure 3.11: local picture around v

So this means that the only possible situation where we have Λ′′ length 4 is D five
sided which has vertices having degree (3, 3, 4, 3, q) where q is the length of Λ1 in
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figure 3.11. This forces the group to be ∆(2, 4, q).

Notice that the only tessellation having Λ′′ length 4 is the ∆(2, 4, q) with D five sided.
But this will not violate the condition 5, since in ∆(2, 4, q) where |w2| = |v| = n and Λ′′

has length 4, v has degree 5. So the new face added around v has only two base vertices v
and w2.

Now we can assume that if v, w1, w2 having norm n− 1 are the base vertices of a face,
then in figure 3.6 both Λ′ and Λ′′ have length 3, and D is four-sided. Thus we have figure
3.12.

v
w2w1

u1 u2

Λ1

Figure 3.12: local picture around v

Again check the list of four sided D, we can find that the only possible group having
such local picture is ∆(3, 3, r), which is the only exception case in condition 5.

With condition 5, it will be easy to verify condition 2 and 3. And the next part we will
check the condition 4, that any vertex w has at most two predecessor. Suppose that v is
a predecessor of w, and |w| = n.

• Case 1: Every predecessor of w has a unique predecessor.

If we look back at figure 3.6, and let v be the vertex v in the figure 3.6 with norm
n− 1, then either w is already in Γ(n− 1), in which case w is the w1 or w2 in figure
3.6, or w will be added to Γ(n− 1) along with the faces around v when we construct
the Γ(n).
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• Case 1.1:w is in Γ(n− 1), and w is either w1 or w2 in figure 3.6.

We can assume that w is the w1 in figure 3.6. If w doesn’t have another predecessor
in Λ′, then one of the other predecessor must be in a face sharing edge wv with Λ′,
which will force D to be three-sided. If w has anther predecessor v1 in Λ′, then we
have figure 3.13.

vv1

w

Λ′

Figure 3.13: local picture around v

Notice that the local picture can only be figure 3.13 because we assume that both v
and v1 has only one predecessor. If w has a third predecessor, then it must be in a
face sharing an edge, either wv or wv1, with Λ′. Again, either case will lead to the
local picture around v or v1 forcing D to be three-sided, a contradiction.

• Case 1.2:w is not in Γ(n−1), so w is not w1 or w2 in figure 3.6. Now consider whether
the other two neighboring vertices w1 and w2 are the predecessors of w.

• Case 1.2.1:If both v1 and v2 are predecessor of w, we have figure 3.14.

v
w1 w2

w

Figure 3.14: local picture around v

So we immediately have D 4-sided. If we go through the list of of groups with 4-sided
D, we can see that the only possible match for having two length 3 faces around a
vertex is the ∆(3, 3, r), but in ∆(3, 3, r) the two length 3 faces are not adjacent.
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• Case 1.2.2 Assume that only one of w1 and w2 is the predecessor w, say it is w2.
Then we have a face Λ1 with vertices v, w, w2. Consider the third predecessor v3 of
w, the edge v3w is in a face Λ2 neighboring Λ1, and Λ2 will contain either w1 or w2.
Thus we have the two possible local picture in figure 3.15.

w1
v w2

v3

w

Λ1 Λ2

v
v3

w1 w2

w

Λ1Λ2

Figure 3.15: local picture around v

In the first case, wv3 is in the same face Λ2 with w2, the local picture around w2 is
the same as case 1.2.1, which leads to contradiction. In the second case, wv3 is in
the same face Λ2 with w1. Recall that Λ2 is added by base vertex v, so any vertex
in Λ2 will has norm no less than |v| = n − 1. But since v3 is a predecessor of w,
|v3| = n − 1. So all the vertex in Λ2 except w will have norm n − 1, and are base
vertex. By condition 5, we will have λ2 being length 3 unless the tessellation is in
the exceptional case. And it’s easy to check that the exceptional case doesn’t match
with this local picture.

• Case 1.2.3:Neither w1 or w2 are predecessors of w. Then we can assume that w has a
predecessor v2, and wv2 is in the same face Λ1 with edge vw. So Λ1 must be through
one of w1 and w2. Without loss of generality we assume that w2 is in Λ2, then we
have figure 3.16.

w1

w2v
v2

w

Λ1

Figure 3.16: local picture around v

But similar to case 1.2.2, we must have Λ1 length 4, which will force the tessellation
being the exceptional case in condition 5. But this will leads to a contradiction with
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the assumption that w1 is not a predecessor of w. And this will leads to the end of
the case 1.

• Case 2:Some predecessor, v, of w has two predecessors. This means that v has degree
5, so D is five sided. Now let’s consider the norms of w1 and w2 in figure 3.6,
comparing to |w| = n.

• Case 2.1:Assume that |w1| = |w2| = n − 1, consider whether w1 and w2 are the
predecessors of w.

• Case 2.1.1: If both w1 and w2 are predecessors of w, then D is five sided and by the
argument in Lemma 9 we have both Λ′ and Λ′′ are length 3. The the local picture
around v is figure 3.17.

w1

w2v

w

Λ′ Λ′′

Λ1

Figure 3.17: local picture around v

If the face Λ1 has length q, then the five vertices of D have degrees (3, 3, 3, 3, q), and
the only possible tessellation with this structure is the ∆(2, 3, q). This is the only
exceptional case is condition 5.

Before we move on the next case, here we make an observation that will be useful
later.

Observation 10. In Γ, if around a vertex v there are two adjacent length 3 faces,
then the tessellation can only be the ∆(2, 3, q).

