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Abstract

This thesis deals with the path following problem the objective of which is to make the end

effector of a robot manipulator trace a desired path while maintaining a desired orientation.

The fact that the pose of the end effector is described in the task space while the control

inputs are in the joint space presents difficulties to the movement coordination. Typically,

one needs to perform inverse kinematics in path planning and inverse dynamics in move-

ment execution. However, the former can be ill-posed in the presence of redundancy and

singularities, and the latter relies on accurate models of the manipulator system which are

often difficult to obtain.

This thesis presents an alternative control scheme that is directly formulated in the

task space and is free of inverse transformations. As a result, it is especially suitable

for operations in a dynamic environment that may require online adjustment of the task

objective. The proposed strategy uses the transpose Jacobian control (or potential energy

shaping) as the base controller to ensure the convergence of the end effector pose, and

adds a gyroscopic force to steer the motion. Gyroscopic forces are a special type of force

that does not change the mechanical energy of the system, so its addition to the base

controller does not affect the stability of the controlled mechanical system. In this thesis,

we emphasize the fact that the gyroscopic force can be effectively used to control the pose

of the end effector during motion. We start with the case where only the position of

the end effector is of interest, and extend the technique to the control over both position

and orientation. Simulation and experimental results using planar manipulators as well as

anthropomorphic arms are presented to verify the effectiveness of the proposed controller.
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Chapter 1

Introduction

Motion control can be broadly categorized into three classes:

• Set-point regulation has the objective of asymptotically driving the output of the

system y(t) to a desired set-point ȳ.

• Trajectory tracking takes in a time-history of the desired output known as the

reference trajectory ȳ(t), and the goal is to asymptotically drive y(t) to the reference

trajectory.

• Path following ignores the temporal specification of the reference trajectory. In-

stead, it is concerned with controlling the system so that y(t) converges to a desired

path P in the output space.

Consider a mobile robot trying to reach a target location. If the robot is free to

travel in the output space, one can treat this simply as a set-point regulation problem.

In the presence of obstacles, a collision-free path needs to be identified first before any

control action can be taken. After that, path following control strategies can be employed

to ensure that the robot stays on this desired path while traveling towards the target.

However, path following control is relatively rarer compared to the other two types [1].

Typically, the desired path is converted into a reference trajectory by enforcing a time

parameterization, and then one can use trajectory tracking control schemes to realize the

control objective. Though the tracking controller can be tuned to obtain high accuracy,

the time parameterization can lead to infeasible trajectories and is difficult to modify in

real-time in a dynamic environment [2].
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This thesis is concerned with the path following control for robot manipulators in

the task space. We first note that the term “path” here refers to both the position and

orientation. In other words, the objective is to control the End Effector (EEF) so it stays

on or close to a set of desired poses during the motion.

1.1 Background

The conventional approach for manipulator motion generation is depicted in Figure 1.1

[3, 4, 5]. One almost always starts with the goal pose of the EEF. The first step is to

plan a path between the initial pose and the target pose, and then parametrize it with

respect to time to obtain a reference trajectory. This reference trajectory is described in

the task space, which is often Cartesian coordinates for position, and Euler angles or unit

quaternions for orientation. The low-level control command for the robot, however, exists

in a different coordinate; usually the control is over the torque exerted by the motors at

each joint, or equivalently the motor voltages or currents. As a result, it seems inevitable

that one needs to convert the reference trajectory in task space into one in joint space, i.e.,

desired joint angles over time. Only after this step of inverse kinematics can one apply

the appropriate control law to track the reference trajectory in joint space and generate

the motion. This hierarchical approach has been widely implemented in manufacturing

applications such as spray painting [6], welding, and part assembly [7]. The trajectory

planning and inverse kinematics steps are carried out offline first, and then real-time control

is implemented to track the trajectory repeatedly. Commonly, a high gain joint space

Proportional-Derivative (PD) or Proportional-Integral-Derivative (PID) control scheme is

used. One may also apply inverse dynamics for better accuracy if the dynamical model of

the system is known.

Figure 1.1: Typical approach for robot manipulator motion generation
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On the other hand, as robots embrace increasingly wider applications outside of the

factory floors, the various tasks they perform are no longer repetitive, and the uncertain and

dynamic nature of the environment in which the they operate may need on-line adjustments

of the desired path. Compared to industrial robots, general purpose robots usually have

lower requirements for precision, but the ability to adapt to a changing circumstance is

critical.

To cope with this different demand, we take inspiration from human motion generation.

Although the academic world has yet agreed to a conclusion on how the human Central

Nervous System (CNS) functions to coordinate movements, numerous studies in neuro-

science suggest that the primary control focus is placed on the task space variables [8, 9].

Indeed, it has been well-known that human reaching motions have invariant patterns in the

task space, characterized by quasi-straight path and bell-shaped velocity profile at the hand

[10, 11]. Consistent with these observations is a task space reaching (set-point regulation)

controller named the transpose Jacobian control which was introduced by Takegaki and

Arimoto in 1981 [12]. This controller in essence places a virtual spring at the EEF so that

it converges to the equilibrium or target point. The beauty of this control scheme is that

the reaching convergence is guaranteed without inverse kinematics calculations as shown in

Figure 1.2, so the offline computation is avoided. Compared to the traditional approach in

Figure 1.1, one can perform on-line adjustments by simply updating the target pose. The

downside, however, is that this set-point regulation controller is incapable of controlling

the intermediate path unless one manually tunes the gains by trial-and-error. This problem

can be addressed by applying inverse dynamics to compensate for the nonlinearities, but

this requires accurate a priori knowledge of the dynamical model.

Figure 1.2: Schematic of the transpose Jacobian control

This thesis intends to identify an inverse-free control law that not only guarantees the

convergence of EEF pose but also shapes its path during the motion. More specifically, a

modification to the transpose Jacobian controller is proposed by adding a gyroscopic force
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as an auxiliary control action. The additional term does not affect the stability of the

original closed-loop system, but can act as a steering factor when the robot manipulator

is in motion even though inverse dynamics is not performed. This gyroscopic force is also

parametrized directly in the task space, so the overall controller, just like the original

transpose Jacobian controller, is free from any inverse transformations.

Figure 1.3: Schematic of the proposed control law

1.2 Related Works

1.2.1 Joint Space Control Schemes

Joint space control, illustrated in Figure 1.1, is the most common approach for robot

manipulator motion generation, with PID control being the dominant method. To date,

the PID control law has been developed for roughly a century and is used in virtually all

industries [13]. Its rise in the last century was largely contributed by its simplicity, as one

can implement the feedback by using a simple analog circuit. In this perspective, Han

argued that PID “cannot fully take advantage of the new compact and powerful digital

processors” [13]. Indeed, in most cases for robot manipulators, the PID gains are designed

as diagonal matrices, which means that each joint is independently tracking its own target,

and the sense of coordination between multiple joints is then lost.

Common alternatives to PID include PD control with gravity compensation, computed

torque control, inverse dynamics, adaptive control, and robust control. Details on these

algorithms are out of the scope of this thesis, and the interested reader is referred to

[14, 15, 16, 17] for more discussions. The recent rise of big data also leads to developments

in data-driving approaches [18, 19, 20]. Active Disturbance Rejection Control (ADRC),
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which treats the nonlinear dynamics as disturbances and acts to estimate and cancel them

online, has received some attention as well [21, 22].

As mentioned in Section 1.1, performance aside, these joint space control algorithms all

require an offline inverse kinematics step prior to the implementation of real-time torque

control. Various efficient methods for the inverse kinematics problems have been proposed.

One can find analytical solutions of the inverse kinematic problem for certain types of robot

manipulators [23, 24, 25]. Alternatively, machine learning algorithms can also be used to

learn the inverse kinematics mapping [26, 27, 28]. Efficient numerical methods that speed

up the calculation are also developed [29, 30, 31]. The improvements of computer power

lessens the concern on the computation time needed for this step as well.

Despite these efforts, the inverse kinematics problem is notorious for two issues: sin-

gularity and redundancy. Singularity occurs when the manipulator enters a configuration

at which one or more Degrees of Freedom (DoF) are lost, and the EEF loses the ability

to move in certain directions. At singular configurations, the Jacobian matrix becomes

rank-deficient, so inverse kinematics using the inverse or pseudo-inverse of the Jacobian

matrix will experience numerical instability. Redundancy refers to when DoF of the ma-

nipulator is greater than the dimension of the task space. For instance, rigid-body motion

in 3D has a dimension of 6 while human arms have 7 DoF: 3 at the shoulder, 1 at the

elbow, and 2 at the wrist [32]. Most anthropomorphic manipulators, including the Whole

Arm Manipulator (WAM) from Barrett Technologies, Baxter from Rethink Robotics and

the Mitsubishi PA10 robot, adopt the same structure. Redundancy leads to dexterity in

motion because the extra DoF allows humans and robots to be flexible when performing a

task [33]. When it comes to motion control, however, redundancy makes the inverse kine-

matic problem ill-posed because there often exists infinitely many solutions. This problem

was first articulated by Bernstein in the mid-20th century [34, 35]. In order to force it into

a unique solution, a redundancy resolution method needs to be in palce, usually in the form

of some constraints or as the result of certain optimization [36, 37]. Researchers in the

neuroscience community have proposed different cost functions to be minimized that can

explain the patterns in human reaching motion: jerk [38], torque change [39], or positional

variance in the presence of signal-dependent noise [40].

In addition to computation time and cost, it still remains a question whether optimiza-

tion is indeed the underlying principle of the CNS. In the early 20th century, Bernstein

[41] designed a motion capture system to analyze the repetitive motion of a blacksmith

hitting the chisel with a hammer. By placing light bulbs on the blacksmith and taking

photographs at a fast rate, he observed that the variability of the hammer position across
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different trials is considerably smaller than the variability of each joint angle [42, 41]. This

suggests that instead of seeking a unique solution, the CNS might be actively exploiting

the redundancy by coordinating all joints to compensate for errors in the task space in

real-time. In light of this, Latash argues that the term “motor redundancy” is incorrectly

used since it suggests that the extra DoF is a burden that needs to be treated via some

redundancy resolution method; instead, she proposes the term “motor abundance” that

better captures the synergies between all joints [42].

In order to be consistent with most literatures in the robotics field, this thesis will

continue using the term “redundancy,” but the readers are advised to bear in mind the

distinction made by Latash.

1.2.2 Operational Space Framework

The operational space framework is a popular approach developed by Khatib in the 1980s

[43, 44], motivated by the fact that the task description is in a different coordinate than the

joint space. In this method, a lower level joint space control is in place to cancel out the

nonlinear dynamics of the manipulator, and by finding the appropriate mapping between

the joint space torque and task space force, one can make the EEF behave like a unit

mass [45]. Then one can simply treat the system as a mobile agent and use any task space

position control algorithm at the outer loop. Applying the same principle at points on the

manipulator other than the EEF, real-time collision avoidance can also be achieved [43].

The structure of the operational space motion control is demonstrated in Figure 1.4.

Figure 1.4: Structure of the operational space control

The operational space approach is useful not only in motion control but also force

control in the task space, which makes it well-suited for applications such as human-
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robot interaction and object manipulation. The performance of this framework heavily

depends on the accuracy of the joint dynamics compensation. As Khatib stated in [45],

a poor estimate of the Coriolis and centrifugal forces may lead to negative damping, in

which case the system becomes unstable even in the absence of any outer loop commands.

Additionally, though the end user may treat the EEF as a mobile agent, an inverse or

pseudo-inverse of the Jacobian matrix is needed at the lower level controller to achieve this

behavior, so the problem with singularity still exists. At singular conditions, the EEF loses

one or more directions of motion; in other words, the perceived inertia in the task space is

infinite in these directions. As a result, the force to torque mapping step in Figure 1.4 will

lead to very large torques that cause the manipulator to be unstable or even dangerous

when human workers are nearby.

1.2.3 Energy Shaping and the Transpose Jacobian Control

Takegaki and Arimoto introduced a simple and inverse-free reaching controller in 1981 [12].

Inspired by the fact that without external forces, a manipulator will always converge to a

configuration that has the lowest potential energy, this control law cancels out the gravity

exerted on the system and replaces it by an Artificial Potential Energy (APE) in the task

space that has a unique minimum at the target position. With the aid of damping, the

EEF is guaranteed to converge to this target position. This is often believed to be the

origin of a class of control laws known as energy shaping control or method of controlled

Lagrangian [46, 47], which later also accepts wider applications such as navigation and

obstacle avoidance using APE [43]. Because this control law uses the transpose of the

manipulator Jacobian to convert task space force to joint torques, it is often referred to

as the transpose Jacobian control. In addition to reaching control, the transpose Jacobian

controller is used in fields such as impedance control [48, 49] since the EEF exhibits spring-

like behavior under this control law. It is also popular in visual servoing [50, 51] thanks to

the simplicity of the algorithm.

