
Convex Optimization via
Domain-Driven Barriers and

Primal-Dual Interior-Point Methods

by

Mehdi Karimi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2017

© Mehdi Karimi 2017

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner Lieven Vandenberghe
Professor, Electrical Engineering Department
University of California, Los Angeles

Supervisor Levent Tunçel
Professor, Department of Combinatorics & Optimization

Internal Members William Cook
Professor, Department of Combinatorics & Optimization

Stephen Vavasis
Professor, Department of Combinatorics & Optimization

Internal-external Member Yaoliang Yu
Professor, Department of Computer Science

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis studies the theory and implementation of infeasible-start primal-dual interior-
point methods for convex optimization problems. Convex optimization has applications
in many fields of engineering and science such as data analysis, control theory, signal pro-
cessing, relaxation and randomization, and robust optimization. In addition to strong and
elegant theories, the potential for creating efficient and robust software has made convex
optimization very popular. Primal-dual algorithms have yielded efficient solvers for con-
vex optimization problems in conic form over symmetric cones (linear-programming (LP),
second-order cone programming (SOCP), and semidefinite programing (SDP)). However,
many other highly demanded convex optimization problems lack comparable solvers. To
close this gap, we have introduced a general optimization setup, called Domain-Driven, that
covers many interesting classes of optimization. Domain-Driven means our techniques are
directly applied to the given “good” formulation without a forced reformulation in a conic
form. Moreover, this approach also naturally handles the cone constraints and hence the
conic form.

A problem is in the Domain-Driven setup if it can be formulated as minimizing a
linear function over a convex set, where the convex set is equipped with an efficient self-
concordant barrier with an easy-to-evaluate Legendre-Fenchel conjugate. We show how
general this setup is by providing several interesting classes of examples. LP, SOCP,
and SDP are covered by the Domain-Driven setup. More generally, consider all convex
cones with the property that both the cone and its dual admit efficiently computable self-
concordant barriers. Then, our Domain-Driven setup can handle any conic optimization
problem formulated using direct sums of these cones and their duals. Then, we show
how to construct interesting convex sets as the direct sum of the epigraphs of univariate
convex functions. This construction, as a special case, contains problems such as geometric
programming, p-norm optimization, and entropy programming, the solutions of which are
in great demand in engineering and science. Another interesting class of convex sets that
(optimization over it) is contained in the Domain-Driven setup is the generalized epigraph
of a matrix norm. This, as a special case, allows us to minimize the nuclear norm over a
linear subspace that has applications in machine learning and big data. Domain-Driven
setup contains the combination of all the above problems; for example, we can have a
problem with LP and SDP constraints, combined with ones defined by univariate convex
functions or the epigraph of a matrix norm.

We review the literature on infeasible-start algorithms and discuss the pros and cons of
different methods to show where our algorithms stand among them. This thesis contains
a chapter about several properties for self-concordant functions. Since we are dealing with

iv

general convex sets, many of these properties are used frequently in the design and analysis
of our algorithms. We introduce a notion of duality gap for the Domain-Driven setup that
reduces to the conventional duality gap if the problem is a conic optimization problem,
and prove some general results. Then, to solve our problems, we construct infeasible-start
primal-dual central paths. A critical part in achieving the current best iteration complexity
bounds is designing algorithms that follow the path efficiently. The algorithms we design
are predictor-corrector algorithms.

Determining the status of a general convex optimization problem (as being unbounded,
infeasible, having optimal solutions, etc.) is much more complicated than that of LP.
We classify the possible status (seven possibilities) for our problem as: solvable, strictly
primal-dual feasible, strictly and strongly primal infeasible, strictly and strongly primal
unbounded, and ill-conditioned. We discuss the certificates our algorithms return (heavily
relying on duality) for each of these cases and analyze the number of iterations required
to return such certificates. For infeasibility and unboundedness, we define a weak and a
strict detector. We prove that our algorithms return these certificates (solve the problem)
in polynomial time, with the current best theoretical complexity bounds. The complexity
results are new for the infeasible-start models used. The different patterns that can be
detected by our algorithms and the iteration complexity bounds for them are comparable
to the current best results available for infeasible-start conic optimization, which to the
best of our knowledge is the work of Nesterov-Todd-Ye (1999).

In the applications, computation, and software front, based on our algorithms, we
created a Matlab-based code, called DDS, that solves a large class of problems including
LP, SOCP, SDP, quadratically-constrained quadratic programming (QCQP), geometric
programming, entropy programming, and more can be added. Even though the code is
not finalized, this chapter shows a glimpse of possibilities. The generality of the code lets
us solve problems that CVX (a modeling system for convex optimization) does not even
recognize as convex. The DDS code accepts constraints representing the epigraph of a
matrix norm, which, as we mentioned, covers minimizing the nuclear norm over a linear
subspace. For acceptable classes of convex optimization problems, we explain the format of
the input. We give the formula for computing the gradient and Hessian of the corresponding
self-concordant barriers and their Legendre-Fenchel conjugates, and discuss the methods
we use to compute them efficiently and robustly. We present several numerical results of
applying the DDS code to our constructed examples and also problems from well-known
libraries such as the DIMACS library of mixed semidefinite-quadratic-linear programs. We
also discuss different numerical challenges and our approaches for removing them.

v

Acknowledgements

I would like to thank my family and friends for their support, specially my wife
Mehrnoosh. I thank my advisor, Dr. Levent Tunçel, who gave me this opportunity to
be his student, and his guidance and support made this work possible. I also thank my
committee members, namely Dr. William Cook, Dr. Lieven Vandenberghe, Dr. Stephen
Vavasis, and Dr. Yaoliang Yu, for their helpful feedback.

The material in this thesis is based upon research supported in part by NSERC Discov-
ery Grants, Ontario Graduate Scholarships (OGS), Sinclair Graduate Scholarship, and U.S.
Office of Naval Research under award numbers: N00014-12-1-0049 and N00014-15-1-2171.
This financial support is gratefully acknowledged.

vi

Dedication

This thesis is dedicated to the love of my life, Mehrnoosh.

vii

Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Convex optimization in the view of this thesis 1

1.2 Organization of the thesis . 5

1.3 Some notations . 6

2 Applications of Domain-Driven setup 7

2.1 LP, SOCP, and SDP . 9

2.2 Direct sum of 2-dimensional sets (geometric programming, entropy program-
ming, and more) . 10

2.3 Generalized epigraph of a matrix norm, minimizing nuclear norm 12

2.4 Generality of Domain-Driven setup . 13

3 Infeasible-start algorithms 14

3.1 Linear programming . 14

3.2 General convex optimization . 19

3.3 Properties of our approach . 21

viii

4 Convex optimization and self-concordant functions 22

4.1 Convex optimization . 22

4.2 Self-concordant functions . 25

4.2.1 Self-concordant (s.c.) functions . 27

4.2.2 Self-concordant (s.c.) barriers . 30

4.2.3 Legendre-Fenchel conjugate of s.c. barriers 34

5 Domain-Driven setup and central path 36

5.1 Restudying the examples from Chapter 2 39

5.1.1 LP, SOCP, and SDP . 39

5.1.2 Direct sum of 2-dimensional sets 39

5.1.3 Generalized epigraph of a matrix norm 41

5.2 Duality gap for Domain-Driven setup . 41

5.3 Primal-dual infeasible-start central path 42

5.4 Informal outcomes of following the path 49

6 Algorithms and complexity analysis 51

6.1 Algorithms . 51

6.1.1 Predictor step . 53

6.1.2 Corrector step . 56

6.2 Analysis of the algorithms . 60

6.2.1 Predictor step . 61

6.2.2 Corrector step . 71

6.3 Complexity of following the path to µ = +∞ 79

7 Output analysis 81

7.1 Categorizing problem statuses . 81

7.2 Solvable cases . 85

ix

7.3 Weak infeasibility and unboundedness detector 89

7.3.1 Infeasibility . 90

7.3.2 Unboundedness . 91

7.4 Strict infeasibility and unboundedness detector 92

7.4.1 Infeasibility . 92

7.4.2 Unboundedness . 96

8 Software and applications 98

8.1 Format of the input for two famous solvers 99

8.1.1 SeDuMi . 99

8.1.2 CVX . 100

8.2 How to use the DDS code . 101

8.2.1 Solving linear programming and SOCP with DDS 101

8.2.2 Adding SDP to DDS . 102

8.2.3 Adding sets created by the epigraph of a matrix norm 105

8.2.4 Adding quadratic constraints . 109

8.2.5 Adding constraints defined by epigraph of univariate functions . . . 109

8.3 Equality constraints . 114

8.4 More numerical examples . 116

9 Conclusion 118

9.1 Improving the algorithm in the code . 119

9.2 Expanding the code . 119

References 121

A Converting Domain-Driven setup into conic optimization 128

B Predictor-corrector algorithm used in the code 133

B.1 Predictor and corrector steps . 134

B.2 Stopping criteria . 136

x

List of Tables

2.1 LP, SOCP, and SDP constraints and the corresponding s.c.b.’s 9

2.2 Some 2-dimensional convex sets and their s.c. barriers. 11

5.1 Transformed LF conjugates. 39

5.2 LP, SOCP, and SDP constraints, the corresponding s.c. barriers, and their
LF conjugates. 39

5.3 LF conjugates for the first three s.c. barriers in Table 2.2. 40

5.4 How to interpret the outcome of the algorithm with given ε and L. 49

8.1 s.c. barriers and their LF conjugate for rows 4 and 5 of Table 2.2 115

8.2 Numerical results for some problem from the Dimacs library for tol = 10−8. 117

xi

List of Figures

1.1 Optimizing a linear function over a set is equivalent to optimizing over its
convex hull. 2

1.2 The scheme of a path-following interior-point algorithm that the sequence
of points lie in a neighborhood of a central path. 3

1.3 Lifting a convex set to write it as the intersection of an affine subspace and
a convex cone. 4

2.1 Epigraph of a convex function is a convex set. 10

4.1 How the Minkowski function works for two points x and y in G. 31

7.1 An example of a problem (5.1) with D ⊂ R2. 84

xii

Chapter 1

Introduction

1.1 Convex optimization in the view of this thesis

Convex optimization has been studied heavily not only for its very powerful and elegant
theory, but also because of its widespread applications in many different fields of engineering
and science. By convex optimization we mean minimizing a linear function of finitely many
variables over a convex set in a finite dimensional vector space.

Definition 1.1.1. For a general metric vector space E, a set C ⊆ E is a convex set if for
every x, y ∈ C and every λ ∈ [0, 1], λx + (1 − λ)y ∈ C. A convex set K ⊆ E is a convex
cone if for every x ∈ K and every λ ≥ 0, λx ∈ K.

Many problems arising in practice can naturally be formulated as a convex optimization
problem. However, even if our set S is not convex, minimizing a linear function over S is
equivalent to minimizing it over the convex hull of S, which by definition is the smallest
convex set containing S (see Figure 1.1). This simple fact lets us use convex relaxations
for many non-convex problems and enjoy the strong theory and numerical stability. Just
to list a few applications of convex optimization:

1. Data analysis: big data, machine learning, compressed sensing (see [10, 22, 13, 2]).

2. Engineering: control theory, signal processing, circuit design (see [9, 4, 7, 1]).

3. Relaxation and randomization: provable bounds and robust heuristics for hard
non-convex problems (see [75]).

1

c c

Figure 1.1: Optimizing a linear function over a set is equivalent to optimizing over its
convex hull.

4. Robust optimization (see [5, 3]).

Convex optimization approaches became even more attractive when new algorithms such
as modern interior-point methods, faster and more reliable numerical linear algebra soft-
ware, and powerful computers made it possible to solve convex optimization problems
efficiently. Generally speaking, interior-point methods follow a sequence of points in the
relative interior of the feasible region to an optimal solution (see Figure 1.2). Modern the-
ory of interior-point methods started with Karmarkar’s revolutionary paper [24] in 1984.
The research activity that followed led to faster theoretical algorithms [63, 47, 19], many
interesting software projects [12, 69, 43, 73], applications [21, 61], and generalizations
[52, 49, 74, 44]. Besides theoretical advantages, it was the appealing practical performance
of interior-point methods that ended the 50-year unchallenged dominance of the Simplex
method for linear programming (LP) and inspired a revolution in convex optimization.

The basic principles of classical interior-point methods for nonlinear optimization were
developed in 1950’s and 1960’s, for example in [16]. However, extension of modern interior-
point methods, with polynomial iteration complexity, from linear optimization to general
convex optimization problems was started by Nesterov and Nemirovskii [52] in the late
1980’s. Since then, many different approaches in that direction have been proposed, the
majority of them for the problems presented in a conic formulation. A conic optimization
problem is minimizing a linear function over the intersection of an affine subspace and a
convex cone. One of the main strengths of conic optimization is its duality properties. For

2

c

Figure 1.2: The scheme of a path-following interior-point algorithm that the sequence of
points lie in a neighborhood of a central path.

every convex optimization problem, we assign a dual optimization problem whose feasible
points give bounds on the objective value of the primal problem. The dual of a conic opti-
mization problem is another conic optimization problem and we can define a nice duality
gap of a pair of primal-dual feasible points that quantifies distance to optimality. This
“symmetry” between the primal conic formulation and its dual lets us build a powerful
and elegant theoretical foundation. An essential fact about the importance of conic op-
timization is that it is as general as convex optimization in the sense that every convex
optimization problem can be written as a conic optimization problem. This can be done
by adding an artificial variable to lift the feasible region into a higher dimensional space
and writing it as the intersection of an affine subspace and a convex cone, as shown in
Figure 1.3.

The focus on conic formulations is mostly because of its popularity in practice; linear
programming (LP), second-order cone programming (SOCP), and semi-definite program-
ming (SDP) are the most popular problems utilized in applications. It has been proven
that there are many advantages in considering the primal and the dual problems at the
same time and developing primal-dual interior-point methods; advantages such as defining
efficient and easy-to-calculate proximity measures and potential functions that incorporate
dual information, developing long-step algorithms, and better handling of the infeasible-

3

D

K

Figure 1.3: Lifting a convex set to write it as the intersection of an affine subspace and a
convex cone.

start cases. The theory of Primal-Dual algorithms for conic formulations is strong and
elegant, see for example [48, 56, 54, 55, 80, 40, 74, 44]. Considering that conic optimiza-
tion is general, trying new methods seems unnecessary. Here, we highlight some arguments
against this view:

• The application and software of conic optimization have not gone much beyond op-
timization over symmetric (self-scaled) cones; more specifically linear, second-order
cone, and semidefinite programming. There have been efforts to enforce the de-
sired properties of optimization over symmetric cones to general conic optimization
[51, 68]; however, they have not been continued or put into practice.

• From a theoretical point of view, we do not need a conic formulation to achieve the
current best theoretical bounds, see for example papers by Nemirovskii and Tunçel
[46], and Nesterov and Nemirovskii [53]. In other words, to achieve the best theoret-
ical bounds, enforcement into conic formulation is not needed.

• Enforcement of the conic framework is not costless. If there is no compelling numer-
ical evidence, maybe working with the more natural formulation of the problem is
logical.

In order to succeed, any new primal-dual method that does not use conic reformulation
must not only be elegant in theory, but also open new doors in practice. In this thesis,

4

we define an optimization setup, called Domain-Driven, which is more “general” than
the conic setup. Our examples and discussion show that the Domain-Driven setup covers
many interesting examples that arise in practice. We design primal-dual algorithms that
not only achieve the best theoretical results available, but also lead to a code for solving
many interesting convex optimization classes.

1.2 Organization of the thesis

In Chapter 2, we informally define a Domain-Driven setup and show many of its interesting
applications. Our algorithms are infeasible-start, that is, we do not know beforehand
a feasible starting point for our algorithms. Infeasible-start algorithms are much more
challenging than feasible-start ones, both in theory and in applications. In Chapter 3, we
review the literature on popular infeasible-start approaches and compare our methods to
them. Self-concordant functions and their properties form the machinery we need to design
and analyze our algorithms. Chapter 4 contains a list of the properties we frequently use,
as well as the proofs for some theorems and lemmas specifically needed for this thesis.

After seeing the definition of self-concordant functions and barriers, we formally define
the Domain-Driven setup in Chapter 5 and take another look at the examples of Chapter 2.
Then, we define the notion of duality gap and prove some results about it. Designing our
infeasible-start primal-dual central paths also comes in this chapter. Chapter 6 contains
the expression for our predictor-corrector algorithms and the main tool of the proof that
the proposed algorithms achieve the current best iteration complexity bounds. In Chapter
7, we define the statuses a given problem may have, and the corresponding certificates
our algorithms return for each possible status. Relying on the main complexity result of
Chapter 6, we show the number of iterations our algorithms take to return such certificates.

One of our final goals has been creating a code that solves the large number of opti-
mization classes in the Domain-Driven setup. We have started to create such a code that
currently solves all the examples we discuss in Chapter 2. The algorithm being used in
the code has not been finalized; however, the code represents the potential for creating
a general and efficient code for convex optimization. In Chapter 8, we discuss our code,
called DDS. We show how to input each class of problems, and the difficulties and our
techniques for calculating the gradient and Hessian of the self-concordant barrier for each
class. Chapter 9 is the conclusion of the thesis.

5

1.3 Some notations

We represent two general Euclidean vector spaces by E and Y. We show an inner product
on a general vector space by 〈·, ·〉. We show the dual space of E by E∗ and a n-dimensional
Euclidean vector space over real numbers by Rn. When working with Rn, for simplicity, we
frequently use y>x instead of 〈y, x〉. R+ and R++ represent nonnegative and positive real
numbers, respectively. For a self-adjoint positive definite linear transformation B : E→ E∗,
we define a conjugate pair of Euclidean norms as:

‖x‖B := [〈Bx, x〉]1/2 ,
‖s‖∗B := max{〈s, y〉 : ‖y‖B ≤ 1} = ‖s‖B−1 =

[
〈s, B−1s〉

]1/2
. (1.1)

Note that (1.1) immediately gives us a general Cauchy-Schwarz (CS) inequality that we
use several times in the thesis:

〈s, x〉 ≤ ‖x‖B‖s‖∗B, ∀x ∈ E, ∀s ∈ E∗. (1.2)

We denote the set of m×m symmetric matrices by Sm, and the set of positive semidefinite
and positive definite matrices by Sm+ and Sm++, respectively. The generalized inequality
X � Y (X � Y) for X, Y ∈ Sm means that X − Y ∈ Sm+ (X − Y ∈ Sm++).

Consider two sets D1 ∈ E1 and D2 ∈ E2; we define the direct sum of them as

D1 ⊕D2 :=
{

(z1, z2) : z1 ∈ D1, z
2 ∈ D2

}
. (1.3)

Throughout the thesis, RHS and LHS stand for right-hand-side and left-hand-side, respec-
tively.

6

Chapter 2

Applications of Domain-Driven setup

In Chapter 1, we discussed the importance of convex optimization. The approach to solve
a convex optimization problem depends on how the convex feasible region is presented or
given as input data. In the Domain-Driven setup, the underlying convex set is treated as
the domain of a convex function. Let us first define a convex function.

Definition 2.0.1. Let C ⊆ E be a convex set. The function f : C → R is called a convex
function if for every two points x, y ∈ C and every λ ∈ (0, 1), we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

The function is called strictly convex if for every distinct pair x, y ∈ C we have strict
inequality in the above definition.

Every convex set C is the domain of a convex function (for example the function that
is constant on C and +∞ otherwise). In the Domain-Driven setup, we assume that our
convex set is the domain of a special convex function. We give a formal definition in
Chapter 5, but let us show a less formal definition here. A convex optimization problem
is said to be in the Domain-Driven setup if it can be written as

inf
x
{〈c, x〉 : Ax ∈ D}, (2.1)

where x 7→ Ax : E→ Y is a linear embedding (kerA = {0}), c ∈ E∗ is given, and D ⊂ Y is
presented as the closure of the domain of a convex function Φ(·) that is a self-concordant
(s.c.) barrier [52]. We define s.c. barriers in Chapter 4.

7

Every convex set is the domain of a s.c. barrier [52]. However, a s.c. barrier that
can be efficiently evaluated is not necessarily available for a general convex set. One
structure we assume for the Domain-Driven setup is that Φ(·) can be evaluated efficiently.
For many interesting convex sets (each of which allows us to handle classes of convex
optimization problems), we know how to construct an efficient s.c. barrier. Specifically,
the feasible region of many classes of problems that arise in practice is the direct sum of
small dimensional convex sets with known s.c. barriers. Let us elaborate more by looking
at linear programming.

Consider the 1-dimensional set {z ∈ R : z ≥ β} for β ∈ R. It is well-known that
− ln(z − β) is a s.c. barrier for this set (actually, the properties of this function motivated
the definition of s.c. barriers). Using this simple function, we can construct a s.c. barrier for
a polyhedron and solve LP; for A ∈ Rm×n and b ∈ Rm, a s.c. barrier for {x ∈ Rn : Ax ≤ b} is
−
∑m

j=1 ln(bj−a>j x), where aj is the jth row of A. Knowing a s.c. barrier for a 1-dimensional
convex set may not seem very useful. However, when we direct sum an arbitrarily large
number of these sets, we are able to solve basically every LP problem.

When we add just one degree of freedom to go to R2, we can construct many interesting
convex sets rather than just intervals. Constructing an efficient s.c. barrier is not hard
for a structured 2-dimensional set. In this Chapter, we show several examples that are
constructed by using univariate convex functions. In the same fashion we explained for
LP, each of these 2-dimensional convex sets and its corresponding s.c. barrier can solve
an interesting class of optimization problems. The power of this method is accentuated
when we consider the possibility of direct summing convex sets of different types. Each
set constraint is a block and we can bind an arbitrary number of different blocks by direct
sum to construct a problem in the Domain-Driven setup. In this chapter, we show many
set constraints/functions as the building blocks of a problem in the Domain-Driven setup.
We start by showing that the Domain-Driven setup covers the popular optimization over
symmetric cones. We express the s.c. barriers corresponding with the convex sets in this
chapter, but the formal definitions come in Chapter 4. Many of these functions can be
found in Nesterov and Nemirovski’s book [52].

For the Domain-Driven setup, we also assume a dual structure that we discuss later
in Chapter 5, after defining the Legendre-Fenchel (LF) conjugate of a convex function in
Chapter 4.

8

2.1 LP, SOCP, and SDP

Linear programming (LP), second-order cone programming (SOCP), and semidefinite pro-
gramming (SDP) are the most popular convex optimization problems in the literature
and in applications. These optimization problems are associated with polyhedral cones,
second-order cones, and positive semidefinite cones, respectively. These cones are called
symmetric or self-scaled [15] and possess some nice properties that make LP, SOCP, and
SDP very elegant in theory and practice [15, 70].

Optimization over symmetric cones is a special case of our Domain-Driven setup. Table
2.1 shows the constraints that specify D and the s.c. barrier associated with the convex
set defined by the constraint. Here we give an example to understand the connection of

Table 2.1: LP, SOCP, and SDP constraints and the corresponding s.c.b.’s

Constraint s.c. barrier Φ Domain of Φ

LP z ≤ β, z, β ∈ R, − ln(β − z) z < β

SOCP ‖z‖ ≤ t, z ∈ Rm, t ∈ R, − ln(t2 − z>z) ‖z‖ < t

SDP Z � B, Z,B ∈ Sm − ln(det(B − Z)) Z ≺ B

formulation (2.1) and Table 2.1. Assume that our feasible region is{
x ∈ Rn : a>1 x ≤ β1, ‖Fx+ f‖ ≤ a>2 x+ β2, A0 +

n∑
i=1

Aixi � B

}
,

for given a1, a2 ∈ Rn, β1, β2 ∈ R, F ∈ R`×n, f ∈ R`, and A0, · · · , An, B ∈ Sm. Then, we
can define our set D and its s.c. barrier Φ as

D := {(z, h, u, Z) ∈ R⊕ R` ⊕ R⊕ Sm : z ≤ β1, ‖h+ f‖ ≤ u+ β2, Z + A0 � B},
Φ(z, h, u, Z) := − ln(β1 − z)− ln((u+ β2)− ((h+ f)(h+ f)>)− ln(det(B − (Z + A0))),

and our linear transformation as

Ax =

(
a>1 x, Fx, a

>
2 x,

n∑
i=1

Aixi

)
.

This example shows how easily we can put a problem with LP, SOCP, and SDP constraints
into a Domain-Driven setup. This is basically the method we use to combine all the

9

problems we discuss in this chapter. Note that for implementation, we should represent
our linear transformation as one matrix and our variables as one vector. We discuss the
implementation part in detail in Chapter 8.

2.2 Direct sum of 2-dimensional sets (geometric pro-

gramming, entropy programming, and more)

The 2-dimensional sets we are interested in are epigraphs of univariate convex functions.
For a convex function f : C → R, the epigraph is defined as

epi(f) := {(z, γ) ∈ C ⊕ R : f(z) ≤ γ} . (2.2)

Figure 2.1 shows the epigraph of a univariate function that is a 2-dimensional convex
set. Table 2.2 shows 2-dimensional sets defined by the epigraph of some famous convex

Figure 2.1: Epigraph of a convex function is a convex set.

functions, and a s.c barrier associated to each set. In the same fashion that a s.c. barrier
for a 1-dimensional interval lets us solve LP problems, each of these 2-dimensional convex
sets describes its own class of optimization models. Every inequality of the form

∑̀
i=1

αifi(a
>
i x+ βi) + g>x+ γ ≤ 0, ai, g ∈ Rn, βi, γ ∈ R, i ∈ {1, . . . , `}, (2.3)

where αi ≥ 0 and fi(x), i ∈ {1, . . . , `}, can be any function from Table 2.2, can be handled
in the Domain-Driven setup (we show this in Chapter 5). By using this simple structure,

10

we can model many interesting optimization problems. Geometric programming (GP) [8]
and entropy programming (EP) [14] with many applications in engineering are constructed
with constraints of the form (2.3) when fi(z) = ez for i ∈ {1, · · · , `} and fi(z) = z ln(z) for
i ∈ {1, · · · , `}, respectively. The other functions with p powers let us solve optimization
problems related to p-norm minimization.

Table 2.2: Some 2-dimensional convex sets and their s.c. barriers.

set (z, t) s.c. barrier Φ(z, t)

1 − ln(z) ≤ t, z > 0 − ln(t+ ln(z))− ln(z)

2 ez ≤ t − ln(ln(t)− z)− ln(t)

3 z ln(z) ≤ t, z > 0 − ln(t− z ln(z))− ln(z)

4 |z|p ≤ t, p ≥ 1 − ln(t
2
p − z2)− 2 ln(t)

5 −zp ≤ t, z > 0, 0 ≤ p ≤ 1 − ln(zp + t)− ln(z)

6 zp ≤ t, z > 0, p ≤ −1 − ln(z − t
1
p)− ln(t)

7 1
z
≤ t, z > 0 − ln(zt− 1)

Let us write a GP constraint explicitly

∑̀
i=1

αie
a>i x+βi + g>x+ γ ≤ 0. (2.4)

Note that this is the most general form of GP. In [8], a GP constraint is written as

∑̀
i=1

αiy
a1i
1 · · · yanin ≤ 1, (2.5)

for positive yi’s that if we define yi := exi , i ∈ {1, . . . , n}, then (2.5) becomes a special case
of (2.4). Let us give another simple example in two variables:

2e−x1+3x2 + (x1 − x2) ln(x1 − x2) + 4x2 ≤ 0. (2.6)

This example can be easily put into the above setup for f1(z) = ez and f2(z) = z ln(z).
CVX [20], a famous interface for convex optimization, uses approximation to solve these
problems. More on this and other examples come in Chapter 8.

11

2.3 Generalized epigraph of a matrix norm, minimiz-

ing nuclear norm

Assume that we have constraints of the form

Z − UU> � 0, where Z = Z0 +
∑̀
i=1

xiZi, U = U0 +
∑̀
i=1

xiUi. (2.7)

Zi, i ∈ {0, . . . , `}, are m×m symmetric matrices, and Ui, i ∈ {0, . . . , `}, are m×n matrices.
This problem can be modeled as an SDP using the Schur complement theorem as:

Z − UU> � 0, ⇔ Z̄ :=

(
Z U
U> In×n

)
� 0. (2.8)

However, the set {(Z,U) : Z − UU> � 0} accepts the following s.c. barrier:

Φ(Z,U) := − ln(det(Z − UU>)). (2.9)

A parameter is assigned to every s.c. barrier (see Chapter 4), which is directly related to
the iteration complexity bounds. The parameter of the s.c. barrier in (2.9) is m. In the
cases that m � n, Z − UU> is much smaller than Z̄ in (2.8). Therefore, the parameter
of the s.c. barrier for (2.9) is also much smaller than n, the parameter of the s.c. barrier
if we use the SDP reformulation. This can make a huge difference both in theory and
applications, even though Z̄ in (2.8) is sparse.

As a special but very important application for constraints of the form (2.7) is minimiz-
ing the nuclear norm. The nuclear norm of a matrix Z is defined as ‖Z‖∗ = Tr

(
(ZZ>)1/2

)
.

The dual norm of ‖ · ‖∗ is the 2-norm ‖ · ‖ of a matrix. It can be shown that the following
optimization problems are a primal-dual pair [62].

(P) minX ‖X‖∗
s.t. AX = b.

(D) maxz 〈b, z〉
s.t. ‖A∗z‖ ≤ 1,

(2.10)

where A is a linear operator on matrices and A∗ is its conjugate. Problem (P) in (2.10)
has become very popular recently as a relaxation of minimizing rank(X), an optimization
problem with applications in big data, machine learning, matrix sparsification, and com-
pressed sensing. The dual problem (D) in (2.10) is a special case of (2.7) where Z = I
and U = A∗z. As we develop primal-dual techniques, it can be shown that solving (D)
immediately gives us the solution for (P).

12

2.4 Generality of Domain-Driven setup

One strength of the Domain-Driven setup is its generality and versatility. Basically, every
convex set with a s.c. barrier can be added to the setup (and be implemented), while
the core of the algorithm stays the same. As we explained above, knowing an efficient
s.c. barrier for a small dimensional set and using direct sum provides a machinery for
solving a class of optimization problems. Therefore, we have an expanding list for types of
constraints, where a problem in the Domain-Driven setup can have an arbitrary number
of constraints of each type. Even problems that have a conic reformulation can instead be
dealt with in their natural form. Another example, in addition to the epigraph of a matrix
norm we mentioned above, is a quadratic constraint of the form

x>Bx+ b>x+ β ≤ 0, (2.11)

where B is a positive semidefinite matrix. This constraint can be reformulated as an
SOCP, but we show in Chapter 8 how to use an appropriate s.c. barrier to put it in the
Domain-Driven setup and implement it without a conic reformulation.

13

Chapter 3

Infeasible-start algorithms

Iterative algorithms for solving optimization problems start the process from a starting
point. No matter where the starting point lies, the final answer must be (approximately)
feasible if the feasible region is not empty. Having a starting point that is feasible is desir-
able for most of the algorithms; however, a feasible point may not be known beforehand.
Finding a feasible point is also not “easier” than solving the optimization problem. In
many theoretical setups, if we have an oracle to find a feasible point, we can design an
efficient algorithm for the optimization problem. In the literature, algorithms are divided
into feasible-start and infeasible-start and there is a clear-cut boundary between them es-
pecially when we are considering iteration complexity bounds. A feasible-start algorithm
assumes that the given problem is feasible and a feasible point with required properties
is given. On the other hand, an infeasible-start algorithm must distinguish the possible
statuses for a given problem and decide whether it is solvable, infeasible, or unbounded.
In this chapter, we review the popular approaches for handling infeasibility and the pros
and cons of them. At the end, we discuss where our approach stands and how strong it is
among other methods.

3.1 Linear programming

When we have a feasible-start algorithm, an obvious approach for handling infeasibility
is using a two-phase method. The purpose of phase-1 is finding a feasible point for the
original problem. Then, phase-2 is just applying the feasible-start algorithm to the original
problem. For phase-1, we need a formulation of an auxiliary problem with an obvious
feasible starting point. Solving this auxiliary problem by using the feasible-start algorithm

14

either confirms that the original problem is infeasible or returns a feasible point for it. In
terms of theoretical complexity bound, with an appropriate reformulation in phase-1, we
trivially have an extra factor of 2 compared to the feasible-start version. However, this
approach is not desirable in practice and researchers are interested in approaches that gain
feasibility and optimality at the same time.

Infeasible-start algorithms have been extensively studied for LP. We review some of
the important methods that have been extended to general convex optimization problems.
A popular approach is the big-M approach. Let us explain an elementary version for the
Simplex method. Assume that we want to solve the LP problem min{c>x : Ax = b, x ≥ 0},
where A ∈ Rm×n. To start from a feasible basis, we add m artificial variables and construct
the following auxiliary LP:

min c>x+Me>x′

s.t. (A I)

[
x
x′

]
= b

x, x′ ≥ 0,

(3.1)

where e is the vector of all ones and M is a large enough number. For a hand-wavy
argument for why this approach works, assume that the initial LP has an optimal solution
x∗. Note that x′ ≥ 0 for all the feasible points of (3.1) and so e>x′ ≥ 0. Let t be the
smallest nonzero value of e>x′ over all the extreme points of the feasible region in (3.1).
If we take M > 2|c>x∗|/t, then, for every optimal solution of (3.1) we must have x′ = 0.
The main issue with this approach is that it is not clear beforehand how large M should
be to get the desired result, and very large values for M accentuate numerical issues.

We change our focus to interior-point algorithms that this thesis is mostly about. Let
us rewrite the above LP problem and its dual

(P) min {c>x : Ax = b, x ≥ 0},
(D) max {b>y : A>y + s = c, s ≥ 0}.

(3.2)

By writing the optimality conditions, a pair (x, s) is primal-dual optimal if they satisfy the
following system for µ = 0:

Ax = b, x ≥ 0,
A>y + s = c, s ≥ 0,

Xs = µe,
(3.3)

where X is a diagonal matrix with the elements of x on the diagonal. Let us define

F+ := {(x, s) : Ax = b, A>y + s = c, x > 0, s > 0, y ∈ Rm}. (3.4)

15

If F+ is not empty, then system (3.3) has a unique solution for every µ > 0 and we denote
the solution set as the standard primal-dual central path. In the standard feasible-start
primal-dual algorithms, we “follow” this path for values of µ that tend to zero for a certain
number of iterations. At every iteration, we need a search direction that is calculated
by applying a Newton-like method to the equations in system (3.3) with an appropriate
value of µ and using the current point as the starting point. When the data (A, b, c) are
rational, let L be the size of the given data in the LP (the number of bits required to store
the given data). Then, achieving the O(

√
nL) number of iterations 1 for solving the LP

is straightforward for feasible-start algorithms and numerous of them have been studied
in the literature. However, getting this bound for infeasible-start algorithms is a different
story.

The general idea in infeasible-start algorithms is adding some artificial variables to
transform the problem into an auxiliary optimization problem with an obvious feasible
point. Then, this feasible point is used to apply a feasible-start algorithm to the modified
problem. At the end, based on the values of artificial variables, we determine the status
of the problem. The transformation of the initial problem can be done in different ways.
The big-M approach has been used in interior-point methods [27, 41, 29, 28, 35, 36] to
achieve O(

√
nL) number of iterations. For arbitrary x0 > 0, z0 > 0, and y0 initial points,

we construct the following primal-dual pair of LPs:

min c>x+Kcxn+1

s.t. Ax+ (b− Ax0)xn+1 = b
(A>y0 + z0 − c)>x+ xn+2 = Kb

x, xn+1, xn+2 ≥ 0.

(3.5)

max b>y +Kbym+1

s.t. A>y + (A>y0 + z0 − c)ym+1 + z = c
(b− Ax0)>y + zn+1 = Kc

ym+1 + zn+2 = 0
z, zn+1, zn+2 ≥ 0.