Proof. This comes from summarizing case 1.2.1 and case 2.1.1.
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• Case 2,1,2:If neither w1 and w2 are predecessors of w, then for another predecessor
v1 of w, we have wv1 in the same face Λ1 with vw, and this face contain either w1 or
w2. Let’s assume that w2 is in Λ1, then we have figure 3.18.

w1
v w2

v2

w

Λ1

Figure 3.18: local picture around v

By condition 5 we know that Λ1 can only be length 4, with three base vertices
v, w2, v2. But that will forces D to be four-sided, contradict to our assumption.

• Case 2.1.3:If only one of w1 and w2 is the predecessor of w, say, w1 is and w2 is not.
Then we have a three-sided face Λ1 with vertices w, v, w1. If w has a third predecessor
v3, zv3 is in a face Λ2 adjacent to Λ1. Then one of w1 and w2 will be in Λ2. If w2 is in
Λ2 we will have a similar local picture as in figure 3.18, and a contradiction similar
to case 2.1.2. If w1 is in Λ2 then we have figure 3.19.

w1 v w2v2

w

Λ1Λ2

Figure 3.19: local picture around v

In figure 3.19, if there are other vertices between v3 and w1, we have a similar con-
tradiction as in case 2.1.2. But if v3 is adjacent to w1, we can consider the number
of predecessor of w1. By induction assumption w1 has only one or two predecessors.
If w1 has one predecessor we have the local picture around w1 the same as figure
3.14, and we have a similar contradiction as case 1.2.1. If w1 has two predecessors
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we have the local picture around w1 the same as figure 3.17, and we have a similar
contradiction as case 2.1.1.

• Case 2.2 Assume that |w1| = n and w1 6= w in figure 3.6. If |w2| = n, w can’t have
any other predecessors except v. So we can also assume that |w2| = n− 1. Now we
have two possibility:w2 is a predecessor or not. But in both case, by the observation
10, we always have a face Λ1 containing w that has three base vertices:If w2 is a
predecessor of w, then Λ1 is the face containing the edge ww2 but not v; If w2 is not
a predecessor of w, then Λ1 is the face containing w,w2 and v. Then this face w2

will lead to a contradiction similar to either case 1.2.2 or 2.1.2, depending whether
w2 has two predecessors.

• Case 2.3 Assume that |w1| = n and w1 = w in figure 3.6. Now we have the local
picture around v as figure 3.20.

w

v

w2

v3

Λ′ Λ′′

Figure 3.20: local picture around v

In figure 3.20, both v3 and w2 can be either of norm n or n − 1. If |v3| = n, by
condition 3 on induction hypothesis, we know that there is no other faces containing
edge wv3. So the other predecessors of w can not come from v3. And if there are two
other predecessors from w2, we can have a similar contradiction as in case 2.2.

Now we can assume that |v3| = n−1, and Λ′ has length 4 or 5. If another predecessor
is in a face containing v3, then G must be ∆(3, 3, r), and this will lead to a contra-
diction with the faces around v and the fact that Λ′ has length 4 or 5. If |w2| = n,
then we can’t have three predecessors for w. So we can assume that |w2| = n − 1.
If there two predecessors come via v2, we can have a similar contradiction as in case
2.2. Thus we conclude that the situation can only be figure 3.21.

Notice we have Λ1 length 3, so if Λ′′ has length 3, we will have observation 10.
Therefore we can assume that Λ′′ has length 4. But now means that we must have Λ′

with length 4, and the group is ∆(2, 3, p), where p is the length of Λ2. If we assume
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v

w2

v3

w

Λ′
Λ1

Λ′′
Λ2

Figure 3.21: local picture around v

that w have minimal norm among all vertices with three predecessors, and since we
know all faces around any vertices, we can read the local pictures of other vertices in
Λ2 with lower norm, then we have figure 3.22.

w′

v

v1

v2

w

Λ′
Λ1

Λ′′

Λ2

Figure 3.22: local picture around v

Notice that in figure 3.22, the face Λ2 cannot have length p less than 6, otherwise the
four faces around v will force the group to be a finite group, and the tessellation to
be a tessellation of a ball. Thus in the situation we will have a vertex w′ with norm
|w′| = |w|−3 having at least three predecessors, a contradiction with our assumption
of minimality. And this will conclude the proof of the condition 4.
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3.4 Generating Functions

Provided the five conditions in Proposition 8, now we can go back to B(n) and prove some
properties we need for calculating the generating functions. Recall that B(n) is part of
the tessellation consisting of faces with norm ≤ n. First we show that B(n) is a ball on
the topological space of hyperbolic plane, in other words, we show that B(n) has only one
continuous closed boundary.

Lemma 11. For every n ≥ 0, B(n) is a topological ball.

Proof. First omit the two exceptional cases ∆(2, 3, q) and ∆(3, 3, r), so we can assume all
five conditions in Proposition 8 hold. First B(0) is D which is a topological ball. Since
for each n > 0, B(n) can be obtained from B(n− 1) by taking union with {b1D, . . . , bkD}
where bi are all the elements in G having norm n. It suffice to prove that, if Ci−1 =
B(n− 1) ∪ b1D ∪ · · · ∪ bi−1D is a ball, then so is Ci = B(n− 1) ∪ b1D ∪ · · · ∪ biD.