It was later found that the orientation of the EEF can also be regulated by the same

controller, and a simulation with a 6-DoF space manipulator is presented in [52]. One

major advantage of this controller over conventional PID servo control scheme is that

convergence is guaranteed without the need to perform inverse kinematics calculations

for both non-redundant and redundant manipulators. Therefore, it was argued that the

transpose Jacobian control in some ways provides a solution to Bernstein’s DoF problem.

Arimoto also showed that the transpose Jacobian control can generate skilled motions,
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Figure 1.5: Illustration of APE in the transpose Jacobian control

such as a human reaching motion in which the hand follows a quasi-straight line with bell-

shape velocity profile [53, 54, 55]. However, a systematic procedure to tune the control gains

has not been developed, and the same set of gains do not work equally well for different

trajectories even with the same manipulator. In other words, despite the convergence of the

EEF to the goal position, its intermediate path profile is not controlled, and the transpose

Jacobian control is generally categorized as a set-point regulation controller.

1.2.4 Path Following Controls for Robot Manipulators

As mentioned in the beginning of this chapter, the typical approach towards a path follow-

ing problem is to re-formulate it as a trajectory generation and tracking problem, by first

parameterizing the path as a function of time. However, the timing of the desired states

is not always critical for the task, and this time parametrization may lead to undesired

consequences such as infeasible trajectories and actuator saturations. Taking machining

for example, usually the main objective is to have the cutting tool to follow a contour

precisely; parameterizing the path as a function time without considering the dynami-

cal constraints could result in unnecessarily demanding trajectories that compromise the

contour following accuracy.

Therefore, an offline constrained optimization is usually performed to convert a path

into a trajectory to ensure that the resulting trajectory is feasible. The authors in [56]

proposed a nonlinear Model Predictive Control (MPC) scheme directly for the path follow-
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ing problem and showed that by simplifying the model, the control can be implemented in

real-time at up to 1kHz. However, it should noted that the examples given were writing

letters or drawing patterns at a very slow speed; for instance, the allowable time to write

the word “hello” was 20s. It is unclear how the controller will perform under faster opera-

tions. On top of the computation demand, one needs a fairly accurate dynamical model of

the manipulator in order to implement MPC, and in many cases this is a difficult problem

by itself, especially when the DoF is high.

-1 -0.5 0 0.5 1
x1

-1

-0.5

0

0.5

1

x
2

v̄

Figure 1.6: Example of a desired velocity field for a circular path

The Transverse Feedback Linearization (TFL) method [57, 58, 59] for path following

relies on a step of feedback transformation. In the new coordinate frame, the dynamics can

be separated into 2 sub-systems, one along the desired path (tangential dynamics) and the

other off the desired path (transversal dynamics). Then one can design controls for the 2

sub-systems to exhibit desired behaviors. TFL converts the desired path into an attractive

and invariant set in the transversal dynamics, and the closed-loop tangential states will

travel in the desired direction. In the case of redundant manipulators, the redundancy can

be exploited to account for joint angle limits and to enforce boundedness of the internal

dynamics [60]. TFL is a powerful approach for a broader class of mechanical systems not
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limited to torque-controlled robot manipulators. Though it has be shown that the outer

loop control can be designed to make the TFL robust to model uncertainties [61], severe

modeling errors will degrade the closed-loop performance. The complicated form of TFL

also makes it difficult to implement, limiting its acceptance in applications.

Alternatively, path following can be formulated as a velocity field control problem. For

instance, if the task is to trace a circle repeatedly, one can form a desired velocity field

in Figure 1.6. If the control law can be shown to make the EEF velocity converge to the

desired velocity v̄, then equivalently convergence to the path is automatically guaranteed.

The Passive Velocity Field Control (PVFC) was developed based on this idea [62, 63]. The

controller design starts with augmenting the manipulator plant with a fictitious flywheel

which acts as an energy reserve. PVFC works by transferring energy between the actual

manipulator plant and this fictitious system while steering the direction of velocity. A

major advantage of PVFC comes from the passivity of the closed-loop system, which makes

it a good choice in some machining applications where excessive damage to the tool should

be avoided, or in safety-critical applications such as human-robot interactions. In spite

of the path following performance presented, this controller is complex as it requires the

inertia matrix and Coriolis and centrifugal matrix as inputs. Additionally, one still needs

to perform inverse kinematics to map the desired EEF velocities to desired joint motions.

1.3 Contributions and Organizations

This thesis takes on the manipulator path following problem and aims to design an inverse-

free controller that is computationally efficient and simple to implement. In doing so, the

transpose Jacobian control is selected as the base control law for the purpose of reaching

(or set-point regulation), and a gyroscopic force is added as an auxiliary input for path

following during motion.

The simple form of the controller presented in this thesis comes with its disadvantages.

A prominent one is that though it has been verified that the controller drives the EEF

to move along the desired path both in simulation and experiments, it cannot guarantee

that the desired path is an invariant set of the closed-loop system like the other control

laws mentioned in Section 1.2.4. However, if the performance is not satisfactory, one can

simply increase the gain for the gyroscopic term for better path following result. This is a

safe change because regardless of its magnitude, the gyroscopic force does not change the

mechanical energy of the system.
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The rest of this thesis is organized as follows. In Chapter 2, kinematic and dynamic

modeling of a robot manipulator is presented, followed by an introduction of gyroscopic

forces. Based on our published works in [64, 65] on path following of the EEF position,

we verify the effectiveness of the controller via experiments in Chapter 3. We then extend

the work to consider both the position and orientation of the EEF Chapter 4. Conclusions

and future works are presented in Chapter 5.

Remark 1. Please note that the term “force” used in this thesis refers to generalized force

vectors and is not limited to those with a unit of newton. It includes forces and moments

in the task space as well as torques in the joint space.
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Chapter 2

Mathematical Preliminaries

2.1 Modeling of Robot Manipulators

2.1.1 Kinematics

In this thesis, we use Q ⊆ Rn to denote the configuration space of an n DoF robot

manipulator. The position vector which describes the configuration of the manipulator is

denoted by q = (q1, ..., qn)T ∈ Q; in other words, q represents the set of joint angles of the

manipulator.

To keep our analysis general, we assume that the EEF has translational and rotational

motions in 3D space. We denote the EEF pose in the task space by elements in the special

Euclidean group SE(3) as

g(q) =

[
R(q) x(q)

0 1

]
(2.1)

where x(q) ∈ R3 represents the position with respect to the inertial frame, and R(q) ∈
SO(3) is an orthonormal matrix that describes the orientation of the EEF. Vector param-

eterizations of the orientation are available, such as Euler angles and unit quaternions, but

for reasons that will be stated in Chapter 4, we resolve to directly working with the matrix

R(q).

The velocity of the EEF can be represented in twist form as [14]

ξ =

[
v

ω

]
=

[
ẋ

(ṘRT )∨

]
=

[
Jp(q)

Jo(q)

]
q̇ (2.2)
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where Jp(q) = ∂x(q)
∂q

is the Jacobian matrix for position, and Jo(q) is the Jacobian that

maps the joint velocity to the angular velocity of the EEF with respect to the inertial

frame. The vee operator •∨ is the inverse mapping of wedge operator •̂ which is defined as

â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.3)

for a ∈ R3.

The term forward kinematics refers to the problems of finding the pose and twist of the

EEF given a set of joint position and velocity. A unique solution always exists and this

problem is trivial given (2.1) and (2.2). Inverse kinematics is the problems of finding a set

of joint position and velocity that correspond to a given EEF pose and twist. Because a

minimal representation of SE(3) is defined by 6 variables, there could be infinitely many

solutions if n > 6. Additionally, there are cases where no solutions exist, when the desired

pose is outside of the workspace of the manipulator or when the Jacobian is singular, which

can make the desired twist infeasible.

2.1.2 Dynamics

The dyanmics of a rigid robot manipulator is described by the Euler-Lagrange equation:

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= τ (2.4)

where τ ∈ Rn is the external force vector and L = T (q, q̇)− U(q) is the Lagrangian of the

system with kinetic energy T = 1
2
q̇TM(q)q̇ ∈ R and potential energy U(q) ∈ R. In the

robotics community, equation (2.4) is commonly expressed as:

M(q)q̈ + C(q, q̇)q̇ +N(q) = τ (2.5)

where M(q) is the mass (or inertia) matrix which is symmetric and positive definite,

C(q, q̇)q̇ is the Coriolis and centrifugal forces, and N(q) = ∂U(q)
∂q

is the gravity term. We

will omit the arguments q and q̇ in the remainder of this thesis to avoid clutter. However,

it needs to be kept in mind that the term Cq̇ is in fact quadratic in velocity as

Cij q̇j =
1

2

(∂Mij

∂qk
+
∂Mik

∂qj
− ∂Mjk

∂qi

)
q̇j q̇k

13



In the above equation, we employed the Einstein summation convention, where a repeating

index implies summation over that index. For instance, the term on the left-hand side,

Cij q̇j, implies it is summed over j just like one would do when post-multiplying the matrix

C by the vector q̇. This notation will be used repeatedly in the remainder of this thesis.

Among the properties of a robot manipulator, an important one is the skew-symmetry

of the matrix S = Ṁ − 2C:

Sij = Ṁij − 2Cij

=
∂Mij

∂qk
q̇k −

(∂Mij

∂qk
+
∂Mik

∂qj
− ∂Mjk

∂qi

)
q̇k

=
(∂Mjk

∂qi
− ∂Mik

∂qj

)
q̇k

It is obvious that Sij = −Sji, so S = −ST is skew-symmetric. This property is closely

related to what is known as the passivity property of the robot manipulator.

Definition 2.1 (Passivity). A dynamic system with input u and output y is passive with

respect to the supply rate s(u, y) = uTy if for all t1 > t0,∫ t1

t0

s(u, y)dt ≥ −c2 (2.6)

where c ∈ R depends on the initial condition [63].

In the context of a robot manipulator, the passivity can be proved using the joint

velocity q̇ as the output and joint torque τ as the input. Let E = T + U be the total

energy of the system, i.e.

E =
1

2
q̇TM(q)q̇ + U(q)

Its time derivative, Ė is

Ė = q̇TMq̈ +
1

2
q̇TṀ q̇ + q̇TN

= q̇T (τ − Cq̇ −N) +
1

2
q̇TṀ q̇ + q̇TN

= q̇T τ +
1

2
q̇T (Ṁ − 2C)︸ ︷︷ ︸

skew-symmetric

q̇

= q̇T τ

(2.7)
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Substituting this into (2.6), we have∫ t1

t0

s(τ, q̇)dt =

∫ t1

t0

Ėdt = E(t1)− E(t0) ≥ −E(t0)

where the inequality comes from the fact that E(t1) ≥ 0. Setting c =
√
E(t0) proves the

passivity of the system. In dissipative systems, this total energy E is referred to as the

storage function. The interpretation of the passivity property is that, the rate of change

in the total energy is governed by q̇T τ if we ignore the effect of friction and disturbances.

In the absence of any external forces, the total energy of a robot manipulator will stay

constant.

2.2 Overview of Gyroscopic Forces

The passivity property naturally leads us to gyroscopic forces, a concept introduced by

Thomson (Lord Kelvin) and Tait (1879) [66]. This section will first give the definition of

gyroscopic forces, followed by a brief review on the use of such forces in robot manipulator

control.

2.2.1 Definition and Examples

Definition 2.2 (Gyroscopic Force). A non-zero input force τ is gyroscopic if it does not

cause any energy change to a system in motion [67].

For a robot manipulator, Definition 2.2 means that q̇T τ = 0 at all times, or equivalently

that a gyroscopic force is always orthogonal to the joint velocity.

Corollary 2.1. Any force in the form of τ = Wq̇, with W = −W T , is a gyroscopic force.

Corollary 2.1 can be easily proved by observing that q̇TWq̇ = 0 for any skew-symmetric

matrix W . It immediately follows from the skew-symmetry property that the force (1
2
Ṁ −

C)q̇ is gyroscopic.