(3.6)

As can be easily verified, by setting x̄n+1 := 1 and ȳm+1 := −1, xn+2 and zn+1 can be
chosen based on Kc and Kb to get feasible points for the modified LPs. For large enough

1This bound is the current best that has been achieved by the conventional s.c. barrier for a polyhedral
cone we gave in Chapter 2. By using the universal barrier given in [52], we get a theoretical limit
O(
√
rank(A)L) iteration complexity bound. This bound is claimed to be achieved, up to polylogarithmic

factors, by Lee and Sidford [30].

16

values for Kc and Kb (order of 2kL, where L is the size of the LP and k is a small natural
number), a primal dual optimal pair can be interpreted by the values of artificial variables
to figure out the status of the initial LPs. For example, the authors in [42] showed the
following: Let x∗ and (y∗, z∗) be optimal solutions for (3.5) and (3.6), respectively. Then

• If x∗n+2z
∗
n+1 = 0,

– If x∗n+2 = 0 and z∗n+1 = 0, then restricting x∗ and (y∗, z∗) to the initial variables
gives primal and dual optimal solutions for the initial problems.

– If x∗n+2 6= 0, then the initial primal problem is infeasible.

– If z∗n+1 6= 0, then the initial primal problem is unbounded.

• If x∗n+2z
∗
n+1 6= 0, then the initial primal problem is either infeasible or unbounded.

We need to solve another auxiliary problem to distinguish them.

Even though an O(
√
nL) iteration complexity bound can be achieved, the big-M ap-

proach has implementation issues:

• It is not clear beforehand how large must Kc and Kb be. One way to overcome this
issue is enlarging these numbers dynamically during the algorithm [29]; however, we
loose the best complexity bound.

• Putting large values in data tends to make the problem ill-conditioned. We ultimately
want to run these algorithms on finite precision machines and, as we have experienced
thoroughly in our numerical experiments, numerical issues are very critical. Some
types of ill-conditioning arise naturally in interior-point methods and the algorithms
that avoid unnecessarily large or small values of data are more justified.

There is a method we call modifying the RHS that works well in practice (used in a once
popular code OB1 [34]), but it has not achieved the O(

√
nL) iteration complexity bound.

The idea is that we start from an “arbitrary” point and, at every iteration, calculate the
search direction as the Newton direction for (3.3), i.e., at iteration k, the search direction
is calculated by solving A 0 0

0 A> I
Sk 0 Xk

 dx
dy
ds

 = −

 Axk − b
A>yk + sk − c
Xksk − µe

 . (3.7)

17

Authors in [26] proved a global convergence result for a version of these algorithms. Zhang
[81] proved an O(n2L) iteration complexity bound for this method, and for some variations
the bound was further improved to O(nL), for example by Mizuno [38].

There are types of interior-point algorithms called potential reduction. In these meth-
ods, a potential function is defined with some connection to the duality gap, and the pur-
pose of the algorithm is to reduce this potential function efficiently. Mizuno-Kojima-Todd
designed an infeasible-start potential reduction algorithm [39] for LP. Their purely potential
reduction algorithm achieves O(n2.5L) iteration complexity bound and the bound can be
improved to O(nL) by adding some centering steps. Seifi and Tunçel [67] designed another
infeasible-start potential reduction algorithm with iteration complexity bound O(n2L).

The most elegant modification of the initial LP is the homogeneous self-dual embedding
introduced by Ye, Todd, and Mizuno [80]. If we choose y(0) := 0, x(0) := e, and s(0) := e,
the homogeneous self-dual embedding is defined as

min (n+ 1)θ

s.t. Ax −bt +bθ = 0
−A>y +ct −cθ ≥ 0
b>y −c>x +zθ ≥ 0

−b>y +c>x −zt = −(n+ 1)
x ≥ 0, t ≥ 0,

where b := b−Ae, c := c− e, and z := c>e+ 1. The optimal value of this LP is zero and
there is an optimal solution (y∗, x∗, t∗, θ∗ = 0, s∗, κ∗), such that:(

x∗ + s∗

t∗ + κ∗

)
> 0,

which we call a strictly self-complementary solution. Now we have the following theorem:

Theorem 3.1.1. [80] Let (y∗, x∗, t∗, θ∗ = 0, s∗, κ∗) be a strictly-self-complementary solution
for (HLP). Then:

• (P) has an optimal solution if and only if t∗ > 0. In this case, (x∗/t∗) is an optimal
solution for (P) and (y∗/t∗, s∗/t∗) is an optimal solution for (D);

• if t∗ = 0, then κ∗ > 0, which implies that c>x∗ − b>y∗ < 0, i.e., at least one of c>x∗

and −b>y∗ is strictly less than 0. If c>x∗ < 0 then (D) is infeasible; if −b>y∗ < 0
then (P) is infeasible; and if both c>x∗ < 0 and −b>y∗ < 0 then both (P) and (D)
are infeasible.

18

This theorem shows that if we use a feasible-start algorithm that returns a strictly self-
complementary solution, we can immediately solve both of the problems (P) and (D). By
“solving” we mean deciding on the feasibility patterns that can happen to the primal and
dual problems. The homogeneous self-dual embedding gives a nice and elegant approach
to solve LPs and it also works very well in practice. Note that the above issues with the
big-M approach no longer exist. Different versions of the homogeneous self-dual embedding
have been designed and implemented, see for example [78].

We mentioned that good solvers for conic optimization have been restricted to opti-
mization over symmetric cones. There are methods (such as using Jordan algebra) to unify
LP, SOCP, and SDP into a general setup, and because of similarity of SOCP and SDP
with LP, the extension of many infeasible-start algorithms for LP to this general setup is
intuitive (see for example [71]). Some of the good solvers for SDP such as SeDuMi [69],
MOSEK [43], and SDPT3 [72, 73] use an extension of the homogeneous self-dual embed-
ding to deal with infeasibility. We aim to solve a general convex optimization problem and
in the next section we review some methods for conic optimization.

3.2 General convex optimization

We can interpret all the above methods for LP as lifting the feasible region to a higher
dimensional space such that the original feasible region is a face of a convex polyhedron
with a known interior point. The same idea can be used for a general convex optimization
problem if we replace the polyhedron with a general convex set. The path from feasible-
start to infeasible-start algorithms is more demanding for general convex optimization.
Many types of ill-conditioning (including those that cannot exist for linear programming)
are possible for a general convex optimization problem such as the case where both primal
and dual are feasible while the duality gap is not zero. Ill-conditioned problems are unstable
and a small perturbation makes them well behaved. However, a good approach (and code)
must still strive to determine the status of the problem as rigorously as possible. For a
starting discussion on the possible feasibility patterns see [52]–Section 4.2.2. or [32, 33].

Let us consider the case of conic optimization problems. Consider a primal-dual conic
optimization setup

(P) inf {〈c, z〉 : Az = b, z ∈ K},
(D) inf {〈b, y〉 : s := c+ A∗y ∈ K∗}, (3.8)

where K∗ is the dual cone of K we define later in Chapter 4. Nesterov in [48] defined a

19

convex set as the solution of the following system

Az = Az0 + τb,
s = s0 + τc+ A>y,

〈c, z〉+ 〈b, y〉 = 〈c, z0〉,
z ∈ K, s ∈ K∗, τ ∈ R+.

(3.9)

His approach for finding an approximate solution for (3.8) was to find a recession direction
for the convex set defined in (3.9). Note that 〈c, z〉+〈b, y〉 is the conic duality gap. Assume
that we have a point satisfying (3.9) with a large τ > 0. Then, (z/τ, s/τ) approximately
satisfies all the optimality conditions, and if τ tends to infinity, they converge to primal-
dual optimal solutions. Nesterov [48] found a recession direction for (3.9) by minimizing
a self-concordant barrier over this set. We define and analyze self-concordant barriers and
functions in Chapter 4. Nesterov’s approach in [48] uses two parameters in addition to
the primal and dual variables; τ that is defined in (3.9) and µ is used to parameterize the
primal-dual central path.

In view of the homogeneous self-dual embedding for LP, Nesterov, Todd, and Ye [56]
generalized the approach in [48]. Their work, as far as we know, is the strongest and most
comprehensive result for infeasible-start interior-point methods for conic optimization.
They added another variable κ and for arbitrary starting points z0 ∈ intK, s0 ∈ intK∗,
y0 ∈ Rm, and τ 0, κ0 > 0, defined the following convex set (we use matrix form to highlight
the self-dual structure) 0 A −b

−A> 0 c
b> −c> 0

 y
z
τ

−
 0
s
κ

 =

 Az0 − τ 0b
−A>y0 − s0 + τ 0c
−〈c, z0〉+ 〈b, y0〉 − κ0

z ∈ K, s ∈ K∗, τ, κ ∈ R+. (3.10)

The authors solved the optimization problem again by finding a recession direction of
this convex set by minimizing a self-concordant barrier over it. Note that analyzing the
outcomes of the algorithms is much more complicated in general convex optimization com-
pared to LP. Several possible statuses were defined in [48] and [56], and the ability of the
algorithms in detecting each of them was analyzed. The feasibility patterns defined in [56]
are: solvable, strictly primal-dual feasible, strictly and strongly primal infeasible, strictly
and strongly dual infeasible, and ill-conditioned.

We finish this chapter by reviewing another interesting result [53] that is close to our
approach in terms of formulating the given problem. Under some mild conditions, we can

20

use a big-M approach to reformulate our infeasible-start problem in a feasible-start one
written as

min{c>x+Mxn : x ∈ G}, (3.11)

where G is a convex set with a known interior point and we need xn to be zero to get
feasibility for the initial problem. Typically, we can define a feasible central path for the
initial problem, parametrized by µ, as the solution set of −∇F (x) = µc for an appropriate
function F . This path becomes −∇F (x) = µ(c + Mf) for (3.11), where f is a vector
that satisfies f>x = xn. What if we replace µM with another parameter µ̄ and look at
a surface defined by −∇F (x) = µc + µ̄f? Nesterov and Nemirovski [53] took this idea
to introduce multi-parameter surfaces of analytic centers and use them to design surface-
following interior-point algorithms. The idea and analysis are elegant and they proved
the current best complexity bound attainable for conic optimization. However, the whole
approach is complicated and it seems hard to implement in practice.

3.3 Properties of our approach

Our infeasible start approach does not require any additional large auxiliary constants
and can start basically at arbitrary points. From one perspective, this method lies in the
“modifying the RHS” category that we explained for LP. However, if we look at the conic
reformulation of a problem in the Domain-Driven setup (see Appendix A), our central paths
and algorithms have close connections with those in [48, 56] for general conic optimization,
and our main objective in this research project has been to do at least as well as the current
best approaches for the conic setup. The statuses we define and analyze for a problem in the
Domain-Driven setup are similar to the ones in [56] (the most comprehensive we know) for
general conic optimization, and we achieve the current best iteration complexity bounds,
which are new for the “modifying the RHS” setup even for LP. Similar to [48], we add
an auxiliary variable τ and we add µ to parameterize the primal-dual central path. We
also have a simple algorithm in which we only add τ and it acts as the parameter of the
central path. We have not been able to prove the best theoretical results for this simpler
algorithm; however, it has some nice properties such as long-step property and is easier to
analyze and understand. We explain this simpler algorithm briefly in Appendix B.

21

Chapter 4

Convex optimization and
self-concordant functions

In this chapter, we present some of the fundamental results about a special class of convex
functions that we use frequently in this thesis. Especially we express and sometimes prove
several results and properties about self-concordant functions and barriers. These proper-
ties form the machinery for our discussions in later chapters. In comparison to many papers
in this context, we use a wider range of properties in our development of the Domain-Driven
setup. The reason is that we design primal-dual methods for general convex optimization
problems. Primal-dual interior-point methods have been mostly studied for conic opti-
mization. Convex cones attain special s.c. barriers with stronger properties, as we explain
later in this chapter. These stronger properties include a primal-dual “symmetry”, and a
stronger calculus that makes the design and analysis of the algorithms easier. We give up
some of these properties to work with the “natural” domain of a given problem.

4.1 Convex optimization

We defined a convex set in Chapter 1. Let us see more definitions and results. The
definitions and proofs in this section that we state without reference can be found in many
books on convex analysis and optimization, such as, Hiriart-Urruty and Lemaréchal’s book
[23], Schneider’s book [66], Rockafellar’s book [64], Rockafellar and Wets’ book [65], and
Boyd and Vandenberghe’s book [9].

As we mentioned before, for our purposes in this thesis, convex optimization is the
problem of minimizing a linear function over a convex set. Given a convex set D, a linear

22

functional 〈c, ·〉 on E, and a linear mapping A : E→ Y, a convex optimization problem is a
problem that can be formulated as (2.1). The problems that arise in practice are usually
given in another form that uses convex functions. Let fi : E→ R∪{+∞}, i ∈ {0, 1, · · · , k},
be convex functions and L ⊆ E be an affine subspace. Then the problem

min f0(x)
s.t. x ∈ L

fi(x) ≤ 0, i ∈ {1, · · · , k},
(4.1)

is a convex optimization problem. It can be shown that the above two definitions are
equivalent.

Definition 4.1.1. Let f : E→ R∪{+∞} be convex and consider a point x̄ ∈ domf , where
the domain domf is the set of x such that f(x) < +∞. The vector y ∈ E∗ that satisfies

f(x) ≥ f(x̄) + 〈y, x− x̄〉, ∀x ∈ E, (4.2)

is called a subgradient of f at x̄. The set of all subgradients of f at x̄ is called subdiffer-
ential and is denoted by ∂f(x̄).

To every convex function, we assign another “dual” convex function as follows.

Definition 4.1.2. Let f : E→ R ∪ {+∞} be convex. The Legendre-Fenchel conjugate of
f is defined as

f∗(y) := sup
x
{〈y, x〉 − f(x)}. (4.3)

f∗ is always a convex function and its domain is all the points that (4.3) has a bounded
solution. For a proper convex function, we have (f∗)∗ = f if and only if the epigraph of f is
closed (f is a closed convex function), see for example [23]. We use the following inequality
frequently in this thesis.

Theorem 4.1.1. (Fenchel-Young inequality) Let f : E → R ∪ {+∞} be a convex
function and f∗ be its Legendre-Fenchel conjugate. For every point x in the domain of f
and every y in the domain of f∗, we have

f(x) + f∗(y) ≥ 〈y, x〉. (4.4)

Equality holds if and only if y ∈ ∂f(x).

23

Assume that f(x) is differentiable and the optimal value of (4.3) for ȳ is attained at x̄,
then we must have ȳ = f ′(x̄). By Theorem 4.1.1, if both f and f∗ are twice differentiable,
for every point x in the domain of f we have

x = f ′∗(f
′(x)) ⇒ f ′′∗ (f ′(x)) = [f ′′(x)]−1. (4.5)

The Legendre-Fenchel conjugate is important to develop the concept of duality in convex
optimization. Duality theory provides us with bounds and certificates in convex optimiza-
tion. The following proposition is one version of weak duality when we only have linear
equality constraints.

Proposition 4.1.1. ([6]-Corollary 3.3.11) Let f : Rn → R ∪ {+∞} be a convex function,
f∗ be its Legendre-Fenchel conjugate, A : Rn → Rm be a linear mapping, and b be any
element in Rn. Then,

inf
x∈Rn
{f(x) : Ax = b} ≥ sup

y∈Rm
{〈y, b〉 − f∗(A∗y)}. (4.6)

Moreover, if b ∈ int{Ax : f(x) < +∞}, then equality holds and the supremum is attained.

We defined a primal-dual conic optimization setup in (3.8) without giving some defini-
tions, here they are

Definition 4.1.3. Let K ⊆ E be a closed convex cone. K is said to be pointed if there is
no v ∈ K \ {0} such that v ∈ K and −v ∈ K.

Definition 4.1.4. Let C ⊆ Rn be a convex set. The polar of C is defined by

C◦ := {h ∈ Rn : ∀x ∈ C, 〈h, x〉 ≤ 1} .

If C = K is a convex cone, its dual cone is defined by

K∗ := {h ∈ Rn : ∀x ∈ K, 〈h, x〉 ≥ 0} .

Theorem 4.1.2. For every set C, C◦ is convex. If C is a closed convex set that contains
0, then C = (C◦)◦.
For every cone K, K∗ is a convex cone. K is a closed convex cone iff K = (K∗)∗.

24

4.2 Self-concordant functions

In this section, we define different classes of self-concordant (s.c.) functions and summarize
(sometimes prove) their fundamental properties we frequently use in this thesis. First, we
start from the strongest one that is logarithmically homogeneous (LH) s.c. barrier defined
for convex cones. Motivation for the definition comes from f(z) = − ln(z) defined on R++.
The derivatives of this function have a nice pattern:

f ′(z) = −1

z
, f ′′(z) =

1

z2
, f ′′′(z) = − 2

z3
,

and we have |f ′′′(z)| = 2(f ′′(z))3/2 for all z ∈ R++. It also behaves nicely by positive
scaling of the argument:

f(tz) = f(z)− ln(t), ∀t > 0.

These are the properties that motivate the definition of a LH s.c. barrier:

Definition 4.2.1. Let K be a pointed closed convex cone in E. A function f : intK → R
that is C3 is called a ϑ-logarithmically homogeneous (LH) s.c. barrier if

(i) f(xi)→ +∞ for every sequence {xi} ⊂ intK that converges to a point on the bound-
ary of K.

(ii) (Self-concordance) For every x ∈ intK, we have

|f ′′′(x)[h, h, h]| ≤ 2(f ′′(x)[h, h])3/2, ∀(h ∈ E). (4.7)

(iii) (ϑ-logarithmic homogeneity) There exists ϑ ≥ 1 such that for every x ∈ intK, we
have

f(tx) = f(x)− ϑ ln(t), ∀(t > 0). (4.8)

By our above discussion, f(z) = − ln(z) is a 1-LH s.c. barrier for R+. Another example
is f : Rk ⊕ R → R that is defined as f(z, t) = − ln(t2 − z>z), and is a 2-LH s.c. barrier
for the second-order cone. Self-concordance, the most critical property, is similar to a
Lipschitz continuity constraint between the third and second derivative. Intuitively, this
property implies that the Hessian of the function is changing smoothly; a useful property in
the analysis of optimization algorithms. A convex function is defined to be self-concordant
if it has properties (i) and (ii) in Definition 4.2.1 (we define self-concordance in a slightly
more general way).

25

If we take the derivative from both sides of (4.8) with respect to x or t, we can get
different properties such as [52] (for every x ∈ intK):

f ′(tx) =
1

t
f ′(x), f ′′(tx) =

1

t2
f ′′(x), ∀t ∈ R++,

f ′′(x)x = −f ′(x), 〈f ′(x), x〉 = −ϑ,
〈f ′′(x)x, x〉 = 〈f ′(x), [f ′′(x)]−1f ′(x)〉 = ϑ. (4.9)

Let us focus on the last equation 〈f ′(x), [f ′′(x)]−1f ′(x)〉 = ‖[f ′′(x)]−1f ′(x)‖2
f ′′(x) = ϑ. The

term in the norm is the conventional Newton direction. This equality implies that the
local norm of the Newton direction is bounded by (here is equal to) a constant number at
every point in the domain. This property is very useful for having efficient Newton-type
algorithms. A s.c. function is a ϑ-s.c. barrier if it also has a property similar to this local
norm bound on the Newton step for a ϑ ≥ 1. (4.9) shows that we have this property for
free by logarithmic homogeneity.

A very strong property that confirms part of the symmetry we mentioned above for
conic optimization is about the LF conjugate of a LH s.c. barrier. [52]-Theorem 2.4.4
proves that if f(x) is a ϑ-LH s.c. barrier, f∗(−s) is also a ϑ-LH s.c. barrier for intK∗, where
K∗ is the dual cone of K. This property does not hold for a general s.c. barrier. Let us
mention some of the relations between f and f∗ [52]: For all x ∈ intK and s ∈ intK∗:

−f ′(x) ∈ intK∗, f ′∗(−s) ∈ intK,

f∗(f
′(x)) = −ϑ− f(x), f(f ′∗(−s)) = −ϑ− f∗(−s),

f ′∗(f
′(x)) = x, f ′(f ′∗(−s)) = −s,

f ′′(f ′∗(s)) = [f ′′∗ (−s)]−1, f ′′∗ (f ′(x)) = [f ′′(x)]−1.

These are part of the strong primal-dual properties for LH s.c. barriers. These properties
lead to a very strong and elegant machinery in the design and analysis of interior-point
algorithms for convex optimization problems in conic form. We lose many of these proper-
ties when we work with the given domain of the problem and avoid enforcing into a conic
reformulation.

In this section, we summarize the properties of self-concordant (s.c.) functions and s.c.
barriers. We also have a subsection for Legendre-Fenchel conjugate of s.c. barriers. The
LF conjugate of a s.c. barrier is a s.c. function, but not necessarily a s.c. barrier, which
makes our analysis even harder. However, the LF conjugate of a s.c. barrier has some
special properties that we use several times in this thesis; we highlight them in a separate
subsection.

26

We define the following function that is frequently used in the context of self-concordant
functions.

ρ(t) := t− ln(1 + t) =
t2

2
− t3

3
+
t4

4
+ · · · . (4.10)

We also need, in some sense, the inverse of this function

σ(s) := max{t : ρ(t) ≤ s}, s ≥ 0. (4.11)

By [46]-Lemma 2.1, we have

σ(s) ≤
√

2s+ s, ∀s ≥ 0. (4.12)

4.2.1 Self-concordant (s.c.) functions

A convex function f : E→ R ∪ {+∞} is called a-s.c. function if its domain Q is open, f
is C3 on Q and

(i) f(xi)→ +∞ for every sequence {xi} ⊂ Q that converges to a point on the boundary
of Q.

(ii) There exists a positive real constant a such that

|f ′′′(x)[h, h, h]| ≤ 2a−1/2(f ′′(x)[h, h])3/2 = 2a−1/2‖h‖3
f ′′(x), ∀(x ∈ Q, h ∈ E), (4.13)

where fk(x)[h1, . . . , hk] henceforth is the value of the kth differential of f along di-
rections h1, . . . , hk ∈ E.

We say that f is non-degenerate if its Hessian f ′′(x) is positive definite at a point (and
then it can be proved to be positive definite at all points) in Q.

For a a-s.c. function f and any point x in its domain, we define an important concept
of the Newton decrement of f at x as

λ(f, x) := a−1/2 max{f ′(x)[h] : h ∈ E, f ′′(x)[h, h] ≤ 1}. (4.14)

When f is non-degenerate, it can be shown that we have

λ(f, x) = a−1/2‖f ′(x)‖∗f ′′(x). (4.15)

In the following, we list some of the important properties of s.c. functions and s.c.
barriers. Properties are labeled with SC for future reference:

SC-1 (Stability under intersections, direct sums, and affine maps) [52]-Proposition
2.1.1:

27

(a) Let fi, i ∈ {1, . . . ,m}, be an ai-s.c. function on E with domains Qi. Then, for real
coefficients γi ≥ 1, if Q := ∩mi=1Qi is not empty, f :=

∑m
i=1 γifi is an a-s.c. function

with domain Q, where a := min{γiai : i ∈ {1, . . . ,m}}.

(b) Let fi, i ∈ {1, . . . ,m}, be an a-s.c. function on Ei with domains Qi. Then, the function
f(x1, . . . , xm) :=

∑m
i=1 fi(x

i), defined on Q1 ⊕ · · · ⊕Qm, is an a-s.c. function.

(c) Let f be a s.c. function with domain Q and x = Ay + b be an affine mapping with
image intersecting Q, then f(Ay + b) is also a s.c. function on {y : Ay + b ∈ Q}.

From now on, we assume that f is a s.c. function with domain Q.

SC-2 (Behaviour in Dikin ellipsoid and some basic inequalities):

(a) For every point x ∈ Q, we define the Dikin ellipsoid centered at x as

W1(x) := {y ∈ E :
1√
a
‖y − x‖f ′′(x) ≤ 1}.

Then we have W1(x) ⊂ Q and for every point y ∈ W1(x) we can estimate the Hessian
of f at y in term of the Hessian of f at x as

(1− r)2f ′′(x) � f ′′(y) � 1

(1− r)2
f ′′(x), (4.16)

where r := 1√
a
‖y − x‖f ′′(x). For a proof see [52]-Theorem 2.1.1.

(b) For every point x, y ∈ Q and for r := 1√
a
‖y − x‖f ′′(x), we have

f(y) ≥ f(x) + 〈f ′(x), y − x〉+ ρ(r),

f(y) ≤ f(x) + 〈f ′(x), y − x〉+ ρ(−r), if r < 1, (4.17)

where ρ(·) is defined in (4.10). For a proof of this for a = 1, please see Lecture notes
[45], a simplified version of [52]. The proof for general a is similar.

(c) Let r := 1√
a
‖y − x‖f ′′(x), then, for every point x, y ∈ Q, we have (for a = 1 see [50])

〈f ′(x)− f ′(y), y − x〉 ≥ r2

1 + r
. (4.18)

If r < 1, then

〈f ′(x)− f ′(y), y − x〉 ≤ r2

1− r
. (4.19)

28

SC-3 (Newton iterate): For every point x, we define the Newton direction as

Newton(x) := argminh

{
f(x) + f ′(x)[h] +

1

2
f ′′(x)[h, h]

}
.

Then, we define the damped Newton iterate of x as

x+ = x+
1

1 + λ(f, x)
Newton(x). (4.20)

We have the following properties for a damped Newton step

(a) x+ ∈ Q,
(b) f(x+) ≤ f(x)− aρ(λ(f, x)), (4.21)

(c) λ(f, x+) ≤ 2λ2(f, x).

For parts (a) and (b), see [52]-Proposition 2.2.2. For part (c), plug in s = 1
1+λ

in [52]-
Theorem 2.2.1.

SC-4 (Existence of minimizer): f attains its minimizer on Q if and only if f is bounded
below on Q, and if and only if there exists x ∈ Q such that λ(f, x) < 1. For an arbitrary
minimizer xf , we have

λ(f, x) < 1 ⇒ f(x)− f(xf) ≤ ρ(−λ(f, x)). (4.22)

If f is non-degenerate, the minimizer is unique. The proof of a = 1 is in [45], and the proof
for general a is similar.

SC-6 (Legendre-Fenchel conjugate of a s.c. function): We defined the LF conjugate
of a convex function f in (4.3). Let Q∗ be the domain of f∗; the set of all points for which
the right hand side of (4.3) is finite. We mentioned that Q∗ is convex and f∗ is a convex
function on Q∗. It is shown in [52]- Section 2.4 that Q∗ = f ′(Q), f∗ is a non-degenerate
s.c. function and the Legendre-Fenchel conjugate of f∗ is exactly f .

The following lemma is very useful when our feasible region is made up from direct sum
of building blocks.

Lemma 4.2.1. Let D = ⊕ni=1Di be the direct sum of Di’s and let fi be a self-concordant
function for Di ⊆ Ei, i ∈ {1, . . . , n} with the Legendre-Fenchel conjugate fi∗. Then
f(x1, . . . , xn) :=

∑n
i=1 fi(x

i) is a self-concordant function for D, and we have

f∗(s
1, . . . , sn) =

n∑
i=1

fi∗(s
i).

29

The following lemma is also very useful:

Lemma 4.2.2. Let f be a 1-s.c. function and x and y in its domain such that r :=
‖x− y‖f ′′(x) < 1. Then

r

1 + r
≤ ‖f ′(x)− f ′(y)‖∗f ′′(x) ≤

r

1− r
. (4.23)

Proof. Let us define q := y − x. Starting with the fundamental theorem of calculus, we
have:

‖f ′(x)− f ′(y)‖∗f ′′(x) =

∥∥∥∥∫ 1

0

f ′′(x+ tq)qdt

∥∥∥∥∗
f ′′(x)

≤
∫ 1

0

‖f ′′(x+ tq)q‖∗f ′′(x)dt

≤
∫ 1

0

1

1− ‖tq‖f ′′(x)

‖f ′′(x+ tq)q‖∗f ′′(x+tq)dt, by (4.16)

=

∫ 1

0

1

1− ‖tq‖f ′′(x)

‖q‖f ′′(x+tq)dt

=

(∫ 1

0

1

(1− tr)2
dt

)
r =

r

1− r
.

The other direction is an immediate consequence of (4.18) and Cauchy-Schwarz inequality.

4.2.2 Self-concordant (s.c.) barriers

For a ϑ ≥ 1, we say that a 1-s.c. function is a ϑ-s.c. barrier for cl(Q) if we have

|f ′(x)[h]| ≤
√
ϑ‖h‖f ′′(x), ∀(x ∈ Q, h ∈ E). (4.24)

In view of definition (4.14), a non-degenerate s.c. function f is a ϑ-s.c. barrier if and only
if

λ(f, x) = ‖f ′(x)‖[f ′′(x)]−1 ≤
√
ϑ, ∀x ∈ Q. (4.25)

SCB-1 (Stability under intersections, direct sums, and affine maps) [52]-Proposition
2.3.1:

30

(a) Assume that for each i ∈ {1, . . . ,m}, fi is a ϑi-s.c. barrier on E with domains Qi, and
consider real coefficients γi ≥ 1. If Q := ∩mi=1Qi is not empty, then f :=

∑m
i=1 γifi a

(
∑m

i=1 γiϑi)-s.c. barrier on Q.

(b) Let fi, i ∈ {1, . . . ,m}, be a ϑi-s.c. barrier on Ei with domains Qi. Then, the function
f(x1, . . . , xm) :=

∑m
i=1 fi(x

i), defined on Q := Q1⊕· · ·⊕Qm, is a (
∑m

i=1 ϑi)-s.c. barrier
on Q.

(c) Let f be a ϑ-s.c. barrier with domain Q and x = Ay + b be an affine mapping with
image intersecting Q, then f(Ay + b) is also a ϑ-s.c. barrier on {y : Ay + b ∈ Q}.

SCB-2 (Basic properties of s.c. barrier’s): Let us define the Minkowski function πy :
E→ R+ ∪ {+∞} of G at point y ∈ G as

πy(x) := inf

{
1

µ
: µ ≥ 0, y + µ(x− y) ∈ G

}
. (4.26)

Figure 4.1 shows how the function works for two points x and y in G.

x

y

1l

2l

3l

 2

11
1

l

l

xy

 2

31
1

l

l

yx

G

Figure 4.1: How the Minkowski function works for two points x and y in G.

Let f be a ϑ-s.c.b., then the following inequalities hold for every pair x, y ∈ Q (see
[52]-Proposition 2.3.2 and [45]-Chapter 3):

f ′(x)[y − x] ≤ ϑ; (4.27)

31

where, as before, f ′(x)[h] is the first order differential of f taken at x along the direction
h.

f ′′(x) �

(
ϑ+ 2

√
ϑ

1− πy(x)

)2

f ′′(y); (4.28)

〈y − x, f ′(x)〉 ≥ 0 ⇒ ‖y − x‖f ′′(x) ≤ ϑ+ 2
√
ϑ; (4.29)

f(x) ≤ f(y) + ϑ ln

[
1

1− πy(x)

]
; (4.30)

f(x) ≥ f(y) + 〈f ′(y), x− y〉+ ln

[
1

1− πy(x)

]
− πy(x). (4.31)

SCB-3 (Non-degeneracy, attaining minimizer): f is non-degenerate if and only if
Q does not contain lines. f is bounded below if and only if Q is bounded. Then, f is
non-degenerate and attains its unique minimizer xf on Q, and we have{

y : ‖y − xf‖f ′′(xf) < 1
}
⊆ Q ⊆

{
y : ‖y − xf‖f ′′(xf) < ϑ+ 2

√
ϑ
}
. (4.32)

Let us prove the following lemma that is crucial in this thesis.

Lemma 4.2.3. Let Φ(·) be a ϑ-s.c. barrier with domain intD ⊂ E, and ξ > 1. Then, the
function Φ

(
z
τ

)
− ξϑ ln(τ) with domain {(z, τ) : τ > 0, z

τ
∈ intD} is a ξ̄-s.c. function for an

absolute constant ξ̄ depending on ξ. Moreover, its LF conjugate and also the summation
of Φ

(
z
τ

)
− ξϑ ln(τ) with its LF conjugate are also ξ̄-s.c. functions.

Proof. Consider the function Φ(z
τ
) − ξϑ ln(τ). First we show that the function is convex.

Let us define

g(α) := Φ

(
z + αdz
τ + αdτ

)
− ξϑ ln(τ + αdτ).

Then, we have

g′′(0) =
1

τ 2

[
〈dz −

dτ
τ
z,Φ′′

(z
τ

)(
dz −

dτ
τ
z

)
〉+ 2dτ 〈Φ′

(z
τ

)
, dz −

dτ
τ
z〉+ ξϑd2

τ

]
.

32

Note that because Φ is a ϑ-s.c.b., by definition (4.24), we have∣∣∣∣〈Φ′ (zτ) , dz − dτ
τ
z〉
∣∣∣∣ ≤ √ϑ∥∥∥∥dz − dτ

τ
z

∥∥∥∥
Φ′′(z/τ)

.

Substituting this and doing some simple algebra we get

g′′(0) ≥ 1

τ 2

[∥∥∥∥dz − dτ
τ
z

∥∥∥∥
Φ′′
− dτ
√
ϑ

]2

+ (ξ − 1)
d2
τ

τ 2
ϑ. (4.33)

(4.33) shows that Φ(z
τ
)− ξϑ ln(τ) is strictly convex for every ξ > 1.

To prove that it is a s.c. function, we show that there exists an absolute constant ξ̄
depending on ξ such that

|g′′′(0)| ≤ 2ξ̄−1/2(g′′(0))3/2.

For simplicity, let us define h := 1
τ

(
dz − dτ

τ
z
)
. First, note that from (4.33) we have∣∣∣∣dττ √ϑ

∣∣∣∣ ≤
√
g′′(0)√
ξ − 1

,

‖h‖Φ′′ ≤
√
g′′(0) +

∣∣∣∣dττ √ϑ
∣∣∣∣ ≤ (1 +

1√
ξ − 1

)
︸ ︷︷ ︸

=:γ

√
g′′(0). (4.34)

By expanding the expression for g′′′(0), we have

g′′′(0) = Φ′′′[h, h, h] + 3Φ′′[h, h]

(
dτ
τ

)
+ 2Φ′[h]

(
dτ
τ

)2

+ 2ξϑ

(
dτ
τ

)3

. (4.35)

Because Φ is a 1-s.c. function, by definition in (4.13), we have |Φ′′′[h, h, h]| ≤ 2(Φ′′[h, h])3/2 =
2(‖h‖Φ′′)

3, and because Φ is a ϑ-s.c barrier, by definition (4.24), we have |Φ′[h]| ≤
√
ϑ‖h‖Φ′′ .

Substituting these in (4.35), using the inequalities in (4.34) and the fact that ϑ ≥ 1, we
have:

g′′′(0) ≤
(

2γ3 +
3γ2

√
ξ − 1

+
2γ

ξ − 1
+

2ξ

(ξ − 1)3/2

)
(g′′(0))3/2, (4.36)

where γ is defined in (4.34).

For the second part of the lemma for the conjugate function, see the proof of Theorem
2.4.1 in [52].

33

4.2.3 Legendre-Fenchel conjugate of s.c. barriers

If f is a ϑ-s.c.b., then f∗ is a s.c. function, but it is not necessarily a s.c. barrier. As we
will see later, this fact can restrict us to a great extent. Q∗ is either the entire E∗ if Q is
bounded, or the open cone

rec∗(Q) := {s ∈ E∗ : 〈s, h〉 < 0,∀h ∈ rec(Q)}, (4.37)

where rec(Q) is the recession cone of Q defined as

rec(Q) := {h ∈ E : x+ th ∈ Q, ∀x ∈ Q, ∀t ≥ 0}. (4.38)

Losing s.c. barrier properties makes the analysis more challenging. However, f∗ has some
useful properties beyond those of a regular s.c. function, such as the following theorem that
we use several times in this thesis.