It’s easy to see that all we need to prove is bi ∩ Ci−1 is connected. For large enough
m, the condition 4 in Γ(m) can be translated to the fact that biD has only one or two
neighboring faces in B(n− 1). And if there are two faces neighboring D in B(n− 1), the
image of all three under ϕ are in the same face Λ in Γ, so the two edges in biD ∩B(n− 1)
intersect in one vertex. Similarly, the condition 5 implies that if biD ∩ bjD 6= ∅ for some
j 6= i, then the image of biD and bjD under ϕ are two vertices in one face Λ. So either
biD and bjD intersect at a vertex of an edge of biD ∩B(n− 1), or biD ∩ bjD is an edge. If
biD ∩ bjD is an edge, then in dual graph Γ we have ϕ(biD) and ϕ(bjD) are two adjacent
vertices with maximal norm in a face Λ, so biD∩bjD∩B(n−1) is a vertex on the ∂B(n−1).

We will prove the exceptional case ∆(3, 3, r) in Chapter 5. Another exceptional case
∆(2, 3, q) will fit in to the proof above, by noticing that in the dual graph Γ, if a vertex
has three predecessors, they are in two neighboring faces.

Now we also need to construct a recursion on angles like Proposition 4. To obtain
B(n+1) from B(n) we can simply attached the faces with norm n+1 on ∂B(n), with each
edge on ∂B(n) corresponds to one face. The change of angles from ∂B(n) to ∂B(n + 1)
can be summarize in the following lemma. From now on we will exclude the exceptional
case ∆(3, 3, r).

Lemma 12. Near any angle α with endpoint a on the boundary ∂B(n) of B(n), the change
of α from ∂B(n) to ∂B(n+ 1) has one of the following three cases.
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1. If the intersection of the two new faces corresponding to the two sides of α is exactly
a. Then there is a new angle Φ(α) on ∂B(n + 1) with endpoint a, and Φ(α) is the
sum of α with the two angles in the two new faces with endpoint a. In this case we
will call α is of type 1.

2. If the intersection of the two new faces corresponding to the two sides of α is an edge
between a and a vertex b on ∂B(n+1). Then there is a new angle Φ(α) on ∂B(n+1)
on b, which is the sum of the two angles of the new faces around b. In this case we
will call α is of type 2.

3. If only one new face corresponds to the two sides of α, then no new angle generates
near α, only one angle on the new face complete the angle α. In this case we will call
α is of type 3.

This lemma can be easily prove by condition 5 without the exceptional case. So now
we have a recursion on angles like Proposition 4. But this time we have more than one
primitive angle. More specifically, we will call the p angles of D the primitive angles
α1, . . . , αp(notice that we are using a different set of notation αi compared to Chapter 2).
Every angle on ∂B(n) are sum of some of primitive angles. If we define S as the set of
all possible angles on ∂B(n), then S is a subset of the set combination of primitive angles
{αi1 + . . . + αik | 1 ≤ i1 ≤ · · · ≤ ik ≤ p}. Actually most of the angles on each ∂B(n) are
equal to one primitive angle.

Notice that for any α on ∂B(n), the next angle Φ(α) is only determined by α, inde-
pendent of n and the position on ∂B(n). So Φ is a well-define map from S to S. Another
observation is about the exterior angles. For an angle α, we call 2π − α the exterior angle
of α. If β2 = Φ(β1) is the next angle of β1, then the change from 2π−β2 to 2π−β1 follows
the exact same rule as Lemma 12, but in the opposite direction, viewing the outside of
B(n) as inside of an area. In other words, we have 2π − β1 = Φ(2π − β2). This means if
β2 = Φ(β1) is the next angle of β1, then not only β2 is determined by β1, but also β1 is
determined by β2. Thus Φ is an injective map.(But not surjective, since primitive angle is
not the next angle of any angle)

Here we give an example. Figure 3.23 shows part of a tessellation. Here we mark the
origin face D with the two element in the geometric generating set. And four vertices of D
have degree 8, 3, 8, 4 respectively, so we will call the corresponding group G(8,3,8,4). Then we
use α1 to denote the angle of ∂B(0) at the vertex with degree 3, so α1 = 2π/3. Similarly
we denote α2 = 2π/4 and α3 = 2π/8 = α4. For both α2 and α3, the angles in the sequence
they generated are all of type 1 or 3. So we will have

(α3,1 = α3, α3,2, α3,3, α3,4) = (2π/8, 3 · 2π/8, 5 · 2π/8, 7 · 2π/8).
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Similar for the α2. But we can see that α1,1 = α1 is of type 2, so α1,2 is at a different vertex
with the α1,1, and α1,2 will be equal to 2 · 2π/8.

Figure 3.23: tessellation generated by G(8,3,8,4)

Lemma 13. In general, each primitive angle αi on ∂B(n) will generate a sequence of
angles on ∂B(n+1), ∂B(n+2), . . ., αi = αi,1, αi,2, . . . , αi,mi

. Here each αi,j+1 on ∂B(n+j)
equal to Φ(αi,j) is the next angle of αi,j on ∂B(n+ j − 1) in the Lemma 12. The sequence
will end when we have a type 3 angle αi,mi

, where π − αi,mi
is a primitive angle which

complete the angle αi,mi
.

Proof. The construction of the sequence follows from Lemma 12. The sequence will always
terminate because S is a finite set. If the sequence doesn’t terminate, then there must be
a cycle (β1, β2 = Φ(β1), . . . , βk, β1 = Φ(βk)) in the sequence, with none of βi equal to a
primitive angle. But the first angle in the sequence is a primitive angle, which is not in
the cycle. So if αi,k = βl is the first angle in the sequence that is in the cycle, then we have
Φ(αi,k−1) = αi,k = Φ(βl−1), with αi,k−1 6= βl−1, a contradiction to our observation about
the injectivity of Φ.

Now notice that the end of the sequence must be an angle αi,mi
of case 3, which means

2π − αi,mi
is a primitive angle. Assume that this angle is αj, then let’s define a map

σ : {1, . . . , p} → {1, . . . , p} by σ(i) = j. Soon we will show that σ is a involution.

