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Abstract

Traditional object-oriented languages use typed classes to specify the shape and
behaviour of objects. In JavaScript, object behaviour is less constrained. Learning
how JavaScript programmers create objects can help us understand whether the
programmers employ the notion of “classes”, like those in Java, in JavaScript. In
other words, we are trying to compare the creation of objects in JavaScript with Java
classes, which create objects and describe the state and behaviour that the type of
the object support. Our results have the potential to improve the performance of
JavaScript and generality of typed extensions to JavaScript.

An access site is the JavaScript code that accesses the properties of objects. We
studied the access site to determine whether objects at the access site arise from
different “creators”, which are functions creating the objects, and to discover how
prevalent multiple-creator access sites are. Moreover, whether the types of proper-
ties ever change is noteworthy: in classes, types of properties may not change. To
answer the questions, we executed, recorded, and analyzed many JavaScript appli-
cations to obtain real-world data.

We collected and analyzed logs from 7,753 web sites. The logs consist of nearly
390 GB of JSON strings. We collected these data through dynamically running mod-
ern JavaScript applications, or web sites, in our tool with the browser Firefox.

Our results show that for half of selected web sites, there exists only one creator
at every access site. And in fewer than 50% of web sites, there exists more than one
creator, though the total number of access sites with multiple creators is extremely
small. Although creators with distinct names are considered as different by our def-
inition, different creators may create same objects. Therefore, most object accesses
in JavaScript do not come from different creators. As a result, we could employ type
annotations for objects.

However, our results show that the types of the properties in objects do some-
times change, especially in objects generated from user-defined functions. Thus,
even if objects are mostly from one creator, that creator may not correspond neatly
to a type. This may limit the advantages of using types for better performance.

Combining these results, we conclude that while we can apply Java-like types to
JavaScript, these types are far more fluid in JavaScript applications, and so there
may be limited benefit.
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Chapter 1

Introduction

1.1 Background and Motivation

JavaScript has become a widely used language, particularly in web programming,
due to the support by web browsers. It is a highly-dynamic object-oriented programming-
language; everything, including object properties and even an object’s prototype—
equivalent to its class in other object-oriented languages—can change at run-time.
These dynamic features bring challenges to static analysis. Research on JavaScript
concentrated on three fields: performance, security, and correctness. This thesis
focuses on the type of objects, which has influence on performance and correctness.

We take the creator of objects as the type. In this thesis, the creator of the object
is defined as the function in which the object is created. There are three general
ways to identify the creator, which could be demonstrated by the following code.

(i) function foo(){
var obj = {kl:1};
}

The creator of obj is foo.

(ii) function foo(){
var obj = new Object();

}

The creator of obj is Object because obj is generated by the constructor func-
tion Object. Object is a built-in function that cannot be modified. However,
like any JavaScript object, obj may have new fields added later.
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(iii) function Person(firstName, lastName) {
this.firstName = first;
this.lastName = last;

}

function foo(){
var obj = new Person("John","Smith");

}

The creator of obj is the function Person.

We associate each object at run-time with its creator. It is then possible to group ob-
jects created by the same creator and distinguish among objects created by different
creators, and thus to count them for analysis.

We should mention that in results based on the creator, there is a special creator
named the “global field”, which is the root field in source code. The creator of objects
created globally is recorded as global field. For example, in a source-code file
with the following code:

// root field
var objl = {kl:1};

function foo(){
// inside a function
var obj2 = {k2:2};

}

the creator of obj1 is global field, while the creator of obj2 is a normal creator,
foo.

When counting different types of creators, the results exclude this special creator.
The creator global field may affect the accuracy of final results, since the size of
global field is much greater than other creators, but it is clearly unreasonable to
treat global objects identically to non-global objects.

The core question of this work is whether types akin to Java-like “classes” are
applicable to JavaScript. We approach this problem through object creators: Java
classes are nominal, and thus any object of a type was, by definition, created by that
class or a descendant. We therefore expect that, if real JavaScript code behaves sim-
ilarly, the set of objects created by any function, herein the creator, should behave
as a class-like type.



We accomplished our works through the analysis of logs recording the execution
of JavaScript. In principle, if objects in JavaScript behave like classes, we can take
advantage of the analysis result and import types to perform better on looking up
properties. Inline caching [1] is a well-known example among existing techniques
in improving performance of JavaScript. Our result aims to establish an empirical
basis for its effectiveness.

The type of objects is regarded as stable if the objects exhibit class-like behav-
ior. The type contains information about the address of the property values. Inline
caching stores the type of objects and looks up properties quickly through the saved
type. Looking up properties would save considerable time if most objects are of
stable type.

For each property access site, i.e., each location in JavaScript code that accesses
a property of an object, such as Object.property, if there is only one creator of the
object, and the types of properties do not change, a JavaScript engine could assume
that the type of the object is stable. If this were known soundly, JavaScript could
speed up accessing the properties. For example in the following code:

function foo(obj){

obj.method();
}

when foo is called, the runtime needs to know both the type of obj and how the
function obj .method is implemented.

Importing types to JavaScript improves the effectiveness for searching a property
value. Modern JavaScript engines save object properties in a shape and an array or
store. The shape maps properties to their corresponding values in the array. As
a result, the runtime needs to look up the shape first, then the value in an array.
However, if objects occur at a particular site always, or at least often, belongs to
the same shape, it is possible to improve the performance by caching and using the
shape directly instead of searching for the shape first. Objects with the same type
refer to a same shape. Provided there is a type system in JavaScript and we observed
that obj follows the mentioned pattern, i.e., always the same type. Assuming the
type is String, we could revise the previous example as the following one.

function foo(String obj){
((String)obj).method();
}

Instead of searching for the type of obj, we use the cached type String as a shape
to get the implementation of method in a known array. Since the runtime knows
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the method and does not need to look up it dynamically, the performance is greatly
improved due to types.

1.2 Introduction of Methodology

To measure object behaviour in JavaScript, the first approach was instrumentation of
JavaScript engines such as Mozilla’s SpiderMonkey, used in Firefox, and Google’s V8
engine, used in Chrome. However, functions that we want to instrument call deeply
into other layers outside of C++ (the programming language used to implement
the two engines). Both engines use native property access in the just-in-time (JIT)
compilation, and neither of them implements an interpreter. JIT indicates that code
including property access is compiled during run time instead of prior to execution.
This makes instrumentations of both engines extremely difficult.

The second approach, what we used in our work, is to instrument through a proxy.
A proxy is a service that accepts transactions from clients, processes transacted
data, and sends the data to a server or browser. Hence, a proxy between web sites
and the browser could also perform measurements of the object since it is accessible
to all JavaScript code. And as mentioned in the previous paragraph, we cannot easily
instrument both of the two JavaScript engines in their latest versions. So we chose
the proxy approach.

In our work, we employed the proxy underlying JSBench [10]. JSBench offers a
solution to create JavaScript benchmarks using JavaScript itself, through recording
and replaying real JavaScript web sites. JSBench acts as a proxy between the web
site and the browser. It modifies JavaScript code such that when events of user-
interactions occur in a standard web-browser, JSBench records the events. After
retrieving the related code, JSBench parses code into an abstract syntax tree (AST),
which is then modified to add customized instrumentation. We can describe the
recording process of JSBench as follows.

(i) Retrieving and parsing JavaScript code into an AST.
(ii) Modifying the AST nodes.

(iii) Making the browser send required data back to the proxy for recording.



We modified the AST nodes through a new tool named DotInstr, which records
accesses to object properties. We built it on the JSBench, but added new instru-
mentations and data recording. In spite of some slowdown in the recording process,
DotlInstr contributed to reduce time consumption in total, since it recorded all neces-
sary data once instead of multiple times. Through DotlInstr, we only need to perform
the recording process once. Besides, we could run as many rounds as necessary of
the analysis process. The analysis process only costs less than 5% of the time needed
for recording. DotInstr worked similar to a record-and-replay paradigm, which is a
kind of dynamic analysis.

The reason for adopting dynamic analysis is that static analysis tools fail to repre-
sent the dynamic side of modern JavaScript applications. Overly conservative results
from these static analyses, like that from Silva et al. [12], may not be useful for rep-
resenting the dynamism of JavaScript.

By design, Dotlnstr focuses on two cases of JavaScript code. For one case, af-
ter the creation of the object, DotInstr saves the creator into the object as a new
property. For the other case, when accessing the properties of the object, DotInstr
records the creator saved in this object and where the accessing occurs. Through
the recording, DotInstr generates log files for analysis. The analysis process works
after the recording process by another tool to produce results.

We can perform different analyses with a single captured log, instead of recording
multiple times for each behaviour that needs to be measured. In our work, the
recording process took more than one week. But the analysis tool only used hours
to finish working on the recorded files.

DotInstr can find several possible patterns in modern JavaScript applications,
shown in Table 1.1. There are examples to explain these patterns.

(i) Object creation is Java-like:

function bar(name){
this.name = name;

}

function foo(obj){
// 'obj’ is from the same creator: 'bar’
console.log(obj.name);

}

var objl = new bar("A");
foo(objl);



var obj2 = new bar("B");
foo(obj2);
Object creation is JavaScript-like:

function bar(name){
this.name = name;

}

function model(name){
this.name = name;
this.size = 10;

}

function foo(obj){
// 'obj’ is from two creators: ’'bar’ and ’'model’
console.log(obj.name);

}

var objl = new bar("A");
foo(objl);

var obj2 = new model("B");
foo(obj2);

(ii) Properties of object are Java-like:

function Person(firstName, lastName) {
this.firstName = first;
this.lastName = last;
}
var obj = new Person("John","Smith");
// object behaviours do not change types of properties
obj.firstName = "Aaron";

Properties of object are dynamic:

function Person(firstName, lastName) {
this.firstName = first;
this.lastName = last;

}

var obj = new Person("John","Smith");

var tmp = obj.firstName;

obj.firstName = "Aaron";

// properties of the object ’'obj

obj.usedFirstName = tmp;

’

change during execution



The outcome of this classification should help to make decisions on whether types
in JavaScript can be treated like those in Java. There is a possibility that some ap-
plications contain class-like objects, while others do not. The analysis of JavaScript
applications that do not use class-like objects is also valuable. For example, if we
found that these applications use a similar third-party library, then the analysis of
the library is of value.

Table 1.1: Classifications of possible patterns.
Java-like Object Creation When accessing an object, there exists
only one creator of the object.
JavaScript-like Object Creation = There exists more than one creator when
accessing an object.
Java-like Object Properties After object creation, the types of proper-
ties do not change.