Theorem 4.2.1 (Theorem 2.4.2 of [52]). Assume that f is a ϑ-s.c. barrier on D and let
f∗ be the Legendre-Fenchel conjugate of f with domain D∗. Then,

1. for every point y ∈ D∗, we have

f ′′∗ (y)[y, y] ≤ ϑ; (4.39)

2. the support function of D

S(y) := sup{〈y, z〉 : z ∈ D},

satisfies the inequality

S(y)− ϑ

k
≤ 〈f ′∗(ky), y〉 ≤ S(y), y ∈ D∗, ∀k > 0. (4.40)

Let us prove the following lemma by using Theorem 4.2.1:

Lemma 4.2.4. Assume that Φ is a ϑ-s.c. barrier on intD and let Φ∗ be the Legendre-
Fenchel conjugate of Φ with domain intD∗. For every y ∈ intD∗ and every ξ > 1, the

function f(γ) := −ξϑ ln(γ)− Φ∗(γy) is a (ξ−1)3

(ξ+1)2 -s.c. function.

34

Proof. We have

f ′′(γ) =
ξϑ

γ2
− Φ′′∗(γy)[y, y] =

ξϑ

γ2
− 1

γ2
Φ′′∗(γy)[γy, γy]

≥ ξϑ

γ2
− ϑ

γ2
using (4.39)

> 0, (because ξ > 1). (4.41)

Hence, f(γ) is a convex function. For the third derivative, we have

f ′′′(γ) =
−2ξϑ

γ3
− Φ′′′∗ (γy)[y, y, y] =

−2ξϑ

γ3
− 1

γ3
Φ′′′∗ (γy)[γy, γy, γy]. (4.42)

Hence,

|f ′′′(γ)| ≤
∣∣∣∣−2ξϑ

γ3

∣∣∣∣+

∣∣∣∣ 1

γ3
Φ′′′∗ (γy)[γy, γy, γy]

∣∣∣∣
≤ 2ξϑ

γ3
+

2

γ3
[Φ′′∗(γy)[γy, γy]]

3/2
, Φ∗ is 1-s.c.

≤ 2(ξ + 1)
ϑ3/2

γ3
, using (4.39) and ϑ ≥ 1,

≤ 2(ξ + 1)

(ξ − 1)3/2
(f ′′(γ))3/2, using (4.41). (4.43)

35

Chapter 5

Domain-Driven setup and central
path

We gave an informal definition of Domain-Driven setup in Chapter 2, which is a convex
optimization problem of the form (2.1). We mentioned that D is presented as the domain
of a s.c. barrier that we defined in Chapter 4. In this chapter, we are ready to give the
formal definition. The definition of the Domain-Driven setup in Chapter 2 was for general
vector spaces E and Y. For simplicity, we give the formal definition here for E = Rn

and Y = Rm. This also works better for the implementation that we prefer to have one
variable vector in Rn. Therefore, we have to find a proper basis for our vector space and also
consider practical purposes. For example, the set of symmetric matrices Sn is isomorphic
to Rn(n+1)/2, but for implementation purposes we represent a matrix in Sn by a vector in
Rn2

; more on this in Chapter 8. Let us define the Domain-Driven setup.

Definition 5.0.1. An optimization problem is said to be in Domain-Driven setup if it can
be written as

inf
x
{〈c, x〉 : Ax ∈ D}, (5.1)

where x 7→ Ax : Rn → Rm is a linear embedding (kerA = {0}), c ∈ Rn is given, and
D ⊂ Rm is a convex set given as the closure of the domain of a ϑ-s.c. barrier Φ(·).
Moreover, the Legendre-Fenchel conjugate of Φ(·), denoted by Φ∗(·), can also be calculated
efficiently.

The domain of Φ∗(·) is the interior of a cone D∗ defined as (see (4.37)):

D∗ = {y : 〈y, h〉 ≤ 0, ∀h ∈ rec(D)}, (5.2)

36

where rec(D) is the recession cone of D defined in (4.38).

Remark 5.0.1. Note that Φ∗(·) is a 1-s.c. function, but is not necessarily a s.c. barrier.
Losing s.c. barrier properties makes the analysis more challenging. However, Φ∗(·) has
some useful properties beyond those of a regular s.c. function, such as Theorem 4.2.1. As
we discussed in Chapter 4, this is not an issue for the conic optimization setup. There,
both primal and dual cones are equipped with logarithmically homogenous (LH) s.c. barriers,
since the LF conjugate of a LH s.c. barrier is also a LH s.c. barrier.

Remark 5.0.2. Nemirovskii and Tunçel [46] designed several feasible-start algorithms for
problems in the Domain-Driven setup. They called their approach cone-free. Their path-
following and potential-reduction algorithms achieve the current best theoretical complexity
bound for the case of strict primal and dual feasibility.

Remark 5.0.3. The assumption that the LF conjugate of Φ(·) can be evaluated efficiently
can be restricting. Even when the s.c. barrier is available, an efficient way to evaluate its
LF conjugate may not be available. The good news is that for all the examples we gave in
Chapter 2 and we revisit in this chapter, we show an explicit formula for the LF conjugate
or an efficient numerical way to calculate it with high accuracy. There are also numerical
methods to evaluate the LF conjugate of a general convex function. Lucet et al. have been
doing research on this topic for over a decade [31] . They have created the Computational
Convex Analysis numerical library that computes the LF conjugate for a convex function,
as well as other operators arising in convex analysis.

Every convex set “attains” a self-concordant barrier, and as we discussed in Chapter 2,
even though a computationally efficient s.c. barrier is not necessarily available for a given
convex set, for many interesting convex sets we know how to construct an efficient s.c.
barrier. We presented several examples in Chapter 2.

Section 5 of Nesterov and Nemirovski’s book [52] is how to construct s.c. barriers, where
they present barrier calculus and s.c. barriers for different convex sets. There are many
papers that focus on creating s.c. barriers for specific convex sets. An interesting convex
set, for example, is the p-cone defined as the epigraph of p-norm

Kp := {x ∈ Rn, t ∈ R : ‖x‖p ≤ t}.

Constructing s.c. barriers and optimization over Kp have been considered in the literature
[11, 79, 51]. However, no simple s.c. barrier with “low” parameter is known for this cone
for a general p ∈ [1,+∞). Note that for p = 2, this cone becomes the second-order cone
and we have a 2-s.c. barrier for it.

37

As another example of constructing s.c. barriers, let f be a symmetric s.c. barrier
function and define F : Sn → R (Sn is the space of n × n real symmetric matrices)
as F := f ◦ λ, where λ is the eigenvalue mapping λ(X) = (λ1(X), . . . , λn(X))>, where
λ1(X) ≥ · · · ≥ λn(X) are the eigenvalues of X ∈ Sn. Then, Tunçel conjectured that f is
a s.c. barrier if and only if F is a s.c. barrier. This conjecture was proved for the special
cases that f is separable and also for the case of n = 2 [59, 60].

In this chapter, we review examples from Chapter 2 more rigorously and present the
corresponding LF conjugates. In Chapter 8, we show how these functions/set constraints
can be implemented in software. As we also explained in Chapter 2, what we list here
are types of convex sets, and the list can be expanded. We can construct a problem in
the Domain-Driven setup by binding an arbitrary number of sets from each type with
direct sum. For example, we show that LP, SOCP, or SDP problems of arbitrary size are
covered in the Domain-Driven setup. This implies that the Domain-Driven setup contains
optimization over symmetric cones with a finite but arbitrary number of constraints from
each type. To see this, consider the problem

min 〈c, x〉
s.t. Aix ∈ Di, i ∈ {1, . . . , `}. (5.3)

Assume that Φ1, . . . ,Φ` are s.c. barriers for the sets D1, . . . , D`. Then, property SCB-
1-(b) in Subsection 4.2.2 shows that Φ := Φ1 + · · · + Φ` is a s.c. barrier for D, where
D := D1 ⊕ · · · ⊕ D`. Also Lemma 4.2.1 shows that Φ∗ := Φ1∗ + · · · + Φ`∗ is the LF
conjugate of Φ and we have D∗ := D1∗ ⊕ · · · ⊕D`∗.

Remark 5.0.4. Domain-Driven setup is compatible with the “inequality” form of opti-
mization over symmetric cones. When we talk about implementation of LP, SCOP, and
SDP in Chapter 8, we consider them in the inequality form, which can be seen as the dual
of the equality form that is acceptable in many popular codes such as SeDuMi and SDPT3.
This is an advantage for many problems that are given in the inequality form.

In this chapter, we give the LF conjugate for the s.c. barriers given in Chapter 2. Many
times we need to scale or translate the argument of the s.c. barrier and the following
elementary lemma shows how these simple transformations change the LF conjugate.

Lemma 5.0.1. [6] Assume that f : Rn → R is a convex function and f∗ is its Legendre-
Fenchel conjugate. Then, translation and scaling of the argument change f∗ as in Table
5.1.

38

Table 5.1: Transformed LF conjugates.

Transformation Update in the LF conjugate

g(x) := f(x+ b), x ∈ Rn g∗(y) = −〈y, b〉+ f∗(y)

g(x) := f(γx), γ ∈ R \ {0} g∗(y) = f∗(y/γ)

5.1 Restudying the examples from Chapter 2

5.1.1 LP, SOCP, and SDP

LF conjugates for the functions in Table 2.1 are very popular and can be found in most
papers on interior-point methods for symmetric cones. Table 5.1.1 is the same table with
an extra column for the LF conjugate functions.

Table 5.2: LP, SOCP, and SDP constraints, the corresponding s.c. barriers, and their LF
conjugates.

Constraint Φ Φ∗

LP z ≤ β, z, β ∈ R, − ln(β − z) −1 + yβ − ln(y)

SOCP ‖z‖ ≤ t, z ∈ Rm, t ∈ R, − ln(t2 − z>z) −2 + ln(4)− ln(η2 − w>w)

SDP Z � B, Z,B ∈ Sm − ln(det(B − Z)) −m+ 〈Y,B〉 − ln(det(Y))

Note how the barriers and their LF conjugates are the same ignoring some affine terms,
which is related to the fact that nonnegative orthant, second-order cones, and positive-
semidefinite cones are symmetric cones.

5.1.2 Direct sum of 2-dimensional sets

We discussed that all the constraints of the form (2.3), where αi ≥ 0 and fi(x), i ∈
{1, . . . , `}, can be any function from Table 2.2, is in the Domain-Driven setup. This can

39

be shown by the following relation that can easily be verified.{
x :
∑̀
i=1

αifi(a
>
i x+ βi) + g>x+ γ ≤ 0

}

=

{
x : ∃u ∈ R` such that

∑̀
i=1

αiui + g>x+ γ ≤ 0, fi(a
>
i x+ βi) ≤ ui, ∀i

}
. (5.4)

The first constraint in the RHS is a linear constraint, which we showed is in the Domain-
Driven setup, and constraints fi(a

>
i x + βi) ≤ ui are also in the Domain-Driven setup by

using Table 2.2. In this thesis, we have considered the implementation of the first five rows
of Table 2.2, i.e., we accept constraints of the form (2.3), where fi(x)’s are chosen from
the first 5 rows of Table 2.2. For the first three rows, the corresponding LF conjugates are
shown in Table 5.1.2.

Table 5.3: LF conjugates for the first three s.c. barriers in Table 2.2.

Φ(z, t) Φ∗(y, η)

1 − ln(t+ ln(z))− ln(z) −1 + (−η + 1)
[
−1 + ln −(−η+1)

y

]
− ln(−η)

2 − ln(ln(t)− z)− ln(t) −1 + (y + 1)
[
−1 + ln −(y+1)

η

]
− ln(y)

3 − ln(t− z ln(z))− ln(z) − ln(−η) + θ
(

1 + y
η
− ln(−η)

)
− y

η
+ 1

θ(1+ y
η
−ln(−η))

− 3

Finding the LF conjugates for the first two functions can be handled with easy calculus.
In the third row, θ(r), defined in [46], is the unique solution of

1

θ
− ln(θ) = r.

It is easy to check by implicit differentiation that

θ′(r) = − θ2(r)

θ(r) + 1
, θ′′(r) =

θ2(r) + 2θ(r)

[θ(r) + 1]2
θ′(r).

We can calculate θ(r) with accuracy 10−15 in few steps with the following Newton iterations:

θk =
θ2
k−1

θk−1 + 1

[
1 +

2

θk−1

− ln(θk−1)− r
]
, θ0 =

{
exp(−r), r ≤ 1

1
r−ln(r−ln(r))

, r > 1
.

The LF conjugates of rows 4 and 5 need more work that we will do in Chapter 8. We
discussed in Chapter 2 that geometric programming is a special case when we use only the
second row.

40

5.1.3 Generalized epigraph of a matrix norm

For Z ∈ Rm×m and U ∈ Rm×n, we gave an m-s.c. barrier for the set {(Z,U) : Z−UU> � 0}
in (2.9). Note that the parameter of the barrier for the SDP reformulation is m + n that
is much larger in the m � n scenario. The LF conjugate of the s.c. barrier is derived in
[46] as:

Φ∗(Y, V) = −m− 1

4
Tr(V >Y −1V)− ln(det(−Y)), (5.5)

where Y ∈ Rm×m and V ∈ Rm×n. We have a discussion in Chapter 8 on efficiently
calculating the gradient and Hessian for Φ(Z,U) and Φ∗(Y, V).

5.2 Duality gap for Domain-Driven setup

An elegant notion of duality gap that can be easily calculated is a strength in conic op-
timization. Duality gap is a good measure of distance to optimality for a pair of primal
and dual feasible points. In this section, we show a nice notion of duality for the Domain-
Driven setup and define a duality gap. The definition and properties of our duality gap
rely very much on the fact that Φ∗ is the LF conjugate of a s.c. barrier, which gives it more
properties compared to a general s.c. function; specifically Theorem 4.2.1. Recalling the
definition of support function of D, that is defined on int(D∗) as

S(y) := sup{〈y, z〉 : z ∈ D}, (5.6)

we define the duality gap as:

Definition 5.2.1. For every point x ∈ Rn such that Ax ∈ D and every point y ∈ D∗ such
that A>y = −c, the duality gap is defined as:

〈c, x〉+ S(y). (5.7)

Remark 5.2.1. Duality gap must be easily computable and support function is not generally
easy to calculate. However, Theorem 4.2.1 shows that we can estimate the support function
with a desired accuracy using the fact that Φ∗ is the LF conjugate of a s.c. barrier.

The following lemma shows that duality gap is well-defined and zero duality gap is a
guarantee for optimality:

41

Lemma 5.2.1. For every point x ∈ Rn such that Ax ∈ D and every point y ∈ D∗ such
that A>y = −c, we have

〈c, x〉+ S(y) ≥ 0. (5.8)

Moreover, if the equality holds above for a pair (x̂, ŷ) with Ax̂ ∈ D and ŷ ∈ D∗, A>ŷ = −c,
then x̂ is an optimal solution of (5.1).

Proof. Let x and y be as above. Then,

〈c, x〉 =︸︷︷︸
A>y=−c

−〈A>y, x〉 = −〈y, Ax〉 ≥︸︷︷︸
Ax∈D, y∈D∗

−S(y).

Thus, 〈c, x〉+ S(y) ≥ 0, as desired. If equality holds for (x̂, ŷ), then for every Ax ∈ D, we
have

〈c, x̂〉 =︸︷︷︸
(5.8) holds with equality

−S(ŷ) ≤︸︷︷︸
(5.6)

−〈ŷ, Ax〉 = 〈−A>ŷ, x〉 =︸︷︷︸
A>ŷ=−c

〈c, x〉.

Therefore, x̂ is an optimal solution for (5.1).

Remark 5.2.2. As shown in the proof of Lemma 5.2.1, if x and y satisfy the properties
in Definition 5.2.1, then

〈c, x〉+ S(y) = S(y)− 〈y, Ax〉. (5.9)

Corollary 5.2.1. Assume that there exist a sequence {zk} ∈ intD such that zk → Ax̂ ∈ D,
and a sequence {yk} ∈ intD∗ such that yk → ŷ ∈ D∗ and A>ŷ = −c. If

lim
k

(
〈c, xk〉+ 〈yk,Φ′∗(kyk)〉

)
= 0,

then x̂ is an optimal solution of (5.1).

Proof. We use Theorem 4.2.1 to approximate the support function and then the result
holds by using Lemma 5.2.1.

5.3 Primal-dual infeasible-start central path

Our algorithms are infeasible-start, which means we do not require a feasible point from
the user to start the algorithm. To introduce our infeasible-start central path, we bring a

42

feasible start central path, called cone-free in [46], which is defined by the set of solutions
to:

(a) Ax ∈ intD,
(b) A>y = −τc, y ∈ intD∗,
(c) y = Φ′(Ax),

(5.10)

with τ > 0 being the parameter of the path. Assume that there exists x̂ such that Ax̂ ∈
int(D) and ŷ ∈ int(D∗) such that A>ŷ = −c, and let (x(τ), y(τ)) be the solution of (5.10)
for τ > 0. We can also define x(τ) as

x(τ) := argminx {τ〈c, x〉+ Φ(Ax)} . (5.11)

This is a typical way for solving problem (5.1) by removing the hard constraint Ax ∈ D
and adding a penalty to the objective function. The system (5.10) can be seen as the
optimality conditions for problem (5.11), for a fixed value of τ . Then, it is proved in [46]
that x(τ) tends to a solution of (5.1) when τ → +∞. By using Theorem 4.2.1, we can also
show this by proving that (x(τ), y(τ)/τ) tends to satisfy the properties of Lemma 5.2.1
with zero duality gap when τ → +∞.

Let us see how to modify (5.10) for an infeasible-start algorithm. What we have to
start the algorithm with is a point z0 ∈ intD and y0 := Φ′(z0) ∈ intD∗. We modify the
primal and dual feasibility parts of (5.10) as follows:

(a) Ax+ 1
τ
z0 ∈ intD, τ > 0,

(b) A>y = A>y0 − (τ − 1)c, y ∈ intD∗,
(5.12)

where τ 0 = 1, x0 = 0, is feasible for this system, and when τ → +∞, we get a pair of
primal-dual feasible points in limit. Let us give a name to the set of points that satisfy
(5.12):

QDD :=

{
(x, τ, y) : Ax+

1

τ
z0 ∈ intD, τ > 0, A>y − A>y0 = −(τ − 1)c, y ∈ intD∗

}
.

(5.13)

Remark 5.3.1. A natural extension for (5.10) would be

(a) Ax+ 1
τ
z0 ∈ intD, τ > 0,

(b) A>y = A>y0 − (τ − 1)c, y ∈ intD∗,
(c) y = Φ′

(
Ax+ 1

τ
z0
)
.

(5.14)

43

As we will briefly see in Appendix B, this system defines a primal-dual central path and
we can design an algorithm based on it. Even though this central path is simpler compared
to the one we will see later in this chapter, so far we could not achieve the best theoretical
iteration complexity bounds using it.

Our goal is to design infeasible-start primal-dual algorithms as robust as the best ones
for the conic setup, which as far as we know, are the homogenous self-dual embedding type
algorithms proposed in [56]. Consider the primal-dual conic setup in (3.8). The duality
gap for (3.8) is

〈c, z〉+ 〈y, b〉 = 〈s, z〉. (5.15)

The duality gap for the modified problem in [56] has the following two crucial properties
when the parameter of the path tends to +∞: (1) it tends to zero if the problem is solvable,
(2) it tends to +∞ if primal or dual is infeasible. We will show how to enforce such a
property for the Domain-Driven setup. We are interested in the duality gap between x and
ŷ = y

τ
, where (x, τ, y) ∈ QDD. Note that we have two expressions for the Domain-Driven

duality gap in (5.9) that we can associate with the conic duality gap in (5.15).

The natural extension of the nonlinear equation (5.10)-(c) to the infeasible-start case
would be y = Φ′(Ax+ 1

τ
z0). Assuming this equality, by using Theorem 4.2.1 for k = 1

τ
and

ŷ, we obtain

S(ŷ)− ϑ

τ
≤ 〈ŷ,Φ′∗ (y)〉 = 〈ŷ, Ax+

1

τ
z0〉 ≤ S(ŷ),

⇒ 0 ≤ S(ŷ)− 〈ŷ, Ax+
1

τ
z0〉 ≤ ϑ

τ
, (5.16)

where we used the fact that Φ′∗(Φ
′(z)) = z by the properties of Legendre-Fenchel conjugate

in (4.5). Note that, by Remark 5.2.2, S(ŷ)−〈ŷ, Ax+ 1
τ
z0〉 is the duality gap for the modified

problem. (5.16) implies that if τ → +∞, the duality gap tends to zero. However, (5.12)
does not have a solution for every τ > 0 if at least one of Ax ∈ D or A>y = −c, y ∈ D∗,
is infeasible, and (5.16) shows that the duality gap stays bounded in this case. To resolve
this problem, we extend (5.10)-(c) to y = µ

τ
Φ′(Ax + 1

τ
z0), where µ plays the role of the

parameter for the central path. Then, (5.16) changes to

0 ≤ S(ŷ)− 〈ŷ, Ax+
1

τ
z0〉 ≤ µϑ

τ 2
. (5.17)

If we add 〈c, x〉+ 〈ŷ, Ax+ 1
τ
z0〉 to both sides, we get

〈c, x〉+ 〈ŷ, Ax+
1

τ
z0〉 ≤ S(ŷ) + 〈c, x〉 ≤ µϑ

τ 2
+ 〈c, x〉+ 〈ŷ, Ax+

1

τ
z0〉. (5.18)

44

We want to increase µ to +∞ such that

• if τ increases with the same rate as µ, the duality gap tends to zero,

• if τ is bounded, the duality gap tends to −∞.

Enforcing µ to satisfy − ξϑµ
τ2 = 〈c, x〉+ 〈ŷ, Ax+ 1

τ
z0〉 for an absolute constant ξ > 1 reduces

(5.18) to

−ξϑµ
τ 2
≤ S(ŷ) + 〈c, x〉 ≤ −(ξ − 1)ϑµ

τ 2
, (5.19)

which satisfies our goals. Now we are ready to define our central path with parameter µ.

Let us fix ξ > 1 and define:

z0 := any vector in int(D), y0 := Φ′(z0), y0
τ := −〈y0, z0〉 − ξϑ. (5.20)

The following theorem defines our central path.

Theorem 5.3.1. Consider the convex set D ⊂ Rm equipped with a ϑ-s.c. barrier Φ and
let Φ∗ be its Legendre-Fenchel conjugate with domain intD∗. Then, for any set of starting
points defined in (5.20), the system

(a) Ax+
1

τ
z0 ∈ intD, τ > 0,

(b) A>y − A>y0 = −(τ − 1)c, y ∈ intD∗,

(c) y =
µ

τ
Φ′
(
Ax+

1

τ
z0

)
,

(d) 〈c, x〉+
1

τ
〈y, Ax+

1

τ
z0〉 = −ϑξµ

τ 2
+
−y0

τ

τ
, (5.21)

has a unique solution (x(µ), τ(µ), y(µ)) for every µ > 0.

We denote the solution set of (5.21) for µ > 0 by the domain-driven primal-dual central
path. y0

τ in (5.21)-(d) is to make this equation hold for the initial points and µ0 = 1. In
view of the definition of the central path, for all the points (x, τ, y) ∈ QDD, we define

µ(x, τ, y) :=
τ

ξϑ
[−y0

τ − τ〈c, x〉 − 〈y, Ax+
1

τ
z0〉],

= − 1

ξϑ

[
〈y, z0〉+ τ(y0

τ + 〈y, Ax〉) + τ 2〈c, x〉
]

= − 1

ξϑ

[
〈y, z0〉+ τ(y0

τ + 〈c, x〉+ 〈y0, Ax〉)
]
, using (5.21)-(b). (5.22)

45

Note that the formula in the second line is a quadratic in terms of τ . However, when we use
dual feasibility, we get the third formula that is linear in τ . In other words, dual feasibility
removes one of the roots. Assume that both the primal and dual are strictly feasible and
we choose z0 = 0 and y0 such that A>y0 = −c. Then, the last equation of (5.22) reduces
to µ = τ and (5.21) reduces to the cone-free setup in (5.10). We can roughly describe
how the last definition of µ in (5.22) works: assume that τ is finite and we can prove that
〈y, z0〉+ 〈y0, Ax〉 is bounded, then when µ tends to +∞, either 〈c, x〉 tends to −∞, which
makes (5.1) unbounded, or 〈y, z0〉 tends to −∞, which we will see translates to (5.1) being
infeasible.

Proof of Theorem 5.3.1. Consider the function Φ(z
τ
)− ξϑ ln(τ) that we proved in Lemma

4.2.3 is a s.c. function. The Legendre-Fenchel conjugate of this function, as a function of
(y, yτ), is calculated from the following formula:

max
γ>0

[Φ∗(γy) + yτγ + ξϑ ln γ] . (5.23)

The gradient of Φ(z
τ
)− ξϑ ln(τ) is[

1
τ
Φ′(z

τ
)

− 1
τ2 〈Φ′(zτ), z〉 − ξϑ

τ

]
. (5.24)

By substituting (5.21)-(c) in (5.21)-(d) and reordering the terms, we can show that for
every µ > 0, the solution set of (5.21) corresponds to the solution set of the following
system [

y
yτ

]
= µ

[
1
τ
Φ′(z

τ
)

− 1
τ2 〈Φ′(zτ), z〉 − ξϑ

τ

]
,

z = τAx+ z0,

A>y = A>y0 − (τ − 1)c,

yτ = y0
τ + τ〈c, x〉. (5.25)

Consider the following function:

Φ
(z
τ

)
− ξϑ ln(τ) + max

γ>0
[Φ∗(γy) + yτγ + ξϑ ln γ]− 1

µ
(〈y, z〉+ τyτ) (5.26)

≥ Φ
(z
τ

)
− ξϑ ln τ + Φ∗(γy) + yτγ + ξϑ ln γ − 1

µ
(〈y, z〉+ τyτ) , ∀γ > 0,

46

where the last inequality trivially holds because of the max function. Let us substitute
γ := τ

µ
, then by using the Fenchel-Young inequality

Φ
(z
τ

)
+ Φ∗

(
τy

µ

)
≥ 〈τy

µ
,
z

τ
〉 =

1

µ
〈y, z〉,

we can continue (5.26) as

≥ 1

µ
〈y, z〉+

1

µ
τyτ − ξϑ lnµ− 1

µ
(〈y, z〉+ τyτ)

= −ξϑ lnµ. (5.27)

Hence, the function is bounded from below for every µ.

Further, we can write (c̄ is any vector such that A>c̄ = c)

〈y, z〉+ τyτ = 〈y, τAx+ z0〉+ τ(y0
τ + τ〈c, x〉)

= 〈A>y0 − (τ − 1)c, τx〉+ 〈y, z0〉+ τy0
τ + τ 2〈c, x〉,

= 〈y0 + c̄, z − z0〉+ τy0
τ + 〈y, z0〉, (5.28)

which is linear in (z, τ, y, yτ). For a fixed µ, consider the optimization problem

min Φ
(
z
τ

)
− ξϑ ln(τ) + maxγ>0 [Φ∗(γy) + yτγ + ξϑ ln γ]− 1

µ
(〈y, z〉+ τyτ)

s.t. Fz = Fz0,
A>y = A>y0 − (τ − 1)c,
yτ = y0

τ + 〈c̄, z − z0〉.

(5.29)

By the above discussion, (5.29) is minimizing a s.c. function that is bounded from below and
so attains its unique minimizer (z̄, τ̄ , ȳ, ȳτ) by property SC-4 of s.c. functions in Subsection
4.2.1. Using F z̄ = Fz0, there exists a unique x̄ such that z̄ = τ̄Ax̄ + z0. We can easily
verify that (x̄, τ̄ , ȳ) is the unique solution of (5.21) for the fixed µ as it satisfies all the
optimality conditions.

The algorithm we design in the next section is a predictor-corrector path-following
algorithm. We define a measure of proximity to the central path and specify a small N1

and a big N2 neighborhood. Then, at every iteration, we

• start from a point in N1 and take a predictor step to increase µ as much as possible
to µ+ while staying in N2.

47

• perform a small number of corrector steps to return to a point in N1 with parameter
µ+.

Let us finish this section by showing that if we are close to the central path, a strong
inequality holds for the duality gap:

Lemma 5.3.1. Let (x, τ, y) ∈ QDD be a point close to the central path, specifically assume
that there exists a constant κ > 0 such that∥∥∥∥Ax+

1

τ
z0 − Φ′∗

(
τ

µ
y

)∥∥∥∥
[Φ′′∗ (τ

µ
y)]−1

≤ κ. (5.30)

Then, for the duality gap between x and ŷ := y
τ

we have

−y0
τ

τ
− ξµϑ+ µκ

√
ϑ

τ 2
≤ 〈c, x〉+ S(ŷ) ≤ −y

0
τ

τ
− (ξ − 1)µϑ− µκ

√
ϑ

τ 2
. (5.31)

Proof. By applying Theorem 4.2.1 to k := τ2

µ
and ŷ we get

〈ŷ,Φ′∗
(
τy

µ

)
〉 ≤ S(ŷ) ≤ 〈ŷ,Φ′∗

(
τy

µ

)
〉+

µϑ

τ 2
. (5.32)

Note that by adding and subtracting a term we have

〈ŷ,Φ′∗
(
τy

µ

)
〉 = 〈ŷ,Φ′∗

(
τy

µ

)
−
(
Ax+

1

τ
z0

)
〉+ 〈ŷ, Ax+

1

τ
z0〉. (5.33)

Now by using the fact that ‖ τy
µ
‖Φ′′∗ (τ

µ
y) ≤

√
ϑ (property (4.39)), the assumption of the

lemma, and using Cauchy-Schwarz inequality we get

−µκ
τ 2

√
ϑ ≤ 〈ŷ,Φ′∗

(
τy

µ

)
−
(
Ax+

1

τ
z0

)
〉 ≤ µκ

τ 2

√
ϑ. (5.34)

By substituting (5.34) in (5.33) and the result in (5.32) we get

〈ŷ, Ax+
1

τ
z0〉 − µκ

τ 2

√
ϑ ≤ S(ŷ) ≤ 〈ŷ, Ax+

1

τ
z0〉+

µκ

τ 2

√
ϑ+

µϑ

τ 2
. (5.35)

The result of the lemma follows if we substitute for 〈ŷ, Ax+ 1
τ
z0〉 from the definition of µ

in (5.22).

48

5.4 Informal outcomes of following the path

In Chapter 6 we present an algorithm and analyze it to show how efficiently we can follow
the path to µ→ +∞, and in Chapter 7 we rigorously discuss how to interpret the outcome
of the algorithm. In this section, we give an informal discussion to see what we get when
µ → +∞. Let us for simplicity assume that our point is on the central path. At each
iteration of the algorithm, we have (x, τ, y), which uniquely defines µ, and

(i) Ax+ 1
τ
z0 ∈ intD, A>ŷ = A>y0+c

τ
− c, and the duality gap satisfies (Lemma 5.3.1):

−y0
τ

τ
− ξµϑ

τ 2
≤ 〈c, x〉+ S(ŷ) ≤ −y

0
τ

τ
− (ξ − 1)µϑ

τ 2
.

(ii) Using this inequality, at least one of the following happens:

(1) For x we have

〈c, x〉 ≤ −y
0
τ

τ
− (ξ − 1)µϑ

2τ 2
.

(2) For y we have

S (ŷ) ≤ −(ξ − 1)µϑ

2τ 2
.

As can be seen, parameter µϑ
τ2 plays a crucial role in our interpretation. Table 5.4 summa-

rizes how we interpret the outcome of the algorithm, with ε > 0 being a small parameter
and L > 0 being a large parameter set by the user.

Table 5.4: How to interpret the outcome of the algorithm with given ε and L.
µϑ
τ2 < ε ε ≤ µϑ

τ2 ≤ L L < µϑ
τ2

Solvable

Ill-conditioned: for example,

Infeasible or unboundedboth primal and dual (approximately)

feasible with nonzero duality gap

Here is how we interpret the above data:

• If µϑ
τ2 tends to zero when µ becomes large (which implies a large τ and approximately

zero duality gap), we get an ε-approximate solution for an ε-perturbation of the
problem. We will see that this happens when our problem is solvable.

49

• If τ is finite, (1) is a certificate of unboundedness and (2) is a certificate of infeasibil-
ity for an ε-perturbation of the problem. This means that we have either a certificate
of infeasibility or a certificate of unboundedness for an approximate problem. We
categorize two types of infeasibility (strongly or strictly) and two types of unbounded-
ness (strongly or strictly) conditions and analyze how our algorithms can distinguish
them. We show that in the strict cases, we can get certificates for the exact problem.

• If τ gets relatively large in the sense that µϑ
τ2 is not close to zero and not large enough

to put us in the above two categories, then both primal and dual are approximately
feasible, but there is a duality gap. Note that at least one of (ii)-(1) or (ii)-(2) still
happens in any case.

50

Chapter 6

Algorithms and complexity analysis

In the previous chapter, we defined our infeasible-start primal-dual central path, parame-
terized with µ, and discussed the scheme of a predictor-corrector algorithm. In this chapter,
we design a predictor-corrector path-following primal-dual algorithm that efficiently follows
the path to µ = +∞. As we mentioned in Chapter 3, our algorithms achieve the current
best iteration complexity bounds, which are new for the “modifying the RHS” type formu-
lations. There are different challenges in following our path efficiently, which are mostly
related to the fact that τ is attached to x and y in a nonlinear way in our setup (5.21).

6.1 Algorithms

To define neighborhoods of the central path, we need a notion of proximity. For a point
(x, τ, y) ∈ QDD, defined in (5.13), we define a proximity measure as

Ω(x, τ, y) := Φ

(
Ax+

1

τ
z0

)
+ Φ∗

(
τy

µ

)
− τ

µ
〈y, Ax+

1

τ
z0〉,

µ = µ(x, τ, y), as defined in (5.22). (6.1)

Throughout Chapters 6 and 7, we may drop the arguments of Φ and Φ∗ (and also their

gradients and Hessians) for simplicity, i.e., Φ := Φ
(
Ax+ 1

τ
z0
)

and Φ∗ := Φ∗

(
τ
µ
y
)

.

Remark 6.1.1. We mentioned in Remark 5.0.2 that Nemirovskii and Tunçel [46] designed
feasible-start algorithms for the Domain-Driven setup. The proximity measure they use in
their paper is

Φ(Ax) + Φ∗(y)− 〈y, Ax〉. (6.2)

51

Even though this proximity measure and (6.1) have similar structures (indeed for z0 = 0
and τ = µ, we recover (6.2)), τ and µ bring nonlinearity into the arguments of Φ and Φ∗
in (6.1).

Theorem 6.1.1. For every (x, τ, y) ∈ QDD we have Ω(x, τ, y) ≥ 0. Moreover, Ω(x, τ, y) =
0 with µ = µ(x, τ, y) iff (x, τ, y) is on the central path for parameter µ(x, τ, y).

Proof. Both parts of the theorem are implied by Fenchel-Young inequality (Theorem 4.1.1)
and the definition of the central path.

Now we can express the predictor-corrector algorithm. Note that we choose different
step sizes for x and for (τ, y), i.e., for the search direction (dx, dτ , dy), the updates are

x+ := x+ α1dx, τ+ := τ + α2dτ , y+ := y + α2dy. (6.3)

Framework for Predictor-Corrector Algorithms

Input: A ∈ Rm×n, c ∈ Rn, neighborhood parameters δ1, δ2 ∈ (0, 1) such that δ1 < δ2,
desired tolerance ε ∈ (0, 1). Access to gradient and Hessian oracles for a ϑ-s.c. barrier Φ(·)
such that ϑ ≥ 1 and domΦ = intD, and its LF conjugate Φ∗(·). z0 ∈ intD.