Let us for a moment forget about robot manipulators and consider a simple example

with a point mass moving in a horizontal circle at a constant speed, as illustrated in Figure

2.1. It is obvious that the total energy of the point mass stays constant, and the centripetal

15



force acting on the mass is always orthogonal to the velocity. Therefore, the centripetal

force is a perfect example of a gyroscopic force. As opposed to (1
2
Ṁ −C)q̇ whose direction

varies along the trajectory, this suggests that gyroscopic forces can be formulated with

strong directionality. In this example, it naturally shows up as a steering force.

Velocity
Centripetal Force

Figure 2.1: Centripetal force as an example of gyroscopic force

2.2.2 Existing Works Involving Gyroscopic Forces

The idea of using gyroscopic forces to steer motion has been explored in the context of

mobile agents for obstacle avoidance and formation control [68, 69]. On the other hand,

the use of these forces in robot manipulators is somewhat rare. One example includes

the work on controlled Lagrangian by Chang, who used gyroscopic forces as a part of

the feedback control to stabilize under-actuated systems through energy and force shaping

[70, 46, 47]. This method relies on solving complicated partial differential equations known

as the matching conditions. As opposed to controlled Lagrangian methods with no force

shaping, gyroscopic forces allows one to expand the region of convergence and enjoy an

extra flexibility to tune the performance [70]. The PVFC design also incorporates the idea

of gyroscopic forces [62, 63], though the control is gyroscopic in the augmented system

including the fictitious states but not in the manipulator system itself.
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Since energy shaping controls such as the transpose Jacobian controller use the total

energy of the system as the Lyapunov function for proof of convergence [12], the addition

of a gyroscopic force to the controller will not affect the convergence. In light of [68] which

used gyroscopic forces as a steering force for mobile agents to avoid obstacles, one can use

gyroscopic forces in manipulator control to constrain the path profile of the EEF without

modifying the transpose Jacobian control gains.

Another distinction between the use of gyroscopic forces in this thesis and that in the

works mentioned above is that, we propose the design of a gyroscopic force directly in

the task space to avoid any inverse transformations. A gyroscopic force in the task space

is more generally known as a reciprocal wrench. The concept of reciprocal screws have

been widely used in areas such as grasp analysis [71] and mobility analysis of parallel

manipulators [72] and other complex kinematic systems [73]. By considering the force or

geometric constraints, these studies generally aim to determine the DoF and/or possible

directions of motion of a system. Our approach is somewhat the opposite way: given the

position and velocity (or twist) of the EEF, we look to find a reciprocal wrench that can

lead to the desired motion.

To the best of the author’s knowledge, the most similar use of gyroscopic force to

that in this thesis lies in the field of neuroscience when studying human motor controls.

In [74, 75, 76], experiments were conducted for the human planar reaching motion when

subjects hold the EEF of a robot manipulator. The baseline setting is when the manipulator

is not supplying any torque, and in some trials, a perturbing force is exerted by the EEF

in the form of

F = K

[
0 −1

1 0

]
ẋ

where K ∈ R is the gain term that adjusts the magnitude of the perturbation. By doing so,

researchers were able to gain insights on how the human CNS adapts to the environment.

It is obvious that by Corollary 2.1, this perturbation is in fact a gyroscopic force in the

task space. In the field of neuroscience, instead of gyroscopic forces, this type of force

field is more commonly known as a viscous curl field because it is indeed a divergence-free

curl field in the space of the EEF velocity, as illustrated in Figure 2.2. Though it was not

explicitly stated, an important reason for selecting such type of perturbation over others is

its energy-conserving nature. In other words, adding a gyroscopic force is a safer operation

compared to perturbations that may inject more energy into the system. Such property is

especially important in these experiments since human subjects are involved.

As a result of this perturbation, it was observed that human subjects initially had
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Figure 2.2: Viscous curl field of the perturbing force

significant deviations from the straight line path, but as more trials are conducted, they

gradually adapted to the presence of such force field and learned to compensate for it so

that the resulting path becomes quasi-straight again. The methods proposed in this thesis

can be understood as the reverse of this perturbation: if a deviation from the desired path

is present, gyroscopic forces can assist the control to correct this deviation.
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Chapter 3

Position Control of the End Effector

In this chapter, we consider the case where only the position of the EEF during motion

is of interest. In other words, we are concerned about x(p) but not R(p) of the forward

kinematics. This is consistent with the control objective of most path following problems.

The straight-line property of human reaching motions can be reproduced with position

control. By assuming that a tool is rigidly attached to the EEF or that the EEF has a

wrist with independent orientation control, such position control can lead to many useful

applications such as drawing and handwriting [56, 53].

We will first present a brief review of the transpose Jacobian control in Section 3.1. The

formulation of gyroscopic forces will be discussed in Section 3.2, followed by simulation and

experimental results in Sections 3.3, 3.4, and 3.5.

3.1 Transpose Jacobian Control

Consider a pendulum with its center of rotation fixed to a vertical wall, and in the ab-

sence of any other forces, we know that it will always converge to the downward pointing

configuration at which the potential energy is at the minimum. The vertically upward

configuration is also an equilibrium point, but it is unstable and a very small disturbance

will cause it to collapse. Now, if a motor is available at the center of rotation to perfectly

cancel out the torque due to gravity, then the pendulum will behave as if it is placed on

a horizontal plane, and the equilibrium can be any configuration. If the initial velocity is

zero, then the pendulum will remain at its initial position. For non-zero initial velocities,
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it will theoretically keep moving at a constant speed, but friction will cause it to stop

eventually. If the objective is to regulate the position to a set-point, we can then add a

gravity-like input at the motor to create an APE that has a unique minimum at the desired

position. The closed-loop system will behave as if the gravitational field is rotated favoring

the set-point. The only exception is when the pendulum starts with an initial position

exactly opposite to this set-point. Similar to an inverted pendulum, this is an unstable

equilibrium which can be avoided by small perturbations.

The logic described in the example above is exactly the same thinking behind the

transpose Jacobian control. Given a robot manipulator with Lagrangian L = T (q, q̇)−U(q),

we seek to synthesize a controlled Lagrangian L̂ = T (q, q̇)− Ûp(x) by replacing the original

potential energy U(q) with an artificial one Ûp(x) = Ûp(x(q)) which is parameterized by

the deviation of the task space coordinate x = p(q) from its desired value, denoted by x̄ in

this thesis. After that, we inject the viscous damping term for stabilization. The resulting

control law is given by [12, 55]

τ = N(q) +
∂

∂q
Ûp(x)− Cdq̇ (3.1)

where Cd ∈ Rn×n is the damping matrix which is positive definite (and usually diagonal).

The purpose of the first term in (3.1) is to compensate for gravity so that the original

potential energy is cancelled out. The second term is the artificial gravitational force

that causes the closed-loop system to have the APE. Commonly, the artificial potential

function is designed in a simple quadratic form, Ûp(x) = 1
2

(x̄− x)T Kp (x̄− x), for some

gain matrix Kp ∈ R3×3 which is positive definite (and usually diagonal). The resulting

transpose Jacobian control law is then

τ = N(q) + Jp(q)
TKp(x̄− x)− Cdq̇ (3.2)

where Jp(q) is the Jacobian matrix for the EEF position from (2.2). This control law

is named the transpose Jacobian control because of the use of JTp (q). Figure 3.1 shows

2 intuitive interpretations of this controller. It effectively causes the EEF to travel in a

potential field towards the minimum point. Alternatively, one can think of it as placing a

virtual spring and damper directly at the EEF with the target position as the equilibrium

point. We formalize the convergence of the transpose Jacobian control as a theorem here:

Theorem 3.1. For the closed-loop system with a robot manipulator (2.5) and the transpose

Jacobian control law (3.2), the equilibrium points characterized by x(q) = x̄ and q̇ = 0 are

asymptotically stable.
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Figure 3.1: Interpretations of the transpose Jacobian control: potential energy field (left)

and task space spring-and-damper (right)

Proof. We first assume that the system is non-redundant; in other words, the dimension of

the task space equals to n. If x̄ is within the workspace of the manipulator, there exists an

isolated joint configuration qd ∈ Q satisfying x(qd) = x̄ [77]. Consider the total artificial

energy as the Lyapunov function candidate:

V = T (q, q̇) + Ûp(x(q)) =
1

2
q̇TMq̇ +

1

2
(x̄− x)T Kp (x̄− x) (3.3)

Note that the first term is the kinetic energy of the manipulator and is positive definite with

respect to q̇. The second term is positive definite with respect to x̄−x but not q. However,

because qd is an isolated minimum point of (x̄− x(q))TKp(x̄− x(q)), we conclude that the

second term is locally positive definite with respect to qd − q [77]. Its time derivative is as

follows:

V̇ = q̇TMq̈ +
1

2
q̇TṀ q̇ − ẋTKp(x̄− x)

= q̇T (τ − Cq̇ −N +
1

2
Ṁ q̇)− (Jpq̇)

TKp(x̄− x)

= q̇T
(
N + JTp Kp(x̄− x)− Cdq̇ − Cq̇ −N +

1

2
Ṁ q̇
)
− q̇TJTp Kp(x̄− x)

= q̇T
(
−Cdq̇ + (

1

2
Ṁ − C)q̇

)
= −q̇TCdq̇ ≤ 0

(3.4)

where the skew-symmetry property of 1
2
Ṁ−C was used for the last equality. At this point,

we are left with V̇ = 0 for any states with q̇ = 0, so convergence is not proved just yet. We

21



invoke LaSalle’s invariance principle [78] by analyzing the closed-loop system dynamics on

the set of states characterized by q̇ = 0:

Mq̈ + Cq̇ +N = τ = N + JTp Kp(x̄− x)− Cdq̇
Mq̈ = JTp Kp(x̄− x)

q̈ = M−1JTp Kp(x̄− x)

(3.5)

Since q̈ = 0 is satisfied only when x = x̄ (or locally q = qd), we conclude that the equilibrium

points with q = qd and q̇ = 0 are locally asymptotically stable.

In the proof above, we used the fact that for a non-redundant manipulator, the trans-

formation between joint space and task space is locally injective (or one-to-one). Such

property does not hold for a redundant manipulator, in which case the APE is not pos-

itive definite with respect to the joint position. To deal with this complication, Arimoto

introduced the notion of “stability on a manifold” and “transferability to a submanifold”

to prove the local asymptotic stability of the closed-loop system, and the interested reader

can refer to [53, 54] for a detailed proof.

Remark 2. Though not explicitly stated in Theorem 3.1, from the author’s experience

with simulation and experiment, the closed-loop system in general exhibits almost global

asymptotic convergence of x to x̄, i.e. limt→∞x(t) = x̄. The following are some of the

special scenarios where convergence may not be achieved:

• x̄ is outside of the work space of the robot manipulator. This condition can be easily

verified so it should not be a concern. If no joint angle limit is present, then the

transpose Jacobian control will drive the manipulator to a singular configuration

that minimizes the ‖x− x̄‖2.

• If the initial condition starts from an equilibrium point in the task space other than

x(q0) = x̄, in which case ∂
∂q
Ûp(x(q0)) = 0. Provided that the mapping Ûp(x(q)) :

Rn → R is of class C∞ (because both x(q) and Up(x) are smooth), we invoke Sard’s

Theorem [79] to conclude that the critical values of this mapping is of measure zero.

In other words, these initial configurations are rare in the sense that they occupy

zero volume in the space of Rn. Analogous to the unstable equilibrium of an inverted

pendulum, these initial conditions are unstable, and a small perturbation will cause

the EEF to leave these equilibrium points.

Remark 3. Although here we only showed the proof for the APE in the quadratic form

Ûp(x) = 1
2

(x̄− x)T Kp (x̄− x), the same applies to all smooth APEs with a global minimum

at x = x̄ as long as the control law is derived using (3.1).

22



In the presence of large friction force in some manipulator systems, it was noted that

(3.2) sometimes cannot provide enough joint torque command to overcome the Coulomb

friction, leaving a non-zero steady state error. This issue can be mitigated with larger gain

values in Kp, but in cases where the EEF starts from a position far from its target, the

control law (3.2) will saturate the joint torque limits. To address this problem, the authors

of [77] recommended an alternative form of the APE

Ûp(x) =
3∑
i=1

ki
λi

ln[cosh(λ(x̄i − xi))] (3.6)

where ki is the ith diagonal element of a positive definite and diagonal matrix Kp, and λ

is a positive constant. This results in the following control law:

τ = N(q) + Jp(q)
TKp

tanh(λ(x̄1 − x1))

tanh(λ(x̄2 − x2))

tanh(λ(x̄3 − x3))

− Cdq̇ (3.7)

where the hyperbolic tangent function is utilized to constrain the torque command when

the x is far from its target. When the value of λ is large, the second term in (3.7) is

essentially constant prior to the mapping by Jp(q)
T , and only decreases until x enters a

small neighborhood near x̄. If k1 = k2 = k3 = k, one can understand (3.6) as a smooth

approximation of an APE linear in the position error, i.e.