A similar argument as in Lemma 13 can also show that, two sequences generated by
two different primitive angles have all distinct angles. Thus, if the sequence generated
by primitive angle αi has length mi, then we let m =

∑p
i=1 mi, and any angle on any

∂B(n) will be one of these m angles. Also notice that, if the sequence generated by αi
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ends on αi,mi
, with the exterior angle 2π − αi,mi

= αj, where j can be the same as i,
then there is a correspondence between sequence generated by αi and αj. First we have
2π−αi,mi

= αj = αj,1, then by the argument above, we have Φ(αj,1) = αj,2 = 2π−αi,mi−1.
Repeat this process we have αj,k = 2π − αi,mi−k+1 for 1 ≤ k ≤ mi. So we also know that
the sequence generated by αj will end with a type 3 angle αj,mi

= 2π − αi,1 = 2π − αi.
Thus we know that σ is an involution, and we have mi = mσ(i).

Now we can find the recursive relation on angles in S. From Lemma 12, each angle
on ∂B(n) of type 1 or 2 will correspond to two new faces with norm n + 1. And we can
also show that each face with norm n+ 1 will correspond to two angles on ∂B(n) of type
1 and 2 by condition 4 in Proposition 8. By condition 4, each face f with norm n + 1 is
adjacent to at most two faces in B(n), three if it’s the exceptional case ∆(2, 3, q). If f is
adjacent to only one face in B(n) on an edge, then on ∂B(n) the two angles on the two
sides of this edge are both either type 1 or 2. If f is adjacent to two faces in B(n), then
also by condition 4, these three faces intersect at one vertex, and the angle at this vertex
on ∂B(n) is type 3. For ∆(2, 3, q), we have two neighboring angles of type 3, and the other
two neighbors of these two angles are of type 1. Thus we can conclude that, the number
of angles of type 1 and 2 on ∂B(n) is equal to the number of norm n + 1 faces on the
tessellation

sn+1 =

p∑
i=1

mi−1∑
j=1

si,j(n), (3.2)

where sn+1 is the number of faces with norm n+ 1, and si,j(n) is the number of angle αi,j
on ∂B(n).

To find out the number of angles of each type on each ∂B(n), we will consider how
many angles of each type a angle on ∂B(n) contribute to ∂B(n+ 1). This is similar to the
section 2.4. Since each angle of type 1 or 2 correspond to two new faces, it contribute two
copies of each primitive angle. But this will count each primitive angle twice since a face
correspond to two angles, so the actual number is one copy of each primitive angle. Then
we need to subtract the angles disappear when we glue the new faces on B(n), which are
the angles mark as x on figure 3.24.

These information can be put into a matrix. We will use vectors v ∈ Zm where m =∑p
i mi to record a collection of angles, where v = (v1,1, . . . , v1,m1 , v2,1, . . . , vp,mp) means we

have vi,j copies of angle αi,j. If the angles on ∂B(n) can be represented by v, then the
angles on ∂B(n+1) are Av, where A is a m×m matrix with the following possible nonzero
entries:

1. Ai,1;k,l for 1 ≤ i, k ≤ p and 1 ≤ l ≤ mk−1 denote how many copies of primitive angle
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αi

type 1
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αi
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x
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Figure 3.24: subtracted angles marked by x

αi does αk,l(an angle of type 1 or 2) contribute, it is 1 minus number of αi among
the x angles.

2. Ai,j+1;i,j = 1 for 1 ≤ i ≤ p and 1 ≤ j ≤ mi − 1, because αi,j will change into αi,j+1

by Lemma 12.

3. Aσ(i),1;i,mi
= −1 for 1 ≤ i ≤ p denote the case 3, where only one primitive angle is

subtracted and no new angles are introduced.

So we can finally compute the generating function as

Theorem 14. The generating function for the tessellation is

f(z) = 1 + uz(1− zA)−1v.

Here v record the initial collection of angles. Since B(0) has one copy of each primitive
angles, we can denote this by v = (v1,1, . . . , vp,mp)T where vi,1 = 1 and vi,j = 0 for j > 1.
So ∂B(n) has angles Anv.

By the correspondence between number of angles and number of faces in (3.2), we know
that sn+1 = uAnv for u = (u1,1, . . . , up,mp) with ui,mi

= 0 and ui,j = 1 for 1 ≤ j < mi.

Then the Theorem 14 follows from

f(z) = 1 +
∞∑
n=0

uAnvzn+1

= 1 + uz(
∞∑
n=0

(Az)n)v

= 1 + uz(1− zA)−1v.
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Recall the example we gave in figure 3.23 corresponding to the group G8,3,8,4, we can
calculate its transition matrix as

A =



−1 1 1 −1 −1 1 0 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 −1 −1 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0


(3.3)

Here we omit the α4 because α3 = α4, and we can simply count α3 twice in the initial data
v, so we have v8 = 2 in

vT =
[

1 0 0 0 0 1 0 2 0 0 0
]
, (3.4)

then we have
f(z) = 1 + uz(1− zA)−1v

for
u =

[
1 1 1 1 0 1 0 1 1 1 0

]
. (3.5)
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Chapter 4

Symmetry of the Generating
Functions

Aside from the exceptional case ∆(3, 3, r), we always have symmetry f(z) = f(z−1) in the
generating functions, which means both the polynomials in the denominator and numerator
are reciprocal and have the same degree. Our main result is:

Theorem 15 (Planar reciprocity theorem in [13]). For the generating function for the
hyperbolic plane tessellations, we always have symmetry f(z) = f(z−1), except for the
tessellation generated by ∆(3, 3, r) for r ≥ 3, and the tessellation with fundamental polygon
a triangle with angles 2π/3, π/p, π/p.