1. Set k := 0, y0 := Φ′(z0), x0 := 0, and τ 0 := 1.

Repeat until the stopping criteria are met:

2. If Ω(xk, τ k, yk) > δ1, calculate the corrector search direction (dx, dτ , dy), choose α1 >
0 and α2 > 0, and apply the update in (6.3) to get (xk+1, τ k+1, yk+1), such that
Ω(xk+1, τ k+1, yk+1) is smaller than Ω(xk, τ k, yk) by a “large enough” amount, while
µ(xk+1, τ k+1, yk+1) = µ(xk, τ k, yk).

3. If Ω(xk, τ k, yk) ≤ δ1, calculate the predictor search direction (dx, dτ , dy), choose α1 >
0 and α2 > 0, and apply the update in (6.3) to get (xk+1, τ k+1, yk+1), such that
µ(xk+1, τ k+1, yk+1) is larger than µ(xk, τ k, yk) by a “large enough” amount, while

Ω(xk+1, τ k+1, yk+1) ≤ δ2.

4. Set k := k + 1 and continue.

The missing parts in the algorithm are the search direction and the step lengths. In order
to get the best complexity bound, the predictor step must increase µ by a large enough
amount at every iteration, and by a constant number of corrector steps we must be able
to come back to the small neighborhood. We first show how to calculate these steps, and
in the next section, we analyze the performance of them.

52

6.1.1 Predictor step

Our goal in the predictor step is to increase µ as much as possible while staying in a fixed
neighborhood of the central path. An efficient search direction in the predictor step must
(i) increase µ by a large rate and, (ii) let us take a long enough step. A power of s.c.
functions is giving us an elegant tool to control our movement in the feasible region. The
Dikin ellipsoid property SC-2 in Subsection 4.2.1 is the most fundamental property of s.c.
functions that implies we can move all the way to the boundary of Dikin ellipsoid and stay
feasible. The challenge in our Domain-Driven setup is the nonlinear way that τ is combined
with x and y, for example in the proximity measure (6.1). What typically appears in a
primal-dual proximity measure in the literature is that the summation of the s.c. barrier
and its LF conjugate is composed with an affine function of the variables, which makes the
algorithm and analysis much easier. The positive definite matrix that defines the Dikin
ellipsoid for our algorithm has a special form that controls the nonlinear displacements in
the arguments of Φ and Φ∗ in the proximity measure.

Let us define H̄(x, τ) as (u := Ax+ 1
τ
z0)

H̄(x, τ) :=

1

τ 2
Φ′′ (u)︸ ︷︷ ︸
=:H

−1

τ 2
Φ′′ (u)u− 1

τ 2
Φ′ (u)︸ ︷︷ ︸

=:h[−1
τ2 Φ′′ (u)u− 1

τ2 Φ′ (u)
]> 2

τ 2
〈Φ′ (u) , u〉+

1

τ 2
〈u,Φ′′ (u)u〉+

ξϑ

τ 2︸ ︷︷ ︸
=:ζ

 . (6.4)

One can easily verify that

H̄(x, τ)[(dz, dτ), (dz, dτ)] =

∥∥∥∥dzτ − dτ
τ
u

∥∥∥∥2

Φ′′(u)

+
2dτ
τ

[
dz
τ
− dτ

τ
u

]>
Φ′(u) + ξ

d2
τ

τ 2
ϑ. (6.5)

By using the definition of s.c barriers (4.24) for the second term in the RHS of (6.5), we
have [∥∥∥∥dzτ − dτ

τ
u

∥∥∥∥
Φ′′(u)

− dτ
τ

√
ϑ

]2

+ (ξ − 1)
d2
τ

τ 2
ϑ ≤ H̄(x, τ)[(dz, dτ), (dz, dτ)], (6.6)

which shows that H̄(x, τ) is a positive definite matrix for every ξ > 1.

Remark 6.1.2. If we replace u with z
τ

in (6.4), we get the Hessian for the function
Φ
(
z
τ

)
+ ξϑ ln(τ) that we proved in Lemma 4.2.3 is a s.c. function. This is another proof

that this matrix is positive definite.

53

H̄(x, τ) is positive definite for ξ > 1 and so invertible. By substitution, one can directly
verify that([

H h
h> ζ

])−1

=

[
H−1 + ηH−1hh>H−1 −ηH−1h

−ηh>H−1 η

]
, η :=

1

ζ − h>H−1h
. (6.7)

Let F be a matrix whose rows give a basis for null(A>) and let c̄ be any vector such that
A>c̄ = c. We define a block matrix U that comes up frequently in our discussion and
contains the linear transformations we need

U =

A 0 0
0 1 0
0 −c̄ −F>
c> 0 0

 . (6.8)

Then, for the current point (x, τ, y) and a positive definite matrix Ĥ(x, τ, y), that we
elaborate more on later, consider the solution of the system:

U>

[
H̄(x, τ) 0

0
[
Ĥ(x, τ, y)

]−1

]
︸ ︷︷ ︸

H(H̄,Ĥ)

U

 d̄x
dτ
dv

 =
r0

µ2
, r0 :=

 −A>y0 − c
−y0

τ + 〈c̄, z0〉
Fz0

 , (6.9)

and define our search direction as:

dx := d̄x − dτx, dy := −dτ c̄− F>dv. (6.10)

Then for the predictor step we have:

Predictor step: Choose α1, α2 ∈ R+ and update x+ := x + α1dx, τ
+ := τ + α2dτ , and

y+ := y + α2dy such that Ω(x+, τ+, y+) ≤ δ2 and µ(x+, τ+, y+) is maximized. If we set
α1 := α2

τ+α2dτ
, we can choose α2 large enough to get the desired complexity bound.

We have different choices for Ĥ(x, τ, y) to get our desired properties (such as a low
complexity bound). We express a sufficient condition and discuss two choices that satisfy
the condition. Let us first see the following critical lemma that we prove in the next section.
This lemma shows that when we are close to the central path, H̄(x, τ) is under control.

Lemma 6.1.1. Assume that (x, τ, y) ∈ QDD with parameter µ such that Ω(x, τ, y) ≤ ε < 1.
Then, there exists an absolute constant ε̄ < 1 depending on ε such that

(1− ε̄)2H̄(x(µ), τ(µ)) � H̄(x, τ) � 1

(1− ε̄)2
H̄(x(µ), τ(µ)). (6.11)

54

We will see that to achieve enough increase in µ at every predictor step, it is enough
for Ĥ(x, τ, y) to satisfy

(1− ε̄)2
[
H̄(x(µ), τ(µ))

]−1 � µ2
[
Ĥ(x, τ, y)

]−1

� 1

(1− ε̄)2

[
H̄(x(µ), τ(µ))

]−1
. (6.12)

Choice 1: In view of (6.11), one obvious choice for Ĥ(x, τ, y) is

Ĥ(x, τ, y) := µ2H̄(x, τ).

Choice 2: By this choice, we get the search direction for the primal-dual conic setup
given in [48, 56] that we review in Appendix A. Comparison of (6.9) with (A.17) and
(A.18) shows a close connection. In remark 6.1.2, we explained that, by a change of
variables, matrix H̄(x, τ) is the Hessian of Φ

(
z
τ

)
+ ξϑ ln(τ). The LF conjugate of this

function is implicitly given in (5.23). By the connection between the Hessians of a function
and its LF conjugate in (4.5), we have a choice for Ĥ(x, τ, y) to satisfy (6.12). Note that
the definition of the objective function in (5.29) is implicit because of the one-dimensional
maximization problem; how can we calculate the gradient and Hessian? Here, we show
that solving the maximization problem gives the gradient and Hessian explicitly. Using
first order optimality conditions, the conjugate function in (5.23) can also be written as

Φ∗(τ̄ y) + yτ τ̄ + ξϑ ln τ̄ , (6.13)

where τ̄ is the solution of the system yτ+〈y,Φ′∗(τ̄ y)〉+ ξϑ
τ̄

= 0. There exists z̄ ∈ D such that
(y, yτ) is the image of (z̄, τ̄) under the gradient of Φ(z

τ
)−ξϑ ln(τ), which means y = 1

τ̄
Φ′(z̄

τ̄
).

By (4.5), the Hessian of (6.13) at (y, yτ) is the inverse of H̄. An explicit formula for the
inverse of H̄ is given in (6.7). Let us evaluate the components by using y = 1

τ̄
Φ′(z̄

τ̄
). Note

that H and h are functions of (z̄, τ̄).

H−1 = τ̄ 2
[
Φ′′
(z̄
τ̄

)]−1

= τ̄ 2Φ′′∗(τ̄ y)︸ ︷︷ ︸
=:G

,

H−1h = − z̄
τ̄
−
[
Φ′′
(z̄
τ̄

)]−1

Φ′
(z̄
τ̄

)
= −Φ′∗(τ̄ y)− τ̄Φ′′∗(τ̄ y)y︸ ︷︷ ︸

=:h∗

,

ζ − h>H−1h =
ξϑ

τ̄ 2
− 〈y,Φ′′∗(τ̄ y)y〉︸ ︷︷ ︸

=:1/η∗

. (6.14)

Hence, at every point (y, yτ), if we solve the one variable equation yτ + 〈y,Φ′∗(τ̄ y)〉+ ξϑ
τ̄

= 0
for τ̄ (equivalently solve the univariate maximization problem (5.23)), we also explicitly

55

get the Hessian (and similarly the gradient) of the conjugate function that we can use as
Ĥ(x, τ, y) [

Ĥ(x, τ, y)
]−1

:=

[
G+ η∗h∗h

>
∗ −η∗h∗

−η∗h>∗ η∗

]
. (6.15)

For the points close enough to the central path, (6.15) satisfies condition (6.12). This
results from the arguments in [48, 56], or the fact that Φ

(
z
τ

)
+ ξϑ ln(τ) is a s.c. function,

using Lemma 6.1.1, and the properties of LF conjugates. Calculating τ̄ can be done very
efficiently, because we are actually minimizing a s.c. function in view of Lemma 4.2.4.

Before showing the corrector step, let us justify our predictor step. If we choose α1 =
α2

τ+α2dτ
, then by using the third line of (5.22) for µ, we have

µ(x+, τ+, y+)− µ(x, τ, y)

=
−1

ξϑ

[
α2〈dy, z0〉+ α2dτy

0
τ + 〈c+ A>y0, α2dτx+ (τ + α2dτ)α1dx〉

]
=
−α2

ξϑ

(
〈dy, z0〉+ dτy

0
τ + 〈c+ A>y0, dτx+ dx〉

)
, substituting α1 =

α2

τ + α2dτ

=
−α2

ξϑ

(
〈dy, z0〉+ dτy

0
τ + 〈c+ A>y0, d̄x〉

)
, using (6.10)

=
α2

ξϑ

(
〈dv, Fz0〉+ dτ (〈c̄, z0〉 − y0

τ)− 〈c+ A>y0, d̄x〉
)
, substituting dy = −dτ c̄− F>dv

=
α2

ξϑ
[d̄>x dτ d>v]r0, for r0 defined (6.9). (6.16)

Hence, we are maximizing a linear function over the set of feasible points. If we define
d> := [d̄>x dτ d>v], we will see that the Dikin ellipsoid type constraint d>U>H(H̄, Ĥ)Ud ≤
1 guarantees to keep the updated points feasible. The search direction in (6.9) is, up to
some scaling, the solution of the following optimization problem

max 〈d, r0〉
s.t. d>U>H(H̄, Ĥ)Ud ≤ 1,

(6.17)

which can be seen as minimizing the linear function in a trust region.

6.1.2 Corrector step

After doing a predictor step to increase µ, we need to perform corrector steps to come back
into the small neighborhood. Note that our proximity measure Ω(x, τ, y) is not a convex

56

function and to decrease it we use a quasi-Newton like step. In most of the literature on
this topic, for example papers [48, 56, 46], the corrector step is simply minimizing a s.c.
function that can be done efficiently by taking damped Newton steps (Subsection 4.2.1,
SC-3). However, as we mentioned before, because of the nonlinearity in our formulations,
the proximity measure is not a s.c. function and we cannot use damped Newton steps.
However, functions Φ and Φ∗ are 1-s.c. functions and we can use their strong properties.
Using (4.17) for Φ + Φ∗, we have

Ω(x+, τ+, y+)− Ω(x, τ, y)

≤ 〈Φ′, Ax+ + 1
τ+ z

0 − Ax− 1
τ
z0〉+ 〈 τ+y+

µ+ − τy
µ
,Φ′∗〉

−〈 τ+y+

µ+ , Ax+ + 1
τ+ z

0〉+ 〈 τy
µ
, Ax+ 1

τ
z0〉

+ρ

(
−
∥∥Ax+ + 1

τ+ z
0 − Ax− 1

τ
z0
∥∥

Φ′′
−
∥∥∥ τ+y+

µ+ − τy
µ

∥∥∥
Φ′′∗

)
,

(6.18)

where Φ′ := Φ′
(
Ax+ 1

τ
z0
)

and Φ′∗ := Φ′∗

(
τ
µ
y
)

. For the predictor step, we focus on the

RHS of (6.18) and try to find a search direction to make this term negative with a large
enough absolute value. The issue is that this term has nonlinear factors, which come from
the cross products of (dx, dτ , dy). We first define the corrector step and then explain our
choice. Consider the solution of the system

U>H(H̄, µ2H̄)U

 d̄x
dτ
dv

 = −(U>ψc + βr0),

β := −〈r
0, [U>H(H̄, µ2H̄)U]−1U>ψc〉
〈r0, [U>H(H̄, µ2H̄)U]−1r0〉

, (6.19)

where H is defined in (6.9) and

ψc :=

1
τ
Φ′

− 1
τ
〈Φ′, Ax+ 1

τ
z0〉+ 1

µ
〈y,Φ′∗〉+ 1

µ
(y0
τ + τ〈c, x〉)

τ
µ
Φ′∗
τ
µ

 . (6.20)

We define the corrector search direction as

dx := d̄x − dτx, dy := −dτ c̄− F>dv. (6.21)

As can be seen, we have

dx ∈
{
d̄x, x

}
, dy ∈

{
c̄, F>dv

}
. (6.22)

57

Then, our corrector step is as follows:

Corrector step: Choose α1, α2 ∈ R+ and update x+ := x + α1dx, τ
+ := τ + α2dτ , and

y+ := y + α2dy such that µ(x+, τ+, y+) = µ(x, τ, y) and Ω(x+, τ+, y+) is minimized. If we
set α1 := α2

τ+α2dτ
, we can choose α2 large enough to get the desired complexity bound.

Remark 6.1.3. If we choose α1 = α2

τ+α2dτ
, then (6.16) holds and for the search directions

(6.19) we automatically have µ(x+, τ+, y+) = µ(x, τ, y), since β is chosen in a way to have
[d̄>x dτ d>v]r0 = 0.

Let us elaborate more on the corrector search direction.

Lemma 6.1.2. For the corrector step, if we choose α1 = α2

τ+α2dτ
, inequality (6.18) is

simplified to

Ω(x+, τ+, y+)− Ω(x, τ, y)

≤ α2

[
d̄>x dτ d>v

]
U>ψc

− α2
2dτ

τ(τ+α2dτ)
〈Φ′, Ad̄x − dτ

(
Ax+ 1

τ
z0
)
〉+

α2
2dτ
µ

(
〈dy,Φ′∗〉+ 〈c, d̄x〉

)
+ρ

(
− α2

τ+α2dτ

∥∥Ad̄x − dτ (Ax+ 1
τ
z0
)∥∥

Φ′′
−
∥∥∥α2dτy+α2τdy+α2

2dτdy
µ

∥∥∥
Φ′′∗

)
,

(6.23)

where ψc is defined in (6.20).

Proof. Let us expand (6.18) when α1 = α2

τ+α2dτ
. Note that in the corrector step, we always

have µ+ = µ. First we have

Ax+ +
1

τ+
z0 − Ax− 1

τ
z0 = α1Adx −

α2dτ
τ(τ + α2dτ)

z0

=
α2

τ + α2dτ

[
Adx −

dτ
τ
z0

]
, using α1 =

α2

τ + α2dτ

=
α2

τ + α2dτ

[
Ad̄x − dτ

(
Ax+

1

τ
z0

)]
, using dx = d̄x − dτx.

(6.24)

As an intermediate step, we have

τ+x+ = (τ + α2dτ)(x+ α1dx)

= τx+ α2dτx+ α1(τ + α2dτ)dx

= τx+ α2dτx+ α2dx, using α1 =
α2

τ + α2dτ
= τx+ α2d̄x, using dx = d̄x − dτx. (6.25)

58

Then, by using the first line of (5.22) and by substituting µ+ = µ, we have

−〈τ
+y+

µ+
, Ax+ +

1

τ+
z0〉+ 〈τy

µ
,Ax+

1

τ
z0〉

= −τ
+

µ+
[−y0

τ − τ+〈c, x+〉] +
τ

µ
[−y0

τ − τ〈c, x〉]

=
α2

µ
[dτy

0
τ + τ〈c, d̄x〉+ dτ 〈c, τx+ α2d̄x〉], substituting (6.25) and µ+ = µ.

For the last piece, we have

τ+y+

µ+
− τy

µ
=
α2dτy + α2τdy + α2

2dτdy
µ

.

We can verify by direct substitution that

U>ψc =

 1
τ
A>Φ′ + 1

µ
τc

− 1
τ
〈Φ′, Ax+ 1

τ
z0〉+ 1

µ
〈y − τ c̄,Φ′∗〉+ 1

µ
(y0
τ + τ〈c, x〉)

− τ
µ
FΦ′∗

 . (6.26)

If we also use the equality F>dv = −dy − dτ c̄, then we have[
d̄>x dτ d>v

]
U>ψc =

1

τ
〈Φ′, Ad̄x − dτ

(
Ax+

1

τ
z0

)
〉+

τ

µ
〈c, d̄x〉

+
dτ
µ
〈y,Φ′∗〉+

τ

µ
〈dy,Φ′∗〉+

dτ
µ

(y0
τ + τ〈c, x〉). (6.27)

If we substitute the above equalities in the RHS of inequality (6.18), we get (6.23).

In the corrector step, we want µ+ = µ, hence, by using (6.16), we must have 〈d, r0〉 = 0
for d> :=

[
d̄>x dτ d>v

]
. The corrector step direction in (6.19) is, up to some scaling, the

optimal solution of

min 〈d, U>ψc〉
s.t. 〈d, r0〉 = 0

d>U>H(H̄, µ2H̄)Ud ≤ 1.

(6.28)

Note that on the central path we have U>ψc + βr0 = 0 for β defined in (6.19). We prove
that if Ω(x, τ, y) ≥ δ1, then the optimal objective value of (6.28) is larger than an absolute
constant depending on δ1. We also use the fact that it appears with coefficient α2 in (6.23)
whereas the cross product terms have coefficient α2

2. Using these facts, we prove that α2

can be chosen large enough such that Ω(x+, τ+, y+)−Ω(x, τ, y) is smaller than a negative
absolute constant at every corrector step.

59

Remark 6.1.4. What we prove for the corrector step is enough for our complexity results.
However, corrector steps in most of the other papers in this context (such as [48, 56, 46])
have the stronger property of quadratic convergence for the points close enough to the
central path. What we prove in this thesis is similar to property (4.21)-(b) of the damped
Newton step for s.c. functions, whereas quadratic convergence can be achieved by property
(4.21)-(c). When the corrector step is simply minimizing a s.c. function, as it is in most
of the papers in the literature, quadratic convergence comes for free. As we have explained
and will show in the next section, our corrector step is more complicated. We should be
able to prove quadratic (or at least super-linear) convergence for our corrector steps, which
is included in our future works.

6.2 Analysis of the algorithms

In this section, we analyze the predictor and corrector steps we defined in the previous
section. This analysis lets us modify the framework for primal-dual algorithms in Section
6.1 to achieve the current best iteration complexity bounds. This modification and the
main theorem about it come in Section 6.3. Consider the definition of our proximity
measure in (6.1). The following lemma shows how to bound the proximity measure based
on the local distance of the current primal and dual points:

Lemma 6.2.1. (a) Assume that f(x) is an a-s.c. function and f∗(y) is its Legendre-Fenchel
conjugate, then for every x and y in the domains of f and f∗ we have

ρ (r) ≤ f(x) + f∗(y)− 〈y, x〉 ≤ ρ (−r) , (6.29)

where r := a−1/2‖y − f ′(x)‖[f ′′(x)]−1.
(b) Moreover, assume that there exist x̂ and ŷ such that ŷ = f ′(x̂) and 〈x− x̂, y − ŷ〉 = 0.
Then,

ρ(r) + ρ(s) ≤ f(x) + f∗(y)− 〈y, x〉 ≤ ρ(−r) + ρ(−s), (6.30)

where r := a−1/2‖x− x̂‖f ′′(x̂) and s := a−1/2‖y − ŷ‖f ′′∗ (ŷ).

Proof. (a) By writing property (4.17) of the s.c. functions for f∗ at two points y and f ′(x),
we have

f∗(y) ≤ f∗(f
′(x)) + 〈f ′∗(f ′(x)), y − f ′(x)〉+ ρ(−a−1/2‖y − f ′(x)‖f ′′∗ (f ′(x))).

60

To get the RHS inequality in (6.29), we use (4.5) to substitute f ′∗(f
′(x)) = x,

f∗(f
′(x)) + f(x) = 〈f ′(x), x〉, and f ′′∗ (f ′(x)) = [f ′′(x)]−1. The LHS inequality can be

similarly proved by using the second inequality in property (4.17).
(b) By writing property (4.17) for f at x and x̂ and for f∗ at y and ŷ, and adding them
together we get the result.

Corollary 6.2.1. For the proximity measure defined in (6.1), we have

ρ

(∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

)
≤ Ω(x, τ, y) ≤ ρ

(
−
∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

)
, (6.31)

where as before u = Ax+ 1
τ
z0.

6.2.1 Predictor step

Let us first show how the predictor step increases µ. For analyzing this, we prove a nice
result about the structure of U . Let us start with the following lemma:

Lemma 6.2.2. Assume that H is a positive definite matrix and U is a matrix of proper
size with linearly independent columns. Then, for any given vector f of proper size, the
solution of U>HUg = U>f satisfies

Ug = H−1f −H−1U⊥
>
(
U⊥H−1U⊥

>
)−1

U⊥H−1f, (6.32)

where U⊥ is a matrix whose rows form a basis for the orthogonal subspace of the column
space of U .

Proof. Considering U>HUg = U>f and the definition of U⊥, there exists w such that

HUg = f + U⊥
>
w. Multiplying both sides by H−1 gives us Ug = H−1f + H−1U⊥

>
w.

We want to calculate w; we multiply both sides of the last equation from the left by U⊥.

Note that U⊥U = 0 and U⊥H−1U⊥
>

is invertible. If we solve for w and substitute it in
Ug = H−1f +H−1U⊥

>
w, we get (6.32).

If we multiply both sides of (6.32) from the left by f> and substitute g = (U>HU)−1U>f ,
we get

f>U
(
U>HU

)−1
U>f = f>H−1f − f>H−1U⊥

>
(
U⊥H−1U⊥

>
)−1

U⊥H−1f. (6.33)

61

We are interested in matrix U ∈ R(2m+2)×(m+1) we defined in (6.8), which has a very special
structure. For this U , one option for U⊥ is

U⊥ =

 0 c A> 0
−c̄ 0 0 1
−F 0 0 0

 . (6.34)

If we compare U and U⊥, we see that the rows of U is a permutation of the columns of
U⊥. Explicitly

U⊥ = U>P, P :=

[
0 Im+1

Im+1 0

]
. (6.35)

Assume that H and f have the following special forms:

H :=

[
H̄ 0
0 1

µ2 H̄
−1

]
, f :=

[
f1

f2

]
. (6.36)

Note that H−1 = µ2PHP . Then, using (6.35), we have

f>H−1U⊥
>
(
U⊥H−1U⊥

>
)−1

U⊥H−1f = µ2

[
f2

f1

]>
HU

(
U>HU

)−1
U>H

[
f2

f1

]
.

If we further have f1 = µH̄f2 or f1 = −µH̄f2, then (6.33) reduces to

f>U
(
U>HU

)−1
U>f =

1

2
f>H−1f. (6.37)

In our setup, we have an explicit formula to calculate f>H−1f . Let us use (6.37) to derive
a result about our setup. We define

ψp :=

[
f1

f2

]
, f1 :=

[
1
τ
Φ′

− 1
τ
〈Φ′, Ax+ 1

τ
z0〉 − ξϑ

τ

]
, f2 :=

[τ
µ

(
Ax+ 1

τ
z0
)

τ
µ

]
. (6.38)

Then we can easily verify that on the central path we have U>ψp(µ) = − 1
µ
r0, where r0

is defined in (6.9). The matrix H̄ we are using in our setup is (6.4), and for that we can
verify (note that u = Ax+ 1

τ
z0)

1

µ

[
1
τ
Φ′

− 1
τ
〈Φ′, Ax+ 1

τ
z0〉 − ξϑ

τ

]
=

−
[1

τ2 Φ′′ (u) −1
τ2 Φ′′ (u)u− 1

τ2 Φ′ (u)

[−1
τ2 Φ′′ (u)u− 1

τ2 Φ′ (u)]
> 2

τ2 〈Φ′ (u) , u〉+ 1
τ2 〈u,Φ′′ (u)u〉+ ξϑ

τ2

] [τ
µ

(
Ax+ 1

τ
z0
)

τ
µ

]
.

(6.39)

62

Therefore, f1 = −µH̄f2 and so (6.37) holds for our setup. Now, we prove the following
lemma:

Lemma 6.2.3. Consider H defined in (6.9) and ψp defined in (6.38) for a point (x, τ, y) ∈
QDD. Then, we have

〈U>ψp,
[
U>H

(
H̄, µ2H̄

)
U
]−1

U>ψp〉 = ξϑ. (6.40)

Proof. (6.39) confirms that f1 = −µH̄f2, so we have equation (6.37). Hence, we need to
show that (ψp)>H−1ψp = 2ξϑ to get our result. This holds since by direct verification we
have

−µ
[

1
τ
Φ′

− 1
τ
〈Φ′, Ax+ 1

τ
z0〉 − ξϑ

τ

]> [τ
µ

(
Ax+ 1

τ
z0
)

τ
µ

]
= ξϑ, (6.41)

and (ψp)>H−1ψp, by using (6.39), is exactly the summation of two terms like (6.41).

Now we are ready to prove the following main proposition about how the predictor step
increases µ.

Proposition 6.2.1. Assume that (x, τ, y) ∈ QDD and conditions (6.11) and (6.12) hold.
Let our search direction be the solution of (6.9)-(6.10). If we choose α1 = α2

τ+α2dτ
, then,

for every α2 > 0 we have

(1− ε̄)2α2 ≤ µ(x+, τ+, y+)− µ(x, τ, y) ≤ α2

(1− ε̄)2
. (6.42)

Proof. By starting from (6.16) for µ(x+, τ+, y+)− µ(x, τ, y), we can continue

µ(x+, τ+, y+)− µ(x, τ, y)

=
α2

ξϑ
[d̄>x dτ d>v]r0

=
α2

ξϑ

1

µ2
〈r0, [U>H(H̄, Ĥ)U]−1r0〉, using (6.9)

=
α2

ξϑ
〈U>ψp(µ), [U>H(H̄, Ĥ)U]−1U>ψp(µ)〉, using U>ψp(µ) = − 1

µ
r0. (6.43)

We get the desired result by using conditions (6.11) and (6.12) and then utilizing Lemma
6.2.3 for the points on the central path.

63

Proposition 6.2.1 implies that the amount of increase in µ depends directly on α2.
Therefore, we need to show how large α2 can be in the predictor step.

By direct substitution in (6.7), one can verify that[
f
fτ

]>([
H h
h> ζ

])−1 [
f
fτ

]
= 〈f,H−1f〉+ η

(
〈f,H−1h〉 − fτ

)2
,

H−1h = −u− [Φ′′]−1Φ′, η =
τ 2

ξϑ− 〈Φ′, [Φ′′]−1Φ′〉
. (6.44)

The following lemma is critical in our analysis. We explained that matrix H̄ in (6.4) and
its inverse define the Dikin ellipsoid type properties for our setup. The following lemma
lets us break down a local norm defined by H in (6.9) into the bounds we need for the
analysis of our algorithms for the Domain-Driven setup.

Lemma 6.2.4. Assume that (x, τ, y) ∈ QDD and conditions (6.11) and (6.12) hold. Then,
for the solution of (6.9) we have[∥∥∥∥Ad̄xτ − dτ

τ

(
Ax+

1

τ
z0

)∥∥∥∥
Φ′′(u)

− dτ
τ

√
ϑ

]2

+ (ξ − 1)
d2
τ

τ 2
ϑ

+
τ 2

µ2
〈dy, [Φ′′(u)]−1dy〉+

[
〈 τdy
µ
, [Φ′′]−1Φ′〉+ τ

µ
(〈dy, Ax+ 1

τ
z0〉+ 〈c, d̄x〉)

]2

ξϑ− 〈Φ′, [Φ′′]−1Φ′〉
≤ q,

(6.45)

where q := 1
(1−ε̄)6

ξϑ
µ2 .

Proof. Let us define

f := U

 d̄x
dτ
dv

 =

Ad̄x
dτ
dy
c>d̄x

 .
Using (6.6) and (6.44), we can bound the LHS of (6.45) from above by f>H(H̄, µ2H̄)f ,
where H is defined in (6.9). If we substitute f using (6.9) and then use (6.11) and (6.12),

64

we can bound this term as

f>H(H̄, µ2H̄)f

=
1

µ4
〈
[
U>H(H̄, Ĥ)U

]−1

r0, (U>H(H̄, µ2H̄)U)
[
U>H(H̄, Ĥ)U

]−1

r0〉

≤ 1

(1− ε̄)4µ4
〈r0,

[
U>H(H̄, Ĥ)U

]−1

r0〉, using (6.11) and (6.12)

≤ 1

(1− ε̄)6µ4
〈r0,

[
U>H

(
H̄(µ), µ2H̄(µ)

)
U
]−1

r0〉, using (6.11)

=
〈U>ψp(µ),

[
U>H

(
H̄(µ), µ2H̄(µ)

)
U
]−1

U>ψp(µ)〉
(1− ε̄)6µ2

, using U>ψp(µ) = − 1

µ
r0

=
1

(1− ε̄)6µ2
ξϑ using Lemma 6.2.3. (6.46)

Let us see what we get if we break down (6.45). First, clearly

(ξ − 1)
d2
τ

τ 2
ϑ ≤ q ⇒

(
dτ
τ

)2

≤ q

(ξ − 1)ϑ
=

ξ

ξ − 1

1

(1− ε̄)6

1

µ2
. (6.47)

Using (6.45) and (6.47), we get

1

τ

∥∥∥∥Ad̄x − dτ (Ax+
1

τ
z0

)∥∥∥∥
Φ′′
≤ √

q +

∣∣∣∣dττ
∣∣∣∣√ϑ

≤ √
q +

√
q

ξ − 1
, using (6.47)

=

(√
ξ +

√
ξ

ξ − 1

) √
ϑ

(1− ε̄)3µ
. (6.48)

(6.48) gives a bound on the displacement in Ax+ 1
τ
z0 because by (6.24)

Ax+ +
1

τ+
z0 − Ax− 1

τ
z0 =

α2

τ + α2dτ

[
Ad̄x − dτ

(
Ax+

1

τ
z0

)]
, (6.49)

by choosing α1 = α2

τ+α2dτ
. Also from (6.45) we get

τ 2

µ2
〈dy, [Φ′′]−1dy〉 ≤ q =

1

(1− ε̄)6

ξϑ

µ2
. (6.50)

65

We use (6.47)-(6.49) to give the bound we want on the step length. In view of Corollary
6.2.1, we are interested in the change of∥∥∥∥τ+y+

µ+
− Φ′

(
u+
)∥∥∥∥

[Φ′′(u+)]−1

. (6.51)

By adding and subtracting some terms, we have

τ+y+

µ+
− Φ′

(
u+
)
− τy

µ
+ Φ′ (u) =

(
τ+

µ+
− τ

µ

)
y +

τ+

µ+
α2dy −

(
Φ′
(
u+
)
− Φ′ (u)

)
. (6.52)

Let us give a bound on the three terms in (6.52). For the first term, using Proposition
6.2.1, we have∣∣∣∣τ + α2dτ

µ+ dµ
− τ

µ

∣∣∣∣ =

∣∣∣∣α2µdτ − τdµ
µ(µ+ dµ)

∣∣∣∣ ≤ α2

(∣∣∣∣dττ
∣∣∣∣+

∣∣∣∣ 1

µ(1− ε̄)2

∣∣∣∣) τ

µ
. (6.53)

By property (4.16), if we assume that Ω(x, τ, y) ≤ δ1, we have

[Φ′′(u)]−1 � 1

(1− σ(δ1))2
Φ′′∗

(
τy

µ

)
. (6.54)

Using (6.53) and (6.54), we have∣∣∣∣τ+

µ+
− τ

µ

∣∣∣∣ ‖y‖[Φ′′(u)]−1 ≤ α2

(1− σ(δ1))2

(∣∣∣∣dττ
∣∣∣∣+

∣∣∣∣ 1

µ(1− ε̄)2

∣∣∣∣) ∥∥∥∥τµy
∥∥∥∥

Φ′′∗

≤ α2

(1− σ(δ1))2

(∣∣∣∣dττ
∣∣∣∣+

∣∣∣∣ 1

µ(1− ε̄)2

∣∣∣∣)√ϑ, using Theorem 4.2.1-(1)

≤

(√
ξ

ξ − 1

1

(1− ε̄)3
+

1

(1− ε̄)2

)
α2

(1− σ(δ1))2

√
ϑ

µ
, using (6.47).

(6.55)

For the second term in (6.52) we have

τ+

µ+
α2‖dy‖[Φ′′(u)]−1 ≤

[
1 + α2

(∣∣∣∣dττ
∣∣∣∣+

∣∣∣∣ 1

µ(1− ε̄)2

∣∣∣∣)]α2

∥∥∥∥τµdy
∥∥∥∥

[Φ′′(u)]−1

, using (6.53)

≤
[
1 + α2

(∣∣∣∣dττ
∣∣∣∣+

∣∣∣∣ 1

µ(1− ε̄)2

∣∣∣∣)]α2

√
ξϑ

(1− ε̄)3µ
, using (6.50)

≤

[
1 +

(√
ξ

ξ − 1

1

(1− ε̄)3
+

1

(1− ε̄)2

)
α2

µ

]
α2

√
ξϑ

(1− ε̄)3µ
, using (6.47).