Ûp(x) =
3∑
i=1

ki
λi

ln[cosh(λ(x̄i − xi))] ≈ k
√

3‖x̄− x‖2 for large λ‖x̄− x‖2

The beauty of the transpose Jacobian control law is that the convergence of the EEF

position is guaranteed though no inverse transformation is needed. It does not require an

accurate dynamical model of the manipulator to perform inverse dynamics calculation as

in computed torque control schemes. Inverse kinematics is also avoided so the ill-posedness

is not an issue. Transpose Jacobian also enjoys the property of being numerically stable,

especially near singular configurations when compared to using the inverse or pseudo-

inverse of the Jacobian matrix.

Despite the advantages of the transpose Jacobian control, it can only guarantee the

convergence of the EEF pose, while the intermediate path profile is not directly controlled.

Although the authors showed in [53, 54, 55] that motion profiles similar to human reaching

can be reproduced by carefully selecting the control gains Kp and Cd, the gain tuning
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is more of a trial-and-error process rather than a systematic approach. Given a new set

of initial configuration and final pose, one has to re-tune the gains to achieve similar

performances. Simulation results of using the same transpose Jacobian control gain for a

3-DoF robot manipulator are plotted in Figure 3.2. The manipulator starts from different

initial configurations but the target EEF location is the same for all trials. The initial EEF

position is marked by ‘x’ and the target is marked by ‘o’. Observe that the path profiles

can be drastically different though the same gain is used. The case where the EEF starts

from x = col(−0.52, 0.35)m has a path profile that is closer to a quasi-straight line, but

the other trials have almost unpredictable results in terms of the EEF path.
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Figure 3.2: Simulation of the transpose Jacobian control for different initial conditions

Remark 4. Although the transpose Jacobian control (3.1) has a term of N(q), this gravity

compensation can be estimated accurately using the recursive Newton-Euler method [15].

Many commercial robot manipulators have built-in gravity calibration and compensation

algorithms, so we assume that this N(q) term does not break the inverse free principle of

the controller.
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3.2 Gyroscopic Force Shaping

3.2.1 Transpose Jacobian Control with Gyroscopic Force

We first observe that the Lyapunov function in (3.3) is the total (artificial) energy of the

closed-loop system, which is not affected by a gyroscopic force. Consider if a gyroscopic

component τ g is added to the transpose Jacobian control:

τ = N +
∂

∂q
Ûp − Cdq̇ + τ g (3.8)

Lemma 3.1. For the closed-loop system with a robot manipulator (2.5) and the control

law (3.8) with τ g being gyroscopic (i.e. q̇T τ g = 0), the equilibrium points characterized by

x(q) = x̄ and q̇ = 0 are asymptotically stable.

Proof. The proof is very similar to that of Theorem 3.1. Consider again the total artificial

energy as the Lyapunov function candidate:

V = T + Ûp =
1

2
q̇TMq̇ + Ûp (3.9)

We take its time derivative:

V̇ = q̇TMq̈ +
1

2
q̇TṀ q̇ − q̇T ∂

∂q
Ûp

= q̇T (τ − Cq̇ −N +
1

2
Ṁ q̇)− q̇T ∂

∂q
Ûp

= q̇T
(
N +

∂

∂q
Ûp − Cdq̇ + τ g − Cq̇ −N +

1

2
Ṁ q̇
)
− q̇T ∂

∂q
Ûp

= q̇T
(
−Cdq̇ + (

1

2
Ṁ − C)q̇ + τ g

)
= −q̇TCdq̇ ≤ 0

(3.10)

where the last equality used the fact that 1
2
Ṁ −C is skew-symmetric and τ g is gyroscopic.

The asymptotic stability is then proved using LaSalle’s invariance principle [78] in the same

fashion as Theorem 3.1 and is not repeated here.

Because a major advantage of the transpose Jacobian control is that it is free of inverse

kinematics, it defeats the purpose if the additional gyroscopic force term τ g is formulated
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in the joint space. Our goal is to formulate the gyroscopic force in the task space as well.

When mapping a task space gyroscopic force F g
p into a joint torque by τ gp = JTp F

g
p , the

following lemma states that the energy-conserving nature is preserved:

Lemma 3.2. A gyroscopic force F g
p in the task space corresponds to a gyroscopic torque

in the joint space when mapped by JTp .

Proof. Substituting ẋ = Jpq̇ into ẋTF g
p = 0, we have:

0 = ẋTF g
p = (Jpq̇)

TF g
p = q̇TJTp F

g
p = q̇T τ gp (3.11)

Clearly, τ gp is gyroscopic in the joint space by Definition 2.2.

The implication of Lemma 3.2 is that, we can now directly design gyroscopic forces

in the task space. The corresponding joint torque mapped from the transpose Jacobian

matrix will automatically be guaranteed to also be gyroscopic. The final control law is

then

τ = N +
∂

∂q
Ûp − Cdq̇ + JTp F

g
p (3.12)

We state the convergence of x to the target x̄ in a theorem:

Theorem 3.2. For the closed-loop system with a robot manipulator (2.5) and the control

law (3.12) with F g
p being gyroscopic in the task space(i.e. ẋTF g

p = 0), the equilibrium points

characterized by x(q) = x̄ and q̇ = 0 are asymptotically stable.

Proof. The proof is straightforward by combining Lemma 3.2 and 3.1.

3.2.2 Task Space Gyroscopic Force Design

Theorem 3.2 implies that limt→∞x(t) = x̄ in general. Our question now is then how to

design the gyroscopic force F g
p in the task space so the EEF path following objective can

be achieved. We proposed 2 different formulations in [64]. The first method directly uses

the property of the desired path and results in a gyroscopic force linear in velocity. This

approach is subject to limitations on the admissible paths and is in general more difficult

to formulate. In this thesis, we focus on the desired velocity field approach which results

in a gyroscopic force quadratic in velocity.
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Given the dimension m of the task space (m = 2 for planar movements and m = 3 for

movements in 3D). Assuming that a pre-defined smooth vector field v̄ : Rm → Rm,m ∈
{2, 3} is available as the desired velocity at each point in the task space, as illustrated in

Figure 3.3. In this case, the task space gyroscopic force depicted by the arrow with white

triangle head can be constructed as

F g
p

(
v̄, x, ẋ

)
= kgpẋ×

(
v̄ × ẋ

)
= kgp

(
ẋv̄T − v̄ẋT

)︸ ︷︷ ︸
skew-symmetric

ẋ (3.13)

where the second equality is from the triple product identities, and kgp > 0 is the gain for

the gyroscopic force. It is easy to verify from the cross-product and the skew-symmetry

that ẋTF g
p = 0.

Figure 3.3: Construction of F g
p quadratic in velocity

As illustrated by Figure 3.3, this formulation of the gyroscopic force makes F g
p in (3.13)

pull ẋ toward v̄ at all times. As a result of the cross product, it will pull “harder” when the

angle between ẋ and v̄ is greater. Also, the magnitude of F g
p is quadratically proportional to

that of ẋ, thereby increasing the gyroscopic effect quadratically as the EEF speed increases.

In some sense, this form of gyroscopic force is also natural when compared to that linear in

velocity and those of higher orders, because the Coriolis and centrifugal force Cq̇ that exists

in the internal dynamics of the manipulator is also quadratic in velocity. One can consider

this approach as gyroscopic force shaping because we modified the internal gyroscopic force

from 1
2
(Ṁ − 2C)q̇ to 1

2
(Ṁ − 2C)q̇ + JTp F

g
p .

The question now is how to formulate a desired velocity field v̄(x) for our control

purposes. We first look at the simple example of reaching motion in 2D along the negative
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x1 axis, with the desired path being a straight line. The velocity field in Figure 3.4 can be

used; it is described by

V̄(x) =
1√

1 + ρ2x2
2

[
−1

−ρx2

]
(3.14)

where the parameter ρ > 0 determines the regularity of the vector field around the path.

Large values of ρ essentially makes the desired velocity field discontinuous: along the path,

the velocity field points from x(t0) to x̄; at locations away from the desired path, the

velocity field will point perpendicularly towards the path. Note that this idea is analogous

to sliding mode control with the desired path acting as the sliding surface.

x(t0)x̄

Figure 3.4: Velocity field shape for rectilinear path

Though Figure 3.4 is an example for a specific set of x̄ and x(t0), one can apply simple

translations and rotations to suit it for different initial/target positions . Given arbitrary

x(t0) and x̄, a new desired velocity field v̄(x) can be constructed from V̄(x) as

v̄(x) = RT (θ)V̄
(
R(θ)

x(t)− x̄
‖x(t0)− x̄‖

)
(3.15)

where R(θ) is a rotation matrix with θ being the angle between the positive x1 axis and

the vector x(t0) − x̄. If the reaching motion occurs in 3D, one can define the base vector

field as:

V̄(x) =
1√

1 + ρ2x2
2 + ρ2x2

3

 −1

−ρx2

−ρx3

 (3.16)

and then apply transformations similar to that in (3.15) for different initial and target

conditions.
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x(t0)x̄

Figure 3.5: Velocity field shape for circular path

Figure 3.5 is an example velocity field that encodes a circular path. Assuming that the

center of the curve is located at x = 0, we design the base velocity field as

V̄(x) =

[
V̄1(x)

V̄2(x)

]
=

[
−βx2 − αx1(1− r

‖x‖))

βx1 − αx2(1− r
‖x‖))

]
, ∀‖x‖ 6= 0 (3.17)

where r > 0 is the radius of the curve, and α and β define the direction and shape of the

velocity field. We assign V̄ = 0 at the center of the circle. Again, one can apply affine

transformation to (3.17) for applications where the center of the circle is not at the origin

or to stretch the velocity field to get elliptical or spline paths.

In summary, we have synthesized potential energy shaping with gyroscopic force shaping

for path following. The control law is

τ = N +
∂

∂q
Ûp − Cdq̇ + kgpJ

T
p

(
ẋv̄T − v̄ẋT

)
ẋ (3.18)

where Ûp is the APE and v̄ is the given velocity field for the desired path. This control

law enjoys the property of simplicity and is free of inverse kinematics. A drawback of

this approach compared to those discussed in Section 1.2.4 is that, it does not convert

the desired path into an invariant set for the closed-loop system. However, because of the

energy-conserving nature of the gyroscopic force, one can often simply increase the gain

kgp to achieve better path result. A convergence analysis of the path control by gyroscopic

force is presented in Appendix A.
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3.3 Experimental Results using a 2-DoF Manipulator

We verified the controller in (3.18) with a 2-DoF planar manipulator in the Advanced

Robotics Laboratory at the University of Waterloo, illustrated in Figure 3.6. The manip-

ulator is mounted horizontally on a steel table so the effect of gravity can be neglected.

Table 3.1 summarizes the physical parameters of the experimental setup. The joints of the

manipulator are each powered by a direct drive motor equipped with a 16-bit encoder from

Yaskawa, Inc. The motors are capable of supplying up to 30Nm and 6Nm respectively

at joint 1 and joint 2. A National Instruments cRIO-9030 real-time controller is used to

control the motors at a frequency of 400Hz.

Figure 3.6: Experimental setup of the 2-DoF manipulator.

In a few first attempts to use the transpose Jacobian controller with quadratic form of

APE (3.2), noticeable steady state errors on the order of 5cm were observed; in other words,

because of friction, the EEF never reached the target but instead stopped somewhere close

to it. We opted to use the alternative form of APE in (3.6) to mitigate this issue. A good

reaching accuracy (within 1.5cm from the target) was achieved by setting the following

gain values:

Kp =

[
3 0

0 3

]
, Cd =

[
0.5 0

0 0.5

]
, λ = 5

A series of experiments were then conducted with the same base controller with var-

ious parameters for the gyroscopic force term. The manipulator starts with an initial
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Table 3.1: Parameters of the 2-DoF manipulator.

Parameter Symbol Value Unit

Link 1 length l1 0.32 m

Link 2 length l2 0.21 m

Link 1 mass m1 9.244 kg

Link 2 mass m2 3.529 kg

Link 1 center of mass coordinate from joint 1 r1 0.16 m

Link 2 center of mass coordinate from joint 2 r2 0.046 m

Link 1 moment of inertia at center of mass I1 0.2097 kgm2

Link 2 moment of inertia at center of mass I2 0.0206 kgm2

configuration of q(t0) = col(−π
2
, π

2
) which corresponds to an EEF position of x(t0) =

col(0.21,−0.32)m. The desired path for is a rectilinear path from x(t0) to x̄ = col(0.39, 0.204)m.