Partial Java-like Object Properties After object creation, the types of proper-
ties do not change. There are also logs
showing that the types and existence of
properties changed after creation.

Dynamic Object Properties The properties of object could change af-
ter creation.




Chapter 2

Related Works

Numerous researches related to our work cover two directions generally: static
analysis and dynamic analysis. These techniques inspired the methods that we used
in this thesis.

¢y

(ii)

Static analysis of JavaScript focuses on looking for patterns in JavaScript code.
Silva et al. [12] proposed a strategy to find classes in JavaScript code. They fo-
cused on prototypes that are used as a template for the creation of objects. The
paper analyzed 50 JavaScript applications on GitHub and classified them into 4
different groups based on their usage of classes. However, their work relied on
the keyword new to detect object creation. This strategy did not cover frame-
works that generate objects in different ways, like Angular JS. Additionally, this
paper did not deal with dynamic changes, like object may change during exe-
cution, except giving a warning. Ocariza et al. [7] analyzed more than 300 bug
reports, from eight web applications and four JavaScript libraries, to figure
out the cause of JavaScript faults. Their results indicated that most bugs are
caused by errors in interactions between JavaScript with DOM (Document Ob-
ject Model). However, these bug reports were generated from limited number
of experimental objects, which may lead to questions on the representative-
ness. To avoid these mentioned issues, our subject is not on whether class-like
types can be discovered statically, but whether real code exhibits class-like
behaviour.

A dynamic analysis framework, on the other direction, inspired us to employ
record and replay paradigm. Sen et al. [11] built a framework, Jalangi, for



(iii)

JavaScript dynamic analysis. Jalangi utilized a record-replay mechanism to
allow heavy-weight analysis. Since Jalangi employed a method to copy memory
during the execution of JavaScript, it could record all memory loads during the
interaction between the browser and web sites. As a result, Sen et al. analyzed
plenty of data.

But the implementation of Jalangi did not work on some special cases, such as
strict mode and updating properties by setter methods of the object. Jalangi
relies on the function arguments.callee to get the necessary information, but
some JavaScript engines forbid the use of the function in strict mode. It is likely
that our work could have been implemented based on Jalangi and would have
had the same results. Unlike Jalangi, DotInstr works well in strict mode. DotIn-
str checks the key word “use strict” and removes the key word in the source
code to disable the strict mode, thus allows arguments.callee. However, our
work of DotInstr also has its own limitations shown in Section 3.5. And DotIn-
str does not work on setter functions either, since our focus is the properties
accessed by dot notation.

We also learned from other dynamic analyses employing behaviour record-
ing methods. The following papers are all based on behaviours of real-world
JavaScript applications.

(a) Ratanaworabhan et al. [9] evaluated and compared behaviours between
JavaScript web applications and JavaScript benchmarks, by instrumenting
the IE8 runtime. Their paper employed V8 benchmarks from Google and
part of SunSpider from WebKit.org. Ratanaworabhan et al. concluded that
these benchmarks were not representative of popular web applications
and might be misleading. According to the paper, the instrumentation of
the JavaScript engine is one effective approach. Thus we also tried to
instrument the V8 and SpiderMonkey JavaScript engines.

(b) Nikiforakis et al. [6] evaluated the ability of JavaScript to include libraries
from remote resources to a local page. Through a web crawl, Nikiforakis et
al. recorded and analyzed the relationship between top web sites and their
service providers. They reported that the service providers could be com-
promised by attackers in some cases, thus provide malicious JavaScript.
Nikiforakis et al. worked on more than three million pages of the top
10,000 Alexa web sites, which was more accurate than our data based on
the number of pages that they crawled.



(c) Gude et al. [4] studied how JavaScript language features were used by
programmers in practice. This paper employed an instrumented Spider-
Monkey JavaScript engine in Firefox to record data. Through recorded
data, the paper focused on the use of strict mode, the “with” keyword,
scopes of variables, functions inside blocks, enumeration with for...in, and
objects in JavaScript. Gude et al. found that there are confusions and
misuses about new features, and the lack of object-oriented programming
style in JavaScript. Their work may indicate that the application of types
to JavaScript is limited.

(d) Pradel et al. [8] dynamically analyzed JavaScript execution by a tool built
based on Jalangi [11], to study the type coercions. The tool instrumented
JavaScript similarly to our work. It created a file on local disk for each
instrumented JavaScript program. Their result showed that type coercions
are widely used and harmless. The result indicates that type coercions
may also limit the application of types to JavaScript.

Comparing these related papers, we find that static analysis tools do not work as
well for JavaScript as for other languages. As Livshits et al. [5] suggested, static
analysis tools choose not to handle complex language features that would make the
tools imprecise.

Unlike static analysis, behaviour recording has proved to be successful and ef-
ficient to deal with the dynamic features of JavaScript. The recording process can
capture the execution of JavaScript applications, and thus is more precise than static
analysis if the tool record all required behaviours. Based on the comparison, we em-
ployed behaviour recording as the approach to perform measurements.

Besides these related papers, some state-of-the-art techniques focusing on per-
formance improvement through types are noteworthy as well.

Modern JavaScript engines like V8 utilize inline caching. As mentioned, inline
caching uses the cached type of the object to find the property values. This thesis
attempts to prove the intuition behind it. Inline caching is based on the prediction
that while accessing a property of a given object, types of all future objects at this
site are the same, to achieve better performance. If the future type does not match
the cached type, the runtime will need to look up the location that stores values of
properties with extra efforts. Our work provides observations to suggest that the
prediction is correct that most future type is same with the cached one.

Instead of identifying the creator, V8 JavaScript engine defines the “hidden class”
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on each object to record the location about values of properties in memory. In the fol-
lowing code, after this.val2 = val2 is executed, the hidden class saves the offset
to find the property vall and val2.

function Obj(vall, val2){

this.vall = vall;
this.val2 = val2;

}

var foo = new 0bj(1,2);

This approach is more strict than our definition of creator, as updating values of
properties in a different order could generate different hidden classes. However,
both of them are based on the assumption that objects may exhibit class-like be-
haviour.

Another similar work is from optionally typed languages, in particular Type-
Script [3]. TypeScript provides support for types and classes in JavaScript. It is
a superset of JavaScript. The static typing guarantees in principle that there is only
one creator—the class—used at each property access site. However, TypeScript is
an intentionally unsound type system that no mechanism satisfies the previous guar-
antee. In early versions, TypeScript employed nominal typing. The nominal typing
system considers types with the same name as the same type. However, recent ver-
sions of TypeScript have employed a structural typing system, in which types are
deemed to be the same if they have the same structure. This change was made
based on the developers’ intuition with no evidence from real programs. Our re-
sults predominantly contradict this decision, since most property access sites only
have one creator and we distinguish the creators by their names. This observation
motivated the particular experiments performed to get the results in Chapter 4.
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Chapter 3

Methodology

This chapter describes the methodology that we used to collect and analyze data.

This thesis aims to gather data to determine whether JavaScript objects behave
as if types exist. In particular we expect to observe whether objects are always from
one creator, and whether types of fields in objects change. Dynamism of JavaScript
allows programmers to modify these items during execution. The goal is therefore
not to answer what could happen, but what does happen. Static analysis tools are
able to predict the execution of JavaScript, but not able to reveal what really hap-
pened. To this end, we employed dynamic tools to collect data. When launching a
browser and visiting a web site, transactions happen: the browser will execute code
from the web site. In this process, it is possible to intervene with a standalone pro-
gram, which captures information about JavaScript execution, to achieve the statis-
tics about the creators and the type changing for each JavaScript object. To collect
relevant information, we experimented on the top 10,000 web sites as designated
by Alexa. To launch these web sites with modern JavaScript engines, we selected
Firefox as the web browser.

Our tool DotInstr opens a web site and stays on the home page for one minute.
During this period, DotInstr collects data generated from JavaScript executions and
saves the data to a single log file. Dotlnstr repeats the same process on all web sites
automatically. After recording all web sites, an analysis tool starts to analyze the log
files. Figure 3.1 shows the recording and analysis processes at the high-level. The
steps can be elaborated as follows.

(i) The automation script runs DotInstr and opens the browser with URL at the
same time. JavaScript code from the web site is then loaded to DotInstr.

12



(ii) DotInstr instruments the JavaScript code.
(iii) DotlInstr sends the modified code to the browser.
(iv) The browser sends back data to DotInstr for recording.
(v) Dotlnstr records the data to a local file.
(vi) The automation script repeats the previous steps until recording all web sites.
(vii) The automation script stops.

(viii) The analysis tool starts to examine the recorded data and generates result.

Processes

Auto run DotInst record Dat
Script otInstr ata

data

open code analyze

Web Web Analysis

Browser Site Tool

Figure 3.1: The recording and analysis processes at the high-level.

The size of the data we recorded is about 390GB. These data are generated by
automatically opening each web site, waiting for the home page to finish loading and
showing the contents, then closing the browser. For a better accuracy, the recording
process is similar to the routine way people open web sites. We tested on 100 web
sites to make sure functionalities of the web sites work well through DotInstr. We
did not check whether all web sites work well in the recording process.
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Finally, an analysis tool gets the results from these logs, by rebuilding how rele-
vant events happened during execution and counting creators and type changes. The
analysis process is similar to recording but much simpler: through the automation
script, the analysis tool works on all recorded files one by one and then generates
the result.

3.1 Infrastructure

As mentioned, DotInstr aims to capture JavaScript executions including object cre-
ating and property accessing when the browser and web sites communicates.

Figure 3.2 shows how web access works with and without DotInstr. “Web site”
is a set of web pages. Normally, the bowser loads and displays web pages directly.
Viewing web pages through Dotlnstr is a different case, as Dotlnstr interjects be-
tween the browser and the web site. As we know, a web page consists of four types
of elements: HTML, scripts, styles, and multimedia. DotlInstr, which focuses on
JavaScript executions, involves code in script tag in HTML and all script elements.
Figure 3.3 illustrates a standard instrumentation approach. In Figure 3.3, the four
nodes on the left side represent the four kinds of elements. Then Dotlnstr instru-
ments JavaScript code in HTML and scripts files. So DotInstr modify the two nodes
representing HTML and scripts files, and change them to two new nodes with a
different color. At last, all elements reach the web-browser.

When opening the browser with URLs, Dotlnstr acts as a proxy between the
browser and web sites. It parses JavaScript code to abstract syntax trees (ASTs),
and modifies them at that level. The proxy modifies nodes representing property
access site. The revised property access performs the relevant access, but also
record information to the local disk. DotInstr records data in JSON. The analysis
tool examines the JSON data off-line from the local disk, and reports the analysis
result. The analysis tool calculates all information discussed in Chapter 4.