We will discuss the ∆(3, 3, r) and the triangle fundamental polygon in Chapter 5. Now
we will prove that Theorem 15 always holds when D is not triangle, except for ∆(3, 3, r).
To prove this, we will find an equivalent statement of the Theorem. Since we know that

f(z) = 1 +
∞∑
n=0

uAnvzn+1 = 1 + u(1− zA)−1zv, (4.1)
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we have

f(z−1)− 1 = u(1− z−1A)−1z−1v

= u(z − A)−1v

= u(A−1z − 1)−1A−1v

= −u(1− A−1z)−1A−1v

= −u(
∞∑
n=0

A−(n+1)zn)v (4.2)

Comparing (4.1) and (4.2), we can see that f(z) = f(z−1) is equivalent to the following
two conditions:

uA−1v = 0 (4.3)

uAnv = −uA−(n+2)v for all n ≥ 0. (4.4)

First we look at the A−1. Since A is quite sparse, we can easily compute A−1 explicitly,
the only possible nonzero entries of A−1 are:

1. Ai,1;k,l = (A−1)σ(i),mi;k,l+1 for 1 ≤ i, k ≤ p and 1 ≤ l ≤ mk − 1.

2. (A−1)i,j;i,j+1 = 1 for 1 ≤ i ≤ p and 1 ≤ j ≤ mi − 1.

3. (A−1)σ(i),1;i,mi
= −1 for 1 ≤ i ≤ p.

Recall the example we give in section 3.4 about group G(8,3,8,4), and later we compute
the matrix A in (4.5). Now we give the inverse of the transition matrix of this tessellation.

A =



0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
−1 −1 1 1 −1 0 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 −1 −1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 −1 0 0 0


(4.5)
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We can see that the only nonzero elements in A−1v are (A−1v)i,mi
= −1 for 1 ≤ i ≤ p.

So immediately we have uA−1v = 0.

Next we will prove (4.4). But first we will describe the angle duality, which turns out
to be the crucial reason for the symmetry of the generating function.

Proposition 16. (Angle duality) Ai,1;k,l = Ai,1;σ(k),mk−l, for 1 ≤ l ≤ mk − 1.

Proof. Recall that when we build the sequence αi,1, αi,2, . . . , αi,mi
, the exterior angles of

αi,mi
generates a sequence ασ(i),1, ασ(i),2, . . . , ασ(i),mi

, with ασ(i),j = 2π − αi,mi−j+1. Notice
that Ai,1;k,l is determined only by the number of αi,1 among the x angle on the two new
faces on the two sides of αk,l, and the fact that angle ασ(k),mk−1 share the same two new
faces and the same x angles. So Ai,1;k,l = Ai,1;σ(k),mk−l.

Observe that in A, any row with index (i, j) for j > 1 has only one nonzero entry
Ai,j;i,j−1 = 1, which comes from that fact that αi,j can only be generated from αi,j−1. So
we know that for any w ∈ Zm and j > 1, A will shift the elements of w by (Aw)i,j = wi,j−1

for 1 < j ≤ mi. Similarly we have (A−1w)i,j = wi,j+1 for 1 ≤ j < mi.

Since ui,j = 1 for 1 ≤ j ≤ mi − 1 and ui,mi
= 0, we have

uAnv =

p∑
i=1

mi−1∑
j=1

Anvi,j,

and

u(A−(n+2))v =

p∑
i=1

mi−1∑
j=1

(A−(n+2)v)i,j =

p∑
i=1

mi−1∑
j=1

(A−(n+1)v)i,j+1.

To prove 4.4 it suffice to prove that (Anv)i,j = −(A−(n+1)v)σ(i),mi−j+1 for 1 ≤ i ≤ p and
1 ≤ j < mi. And we will prove this by induction on n.

For n = 0 we have already shown that the only nonzero elements inA−1v are (A−1v)i,mi
=

−1 for 1 ≤ i ≤ p, so (A0v)i,j = −(A−1v)σ(i),mi−j+1 holds. If this holds for n, then for
1 ≤ i ≤ p and 1 ≤ j ≤ mi − 1 we have

(An+1v)i,j+1 = (Anv)i,j = −(A−(n+1)v)σ(i),mi−j+1 = −(A−(n+2)v)σ(i),mi−j

by shifting the elements. So all we need to prove is (An+1v)i,1 = −(A−(n+2)v)σ(i),mi
, which

comes from the following lemma.

Lemma 17. If wi,j = w̄σ(i),mi+j−1, then (Aw)i,1 = (A−1w̄)σ(i),mi
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Proof. First we have

(Aw)i,j =

p∑
k=1

mk−1∑
l=1

Ai,1;k,lwk,l − wσ(i),mi

and

(A−1w̄)σ(i),mi
=

p∑
k=1

mk−1∑
l=1

(A−1)σ(i),mi;k,l+1w̄k,l+1 − w̄i,1

But from the computation of A−1 we have (A−1)σ(i),mi;k,l+1 = Ai,1;k,l, and by Proposition
16 Ai,1;k,l = Ai,1;σ(k),mk−l. From hypothesis we have w̄k,l+1 = wσk,mk−l and wσ(i),mi

= w̄i,1.
So

(A−1w̄)σ(i),mi
=

p∑
k=1

mk−1∑
l=1

Ai,1;σ(k),mk−lwσk,mk−l − wσ(i),mi

Since σ is a involution in 1, . . . , p, this sum is the same as in (Aw)i,j.
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Chapter 5

Exceptional Cases

Our proof is not complete without a discussion of the exceptional cases, when the funda-
mental polygon D is a triangle or when the group G is ∆(3, 3, r). In this chapter we will
discuss those exceptional cases, and we will focus on the determining which of them has
reciprocal growth function. First we will calculate the growth function for Coxeter group
and groups having a Coxeter-like presentation. Then we will use these two results to finish
the computation of the exceptional cases.