First, by fixing the velocity field shape in (3.14) with ρ = 100, the effect of different

gyroscopic force gain kgp is shown in Figure 3.7(a). Under the base transpose Jacobian con-

trol with no gyroscopic force (kgp = 0), the EEF deviates from the desired path, especially

when getting close to x̄. This deviation is significantly reduced when gyroscopic force is

added, with better performances under larger values of kgp. When kgp > 60 is used, the

resulting path essentially overlaps with the straight line, except for a small region near x̄.

This is because the gyroscopic force term in (3.13) is quadratic in the EEF velocity, which

is low at the beginning and the end of the movement period.

We then analyzed the effect of the velocity field on the path profile by varying ρ while

keeping the gyroscopic force gain constant at kgp = 100. Figure 3.7(b) shows the result

when ρ varies from 3 to 100. Larger ρ helps straighten the resulting path, but the effect is

small when compared to kgp. The difference in path profile is almost unnoticeable between

ρ = 60 and ρ = 100.
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Figure 3.7: Experimental results for rectilinear path with using the 2-DoF manipulator.

(a): Effect of kgp on the path profile. The case with kgp = 0 is transpose Jacobian control

with no gyroscopic force. (b): Effect of ρ on the path profile.

3.4 Simulation Results using a 3-DoF Manipulator

Simulations with a 3-DoF planar manipulator were conducted to test the effectiveness of

the proposed controller in a redundant scenario. The first 2 links are set to be the same

as the 2-DoF manipulator in Table 3.1, and the last link is assumed to be the same as

the second link. The equations of motion describing the dynamics of the system (2.4) are

derived in Matlab. Appendix B lists the codes that generate the mass matrix and the

Coriolis and centrifugal forces.

We first verify the control law for rectilinear paths. Recall that, in Figure 3.2, the

results of using only the transpose Jacobian control are plotted, indicating the uneven
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performance on path profiles. The simulations in Figure 3.2 uses a quadratic APE with

the same control gains:

Kp =

[
5 0

0 5

]
, Cd =

0.7 0 0

0 0.7 0

0 0 0.7


We then added gyroscopic force (3.13) with desired velocity field in (3.14). Setting

ρ = 100 and kgp = 100, the results are plotted in Figure 3.8. Some overshoot is present

as the EEF moves past the target in some cases; this can be dealt with by tuning the

transpose Jacobian control.

Similar to the experimental results for the 2-DoF manipulator, the EEF paths were

significantly straightened by the gyroscopic force. The effect is not the same for all trials

though, as some deviations can be observed for the blue and purple paths but not the

other 2 paths, except in a small neighborhood near x̄. This could be a result of lower

velocities from the APE since their initial EEF positions are closer to the target. One can

increase the gain kgp to mitigate this, but the paths presented in Figure 3.8 are already much

straighter than those in Figure 3.2 and are satisfactory for the purpose of reproducing the

paths of human reaching motion. Another contributing factor is that the inertia effect is not

uniform during the movement, so gyroscopic forces of the same magnitude will have varying

effectiveness along the trajectory. One can cope with the inertia effect by incorporating

properties of the inertia ellipsoid [80] if the mass matrix is known, as introduced in [64].

Such approach is not presented here because this thesis aims for an inverse-free control

law.

It was also noticed that this formulation of gyroscopic forces in general leads to shorter

time needed to reach the target. An intuitive explanation for this is that, when starting

with the same amount of energy defined by the APE, manipulators with gyroscopic force

control follows a linear path from x(t0) to x̄ which is shorter than any other choice of path,

and hence does not “waste” any time by traversing to other regions in the task space.

However, because of the varying inertia effects, this difference can hardly be quantified

systematically.
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Figure 3.8: Simulation of the proposed control law compared to the transpose Jacobian

control in Figure 3.2
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Figure 3.9: Simulation results for a curved path with using the 3-DoF manipulator. (a):

Transpose Jacobian control. (b): Proposed controller (3.18).

We simulated the controller for circular path following using the same gains. The

manipulator starts at a configuration of q = col(−π
2
, π

4
, π

4
) and intends to reach x̄ =

col(0.38,−0.14)m by tracing a curve with radius of 0.18m. We employed the velocity

field in (3.17) with α = 100 and β = 5. Th result is plotted in Figure 3.9(b) compared to

the transpose Jacobian control in Figure 3.9(a). Despite the good following performance

overall, noticeable deviation is present at the beginning of the motion. The maximum

contour error is 1.2cm, or 6.7% of the curve radius. This is because in order to trace the

curve, the gyroscopic force will need to “fight against” the force due to APE, which points

directly from x(t0) to x̄, but because the EEF velocity is low at the initial stage of the

movement, the effect of the gyroscopic force is not significant enough.

3.5 Experimental Results using a 4-DoF WAM Robot

Experiments on the proposed control algorithm were carried out using a 4-DoF WAM robot

from Barrett Technologies, Inc, shown in Figure 3.10. This anthropomorphic arm mimics
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the human shoulder (3-DoF) and elbow (1-DoF) and is redundant for reaching tasks in

3D. The joints are tendon-driven, powered by brushless motors that allow low friction and

high backdrivability. The parameters and CAD models of the robot is available on [81]. In

torque mode, the control loop frequency can reach up to 1kHz.

Figure 3.10: Experimental setup of the 4-DoF WAM robot

In the experiments, the WAM starts with an initial configuration of q(t0) = col(0, 0.52π,

0, 0.72π) which corresponds to initial EEF position at x(t0) = col(−0.358, 0.019, 0.288)m.

The target position is first set to x̄ = col(0.2,−0.5, 0.5)m that is 63cm away from x(t0).

Similar to the experiments with the 2-DoF manipulator, transpose Jacobian control with

quadratic APE (3.2) resulted in significant steady state errors. Despite the low friction in

the WAM compared to other robots, the EEF stopped up to 10cm from the target, unless

if an aggressive gain is used. Again, we used the alternative form of APE in (3.6) instead

to improve the reaching accuracy. Additionally, we noticed that the steady state error is

largely contributed by the Coulomb friction at the first shoulder joint that carries most

of the arm mass, so first damping term is set to be very small. The steady state error is
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lowered to within 3cm under the following gains:

Kp =

15 0 0

0 15 0

0 0 15

 , Cd =


0.3 0 0 0

0 4 0 0

0 0 2 0

0 0 0 4

 , λ = 40

After having satisfactory result with the transpose Jacobian control, we the injected

the artificial gyroscopic force (3.13) with the velocity field for straight line path in 3D

(3.16). The gyroscopic gain kgp is varied while keeping the velocity field shape constant

with ρ = 50. Figure 3.11 plots the path of the EEF.
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Figure 3.11: Experimental results for a rectilinear path using the 4-DoF WAM robot for

x̄ = col(0.2,−0.5, 0.5)m

Just like for the 2-DoF manipulator, the results proved the effectiveness of the gyro-

scopic forces for path following. Larger gyroscopic gains lead to straighter path profiles.

We then experimented the controller for a different target at x̄ = col(0, 0.5, 0.5)m, and the
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results are illustrated in Figure 3.12. Gyroscopic force with gain kgp = 50 works well for

both cases. In a more general setting, we suggest making kgp greater for shorter paths to

account for slower speeds due to the smaller APE, because the gyroscopic force (3.13) is

quadratic in velocity.
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Figure 3.12: Experimental results for a rectilinear path using the 4-DoF WAM robot for

x̄ = col(0, 0.5, 0.5)m

Remark 5. As opposed to gain tuning in PID controls where large gains may cause unsafe

fast motions or even instability, we observed that using large kgp does not lead to these prob-

lems when experimenting with the WAM robot. This is because of the energy-conserving

nature of the gyroscopic force. Theoretically, gyroscopic forces will not alter the passivity

of the system despite the magnitude of kgp. When experimenting with the 2-DoF manip-

ulator, however, we observed an unstable chattering behavior of the robot with kgp = 200.

Compared with the WAM experiment, we believe this was because the control frequency

was lower (400Hz compared to 1kHz) and the joint velocity was not filtered. Indeed,

issues such as time delay, noise in velocity feedback, and input disturbances will break the

energy-conserving property of the gyroscopic force. Therefore, we still advise exercising
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caution before setting kgp to very large, especially when these imperfect conditions are a

concern.
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Chapter 4

Combined Position and Orientation

Control of the End Effector

In this chapter, the objective is to control both the position and orientation of the EEF

along the path. We will begin with the simpler case of planar motions, where the task

space can be represented as a subspace of R3, and the same control strategies proposed in

Chapter 3 can be used. Starting from Section 4.2, we focus on motions in 3D where the

EEF pose is described by SE(3) matrices.

4.1 Position and Orientation Control for Planar Mo-

tion

If the task space of the manipulator is constrained on a plane, as in the case of the 2-DoF

and 3-DoF manipulators presented in Chapter 3, its pose can be described as elements of

the special Euclidean group SE(2):

g(q) =

[
R(q) x(q)

0 1

]
=

 cos
(
θ(q)

)
sin
(
θ(q)

)
p1(q)

−sin
(
θ(q)

)
cos
(
θ(q)

)
p2(q)

0 0 1

 (4.1)
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which is a simpler case of the 3D rigid body kinematics described in (2.1). Then we can

formulate the task space without loss of generality in R3 as

h(q) =

x1(q)

x2(q)

θ(q)

 (4.2)

As an example, the forward kinematics of the planar 3-DoF manipulator, illustrated in

Figure 4.1, can be represented by:

h(q) =

x1(q)

x2(q)

θ(q)

 =

l1 cos(q1) + l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3)

l1 sin(q1) + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3)

q1 + q2 + q3

 (4.3)

where θ is the angle between the inertia frame and the EEF body frame. One can then

Figure 4.1: Schematic of the 3-DoF manipulator kinematics

derive the differential kinematics as:

ḣ(q) =
∂h

∂q
q̇ =

[
ẋ(q)

θ̇(q)

]
=

[
Jp(q)

1 1 1

]
q̇ = J(q)q̇ (4.4)
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where Jp(q) = ∂x
∂q

is the Jacobian mapping for position as discussed in the previous chapters.

Having this parametrization in R3, we may treat θ as x3, so the formulation of gyroscopic

force for position control in 3D presented in Section 3.2.2 can be directly applied here. The

control law is then very similar to (3.18):

τ = N +
∂

∂q
Û − Cdq̇ + kgJT

(
ḣv̄T − v̄ḣT

)
ḣ (4.5)

Consider an example with the objective of having the EEF trace a straight line while

keeping its orientation normal to the line; tasks such as wiping a surface can be represented

this way. We first design the APE as Û = 1
2
(h̄ − h)TK(h̄ − h), where h̄ represents the

target pose in task space. The velocity field in (3.16) can be used to encode this task. In

this case, this velocity field means that, only movements long the straight line is desired;

any deviation from the line or change in orientation θ should be avoided.

Figure 4.2 compares the transpose Jacobian control (3.1) and the proposed control law

(4.5) using a simulation with the 3-DoF manipulator. Starting from an initial configuration

of q = col(−π
3
, 2π

3
,−π

3
) or EEF pose of h(t0) = col(0.475m,−0.095m, 0), the target pose is

assigned as h̄ = col(0.0475m, 0.3m, 0). The control gains are:

K =

8 0 0

0 8 0

0 0 8

 , Cd =

1 0 0

0 0.6 0

0 0 0.6

 , ρ = 100, kg = 200

Evidently, the addition of the gyroscopic force enables the EEF to follow the desired

poses during motion. The EEF stayed within 1.2cm from the desired path, and the largest

orientation error was 0.2 degree. Despite the large gain kg used, the maximum joint torque

needed by the controller only increased to 2.84Nm from 2.25Nm in the transpose Jacobian

control.
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Figure 4.2: Simulation results for position and orientation control on SE(2) using the

3-DoF manipulator. (a): Transpose Jacobian control. (b): Proposed controller.

4.2 Transpose Jacobian Control for Orientation in 3D

Now we consider the more general case with motions in 3D, where the EEF orientation

can be described by elements of the special orthogonal group SO(3) (i.e. rotation ma-

trices) (2.1). Similar to position control, one can design an APE for the orientation and

implement transpose Jacobian control. Unlike position which is almost ubiquitously ex-

pressed as variables in the Cartesian space, orientation has different parameterizations.