(6.56)

66

For the third term, first by using (6.49) and substituting the bound in (6.48) we have

∥∥u+ − u
∥∥

Φ′′
=

α2τ

τ + α2dτ

(√
ξ +

√
ξ

ξ − 1

) √
ϑ

(1− ε̄)3µ

≤ 1

1−
√

ξ
ξ−1

α2

(1−ε̄)3µ

(√
ξ +

√
ξ

ξ − 1

)
α2

√
ϑ

(1− ε̄)3µ︸ ︷︷ ︸
=:δ̄

, using (6.47). (6.57)

If we choose α2 such that δ̄ < 1, then, by Lemma 4.2.2, we have∥∥Φ′
(
u+
)
− Φ′ (u)

∥∥
[Φ′′(u)]−1 ≤

δ̄

1− δ̄
. (6.58)

Putting together the above bounds, we can prove the following main result:

Proposition 6.2.2. Assume that in the predictor step of the algorithm, we choose α1 =
α2

τ+α2dτ
. Also assume that 0.1 > δ2 > 4δ1 > 0. Then, there exists a positive constant κ1

depending on δ1, δ2, ξ, and ε̄ such that

α2 ≥
κ1√
ϑ
µ. (6.59)

Proof. Consider the bound we have for the proximity measure in Corollary 6.2.1. If we
choose α2 such that δ̄ defined in (6.57) satisfies δ̄ ≤ 1/4, then using property (4.16), we
have ∥∥∥∥τ+y+

µ+
− Φ′

(
u+
)∥∥∥∥

[Φ′′(u+)]−1

≤ 4

3

∥∥∥∥τ+y+

µ+
− Φ′

(
u+
)∥∥∥∥

[Φ′′(u)]−1

≤ 4

3

∥∥∥∥τ+y+

µ+
− Φ′

(
u+
)
− τy

µ
+ Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

+
4

3

∥∥∥∥τyµ + Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

≤ 4

3

∥∥∥∥τ+y+

µ+
− Φ′

(
u+
)
− τy

µ
+ Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

+
4

3
σ(δ1). (6.60)

Similar to the definition of σ(·) as the inverse of ρ(·) in (4.11), we define the inverse of
ρ(−·) as σ̄(·). To satisfy Ω(x+, τ+, y+) ≤ δ2, a sufficient condition is∥∥∥∥τ+y+

µ+
− Φ′

(
u+
)
− τy

µ
+ Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

≤ 3

4
σ̄(δ2)− σ(δ1). (6.61)

67

Note that for this analysis, we need 3
4
σ̄(δ2) > σ(δ1). One way to enforce that is choosing

0.1 > δ2 > 4δ1. We have split the term inside the norm in the LHS of (6.61) into three
terms in (6.52) and bounded each of them. We want the summation of the bounds in
(6.55), (6.56), and (6.58) be at most 3

4
σ̄(δ2)− σ(δ1) < 1. In view of the first one in (6.55),

we assume that

α2

√
ϑ

µ
≤ 1

2

(√
ξ

ξ − 1

1

(1− ε̄)3
+

1

(1− ε̄)2

)−1

︸ ︷︷ ︸
=:κ1

1

. (6.62)

Then, adding the bounds in (6.55), (6.56), and (6.58) gives us∥∥∥∥τ+y+

µ+
− Φ′

(
u+
)
− τy

µ
+ Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

≤

(√

ξ
ξ−1

1
(1−ε̄)3 + 1

(1−ε̄)2

)
(1− σ(δ1))2

+
3

2

√
ξ

(1− ε̄)3
+ 4

(√
ξ +

√
ξ

ξ − 1

)
1

(1− ε̄)3

︸ ︷︷ ︸

=:1/κ2
1

α2

√
ϑ

µ
.

(6.63)

We assumed at the beginning of the proof and we also used for (6.58) that δ̄ ≤ 1/4, which
holds if the RHS of (6.63) is at most 1. Therefore, if we choose

α2

√
ϑ

µ
= κ1 := min

{
κ1

1, κ
2
1

(
3

4
σ̄(δ2)− σ(δ1)

)}
,

then Ω(x+, τ+, y+) ≤ δ2 holds. This implies that (6.59) holds for a constant κ1 that depends
on δ1, δ2, ξ, and ε̄.

To complete the whole discussion, we need to prove Lemma 6.1.1. Let us start with
the following lemma:

Lemma 6.2.5. For every set of points (z, τ, y, yτ) such that u := z
τ
∈ D, y ∈ D∗, and yτ

satisfies yτ + 1
τ
〈y, z〉+ µξϑ

τ
= 0, we have∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

≤ β ≤

√
ξ

ξ − 1

∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

, (6.64)

68

where

β(y, yτ , z, τ, µ) :=

∥∥∥∥ 1

µ

[
y
yτ

]
−
[

1
τ
Φ′(u)

− 1
τ
〈Φ′(u), u〉 − ξϑ

τ

]∥∥∥∥
1
µ2 [H̄(u,τ)]−1

, (6.65)

for H̄(u, τ) defined in (6.4) as a function of u and τ .

Proof. Consider the definition of H̄ in (6.4) and the formula for its inverse in (6.7). If we
substitute f = y

µ
− 1

τ
Φ′ (u) and fτ = yτ

µ
+ 1

τ
〈Φ′(u), u〉+ ξϑ

τ
, we have

〈f,H−1f〉 =

∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥2

[Φ′′(u)]−1

η
(
〈f,H−1h〉 − fτ

)2
=

τ 2
[
〈 y
µ
− 1

τ
Φ′, [Φ′′]−1Φ′〉 − 1

µ

(
yτ + 1

τ
〈y, z〉+ µξϑ

τ

)]2

ξϑ− 〈Φ′, [Φ′′]−1Φ′〉

=
τ 2
[
〈 y
µ
− 1

τ
Φ′, [Φ′′]−1Φ′〉

]2

ξϑ− 〈Φ′, [Φ′′]−1Φ′〉
, using yτ +

1

τ
〈y, z〉+

µξϑ

τ
= 0.

(6.66)

Hence,

β2 =

∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥2

[Φ′′(u)]−1

+

[
〈 τy
µ
− Φ′, [Φ′′]−1Φ′〉

]2

ξϑ− 〈Φ′, [Φ′′]−1Φ′〉

≤
∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥2

[Φ′′(u)]−1

+

∥∥∥ τyµ − Φ′ (u)
∥∥∥2

[Φ′′(u)]−1
ϑ

(ξ − 1)ϑ

=
ξ

ξ − 1

∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥2

[Φ′′(u)]−1

, (6.67)

where for the inequality we used Cauchy-Schwarz inequality and property (4.25) of ϑ-s.c.
barriers 〈Φ′, [Φ′′]−1Φ′〉 ≤ ϑ. (6.67) immediately gives us the inequalities we want.

Proof of Lemma 6.1.1. Assume that Ω(x, τ, y) ≤ ε < 1, by Lemma 6.2.1, we get

ρ

(∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

)
≤ ε ⇒

∥∥∥∥τyµ − Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

≤ σ(ε),

69

where σ(·), defined in (4.11), is the inverse of ρ(·) for nonnegative values.

Hence, by Lemma 6.2.5, we have β ≤
√

ξ
ξ−1

σ(ε). In Remark 6.1.2, we mentioned that

H̄(x, τ), with some change of variables, is the Hessian of Φ
(
z
τ

)
−ξϑ ln(τ), which we proved in

Lemma 4.2.3 that is a ξ̄-s.c. function. We want to use Lemma 6.2.1 for f = Φ
(
z
τ

)
−ξϑ ln(τ)

and its conjugate at the points (z, τ) := (τAx+z0, τ) and 1
µ
(y, yτ) := 1

µ
(y, y0

τ +τ〈c, x〉), and

their counterparts on the central path. One can verify that condition of Lemma 6.2.1-(b)
holds for these points, i.e.,

〈y − y(µ), z − z(µ)〉+ (yτ − yτ (µ))(τ − τ(µ))

= 〈A>(y − y(µ)), τx− τ(µ)x(µ)〉+ (τ − τ(µ))〈c, τx− τ(µ)x(µ)〉
= −(τ − τ(µ))〈c, τx− τ(µ)x(µ)〉+ (τ − τ(µ))〈c, τx− τ(µ)x(µ)〉
= 0. (6.68)

Note that the terms in the middle of both parts (a) and (b) of Lemma 6.2.1 are the same.
If we combine them and ignore one term in the LHS, we get

ρ

(
1√
ξ̄

(
H̄(x(µ), τ(µ))[z − z(µ), τ − τ(µ)]

)1/2

)
≤ ρ

(
− β√

ξ̄

)

⇒
(
H̄(x(µ), τ(µ))[z − z(µ), τ − τ(µ)]

)1/2 ≤
√
ξ̄σ

(
ρ

(
− 1√

ξ̄

√
ξ

ξ − 1
σ(ε)

))
.

(6.69)

Now we just need to use property (4.16) of s.c. functions to get the result of the lemma.

Before analyzing the corrector step, let us elaborate more on the RHS of (6.69). We have
a bound on σ(ε) ≤

√
2ε+ε in (4.12), and for ε ≤ 1 we can easily verify that

√
2ε+ε ≤ 3

√
ε.

Also we can verify that for t ≤ 0.6, we have ρ(−t) ≤ t2. Assume that σ(ε) is small enough

to have
√

ξ
ξ̄(ξ−1)

σ(ε) ≤ 0.6. Then, the RHS of (6.69) becomes

≤
√
ξ̄σ

(
ξ

ξ̄(ξ − 1)
σ2(ε)

)
≤ 9

√
ξ

ξ − 1

√
ε. (6.70)

For a point (x, τ, y) ∈ QDD with parameter µ, let us define

d :=

 τ(µ)x(µ)− τx
τ(µ)− τ
v(µ)− v

 . (6.71)

70

We can easily verify that (y = y0 − (τ − 1)c̄− F>v):

Ud =

τ(µ)Ax(µ) + z0

τ(µ)
y(µ)

y0
τ + τ(µ)〈c, x(µ)〉

−

τAx+ z0

τ
y

y0
τ + τ〈c, x〉

 . (6.72)

We want to use property (4.16) for r = 1/4 to change the local norm in (6.69); it suffices

to enforce 9
√

ξ
ξ̄(ξ−1)

√
ε ≤ 1

4
in view of (6.70). Consider the proof of Lemma 6.1.1 and also

the term for y that we ignored in (6.69). If Ω(x, τ, y) ≤ ε < 1, we get

‖d‖U>H(H̄(x,τ),µ2H̄(x,τ))U ≤ 24

√
ξ

ξ − 1︸ ︷︷ ︸
=:ξ̄1

√
ε, (6.73)

which we use in the analysis of the corrector step.

6.2.2 Corrector step

We focus on the case that α1 = α2

τ+α2dτ
. By Remark 6.1.3, µ+ = µ for every α2 and so we

just need to show that α2 can be chosen to get enough reduction in the proximity measure.
The most important tool for this analysis is inequality (6.23). In the proof of Lemma 6.1.2,
we used one direction of property (4.17). Using the other direction, we get (6.23) where
the direction of inequality is changed and ρ(−·) is replaced with ρ(·). If we combine both
inequalities, we get

ρ(D(α2))

≤ Ω(x+, τ+, y+)− Ω(x, τ, y)− α2

[
d̄>x dτ d>v

]
U>ψc

+
α2

2dτ
τ(τ+α2dτ)

〈Φ′, Ad̄x − dτ
(
Ax+ 1

τ
z0
)
〉 − α2

2dτ
µ

(
〈dy,Φ′∗〉+ 〈c, d̄x〉

)
≤ ρ (−D(α2)) ,

D(α2) :=
α2

τ + α2dτ

∥∥∥∥Ad̄x − dτ (Ax+
1

τ
z0

)∥∥∥∥
Φ′′

+ α2

∥∥∥∥dτy + (τ + α2dτ)dy
µ

∥∥∥∥
Φ′′∗

. (6.74)

Let d be the corrector step derived in (6.19). Then,

−
[
d̄>x dτ d>v

]
U>ψc =

∥∥U>ψc + βr0
∥∥2

(U>HU)−1 . (6.75)

71

On the other hand, −‖U>ψc + βr0‖(U>HU)−1 is the optimal objective value of (6.28). We
give a lower bound for this quantity in the following lemma:

Lemma 6.2.6. Consider (x, τ, y) ∈ QDD and 0 < ε < 1 such that Ω(x, τ, y) = ε.
Consider β defined in (6.19) and ψc defined in (6.20). Then, for ε small enough, i.e.,
ε ≤ 1

100((ξ̄2ξ̄1)3+ξ̄3ξ̄3
1)

2 , where ξ̄1 is defined in (6.70) and

ξ̄2 :=

(
3

√
1

ξ − 1
+

7

2

)
,

ξ̄3 :=
1

2
√
ξ − 1

(
11

2
+

5√
ξ − 1

)(
3 +

2√
ξ − 1

)
+

2

ξ − 1

(
1 +

1√
ξ − 1

)
, (6.76)

we have ∥∥U>ψc + βr0
∥∥

(U>HU)−1 ≥
1

4ξ̄1

√
ε.

Proof. We find an upper bound on the optimal objective value of (6.28) by using a specific
feasible solution. Our feasible solution is

d

‖d‖U>H(H̄,µ2H̄)U

, (6.77)

where d is defined in (6.71). We can verify that (6.77) satisfies all the constraints. We have

‖d‖U>H(H̄,µ2H̄)U ≤ ξ̄1

√
ε given in (6.73), which holds if

√
ξ

ξ̄(ξ−1)
σ(ε) ≤ 0.6 and 9

√
ξ

ξ̄(ξ−1)

√
ε ≤

1
4
. Now, we need to prove that −〈d, U>ψc〉 is large enough. The idea of the proof is that

we consider the bounds in (6.74) at α2 = 1 and α2 = 2, and if −〈d, U>ψc〉 is not large
enough, we get a contradiction.

Let us define
√
q = ξ̄1

√
ε for ξ̄1 defined in (6.73). Then (6.73) implies that we have

(6.45) for q. We use this to find bounds for the terms we have in (6.74). Using both (6.47)
and (6.48), we have

1

τ + α2dτ

∥∥∥∥Ad̄x − dτ (Ax+
1

τ
z0

)∥∥∥∥
Φ′′
≤ 1

1− α2

√
q

(ξ−1)ϑ

(
√
q +

√
q

ξ − 1

)
. (6.78)

For the second term of D(α2) we use triangle inequality and we have∥∥∥∥dτyµ
∥∥∥∥

Φ′′∗

=
dτ
τ

∥∥∥∥τyµ
∥∥∥∥

Φ′′∗

≤
√

q

ξ − 1
, using (6.47) and (4.39) (6.79)

72

and ∥∥∥∥(τ + α2dτ)dy
µ

∥∥∥∥
Φ′′∗

=
(τ + α2dτ)

τ

∥∥∥∥τdyµ
∥∥∥∥

Φ′′∗

≤
(

1 + α2

√
q

(ξ − 1)ϑ

)
√
q, using (6.47) and (6.50). (6.80)

We also have ∣∣∣∣ dτ
τ(τ + α2dτ)

〈Φ′, Ad̄x − dτ
(
Ax+

1

τ
z0

)
〉
∣∣∣∣

≤
∣∣∣∣ dτ
τ(τ + α2dτ)

∣∣∣∣ ‖Φ′‖[Φ′′]−1

∥∥∥∥Ad̄x − dτ (Ax+
1

τ
z0

)∥∥∥∥
Φ′′

≤

∣∣∣∣∣ dτ
τ

√
ϑ

τ + α2dτ

∣∣∣∣∣
∥∥∥∥Ad̄x − dτ (Ax+

1

τ
z0

)∥∥∥∥
Φ′′
, by (4.25)

≤

√
q
ξ−1

1− α2

√
q

(ξ−1)ϑ

(
√
q +

√
q

ξ − 1

)
, by (6.47) and (6.78). (6.81)

We want to make the second line of the term in the middle of inequalities in (6.74) a
quadratic in terms of α2. To do this, we modify (6.74) by adding and subtracting some
terms to all sides as:

ρ(D(α2))− 1
2
(D(α2))2 + D̂(α2)

≤ Ω(x+, τ+, y+)− Ω(x, τ, y)− α2

[
d̄>x dτ d>v

]
U>ψc

+
α2

2dτ
τ2 〈Φ′, Ad̄x − dτ

(
Ax+ 1

τ
z0
)
〉 − α2

2dτ
µ

(
〈dy,Φ′∗〉+ 〈c, d̄x〉

)
− 1

2
(D̄(α2))2

≤ ρ (−D(α2))− 1
2
(D(α2))2 + D̂(α2),

D̄(α2) :=
α2

τ

∥∥∥∥Ad̄x − dτ (Ax+
1

τ
z0

)∥∥∥∥
Φ′′

+ α2

∥∥∥∥dτy + τdy
µ

∥∥∥∥
Φ′′∗

,

D̂(α2) :=
1

2

(
(D(α2))2 − (D̄(α2))2

)
+

α2
3d

2
τ

τ 2(τ + α2dτ)
〈Φ′, Ad̄x − dτ

(
Ax+

1

τ
z0

)
〉. (6.82)

Note that by definition (4.10), we can verify that

ρ(−t)− t2

2
≤ t3,

t2

2
− ρ(t) ≤ t3

5
, ∀t ∈ (0, 0.8). (6.83)

73

Let us assume that 2
√

q
(ξ−1)ϑ

≤ 1
2
, then (6.78), (6.79), (6.80), and (6.81) yield that for

0 ≤ α2 ≤ 2 we have

|D(α2)| ≤ α2

(
3

√
1

ξ − 1
+

7

2

)
︸ ︷︷ ︸

=:ξ̄2

ξ̄1

√
ε,

|D̄(α2)| ≤ α2

(
2

√
1

ξ − 1
+ 2

)
ξ̄1

√
ε,

|D̂(α2)| ≤ α3
2

[
1

2
√
ξ − 1

(
11

2
+

5√
ξ − 1

)(
3 +

2√
ξ − 1

)
+

2

ξ − 1

(
1 +

1√
ξ − 1

)]
︸ ︷︷ ︸

=:ξ̄3

ξ̄3
1ε

3/2.

(6.84)

For the bound on |D̂(α2)|, we also used the fact that

|D(α2)− D̄(α2)| ≤ α2
2dτ

(τ + α2dτ)τ

∥∥∥∥Ad̄x − dτ (Ax+
1

τ
z0

)∥∥∥∥
Φ′′

+ α2
2

∥∥∥∥dτdyµ
∥∥∥∥

Φ′′∗

.

We want to choose ε small enough to make the term in the middle of (6.82) be squeezed
between ± 1

10
Ω(x, τ, y) = ± 1

10
ε. If we have ξ̄2ξ̄1

√
ε ≤ 0.8, by using (6.83) and (6.84), it

suffices to satisfy(
(ξ̄2ξ̄1)3 + ξ̄3ξ̄

3
1

)
ε3/2 ≤ 1

10
ε ⇒ ε ≤ 1

100
(
(ξ̄2ξ̄1)3 + ξ̄3ξ̄3

1

)2 . (6.85)

We claim that in this case, −〈d, U>ψc〉 ≥ 1
4
Ω(x, τ, y). If we substitute α2 = 1, then

Ω(x+, τ+, y+) = 0 as our point lays on the central path. Suppose for the sake of reaching
a contradiction −〈d, U>ψc〉 < 1

4
Ω(x, τ, y). Then, in view of (6.82), we must have

dτ
τ 2
〈Φ′, Ad̄x − dτ

(
Ax+

1

τ
z0

)
〉 − dτ

µ

(
〈Φ′∗, dy〉+ 〈c, d̄x〉

)
− 1

2
(D̄(1))2 ≥

(
3

4
− 1

10

)
Ω(x, τ, y).

We reach our contradiction when we consider α2 = 2. Note that for α2 = 2 we have
Ω(x+, τ+, y+) ≥ 0. The term in the second line of (6.74) is degree 2 of α2 and so becomes
at least

(
12
4
− 4

10

)
Ω(x, τ, y) for α2 = 2. Then, at α2 = 2, (6.74) implies

−Ω(x, τ, y) +

(
12

4
− 4

10

)
Ω(x, τ, y) ≤ 8

10
Ω(x, τ, y),

74

which is a contradiction.

Now, if we consider the feasible solution (6.71) for the optimization problem (6.28)
and putting together the bounds ‖d‖U>H(H̄,µ2H̄)U ≤ ξ̄1

√
ε and −〈d, U>ψc〉 ≥ 1

4
ε, we get

the result of the lemma. Note that the bound on ε in (6.85) is stronger than the other
assumptions we made in the proof.

Now we are ready to prove the main proposition for the corrector step.

Proposition 6.2.3. Consider (x, τ, y) ∈ QDD and 0 < ε < 1 such that Ω(x, τ, y) = ε.
Assume that the corrector step is calculated by solving (6.19) and we choose α1 = α2

τ+α2dτ
.

Also assume that ε is small in the sense defined in Lemma 6.2.6. Cosider ξ̄1 and ξ̄2 defined
in (6.70) and (6.76), respectively. Then, if we choose

α2 :=
1

2(ξ̄4 + ξ̄2
2)
, ξ̄4 := 2

√
1

ξ − 1

(
1 +

√
1

ξ − 1

)
+

√
ξ + 2√
ξ − 1

, (6.86)

we have

Ω(x+, τ+, y+)− Ω(x, τ, y) ≤ − α2

32ξ̄2
1

. (6.87)

Proof. Assume that [d̄>x dτ d
>
v] is the solution of (6.19). Then we have

[d̄>x dτ d
>
v]U>HU

 d̄x
dτ
dv

 = ‖U>ψc + βr0‖2
(U>HU)−1 . (6.88)

Hence, we have inequality (6.45) with q = ‖U>ψc+βr0‖2
(U>HU)−1 , and we already have the

bounds (6.78), (6.79), (6.80), and (6.81).

Here, we use (6.45) to get another bound; if we consider the last term in the LHS of
(6.45), we get

τ

µ

∣∣∣∣〈dy, Ax+
1

τ
z0〉+ 〈c, d̄x〉

∣∣∣∣ ≤ (
√
ξ + 1)

√
ϑq. (6.89)

Note that from Corollary 6.2.1, we have
∥∥∥ τyµ − Φ′

∥∥∥
[Φ′′]−1

≤ σ(ε). Using this and (6.89), we

75

have ∣∣∣∣dτµ (〈dy,Φ′∗〉+ 〈c, d̄x〉
)∣∣∣∣

=

∣∣∣∣dτµ
(
〈dy, Ax+

1

τ
z0〉+ 〈c, d̄x〉+ 〈dy,Φ′∗ − Ax+

1

τ
z0〉
)∣∣∣∣

≤
∣∣∣∣dττ
∣∣∣∣ (τµ

∣∣∣∣〈dy, Ax+
1

τ
z0〉+ 〈c, d̄x〉

∣∣∣∣+
τ

µ
‖dy‖[Φ′′]−1

∥∥∥∥Φ′∗ − Ax+
1

τ
z0

∥∥∥∥
Φ′′

)
≤

√
q

(ξ − 1)ϑ

(
(
√
ξ + 1)

√
ϑq +

τ

µ
‖dy‖[Φ′′]−1

∥∥∥∥Φ′∗ − Ax+
1

τ
z0

∥∥∥∥
Φ′′

)
, by (6.47) and (6.89)

≤
√

q

(ξ − 1)ϑ

(
(
√
ξ + 1)

√
ϑq +

√
q

σ(ε)

1− σ(ε)

)
, by (6.50) and Lemma 4.2.2,

=

√
1

ξ − 1

(
(
√
ξ + 1) +

σ(ε)√
ϑ(1− σ(ε))

)
q

≤
√
ξ + 2√
ξ − 1

q, for the case σ(ε) ≤ 0.5. (6.90)

We want to work with the second inequality in (6.74). We already have a bound for
D(α2) in (6.84) and we have

ρ(−t) ≤ t2, ∀t ∈ (0, 0.6). (6.91)

In view of (6.81) and (6.90), we define

ξ̄4 := 2

√
1

ξ − 1

(
1 +

√
1

ξ − 1

)
+

√
ξ + 2√
ξ − 1

. (6.92)

Then, from (6.74) we get

Ω(x+, τ+, y+)− Ω(x, τ, y) ≤ (−α2 + (ξ̄4 + ξ̄2
2)α2

2)‖U>ψc + βr0‖2
(U>HU)−1 . (6.93)

If we choose α2 ≤ 1
2(ξ̄4+ξ̄2

2)
, then for the RHS we have

≤ −1

2
α2‖U>ψc + βr0‖2

(U>HU)−1 ≤ −
α2

32ξ̄2
1

ε, (6.94)

where we used the bound for ‖U>ψc + βr0‖2
(U>HU)−1 by Lemma 6.2.6.

76

Before giving the main theorem about the complexity analysis, aside from the above
proof, we give a different approach for finding a lower bound on ‖U>ψc + 1

µ
r0‖2

(U>HU)−1

when we are away from the central path. This lemma is interesting because we use ideas
from quasi-Newton low rank updates. As we explain in the conclusion chapter, these ideas
are interesting for our approach.

We can verify that

U>

y

y0
τ + τ〈c, x〉
τAx+ z0

τ

︸ ︷︷ ︸

=:f

= −r0, ∀(x, τ, y) ∈ QDD. (6.95)

Hence, ‖U>ψc + 1
µ
r0‖2

(U>HU)−1 = ‖U>(ψc − 1
µ
f)‖2

(U>HU)−1 . For simplicity, Let us define

ψc − 1

µ
f :=

[
f1

f2

]
, f1, f2 ∈ Rm+1. (6.96)

Lemma 6.2.7. Consider (x, τ, y) ∈ QDD and 0 < δ < 1 such that
∥∥∥ τyµ − Φ′

∥∥∥
[Φ′′]−1

= δ.

Then, there exists H̄a satisfying(
−1 +

[
(1− δ)2

(1 + δ)2
+ (1− δ)

])
H̄(x, τ) � H̄a �

(
−1 +

[
(1 + δ)2

(1− δ)2
+ (1 + δ)

]
ξ + 3

ξ − 1

)
H̄(x, τ),

such that for f1 and f2 defined in (6.96) we have

1

µ
f1 = H̄af2. (6.97)

Proof. We are using ideas from BFGS and DFP updates [57]. Let us consider vectors
f̄1 := H̄−1/2 1

µ
f1 and f̄2 := H̄1/2f2. We can verify that

〈f̄1, f̄2〉 =
1

µ
〈f1, f2〉 =

1

µ2
〈Φ′ − τy

µ
,Ax+

1

τ
z0 − Φ′∗〉. (6.98)

Note that Φ′(Φ′∗) = τy
µ

, and because Φ is a convex function, the term in (6.98) is non-
negative. Actually, this term is positive and by the properties of s.c. barriers, we can
bound (6.98) as

1

µ2

δ2

1 + δ
≤ 〈f̄1, f̄2〉 ≤

1

µ2

δ2

1− δ
. (6.99)

77

Let us define

G :=
(
I − βf̄1f̄

>
2

) (
I − βf̄2f̄

>
1

)
+ βf̄1f̄

>
1 , β :=

1

f̄>1 f̄2

. (6.100)

Note that Gf̄2 = f̄1 and if we can prove that G is close enough to identity matrix, we can
prove our result. We want to bound the eigenvalues of G. For every vector s ∈ {f̄⊥1 } we
have s>Gs = s>s. Therefore, we just need to check f̄>1 Gf̄1. We have

f̄>1 Gf̄1

f̄>1 f̄1

= −1 + β2(f̄>1 f̄1)(f̄>2 f̄2) + β(f̄>1 f̄1). (6.101)

We have already bounded 1/β = f̄>1 f̄2 in (6.99). For the other two terms, first note that
we can directly verify:

f̄>2 f̄2 =
1

µ2

∥∥∥∥Ax+
1

τ
z0 − Φ′∗

∥∥∥∥2

Φ′′
. (6.102)

By using Lemma 4.2.2, we can bound f̄>2 f̄2 as

1

µ2

δ2

(1 + δ)2
≤ f̄>2 f̄2 ≤

1

µ2

δ2

(1− δ)2
. (6.103)

We also have

f̄>1 f̄1 =
1

µ2

∥∥∥∥τyµ − Φ′
∥∥∥∥2

[Φ′′]−1

+
1

µ2

[
〈Φ′ − τy

µ
, [Φ′′]−1Φ′〉+ 〈 τy

µ
, Ax+ 1

τ
z0 − Φ′∗〉

]2

ξϑ− 〈Φ′, [Φ′′]−1Φ′〉
. (6.104)

We can bound f̄>1 f̄1 as

1

µ2
δ2 ≤ f̄>1 f̄1 ≤

1

µ2

(
1 +

4

ξ − 1

)
δ2. (6.105)

If we define

H̄a := H̄1/2GH̄1/2, (6.106)

then, using the above bounds, H̄a satisfies the claimed relations.

78

We proved that there exists ε1 and ε2 such that ε1H̄ � H̄a � ε2H̄. Similar to the
discussion after Lemma 6.2.2, because 1

µ
f1 = H̄af2, we have

max{ε2, 1/ε1}
∥∥∥∥U>(ψc − 1

µ
f)

∥∥∥∥2

(U>H(H̄,µ2H̄)U)−1

≥
∥∥∥∥U>(ψc − 1

µ
f)

∥∥∥∥2

(U>H(H̄a,µ2H̄a)U)−1

=
1

2

∥∥∥∥ψc − 1

µ
f

∥∥∥∥2

(H(H̄a,µ2H̄a))−1

≥ min{ε1, 1/ε2}
1

2

∥∥∥∥ψc − 1

µ
f

∥∥∥∥2

(H(H̄,µ2H̄))−1

≥ min{ε1, 1/ε2}δ, (6.107)

where
∥∥∥ τyµ − Φ′

∥∥∥
[Φ′′]−1

= δ.

6.3 Complexity of following the path to µ = +∞

We have analyzed the predictor and corrector search directions in Section 6.2. Now we can
modify the statement of our predictor-corrector algorithm to one that provably follows the
path in polynomial time.

Polynomial-time Predictor-Corrector Algorithm (PtPCA)

1. Choose constants 0 < 4δ1 < δ2 ≤ 1

100((ξ̄2ξ̄1)3+ξ̄3ξ̄3
1)

2 , where ξ̄1, ξ̄2, and ξ̄3 are functions

of ξ defined in (6.70) and (6.76). Choose z0 ∈ intD and set y0 := Φ′(z0). Set x0 := 0,
τ 0 := 1, and k = 0.

Repeat until the stopping criteria are met:

2. If Ω(xk, τ k, yk) > δ1, calculate the corrector search direction (dx, dτ , dy) by (6.19) and
(6.21), and choose α2 as in (6.86) and α1 := α2

τ+α2dτ
. Apply the update in (6.3) to get

(xk+1, τ k+1, yk+1).

3. If Ω(xk, τ k, yk) ≤ δ1, calculate the predictor search direction (dx, dτ , dy) by (6.9) and
(6.10), and choose α2 = κ1√

ϑ
µ for κ1 defined in the proof of Proposition 6.2.2, and

α1 := α2

τ+α2dτ
. Apply the update in (6.3) to get (xk+1, τ k+1, yk+1).

4. Set k := k + 1 and continue.

79

Our analysis of the predictor and corrector steps implies the following theorem:

Theorem 6.3.1. For the polynomial-time predictor-corrector algorithm, there exists a pos-
itive constant κ2 depending on ξ such that after N iterations, we have

µ ≥ exp

(
κ2√
ϑ
N

)
. (6.108)

Proof. By Proposition 6.2.3, after each predictor step, we have to do at most

64(ξ̄4 + ξ̄2
2)ξ̄2

1(δ2 − δ1),

number of corrector steps to satisfy Ω(x, τ, y) ≤ δ1. Also, by Proposition 6.2.2, after N̄
cycles of predictor-corrector steps, we have

µ ≥
(

1 +
κ1√
ϑ

)N̄
.

Therefore, we have (6.108) for κ2 = O(1)κ1.

Some of the consequences of Theorem 6.3.1 are discussed in the next chapter. One
immediate consequence is, if our problem and its dual both are strictly feasible, then

in O
(√

ϑ ln
(
ϑ
ε

))
iterations, we obtain an ε-approximation for an ε-perturbation of the

problem.

80

Chapter 7

Output analysis

In previous chapters, we defined our central path and designed algorithms to follow the path
efficiently to increase parameter µ to +∞. At this stage, we assume that we have points
(x, τ, y) close to the central path for a large enough µ. We need to interpret such points
to clarify the status of the problem as accurately as possible. In view of our discussion in
Chapter 3, we classify different infeasibility and unboundedness patterns that can happen
for problem (5.1), and discuss the cases our algorithm can detect plus their complexity
analysis.

7.1 Categorizing problem statuses

Let us first define the following four parameters that are the measurements of primal and
dual feasibility:

Definition 7.1.1. Define tp(z
0), td(y

0), σp, and σd:

tp(z
0) := sup{t ≥ 1 : ∃x ∈ E s.t. Ax+

1

t
z0 ∈ D},

td(y
0) := sup{t ≥ 1 : ∃y ∈ D∗ s.t. A>y − A>y0 = −(t− 1)c},
σp := dist(range(A), D),

σd := dist({y : A>y = −c}, D∗), (7.1)

where dist(·, ·) returns the smallest distance between two convex sets. We denote σp by the
measure of primal infeasibility, and σd by the measure of dual infeasibility.

81

Remark 7.1.1. Note that all the above measures are scale dependent. For example, tp(z
0)

attains different values when we change z0 with respect to the boundary of the set D.

The following lemma connects the parameters defined in Definition 7.1.1.

Lemma 7.1.1. (a) Consider the definition of tp(z
0) and σp in Definition 7.1.1 and assume

that σp > 0, then

tp(z
0) ≤ ‖z

0‖
σp

. (7.2)

(b) Consider the definition of td(y
0) and σd in Definition 7.1.1 and assume that σd > 0,

then

td(y
0) ≤ ‖y

0‖
σd

. (7.3)

Proof. By definition of σp, for every Ax+ 1
t
z0 ∈ D we have

σp ≤
∥∥∥∥Ax+

1

t
z0 − Ax

∥∥∥∥ =
‖z0‖
t
,

which gives us the result we want. The proof for the second inequality is analogous.

Here is our classification of the status of problem (5.1):

1. Solvability: Problem (5.1) is called solvable if there exist a point x such that Ax ∈ D
and a point y ∈ D∗ such that A>y = −c, with duality gap equal to zero:

〈c, x〉+ S(y) = 0, (7.4)

where S is the support function of D defined in (5.6). Problem is called strictly
primal-dual feasible if there exist x such that Ax ∈ intD and y ∈ intD∗ such that
A>y = −c. Note that strict feasibility implies solvability. Also note that for both
cases we have tp(z

0) = +∞ and td(y
0) = +∞.

2. Primal infeasibility: problem (5.1) is called primal infeasible if there does not exist
Ax ∈ D. It is called strongly primal infeasible if

σp = dist(range(A), D) > 0. (7.5)

The problem is strictly primal infeasible if there exists ε > 0 such that every ε-
perturbation of the problem is strongly primal infeasible.

82

3. Unboundedness: problem (5.1) is called strongly primal unbounded if for every
K > 0, there exists Ax ∈ D such that 〈c, x〉 < −K. It is called strictly primal
unbounded if there exists Ax ∈ D and Ah ∈ int(rec(D)) such that 〈c, h〉 < 0. Note
that strict unboundedness implies strong unboundedness.

4. ill-conditioning: We divide this into two categories:

(a) both primal and dual are infeasible, i.e., σp > 0 and σd > 0.

(b) both primal and dual are (approximately) feasible, i.e., σp = σd = 0, but there
does not exist a primal-dual feasible pair with zero duality gap.

The following lemma gives some equivalent properties for the infeasible cases we defined
above that are easier to analyze:

Lemma 7.1.2. Our problem is strongly primal infeasible if and only if there exists y ∈ D∗
such that

A>y = 0, S(y) = −1. (7.6)

The problem is strictly primal infeasible if and only if we can choose y ∈ intD∗ that satisfies
(7.6).

Proof. First assume that there exists y ∈ D∗ that satisfies (7.6). Consider two sequences
{zk} ∈ D and {Axk} such that

lim
k
‖zk − Axk‖ = dist(D, range(A)).

We also have
〈y, zk − Axk〉 = 〈y, zk〉 ≤ S(y) = −1, ∀k.