3.2 DotlInstr

As described above, Dotlnstr acts as a proxy between the browser and web sites.
Recording consists of a server part, which runs in the proxy itself, and a client part,
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Open Web Sites

Web Web
Sites Sites

without DotInstr
Dotl@ Logs
Browser

-

Browser
-
User
User

Figure 3.2: Comparison of opening web sites with and without DotInstr.

which runs in the browser. The bowser treats the modified code identically to that
from a normal web site.

When object is created in JavaScript code, DotInstr adds a new property, _jsb_cr-
eator, to the object to save the name of creator.The reason why we need to save the
name of creator during object creation instead of property accessing is that DotInstr
cannot locate the creator of object at the property access site. When accessing the
property, DotInstr stores the aforementioned creator-name and the type of property
in a JSON item. It also records the URI of the source-code file and position of the
access site in the same JSON item.

The pseudocode for adding creators and recording logs follows.

(i) Original code is:
x={};
After modification, DotInstr adds an un-enumerable property in the object x to
save its creator:
x={};

X._jsb_creator = creator;
X._jsb_creator.enumerable = false;
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Figure 3.3: Instrumented elements of web sites through Dotlnstr.
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Setting enumerable to false is to avoid _jsb_creator to affect normal code.
for-in loops and other reflective features in JavaScript discover only enumer-
able fields. For example, if the programmer creates a new object based on all
the data fields in the object, it may cause problems if _jsb_creator is set to
enumerable:

var x={baseUrl:"http://www.serveraddress.com", api:"/userInfo", id:"/uid@O1"
}s

// Through DotInstr, it adds the following code to original code:

// X._jsb_creator = "global field";

var url;

for(var property in x){
// concatenation
url+=x[property];

}

var xhr = new XMLHttpRequest();
xhr.open("GET", url, false);
xhr.send(null);

The variable urlis http://www.serveraddress.com/userInfo/uid@01l/global
field that elicits a different result from the original code.

(ii) Original code is:

X.Y;

After modification, DotInstr adds a function following x.y to record logs to local
disk:

X.Y;
record(x,y,...);

The following sample explains the process of modification in detail.

During object creation, DotInstr employs three functions for adding the property
which saves the creator. The functions instrumentNode and addCreator run in the
proxy side of Dotlnstr for each object creation-site. The function addCreator mod-
ifies the AST. With the modification, the browser side of DotlInstr calls the function
makeObjCreator to add the property.
function instrumentNode(n){

if (n.type === OBJECT_INIT){
n = addCreator(n, TYPE_BRACKET_OBJECT);
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}

if (n.type === NEW_WITH_ARGS) {
n = addCreator(n, TYPE_NEW_OBJECT);
b
}

function addCreator(n, type) {
// condition checks by 'type’ is omitted for readability
return fakeNode(n, CALL, [
fakeNode(n, IDENTIFIER, null, {value: "JSBNG_Record.makeObjCreator"}),
fakeNode(n, LIST,
[n],
{parenthesized: false})
1);
}

function makeObjCreator(ret) {
Object.defineProperty (
ret, '_jsb_creator’, {

value: (
(makeObjCreator.caller === null ||
(makeObjCreator.caller).toString() === "") ?
"global field" : makeObjCreator.caller.name

),

enumerable: false
);

return ret;

};

To save information of the property access site, there are three functions in DotIn-
str to modify dot expressions (standard property access). Dotlnstr calls the function
dotToCreator on each property access site to modify the corresponding AST for
instrumentation. This function sends all necessary data, including the name of ob-
ject, the property, the URI of source-code file, the line number of code, the type of
property and new value if any to the browser side of DotInstr.

Then on the browser side, function recordDot is executed. After building a JSON
item including both property access site and extra fields about type changes, the
function sends the JSON item back to proxy side and makes the proxy save logs
into local file system. Additionally, the recordDot function executes the original
code of the property access. Parameters used in recordCreator are extracted by
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the arguments object. We omit the process of extracting parameters in the code
demonstration for readability, which is why the argument list is empty in recordDot.
Among the arguments, isWrite depends on the type field of AST node. For instance,
if type is ASSIGNMENT, isWrite is resulted to be true while type DOT to be false.
propertyType is the type of the property before a writing operation. newType is the
type of the property after the writing operation. And isNewProperty is true if adding
a non-existent property to the object.

function instrumentNode(n){
if (n.type === DOT){
n = dotToCreator(n);
}
}

function dotToCreator(n) {
return fakeNode(n, CALL, [
fakeNode(n, IDENTIFIER, null, {value: "JSBNG_Record.recordDot"}),
fakeNode(n, LIST, [
fakeNode(n, STRING, null, {value: variableName}),

variable,

fakeNode(n, STRING, null, {value: property}),
fakeNode(n, STRING, null, {value: variableNode}),
fakeNode(n, STRING, null, {value: fileName}),
fakeNode(n, NUMBER, null, {value: variable.lineno}),
fakeNode(n, NUMBER, null, {value: variable.start}),

fakeNode(n, NUMBER, null, {value: variable.end}),
1, {parenthesized: false})
1);
}

function recordDot() {
var accessor = (recordDot.caller === null? "global field":
recordDot.caller.name);
recordCreator(variableName, variable, property, varNode,
accessor, fileName, lineno, start, end, propertyType, isWrite,
isNewProperty, newType);
return (variable)[property];

};

Further, according to whether they write to the property and their own type be-
haviour, we distinguish the property access site to assignments, increments, decre-
ments, method calls, etc. DotInstr replaces the access itself with a call to a function
for adding creators and recording logs. For each type, DotInstr adds required argu-

19



ments to the function to keep the original meaning of the code.

We realize the separation of property access site through the field type in each
AST node. Take the assignment x.y = 1 as an example. As x.y is not only accessed
but also changed, DotInstr replaces the entire assignment node representing x.y =
1 with a call node. Dotlnstr changes the type of this AST node from ASSIGNMENT to
CALL. The CALL indicates a call to our customized function replaces x.y = 1. Dotln-
str substitutes a unique function for different styles of property access site accord-
ingly. In this case, Dotlnstr calls the method recordDotAssignment in the browser,
with arguments: x, y, 1, ASSIGNMENT, instead of x.y = 1. recordDotAssignment is
aware of the assignment operation in the AST node by the arguments. The function
assigns 1 to x.y, as well as building a JSON object to record this action. Finally, it
sends the JSON object back to the proxy side of DotInstr for saving the data to the
local file system.

Figure 3.4 clarifies and explains how DotInstr instruments code. Nodes in blue
color are action nodes. The process is as follows:

(i) Recall that we built DotInstr on JSBench. JSBench parses JavaScript code to an
abstract syntax tree. So the parser in Figure 3.4 parses original code to AST.

(ii) DotInstr checks whether the node is a target node: object creation or dot nota-
tion.

(iii) DotInstr modifies the target AST node as described in this section.
(iv) Dotlnstr replaces the target AST node with the modified one.

(v) Through JSbench, it turns modified AST back to modified JavaScript code by
the serializer in Figure 3.4.

3.3 Analysis Tool

After the recording process, the analysis tool starts to analyze the data off-line. We
developed the analysis tool in Java. It aims to count the number of sites and creators
aforementioned in each log file, and summarize the results for Chapter 4. The work
flow for counting is as follows (in a simplified version without error-checking code
like null pointers):
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private void handleStr(String str){
// "JSRecordObj’ contains all recorded data at a property access site
JSRecordObj propertyAccessSiteInfo = new Gson().
fromJson(str), JSRecordObj.class);
recordSiteCreators(propertyAccessSiteInfo);
recordObjPropertyChanges(propertyAccessSiteInfo);
}

private void recordSiteCreators(JSRecordObj propertyAccessSiteInfo) {
// 'mapSiteToCreators’ is to save following information:
// key: property access site
// value: a collection of creators found on the access site

HashSet setOfCreators = mapSiteToCreators.get(propertyAccessSiteInfo._site);

setOfCreators.add(propertyAccessSiteInfo._creator);

}

private void recordObjPropertyChanges(JSRecordObj propertyAccessSiteInfo){
if(propertyAccessSiteInfo._isWrite &&
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propertyAccessSiteInfo._isOutsideCreator){
if (propertyAccessSiteInfo._isNewProperty){
mapCreatorToChanges.
get(propertyAccessSiteInfo._creator).incrementNewFieldsChange();
}else if(propertyAccessSiteInfo._isTypeChange){
mapCreatorToChanges.
get(propertyAccessSiteInfo. _creator).incrementWriteChange();
}else{
mapCreatorToChanges.
get(propertyAccessSiteInfo._creator).incrementWriteNoChange();

The analysis script first uses the command cat to read the content of a log file.
Then the analysis tool reads the content line by line into memory. As mentioned,
DotlInstr saved logs in JSON, the function handleStr converts each line of JSON
string to JSON object. A line in the log file represents a property access site in
JavaScript code.

The function recordSiteCreators saves the site and creators for each JSON ob-
ject.

In the last function, recordObjPropertyChanges, it inspects whether there are
type changes or new added properties in objects under each creator. It also checks
type-stable assignments, to record whether there is a new value assigned without
type modification. It should be noted that the analysis tool checks type changes
outside of the creator, since inside the creator, simply adding the property invokes
a type change. JSRecordObj contains the values isWrite and isNewProperty. The
parameter isQutsideCreator denotes whether the creator equals to the function
that accesses the property.

Additionally, since DotInstr saves information in JSON, the analysis tool relies on
a library, which is Google’s Gson in this work, to convert between JSON strings and
JSON objects.

After traversing the entire log file, the analysis tool uses the two recorded Maps,
mapSiteToCreators in recordSiteCreators and
mapCreatorToChanges in recordObjPropertyChanges, to produce results.

In the first Map, mapSiteToCreators, key is the location of the property access
site, and value is a set of creators found on this site. The result informs how many
different creators are found on each property access site, as well as the occurrences
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of different cases (one creator, two creators, three creators, etc). With the knowl-
edge of whether there are multiple creators and which case is the majority in a web
site, we can learn the JavaScript applications in a more dedicated way.

Second Map, mapCreatorToChanges, takes the name of creator as the key, and
numbers of changes as the value. This map computes the number of writing opera-
tions for objects created by the creator. Furthermore, the map provides the amount
of type changing in writing operations and thus the number of creators with type
changing. We classified web sites into five types respectively as shown in Table 3.1.
We used them to show the stability of creators in a web site in general. For example,
the “all read-only” web site tells us that all creators, except global field, are stable
with no change. After that, by counting the creators with different classifying meth-
ods, which are explained in Chapter 4, and by extending the analysis tool, we can
provide more detailed analyses in various aspects.