5.1 Coxeter Groups

In this section we will give a brief introduction to the computation of the growth function
for Coxeter group with a set of generators, following the chapter 1,2 and 7 of [1]. Here
we call a Coxeter system (W,S) for a Coxeter group W with its Coxeter generators S.
The Coxeter system can be defined by a Coxeter matrix m for S, which is a matrix
m : S × S → Z+ ∪ {∞} such that m(s, s′) = m(s′, s) and m(s, s′) = 1 if and only if s = s′.
Let

S2
fin = {(s, s′) ∈ S2 | m(s, s′) 6=∞}.

Then the matrix m determine a group W with the presentation

〈S | (s, s′)m(s,s′) = 1, for all (s, s′) ∈ S2
fin〉

For the tessellation we discuss in Chapter 3, if it is generated by a Coxeter group,
then the fundamental polygon D is a d-sided polygon on H2. If we cyclically denote the
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d vertices by a1, . . . , ad, and assume that the angle of D at ai is π/λi, the reflection along
the edge aiai+1 is si, then we have the Coxeter system (W,S), with S = {s1, . . . , sd} and

W = 〈S | (gi)2, (g1g2)λ1 , . . . , (gd−1gd)
λd−1 , (gdg1)λd〉.

For a Coxeter system (W,S), we can define the length |w| for each element w just as
the word norm we defined before, by letting |w| be the smallest k such that w can be
written as w = s1 · · · sk for each si ∈ S. Such a expression is called a reduced word or a
reduced expression. For each w in the Coxeter group, we define it’s right descent set to
be {s ∈ S | |ws| < |w|}. The reason for this terminology can be partially answer by the
following lemma.

Lemma 18. For all s ∈ S and w ∈ W , s ∈ DR(w) if and only if some reduced expression
for w ends with s.

Now we define some subsets of a Coxeter group that will be useful when finding the
generating functions. The first is the parabolic subgroups. For J ⊆ S, let WJ be the
subgroup of W generated by the set J . Notice that although we can define the length |w|J
in WJ , but we always have |w| = |w|J for any w ∈ WJ . So we can just use the notation of
length of W on WJ .

The next notation is the right descent classes DJI for I ⊆ J ⊆ S:

DJI = {w ∈ W | I ⊆ DR(w) ⊆ J}.

A special case of right descent class is

DI = DII ,

and another is the quotients W J for J ⊆ S.

W J = D
S\J
∅

= {w ∈ W | |ws| > |w| for all s ∈ J}

We have a similar lemma as Lemma 18.

Lemma 19. An element belongs to W J if and only if no reduced expression for w ends
with a letter from J .

And now is the proposition that will be used for finding the generating functions.
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Proposition 20. Let J ⊆ S. Then the following hold:

(i) Every w ∈ W has a unique factorization w = wJ · wJ such that wJ ∈ W J and
wJ ∈ WJ .

(ii) For this factorization, |w| = |wJ |+ |wJ |

This proposition can be easily proved by Lemma 18 and Lemma 19.

We can also use the right descent set to characterize the finiteness of W .

Proposition 21. (i) If W is finite, there exist an element w0 ∈ W such that |w0| ≥ |w|
for all w ∈ W .

(ii) Conversely, suppose that W is a Coxeter group with generating set S, x ∈ W and
DR(x) = S, then W is finite and x = w0.

Now we can define the generating function for every subset A of W as

A(z) =
∑
w∈A

z|w|.

From the Proposition 20 we immediately have this lemma.

Lemma 22. Let J ⊆ S, then

W (z) = W J(z)WJ(z).

This lemma reduces the problem of computing W (z) to computing W J(z) and WJ(z).
However, although the parabolic subgroup WJ is a Coxeter group itself, so we can reduce
the problem, possibly by induction, the quotient W J is usually not a Coxeter group. Here
is the proposition that solve this problem by Principle of Inclusion-Exclusion.

Proposition 23. Let I ⊆ J ⊆ S, then

DJI (z) =
∑

J\I⊆K⊆I

(−1)|J\K|W S\K(z).
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Proof. Since

W S\K = {w ∈ W |DR(w) ⊆ K}

=
⋃
L⊆K

{w ∈ W | DR(w) = L}

=
⋃
L⊆K

DL,

we have
W S\K(z) =

∑
L⊆K

DL(z)

for all K ⊆ S. Hence,∑
J\I⊆K⊆J

(−1)|J\K|W S\K(z) =
∑
L⊆J

DL(z)
∑

(J\I)∪L⊆K⊆J

(−1)|J\K|. (5.1)

However, by the Principle of Inclusion-Exclusion,

∑
(J\I)∪L⊆K⊆J

(−1)|J\K| =

{
1, if (J \ I) ∪ L = J

0, otherwise.

Apply this to (5.1) we can see the the only term that left in the first sum are those L
satisfying I ⊆ L, so ∑

J\I⊆K⊆J

(−1)|J\K|W S\K(z) =
∑

I⊆L⊆J

DL(z) = DJ
I (z).

Now we set I = J = S in Proposition 23, and divide both sides by W (z), we have:

∑
K⊂S

(−1)|K|

WK(z)
=
DS(z)

W (z)
.