One common approach is to use Euler angles in R3 as an minimal representation of SO(3).

However, it is well known that this representation suffers from singularity problems [82].

To be more specific, when the orientation travels past a singular condition, the Euler an-

gle representation loses the ability to describe change in orientation in certain directions.

The time derivative of one or more of the Euler angles will approach infinity, leading to a

discontinuous orientation parametrization which causes an undesirable sudden change in

the input signal that may affect the stability of the system.
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Alternatively, people have successfully implemented the transpose Jacobian control for

the orientation of a spherical wrist using unit quaternions [83]. However, this redundant

representation brings the issue of non-unique mapping from SO(3). In addition, the for-

mulation of gyroscopic force proposed in this thesis is velocity dependent, but the time

derivative of unit quaternions does not have an intuitive meaning. Therefore, we propose

the direct use of the rotation matrices in SO(3) similar to the works in [84] and [52].

First, we express the orientation R(q) and the desired orientation R̄ each in terms of the

3 orthogonal unit vectors. Namely,

R(q) = [n(q), s(q), a(q)]; R̄ = [n̄, s̄, ā] (4.6)

Define an orientation error from R to R̄ as

eo =
1

2
(n× n̄+ s× s̄+ a× ā). (4.7)

As a matter of fact, if we define a relative rotation Rerr = R̄R−1 = R̄RT and parametrize

it as a single rotation along the axis r by a magnitude of φ, one can show that eo = rsin(φ).

The authors of [52] implemented the transpose Jacobian control for the EEF orientation

by the following control law:

τo = N(q) + γJTo (q)eo − Cdq̇, γ > 0 (4.8)

where Jo(q) is the Jacobian that maps the joint velocity to the angular velocity of the

EEF with respect to the inertial frame: ω = Joq̇. Though it was shown in simulation that

R(q) converges asymptotically to R̄, the authors of [84] and [52] did not provide much

discussion on the APE behind this transpose Jacobian control law (4.8). We formulated

the orientation APE in the theorem below.

Theorem 4.1. The control law in (4.8) is the transpose Jacobian control with the orien-

tation APE of

Ûo(R(q)) =
1

2
Tr(Ko(I3 − R̄TR(q))), Ko = γI3 (4.9)

Proof. To prove the equivalence of the control law (4.8) and the APE (4.9), we need to

show that
∂Ûo
∂q

= γJTo (q)eo
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First, rewrite (4.9) using the 3-vector notation in (4.6)

Ûo =
γ

2
Tr(I3 − R̄TR)

=
γ

2
(3− n̄Tn− s̄T s− āTa)

Then the gradient of Ūo is

∂Ûo
∂q

= −γ
2

(
∂n

∂q

T

n̄+
∂s

∂q

T

s̄+
∂a

∂q

T

ā) (4.10)

We know that [14]

[ṅ, ṡ, ȧ] = Ṙ = ω̂R

where the wedge operator •̂ is defined in (2.3), and ω ∈ R3 represents the instantaneous

angular velocity with respect to each axis of the inertia frame. For a moment, let us just

look at the first axis n:

ṅ = ω̂n = ω × n = −n× ω = −n̂ω = −n̂Joq̇

Since ṅ = ∂n
∂q
q̇, we conclude that ∂n

∂q
= −n̂Jo. Following the same steps, one can conclude

that ∂s
∂q

= −ŝJo and ∂a
∂q

= −âJo. Plug this information into (4.10):

∂Ûo
∂q

= −γ
2

(
∂n

∂q

T

n̄+
∂s

∂q

T

s̄+
∂a

∂q

T

ā)

=
γ

2
(JTo n̂

T n̄+ JTo ŝ
T s̄+ JTo â

T ā)

=
γ

2
JTo (n̂T n̄+ ŝT s̄+ âT ā)

=
γ

2
JTo (−n× n̄− s× s̄− a× ā)

=
γ

2
JTo (n̄× n+ s̄× s+ ā× a)

= γJTo eo

The interested readers are referred to [85] for a detailed discussion on the properties of

this APE. We assume that this gives limt→∞R(t) = R̄ without loss of generality. Although

we have just proved that the effect of the control input (4.8) is to create an APE in the
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form of (4.9), (4.8) is advantageous in the sense that it can be applied to tasks where the

orientation is not fully defined. For instance, in applications such as needle insertion, the

objective is to align the orientation of the needle with that of the hole, and self-rotation

about that axis is not important. One can then apply control (4.8) by using a and ā to

represent the axis of the needle and the hole, and disregard the terms involving the other

axes. By doing so, the control will guarantee that limt→∞a(t) = ā while allowing the needle

to self-rotate freely.

4.3 Transpose Jacobian Control for Position and Ori-

entation in 3D

Denote the desired EEF pose by ḡ ∈ SE(3). For a manipulator with DoF> 6, one can

combine the APE for position Ûp and the APE for orientation Ûo to generate the transpose

Jacobian control law:

τ = N(q) +
∂Ûp
∂q

+
∂Ûo
∂q
− Cdq̇ (4.11)

Theorem 4.2. For the closed-loop system with a robot manipulator (2.5) and the transpose

Jacobian control law (4.11) with properly designed APEs Ûp and Ûo, the equilibrium points

characterized by x(q) = x̄, R(q) = R̄ and q̇ = 0 are asymptotically stable.

Proof. Consider the Lyapunov function candidate:

V = T (q, q̇) + Ûp(x(q)) + Ûo(R(q))

The rest of the proof is the same as Theorem 3.1 and is not repeated here.

Remark 6. Using the same arguments as in Remark 2, Theorem 4.2 means that in general

the control (4.11) renders limt→∞g(t) = ḡ.

We verified the controller via simulation on a 7-DoF WAM robot, whose parameters

are available online at [81]. Due to the complexity of the robot, rather than deriving

the closed-form equations of motion, we conducted the simulation numerically using the

Matlab Robotic Toolbox by Corke [86]. The robot starts with an initial configuration of
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q(t0) = col(−3.11, 2.28,−1.44, 2.18,−0.91, 1.27, 2.10), which corresponds to the EEF pose

of

g(t0) =

[
R(t0) x(t0)

0 1

]
=


1 0 0 −0.30m

0 1 0 0.30m

0 0 1 −0.30m

0 0 0 1



X
Y

X

Z
Y
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Figure 4.3: Simulation result of transpose Jacobian control (4.11) on SE(3) using a 7-

DoF WAM robot. Both the position and orientation of the EEF converges to the desired

configuration.

The target EEF pose is

ḡ =

[
R̄ x̄

0 1

]
=


1 0 0 −0.50m

0 1 0 −0.50m

0 0 1 0.20m

0 0 0 1


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We employed the position APE quadratic in position and the orientation APE in (4.9).

The controller gains are tuned to

Kp =

10 0 0

0 10 0

0 0 10

 , Ko = I3, Cd = diag(2.5, 2.5, 0.5, 0.5, 0.1, 0.1, 0.1)

Figure 4.3 plots the result of the EEF pose throughout the trajectory. Obviously g(q)

converges to ḡ. However, note that although in this case R(t0) = R̄, the EEF orientation

is not well-maintained during the movement. The maximum orientation APE (which

represents the magnitude of orientation error) is 0.073. This corresponds to a relative

rotation of roll-pitch-yaw of 15.8o, 15.0o, and 1.7o from R̄.

In many applications, it is not necessary to control the full orientation of the EEF: in

needle insertion, the goal is to guarantee that the axis of the needle aligns with the hole;

when carrying a cup of water, the goal is to ensure the cup does not tilt to prevent spilling.

Rotations about that axis, however, is for the most part irrelevant in these problems.

Without loss of generality, we assume that the axis of interest is a(q), or the body z-axis

at the EEF. One can simply apply a constant rotation if the axis of interest is different.

Compared to (4.11) which used the gradient of the orientation APE, we can relax the

conditions on the other 2 axes n(q) and s(q), and the control law comes down to:

τ = N(q) +
∂Ûp
∂q

+ γJTo (ā× a)− Cdq̇ (4.12)

Simulation study was performed on control (4.12) with the same conditions in Figure

4.3. The difference here is that, instead of having a desired orientation matrix R̄, we only

need ā = col(0, 0, 1), and the gain becomes γ = 1 instead of Ko = I3. The results are

depicted in Figure 4.4.

Compared with Figure 4.3, only the body z-axis of the EEF converged to the desired

vertically upward orientation. Again, the initial condition is one with a(t0) = ā, but the

body z-axis does not remain close to this configuration throughout the movement. The

maximum tilt in this simulation was 20.9o, and if the EEF were to carry a nearly full

cup of water, it is almost guaranteed to spill. One can limit this orientation error by

increasing Ko, but because both the position and orientation APEs are in fact functions

of the joint angles, this gain change will affect the position path profile. This coupling

between the APEs makes the transpose Jacobian control more difficult to tune compared

to position-only problems. As a result, we seek for help from gyroscopic forces to maintain

the orientation rather than tuning the transpose Jacobian control.
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Figure 4.4: Simulation result of transpose Jacobian control (4.12) using a 7-DoF WAM

robot. In addition to the EEF position, only the body z-axis is controlled.
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4.4 Gyroscopic Force Shaping for Orientation Control

Similar to the previous chapter, we propose the direct formulation of gyroscopic forces in

the task space to control the EEF pose during the motion. The final control law is:

τ = N +
∂

∂q
Ûp +

∂

∂q
Ûo − Cdq̇ + JTp F

g
p + JTo F

g
o (4.13)

We state the convergence of g to the target ḡ in a theorem:

Theorem 4.3. For the closed-loop system with a robot manipulator (2.5) and the control

law (4.13) with F g
p and F g

o being gyroscopic in the task space(i.e. ẋTF g
p = ωTF g

o = 0), the

equilibrium points characterized by g(q) = ḡ and q̇ = 0 are asymptotically stable.

Proof. The proof is the same as for Theorem 3.2

The triple product formulation of gyroscopic force in (3.13) is also used here for orien-

tation control:

F g
o

(
ω̄, ω

)
= kgoω ×

(
ω̄ × ω

)
= kgo

(
ωω̄T − ω̄ωT

)︸ ︷︷ ︸
skew-symmetric

ω (4.14)

where ω̄ refers to the desired angular velocity of the EEF. The remaining question then is

how to design ω̄. Let us consider the case where the goal is to maintain an orientation R̄.

We define

dR := R̄RT (q)

which is the relative rotation between the R(q) and R̄ expressed in the inertial frame

because (dR)R = R̄RT (q)R(q) = R̄. Assuming that during motion, R(q) is sufficiently

close to R̄ (this is a reasonable assumption especially in the case where we try to maintain

an initial orientation), then dR can be understood as a small orientation change, and

hence dR−I3 will be a skew-symmetric matrix similar to Ṙ. We define the desired angular

velocity as

ω̄ = (dR− I3)∨ =
(
R̄RT − I3

)∨
(4.15)

because ω̄ resides in the same space as ω and indicates a desired incremental motion. In

reality, dR− I3 is not a perfectly skew-symmetric matrix as

dR =

dR1,1 dR1,2 dR1,3

dR2,1 dR2,2 dR2,3

dR3,1 dR3,2 dR3,3


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with dR1,1 ≈ dR2,2 ≈ dR3,3 ≈ 1, dR3,2 ≈ −dR2,3, dR1,3 ≈ −dR3,1, and dR2,1 ≈ −dR1,2. In

this case, we approximate the vee operator by •∨

ω̄ = (dR− I3)∨ =
1

2

dR3,2 − dR2,3

dR1,3 − dR3,1

dR2,1 − dR1,2


Table 4.1: Summary of the proposed control scheme

Overall Control Law τ = N +
∂

∂q
Ûp +

∂

∂q
Ûo−Cdq̇+JTp F

g
p +JTo F

g
o

(4.16)

Position APE - Quadratic Ûp(x) =
1

2
(x̄− x)T Kp (x̄− x) (4.17)

Position APE - Alternative Ûp(x) =
3∑
i=1

ki
λi

ln[cosh(λ(x̄i − xi))] (4.18)

Gyroscopic Force - Position F g
p = kgpẋ×

(
v̄ × ẋ

)
(4.19)

Desired Translational Velocity Equations (3.14), (3.15), (3.16), (3.17)

Orientation APE - Full Ûo(R) =
1

2
Tr(Ko(I3 − R̄TR)) (4.20)

Gyroscopic Force - Orientation F g
o = kgoω ×

(
ω̄ × ω

)
(4.21)

Desired Angular Velocity - Full ω̄ =
(
R̄RT − I3

)∨
(4.22)

Orientation APE - Single Axis Ûo(a) =
γ

2
(1− āTa) (4.23)

Desired Angular Velocity - Single Axis ω̄ = a× ā (4.24)

If only the orientation of one axis is of interest, the desired angular velocity in (4.15)

cannot be defined because R̄ is not given. We can borrow the idea of orientation error

from (4.7) to define the desired angular velocity:

ω̄ = a× ā (4.25)
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In fact, this formulation of ω̄ equals to −2eo of the error term in (4.7) without the other 2

axes. Physically, this indicates that the desired angular velocity is one that points opposite

to the error and is a suitable choice in order to maintain the orientation of the body z-axis.