Table 3.1: Classifications of web sites.
Type Description

all read-only All fields have never been written.
partial read-only = Some fields have never been written, others have.
all type-stable Types of fields have never been changed.
partial type-stable Types of fields have been changed, with others have
not.
all dynamic Types of fields changed without patterns.

A Python script runs the analysis tool automatically on all web-sites log-files and
saves the analysis results to a local file in which each line represents the result of a
web site, in the format of JSON.

After getting the file containing result, we execute a stand alone Java program to
count the occurrences (access sites) in each case of different number of creators, as
well as the types of creators, among all web sites.

The work flow of the analysis process is in Figure 3.5. The analysis tool extracts
data from each JSON object and saves them in the three blue nodes. Combining
property access site and creator, the analysis tool generates the result about the
number of creators on each property access site, which in Figure 3.5 is represented
by the red node “Result 1”. Similarly, through creator and change of properties,
the analysis tool gets the result of creators, which is represented by the red node
“Result 2”.
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Table 3.2: Recorded data about access site.
creator variableKeys accessor property URI lineno start end

foo [x,y] foo X demo.js 3 8 16
Object [a,b] foo a demo.js 4 22 30

3.4 Recorded Data

As mentioned, we tried to record data from the most popular 10,000 web sites as in-
dexed by Alexa, in April, 2017. From these web sites, DotInstr successfully recorded
about 80% of them, which produced 390 GB of JSON data as log files. Since the
number of web sites is obviously far too large to visit manually, we resorted to a sim-
ple automation tool to launch a browser, in this work Firefox, with each URL from
the Alexa list.

DotlInstr opens each web site in Firefox with a configuration file to assure that the
browser runs in a new session without cached data, to avoid the affection of history.
Then, it waits one minute for the home page to load data and record the execution
of JavaScript.

As our system is based on dynamic analysis, it is likely to miss some possible be-
haviors. Therefore, unseen events may render access sites or creators more dynamic
than we observed.

In total, it takes us approximately seven days to finish recording all web sites,
and several hours for one round of analysis.

To explain how our analysis tool works on recorded data, we take the two objects
created in function foo as examples. One is initialized directly (i.e. var m = {}),
and the other is created by the Object constructor (i.e. var n = new 0Object()).
The two objects could generate the data shown in Table 3.2.

According to the previous chapters, the creator for the first object is the outer
function(foo in this case) while the creator for the second object is its corresponding
constructor, Object. Thus the creator on the first row of Table 3.2 is foo, and the
creator on the second row is Object. Note that the Object constructor itself is
rarely used; it is far more common to define constructors for the types used in a
given program. Dotlnstr also records other data like the location information on the
last four columns: URI, lineno, start, and end. URI is the full path of the source-
code file. lineno indicates the line number of the access site. start and end are the
column numbers indicating the start and end positions in source code of the access
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Table 3.3: Recorded data about creators. Figure 3.6 generates the data.
creator propertylype isWrite isNewProperty newType URI

foo number true false number demo.js
Object null true true number demo.js
Object number true false string  demo.js

site. The analysis tool uses such data fields to distinguish between different property
access site and count creators on each site.

Besides the creator and its corresponding data fields, DotInstr recorded modifi-
cations of types on properties as well, shown in Table 3.3.

The code shown in Figure 3.6 can generate the three columns of data in Table 3.3.
In Figure 3.6, the function foo calls the function bar with an object obj1. The creator
of obj1lis foo. When the sample code goes to line 2, which is obj.val = 10, Dotlnstr
records data about the property access site. The data is the first column in Table 3.3.
At line 10 in Figure 3.6, the object obj2 is created by the Object constructor, which
is the creator of obj2. At line 11, DotlInstr records data about the property access
site, which is the second column in Table 3.3. Then at line 12, the type of val changes
from number to string, which generates the data at the third column in Table 3.3.

function bar(obj){
obj.val = 10;
}

function foo(){
var objl = {val:1};

bar(objl);
}
var obj2 = new Object();
obj2.val = 2;
obj2.val = "20";

Figure 3.6: Sample code that generates the data in Table 3.3.

By the name of creator and the URI, the analysis tool distinguishes different
creators. With the other four fields in Table 3.3, the analysis tool can verify whether
there are modifications of types in objects created by these creators. Assuming that
the object is accessed outside of its creator, if isWrite is true and propertyType
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does not equal to newType, then it means that the type of property inside this object
changed in a writing operation. And if isNewProperty is true, which means the
code adds a non-existent property in the object, we also take the type of property as
changed. It is not possible to add a new property after the object has been created
in Java.

To summarize, the analysis tool use the recorded data for the two purposes:

(i) Counting the number of creators for every property access site with location
information like the line number in JavaScript source-code. It provides analysis
tool with the information about:

(a) Names of creators.

(b) Distinguishable location information for property access site. Combining
the URI of the file with the line number, start and end position in the
source code, the analysis tool can identify each property access site.

Therefore, the analysis tool using both of them is able to generate results about
whether there are multiple creators on property access-sites.

(ii) Checking changes about types of objects’ properties on every property access
site. The logs include the following data:

(a) Identities of creators. By name of URI and the name of creator itself, it is
able to find identical creators.

(b) The type of the property before and after writing operation. The word
“type” here is checked by typeof or the creator if the property is an object.

(c) Whether there is a writing operation on existing property.

(d) Name of the creator and accessing function. If the two items equal, the
property access site is inside of the creator. The analysis tool does not
count changes inside the creator.

(e) Whether the accessed property is a new property that does not exist before
the operation.

The analysis tool could find changes occurring on objects created by a creator
through the data.
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3.5 Limitations

DotInstr assumes that developers may use many kinds of dot notations in their pro-
grams, such as x.y and console.log(). And it tries to convert these code to our
customized code without knowing whether there are other usage unexpected. As a
result, there are issues when working on some web sites with unforeseen code.

We cannot open about 2,000 web sites in Alexa’s list with DotInstr. The browser
feeds back nothing except an error message of “forbid to access”. We have not yet
figured out the cause for such problems. Thus there are no log files for these web
sites.

Besides, in the remaining web sites, Dotlnstr failed to modify the AST nodes for
recording logs in some special cases. Then it may affect the final result on web sites
that cause this problem. We have resolved some issues on it. Taking console.log as
an example, DotInstr relies on bind to Function.bind the context of log to console
in its own functions instead of the original context. If there are user defined bind
functions, DotInstr may run into errors since it still call the name bind. The solution
is to define a variable pointing to Function.bind directly and call this variable as a
function.

There are still other cases that may cause issues in Dotlnstr. For example all
methods on the browser side of Dotlnstr may be re-defined by web-sites program-
mers and thus cause problems in DotInstr. We can fix most of the issues if we figure
out the causes like the previous example of bind.

There are two kinds of property accessors: dot notation and bracket notation.
DotlInstr only focuses on dot nation like object.property but not on bracket nota-
tion like object['property’].

Other aspects of future works include:

(i) Since Dotlnstr records logs during execution of JavaScript code, it causes a
slowdown. For the home page of the web site like “amazon.com”, it takes about
30 seconds to finish loading, which is slower than normal. For recording logs
on all web sites, we set the waiting time to 60 seconds to make sure that the
browser can load the home page successfully. As a result, the whole recording
process took about one week. We may focus on improving the efficiency of
recording process in Dotlnstr itself in the future.

(ii) Checking changes of types is based on the granularity of creator. The recorded
data and analysis tool can distinguish among the various creators, but cannot
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separate each object. For example, if one creator create two objects and the
analysis tool find the type of a property changed, the analysis tool cannot de-
termine in which object this property was changed. DotInstr did not record the
name of objects. As a result, we cannot count the number of objects that have
type changes. Although the result is aimed to show information of the creator,
it lacks the ability to extend for showing more detailed information on objects.

(iii) For changes on properties of objects, Dotlnstr currently does not check whether
there is removal of properties. For example, if a property is added then re-
moved outside of the creator, how shall we deal with this property and the
corresponding object? Shall we mark the creator as a stable one since modifi-
cation has been removed? These questions are yet to answer.

To sum up, the most important issue is that Dotlnstr fails to access or work on
some of the web sites. It leads to the result that more than 20% web sites fail to
generate log files.

Once we fix issue, DotlInstr could generate more representative results on both
the number of creators and type changes in objects.
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Chapter 4

Observations

This chapter describes the results of the study. To discover the existence of class-
like behaviour, we underline the number of creators on each property access site and
type changes from several perspectives. Data used in this chapter were recorded in
April, 2017.

4.1 Number of Creators

In typed languages, types are typically annotated at the level of variables, except
for languages employing automatic inference of the data type. Dotlnstr focuses on
the number of creators at a slightly finer granularity, per access site. This allows for
patterns of variable reuse that statically-typed languages do not support.

Counting creators per method is flawed as there might be multiple property ac-
cess sites in one method. That is to say the number of creators in each method
depends on the number of property access site. Therefore, we count creators per
property access site.

The first metric is the number of creators for each property access site. We divide
property access site into four categories depending on the number of creators of the
site: single creator, two creators, three creators, and a single category for many
creators, as the case of more than three creators is rare. The numbers in Table 4.1
shows the number of access site with single creator is the largest. The statistics
conforms to our expectations with respect to the prediction of object creators.
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Table 4.1: Almost all property access sites have a single creator.
Category of Creators Occurrence Percentage
Single Creator 15,578,611 99.70%

Two Creators 42,370 0.27%
Three Creators 2,540 0.016%
Many Creators 2,341 0.014%

As we can see, through the analysis of data collected by opening the home page of
each web site, more than 99% of property access sites access properties from objects
with only one creator. In the high-level view, what does happen is that JavaScript
applications appear compatible with types, based on the number of creators on prop-
erty access sites.

In addition to the number of creators in all tested web sites, we investigate the
distribution of creator numbers in individual web sites. As there may be some special
web sites including more or fewer access sites than others, the analysis for each
log file corresponding to individual web site is necessary to avoid an overwhelming
situation caused by the special web sites. To this end, we divided web sites into two
categories:

(i) Single creator: all object property access sites in the web site have one creator.

(ii) Multiple creators: in this kind of web site, there are object property access
sites containing more than one creator.

Table 4.2 shows the classification result of Alexa’s top web sites. As mentioned in
Section 3.5, since DotInstr cannot work on some of the web sites, while some others
offered no logs, i.e., empty in log, the total number of single and multiple creator
web sites does not equal to 10,000. The proportion of empty web site is only 1%.