This implies that dist(D, range(A)) > 0. For the other direction, assume that dist(D, range(A)) >
0. Then, by separation theorem, there exist a vector y and β ∈ R such that

〈y, z〉 > β, ∀z ∈ range(A),
〈y, z〉 < β, ∀z ∈ D.

The first relation holds only if A>y = 0, and if we substitute z = 0 in it, we get β < 0.
The second relation holds only if y ∈ D∗ by the definition of D∗ in (5.2), and since β < 0,
we have S(y) < 0. By some scaling we can assume that S(y) = −1.

The second part of the proof holds by some modification to the above argument.

83

Let us see an example to elaborate more on ill-conditioned cases.

Example 7.1.1. Consider a problem in the Domain-Driven setup with D ⊂ R2 shown
in Figure 7.1. Also assume that A = I2×2 is the identity matrix. Note that the recession
cone of D is a ray, which implies that D∗ defined in (5.2) is {(y1, y2) ∈ R2 : y1 ≤ 0} as
shown in Figure 7.1. Let us define c := [0 1]>; then, the optimal objective value is 0 that
is not attained. The system A>y = −c has a unique solution ȳ := [0 − 1]> that is on the
boundary of D∗. It is also clear from the figure that S(ȳ) ≤ 0. Therefore, both primal and
dual problems are feasible; however, we do not have a pair of primal-dual points with zero
duality gap.

1x

2x

D

*D

Figure 7.1: An example of a problem (5.1) with D ⊂ R2.

Now assume that we change A to A = [1 0]>; range(A) = (R, 0). It is clear from the
picture that the feasible region Ax ∈ D is empty. If we choose c = −1, then the system
A>y = y1 = −c does not have a solution in D∗. This implies that both primal and dual are
infeasible. However, the measure of primal feasibility σp we defined in (7.1) is zero and we
have approximately feasible points with arbitrarily small objective values. If we shift D to
the right, D∗ does not change, but we can make σp arbitrary large.

84

7.2 Solvable cases

To better understand our results, we compare them with Nesterov-Todd-Ye’s result in [56].
In Appendix A, we review the infeasible-start approach for the conic formulation proposed
in [48, 56]. Assume that in the conic setup, both primal and dual problems are strictly
feasible, and let ˆ̄z ∈ intK and ˆ̄s ∈ intK∗ such that ˆ̄s = −(Φ+)′(ˆ̄z) and 〈ˆ̄s, ˆ̄z〉 = ϑ̄, where
Φ+ is a ϑ̄-LH s.c. barrier defined on K. Then, the conic feasibility measure ρf is defined
in [56] as

ρf := max
{
α : ˆ̄z − αz̄0 ∈ K, ˆ̄s− αs̄0 ∈ K∗

}
. (7.7)

For the conic infeasible-start setups in [56] and [48], Theorem 9 in [56] shows that for all
the points in Q, defined in (A.10), we have

τ̄ ≥ ϑ̄+ 1

ϑ̄+ ρf
ρfµ−

1− ρf
ρf

, (7.8)

and Theorem 5 in [48] shows that for all the points in Q, we have

τ̄ ≥ ρfµ−
1

ρf
. (7.9)

These inequalities are important as they show how τ̄ grows directly with the increase of
µ. [56] also considers the case that the problem is solvable. Assuming that (z̄∗, s̄∗) is an
arbitrary solution, Theorem 10 in [56] shows that

τ̄ ≥ ωµ

〈s̄0, z̄∗〉+ 〈s̄∗, z̄0〉+ 1
, (7.10)

where ω is an absolute constant parametrizing closeness to the central path. Here, we
consider both the general solvable case and the strict primal-dual feasibility for the Domain-
Driven setup; first for the general case of a solvable problem:

Lemma 7.2.1. Assume that there exist a point x̄ such that Ax̄ ∈ D and a point ȳ ∈ D∗
such that A>ȳ = −c, with duality gap equal to zero, i.e., 〈c, x̄〉 + S(ȳ) = 0. If a point
(x, τ, y) ∈ QDD is close to the central path in the sense of (5.30), then, for variable τ we
have

(ξ − 1)µϑ− µκ
√
ϑ

τ
≤ ξϑ+ 〈y0 − ȳ, z0 − Ax̄〉. (7.11)

85

Proof. By substituting 〈y, Ax̂〉 ≤ S(y) in (5.31), we get

(ξ − 1)µϑ− µκ
√
ϑ

τ
≤ −y0

τ − τ〈c, x〉 − 〈y, Ax̂〉. (7.12)

Also note that from 〈c, x̄〉+ S(ȳ) = 0 we have

〈ȳ, z〉 ≤ −〈c, x̄〉, ∀z ∈ D. (7.13)

We have

−〈c, x〉 = 〈ȳ, Ax〉 = 〈ȳ, Ax+
1

τ
z0〉 − 〈ȳ, 1

τ
z0〉

≤ −〈c, x̄〉 − 〈ȳ, 1

τ
z0〉, using (7.13), (7.14)

and also using A>y = A>y0 − (τ − 1)c we can easily get

〈y, Ax̄〉 = 〈A>y0 − (τ − 1)c, x̄〉. (7.15)

Substituting (7.14) and (7.15) in (7.12), we have

(ξ − 1)µϑ− µκ
√
ϑ

τ
≤ −y0

τ − 〈c, x̄〉 − 〈ȳ, z0〉 − 〈y0, Ax̄〉

= ξϑ+ 〈y0, z0〉 − 〈c, x̄〉 − 〈ȳ, z0〉 − 〈y0, Ax̄〉, (7.16)

where the last equation is by substituting y0
τ = −〈y0, z0〉 − ξϑ from (5.20). If we replace

c = −A>ȳ, we get (7.11).

Let us rewrite (7.11) as

µ ≤
[
ξϑ+ 〈y0 − ȳ, z0 − Ax̄〉

(ξ − 1)ϑ− κ
√
ϑ

]
τ, (7.17)

which shows the rate of increase for τ with respect to µ. We can do more for the case that
both primal and dual are strictly feasible. Let us define

x̂ := argminx{Φ(Ax) + 〈c, x〉},
ŷ := Φ′(Ax̂),

ŷτ := −ξϑ− 〈ŷ, Ax̂〉. (7.18)

86

By using the first order optimality condition, we have A>ŷ = −c. Now we define the
feasibility measure as

σf := sup

{
α : ŷ − αy0 ∈ D∗,

Ax̂− αz0

1− α
∈ D, α < 1, S(ŷ − αy0) + ŷτ − αy0

τ ≤ 0

}
.

Note that by using Theorem 4.2.1 and the fact that ŷ := Φ′(Ax̂), we have

S(ŷ) + ŷτ ≤ ϑ+ 〈ŷ, Ax̂〉 − ξϑ− 〈ŷ, Ax̂〉 = −(ξ − 1)ϑ < 0.

Hence, σf > 0. The following theorem gives a result similar to (7.8) and (7.9) for the
Domain-Driven setup.

Theorem 7.2.1. Assume that both primal and dual are strictly feasible and (x, τ, y) ∈ QDD

and we have the additional property that S(y) + yτ ≤ 0, where yτ = y0
τ + τ〈c, x〉. Then,

τ − 1 ≥ σfµ−
1

σf
. (7.19)

Proof. By definition of σf we have

〈ŷ − αy0,
Ax̂− αz0

1− α
〉+ ŷτ − αy0

τ ≤ S(ŷ − αy0) + ŷτ − αy0
τ ≤ 0.

Multiplying both sides with (1− α) and reordering the terms give us (for α = σf)

〈ŷ, Ax̂〉+ ŷτ − σf
(
〈ŷ, z0〉+ ŷτ + 〈y0, Ax̂〉+ y0

τ

)
+ σ2

f

(
〈y0, z0〉+ y0

τ

)
≤ 0.

By (7.18) we have 〈ŷ, Ax̂〉+ ŷτ = −ξϑ and by (5.20) we have 〈y0, z0〉+ y0
τ = −ξϑ. Substi-

tuting these in the above inequality and dividing both sides by σf we get

−
(
〈ŷ, z0〉+ ŷτ + 〈y0, Ax̂〉+ y0

τ

)
≤ ξϑ

(
1

σf
+ σf

)
. (7.20)

Another useful inequality is derived as follows:

−〈y, Ax̂〉 − yτ − 〈ŷ, τAx+ z0〉 − τ ŷτ
= −〈y, Ax̂− σfz0〉 − (1− σf)yτ − 〈ŷ − σfy0, τAx+ z0〉 − τ(ŷτ − σfy0

τ)

+σf
(
−〈y, z0〉 − yτ − 〈y0, τAx+ z0〉 − τy0

τ

)
, by adding and subtracting some terms,

≥ σf
(
−〈y, z0〉 − yτ − 〈y0, τAx+ z0〉 − τy0

τ

)
. (7.21)

87

The last equation is the place we use S(y) + yτ ≤ 0 and the fact that
Ax̂−σf z0

1−σf
∈ D, which

together imply that
−〈y, Ax̂− σfz0〉 − (1− σf)yτ ≥ 0.

We also use the fact that

〈ŷ − σfy0, Ax+
1

τ
z0〉+ (ŷτ − σfy0

τ) ≤ S(ŷ − αy0) + ŷτ − αy0
τ ≤ 0.

We can expand the term in (7.21) in another way:

−〈y, Ax̂〉 − yτ − 〈ŷ, τAx+ z0〉 − τ ŷτ
= −〈A>y0 − (τ − 1)c, x̂〉 − yτ + τ〈c, x〉 − 〈ŷ, z0〉 − τ ŷτ
= (τ − 1)(〈c, x̂〉 − ŷτ)−

(
〈ŷ, z0〉+ ŷτ + 〈y0, Ax̂〉+ y0

τ

)
= (τ − 1)(〈ŷ, Ax̂〉 − ŷτ)−

(
〈ŷ, z0〉+ ŷτ + 〈y0, Ax̂〉+ y0

τ

)
= (τ − 1)ξϑ−

(
〈ŷ, z0〉+ ŷτ + 〈y0, Ax̂〉+ y0

τ

)
, using (7.18). (7.22)

For the final piece, we find the relation between µ and the last term in (7.21)

ξϑµ = −τyτ − 〈A>y0 − (τ − 1)c, τx〉 − 〈y, z0〉, using (5.22),

= −τyτ + τ(τ − 1)〈c, x〉 − 〈y0, τAx+ z0〉+ 〈y0, z0〉 − 〈y, z0〉
=

(
−〈y, z0〉 − yτ − 〈y0, τAx+ z0〉 − τy0

τ

)
+ y0

τ + 〈y0, z0〉
=

(
−〈y, z0〉 − yτ − 〈y0, τAx+ z0〉 − τy0

τ

)
− ξϑ. (7.23)

Combining (7.20), (7.21), (7.22), and (7.23) we get

σf (µ+ 1)ξϑ ≤ (τ − 1)ξϑ+ ξϑ

(
1

σf
+ σf

)
. (7.24)

By cancelling ξϑ from both sides and reordering, we get the result of the theorem.

Similar to Nesterov, Todd, and Ye [56], we define a point (x, τ, y) ∈ QDD an ε-solution
of our problem if

max

{
1

τ
,
ξϑ

τ 2
µ

}
≤ ε. (7.25)

Lemma 7.2.1 and Theorem 7.2.1 yield the following theorem about the solvable case and
its stronger special case of strict primal-dual feasibility for detecting an ε-solution.

88

Theorem 7.2.2. (a) Assume we have strict primal-dual feasibility for the Domain-Driven
problem (5.1). Then, our path following algorithm returns an ε-solution in number of
iterations bounded by

O

(√
ϑ ln

(
ϑ

σfε

))
.

(b) Assume that problem (5.1) is solvable and, in view of Lemma 7.2.1, let

K := min{ξϑ+ 〈y0 − ȳ, z0 − Ax̄〉 : Ax̄ ∈ D, ȳ ∈ D∗, A>ȳ = −c, 〈c, x〉+ S(ȳ) = 0}.

Then, our path following algorithm returns an ε-solution in number of iterations bounded
by

O

(√
ϑ ln

(
ϑK

ε

))
.

7.3 Weak infeasibility and unboundedness detector

We call these detectors weak because they return approximate certificates for the problem.
Assume that for a point (x, τ, y) ∈ QDD and an ε > 0 we have

τ 2

ϑµ
≤ ε. (7.26)

We are interested in the case that at least one of σp or σd defined in (7.1.1) is positive, and
Lemma 7.1.1 implies that τ is bounded. Because τ is bounded and we have

A>
τy

µ
= A>

τy0

µ
− τ(τ − 1)c

µ
,

τy
µ

converges to a point in the null space of A>. If we can confirm that S
(
τy
µ

)
< 0, then

we have an approximate certificate of infeasibility. On the other hand, if 〈c, x〉 becomes a
very large negative number, then Ax dominates the other term in Ax + 1

τ
z0 and we have

an approximate certificate of unboundedness. The reason is that for every vector yc such
that A>y = −c, we have ‖yc‖‖Ax‖ ≥ |〈c, x〉| ≥ K.

We say that (x, τ, y) is an ε-certificate of infeasibility if it satisfies (7.26) and

S
(
τy

µ

)
< −1. (7.27)

89

We say that (x, τ, y) is an ε-certificate of unboundedness if it satisfies (7.26) and

〈c, x〉 < −1

ε
. (7.28)

When we are close to the central path, by Lemma 5.3.1, we have

〈c, x〉+ S
(y
τ

)
≤ −y

0
τ

τ
−
(

(ξ − 1)− κ√
ϑ

)
µϑ

τ 2
. (7.29)

Using this equation, we can prove the following theorem:

Theorem 7.3.1. (weak detector) Assume that at least one of σp or σd defined in (7.1.1) is
positive. Then, our path following algorithm returns either an ε-certificate of infeasibility
or an ε-certificate of unboundedness in number of iterations bounded by

O

(√
ϑ ln

(
1

ϑε
min

{
‖z0‖
σp

,
‖y0‖
σd

}))
. (7.30)

Proof. By Lemma 7.1.1, we have a bound on τ . To satisfy (7.26), we must have µ ≥ τ2

ϑε
.

We can assume that
(

(ξ − 1)− κ√
ϑ

)
> 0, then, when µϑ

τ2 gets large enough, (7.29) implies

that at least one of (7.27) or (7.28) happens.

Let us see how the weak detector behaves in the infeasibility and unbounded cases we
defined above.

7.3.1 Infeasibility

By definition, if there exists ŷ ∈ D∗ such that A>ŷ = 0 and S(ŷ) = −1, we have strong
primal infeasibility, and it becomes strict if we can choose y ∈ intD∗. If we assume that the
problem is not ill-conditioned, then, the dual problem is feasible, i.e., there exists yc ∈ D∗
such that A>yc = −c. The following lemma shows that this property holds for the strict
primal infeasible case:

Lemma 7.3.1. If there exists ŷ ∈ intD∗ such that A>ŷ = 0, then for any vector c, there
exists yc ∈ intD∗ such that A>yc = −c.

Proof. As A has full column rank, there exists a solution for A>y = −c. Then, for a large
enough coefficient α, the point y + αŷ is in intD∗, and we also have A>(y + αŷ) = A>y =
−c.

90

Such yc lets us bound −〈c, x〉. We have

−〈c, x〉 ≤ 〈yc, Ax〉 = 〈yc, Ax+
1

τ
z0〉 − 〈yc,

z0

τ
〉 ≤ S(yc)− 〈yc,

z0

τ
〉. (7.31)

When yc ∈ intD∗, we have S(yc) ≤ ϑ + 〈yc,Φ′∗(yc)〉 by Theorem 4.2.1 that gives us an
explicit bound. When −〈c, x〉 is bounded, Theorem 7.3.1 implies that our weak detector
can detect infeasibility in polynomial time. The next lemma is related to Theorem 7.3.1
and shows that, when −〈c, x〉 is bounded, for every point (x, τ, y) ∈ QDD close to the
central path with a large µ, we have S(y) < 0.

Lemma 7.3.2. Assume that a point (x, τ, y) ∈ QDD satisfies the assumptions of Lemma
5.3.1. If there exists a constant K such that

τ [−y0
τ − τ〈c, x〉] ≤ K,

and we have µ ≥ K
(ξ−1)ϑ−κ

√
ϑ

, then,

S
(
τy

µ

)
< 0.

Proof. By the result of Lemma 5.3.1, if we multiply both sides of (5.31) by τ 2 and reorder
the terms, we have

S (τy) ≤ τ [−y0
τ − τ〈c, x〉]− [(ξ − 1)ϑ− κ

√
ϑ]µ. (7.32)

The result of the lemma yields if we substitute the assumptions in (7.32).

7.3.2 Unboundedness

Let us see the connection of unboundedness with σd.

Lemma 7.3.3. Assume that problem (5.1) is strongly (or strictly) unbounded. Then,
σd > 0, where σd is defined in Definition (7.1.1).

Proof. The definition of unboundedness implies that there exists Ah ∈ rec(D) such that
〈c, h〉 < 0. If σd = 0, there exists {yk} ∈ D∗ such that limk ‖A>yk + c‖ = 0. By
characterization of D∗ in (5.2), we have

0 ≥ 〈yk, Ah〉 = 〈A>yk, h〉 = 〈A>yk + c, h〉 − 〈c, h〉, ∀k.

This gives a contradiction when k tends to +∞.

91

This lemma shows that if the problem is unbounded, τ is bounded by ‖y0‖/σd in Lemma
7.1.1. Using just the fact that the problem is feasible, there exists Ax̂ ∈ D and we have

S
(
τy

µ

)
≥ 〈τy

µ
,Ax̂〉 =

τ

µ
〈A>y, x̂〉 =

τ〈A>y0 − (τ − 1)c, x̂〉
µ

. (7.33)

The above discussion shows that for the points (x, τ, y) ∈ QDD that µ satisfies

2µ ≥ ‖y
0‖
σd
|〈A>y0, x̂〉|+ ‖y

0‖2

σ2
d

|〈c, x̂〉|︸ ︷︷ ︸
=:Kunb,1

, (7.34)

we have S
(
τy
µ

)
≥ −1

2
. Therefore, by Theorem 7.3.1, our weak detector returns an ε-

certificate of unboundedness in polynomial time. Considering the argument of Theorem
7.3.1 and (7.34), we have that for every ε > 0, after at most

O

(√
ϑ ln

(
Kunb,1

ϑ
+

1

ϑε

‖y0‖2

σ2
d

))
(7.35)

iterations we have 〈c, x〉 ≤ −1
ε
.

7.4 Strict infeasibility and unboundedness detector

In the previous section, we saw a weak detector for infeasibility and unboundedness. In
this section, we show that in the case of strict infeasibility and unboundedness, we can
actually find a certificate for the exact problem in polynomial time. The idea is that we
need to project our current point onto a proper set using a suitable norm.

7.4.1 Infeasibility

By definition, if there exists ŷ ∈ intD∗ such that A>ŷ = 0 and S(ŷ) = −1, we have strict
primal infeasibility. To get the exact certificate, we show how to project y onto null(A>)
with respect to a suitable norm. Let us first show that the points of the form Ax + 1

τ
z0

are bounded.

92

Lemma 7.4.1. Assume that there is a point y ∈ intD∗ such that A>y = 0. Then, there
exists a point û := Ax̂+ 1

τ̂
z0 ∈ intD such that for every ξ

ξ+1
≤ τ ≤ tp(z

0) and every x such

that Ax+ 1
τ
z0 ∈ D, we have∥∥∥∥Ax+

1

τ
z0 − û

∥∥∥∥
Φ′′(û)

≤ ϑ+ 2
√
ϑ. (7.36)

Proof. Let us for simplicity define γξ := ξ+1
ξ

. First assume that Ax + γξz
0 ∈ intD is

feasible. Then, because there exists a point y ∈ intD∗ such that A>y = 0, Φ(Ax + γξz
0)

has a minimizer that we denote as x1 and we have A>Φ′(Ax1 + γξz
0) = 0. If we have

〈Φ′(Ax1 +γξz
0), z0〉 ≤ 0, then, for every ξ

ξ+1
≤ τ ≤ tp(z

0) and every x such that Ax+ 1
τ
z0 ∈

D we have

〈Φ′
(
Ax1 + γξz

0
)
, Ax+

1

τ
z0 −

(
Ax1 + γξz

0
)
〉 = 〈Φ′(Ax1 + z0),

1

τ
z0 − ξ + 1

ξ
z0〉 ≥ 0.

Therefore, by using property (4.29) of s.c. barriers, (7.36) holds for û := Ax1 + γξz
0. If

otherwise 〈Φ′(Ax1 + γξz
0), z0〉 > 0, because, by strict infeasibility, there exists a point

ŷ ∈ intD∗ such that A>ŷ = 0 and 〈ŷ, z0〉 ≤ S(ŷ) < 0, by convexity, there exists a
point y ∈ intD∗ such that A>y = 0 and 〈y, z0〉 = 0. This implies that the function
Φ(Ax+ γz0), which is a s.c. barrier in terms of (x, γ), has a minimizer that we denote by
Ax2 + γ2z0. Because this point in a minimizer, for every 1 ≤ τ ≤ tp(z

0) and every x such
that Ax+ 1

τ
z0 ∈ D we have

〈Φ′(Ax2 + γ2z0), Ax+
1

τ
z0 − (Ax2 + γ2z0)〉 ≥ 0, (7.37)

and by the same argument û = Ax2 + γ2z0 satisfies (7.36).

Now assume that Ax + γξz
0 ∈ intD is not feasible. We claim that Φ(Ax + γz0) again

has a minimizer by showing that the set of points Ax + γz0 ∈ D is bounded. Suppose
otherwise. Then, because 1

tp(z0)
≤ γ ≤ γξ, the set D has a nonzero recessive direction Ah.

Consider a point z ∈ intD such that A>Φ′(z) = 0. Then, by a property of s.c. barriers (see
for example [45]-Corollary 3.2.1), we have

0 = 〈Φ′(z), Ah〉 ≥
√
〈Ah,Φ′′(z)Ah〉 ⇒ Ah = 0. (7.38)

This is a contradiction and so the set of points Ax + γz0 ∈ D is bounded. By property
SCB-3 in subsection (4.2.2), Φ(Ax + γz0) has a minimizer and we can repeat the same
argument as above.

93

For the main proof of this section, we define a series of points that get close to the points
on the central path for large enough µ. Consider the following optimization problem for
τ ≥ 1.

min Φ∗(y)
A>y = 0
〈y, z0〉 = −τξϑ.

(7.39)

Let us denote the solution of this problem by ȳ(τ). If we write the optimality conditions for
ȳ(τ), we have Φ′∗(ȳ(τ)) = Ax̄(τ)+ 1

t(τ)
z0, for some x̄(τ) and t(τ). We claim that t(τ) ≥ ξ

ξ+1
.

By Theorem 4.2.1, we have

〈ȳ(τ), z0〉 − ϑ ≤ 〈ȳ(τ),Φ′∗(ȳ(τ))〉 = 〈ȳ(τ), Ax̄(τ) +
1

t(τ)
z0〉 =

1

t(τ)
〈ȳ(τ), z0〉

⇒ −τξϑ− ϑ ≤ −1

t(τ)
τξϑ ⇒ 1

t(τ)
≤ τξ + 1

τξ
≤ ξ + 1

ξ
. (7.40)

This implies that all the points Ax̄(τ) + 1
t(τ)

z0 are bounded using Lemma 7.4.1. Now we

are ready to prove the following lemma that shows ȳ(τ) gets very close to τ
µ
y in local norm

when µ is large enough.

Lemma 7.4.2. Consider a point (x, τ, y) on the central path and ȳ(τ) as the solution of
(7.39). Then, there exists a constant K3 depending on the initial points such that∥∥∥ȳ(τ)− τ

µ
y
∥∥∥2

Φ′′∗ (τ
µ
y)

1 +
∥∥∥ȳ(τ)− τ

µ
y
∥∥∥

Φ′′∗ (τ
µ
y)

≤ K3

µ
. (7.41)

Proof. By using property (4.18) of s.c. functions, we have∥∥∥ȳ(τ)− τ
µ
y
∥∥∥2

Φ′′∗ (τ
µ
y)

1 +
∥∥∥ȳ(τ)− τ

µ
y
∥∥∥

Φ′′∗ (τ
µ
y)

≤ 〈τ
µ
y − ȳ(τ), Ax+

1

τ
z0 − Ax̄(τ)− 1

t(τ)
z0〉. (7.42)

Because ȳ(τ) is the solution of (7.39), we have

〈−ȳ(τ), Ax+
1

τ
z0 − Ax̄(τ)− 1

t(τ)
z0〉 =

(
1

τ
− 1

t(τ)

)
τξϑ. (7.43)

94

We also have

〈τ
µ
y,Ax+

1

τ
z0 − Ax̄(τ)− 1

t(τ)
z0〉 =

τ

µ
〈y, Ax− Ax̄(τ)〉

+

(
1

τ
− 1

t(τ)

)
〈τ
µ
y, z0〉. (7.44)

For the first term of (7.44), by using Lemma 7.4.1, we have

τ

µ
〈y, Ax− Ax̄(τ)〉 =

τ

µ
〈A>y, x− x̄(τ)〉 =

τ

µ
〈A>(y0 + (τ − 1)yc), x− x̄(τ)〉

=
τ

µ
〈y0 + (τ − 1)yc, Ax+

1

τ
z0 − Ax̄(τ)− 1

t(τ)
z0〉

−τ
µ

(
1

τ
− 1

t(τ)

)
〈y0 + (τ − 1)yc, z

0〉

≤ 2τ

µ
‖y0 + (τ − 1)yc‖[Φ′′(û)]−1(ϑ+ 2

√
ϑ) +

τ

µ
|〈y0 + (τ − 1)yc, z

0〉|.

(7.45)

For the second term of (7.44), note that by definition of µ in (5.22), we have

ξϑ

τ
µ = −y0

τ − τ〈c, x〉 − 〈y, Ax+
1

τ
z0〉

⇒ τ

µ
〈y, z0〉 =

τ 2(−y0
τ − 〈c, x〉 − 〈y0, Ax〉)

µ
− τξϑ

≤
τ 2(|y0

τ |+ ‖yc + y0‖[Φ′′(û)]−1(ϑ+ 2
√
ϑ+ ‖û‖Φ′′(û) + ‖z0‖Φ′′(û)))

µ
− τξϑ.

(7.46)

An important fact here is that the last term in (7.46) cancels out (7.43). If we substitute
(7.46) and (7.45) in (7.44) and substitute the result and (7.43) in (7.42), we get (7.41),
where

K3 := 2tp(z
0)‖y0 + (τ − 1)yc‖[Φ′′(û)]−1(ϑ+ 2

√
ϑ) + tp(z

0)|〈y0 + (τ − 1)yc, z
0〉|

+t2p(z
0)(|y0

τ |+ ‖yc + y0‖[Φ′′(û)]−1(ϑ+ 2
√
ϑ+ ‖û‖Φ′′(û) + ‖z0‖Φ′′(û))). (7.47)

Now we can prove the following proposition for our strict detector:

95

Proposition 7.4.1. (Strict primal infeasibility detector) Assume that there exists ŷ ∈
intD∗ such that A>ŷ = 0 and S(ŷ) = −1. Our path-following algorithm returns a point
y ∈ D∗ with A>y = 0 and S(y) ≤ −1 in at most

O
(√

ϑ lnK3

)
iterations.

Proof. By Lemma 7.4.2, if we make µ ≥ 100K3, then we have ‖ȳ(τ)− τ
µ
y‖2

Φ′′∗ (τ
µ
y) ≤ 0.1. Now,

if we project τ
µ
y by the norm defined by Φ′′∗(

τ
µ
y) on the subspace A>y = 0, 〈y, z0〉 = −τξϑ,

the resulted point ŷ must have a distance (in local norm) to ȳ(τ) smaller than 1 and so it
lies in intD∗. We just need to show that S(ŷ) < 0. Let (x, τ, y) be on the central path,

then (let Φ′∗ := Φ′∗

(
τ
µ
y
)

)

〈ŷ,Φ′∗(ŷ)〉 = 〈ŷ,Φ′∗(ŷ)− Φ′∗〉+ 〈ŷ,Φ′∗〉

= 〈ŷ,Φ′∗(ŷ)− Φ′∗〉+ 〈ŷ, Ax+
1

τ
z0〉

≤ ‖ŷ‖Φ′′∗ (ŷ)‖Φ′∗(ŷ)− Φ′∗‖[Φ′′∗ (ŷ)]−1 +
1

τ
〈ŷ, z0〉, using A>ŷ = 0

≤
√
ϑ‖Φ′∗(ŷ)− Φ′∗‖[Φ′′∗ (ŷ)]−1 − ξϑ, using ‖ŷ‖Φ′′∗ (ŷ) ≤

√
ϑ. (7.48)

Note that ‖Φ′∗(ŷ)− Φ′∗‖[Φ′′∗ (ŷ)]−1 is smaller than 1 and so 〈ŷ,Φ′∗(ŷ)〉 ≤ −ξ̃ϑ for some ξ̃ > 1.
By Theorem 4.2.1 we have S(ŷ) < 0 as we want.

7.4.2 Unboundedness

Problem (5.1) is called strictly primal unbounded if Ax ∈ D is feasible and there exists
Ah ∈ int(rec(D)) such that 〈c, h〉 < 0. Note that this definition implies that Ax ∈ intD
is also feasible. For the case of strict unboundedness, for every µ, we define x̄(K) as the
unique solution of the following problem:

min µ
τ
Φ(Ax)− 〈A>y0, x〉

〈c, x〉 ≤ −K, (7.49)

and we also define ȳ(K) := µ
τ
Φ′(Ax̄(K)). By writing the optimality conditions, we have

A>ȳ(K) = A>y0 − t(K)c,

96

for some proper t(K) ≥ 0 that satisfies t(K) ≤ td(y
0). Similar to what we did for the

infeasible case, we want to show that by a proper projection, we can obtain our exact
certificate. For K > 0, let (x, τ, y) be a point on the central path such that 〈c, x〉 =
〈c, x̄(K)〉. Then, by using property (4.18), we have (as before u = Ax+ 1

τ
z0)

‖u− Ax̄(K)‖2
Φ′′(u)

1 + ‖u− Ax̄(K)‖Φ′′(u)

≤ τ

µ
〈y − ȳ(K), Ax+

1

τ
z0 − Ax̄(K)〉

= −τ
µ
〈(τ − t(K))c, x− x̄(K)〉+

1

µ
〈y − ȳ(K), z0〉

=
1

µ
〈y − ȳ(K), z0〉. (7.50)

By showing that the y vectors are bounded, we get our strict unboundedness detector.
Assume that the intersection of D∗ with the null space of A> is the zero vector. Then, the
set of y ∈ D∗ that satisfies A>y = A>y0 − (τ − 1)c for a 1 ≤ τ ≤ td(y

0) is bounded. In
view of this, we have the following proposition which is our strict unboundedness detector:

Proposition 7.4.2. (Strict primal unboundedness detector) Assume that problem (5.1) is
strictly primal unbounded. Then, the following constant

K5 := max{‖y‖ : y ∈ D∗, A>y = A>y0 − (τ − 1)c, 1 ≤ τ ≤ td(y
0)} (7.51)

is well-defined, and for every K > 0, our algorithm returns a point Ax ∈ intD with
〈c, x〉 < −K in at most

O

(√
ϑ ln

(
Kunb,1

ϑ
+
K

ϑ

‖y0‖2

σ2
d

+K5‖z0‖
))

iterations, where Kunb,1 is defined in (7.34).

Proof. Consider Ah ∈ int(rec(D)); by definition of D∗ is (4.37), for every y ∈ D∗ we have
y>Ah < 0. Hence, null(A>) ∩ D∗ = {0}, and by the above explanation, K5 in (7.51) is
well-defined. Also from (7.50) and definition of K5, we have

‖u− Ax̄(K)‖2
Φ′′(u)

1 + ‖u− Ax̄(K)‖Φ′′(u)

≤ 2

µ
K5‖z0‖. (7.52)

This means that if for example µ ≥ 200K5‖z0‖, then
‖u−Ax̄(K)‖2

Φ′′(u)

1+‖u−Ax̄(K)‖Φ′′(u)
≤ 0.1 and the

projection of u with respect to the norm defined by Φ′′(u) into the set {Ax : 〈c, x〉 ≤ −K}
is in intD. Also note that after at most (7.35) number of iterations, we get a point with
〈c, x〉 ≤ −K. Putting these two together, we get the statement of the proposition.

97

Chapter 8

Software and applications

We have designed and analyzed algorithms that achieve the current best iteration com-
plexity bounds in solving a problem in the Domain-Driven setup to a prescribed accuracy.
Even with the best theoretical results, we must show the potential in practice to fully
justify our methods. This chapter is about this transition from theory to applications and
implementation of algorithms. The resulting code based on our algorithms is still under
development and is called DDS (abbreviation for Domain-Driven Solver). This code solves
a large group of problems including those we listed in Chapter 2. We discuss several parts
about the code such as the format of the input and the numerical ideas and tricks we
used in it, for example in calculating the gradients and Hessians efficiently. Note that in
the current version, the algorithm we use is simpler than the one we discussed in previous
chapters. This simpler algorithm uses a primal-dual path following algorithm that has one
parameter τ in addition to the primal and dual variables. This algorithm is described in
Appendix B. We are still working on incorporating more sophisticated algorithmic ideas
and we expect to get much improvement. In this chapter, we mostly focus on the imple-
mentation of different set constraints. One advantage of the Domain-Driven method is
that we can add different set constraints without worrying about the core algorithm that
can be improved independently.

Before showing the format of input for our set constraints, let us see the format of input
for some other famous solvers.

98

8.1 Format of the input for two famous solvers

Before giving the format of the input for the problems that our code accepts, let us take
a look at some other well-known solvers. [37] is a survey by Mittelmann about solvers for
conic optimization, which gives an overview of the major codes available for the solution of
linear semidefinite (SDP) and second-order cone (SOCP) programs. Many of these codes
also solve linear programs (LP). We consider SeDuMi from the list. We also look at CVX,
a user-friendly interface for convex optimization. CVX is not a solver, but is a modeling
system that (by following some rules) detects if a given problem is convex and remodels it
as the input for solvers such as SeDuMi.

8.1.1 SeDuMi

For SeDuMi, our problem is in the format:

min 〈c, x〉
s.t. Ax = b,

x ∈ K,
(8.1)

where our cone K can be a direct sum of nonnegative rays (leading to LP problems),
second-order cones or semidefinite cones. We give as the input A, b and c and a structure
array K. The vector of variables has a “direct sum” structure. In other words, the set of
variables is the direct sum of free, linear, quadratic, or semidefinite variables. The fields of
the structure array K contain the number of constraints we have from each type and their
sizes. SeDuMi can be called in Matlab by the command

[x,y] = sedumi(A,b,c,K);

and the variables are distinguished by K as follows:

1. K.f is the number of free variables, i.e., in the variable vector x, x(1:K.f) are free
variables.

2. K.l is the number of nonnegative variables.

3. K.q lists the dimension of Lorentz constraints.

4. K.s lists the dimensions of positive semidefinite constraints.

99

For example, if K.l=10, K.q=[3 7] and K.s=[4 3], then x(1:10) are non-negative. Then
we have x(11) >= norm(x(12:13)), x(14) >= norm(x(15:20)), and mat(x(21:36),4)

and mat(x(37:45),3) are positive semidefinite. To insert our problem into SeDuMi, we
have to write it in the format of (8.1) . We also have the choice to solve the dual problem
because all of the above cones are self-dual.