Table 4.1 summarizes the proposed control law, including formulations APE, task space

gyroscopic forces, and desired velocity field for both position and orientation control.

4.5 Simulation Results of the Proposed Controller

The proposed controller (4.16) is tested via simulation using the 7-DoF WAM robot. First,

we consider controlling the full pose by using the same APE as in Figure 4.3. The desired

translational velocity for rectilinear path (3.16) was employed along with the desired an-

gular velocity (4.22) to generate the gyroscopic forces (4.19) (4.21). The gyroscopic force

gains are tuned as

kgp = 30, kgo = 10

Figure 4.5 illustrates the resulting motion. The maximum orientation APE occurred

was 0.0072, roughly 10 times smaller than Figure 4.3 without gyroscopic force. This

corresponds to a relative rotation of roll-pitch-yaw of only 3.34o, −0.80o, and 5.96o from

R̄. In addition, the maximum deviation from the straight-line was 2.63cm which is very

small considering that the total path length was 96.7cm.

Using the same gains, we verified the proposed strategy (4.16) for single-axis orientation

control using orientation APE (4.23) and desired angular velocity in (4.24). The motion

profile is plotted in Figure 4.6.

We can draw the same conclusion as the previous example. In contrast with Figure 4.4

which used only the transpose Jacobian control, the addition of gyroscopic force not only

straightens the path but also ensures that the body z-axis is kept upright. The maximum

tilt of the body z-axis was 1.9o, compare to 20.9o when no gyroscopic force was used. The

largest deviation from the straight-line path was approximately 2.04cm.
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Figure 4.5: Simulation result of proposed controller (4.16) on SE(3) using a 7-DoF WAM

robot. Compared to Figure 4.3, the resulting path closely follows a straight line, and the

desired orientation is well-maintained during the movement.
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Figure 4.6: Simulation result of proposed controller (4.16) using a 7-DoF WAM robot.

Compared to Figure 4.4 the resulting path closely follows a straight line, and the orientation

of the body z-axis is well-maintained.
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Chapter 5

Conclusions and Future Work

In this thesis, we consider the path following problem for robot manipulators and propose a

control scheme that combines potential energy shaping and injection of artificial gyroscopic

forces. The proposed strategy uses the transpose Jacobian control as the base controller

to guarantee the convergence of the EEF pose, and adds gyroscopic forces as an auxiliary

term to steer the velocity during motion. A novel approach using desired velocities to

formulate gyroscopic forces directly in the task space is presented. The final control law

(4.16) is free of inverse kinematics and inverse dynamics. Online adjustments of the target

pose are simple to perform if the manipulator is to operate in a changing environment.

We start with the problem of controlling only the EEF position during movement in

Chapter 3, incorporating examples of rectilinear and circular paths. Chapter 4 extends

the work to the control of both position and orientation, thereby expanding the potential

applications of this work. Although the proposed controller cannot ensure the invariance

of the desired path like other existing methods do, we verify its effectiveness in meeting

the path following objective by simulation and experiments. A convergence analysis is also

provided in Appendix A, suggesting the robustness of the gyroscopic force for steering the

direction of motion. Indeed, the gyroscopic force works by not doing any work.

Due to lack of availability of suitable hardware, experiments on the combined position

and orientation control were not conducted. It will be interesting to see the performance

of the orientation APE (4.9) in the presence of joint friction. If significant steady state

error is present, an alternative APE design similar to (3.6) should be explored.

Arguably, one would usually expect better path following performance at the beginning

and end of the movement when performing tasks. The proposed control strategy is limited
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in the sense that because the gyroscopic forces are formulated as quadratic in velocity, the

path following accuracy is often poorer near the initial and target pose. Modifications to

the proposed strategy such as using a variable gyroscopic gain need to be considered in

order to account for this problem.

The simulations and experiments presented in this thesis are simple examples such as

curved paths or straight-line paths while maintaining the orientation. For complicated

paths with self-intersections, one can develop a high-level path planning algorithm that

breaks down the task into several primal shapes and then apply the proposed controller

with suitable desired velocity field for each segment. By doing so, this work can be extended

to more sophisticated examples such as drawing and writing with robot manipulators.
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Appendix A

Convergence Analysis of Gyroscopic

Force Control

Compared to other path following control schemes discussed in Section 1.2.4, a disadvan-

tage of the proposed control law (3.18) or (4.16) is that it does not convert the desired

path into an attractive and invariant set. However, the simulation and experimental results

shown in this thesis indicate that the gyroscopic force is effective to render the EEF pose

close to the desired path. The aim of this appendix is to investigate the convergence of

path in gyroscopic force control. Due to the level of difficulty involved in directly analyzing

the proposed controller, we present the analysis for a simpler scenario in which a constant

desired joint velocity is given with a gyroscopic force control without energy shaping.

Consider an n-DoF manipulator with equations of motion (2.5) and non-zero initial

velocity q̇(t0) (hence non-zero kinetic energy). Given a constant desired joint velocity ¯̇q,

consider the following control law:

τ = kg(¯̇qq̇T − q̇ ¯̇q
T

)q̇ +N(q) (A.1)

Note that the first term is gyroscopic in the same form as (3.13) and (4.14), except that it

is formulated directly in joint space. Gravity compensation N(q) is applied similar to the

transpose Jacobian control. Consider the following Lyapunov function candidate:

V =
1

2
(q̇ − ¯̇q)TM(q̇ − ¯̇q)
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The time derivative of V of the closed-loop system is

V̇ = (q̇ − ¯̇q)TMq̈ +
1

2
(q̇ − ¯̇q)TṀ(q̇ − ¯̇q)

= (q̇ − ¯̇q)T
{
τ − Cq̇ −N +

1

2
Ṁ(q̇ − ¯̇q)

}
= (q̇ − ¯̇q)T

{
kg(¯̇qq̇T − q̇ ¯̇q

T
)q̇ − Cq̇ − 1

2
Ṁ(¯̇q − q̇)

}
= (q̇ − ¯̇q)T

{
kg(¯̇qq̇T − q̇ ¯̇q

T
)q̇ + C(¯̇q − q̇)− 1

2
Ṁ(¯̇q − q̇)− C ¯̇q

}
= kg(q̇ − ¯̇q)T (¯̇qq̇T − q̇ ¯̇q

T
)q̇ − (¯̇q − q̇)T (C − 1

2
Ṁ)︸ ︷︷ ︸

skew-symmetric

(¯̇q − q̇)− (q̇ − ¯̇q)C ¯̇q

= kg(q̇ − ¯̇q)T (¯̇qq̇T − q̇ ¯̇q
T

)q̇ − (q̇ − ¯̇q)C ¯̇q

= −kg
(
‖¯̇q‖2‖q̇‖2 − (¯̇q

T
q̇)2
)
− (q̇ − ¯̇q)C ¯̇q

(A.2)

Note that the first term, −kg
(
‖¯̇q‖2‖q̇‖2 − (¯̇q

T
q̇)2
)
≤ 0 by Cauchy-Schwarz inequality. One

can add C(q, q̇)¯̇q to cancel out the last term in (A.2) and render q̇ = ¯̇q asymptotically

stable.

The control law (A.1) by itself does not guarantee the convergence of joint velocity of

the closed-loop system. Part of the reason is that, without gravity, the controller is just a

gyroscopic force, and by the passivity property, the kinetic energy of the closed-loop system

T (q, q̇) = q̇TM(q)q̇ stays constant. On the other hand, the desired velocity ¯̇q cannot satisfy
¯̇qTM(q)¯̇q = T (q, q̇). As a result, proving limt→∞V (t) = 0 is impossible.

Although we do not have limt→∞q̇(t) = ¯̇q, simulation results show that the direction of

q̇ stays close to the direction of ¯̇q. Because path following performance is determined by

the direction of q̇ instead of its magnitude, we define an error term as the angle between q̇

and ¯̇q:

θ = cos−1(
q̇T ¯̇q

‖q̇‖‖¯̇q‖
)

Substitute θ into (A.2):
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V̇ = −kg
(
‖¯̇q‖2‖q̇‖2 − (¯̇q

T
q̇)2
)
− (q̇ − ¯̇q)C ¯̇q

= −kg‖¯̇q‖2‖q̇‖2(1− cos2θ)− (q̇ − ¯̇q)C ¯̇q

= −kg‖¯̇q‖2‖q̇‖2sin2θ − (q̇ − ¯̇q)C ¯̇q

= −kg‖¯̇q‖2‖q̇‖2sin2θ + ¯̇qC ¯̇q − q̇C ¯̇q

≤ −kg‖¯̇q‖2‖q̇‖2sin2θ + η‖¯̇q‖2‖q̇‖+ η‖q̇‖2‖¯̇q‖
= ‖¯̇q‖‖q̇‖

(
η(‖q̇‖+ ‖¯̇q‖)− kg‖‖¯̇q‖‖q̇‖sin2θ

)
(A.3)

where the second last inequality comes from the fact that ‖C‖ is bounded by some η‖q̇‖.
Evidently, we can see from (A.3) that V̇ ≤ 0 given

sin2θ >
η(‖¯̇q‖+ ‖q̇‖)
kg‖¯̇q‖‖q̇‖

(A.4)

Of course, one can satisfy this condition by having a large kg. However, as θ approaches

0, it requires kg to be increased to infinity. We seek instead the conditions on θ for the

Lyapunov function to be decreasing given a fixed kg. Denote ξ = max{η(‖¯̇q‖+‖q̇‖)
kg‖¯̇q‖‖q̇‖ }. Note

that because of the conservation of kinetic energy and boundedness on the mass matrix,

‖q̇‖ is bounded by 2 finite positive values, and hence a finite ξ exists.

1

0

ξ

θ1−θ1 π − θ1−π + θ1

sin
2θ

Figure A.1: Illustration of the convergence of a gyroscopic-only controlled system

Assuming kg is large enough so that ξ < 1, and a solution to sin2θ = ξ exists. Denote

θ1 = sin−1(
√
ξ). As illustrated in Figure A.1, for θ ∈ (θ1, π − θ1) or θ ∈ (−π + θ1,−θ1),

(A.4) is satisfied and we have V̇ < 0. Loosely speaking, V̇ < 0 means that q̇ approaches ¯̇q

and |θ| is decreasing. Therefore, the set θ ∈ [−θ1, θ1] can be interpreted as an invariant set;

once the gyroscopic force steers the joint velocities into this set, the error in the direction of

motion will oscillate within ±θ1. This is illustrated as well in Figure A.1. Cases where the

joint velocity is in opposite direction of the desired one (or θ = ±π) are unstable; though

the gyroscopic force is 0 in these cases, it will act to pull the joint velocity towards the

correct direction as soon as little deviation occurs.
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Even with small values of kg, simulation studies indicate that θ is rarely trapped in (π−
θ1, π) or (−π,−π+ θ1). Intuitively, with a very small kg, the system will be dominated by

the Coriolis and centrifugal forces, and the direction of the joint velocity will be varying in a

periodic fashion. Then there is a high probability that θ enters (θ1, π−θ1) or (−π+θ1,−θ1),

and then it follows that it will stay within ±θ1 thereafter.
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Figure A.2: Simulation result of the angle θ between joint velocity and the desired joint

velocity with different control gains kg using the 2-DoF manipulator.

Table A.1: Oscillation of θ under controller (A.1) in simulation after 20s

kg θosc.min(deg) θosc.max(deg)

0.5 -20.02 13.65

1 -9.14 7.66

2 -4.38 4.02

4 -2.14 2.05

20 -0.42 0.42

Simulation results of the direction error θ under different gyroscopic control gain kg are

shown in Figure A.2. It confirms our conclusion that after the initial convergence stage,

θ will oscillate within a bound, which becomes smaller with increasing kg. The oscillation
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bounds of θ after 20s are summarized in Table A.1. The size of this invariant set is in

general inversely proportional to kg. Additionally, large kg allows faster convergence of

direction of motion in the initial stage, and it seems to also have the effect of ensuring that

the oscillation mean of θ stays close to 0.