Table 4.2: Numbers of single and multiple creators web sites are both substantial.

Web Site Occurrence Percentage
single creator 4,608 59%
multiple creators 3,113 40%
empty 32 1%

The percentage that single creator web sites take denotes that lots of JavaScript
applications treat object creations similar to Java: each object has only one creator
(or type).
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In Table 4.2, we found that there are 3,113 web sites that contain access sites
with multiple creators, which indicate that many JavaScript applications do not cre-
ate objects with the notion of types. We did advanced research and provided further
data to prove that most access sites in these web sites have only one creator.

To show more detailed information, Table 4.3 displays distributions of property
access sites with different numbers of creators among these 3,113 web sites. Ta-
ble 4.4 lists several examples of unusual behaviours from these web sites. Most
of the property access sites still contain only one creator. The proportion of single
creator in these selected web sites is greater than 98%, which is similar to the num-
ber in Table 4.1. We can see that although the number 2,899 on the second row of
Table 4.3 is large, which denotes the occurrences of web sites containing property
access site with two creators is large, the number of property access site with two
creators as shown in Table 4.4 is quite small. Three and more creators are even
more rare than two creators. Property access sites distribute similarly in Table 4.1
and Table 4.4. And among all the log files, we did not find any extreme web site that
the single-creator access site is not the majority.

As a result, it is reasonable to state that the object itself is mainly created by one
particular type, regardless of whether the object is in a multiple-creator web site.
So in the following example:

function increment(x){
X.y+=1;

}

if it is guaranteed that the argument x is always from creator,

function XC(){
return {y:1}
}

then the JavaScript compiler could compile it with a type, which saves time by avoid-
ing looking up the object and its properties, as the following example indicates.

function increment(XC x){
(XC)x.y+=1;
}

Based on the analysis result in this section, we conclude that the notion of Java-
like types exist and thus we can employ types in JavaScript.
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Table 4.3: Most web sites contain single and two creators access sites.
Number of Creators Occurrence in Web Sites Percent

1 3,113 100%
2 2,899 93.2%
3 761 24.4%
4 346 11.1%
5 280 9.00%

Table 4.4: Access site with single-creator is the majority.

Web Site Number of Creators Frequency of Single Creator
1 2 3 4

oriflame.com 2930 34 2 NA 98.7%
rae.es 2,357 1 4 0 99.7%
sony.jp 3,837 1 4 O 99.9%
ebay-kleinanzeigen.de 5,020 6 0 4 99.8%
money.pl 3,697 9 10 O 99.5%
bmo.com 6,755 34 11 1 99.3%
walmart.ca 6,984 76 5 0 98.9%
webex.com 4,452 76 2 3 98.2%
gumtree.com.au 3,886 7 1 1 99.8%

4.2 Category of Creators in Single and Multiple Ac-
cess Sites

The data about number of creators on each access site can be inverted for determin-
ing whether particular creators are more prone to be used in property access site
with multiple creators. Creators on property access site with multiple creators limit
the application of types, since objects of property access site with multiple creators
have more than one creator by nature and are not in any kind of types. In other
words, if we treat a specific creator as a type but find this creator on the property
access site with multiple creators, the notation of type fails on that access site. For
example, the creators Date and Number are at a property access site with more than
one creator, we cannot set the type of objects on this site as either of them, since the
object can be an instance of either Date or Number.

To answer the question about whether we can employ creators as the types of
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objects, we divide the creators into two types: ones that appear only in access sites
with single creator, and ones that appear in access sites with multiple creators.
Since the scope of the creator “global field”; i.e., the creator for objects created at
the global scope, is much larger than any other ones, the analysis tool removes this
creator from the result.

An example follows to show the two kinds of creators. The creator Person ap-
pears in property access site with one creator. And other two creators, Car and
Bicycle, appear in site with more than one creator.

function Person(firstName, lastName){
this.firstName = firstName;
this.lastName = lastName;

}

function Car(price){
this.price = price;

}

function Bicycle(price){
this.price = price;

}

var pl = new Person("P1","Robot");

// this is a property access site with single creator
// the creator 'Person’ appears here
console.log(pl.firstName);

function foo(obj){
// this is a property access site with multiple creators
// creators 'Car’ and ’'Bicycle’ are used here but ’'Person’ is not
console.log(obj.price);

}

var car = new Car(22000);
foo(car);

var bike = new Bicycle(1600);
foo(bike);

From our analysis result, there are in total 48,758 creators that only appear in
single-creator access sites, compared to 11,650 creators in multiple-creator access
sites. Although the first kind of creators form a majority with the percentage 81%,
it is incomparable with the result in Table 4.1 that access sites with single creator
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takes the vast majority with the percentage of 99%. We will need more detailed data
to examine the remaining 19% creators appears in multi-creator site.

As JavaScript built-in functions cannot be modified, we expected them to behave
different from user-defined functions. The analysis tool compares the name of cre-
ators with a standard built-in functions list, as provided by Mozilla’s developer web
site [2]. Thus we can distinguish between built-in functions and user-defined ones.

In the analysis result of built-in creators in Figure 4.1, if there are twenty creators
used only in property access site with single creator in a web site, and one of them
is a JavaScript built-in creator, then the rate is 1/20 thus 5%. This web site will be in
the bin “0% - 10%” in this figure. “Bin” means the rate of JavaScript built-in creators
to all creators on single or multiple creators access sites. We can read from the table
of Figure 4.1, in the bin “0% - 10%”, there are 1,626 such kind of web sites where
the rate of built-in creators is similar to the previous example.

Figure 4.1 shows that web sites labeled by the rate of built-in creators to creators
on single-creator access site are distributed more evenly than those labeled by the
rate to multiple-creator access site, although there is no fixed pattern for this even
distribution.

To our interest, most web sites labeled by the rate of built-in creators to multiple-
creator access site are located at the bin “0% - 10%”, which means that JavaScript
built-in creators only account for a small number of polymorphic sites. Even if there
is a small increase in the interval of 90% to 100%, most of the web sites have only
one creator appearing in multiple-creator access site; that creator is the JavaScript
built-in Object creator.

From the result, we found that most creators reaching multiple-creator access
sites are user-defined. Besides, among the 437 web sites at the bin “90% - 100%”
represented by the right-most red bar in Figure 4.1, 419 web sites contain the cre-
ator Object. Thus we expect objects created by Object to have more than one
creator.

The analysis result indicates that objects created by user-defined functions and
the Object constructor are prone to have more than one creator. Thus we can not
set types for these objects. Besides, whether objects from multiple creators reach
access sites is only one aspect of type-like behaviour. In statically typed languages,
object fields typically cannot change their types. The other aspect relates to types
and properties of objects.
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Table and Corresponding Bar Diagram

Rate Bin Built-In to Single Creators Built-In to Multiple Creators
0% - 10% 1,626 6,569
10% - 20% 349 148
20% - 30% 681 246
30% - 40% 877 126
40% - 50% 581 14
50% - 60% 1157 155
60% - 70% 684 23
70% - 80% 379 2
80% - 90% 343 1
90% - 100% 957 437

Total Web Sites 7,753 7,753
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Figure 4.1: The rate of built-in creators to multiple-creator is low in most web sites.
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4.3 Types of Properties in Objects

In the previous section, we explored the number of creators reaching each access
site, as a way of understanding whether nominal types make sense for JavaScript.
To learn more about JavaScript objects in real-world applications, we discuss types
and existence of properties in this section.

As we know, types and existence of an object properties are fixed after creation
in Java, while almost everything including both the type and existence of properties
in JavaScript is dynamic. We need to determine whether there is modification of
types on properties in objects and creations of new properties. If types of object
properties in modern JavaScript web sites rarely change, combining with the result
in Section 4.1, we could apply types and classes to JavaScript objects.

We divide creators into four types based on object properties:

(i) If there are no writing operations on object properties, we mark the creator of
the object as “read only”.

(ii) If there are writing operations but only type-stable ones, which are writing
operations without changing properties’ types, we mark this creator as “type
stable”.

(iii) If there are writing operations that change the type of properties, we mark the
creator as “dynamic”, to be more precise as “type dynamic”.

(iv) If there are creations of non-existent properties, we mark the creator as “fully
dynamic”.

We can treat creators marked other than “dynamic” as Java classes in principle,
as there are no changes of types during execution. The two types of “dynamic”
creators are not Java-like.

Similar to Section 4.1, we focus on the result across all web sites at first. The
analysis tool counts the number of these four kinds of creators as shown in Table 4.5.
As we can see, although most creators belong to the “read only” and “type stable”
categories, which are Java-like classes, there is a substantial proportion of “dynamic”
creators. In following discussions, we use “stable” to describe “read only” and “type
stable” creators, and “unstable” to describe both “dynamic” creators. Other than
the 75% stable creators, there are 25% unstable ones. And comparing with “type
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Table 4.5: “read only” creators are much more than others.
Type of Creator Occurrence Percentage

read only 52,197 69.0%
type stable 4,564 6.0%
type dynamic 4,394 5.8%
fully dynamic 14,509 19.2%

dynamic” creators, “fully dynamic” ones are the majority in unstable creators. The
comparison indicates that creations of non-existent properties is the main cause for
unstable creators.

For the question whether JavaScript code behaves similarly to statically-typed
code, the fact that objects created from dynamic creators are not type-stable makes
the answer more complex than the previous analysis of access site. Any notion of
classes is less useful when there are changes of types or creations of new properties.
Therefore, we need more detailed information about the dynamic creators.

To show results in a finer granularity, we classify the tested web sites more de-
tailed into categories mentioned in section 3 based on the occurrences of read-only,
type-stable, and dynamic creators.

(i) If there are only “read only” creators, we classify this web as a “all read only”
one.

(ii) If there are “read only” creators and others, we classify this web site as a
“partial read only” one.

(iii) If there are “type stable” creators but no “dynamic” ones, we classify this web
site as an “all type stable” one.

(iv) If there are “type stable” creators and others, we classify this web as a “partial
type stable” one.

(v) The rest are “dynamic” web sites.

Table 4.6 shows the result of number and percentage of web sites that belong to
each of the categories. It should be noted that we discard the creator “global field”
in all results of this section with the similar reason in Section 4.2. There are 623
web sites that have no creators other than “global field”, which is the “Unclassified”
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web sites in Table 4.6. They account for about 8% of all recorded web sites. These
web sites are meaningless for this analysis in the current analysis tool. So in this
section, we do not classify and discuss them.