8.1.2 CVX

CVX is an interface that is more user-friendly than solvers like SeDuMi. It provides many
options for giving the problem as an input, and then translates them to an eligible format
for a solver such as SeDuMi. We can insert our problem constraint-by-constraint into CVX,
but they must follow a protocol called Disciplined convex programming (DCP). DCP has a
rule-set that the user has to follow, which allows CVX to verify that the problem is convex
and convert it to a solvable form. For example, we can write a <= constraint only when
the left side is convex and the right side is concave, and to do that, we can use a large class
of functions from the library of CVX.

The advantage of CVX is that we do not have to be worried about the structure of
the variables, and instead we can insert our problem in a more natural way. For example,
consider the following problem:

min{‖Ax− b‖2 : l ≤ x ≤ u}.

We can insert this problem in CVX as:

cvx begin
variable x(n);
minimize(norm(A*x−b));
subject to

x >= l;
x <= u;

cvx end

However, to insert it into SeDuMi, we have to do some modification, for example like this:

min t
s.t. y = Ax− b,

x̄ = x− l,
x̂ = u− x,
‖y‖ ≤ t, x̄, x̂ ≥ 0.

(8.2)

100

8.2 How to use the DDS code

In this section, we explain the format of the input for solving different classes of the
optimization problems.

8.2.1 Solving linear programming and SOCP with DDS

Assume that we want to solve the following optimization problem with our code:

min c>x

s.t. ALx+ bL ≥ 0,

‖AiSx+ biS‖ ≤ (giS)>x+ diS, i = 1, . . . , `, (8.3)

where AL is an mL×nL matrix and AiS is an mi
S ×niS matrix for i = 1, . . . , `. To give this

problem as an input to DDS, we construct the following matrices:

A =

AL
(g1
S)>

A1
S
...

(g`S)>

A`S

, b =

bL
d1
S

b1
S
...
d`S
b`S

Z.L = mL, Z.SOCP = [m1

S, . . . ,m
`
S]>. (8.4)

Then x = DDS(c, A, b, Z) solves the above optimization problem. Let us see an example:

Example 8.2.1. Assume that we have

min c>x

s.t. [−2, 1]x ≤ 1,∥∥∥∥[2 1
1 3

]
x+

[
3
4

]∥∥∥∥ ≤ 2. (8.5)

Then we define

A =

−2 1
0 0
2 1
1 3

 , b =

1
2
3
4

Z.L = 1, Z.SOCP = 2. (8.6)

101

8.2.2 Adding SDP to DDS

Consider an SDP constraint in standard inequality form:

F i
0 + x1F

i
1 + . . .+ xnF

i
n � 0, i = 1, . . . , `. (8.7)

F i
j ’s are ni×ni symmetric matrices. The above optimization problem is in the matrix form.

To formulate it in our setup, we need to write it in the vector form. We have two functions
coming with our code, sm2vec(·) and vec2sm(·). sm2vec(·) takes an n × n symmetric
matrix and change it into a n2 vector by stacking the columns of it on top of one another.
vec2sm(·) changes a vector into a symmetric matrix such that

vec2sm(sm2vec(X)) = X. (8.8)

By this definition, it is easy to check that for any two n× n symmetric matrices X and Y
we have

〈X, Y 〉 = sm2vec(X)>sm2vec(Y). (8.9)

To give (8.7) to DDS as an input, we define:

b :=

 sm2vec(F 1
0)

...
sm2vec(F `

0)

 , A :=

 sm2vec(F 1
1), . . . , sm2vec(F 1

n)
...

sm2vec(F `
1), . . . , sm2vec(F `

n)

 ,
Z.SDP = [n1 . . . n`]>. (8.10)

Then DDS(c, A, b, Z) solves the above optimization problem. To add linear or SOCP con-
straints, we stack b and A made in the previous subsection on the top of those constructed
for SDP in this subsection.

Example 8.2.2. Assume that we want to find scalars x1, x2, and x3 such that x1+x2+x3 ≥
1 and the maximum eigenvalue of A0 + x1A1 + x2A2 + x3A3 is minimized, where

A0 =

 2 −0.5 −0.6
−0.5 2 0.4
−0.6 0.4 3

 , A1 =

 0 1 0
1 0 0
0 0 0

 , A2 =

 0 0 1
0 0 0
1 0 0

 , A3 =

 0 0 0
0 0 1
0 1 0

 .
We can write this problem as

min t

s.t. −x1 − x2 − x3 ≤ −1,

tI − (A0 + x1A1 + x2A2 + x3A3) � 0. (8.11)

102

To solve this problem, we define:

b :=

−1
−2
0.5
0.6
0.5
−2
−0.4
0.6
−0.4
−3

, A :=

−1 −1 −1 0
0 0 0 1
−1 0 0 0
0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0
0 −1 0 0
0 0 −1 0
0 0 0 1

c = (0, 0, 0, 1)>, Z.L = 1, Z.SDP = 3.

Then DDS(c, A, b, Z) gives the answer x = (1.1265, 0.6,−0.4, 3), which means the mini-
mum largest eigenvalue is 3.

Let us elaborate more on calculating the gradient and Hessian for SDP part. For SDP
(8.7), we have:

Φ(Z) = − ln(det(F0 + Z)),

Φ∗(Y) = −n− 〈F0, Y 〉 − ln(det(−Y)). (8.12)

For function f = − ln(det(X)), we have:

〈f ′(X), H〉 = −Tr(X−1H),

〈f ′′(X)H,H〉 = Tr(X−1HX−1H). (8.13)

To implement our algorithm, for each matrix X, we need to find the corresponding gradient
gX and Hessian HX , such that for any symmetric positive semidefinite matrix X and
symmetric matrix H we have:

−Tr(X−1H) = −g>Xsm2vec(H),

Tr(X−1HX−1H) = sm2vec(H)>HXsm2vec(H). (8.14)

It can be shown that gX = sm2vec(X−1) and HX = X−1 ⊗X−1, where ⊗ stands for the
Kronecker product of two matrices. Although this representation is theoretically nice, it
is not efficient to calculate the inverse of a matrix explicitly. As we explain, we do not
form any inverse of the matrix in our code. Consider forming A>Φ′′(u)A for calculating

103

the search directions in (B.3). Usually in practice, matrix A is tall and thin in our setup.
Hence, it may not be efficient to form Φ′′(u) as its size may be much bigger than A>Φ′′(u)A.
In our code, we do not form Φ′′(u) and we have a function

hessian A(b,Z,w,A)

that directly returns A>Φ′′(u)A. Note that Φ′′(u) has a block diagonal structure, and each
block of the SDP part is equal to HX defined in (8.14) for a properly chosen X. Hence,
calculating A>Φ′′(u)A for the SDP part reduces to calculating v>HXw for two vectors v
and w. Using (8.14), we have

v>HXw = Tr(X−1vec2sm(v)X−1vec2sm(w)). (8.15)

Now, we calculate X−1vec2sm(v) and X−1vec2sm(w) by solving linear systems of equa-
tions instead of explicitly forming X−1.

Other numerical difficulties happen for calculating the damped Newton steps in (B.6)
and (B.7), specially when the iterates are getting close to the boundary. In DDS, we have
different functions to calculate each part of the terms in (B.6) and (B.7). In our functions,
we use the properties of Kronecker product that for matrices A, B, and X of proper size,
we have

(B> ⊗ A)sm2vec(X) = sm2vec(AXB),

(A⊗B)−1 = A−1 ⊗B−1. (8.16)

For calculating the dual damped Newton step in (B.7), we need to calculate [Φ′′∗(y)]−1, but
we avoid it in our code by using the following formula

[Φ′′∗(y)]−1 = Φ′′(Φ′∗(y)). (8.17)

For the blocks of the SDP part, we do not even need to use (8.17), because by using the
second property in (8.16), for HX = X−1 ⊗X−1 we have

(HX)−1 = (X−1 ⊗X−1)−1 = X ⊗X. (8.18)

In our code, as we explained above, we do not explicitly form [Φ′′∗(y)]−1 and the function

hessian Leg inv A(b,Z,y,A)

104

returns A>[Φ′′∗(y)]−1A directly. We also have the following functions to calculate different
parts of the dual damped Newton step direction. The structure of the functions are almost
the same, but there are small differences to make it more efficient.

hessian Leg A(Z,y,A)
hessian Leg inv V grad(b,Z,y)
hessian Leg inv V(b,Z,y,v)

8.2.3 Adding sets created by the epigraph of a matrix norm

Assume that we have constraints of the form

X − UU> � 0,

X = X0 +
∑̀
i=1

xiXi,

U = U0 +
∑̀
i=1

xiUi, (8.19)

where Xi, i ∈ {0, . . . , `}, are m×m symmetric matrices, and Ui, i ∈ {0, . . . , `}, are m× n
matrices. We are interested in the case that m � n. We discussed in Chapter 2 how we
use the m-s.c. barrier (2.9) for the set {(X,U) : X − UU> � 0}, with LF conjugate (5.5).
We also mentioned that a special but very important application is minimizing the nuclear
norm of the matrix.

Our code accepts constraints in the form (8.19) and uses the more efficient s.c. barrier
to handle them. We have two functions m2vec and vec2m for converting matrices (not
necessarily symmetric) to vectors and vise versa. The field of variable Z for the constraints
in the form of (8.19) is Z.EO2N (abbreviated Epigraph of Operator 2-Norm). Z.EO2N
is a k× 2 matrix, where k is the number of constraints of this type, and each row is of the
form [m n]. For each constraint of the form (8.19), the corresponding parts in A and b are

A =

[
m2vec(U1, n) · · · m2vec(U`, n)
sm2vec(X1) · · · sm2vec(X`)

]
, b =

[
m2vec(U0, n)
sm2vec(X0)

]
. (8.20)

Example 8.2.3. Assume that we have matrices

U0 =

[
1 0 0
0 1 1

]
, U1 =

[
−1 −1 1
0 0 1

]
, U2 =

[
1 0 0
0 1 0

]
, (8.21)

105

and our goal is to solve

min t

s.t. UU> � tI,

U = U0 + x1U1 + x2U2. (8.22)

Then the parameters of the code are

A =

[
m2vec(U1, 3) m2vec(U2, 3) zeros(6, 1)
zeros(4, 1) zeros(4, 1) sm2vec(I2×2)

]
, b =

[
m2vec(U0, 3)
zeros(4, 1)

]
,

c = (0, 0, 1), Z.EO2N = [2 3]. (8.23)

CVX does not accept a constraint of the form X − UU> � 0 and we need to give the
SDP representation. By doing that, both codes give the solution 0.407105. However, if we
change c to c = (0, 0,−1), the problem is unbounded and our code returns unboundedness,
but CVX fails to solve the problem.

Example 8.2.4. We consider minimizing the nuclear norm over a subspace. Consider the
following optimization problem:

min ‖X‖∗
s.t. Tr(XU1) = 1

Tr(XU2) = 2, (8.24)

where

U1 =

[
1 0 0 0
0 1 0 0

]
, U2 =

[
0 0 1 0
0 0 0 1

]
. (8.25)

By using (2.10), the dual of this problem is

min −u1 − 2u2

s.t. ‖u1U1 + u2U2‖ ≤ 1. (8.26)

To solve this problem with our code, we define

A =

[
m2vec(U1, 4) m2vec(U2, 4)
zeros(4, 1) zeros(4, 1)

]
, b =

[
zeros(8, 1)
sm2vec(I2×2)

]
,

c = (−1,−2), Z.EO2N = [2 4]. (8.27)

106

If we solve the problem, the optimal value is −2.2360. Now the dual solution is (Y, V) and
1
τ
V is the solution of (8.24) with objective value 2.2360. We have

X∗ :=
1

τ
V =

0.5 0
0 0.5
1 0
0 1

 . (8.28)

What we did in the last example can be done in general. For the optimization problem

min ‖X‖∗
s.t. Tr(XUi) = ci, i ∈ {1, · · · , l}, (8.29)

where X is n×m, we solve the dual problem by defining

A =

[
m2vec(U1, n) · · · m2vec(Ul, n)
zeros(m2, 1) · · · zeros(m2, 1)

]
, b =

[
zeros(mn, 1)
sm2vec(Im×m)

]
,

Z.EO2N = [m n]. (8.30)

Then, 1
τ
V is the optimal solution for (8.29).

Let us see how to calculate the first and second derivatives of functions in (2.9) and
(5.5).

Proposition 8.2.1. (a) Consider Φ(X,U) defined in (2.9). Let, for simplicity, X̄ :=
X − UU>, then, we have

Φ′(X,U)[(dX , dU)] = Tr(−X̄−1dX + X̄−1(dUU
> + Ud>U)),

Φ′′(X,U)[(dX , dU), (d̄X , d̄U)] = Tr(X̄−1dXX̄
−1d̄X)

−Tr(X̄−1d̄XX̄
−1(dUU

> + Ud>U))

−Tr(X̄−1dXX̄
−1(d̄UU

> + Ud̄>U))

+Tr(X̄−1(dUU
> + Ud>U)X̄−1(d̄UU

> + Ud̄>U))

+2Tr(X̄−1dU d̄
>
U). (8.31)

(b) Consider Φ∗(Y, V) defined in (5.5), we have

Φ′∗(Y, V)[(dY , dV)] = −1

2
Tr(V >Y −1dV) +

1

4
Tr(Y −1V V >Y −1dY)− Tr(Y −1dY),

Φ′′∗(Y, V)[(dY , dV), (d̄Y , d̄V)] = −1

2
Tr(d>V Y

−1d̄V)

+
1

2
Tr(Y −1dV V

>Y −1d̄Y) +
1

2
Tr(Y −1d̄V V

>Y −1dY)

−1

2
Tr(Y −1dY Y

−1d̄Y Y
−1V V >) + Tr(Y −1dY Y

−1d̄Y).

107

Proof. For the proof we use the fact that if g = − ln(det(X)), then g′(X)[H] = Tr(X−1H).
Also note that if we define

g(α) := − ln(det(X + αdX − (U + αdU)(U + αdU)>)), (8.32)

then
g′(0) = Φ′(X,U)[(dX , dU)], g′′(0) = Φ′′(X,U)[(dX , dU), (dX , dU)],

and similarly for Φ∗(Y, V). We do not bring all the details, but we show how the proof
works. For example, let us define

f(α) := Tr((Y + αdY)−1V V >Y −1dY), (8.33)

and we want to calculate f ′(0). We have

f ′(0) := lim
α→0

f(α)− f(0)

α

= Tr

(
lim
α→0

(Y + αdY)−1V V >Y −1dY − Y −1V V >Y −1dY
α

)
= Tr

(
lim
α→0

(Y + αdY)−1
[
V V >Y −1dY − (I + αdY Y

−1)V V >Y −1dY
]

α

)
= Tr

(
lim
α→0

(Y + αdY)−1
[
dY Y

−1V V >Y −1dY
])

= Tr
(
Y −1dY Y

−1V V >Y −1dY
)
. (8.34)

Note that all the above formulas for the derivatives are in matrix form. Let us explain
briefly how to convert them to the vector form for the code. We explain it for the derivatives
of Φ(X,U) and the rest are similar. From (8.31) we have

Φ′(X,U)[(dX , dU)] = Tr(−X̄−1dX) + Tr(X̄−1dUU
>) + Tr(X−1Ud>U)),

= Tr(−X̄−1dX) + 2Tr(U>X̄−1dU). (8.35)

Hence, if g is the gradient of Φ(X,U) in the vector form, we have

g =

[
2×m2vec(X−1U, n)
−sm2vec(X−1)

]
. (8.36)

The second derivatives are trickier. Assume that for example we want the vector form h
for Φ′′(X,U)[(dX , dU)]. By using (8.31) we can easily get each entry of h; consider the
identity matrix of size m2 +mn. If we choose (d̄X , d̄U) to represent the jth column of this
identity matrix, we get h(j). Practically, this can be done by a for loop, which is not
efficient. What we did in the code is to implement this using matrix multiplication.

108

8.2.4 Adding quadratic constraints

Assume that we want to add the following constraints to our code:

x>A>i Aix+ b>i x+ di ≤ 0, i = 1, . . . , `, (8.37)

where each Ai is mi × n with rank mi. Each of the constraints in (8.37) can be written as

u>u+ w + d ≤ 0

u = Aix, w = b>i x, d = di. (8.38)

We can associate the following s.c. barrier and its LF conjugate to quadratic constraints:

Φ(u,w) = − ln(−(u>u+ w + d)),

Φ∗(y, η) =
y>y

4η
− 1− dη − ln(η). (8.39)

To give constraints in (8.37) as an input to our code, we construct the following matrices:

A =

b>1
A1
...
b>l
A`

 , b =

d1

0
...
d`
0

Z.QC = [m1, . . . ,m`]

>. (8.40)

8.2.5 Adding constraints defined by epigraph of univariate func-
tions

As we mentioned in Chapter 2, our code accepts constraints of the form (2.3) for fi’s from
the first 5 rows of Table 2.2. However, every interesting univariate convex function can be
added in the same fashion. The corresponding s.c. barriers and their LF conjugate for the
first three rows are shown in Table (5.1.2). We see numbers 4 and 5 explicitly later in the
chapter. In view of (5.4), to represent a constraint of the from (2.3), for given γ ∈ R and
βi ∈ R, i ∈ {1, · · · , `}, we can define our set Di as

Di := {(w, si, ti) : w + γ ≤ 0, fi(si + βi) ≤ ui, ∀i} , (8.41)

109

and our matrix A represents w =
∑`

i=1 αiui + g>x and si = aTi x, i ∈ {1, · · · , `}. As can
be seen, to show our set as above, we need to add some artificial variables ui’s to our
formulations. DDS code does it internally and we do not need to insert them. Let us
assume that we want to add the following k constraints to our code

∑
type

`jtype∑
i=1

−αj,typei ftype((a
j,type
i)>x+ βj,typei) + g>j x+ γj ≤ 0, j = 1, . . . , k.

From now on, type indexes the rows of Table 2.2. To add these constraints, we add two
fields to Z. The first one, Z.TD1, is a matrix with 3 columns. In each row, the first entry
is the index of constraint, the second entry is the type, and the third entry is the number
of functions in that type we have in that constraint. Let us say that in the jth constraint,
we have lj2 functions of type 2 and lj3 functions of type 3, then the corresponding columns
in Z.TD1 are as follows

Z.TD1 =

...

j 2 lj2
j 3 lj3

...

 . (8.42)

Note that the index of constraints must start from 1 and all the rows corresponding to
each constraint must be consecutive. The types can be in any order, but they must match
with the rows of A and b.

We also add Z.TD2 which is a row vector that contains all the coefficients in each
constraint. Note that the coefficients must be in the same order as their corresponding
rows in A. If in the first constraint we have 2 functions of type 2 and 1 function of type 3,
it starts as

Z.TD2 = [α1,2
1 , α1,2

2 , α1,3
1 , . . .]. (8.43)

To add the rows to A, for each constraint j, we first add gj, then aj,typei ’s in the order
that matches Z.TD1 and Z.TD2. We do the same thing for vector b (first γj, then βj,typei ’s).
The part of A and b corresponding to the jth constraint is as follows if we have all five

110

types

A =

g>j

aj,11
...

aj,1
lj1
...

aj,51
...

aj,5
lj5

, b =

γj

βj,11
...

βj,1
lj1
...

βj,51
...

βj5
lj5

(8.44)

Let us see the following example:

Example 8.2.5. Assume that we want to solve

min c>x

s.t. − ln(x2 + 2x3 + 55) + 2ex1+x2+1 + x1 − 2 ≤ 0,

−3 ln(x1 + 2x2 + 3x3 − 30) + e−x3−3 − x3 + 1 ≤ 0,

x ≥ 0. (8.45)

For this problem, we define:

A =

−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 2
1 1 0
0 0 −1
1 2 3
0 0 −1

, b =

0
0
0
−2
55
1
1
−30
−3

,

Z.L = 3, Z.TD1 =

1 1 1
1 2 1
2 1 1
2 2 1

 , Z.TD2 = [1 2 3 1]. (8.46)

The first three rows of A and b are for linear constraints. Here is the code in CVX:

111

cvx begin
variable x(3)
minimize (c'*x)
subject to

x>=0;
−log(x(2)+2*x(3)+55) + 2*exp(x(1)+x(2)+1)+x(1)−2 <= 0;
−3*log(x(1)+2*x(2)+3*x(3)−30) + exp(−x(3)−3) −x(3)+1 <= 0;

cvx end

CVX uses successive approximation method for these kinds of problems. When c = (1, 1, 1),
both codes return the correct answer with objective value of 10.0165. When we put c =
(1, 1,−1), the problem is unbounded. CVX does not return a meaningful solution, but our
code returns (0, 0, 1.23× 106) as a certificate.

Let us add a function of type 3 to the first constraint and change sign constraints:

min c>x

s.t. − ln(x2 + 2x3 + 55) + 2ex1+x2+1 + (x2 − 3x3) ln(x2 − 3x3) + x1 − 2 ≤ 0,

−3 ln(x1 + 2x2 + 3x3 − 30) + e−x3−3 − x3 + 1 ≤ 0,

x2, x3 ≥ 0, x1 ≤ 0. (8.47)

For CVX to recognize it as a convex optimization problem, we use entropy function entr(z) =
−z ln(z) from its library. For c = (0, 1, 1), both codes return x = (−13.2167, 14.4958, 4.8322)
as the optimal solution. If we change c = (0, 1, 1), the problem becomes unbounded. DDS
returns 108 × (−4.9050, 1.6350, 0.5450) as a certificate, but CVX does not return a mean-
ingful solution.

Adding the constraints for |z|p ≤ t, p ≥ 1:

Now we want to add the sets defined by constraints |z|p ≤ t, p ≥ 1. These functions are of

type 4. The corresponding s.c. barrier is Φ(z, t) = − ln(t
2
p − z2) − 2 ln(t). Let us first see

how to calculate the LF conjugate. We need to solve the following optimization problem:

min
z,t

{
yz + ηt+ ln(t

2
p − z2) + 2 ln(t)

}
. (8.48)

The optimal solution satisfies:

y =
2z

t
2
p − z2

, η = −
2
p
t

2
p
−1

t
2
p − z2

− 2

t
. (8.49)

112

By doing some algebra, we can see that z and t satisfy:

y

(
2(1

p
+ 1) + 1

p
yz

−η

) 2
p

− yz2 − 2z = 0,

t =
2(1

p
+ 1) + 1

p
yz

−η
. (8.50)

Let us define z(y, η) as the solution of the first equation in (8.50). For each pair (y, η),
we can calculate z(y, η) by few iterations of Newton method. Then, the first and second
derivative can be calculated in terms of z(y, η).

In our code, we have two functions for these derivatives.

p1 TD(y,eta,p) % returns z
p1 TD der(y,eta,p) % returns [z y z eta z y,y z y,eta z eta,eta]

To add these kind of functions to our code, we follow the same rule as before, but the
type of the functions is 4. The difference with previous 3 cases is that we also need to give
the value of p for each function. To do that, we need to add another field to Z which is
Z.TD3. Z.TD3 is in the same length as Z.TD2 and it has zero for functions of types 1 to
3. For functions of type 4 and 5, we put the power p in exactly the same place we put the
coefficient of the function. Let us see an example:

Example 8.2.6.

min c>x

s.t. 2exp(2x1 + 3) + |x1 + x2 + x3|2 + 4.5|x1 + x2|2.5 + |x2 + 2x3|3 + x1 − 2 ≤ 0.

For this problem, we define:

A =

1 0 0
2 0 0
1 1 1
1 1 0
0 1 2

 , b =

−2
3
0
0
0

 ,
Z.TD1 =

[
1 2 1
1 4 3

]
, Z.TD2 = [2 1 4.5 1], Z.TD3 = [0 2 2.5 3].

Our code solves this problem and returns objective value −2.87198. CVX also solves
the problem by using successive approximation method and returns the same solution.

113

Adding the constraints for −zp ≤ t, 0 ≤ p ≤ 1, z > 0:

Now we want to add the sets defined by constraints −zp ≤ t, 0 ≤ p ≤ 1, z > 0. These
functions are of type 5. The corresponding s.c. barrier is Φ(z, t) = − ln(zp + t)− ln(z). Let
us first see how to calculate the LF conjugate. We need to solve the following optimization
problem:

min
z,t
{yz + ηt+ ln(zp + t) + ln(z)} . (8.51)

The optimal solution satisfies:

y =
−pz(p−1)

zp + t
− 1

z
, η = − 1

zp + t
. (8.52)

By doing some algebra, we can see that z satisfies:

y − ηpz(p−1) +
1

z
= 0. (8.53)

Similar to the previous case, let us define z(y, η) as the solution of the first equation in
(8.53). For each pair (y, η), we can calculate z(y, η) by few iterations of Newton method.
Then, the first and second derivative can be calculated in terms of z(y, η). The important
point is that when we calculate z(y, η), then the derivatives can be calculated by explicit
formulas. In our code, we have two functions

p2 TD(y,eta,p) % returns z
p2 TD der(y,eta,p) % returns [z y z eta z y,y z y,eta z eta,eta]

The inputs to the above functions can be vectors. Table 8.2.5 is the continuation of Table
5.1.1.

8.3 Equality constraints

In the Domain-Driven formulation (5.1), to have simplicity, we prefer that D does not
contain a straight line, which is equivalent to the non-degeneracy of the corresponding s.c.
barrier Φ(·). This restriction makes it difficult to insert equality constraints. With equality
constraints, the feasible region may be as

{x : Bx = d,Ax ∈ D}, (8.54)

114

Table 8.1: s.c. barriers and their LF conjugate for rows 4 and 5 of Table 2.2

s.c. barrier Φ(z, t) Φ∗(y, η)

4 − ln(t
2
p − z2)− 2 ln(t) −

(
2
p

+ (1
p
− 1)yz(y, η)

)
− 2 + 2 ln

(
2(1
p

+1)+ 1
p
yz(y,η)

−η

)
+ ln

((
2(1
p

+1)+ 1
p
yz(y,η)

−η

) 2
p

− z2(y, η)

)
5 − ln(zp + t)− ln(z) η(p− 1)zp(y, η)− 2− ln(−η) + ln(z(y, η))

where B and d are a matrix and a vector of appropriate sizes. Mathematically, dealing
with that is not a problem. For any matrix Z that its columns form a basis for the null
space of B, we can write all the solutions of Bx = d as x0 + Zw, where x0 is any solution
of Bx = d, then the feasible region in (8.54) is equivalent to:

Dw := {w : AZw ∈ (D − Ax0)}. (8.55)

D−Ax0 is a translation of D with the s.c. barrier Φ(z−Ax0). Now we have to work with
the matrix AZ instead of A. Even though this procedure is straightforward in theory, there
might be numerical challenges in application. For example, if we have a nice structure for
A, such as sparsity, multiplying with Z may ruin the structure.

Finding Z can be done efficiently by using QR factorization:

BT =
[
Y Z

] [R
0

]
We can also use Y and R to find a solution of Bx = d as x0 = Y R−1d. QR factorization
is ideal from a numerical stability point of view. One problem with this approach is that
if A is sparse, it may be very costly to maintain sparsity in AZ. Hence, this approach
might only be efficient for medium-size problems, unless one finds efficiently a Z matrix
that maintains the sparsity of A in AZ.

There is another approach for finding Z that is less costly, but also can give rise to nu-
merical instabilities. We can denote this approach as the elimination approach. Assuming
that B has full row rank, there exist permutation matrices P such that

BP =
[
B1 B2

]
,

115

where B1 is a non-singular matrix. Then we can define:

Z = P

[
−B−1

1 B2

I

]
, x0 = P

[
B−1

1 d
0

]
.

This approach is very efficient if the number of equality constraints is much less than the
number of variables.

8.4 More numerical examples

In this section, we present some numerical examples of running our code. The first set of
examples are from the Dimacs library for LP, SOCP, and SDP [58]. We bring the name
and properties of the example and the output of our code. Note that the problems in the
library are for the standard equality form and we solve the dual of the problems. Here is
a typical output for the problem torusmp-8-50.

Iteration: t Rel-Duality-Gap Pfeas Dfeas Obj-Val

1: | 1.36e+00 | 1.37e+00 | 8.60e-01 | 0.00e+00 | 1.789771e+01

2: | 1.71e+00 | 7.10e-01 | 7.46e-01 | 0.00e+00 | 5.378506e+01

3: | 2.13e+00 | 4.41e-01 | 6.16e-01 | 0.00e+00 | 1.071573e+02

4: | 2.67e+00 | 3.00e-01 | 4.90e-01 | 0.00e+00 | 1.703928e+02

33: | 1.34e+07 | 3.74e-08 | 7.89e-08 | 0.00e+00 | 5.278086e+02

34: | 2.67e+07 | 1.87e-08 | 3.95e-08 | 0.00e+00 | 5.278086e+02

35: | 5.34e+07 | 9.35e-09 | 1.97e-08 | 0.00e+00 | 5.278086e+02

36: | 1.07e+08 | 4.68e-09 | 9.86e-09 | 0.00e+00 | 5.278087e+02

Status: Solved; returned vector x is an optimal solution.

Primal feasibility; norm(z0/t)/(1+norm(Ax+z0/t))= 9.86e-09 <= tol=1.00e-08.

Dual feasibility; norm(A*(y/t)+c)/(1+norm(c))= 0.00e+00 <= tol = 1.00e-08.

Optimal objective value: 5.27808654e+02.

Table 8.2 shows the result for some problems from the Dimacs library.

116

Table 8.2: Numerical results for some problem from the Dimacs library for tol = 10−8.

Name size of A SDP SOCP LP Iterations

torusmp-8-50 262144× 512 [1; 512] - - 36

torusg3-8 262144× 512 [1; 512] - - 38

qssp30 7566× 3691 - [1891; 1891× 4] 2 83

turss5 3301× 208 [34; 33× 10, 1] - - 86

turss8 11914× 496 [34; 33× 19, 1] - - 91

nb 2383× 123 - [793; 793× 3] 4 49

nb L1 3176× 915 - [793; 793× 3] 797 66

nb L2 4195× 123 - [839; 1× 1677, 838× 3] 4 38

nb L2 bessel 2641× 123 - [839; 1× 123, 838× 3] 4 41

copo14 3108× 1285 [14; 14× 14] - 364 54

copo23 13938× 5820 [23; 23× 23] - 1771 72

filter48 3284× 969 [1; 48] [1; 49] 931 114

filtinf1 3395× 983 [1; 49] [1; 49] 945 9 (unbounded)

117

Chapter 9

Conclusion

In this thesis, we designed infeasible-start primal-dual algorithms for convex optimization
that not only achieve the current best iteration complexity bounds for “modifying the
RHS” type formulations, but also show considerable potential in practice. We defined the
Domain-Driven setup for convex optimization. This setup is minimizing a linear function
over the intersection of an affine subspace and a convex set D, which is represented as
the domain of a s.c. barrier Φ. Φ and its Legendre-Fenchel conjugate Φ∗ can be evaluated
efficiently in the Domain-Driven setup. Several interesting classes of convex optimization
problems were proved to be in the Domain-Driven setup. We emphasized the generality
of the setup by showing that direct sum operator lets us solve optimization problems with
arbitrarily large number of constraints from each set type. We defined a notion of duality
gap for the Domain-Driven setup and designed an infeasible-start primal-dual central path
with parameter µ.

A class of algorithms was designed to follow the path efficiently to µ = +∞. We showed
how to interpret a point returned by the algorithms to determine the status of the problem.
We defined several possible statuses for a problem in the Domain-Driven setup and proved
that our algorithms can detect many of them in polynomial time, with the current best
iteration complexity bounds. We finished the thesis with the implementation chapter and
the introduction of our code DDS.

The continuation of this research leans more towards the applications, and improving
and expanding the code. Our plan is to release a robust code that solves a large class of
convex optimization problems. We can split our future goals into two categories.

118

9.1 Improving the algorithm in the code

The algorithm we use in the current version of the code is using one additional variable τ
as the parameter of the path. We have not been able to prove the best theoretical results
for this practical version of the algorithm. The algorithm we designed and analyzed in this
thesis is more complicated and uses two additional parameters τ and µ. There is a paradox
about optimization algorithms that the ones working well in practice are not necessarily
the best performers in terms of worst-case complexity analyses. However, we believe that a
rigorous and robust code must be supported by a strong theory. We will continue looking
for opportunities to improve the software by continuing our experiments on the ideas arising
from our theoretical analysis. We also intend to use our computational experience with
our software to generate new algorithmic ideas as well as ideas for complexity analysis.

In addition to the core algorithm, there are many other factors that affect the per-
formance of a code. One of the most important ones is the linear system solver. As we
explained briefly in Chapter 8 and also in Appendix B, we have to solve at least one linear
system in each iteration, and the performance of the linear solver is a bottleneck for the
performance of the code. There are many different approaches for solving linear systems
that exploit the structure of the system, such as sparsity pattern. To have a competent
code, we have to find a robust linear system solver that best suits our setup and code.

The algorithms we designed in this thesis are second-order algorithms, which means
they use the exact Hessian of the underlying functions. Even though these algorithms
are the best in terms of accuracy, they are not generally suitable for huge scale data. An
approach that we want to use in our code is quasi-Newton-type methods that have been
proven to provide good performance in large scale data. In these methods, second-order
information is used; however, the Hessian matrix is derived by low-rank updates. Tunçel
in [74] and later with Myklebust in [44] proposed interior-point methods that use low-rank
updates for the Hessian in each iteration and achieve the current best theoretical results.
We are interested in studying and implementing this idea in our code, which seems to have
the robustness of interior-point methods and the speed of quasi-Newton approaches.

9.2 Expanding the code

We introduced a list of set constraints/functions and explained how to make arbitrarily
large optimization problems by direct sum of different set types. A power of the Domain-
Driven setup is that this list can be expanded with the same algorithm as the core. If we

119

find a s.c. function that its LF conjugate can also be calculated efficiently, we basically have
a type of constraints added to our list. This motivates us to look for possible functions
and applications to expand the scope of the code. We can even take a drastic step by
considering convex functions that are not s.c. barrier. If we are given a non-degenerate
convex function with an efficiently computable LF conjugate, all the steps of our algorithms
are well-defined. We may lose the theoretical guarantees we proved in this thesis, but we
can add such a function to our code and try its efficiency in practice.

120

References

[1] B. Alkire and L. Vandenberghe. Convex optimization problems involving finite auto-
correlation sequences. Mathematical Programming, 93(3, Ser. A):331–359, 2002.

[2] B. P. W. Ames and S. A. Vavasis. Nuclear norm minimization for the planted clique
and biclique problems. Mathematical Programming, 129(1):69–89, 2011.

[3] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Uni-
versity Press, 2009.

[4] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications, volume 2. SIAM, 2001.

[5] A. Ben-Tal and A. Nemirovski. Robust optimization–methodology and applications.
Mathematical Programming, 92(3):453–480, 2002.

[6] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization: Theory
and Examples. Springer Science & Business Media, 2010.

[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. SIAM, 1994.

[8] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric pro-
gramming. Optimization and Engineering, 8(1):67–127, 2007.

[9] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[10] E. Candes and B. Recht. Exact matrix completion via convex optimization. Commu-
nications of the ACM, 55(6):111–119, 2012.

121

[11] R. Chares. Cones and Interior-Point Algorithms for Structured Convex Optimization
Involving Powers and Exponentials. PhD thesis, Université Catholique de Louvain,
Louvain-la-Neuve, 2008.

[12] IBM ILOG CPLEX. V12. 1: User’s Manual for CPLEX. International Business
Machines Corporation, 46(53):157, 2009.

[13] D. L. Donoho. Compressed sensing. IEEE Transactions on information theory,
52(4):1289–1306, 2006.

[14] S.-C. Fang, J. R. Rajasekera, and H.-S. J. Tsao. Entropy optimization and Mathemat-
ical Programming, volume 8. Springer Science & Business Media, 1997.

[15] J. Faraut and A. Korányi. Analysis on Symmetric Cones. Oxford University Press,
1994.