Now use the Proposition 21, we have the following formula for calculating generating
function.
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Corollary 24. (i) If W is finite, we have a element w0 such that |w0| ≥ |w| for all
w ∈ W , then ∑

K⊂S

(−1)|K|

WK(z)
=

z|w0|

W (z)
. (5.2)

(ii) If W if infinite, we know there is no element in DS, so

∑
K⊂S

(−1)|K|

WK(z)
= 0. (5.3)

With (5.2) and (5.3), now we can calculate the growth functions.

Theorem 25. For G = 〈S | (gi)2, (g1g2)λ1 , . . . , (gd−1gd)
λd−1 , (gdg1)λd〉, we have generating

function

f(z) =
[2][λ1] · · · [λd]

(
∑d

i=1[λi] · · · [̂λi] · · · [λd]) + [λ1] · · · [λd](z + 1− d)

where [i] = 1 + z + z2 + · · ·+ zi−1. Further more, we have f(z) = f(z−1).

Proof. Apply (5.2) and (5.3). Notice that the only finite parabolic subgroups are the trivial
group, G{si}, G{si,si+1} and G{sd,s1}. And we have G{si}(z) = z + 1 = [2], G{si,si+1}(z) =
[2][λi].

5.2 Coxeter-type Presentations

If G is a Coxeter group, we can notice that each relation has even length. Thus if we have a
tessellation generated by group G with fundamental polygon D and geometric generating
set Σ, we call it a Coxeter-type presentation if the presentation has all even length relations.
We study this type of tessellation because the following property:

Lemma 26. Let (G,Σ) have a Coxeter-like presentation. Then in the construction of the
dual graph in Chapter 3, each face Λ in Γ has a unique base vertex.

Proof. Notice in condition 5 in Proposition 8, if two vertices u1 and u2 are the base vertices
of a face Λ, then they are adjacent, and there have the maximal norm in another face Λ′.
Also we can check that if a even-length face has only one base vertex, then it has only one
maximal norm vertex. Thus if we consider the face Λ1 with ϕ−1(Λ1) having minimal norm
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among all faces Λ with two base vertices u1 and u2, then we know that there is another
face Λ′ containing u1 and u2, and Λ′ has odd length.

A more general way to proof this was contributed by W.Parry. Since all relations have
even length, the map ε : Σ→ {−1} ⊂ Z2 extends to a homomorphism ε : G→ Z2. This is
a generalization of the map ε in Coxeter group in [1, p. 25]. Since u1 and u2 differ by an
element in Σ, they must have different parity on norms.

We again consider the sequences of angles generated by primitive angles in Lemma 13.
Consider a primitive angle at a generating a sequence of angles. By the Lemma 26, we can
see that each angle is of either type 1 or type 3 in Lemma 12. Thus all the angles in this
sequence are at the same vertex a. This vertex correspond to a face Λ = ϕ(a) with length
λ. And since the face correspond to a relation in the presentation of G, λ is even, and
each internal angle at a is 2π/λ. Recall that when we calculate the matrix A, the outcome
of Ai,1;k,l, the number of primitive angle αi on ∂B(n + 1) that an angle αj,k contributes,
only depend on the subtracted angle x. But in this case, the two x angle are always
equal to 2π/λ. Thus, when calculating the linear relation among number of angles, we can
identify primitive angles corresponding to faces having the same length λ, thus also identify
the sequences of angles generated by these primitive angles. Each angle of ∂D occurs in
a unique cycle of even length. These lengths give a collection of distinct even number
λ1, . . . , λk, each representing a set of angles we identified with multiplicity µi. We use αi
to denote the set of identified angles corresponding to cycle of length λi, so αi = 2π/λi.
Now we can work with only k primitive angle(with the sequence of angles generated by
them), each having multiplicity µi, with

∑k
i=1 µi = p. Notice that the sequence generated

ay αi has length λi/2.

Theorem 27. Let (G,Σ) have a Coxeter-type presentation, with primitive angles α1, . . . , αk
of multiplicity µ1, . . . , µk. Then

(i) The generating function f(z) only depends on (αi, µi)1≤i≤k, and not on the edge
pairings.

(ii) The generating function is the same as the generating function of the Coxeter group
generated by reflections in the sides of a d-sided polygon with µi angles equal to alphai.

Proof. To prove the (i) we can follow the same steps as we calculate the matrix A in
Chapter 3. Notice that the involution σ are always identity, and the x angle are already
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known. We now have A a block matrix (Ai,k)1≤i,k≤d, with

Ai,i =


µi − 2 µi − 2 . . . µi − 2 −1

1
1 0

. . .

0 1


and

Ai,j =


µi µi . . . µi 0

0

 .
Since now we have primitive angles with multiplicities, we will also need to change u and
v. We have v a vector

v = (v1,1, . . . , v1,λ1/2, v2,1, . . . , vk,1, . . . , vk,λk/2)T ,

with vi,1 = µi because we have µi copies of αi on ∂D and vi,j = 0 for j 6= 1. And

u = (u1,1, . . . , u1,λ1/2, u2,1, . . . , uk,1, . . . , uk,λk/2),

with ui,j = 1 for j < λi/2 and ui,λi/2 = 0. Thus we can have (i). And we can easily see (ii)
follows from (ii).

5.3 Exceptional Cases

In this section we will finish the computation of the two cases we didn’t compute in Chapter
3, the triangle group ∆(3, 3, r) and the tessellations with triangle fundamental polygon D.
We will only give the sketch of the computation, and focus on determining whether the
generating function is reciprocal or not. The complete proof can be found on [13, section
6].