Table 4.6: Partial read-only web sites are the majority.
Category of Web Site Number of Web Site Percentage

All Read Only 1,269 16.37%
Partial Read Only 5,401 69.66%
All Type Stable 24 0.31%
Partial Type Stable 10 0.13%

Dynamic 426 5.49%
Unclassified 623 8.04%

From Table 4.6, we conclude that most web sites are “Partial Read Only”. “All
Read Only” web sites account for about 16%. Since stable web sites, which are “All
Read Only” and “All Type Stable” ones, do not account for most, it is hard to tell
whether most creators are stable in a web site. But it is obvious for us to determine
which kind of creators tend to be dynamic creators by their names. For example, if
dynamic creators are most user-defined ones, we can employ classes for JavaScript
built-in creators.

The “Partial Read Only” web sites, which account for 69.63%, attract our atten-
tion on what causes them to be “partial” but not “all”. If the reason is that unstable
creators account for a substantial part, that means the improvement based on the
application of classes may be limited. Alternatively, if unstable changes represent a
minority, similar to result about property access site with multiple creators compar-
ing to single creator, there is a good chance to improve the efficiency of JavaScript.
More detailed explanation is in Section 4.4.

To approach the causes for “Partial Read Only” web sites from another perspec-
tive, we concern unstable writing operations, which include changing types of prop-
erties and creating non-existent properties. Table 4.7 lists our definitions of op-
erations. Considering that stable web sites only account for a small portion, we
expect that stable writing operations are not the majority in modern JavaScript ap-
plications. Therefore, we need to examine whether stable writing operations lead to
“Partial Read Only”. The problem becomes simpler if stable writing operations make
it “partial”. The discussion is in Section 4.5.

39



Table 4.7: Definitions of operations.
Definition of Writing Description
unstable writing operation Value and type of property changed dur-
ing the writing operation.

stable writing operation Only value of property changed.
creation of new property A non-existent property is created in the
object.

4.4 A Discussion of Creators on “Partial Read Only”
Web Sites

Since “Partial Read Only” web sites account for about 70% of all, it is valuable for
us to run a deep analysis about creators on such web sites.

At first, we updated the analysis tool to count dynamic creators among all types
of creators in each web site. We expect to see whether there are more dynamic
creators than others in a web site. Besides, since dynamic creators suggest very
un-class-like behaviours, we need to explore the reason for the existence of dynamic
creators.

We separate web sites according to the percentage of dynamic creators to all
creators by the stride 10%. The result is in Figure 4.2. For example, if there are
totally twenty creators in a web site, and five of them are dynamic creators, then
the percentage of dynamic creator is 25%. This web site goes to the bin “20% -
30%”. From the table, we conclude that in “Partial Read Only” web sites, there
are a large number of dynamic changes. Most web sites are in the bin from 0% to
70%. In the bin “20% - 30%”, it has the most web sites, 1446 ones. Thus, we argue
that JavaScript creators exhibit highly dynamic types with a reasonable percentage.
Even if most property access sites, which are more than 99%, have only one creator,
types of properties in objects created by the creator change. Therefore, we cannot
treat creators as classes.

However, there are still stable creators among them, and the portion is consider-
able. For example, the bin “0% - 10%” means other 90% to 100% creators belong
to stable creators. If we can differentiate them based on some features of creators,
there could still be room for improvement. Among web sites that contain dynamic
creators, there is a possibility that all other stable creators belong to one category,
like user-defined functions or JavaScript built-in functions. If objects created from
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Among Partial Read Only Web Sites

Percentage of Dynamic Creators Number of Web Sites Percent of Web Site

0% - 10% 650 12.0%
10% - 20% 1,050 19.4%
20% - 30% 1,446 26.8%
30% - 40% 1,111 20.6%
40% - 50% 511 9.5%
50% - 60% 461 8.5%
60% - 70% 139 2.6%
70% - 80% 24 0.4%
80% - 90% 9 0.2%
90% - 100% 0 0%

1600 T T T T T T T T T T
occurrence

1400

1200

1000

400

200

0% 10% 20% 30% 40% 50% 60% 70% B80% O0% 100%

Figure 4.2: There exist substantial dynamic creators.
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one particular category of creators rarely change during execution, we can apply
make them work with the notion of “class”.

We now distinguish type stability between user-defined and built-in creators, ex-
pecting to find a pattern that only objects created from one kind of creator are prone
to change during execution.

Figure 4.3 is the result of this further study. We separate web sites according to
the percentage of JavaScript built-in creators to all dynamic creators by the stride
10%. There are two sub-bars at bin “0% - 10%” and “90% - 100%”. The first red
sub-bar at “0% - 10%” shows special web sites that are at the critical point 0%. And
the second green sub-bar at “90% - 100%” shows the web sites that contain the
special built-in creator Object. We will present further discussions of the two cases.
As shown, most objects created by JavaScript built-in functions are stable. Web sites
ranging from 0% to 10% accounts most, which denotes that most web sites only
contain small portions of dynamic built-in creators. Type instability in these web
sites is most likely from user-defined creators. Based on this observation, we have a
chance to treat built-in creators as classes.

Looking further into the range from 0% to 10%, 2,783 web sites among 2,866 are
actually at the critical point 0%, where 0% indicates that a web site exists dynamic
creators but none of them are built-in creators. That is to say, there are significant
number of web sites contains 0% of JavaScript built-in creators among all dynamic
creators. Further, the bin “90% - 100%” is an outlier, compared with that from 60%
to 90%. After checking the 460 web sites in the bin “90% - 100%”, we found that all
these web sites are actually at the point 100%, where 100% means dynamic creators
in the web site are all JavaScript built-in creators.

Considering the two extreme cases with percentage 0% and 100%, we count the
creators to seek the pattern in different built-in creators. For web sites at the point
100%, where all dynamic creators are JavaScript built-in ones, there are 360 out of
460 containing the creator Object. This is reasonable since the Object constructor
does not relate to types. In this case, we expect Object to be used similarly to object
literals. For web sites at the point 0%, ones having no unstable JavaScript built-
in creators, there are only 463 of 2,783 instances containing the creator Object,
accounting for about 16%.

Table 4.8 and Table 4.9 show that JavaScript built-in functions are more related
to types except the Object constructor, as seen in the following examples.

(i) RegExp. The constructor creates an object for a regular expression. There
is no need to add new properties or change properties’ types, if the object is
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Among Web Sites Contain Dynamic Creators

Percentage of Built-In Creators Number of Web Sites Percentage of Web Sites

0% - 10% 2,866 53.0%
10% - 20% 291 5.4%
20% - 30% 494 9.1%
30% - 40% 361 6.7%
40% - 50% 99 1.8%
50% - 60% 649 12.0%
60% - 70% 145 2.7%
70% - 80% 29 0.5%
80% - 90% 12 0.2%
90% - 100% 460 8.5%
3000 T T T T T T T T T T I|:I
2500 -
2000 —
1500 -1
1000 -
500 | _
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Figure 4.3: Built-in creators account for a small portion in dynamic ones.
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Table 4.8: Three stable built-in creators most commonly used.
Among “0%” Web Sites RegExp Date Array
Web Sites Using the Creator 1,747 1,510 249

Percentage 62.8% 54.3% 9.0%

Among “100%” Web Sites = RegExp Date Array
Web Sites Using the Creator 1 1 2

Percentage 0.2% 0.2% 0.4%

utilized as a regular expression. Normally, there are two arguments in the
constructor.

new RegExp(text, flags);

The first argument is the regular expression itself, and the second one is flags
for how the expression is to be interpreted. Changing types or adding new
properties make no sense on objects created by RegExp. As shown in Table 4.8,
there are 1,747 occurrences of RegExp as stable creators, while there is only
one case using RegExp as a dynamic creator.

(ii) Date. The constructor is to generate an object representing a moment in time.
Properties are time-related, such as years, months, days, etc, as precise as
milliseconds. Even if programmers want to add more properties, the built-in
date-related functions would not use them. As shown in Table 4.8, only one
case employs Date as a dynamic creator.

(iii) Array. For objects created with Array constructor, they are obviously used as
arrays. Operations are based on bracket notations and array operations, such
as arr[0], arr.push(1l), etc. In principle, arrays could carry any type and
their types could change, but we find arrays are seldom unstable.

The above examples are the most common JavaScript built-in creators among the
“0%” web sites. While the three creators are majorities in the web sites that contain
0% dynamic JavaScript built-in creators, they are the minorities among the “100%”
web sites. On contrary, the Object creator is highly dynamic, which occurs in about
78% of all the web sites that contain 100% dynamic JavaScript built-in creators.

We could treat the three stable built-in creators as Java-like classes in current
code. In future analysis, we may find more characterized creators for improvement.
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Table 4.9: The creator Object is unstable.
Among “0%” Web Sites Object
Occurrences 463
Percentage 16.6%
Among “100%” Web Sites  Object
Web Sites Using the Creator 360
Percentage 78.3%

In future work, it would be necessary to verify whether the amount of objects
created from stable JavaScript built-in creators account for enough number to be
worth focusing on. Although most JavaScript built-in creators themselves are stable,
if there is a small number of such objects created and used in modern JavaScript
applications by developers, then it would be less valuable for us to focus on them.
However, as described in Section 3.5, Dotlnstr is not currently able to distinguish
different individual objects among property access sites. Such a distinction is nec-
essary for us to get a greater representativeness and accuracy.

4.5 Statistics of Unstable Writing Operations

The analysis tool also checks the total number of writing operations that lead to
changing types of property for each dynamic creator. The rule is strict for labeling
the creator as a stable one: one change of type or new property could lead to the
creator being noted as dynamic.

If unstable writing operations are sufficiently rare, we could focus on the follow-
ing perspectives:

(i) When do unstable operations take place? If they arise at the very beginning
after creation, the JavaScript engine could employ a function to re-build the
creator based on the change, so that code after the change can use the new
creator in a stable way. We then could consider the new creator as “read only”
or “type stable”.

(ii) Are there unstable writing operations on most objects created from the creator,
or only a few? Once the log files and analysis tools are capable of checking and
distinguishing individual objects from the same creator, there is a chance for
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us to answer this question. If there are unstable writing operations on only a
few objects, but causing the creator to be an unstable one, it may be possible
for us to characterize the problematic objects and separate them from stable
ones.

For this purpose, we analyze the total number of unstable writing operations on
each web site containing dynamic creators, compared to stable ones. We calculate
the rate of unstable writing operations to stable ones. Stable writing operations lead
to “Partial Read Only” web sites as well as unstable ones. In Figure 4.4, we examine
which kind of operations is the main cause of “Partial Read Only” web sites. A high
rate means unstable writing operations is the main cause in a web site. From the
calculation result, unstable writing operations are the majority, as the range from
80% to 100% accounts for more than half of web sites, which means such many
web sites have the rate higher than 80%. The figure reveals that in most web sites
containing dynamic creators, writing operations on these creators are most likely
unstable.