In summary, this appendix presents the robustness of gyroscopic forces used to steer

the direction of joint velocities. Although it is not a direct analysis of the proposed control

laws (3.18) and (4.16), it sheds some light on the performance of gyroscopic forces. By

making assumptions on the manipulability of the robot and smoothness of the desired

velocity field, one may generalize this analysis to velocity control or path following in the

task space.
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Appendix B

Equation of Motion for the 3-DoF

Manipulator

The equation of motion for the 3-DoF Manipulator is derived using theMatlabSymbolicToolbox.

Because of the length of the equations, we will not directly list the equations here. Instead,

this appendix attaches the Matlab code used to generate the mass matrix and the Coriolis

and centrifugal matrix.

Notation: naming of variables is consistent with those in Table 3.1 except for the

addition of link 3. The joint angles are denoted by “q” and “qdot” in the Matlab code.

B.1 Mass Matrix

M = [ I1 + I2 + I3 + L1ˆ2∗m2 + L1ˆ2∗m3 + L2ˆ2∗m3 + m2∗ r2 ˆ2 + m3∗ r3

ˆ2 + r1 ˆ2∗m1 + 2∗L1∗ s i n ( q1 )∗ s i n ( q1 + q2 )∗m2∗ r2 + 2∗L1∗ cos ( q1 )∗
cos ( q1 + q2 + q3 )∗m3∗ r3 + 2∗L1∗ cos ( q1 )∗ cos ( q1 + q2 )∗m2∗ r2 + 2∗
L2∗ s i n ( q1 + q2 + q3 )∗ s i n ( q1 + q2 )∗m3∗ r3 + 2∗L2∗ cos ( q1 + q2 +

q3 )∗ cos ( q1 + q2 )∗m3∗ r3 + 2∗L1∗L2∗ s i n ( q1 )∗ s i n ( q1 + q2 )∗m3 + 2∗
L1∗L2∗ cos ( q1 )∗ cos ( q1 + q2 )∗m3 + 2∗L1∗ s i n ( q1 )∗ s i n ( q1 + q2 + q3 )

∗m3∗ r3 , . . .

I2 + I3 + L2ˆ2∗m3 + m2∗ r2 ˆ2 + m3∗ r3 ˆ2 + L1∗ cos ( q1 )∗ cos ( q1 +

q2 )∗m2∗ r2 + L1∗L2∗ s i n ( q1 )∗ s i n ( q1 + q2 )∗m3 + L1∗L2∗ cos ( q1 )∗
cos ( q1 + q2 )∗m3 + L1∗ cos ( q1 )∗ cos ( q1 + q2 + q3 )∗m3∗ r3 + 2∗
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L2∗ s i n ( q1 + q2 + q3 )∗ s i n ( q1 + q2 )∗m3∗ r3 + 2∗L2∗ cos ( q1 + q2

+ q3 )∗ cos ( q1 + q2 )∗m3∗ r3 + L1∗ s i n ( q1 )∗ s i n ( q1 + q2 + q3 )∗
m3∗ r3 + L1∗ s i n ( q1 )∗ s i n ( q1 + q2 )∗m2∗ r2 , . . .

I3 + m3∗ r3 ˆ2 + L1∗ cos ( q1 )∗ cos ( q1 + q2 + q3 )∗m3∗ r3 + L2∗ s i n ( q1

+ q2 + q3 )∗ s i n ( q1 + q2 )∗m3∗ r3 + L2∗ cos ( q1 + q2 + q3 )∗ cos (

q1 + q2 )∗m3∗ r3 + L1∗ s i n ( q1 )∗ s i n ( q1 + q2 + q3 )∗m3∗ r3 ;

I2 + I3 + L2ˆ2∗m3 + m2∗ r2 ˆ2 + m3∗ r3 ˆ2 + L1∗ cos ( q1 )∗ cos ( q1 +

q2 )∗m2∗ r2 + L1∗L2∗ s i n ( q1 )∗ s i n ( q1 + q2 )∗m3 + L1∗L2∗ cos ( q1 )∗
cos ( q1 + q2 )∗m3 + L1∗ cos ( q1 )∗ cos ( q1 + q2 + q3 )∗m3∗ r3 + 2∗
L2∗ s i n ( q1 + q2 + q3 )∗ s i n ( q1 + q2 )∗m3∗ r3 + 2∗L2∗ cos ( q1 + q2

+ q3 )∗ cos ( q1 + q2 )∗m3∗ r3 + L1∗ s i n ( q1 )∗ s i n ( q1 + q2 + q3 )∗
m3∗ r3 + L1∗ s i n ( q1 )∗ s i n ( q1 + q2 )∗m2∗ r2 , . . .

I2 + I3 + 2∗L2∗ s i n ( q1 + q2 + q3 )∗ s i n ( q1 + q2 )∗m3∗ r3 + 2∗L2∗
cos ( q1 + q2 + q3 )∗ cos ( q1 + q2 )∗m3∗ r3 + L2ˆ2∗m3 + m2∗ r2 ˆ2 +

m3∗ r3 ˆ2 , . . .

I3 + L2∗ s i n ( q1 + q2 + q3 )∗ s i n ( q1 + q2 )∗m3∗ r3 + L2∗ cos ( q1 + q2

+ q3 )∗ cos ( q1 + q2 )∗m3∗ r3 + m3∗ r3 ˆ2 ;

I3 + m3∗ r3 ˆ2 + L1∗ cos ( q1 )∗ cos ( q1 + q2 + q3 )∗m3∗ r3 + L2∗ s i n ( q1

+ q2 + q3 )∗ s i n ( q1 + q2 )∗m3∗ r3 + L2∗ cos ( q1 + q2 + q3 )∗ cos (

q1 + q2 )∗m3∗ r3 + L1∗ s i n ( q1 )∗ s i n ( q1 + q2 + q3 )∗m3∗ r3 , . . .

I3 + L2∗ s i n ( q1 + q2 + q3 )∗ s i n ( q1 + q2 )∗m3∗ r3 + L2∗ cos ( q1 + q2

+ q3 )∗ cos ( q1 + q2 )∗m3∗ r3 + m3∗ r3 ˆ2 , . . .

m3∗ r3 ˆ2 + I3 ] ;

B.2 Coriolis and Centrifugal Matrix

C = [ − qdot2∗L1∗L2∗ cos ( q1 )∗ s i n ( q1 + q2 )∗m3 + qdot2∗L1∗L2∗ s i n ( q1 )

∗ cos ( q1 + q2 )∗m3 + m3∗ r3∗qdot2∗L1∗ s i n ( q1 )∗ cos ( q1 + q2 + q3 ) +

m3∗ r3∗qdot3∗L1∗ s i n ( q1 )∗ cos ( q1 + q2 + q3 ) − qdot2∗L1∗ cos ( q1 )∗
s i n ( q1 + q2 )∗m2∗ r2 − m3∗ r3∗qdot2∗L1∗ cos ( q1 )∗ s i n ( q1 + q2 + q3 )

− m3∗ r3∗qdot3∗L1∗ cos ( q1 )∗ s i n ( q1 + q2 + q3 ) + qdot2∗L1∗ s i n ( q1 )∗
cos ( q1 + q2 )∗m2∗ r2 + L2∗m3∗ r3∗qdot3∗ cos ( q1 + q2 + q3 )∗ s i n ( q1 +

q2 ) − L2∗m3∗ r3∗qdot3∗ s i n ( q1 + q2 + q3 )∗ cos ( q1 + q2 ) , . . .

− qdot1∗L1∗L2∗ cos ( q1 )∗ s i n ( q1 + q2 )∗m3 − qdot2∗L1∗L2∗ cos ( q1 )∗ s i n (

q1 + q2 )∗m3 + qdot1∗L1∗L2∗ s i n ( q1 )∗ cos ( q1 + q2 )∗m3 + qdot2∗L1∗
L2∗ s i n ( q1 )∗ cos ( q1 + q2 )∗m3 + m3∗ r3∗qdot1∗L1∗ s i n ( q1 )∗ cos ( q1 +
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q2 + q3 ) + m3∗ r3∗qdot2∗L1∗ s i n ( q1 )∗ cos ( q1 + q2 + q3 ) + m3∗ r3∗
qdot3∗L1∗ s i n ( q1 )∗ cos ( q1 + q2 + q3 ) − qdot1∗L1∗ cos ( q1 )∗ s i n ( q1

+ q2 )∗m2∗ r2 − qdot2∗L1∗ cos ( q1 )∗ s i n ( q1 + q2 )∗m2∗ r2 − m3∗ r3∗
qdot1∗L1∗ cos ( q1 )∗ s i n ( q1 + q2 + q3 ) − m3∗ r3∗qdot2∗L1∗ cos ( q1 )∗
s i n ( q1 + q2 + q3 ) − m3∗ r3∗qdot3∗L1∗ cos ( q1 )∗ s i n ( q1 + q2 + q3 )

+ qdot1∗L1∗ s i n ( q1 )∗ cos ( q1 + q2 )∗m2∗ r2 + qdot2∗L1∗ s i n ( q1 )∗ cos (

q1 + q2 )∗m2∗ r2 + L2∗m3∗ r3∗qdot3∗ cos ( q1 + q2 + q3 )∗ s i n ( q1 + q2

) − L2∗m3∗ r3∗qdot3∗ s i n ( q1 + q2 + q3 )∗ cos ( q1 + q2 ) , . . .

m3∗ r3 ∗( qdot1 + qdot2 + qdot3 ) ∗(L1∗ s i n ( q1 )∗ cos ( q1 + q2 + q3 ) − L1∗
cos ( q1 )∗ s i n ( q1 + q2 + q3 ) + L2∗ cos ( q1 + q2 + q3 )∗ s i n ( q1 + q2 )

− L2∗ s i n ( q1 + q2 + q3 )∗ cos ( q1 + q2 ) ) ;

qdot1∗L1∗L2∗ cos ( q1 )∗ s i n ( q1 + q2 )∗m3 − qdot1∗L1∗L2∗ s i n ( q1 )∗ cos ( q1

+ q2 )∗m3 − m3∗ r3∗qdot1∗L1∗ s i n ( q1 )∗ cos ( q1 + q2 + q3 ) + qdot1∗L1

∗ cos ( q1 )∗ s i n ( q1 + q2 )∗m2∗ r2 + m3∗ r3∗qdot1∗L1∗ cos ( q1 )∗ s i n ( q1 +

q2 + q3 ) − qdot1∗L1∗ s i n ( q1 )∗ cos ( q1 + q2 )∗m2∗ r2 + L2∗m3∗ r3∗
qdot3∗ cos ( q1 + q2 + q3 )∗ s i n ( q1 + q2 ) − L2∗m3∗ r3∗qdot3∗ s i n ( q1 +

q2 + q3 )∗ cos ( q1 + q2 ) , . . .

qdot3∗L2∗m3∗ r3 ∗( cos ( q1 + q2 + q3 )∗ s i n ( q1 + q2 ) − s i n ( q1 + q2 + q3

)∗ cos ( q1 + q2 ) ) , . . .

L2∗m3∗ r3 ∗( qdot1 + qdot2 + qdot3 ) ∗( cos ( q1 + q2 + q3 )∗ s i n ( q1 + q2 )

− s i n ( q1 + q2 + q3 )∗ cos ( q1 + q2 ) ) ;

( − qdot1∗L1∗ s i n ( q1 )∗ cos ( q1 + q2 + q3 ) + qdot1∗L1∗ cos ( q1 )∗ s i n ( q1

+ q2 + q3 ) − qdot1∗L2∗ cos ( q1 + q2 + q3 )∗ s i n ( q1 + q2 ) − qdot2∗
L2∗ cos ( q1 + q2 + q3 )∗ s i n ( q1 + q2 ) + qdot1∗L2∗ s i n ( q1 + q2 + q3 )

∗ cos ( q1 + q2 ) + qdot2∗L2∗ s i n ( q1 + q2 + q3 )∗ cos ( q1 + q2 ) )∗m3∗ r3

, . . .

− L2∗m3∗ r3 ∗( qdot1 + qdot2 ) ∗( cos ( q1 + q2 + q3 )∗ s i n ( q1 + q2 ) − s i n

( q1 + q2 + q3 )∗ cos ( q1 + q2 ) ) , . . .

0 ] ;
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