Since in these two cases, the Proposition 8 may not hold, so we no longer have Lemma
12. In these two cases, when we attach the new faces gD with |gD| = n+1 on the boundary
of B(n), the result may not always a ball in the hyperbolic plane. More specifically, a new
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face can intersect B(n) on disconnected subset on the boundary, then we will have more
than one connected components of boundary.

To solve this problem, we will use the recursive structure introduces in [12]. Here we
will not use angle types for recursion, instead we will simply denote the faces on different
types, and find a similar linear recursive relation as in section 3.4. Then again we can use
a matrix to calculate how many new faces of each types on each ∂B(n). Here we will let
the origin face D be a unique type, and denote all the other types by {t1, . . . , tm}.

First for the ∆(3, 3, r), we have 2r+1 types. Since ∆(3, 3, r) still satisfies the condition
3 in Proposition 8, we know that each face gD with norm n+ 1 will intersect B(n) on one
or two edges. In the following, besides defining the types of faces, we will also prove that
each B(n) is a topological ball by induction. Clearly B(0) is a ball and the type is defined.
If gD ∩ B(n) is one edge with vertices t1 and t2, we always have the angle of ∂B(n) at t1
or t2 is 2π/3. Let’s assume that it is t1. Since B(n) is a ball, there is a unique vertex v
neighboring t1 and not equal to t2 on ∂B(n). Let’s assume that on ∂B(n), the angle is x
at v and x2 at v2, then

the face gD is of type =

{
ti if x < (2r − 1)π/r and x2 = iπ/r,

t2r−1 if x = (2r − 1)π/r then x2 = 2π/r.

If gD ∩ B(n) are two edges with a vertex a in common, then the angle on ∂B(n) at a is
either 4π/3 or (2r− 1)π/r, and the two neighboring vertices of a on ∂B(n) have the same
angle x.

The face gD is of type =

{
t2r if x = (2r − 1)π/r,

t2r−1 if x = 4π/3.

From the definition we can see that the four faces neighboring D are all of type t1. Notice
that the type t2r is the buried domain that cause the condition 5 in Proposition 8 to fail,
because it has two neighboring faces with same norm that share the same vertex a, and
then the cycle Λx will have three base vertices. But if we add the type t2r faces first when
we construct B(n + 1) from B(n), we can easily prove that B(n + 1) is also a topological
ball.
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So we can have the transition matrix

A =



0 0 0 . . . 0 0 0 0 0 0
1 1 1 . . . 1 0 0 0 0 0
1 0 0 . . . 0 0 0 1 0 0
0 1 0 . . . 0 0 0 1 0 2
0 0 1 . . . 0 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

...
0 0 0 . . . 1 0 0 0 0 0
0 0 0 . . . 0 1 0 0 0 0
0 0 0 . . . 0 1/2 0 0 0 0
0 0 0 . . . 0 0 1/2 0 0 0


and

f(z) = 1 + u(1− zA)−1zv,

for u = (1, 1, . . . , 1) and v = (4, 0, 0, . . . , 0)T . Let

α = 4(1− z − · · · − zr−1 + zr),

and
β = 4(1 + z + · · · zr−2 − 2zr−1).

Let

w =



zα− 4zr + zr+1β + 4z2r

z2β − 4zr + 4z2r

z2α
z3β
z3α

...
zrβ
zrα
zrα/2
zr+1β/2


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Then we have (I − zA)w = ((α− 4zr−1 + zrβ + 4z2r−1)/4)zv. Thus

f(z) = 1 + u(I − zA)−1zv

= 1 + 4uw/(α− 4zr−1 + zrβ + 4z2r−1)

=
(1− z)(1 + 4z + · · ·+ (3r − 5)zr−2

(1− z)(1− z2 − 2z3 − · · · − (r − 3)zr−2

+(3r − 3)zr−1 + (3r − 3)z3r + · · ·+ 3z2r−1 − 2z2r−1)

−(r − 1)zr−1 − (r − 3)zr − · · · − z2r−4 + z2r−2

=
1 + 4z + · · ·+ (3r − 5)zr−2

(1 + z + · · ·+ zr−2)

+(3r − 3)zr−1 + (3r − 3)z3r + · · ·+ 3z2r−1 − 2z2r−1

·(1− z − · · · − zr−1 + zr)
.

Now we will treat the case when D is a triangle. First we will consider the degree of
the three vertices on D. If all the three vertices have even degree, then the group is a
Coxeter group, and we can apply the result in Theorem 25. There are still three cases left,
we summarize the result as follows.

1. All vertices of D have degree 3p, for p ≥ 3 odd. In this case, we have 3p types of
faces. And the generating function is

f(z) =
1 + 2z + · · ·+ 2zk−1 + 4zk + 2zk+1 + · · ·+ 2z3p−2 + z3p−1

1− z − · · · − zk−1 + zk − zk+1 − · · · − z3p−2 + z3p−1
,

where k = (3p− 1)/2, and it’s reciprocal.

2. Two vertices of D have degree 2p for p ≥ 3 and the third has degree 2q+ 1 for q ≥ 2.
In this case, there are 4p + 2q − 2 types. But in this case we can prove that the
tessellation will satisfies the Lemma 12. So we the proof of the reciprocity in the
Chapter 4 will apply, and the generating function is reciprocal.

3. Two vertices of D have degree 2p for p ≥ 3 and the third has degree 3. In this case
there are 4p + 1 types, and it is not reciprocal. This tessellation is similar to the
∆(3, 3, r) we discuss above, and its generating function is not reciprocal because it
has buried domains as in ∆(3, 3, r). This is the second counterexample in Theorem
15.
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