4.6 Case Analysis

4.6.1 Analysis of Unusual Web Sites

In this section, we analyze and characterize examples of web sites belonging to the
following four unusual or surprising categories.

(1) All property access sites are single-creator, and most creators are stable, i.e.
“read only” or “type stable”. These web sites show highly type-like behaviour.
Examples selected are: google.com, google.si, irs.gov, and cda.pl.

(ii) Most creators are stable, but there exist several cases of multiple-creator prop-
erty access sites. The code in this kind of web sites would be easy to rewrite
with classes, but difficult to annotate with types. Examples selected are: nyc.gov,
wrestlinginc.com, tickld.com, and hizliresim.com.

(iii) There exist cases of multiple-creator access sites, and most creators are “dy-
namic”. These web sites are highly dynamic. Examples selected are: w3.org,
ilsole24ore.com and launchpad.net.
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Among Web Sites Contain Dynamic Creators

Rate Bin Number of Web Sites Percentage

0% - 10% 143 2.6%
10% - 20% 147 2.7%
20% - 30% 171 3.2%
30% - 40% 251 4.6%
40% - 50% 326 6.0%
50% - 60% 408 7.5%
60% - 70% 581 10.7%
70% - 80% 500 9.2%
80% - 90% 689 12.7%
90% - 100% 2,190 40.5%
2500 T T T T T T T T T T T
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Figure 4.4: Rate of unstable writing are much more than stable ones.
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(iv) The case where most access sites have one creator, but most creators are “dy-
namic”. These web sites do not correspond well to static types, as their anno-
tations would be fairly nominal, but they could not be rewritten into classes.
Examples selected are: cameraprive.com, searchmgr.com, ucdavis.edu, and
vagas.com.br.

From category i, in cda.pl, there is one dynamic creator and most writing oper-
ations are unstable, which makes it hard to decide whether it is possible to apply
types. After checking the data behind Table 4.9 for this web site, we find that the
only dynamic creator is the Object constructor, so others are stable.

Web sites belonging to category ii are expected to have more complex combina-
tions than that in category i. There is a high incidence of unstable writing operations
on the four web sites. And for nyc.gov, dynamic JavaScript built-in creators account
for half of all. So it is impossible to apply the improvement on all creators in these
web sites.

From the web sites in category iii and iv, we find that some of the dynamic cre-
ators are from JavaScript built-in functions but others are not. For example, none of
the creators in ilsole24ore.com are from JavaScript built-in functions. But on launch-
pad.net, they are all from JavaScript built-in ones. In this case, DotInstr could not
decide whether it is possible to guarantee the improvement on them because there
are no further data to help for making decisions.

4.6.2 Analysis of Source Code from Three Examples

Additionally, we analyzed complicated web sites in further detail, with raw results
shown in Appendix A.1. We selected three web sites due to their special cases of
creators and type changes.

In the three selected web sites with more detailed data, we counted and com-
pared the number of creators in the two fields:

(i) Under the cases of single-creator access site, two-creators access site, etc., we
extracted the name of creators and their occurrences.

(ii) For the four kinds of creators, we examined their names and numbers.
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As we can infer from the raw data, most creators under the cases of multiple-creator
access sites and dynamic creators are not in the list of JavaScript built-in functions.
That means these creators are from user-defined ones. After comparing names in
the collection of single-creator access sites with that in the collection of stable ones,
we found that the two groups are not related to each other. The creator that is found
in the collection of single-creator access sites may not be found in stable creators,
and vice-versa. These two notions of type stability seem unrelated to each other.

To understand why these surprising cases of multiple-creator access sites and
dynamic creators arise, we also compared the source code of web sites and their
corresponding logs. We found several interesting examples in this process.

Analysis of abc.net.au

In abc.net.au, there are 39 “read only” creators, 14 “type stable” ones and 14 “dy-
namic” ones. The case is special since there exist several creators in each type. We
count the creators in abc.net.au and find that the three creators in Table 4.8 are
all stable. And the Object creator is dynamic in abc.net.au, similar to the result in
Table 4.9. The raw results also justify the argument that the two creators Date and
RegExp only appear in cases of single-creator access sites and stable creators.

Besides, there are three code examples for “dynamic” creators and one for the
multiple-creator access site.

First, we found that in a creator function named “0”, it defines an object with
many simple properties: getters and setters, addListener and removelListener, etc.
However, while returning this object, in a function property of this object, it re-
defines the status property that already exists.

function o(){

var ret = {};

ret.id = id;

ret.name = o0;

ret.status = {};

// define properties of ret

return ret.getters() = function(){},

// define function properties of ret

ret.updateStatus = function(info){

ret.status = {

// update status based on information extracted from 'info’
id:info.id,
start:info.start,
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end:info.end

};
}

The function updateStatus is like an API for others to change the status property
of this object outside of its creator, but in a controlled way.

On the one hand, from this example, we can see that if an object property is
treated as a collection of data, it is quite possible for the property itself, and not just
the data in it, to be updated.

On the other hand, this example suggests that our notion of creator may need
some refinement. While the two objects reaching ret.status do indeed arise from
different creators, both are within a same function.

The second special usage is: while a property initlized has already been de-
fined by its creator, another function defines a similar property name, i.e. init, in
the same object rather than using initlized.

Another example shows the way JavaScript programmers update data fields with
dynamic features. We use a simplified example to show the usage. The first approach
of updating follows.

function creatorF(){
return {count:{content: vall, static: val2}};

}

// obj is created by function creatorF

function use(obj){
// do something and then update count
obj.count = {content: val3, static: val4, id: val5};
// count is now from another different creator

}

The object count is updated by assigning a new instance instead of setting new
values to its properties one by one, which is the second approach.

// obj is created by function creatorF
function use(obj){
// do something and then update count
obj.count.content = val3;
obj.count.static = val4;
obj.count.id = val5;
// count is still created by function creatorF
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In the first approach, the property count in object obj is assigned a new value with
creator use, instead of creatorF. As a result, obj will be marked as “dynamic”. In
the second way, even if count is made “dynamic”, the instance obj is still stable.
However, the first approach is easy to use, an thus a more common way for updating
data fields in the object.

For the code example of multiple-creator access site on this web site, there is
only one cause: a function taking an object as its parameter is called everywhere in
many other functions. The code example follows.
function foo(obj){

//access properties
obj.pl = v3;
}

function callerl(){
foo({pl:vl, p2:v2});
}

function caller2(){
foo({pl:vl, p2:v2});
}

function caller3(){
foo({pl:vl, p2:v2});
}

callerl();
caller2();
caller3();

Each time foo is called in other functions like callerl, a different creator reaches
the property access site. There will be three different creators callerl, caller2,
and caller3 in function foo reaching its property access site.

Besides the mentioned web site, there are two other web sites to be analyzed with
surprising cases as well: schwab.com and timeout.com. After analysis, we found that
there are reasonable causes for cases of multiple creators and “dynamic” creators
in each. Among all causes, there exist patterns that lead to “dynamic” creators.
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Analysis of schwab.com

In the web site schwab.com, the first example shows that functions are called like
object.handle(arguments). There are many examples of object.handle, where
object is created by different functions and handle is an inner function to deal with
input arguments. The code follows.
function cl1{

function clh(inputl){}

return {handle:clh}
}

function c2{
function c2h(input2){}
return {handle:c2h}

}

//0bj is from different creators
function use(obj){
// do some jobs first
obj.handle(input);

Another special case shows that when a function checks whether a particular
property exists, as well as its equality to a value:

function check(obj){
return obj.prol && obj.prol === valuel;
}

there is a high possibility that obj is from different creators considering the purpose
of this function and the lack of a type system in JavaScript. So access sites inside
the function check will be marked as from multiple creators.

For “dynamic” creators in this web site, there are five main causes listed below:

(i) A function adds new fields and functions to its object argument.

(ii) Outside of the object creator, there is a checking and adding operation of non-
existent properties like obj.p = obj.p || {};.

(iii) Updating existing object-fields like obj.p = {kl:v1l,k2:v2} instead ofobj.p.k-
1=v1l, obj.p.k2=v2. From this kind of usage, the creator of p changed and
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thus caused the creator of obj to be a dynamic one, according to our defini-
tion. However, if the creator changes but the structure is the same, we could
still treat these creators as the same type in structural typing system.

(iv) Other unusual additions of fields, like var obj = creator(); obj.field =
creator; outside of the creator function.

(v) Objects are created by Object constructor and added new fields named like
data.

Analysis of timeout.com

In the last analyzed web site timeout.com, there is only one reason for cases of
multiple creators: for-in based reflection. The code follows.
for(var i in objLoop){
if(objLoop.hasOwnProperty(i)){
var obj = objLoop[i];
// an access site of properties in obj
console.log(obj.val);

For “dynamic” creators in this web site, there are three causes. The first is similar
to that in abc.net.au: using fields named with init, initialized and initializing
as if they already exist. Second is that the object creator opens an interface to
others to change its properties, so that functions other than the creator may change
its fields, and then make it “dynamic”. The last cause we classify as truly surprising:
some objects simply change outside of their creators with no particular pattern.

After the analysis of all three web sites, we achieved the following conclusions.

(i) For cases of multiple-creator, there is one site in the code, e.g. an argument of
the function is an object that created by different creators, from which multiple
creators originate. After that site, any property access site is marked as with
multiple creators.

(ii)) For “dynamic” creators, the common patterns are: updating object fields with
an object instead of these properties one by one, and using init-like properties
as if they already exist. Other causes appeared patternless.
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4.7 Web Sites that Break Dotlnstr

DotInstr failed to work on some web sites. The cause for most failures is that DotIn-
str cannot preserve the original meaning of the code after modifications. Since
DotInstr modifies the structure and content of the AST node, there are several cases
where the modification breaks the structure of AST or makes modified JavaScript
code invalid.

After catching exceptions about serializing AST back to JavaScript code, DotInstr
restores the code to its original version without modification. DotInstr may fail to
restore the original version, which causes the second kind of failure. Then the web
sites may stop loading and produce no log files whatsoever. As mentioned in the pre-
vious chapter, some of web sites do not provide accesses through DotInstr although
they can be accessed directly. Error messages show that the access is forbidden
when accessing with DotlInstr. As a result, we finally got log files of more than 7,700
web sites, but not for all 10,000 ones.