[16] A. V. Fiacco and G. P. McCormick. The sequential unconstrained minimization
technique for nonlinear programing, a primal-dual method. Management Science,
10(2):360–366, 1964.

[17] A. Forsgren, P. E. Gill, and J. D. Griffin. Iterative solution of augmented systems
arising in interior methods. SIAM Journal on Optimization, 18(2):666–690, 2007.

[18] R. W. Freund, F. Jarre, and S. Schaible. On self-concordant barrier functions for conic
hulls and fractional programming. Mathematical Programming, 74(3):237–246, 1996.

[19] C. C. Gonzaga. An algorithm for solving linear programming problems in O(n3L)
operations. In Progress in Mathematical Programming, pages 1–28. Springer, 1989.

[20] M. Grant, S. Boyd, and Y. Ye. CVX: MATLAB software for disciplined convex
programming, 2008.

[21] S. Granville, J. Mello, and A. C. G. Melo. Application of interior point methods
to power flow unsolvability. IEEE Transactions on Power Systems, 11(2):1096–1103,
1996.

[22] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity: The
Lasso and Generalizations. CRC press, 2015.

[23] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer
Science & Business Media, 2001.

122

[24] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combina-
torica, 4:373–395, 1984.

[25] K. Kobayashi, S. Kim, and M. Kojima. Correlative sparsity in primal-dual interior-
point methods for LP, SDP, and SOCP. Applied Mathematics and Optimization,
58(1):69–88, 2008.

[26] M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algo-
rithm for linear programming. Mathematical Programming, 61(1):263–280, 1993.

[27] M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm for a class of
linear complementarity problems. Mathematical Programming, 44(1-3):1–26, 1989.

[28] M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for lin-
ear programming. In Progress in Mathematical Programming, pages 29–47. Springer,
1989.

[29] M. Kojima, S. Mizuno, and A. Yoshise. A little theorem of the big-M in interior point
algorithms. Mathematical Programming, 59(1):361–375, 1993.

[30] Y. T. Lee and A. Sidford. Path finding I: Solving linear programs with Õ(
√

(rank))
linear system solves. arXiv preprint arXiv:1312.6677, 2013.

[31] Y. Lucet. What shape is your conjugate? a survey of computational convex analysis
and its applications. SIAM Review, 52(3):505–542, 2010.

[32] Z.-Q. Luo, J. F. Sturm, and S. Zhang. Duality and self-duality for conic convex
programming. Technical report, Erasmus University Rotterdam, Erasmus School of
Economics (ESE), Econometric Institute, 1996.

[33] Z.-Q. Luo, J. F. Sturm, and S. Zhang. Conic convex programming and self-dual
embedding. Optimization Methods and Software, 14(3):169–218, 2000.

[34] I. J Lustig, R. E. Marsten, and D. F. Shanno. Computational experience with a
primal-dual interior point method for linear programming. Linear Algebra and its
Applications, 152:191–222, 1991.

[35] K. A. McShane, C. L. Monma, and D. Shanno. An implementation of a primal-
dual interior point method for linear programming. ORSA Journal on Computing,
1(2):70–83, 1989.

123

[36] N. Megiddo. Pathways to the optimal set in linear programming. In Progress in
Mathematical Programming, pages 131–158. Springer, 1989.

[37] H. D. Mittelmann. The state-of-the-art in conic optimization software. In Handbook
on Semidefinite, Conic and Polynomial Optimization, pages 671–686. Springer, 2012.

[38] S. Mizuno. Polynomiality of infeasible-interior-point algorithms for linear program-
ming. Mathematical Programming, 67(1):109–119, 1994.

[39] S. Mizuno, M. Kojima, and M. J. Todd. Infeasible-interior-point primal-dual potential-
reduction algorithms for linear programming. SIAM Journal on Optimization, 5(1):52–
67, 1995.

[40] S. Mizuno, M. J. Todd, and Y. Ye. On adaptive-step primal-dual interior-point algo-
rithms for linear programming. Mathematics of Operations Research, 18(4):964–981,
1993.

[41] R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part
I: Linear programming. Mathematical Programming, 44(1):27–41, 1989.

[42] R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part
II: Convex quadratic programming. Mathematical Programming, 44(1):43–66, 1989.

[43] APS Mosek. The MOSEK optimization software. Online at http://www. mosek. com,
54, 2010.

[44] T. Myklebust and L. Tunçel. Interior-point algorithms for convex optimization based
on primal-dual metrics. arXiv preprint arXiv:1411.2129, 2014.

[45] A. Nemirovski. Interior point polynomial time methods in convex programming. Lec-
ture Notes, 2004.

[46] A. Nemirovski and L. Tunçel. Cone-free primal-dual path-following and poten-
tial reduction polynomial time interior-point methods. Mathematical Programming,
102:261–294, 2005.

[47] Y. Nesterov. The method for linear programming which requires O(n3L) operations.
ekonomika i matem. metody 24. Russian; English translation in Matekon: Transla-
tions of Russian and East European Math. Economics, pages 174–176, 1988.

124

[48] Y. Nesterov. Infeasible-start interior-point primal-dual methods in nonlinear pro-
gramming. Université catholique de Louvain, Center for Operations Research and
Econometrics (CORE), (1995067), 1995.

[49] Y. Nesterov. Long-step strategies in interior-point primal-dual methods. Mathematical
Programming, 76(1):47–94, 1997.

[50] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Springer, 2004.

[51] Y. Nesterov. Towards non-symmetric conic optimization. Optimization Methods and
Software, 27(4-5):893–917, 2012.

[52] Y. Nesterov and A. Nemirovski. Interior point polynomial methods in Convex Pro-
gramming. SIAM Series in Applied Mathematics, SIAM: Philadelphia, 1994.

[53] Y. Nesterov and A. Nemirovski. Multi-parameter surfaces of analytic centers and long-
step surface-following interior-point methods. Mathematics of Operations Research,
23:1–38, 1998.

[54] Y. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for convex
programming. Mathematics of Operations Research, 22(1):1–42, 1997.

[55] Y. Nesterov and M. J. Todd. Primal-dual interior-point methods for self-scaled cones.
SIAM Journal on Optimization, 8(2):324–364, 1998.

[56] Y. Nesterov, M. J. Todd, and Y. Ye. Infeasible-start primal-dual methods and infea-
sibility detectors for nonlinear programming problems. Mathematical Programming,
84:227–267, 1999.

[57] J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business
Media, 2006.

[58] G. Pataki and S. Schmieta. The DIMACS library of semidefinite-quadratic-linear
programs. Technical report, Preliminary draft, Computational Optimization Research
Center, Columbia University, New York, 2002.

[59] J. Peña and H. S. Sendov. Separable self-concordant spectral functions and a conjec-
ture of Tunçel. Mathematical Programming, 125(1):101–122, 2010.

[60] J. Peña and H. S. Sendov. Spectral self-concordant functions in the space of two-by-
two symmetric matrices. Optimization, 60(4):441–449, 2011.

125

[61] V. H. Quintana, G. L. Torres, and J. Medina-Palomo. Interior-point methods and
their applications to power systems: a classification of publications and software codes.
IEEE Transactions on Power Systems, 15(1):170–176, 2000.

[62] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

[63] J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear
programming. Mathematical Programming, 40(1-3):59–93, 1988.

[64] R. T. Rockafellar. Convex analysis. Princeton University Press, 2015.

[65] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer Science & Business
Media, 2009.

[66] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory. Cambridge University
Press, 2013.

[67] A. Seifi and L. Tunçel. A constant-potential infeasible-start interior-point algorithm
with computational experiments and applications. Computational Optimization and
Applications, 9(2):107–152, 1998.

[68] A. Skajaa and Y. Ye. A homogeneous interior-point algorithm for nonsymmetric
convex conic optimization. Mathematical Programming, 150(2):391–422, 2015.

[69] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11(1-4):625–653, 1999.

[70] J. F. Sturm. Similarity and other spectral relations for symmetric cones. Linear
Algebra and its Applications, 312(1-3):135–154, 2000.

[71] J. F. Sturm. Implementation of interior point methods for mixed semidefinite
and second order cone optimization problems. Optimization Methods and Software,
17(6):1105–1154, 2002.

[72] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3– a MATLAB software package
for semidefinite programming, version 1.3. Optimization Methods and Software, 11(1-
4):545–581, 1999.

[73] K.-C. Toh, R. H. Tütüncü, and M. J. Todd. On the implementation and usage of
SDPT3–a MATLAB software package for semidefinite-quadratic-linear programming,
version 4.0. 2006.

126

[74] L. Tunçel. Generalization of primal-dual interior-point methods to convex optimiza-
tion problems in conic form. Foundations of Computational Mathematics, 1(3):229–
254, 2001.

[75] L. Tunçel. Polyhedral and semidefinite programming methods in combinatorial opti-
mization, volume 27. American Mathematical Soc., 2010.

[76] R. J. Vanderbei. Symmetric quasidefinite matrices. SIAM Journal on Optimization,
5(1):100–113, 1995.

[77] R. J. Vanderbei and T. J. Carpenter. Symmetric indefinite systems for interior point
methods. Mathematical Programming, 58(1, Ser. A):1–32, 1993.

[78] X. Xu, P.-F. Hung, and Y. Ye. A simplified homogeneous and self-dual linear program-
ming algorithm and its implementation. Annals of Operations Research, 62(1):151–
171, 1996.

[79] G. Xue and Y. Ye. An efficient algorithm for minimizing a sum of p-norms. SIAM
Journal on Optimization, 10.2:551– 579, 2000.

[80] Y. Ye, M. J. Todd, and S. Mizuno. An O(
√
nL)-iteration homogeneous and self-dual

linear programming algorithm. Mathematics of Operations Research, 19(1):53–67,
1994.

[81] Y. Zhang. On the convergence of a class of infeasible interior-point methods for the
horizontal linear complementarity problem. SIAM Journal on Optimization, 4(1):208–
227, 1994.

127

Appendix A

Converting Domain-Driven setup
into conic optimization

One way to approach the problems in Domain-Driven setup, at least theoretically, is to
convert them into a conic formulation and use the strong machinery of primal-dual conic
optimization. To do that, we represent D as the intersection of its conic hull and an affine
subspace. Then, we can associate a logarithmically homogeneous self-concordant barrier
to the conic hull of D as done in [52]:

Φ+(z, zτ) = ξ1[Φ(z/zτ)− ξ2ϑ ln zτ], (A.1)

where ξ1 and ξ2 are appropriate constants. Nesterov and Nemirovskii in [52] prove that
ξ1 = 400 and ξ2 = 2 work for every Φ(·). The constants in the construction are improved
in [18] to ξ1 = 25 and ξ2 = 7.

If Φ∗(·), the Legendre-Fenchel conjugate of Φ(x) defined in (A.1), is also available, we
can obtain the Legendre-Fenchel conjugate of Φ+(z, zτ) as a function of Φ∗(·) as follows:

(Φ+)∗(y, yτ) = max
γ>0

[ξ1Φ∗(γy/ξ1) + yτγ + ξ1ξ2ϑ ln γ] . (A.2)

(Φ+)∗ means that we first change into the conic form and then take the Legendre-Fenchel
conjugate. Note that (Φ+)∗(−s,−sτ) is a logarithmically homogeneous self-concordant
barrier for the dual cone K∗ (let K be the conic hull of D we define later). This shows that
the conjugate function at each point can be calculated by a one-dimensional maximization.
Having these functions at hand, we can apply the standard primal-dual interior-point
methods for conic formulations.

128

Let us define K as the closed conic hull of D ⊂ Y in the space Y⊕ R:

K = cl

{[
z
zτ

]
: zτ > 0,

z

zτ
∈ D

}
. (A.3)

In the Domain-Driven formulation (5.1), the feasible set consists of the points x such that
z = Ax ∈ D. Let F be a matrix whose rows give a basis for null(A>). Then it is easy to
check that z = Ax if and only if Fz = 0. Hence, we can write our optimization problem
in the conic form as:

inf 〈c̄, z〉[
F 0
0 1

] [
z
zτ

]
=

[
0
1

]
,

[
z
zτ

]
∈ K, (A.4)

where c̄ is such that A>c̄ = c. Let us define ĉ := (c̄, 0)> and write the equality constraint
of (A.4) as Āz̄ = b. Then, we have a conic primal-dual optimization setup as follows:

inf 〈ĉ, z̄〉
s.t. Āz̄ = b,

z̄ ∈ K.

inf 〈b, v̄〉
s.t. s̄ = ĉ+ Ā∗v̄,

s̄ ∈ K∗.
(A.5)

Assume that both the primal and dual systems in (A.5) are strictly feasible, then the pairs
of primal-dual optimal solutions for (A.5) are equivalent to the points {(z̄, τ̄ , s̄, v̄) : τ̄ > 0}
that satisfy the following system:

Āz̄ = τ̄ b,
s̄ = τ̄ ĉ+ Ā∗v̄,
〈ĉ, z̄〉+ 〈b, v̄〉 = 0,
z̄ ∈ K, s̄ ∈ K∗.

(A.6)

Let us study the structure of K∗. By definition, we have:

K∗ =

{[
s
sτ

]
: 〈s, z〉+ sτzτ ≥ 0, ∀

[
z
zτ

]
∈ K

}
. (A.7)

If zτ > 0, then the inequality inside the definition (A.7) is equivalent to 1
zτ
〈s, z〉+ sτ ≥ 0.

By definition of K, this inequality implies that 〈s, u〉 is bounded below for all points u ∈ D.
Let rec(D) be the recession cone of D, then we must have:

〈−s, h〉 ≤ 0, ∀h ∈ rec(D).

129

Hence, we can write K∗ as:

K∗ =

{[
s
sτ

]
: s ∈ [rec(D)]∗, 〈s, w〉+ sτ ≥ 0, ∀w ∈ D

}
. (A.8)

The following proposition makes a connection between K∗ and the polar of D, denoted by
Do, which is defined in Definition 4.1.4.

Proposition A.0.1. In view of (A.8), we have

K∗ ⊆
{[

s
sτ

]
: s ∈ [rec(D)]∗,

[
s
sτ

]
∈ cone

[
−Do

1

]
∪
[

[cone(D)]∗

R−

]}
K∗ ⊇

{[
s
sτ

]
: s ∈ [rec(D)]∗,

[
s
sτ

]
∈ cone

[
−Do

1

]
∪
[

[cone(D)]∗

0

]}
. (A.9)

Proof. To prove the ⊆ direction, assume that [s>, sτ]
> ∈ K∗. By definition (A.8) we have

〈s, w〉+ sτ ≥ 0 for all w ∈ D. If sτ > 0, then we have

〈 s
sτ
, w〉+ 1 ≥ 0, ∀w ∈ D ⇒ − s

sτ
∈ Do.

Now assume that sτ ≤ 0, then we have

〈s, w〉 ≥ −sτ ≥ 0, ∀w ∈ D ⇒ 〈s, w〉 ≥ 0, ∀w ∈ cone(D)
⇒ s ∈ [cone(D)]∗.

To prove the ⊇ direction, assume that [s>, sτ]
> is in the RHS of (A.9). We need to consider

two cases: for the first one[
s
sτ

]
∈ cone

[
−Do

1

]
⇒ 〈− s

sτ
, w〉+ 1 ≥ 0, ∀w ∈ D

⇒ 〈s, w〉+ sτ ≥ 0, ∀w ∈ D.

For the second case, s ∈ [cone(D)]∗ and sτ = 0, where the inclusion is clear from the
definitions.

A solution of (A.6) is a recession direction of a cone that can be found approximately
by minimizing the corresponding self-concordant barrier over an unbounded set. Assume
that we are given points z̄0 ∈ intK and s̄0 ∈ intK∗. Let us define set Q as

Q : =
{

(z̄, τ̄ , s̄, v̄) : Āz̄ = Āz̄0 + τ̄ b, s̄ = s̄0 + τ̄ ĉ+ Ā>v̄,

〈ĉ, z̄〉+ 〈b, v̄〉 = 〈ĉ, z̄0〉, z̄ ∈ intK, s̄ ∈ intK∗
}
. (A.10)

130

The shifted central path in [48] is defined as solution set (z̄(µ), τ̄(µ), s̄(µ), v̄(µ)), µ > 0, of
the system

min 1
µ

[〈s̄0, z̄〉+ 〈s̄, z̄0〉] + Φ+(z̄) + (Φ+)∗(−s̄)
s.t. (z̄, τ̄ , s̄, v̄) ∈ Q. (A.11)

Remark A.0.1. It is shown in [48] and we can also easily verify that 〈s̄0, z̄〉 + 〈s̄, z̄0〉 =
〈s̄, z̄〉 + 〈s̄0, z̄0〉. Hence, in problem (A.11), we are minimizing Φ+(z̄) + (Φ+)∗(−s̄) and at
the same time we are allowing 〈s̄0, z̄〉+ 〈s̄, z̄0〉 to go to +∞. It seems contradictory, but the
balance between these two increases gives us the desired property. This kind of balance is
analogous to what is done with usual potential reduction methods in interior-point methods
(as the feasible iterates approach the optimal solution set, the barrier part of the potential
function tends to +∞ where as the logarithm of the duality gap tends to −∞). We are
interested in (z̄/τ̄ , s̄/τ̄), and by using Theorem 1 in [48], for the points on the central path
we have:

〈 z̄
τ̄
,
s̄

τ̄
〉 =
〈s̄0, z̄〉+ 〈s̄, z̄0〉 − 〈s̄0, z̄0〉

τ̄ 2
=
ξ1ξ2ϑµ

τ̄ 2
.

This equality is saying that if µ and τ increase at the same rate, the duality gap converges
to zero. Note that following the path defined in (A.11) by increasing µ is equivalent to
minimizing the function Φ+(z̄)+(Φ+)∗(−s̄), which gives us an approximation of a recession
direction for (A.6).

It is proved in [48] that for the points on the central path we have

s̄(µ) = −µ(Φ+)′(z̄(µ)). (A.12)

By considering this equation and some simplification, we can show that the central path
is also the solution set (w(µ), τ̄(µ), v(µ)), µ > 0, of the following system:

(a) −s ∈ intD∗,
Aw + z0

z0
τ + τ̄

∈ intD, z0
τ + τ̄ > 0,

(b) s− s0 = τ̄ c̄+ F>v,

(c) s = − µξ1

z0
τ + τ̄

Φ′
(
Aw + z0

z0
τ + τ̄

)
,

(d)
µξ1ξ2

z0
τ + τ̄

=
s0
τ − 〈c, w〉+ 〈s, Aw+z0

z0
τ+τ̄
〉

ϑ
. (A.13)

131

If we define suitable variables to remove the linear equations in (A.11), we can write it as
an unconstrained optimization problem. Let us define

Ψ(w, τ̄ , v) := ξ1Φ

(
Aw + z0

z0
τ + τ̄

)
− ξ1ξ2ϑ ln(z0

τ + τ̄) + max
γ>0

[ξ1Φ∗(−γs/ξ1)− sτγ + ξ1ξ2ϑ ln γ]

s = s0 + τ̄ c̄+ F>v, sτ = s0
τ − c>w. (A.14)

Then we can verify that

〈s̄0, z̄〉+ 〈s̄, z̄0〉 = [w> τ̄ v>]r0 + 2(〈s0, z0〉+ s0
τz

0
τ), r0 :=

 A>s0 − c
s0
τ + 〈c̄, z0〉
Fz0

 . (A.15)

Writing the first order optimality conditions for (A.11) and considering (A.14) and (A.15),
we get the following lemma:

Lemma A.0.1. For every (w(µ), τ̄(µ), v(µ)) on the central path we have

Ψ′(w(µ), τ̄(µ), v(µ)) = −r
0

µ
, (A.16)

where r0 is defined in (A.15).

In [48] and [56], the path-following algorithms are predictor-corrector that the search
direction in the predictor step is approximately tangent to the central path (exactly tangent
when the starting point in on the central path). If we take the derivative of both sides
of (A.16) with respect to µ, we get the tangent to the central path. When we are off the
central path, we may choose to use the same formula as an approximation. Therefore, the
predictor search direction is the solution of

Ψ′′(w, τ̄ , v)d = Ψ′′(w, τ̄ , v)

 dw
dτ
dv

 =
1

µ2
r0, (A.17)

where we explicitly have

Ψ′′(w, τ̄ , v) = U>
[
H̄(z, zτ) 0

0 H̄∗(−s,−sτ)

]
U. (A.18)

U is the same matrix we defined in (6.8), and H̄(z, zτ) and H̄∗(y, yτ) are the Hessians of
Φ+(z, zτ) and (Φ+)∗(y, yτ), respectively.

132

Appendix B

Predictor-corrector algorithm used in
the code

As we mentioned at the beginning of Chapter 8, the algorithm we use in DDS is simpler
than the one we designed in this thesis. In this Chapter, we briefly discuss this predictor-
corrector algorithm. To define our infeasible-start primal-dual central path, we pick an
arbitrary point z0 ∈ intD and define y0 := Φ′(z0). Then, the solution set of the system

(a) y ∈ intD∗, Ax+ 1
τ
z0 ∈ intD,

(b) A>y + (−c− A>y0) = −τc,
(c) y = Φ′(Ax+ 1

τ
z0),

(B.1)

for τ ≥ 1 forms our central path. Note that here we treat τ as the parameter of the central
path in contrast to previous sections where it was a variable. Moreover, we removed the
(old) central path parameter µ from the formulation. We denote the points on the central
path by (x(τ), y(τ)). For our central path, for every pair of points (x, y), we define the
proximity measure as

Ω(x, τ, y) = Φ

(
Ax+

1

τ
z0

)
+ Φ∗(y)− 〈y, Ax+

1

τ
z0〉. (B.2)

For the above setup, we use a long step predictor-corrector algorithm. Let us define

133

the following search directions and updates (we define u := Ax+ 1
τ
z0):

dx,1 :=
(
A>Φ′′(u)A

)−1
A>Φ′′(u)z0,

dx,2 :=
(
A>Φ′′(u)A

)−1
(−c),

x′ :=
1

(1 + δ)τ 2
dx,1 + dx,2,

u′ := Ax′ − 1

(1 + δ)τ 2
z0,

y′ := Φ′′(u)

(
Ax′ − 1

(1 + δ)τ 2
z0

)
, (⇒ y′ = Φ′′(u)u′),

x+ = x+ δτx′,

y+ = y + δτy′. (B.3)

Then, our long-step algorithm is as follows:

Simple Predictor-Corrector Algorithm

1. Parameters δ2 > δ1 > 0 are given by the user. Choose z0 ∈ intD and set x0 = 0,
y0 = Φ′(z0), τ 0 = 1, and k = 0.
Repeat until the stopping criteria are met:

2. Predictor step: If Ω(xk, τ k, yk) ≤ δ1, calculate dx,1 and dx,2 in (B.3) and find
the maximum δ such that (x+, y+) defined in (B.3) satisfies Ω(x+, τ+, y+) ≤ δ2 for
τ+ = (1 + δ)τ .

3. Corrector step: Apply damped Newton steps (will be described later) to get the
point (xk+1, yk+1) that satisfies Ω(xk+1, τ k+1, yk+1) ≤ δ1 for τ k+1 = τ k.

B.1 Predictor and corrector steps

The formula for the search directions is given in (B.3). If we calculate dy explicitly based
on dx,1 and dx,2 we get

dy = Φ′′(u)A
1

(1 + δ)τ 2
dx,1 + Φ′′(u)Adx,2 −

1

(1 + δ)τ 2
Φ′′(u)z0

=
1

(1 + δ)τ 2
[Φ′′(u)Adx,1 − Φ′′(u)z0]︸ ︷︷ ︸

=:dy,1

+ Φ′′(u)Adx,2︸ ︷︷ ︸
=:dy,2

134

Doing some simple algebra, we can derive the following system for calculating dx,1, dx,2,
dy,1 and dy,2: [

A> 0
I −[Φ′′(u)]A

] [
dy,1 dy,2
dx,1 dx,2

]
=

[
0 −c

−Φ′′(u)z0 0

]
. (B.4)

This shows that for calculating dx and dy we need to solve one augmented system of equa-
tions. Moreover, this system has exactly the form of the systems we need for calculating
corrector steps. For the corrector step, we take damped Newton steps defined in (4.20) for
s.c. functions. Let us define the following function for a fixed τ :

Fτ (x) := τ〈c, x〉+ Φ(Ax+
1

τ
z0) + 〈−c− A>y0, x〉. (B.5)

Then, the primal damped Newton step is

x+ = x+
1

1 + λ(Fτ , x)
e(x), e(x) := − [F ′′τ (x)]

−1
F ′τ (x),

λ(Fτ , x) := (〈e(x),Φ′′(u)e(x)〉)1/2
, (B.6)

and the dual damped Newton step is

y+ = y +
1

1 + λ∗(y)
e(y),

e(y) := −[Φ′′∗(y)]−1
[
I − A(A>[Φ′′∗(y)]−1A)−1A>[Φ′′∗(y)]−1

]
(Φ′∗(y)− z0/τ),

λ∗(y) := (〈e(y),Φ′′∗(y)e(y)〉)1/2
. (B.7)

The problem with numerical calculation of the dual damped Newton step is the number of
times we have to find the inverse of Φ′′∗(y) (solve the corresponding system), which makes
it impossible to evaluate it accurately specially at the final iterations. Here we can use a
trick to avoid part of the ill-conditioning. Let us define

p := [(A>[Φ′′∗(y)]−1A)−1A>[Φ′′∗(y)]−1](Φ′∗(y)− z0/τ).

Also note that A>e(y) = 0. Hence, e(y) is a solution of the system

e(y) = [Φ′′∗(y)]−1(Φ′∗(y)− z0/τ)− [Φ′′∗(y)]−1Ap,

A>e(y) = 0. (B.8)

135

We can show that e(y) is the unique solution. This means that e(y) can be calculated by
solving one of the following two systems:[

A> 0
I [Φ′′∗(y)]−1A

] [
e(y)
p

]
=

[
0

[Φ′′∗(y)]−1(Φ′∗(y)− z0/τ)

]
,[

A> 0
[Φ′′∗(y)] A

] [
e(y)
p

]
=

[
0

(Φ′∗(y)− z0/τ)

]
. (B.9)

Note that these systems are bigger than the original systems; however, they can be very
sparse. Similarly, we can write a bigger system that gives us the primal damped Newton
step. [

A> 0
I −[Φ′′(u)]A

] [
p

e(x)

]
=

[
−F ′τ (x)

0

]
. (B.10)

An interesting fact is that the LHS matrices in systems (B.9) and (B.10) are very similar
and it would be more efficient if we can combine them to solve one system for calculating
e(x) and e(y). Here is one idea to achieve this goal. The points on the central path
corresponding to τ satisfy the following system

y − Φ′
(
Ax+

1

τ
z0

)
= 0,

A>y − c− A>y0 + τc = 0. (B.11)

If we write the Newton system for solving it, we get[
A> 0
I −[Φ′′(u)]A

] [
e(y)
e(x)

]
=

[
0

Φ′(u)− y

]
. (B.12)

If we evaluate e(x) and e(y), e(x) is exactly the one given by the above equations. Com-
paring this system with the first system in (B.9) shows that e(y)s are not exactly the same.
However, it works quite the same in practice while reducing the arithmetic operations.

Note that solving systems of the above form, which are denoted as augmented systems
in the literature, have been studied for specific problems such as linear and quadratic
programming [77, 76, 17, 25].

B.2 Stopping criteria

For the case that the problem is solvable, we are looking for an approximately feasible
point with a small duality gap. Let us remind ourselves of our definition for the duality

136

gap in Definition 5.2.1. For every point x ∈ Rn such that Ax ∈ D and every point y ∈ D∗
such that A>y = −c, the duality gap is defined as:

〈c, x〉+ S(y), (B.13)

where S is the support function of D. Because Φ∗(·) is the Legendre-Fenchel conjugate of
a ϑ-s.c. barrier, by Theorem 4.2.1, we can calculate the support function efficiently as for
every k > 0 and every y ∈ intD∗,

S(y)− ϑ

k
≤ 〈Φ′∗(ky), y〉 ≤ S(y). (B.14)

This means that we can calculate the duality gap with a desired accuracy if we have the
points Ax ∈ D and y ∈ intD∗ such that A>y = −c. In the case that our problem is
solvable, by running our path following algorithm, for every τ ≥ 1 we have a point x such
that Ax+ 1

τ
z0 ∈ D and a point y ∈ D∗ such that A>(y/τ) + ((−c−A>y0)/τ) = −c. This

means that when τ → +∞, the points x and y converge to primal and dual feasible points
and the duality gap converges to zero. For the desired accuracy ε, we define the following
parameter (we actually set k = ϑ/ε in (B.14))

gap := 〈y
τ
,Φ′∗(ϑy/ε)− Ax〉+

ε

τ
. (B.15)

Let x∗ be an optimal solution for our problem. Then, we can write

〈c, x〉 − 〈c, x∗〉 = 〈−A
>y

τ
+

(−c− A>y0)

τ
, x− x∗〉

= 〈y
τ
, Ax∗ − Ax〉+ 〈(−c− A

>y0)

τ
, x− x∗〉

= gap− ε

τ
+

ε

ϑτ
〈ϑy/ε, Ax∗ − Φ′∗(ϑy/ε)〉+

1

τ
〈(−c− A>y0), x− x∗〉

≤ gap− ε

τ
+
ε

τ
+

1

τ
〈(−c− A>y0), x− x∗〉, using (4.27)

= gap +
1

τ
〈(−c− A>y0), x− x∗〉. (B.16)

As τ gets large, the last term converges to zero. This means that the gap is a certificate of
closeness to the optimal solution. We show that the gap reduces to the conic duality gap
when we solve a conic optimization problem. Assume that we have a conic optimization
problem in standard equality form, we write it in a way that its dual matches our format:

(P) min{〈−b, y〉 : A>y = −c, y ∈ K∗},
(D) min{〈c, x〉 : Ax− b ∈ K}. (B.17)

137

We can solve the dual problem by our code with DDS(c, A, b, Z). Assume that K is
equipped with a ϑ-LH s.c. barrier H(·), and let us define Φ(u) := H(u − b). By this
definition, the LF conjugate of Φ(·) becomes

Φ∗(y) = 〈b, y〉+H∗(y). (B.18)

Note that H∗(y) is also a ϑ-LH s.c. barrier. If we substitute this into (B.15), we get

gap = 〈y
τ
, b〉+ 〈−A> y

τ
, x〉+

ε

ϑτ
〈ϑy/ε,H ′∗(ϑy/ε)〉+

ε

τ

= 〈y
τ
, b〉+ 〈−A> y

τ
, x〉 − ε

τ
+
ε

τ

= 〈y
τ
, b〉+ 〈−A> y

τ
, x〉, (B.19)

where the second equation is by using a property of ϑ-LH s.c. barriers that 〈y,H ′∗(y)〉 = −ϑ
for any y ∈ intK∗. When τ → +∞, then −A>y/τ → c and y/τ converges to a feasible
solution for (P), and hence gap converges to the conventional conic duality gap.

Let our accuracy ε be stored in OPTIONS.tol. Similar to the stopping criteria of SDPT3
[73], our code stops and returns an optimal solution and a certificate if

max{relgap,Pfeas,Dfeas, 1/τ} ≤ OPTIONS.tol, (B.20)

where

relgap :=
gap

1 + |gap0|
, Pfeas :=

‖ 1
τ
z0‖

1 + ‖Ax+ 1
τ
z0‖

, Dfeas :=
‖A>y/τ + c‖

1 + ‖c‖
. (B.21)

gap0 := 〈y0,Φ′∗(ϑy
0/ε)〉 + ε is the initial gap. We can set OPTIONS.tol, otherwise it is

equal to 10−8 by default.

For the infeasible case, we can prove that

yI := lim
τ→(tp(z0))−

yI(τ), yI(τ) :=
y

‖z0 − Ax− 1
τ
z0‖Φ′′(Ax+ 1

τ
z0)

, (B.22)

is a certificate of infeasibility that satisfies

(1) A>yI = 0,

(2) sup{〈yI , z〉 : z ∈ D} < 0. (B.23)

138

In our code, we check the increase of τ and if ∆τ
τ
≤ 0.001, we examine to see if we have an

approximate certificate for infeasibility or unboundedness. Our code returns infeasibility
and yI as its certificate if we have the following two conditions:

(1)
∥∥A>yI∥∥ ≤ OPTIONS.tol

(2) 〈yI ,Φ′∗(ϑyI/ε)〉+ ε < 0. (B.24)

First we show that condition (2) in (B.24) reduces to the certificate of infeasibility for the
conic formulation. Let us substitute (B.18) in (B.24)-(2), then we get

0 > 〈yI ,Φ′∗(ϑyI/ε)〉+ ε = 〈yI , b〉+
ε

ϑ
〈ϑyI/ε,H ′∗(ϑyI/ε)〉+ ε = 〈yI , b〉 − ε+ ε = 〈yI , b〉.

(B.25)

(B.25) and (B.24)-(1) form the conventional certificate of infeasibility for the conic opti-
mization problem. Secondly, by having (B.24), one can easily check infeasibility. Assume
that yI satisfies (B.24) and there exists Ax ∈ D. Then we have

ε > 〈yI , Ax− Φ′∗(ϑy
I/ε)〉 ≈ 〈yI ,−Φ′∗(ϑy

I/ε)〉
⇒ 〈yI ,Φ′∗(ϑyI/ε)〉+ ε > 0, (B.26)

which is a contradiction to (B.24)-(2).

On the other hand, if ∆τ
τ
≤ 0.001 and

〈c, x〉 > 1

OPTIONS.tol
and

‖Ax+ 1
τ
z0‖

1 + ‖ 1
τ
z0‖

≥ 1

OPTIONS.tol
, (B.27)

then our code stops and returns x as a certificate of unboundedness.

139

	List of Tables
	List of Figures
	Introduction
	Convex optimization in the view of this thesis
	Organization of the thesis
	Some notations

	Applications of Domain-Driven setup
	LP, SOCP, and SDP
	Direct sum of 2-dimensional sets (geometric programming, entropy programming, and more)
	Generalized epigraph of a matrix norm, minimizing nuclear norm
	Generality of Domain-Driven setup

	Infeasible-start algorithms
	Linear programming
	General convex optimization
	Properties of our approach

	Convex optimization and self-concordant functions
	Convex optimization
	Self-concordant functions
	Self-concordant (s.c.) functions
	Self-concordant (s.c.) barriers
	Legendre-Fenchel conjugate of s.c. barriers

	Domain-Driven setup and central path
	Restudying the examples from Chapter 2
	 LP, SOCP, and SDP
	 Direct sum of 2-dimensional sets
	 Generalized epigraph of a matrix norm

	Duality gap for Domain-Driven setup
	Primal-dual infeasible-start central path
	Informal outcomes of following the path

	Algorithms and complexity analysis
	Algorithms
	Predictor step
	Corrector step

	Analysis of the algorithms
	Predictor step
	Corrector step

	Complexity of following the path to =+

	Output analysis
	Categorizing problem statuses
	Solvable cases
	Weak infeasibility and unboundedness detector
	Infeasibility
	Unboundedness

	Strict infeasibility and unboundedness detector
	Infeasibility
	Unboundedness

	Software and applications
	Format of the input for two famous solvers
	SeDuMi
	CVX

	How to use the DDS code
	Solving linear programming and SOCP with DDS
	Adding SDP to DDS
	Adding sets created by the epigraph of a matrix norm
	Adding quadratic constraints
	Adding constraints defined by epigraph of univariate functions

	Equality constraints
	More numerical examples

	Conclusion
	Improving the algorithm in the code
	Expanding the code

	References
	Converting Domain-Driven setup into conic optimization
	Predictor-corrector algorithm used in the code
	Predictor and corrector steps
	Stopping criteria