4.8 Global Fields

When counting modifications on property types in objects, DotInstr discards the cre-
ator “global field”, which is the global scope under each JavaScript source-code file.
Since the number of changes depends on the size of such field, DotInstr currently
only focuses on creators other than “global field”, as global objects are unrelated.
However, there are web sites in which all creators are “global field”. For such web
sites, it is not possible to get useful information from them.

When Dotlnstr and the analysis tool can distinguish among individual objects, it
would be possible for us to include these global obejcts in the result, by separating
unrelated objects under the creator “global field”.
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Chapter 5

Conclusion

The thesis provides a study and analysis to determine whether JavaScript code ex-
hibits behaviour similar to classes in Java and other statically-typed languages, by
information on property access sites and types of creators. Our study is based on
data collected from more than 7,700 web sites on the Alexa top list. We built the tool
used in this study on JSBench and named it DotInstr. Through DotInstr, we gathered
data about object creations and property access sites during JavaScript execution.
DotlInstr saved data on the local disk in the format of JSON. We provided advice about
whether it is possible to utilize “types” for performance improvement and other en-
hancements to dynamic code. We also measured how much improvement techniques
like inline caching is expected to bring. After comparing class-like behaviour of ob-
jects in JavaScript applications with Java, the study achieved the result that object
behaviour in JavaScript applications tend to be Java-like. After analyses on several
different aspects, we got following results:

(i) We observed that most property access sites, more than 99%, access properties
from one creator. The case is still similar in each web site that most property
access sites are with one creator. While 40% of web sites contain multiple
creators on property access sites, the total number of such access sites is small.
Property access sites that have multiple creators account for less than 1%.

(ii) While most property access sites are with one creator, types of properties in ob-
jects changed a lot through writing operations. For all creators other than the
global scope, there exist 25% “dynamic” creators, which means objects created
by such creators do not follow the notion of classes as types and existences of
properties in such objects change during execution.
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(iii) Compared to unstable creators, we found that objects created by JavaScript
built-in creators are more stable, except the creator Object. These built-in
creators such as Date and RegExp could be treated as classes during execution.

We started this work expecting that types could be employed for performance
improvements in modern JavaScript applications. However, the results suggest that
this application is limited, and such improvements could not be employed directly
without further condition checking. JavaScript programmers do use dynamic fea-
tures, and thus restricting dynamism would break their original code. These dy-
namic aspects bring conveniences for JavaScript programmers.

In summary, the percentage of single-creator access sites cannot guarantee that
modern JavaScript applications behave as if they were typed. In our current analysis
result, only some of JavaScript built-in creators have the potential to be used as
classes. JavaScript’s dynamic nature is used to full effect in real code.
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Appendix A

JSON Data Extracted for Case

Analysis

A.1 A Detailed JSON Data

+

abc.net.au:

~

"isSingle":false,
"isEmpty":false,
"webSiteType":1,
"creatorsNumber":{

"16":1,

"1":659,

"17":9,

"2":10,

"3":1,

"6":1,

"7":4,

"10":1,

"14":3
19
"readOnly":41,



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

"typeStable":14,

"randomChange":12,

"numberofCreOcc":{
"16":{

}

II1II:

"b":
“C"
“D":
"G
"H":
“h*:
"J"
“N":
"0":
Q-

~

~

~

~

~

~

~

~

~

~

~

q
v
w':
X
z

~

~

~

R el R R e N e =

"CustomEvent":2,
"B":1,
"MutationObserver":1,
"G":4,

"H":58,

"0":3,

"Q":8,

"Pc":3,

"ob":7,
"HTMLImageElement":1,
n_®eil7/,

"d":5,

"RegExp":11,

"g":5,

"i":78,
"NolTracker":25,
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55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

"k":4,
"m":8,
"n":95,
"Date":13,
"tb":5,
"o":127,
“"Array":2,
"Promise": 20,
"pa":7,
"pb":23,
"r":5,
"s":43,
"u":9,
"v":5,
"w":7,
"Object":55,
"z":2

I

"17":{
"b":
"C":
"D":
"G":
"H":
"h':
"3
"N":
"0":
"

~

~

~

~

~

~

~

~

,
"0,
npreg
"v":9,
"W 0,
INCEEN
no .

~

O O OV OVWWOVWOWUOOVOOVOOvLovouvo

}
II2II:{

62



120
121
122
123
124
125
126
127
128
129
130

}
II3II:{

}

II6II .{

H
"7":{

"
"b":
-
"Cr

w"
"G":
"h'":
"H":

IIX :

IIZ

IINII:

}
“10":{

IIQII:

R AR WRE DR P

N e e

~ ~ ~

~

~ ~

~

el

~

~

~ ~ ~ ~

~

~- ~ ~

~

N BNDNNMNNBEDNNNDS

(=
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131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

~ ~ ~

~

~ ~

~

X
I e T S e R e

b

"14":{
"b":
"C
"D":
"G":
"H"
"h:
"3
"N
"0":
ey

~-

~

~

~

~

~

~

~

~

~

~

q
r
v":
w
X
z

~

~

~

~

W wwwrEkERPEPEEFEWWNWWNNDNWWW

}

b

"readonlyMap":{
"CustomEvent":1,
"B":1,
"D":1,
"MutationObserver":1,
"G":1,
"N":1,
"0":1,
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169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

agv
ol
Lo
"b":
"d":

1,
01,
01,
1,
1,

"RegExp":1,

Ilgll:
Ilhll:
Ilill:

1,
1,
1,

"NolTracker":1,

Ilkll :
Ilmll :

1,
1,

"Date":1,

Ilnll:
Iltbll
“0":

1,
11,
L,

"Array":1,

Ilqll:

1,

"Promise":1,

n r.II:
Ilpbll
Ilull:

1,
11,
1L,

"Object":1

I

"typestableMap":{

n
"G":
"h:
"y
"3
"pa"
"

11,

’

’

’

s

11,
1,

"HTMLImageElement":1,

||u
"V":
",

IIW .
IIXII :

"Object":1,
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207 "z":1

208 },

209 "randomMap" : {
210 "Promise":1,
211 "Q":1,

212 "s":1,

213 "H":1,

214 "NolTracker":1,
215 "it:1,

216 "Object":1,
217 "n":1,

218 "o":1,

219 R |

220 }

221 }

schwab.com:

1 {

2 "isSingle":false,
3 "isEmpty":false,

4 "webSiteType":1,

5 "creatorsNumber": {
6 "1":1114,

7 "2":19,

8 "4":1,

9 "7":1

10 },

11 "readOnly":58,

12 "typeStable":1,

13 "randomChange":8,
14 "numberofCreOcc":{
15 "1 {

16 "tt":3,

17 "A":2,

18 "St':1,

19 "rt":8,

20 "B":4,



21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

"Ce":1,
"Visitor":293,

"Ae":20,

Iljnll:l’
"AppMeasurement":583,
"br":1,

"HTMLImageElement":2,
“Iterator":1,

"ke":8,

"Je":3,
"AppMeasurement_Module_Media":8,
"yt":1,

"Boolean":7,

"Fe":8,

"st":1,

"c":3,

"d":8,

"buildPixel":14,
"RegExp":8,
"Lr":3,
"Nt":1,
"mt":9,
"Ye":5,
"Date": 14,
"n":2,
"0":5,
"Ue":6,
"p":3,
"Array":5,
"ar":1,
"r":19,
"t":42,
"v':2,
"w":6,
"xr":1,
"vt":1
b
2"
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59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

“Tt":1,

"AppMeasurement_Module_Media":5,

"rt":8,
"d":8,
"Visitor":1,
"0t":3,
"hr":1,
"It":3,
"yt":1,

"AppMeasurement"”:1,

"AppMeasurement_Module_ActivityMap":5,

"Tr":1

}

"4": {
"un":1,
"Un":1,
"tn":1,
"rn":1

b

"7 {
"p":1,
"st":1,
"a":1,
"Qt":1,
"s":1,
i i
"l

}

1
"readonlyMap":{

"tt":1,

"A":1,

"St':l,

"rt":1,

"B":1,

"Ce":1,

"Qt":1,

"Ae":1,
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97

98

99
100
101
102
103
104
105
106
107
108
109

"jn": 1,
"Visitor":1,
"ot":1,
"hr":1,
"It":1,
"br":1,
"Iterator":1,
"un":1,
"ke":1
"Je":1
"yt":1
"Tr":1,
1
1
1

"Fe":1,
"Tt":1,
"st":1,
"a": 1,

"c":1,
d": 1,
"RegExp":1,
"Nt":1,
"Lr":1,
"mt":1,
"1":1,
"Ye":1,
"n":1,
"Date": 1,
"o":1,
"Array":1,
"p":l,
"Ue":1,
"ar":1,

"s'":1,
th:l,
"v'": 1,
w1

"Un":l,
"xr":1,
"tn":1,
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135 "rn":1,

136 "vt": 1l

137 },

138 "typestableMap":{

139 "HTMLImageElement":1

140 },

141 “randomMap": {

142 "r':1,

143 "Visitor":1,

144 "t 1,

145 "buildPixel":1,

146 "AppMeasurement_Module_Media":1,
147 "Boolean":1,

148 "AppMeasurement":1,

149 "AppMeasurement_Module_ActivityMap":
150 }

151 }

timeout.com:

1 {

2 "isSingle":false,
3 "isEmpty":false,

4 "webSiteType":1,

5 "creatorsNumber": {
6 "1":521,

7 "2":1,

8 "3":6,

9 "4":2

10 i

11 "readOnly":9,

12 "typeStable":1,

13 "“randomChange": 9,
14 "numberofCrelcc": {
15 "1":{

16 "a":3,

17 "b":24,

18 "Visitor":203,
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19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

"e":181,
"MutationObserver":1,

"NolTracker":22,

"Promise":1,

"RegExp":5,
"H":1,
"Date": 1,
"0":68,
"R":10,
"v':1

I

2"
"b":1,
"v':il

b

"3 {
"b":6,
"v'":6,
"g":06

b

4" {
"a":2,
"r'":2,
"i":2,
"o":2

}

I

"readonlyMap":{
"Promise":1,

Ilrll:1’

"RegExp":1,
"MutationObserver":1,

"H":1,
i1,
"Date"
"o":1

I

"typestableMap":{

11,
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57
58
59
60
61
62
63
64
65
66
67
68
69

70 }

"o":1

Iz

"randomMap" : {
"a":1,
"R":1,
"b":1,
"Visitor":1,
"e":1,
v":1,
"g":1,
"NolTracker":1,
"o":1
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