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Abstract 

In response to rising petroleum prices, the demand for lower emissions standards for vehicles, 

and better vehicle fuel economy, the market for hybrid and electric vehicles is expanding. These 

systems incorporate advanced battery systems which store and provide energy in the vehicle. 

Over time, though, cells degrade and lose capacity in accordance with two different aging 

phenomena: cycling and calendar aging. It is imperative to understand how these degradation 

phenomena occur as the loss in capacity results in a loss in vehicle range. Through understanding 

how these phenomena occur, mitigation efforts can be designed to prevent or lessen their effects.  

This thesis will focus primarily on studying the effects of calendar aging on commercial LiFePO4 

cells. Cells are aged at varying temperatures and states of charge (SOC) to determine the extent 

of capacity fade and degradation. Additional testing methods are then utilized to attempt to 

determine which aging phenomena are promoting the losses within the cell.  

Capacity loss in cells stored at high temperature and fully charged conditions resulted in faster 

degradation rates. Temperature had the most significant role in the degradation of the cell and 

then the cell’s SOC. Comparing capacity losses between cells stored at the same temperature, but 

with different SOCs, found that the cells with higher SOC experienced increased rates of 

degradation in comparison to their fully discharged counterparts. In addition, storage at high 

SOC and high temperatures promoted such severe losses that the cells in question were unable to 

recapture capacity that they had lost reversibly.  

The primary degradation mode for the cells was the loss of cyclable lithium, and was found to 

occur under all of the storage conditions. Cells stored at much more severe conditions, though, 

also demonstrated a loss of active material at the anode. The extent of the loss of the active 

material was largely predicated on whether or not the cell was stored at fully charged or 

discharged conditions. Storage of lithium-ion batteries at high temperatures has a dramatic effect 

on the continual usage of the cells after storage conditions have changed. Despite shifting 

temperatures or states-of-charge to a lower value, the initial storage conditions leads to increased 

degradation rates throughout the cell life. Thus, the history of storage for the cell must be also be 

taken into account when considering losses in capacity. 
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Utilizing the collected degradation data from the calendar aging experiments and manufacturer’s 

cycling data a lifetime degradation model was produced to simulate the extent of aging from 

different geographic locations and to compare which degradation mode had the most influence 

over a ten year lifespan. The model was validated using additional data not included in the non-

linear degradation model and the results tabulated using real-world temperature and drive cycle 

data. According to the simulations, calendar aging plays a significant role in the loss of capacity 

within the battery pack, due to the battery pack not being utilized on a constant basis in the 

vehicle. Incorporating it into the simulation resulted in the battery pack reaching its EOL much 

sooner than the targeted consumer requirement of ten years. 

Finally, to conclude the findings on the research of degradation of lithium-ion batteries, a final 

study was completed on the examination of how electric vehicle batteries can be repurposed. A 

design process for a repurposed battery pack is proposed, taking into account design steps from 

initial market predictions to installation of the assembly at a residence, as well as an analysis of 

the potential risks. This work established an understanding of the limitations of repurposing, as 

well as the current codes and standards that affect repurposed battery pack designs. Utilizing 

these requirements, a bench test setup was designed, built, and tested to determine feasibility. 

This work also identified a number of risks still evident in the design of a repurposed system as 

the relevant codes and legislation have not been written and supply chain and testing of 

repurposed packs is currently unknown.  More research needs to be completed on the 

establishment of state-of-health for battery packs and proper guidelines on installation need to be 

refined. 
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1 Introduction 

Credit of the first internal combustion engine car is given to Jean Joseph Étienne Lenoir who 

invented and patented a double-acting, electric spark-ignition internal combustion engine fueled 

by coal gas in 1860. [1] Since then, improvements have been made upon this first primitive 

vehicle to increase fuel efficiency, length of travel, and overall comfort, which have led to the 

creation of present day vehicles. In relation to this, though, internal combustion engines (ICEs) 

have remained the primary engine to be used to generate power for said vehicles and have caused 

humanity to become reliant on fossil fuels in the process. 

In 1901 Ferdinand Porsche developed the first gasoline-electric hybrid vehicle. [1] It was not 

until 1997, though, that the hybrid-electric vehicle became widely available with the release of 

the Toyota Prius in Japan. [2]  With increasing fuel prices, the need to decrease emissions, and 

consumer’s desire to have increased fuel economies for their vehicles, vehicle manufacturers 

have begun to design, market, and sell more electrified vehicles, with a variety of architectures. 

[3] There are several varieties available to consumers including: Battery Electric Vehicles 

(BEVs), Hybrid Electric Vehicles (HEVs), and Plug-in Hybrid Electric Vehicles (PHEVs), in 

addition to conventional vehicles. [4] Conventional vehicles are still the most prevalent type of 

vehicles used by consumers, but the introduction of electric-drive vehicles (EDVs) to the 

consumer vehicle market offers the potential to reduce reliance on fossil fuels and by extension 

reduce emissions. In order to achieve this EDVs have to accomplish significant market 

penetration. [3]   

In EDVs the batteries are often the most expensive component. [5] Both hybrid and full-electric 

vehicles use large batteries to provide storage of onboard electrical energy. As such, extensive 

research and innovation is being completed in order to further reduce battery cost, weight, and 

overall volume, while extending range and reliability. This is required in order to make the 

vehicles more attractive in the marketplace. Based on the literature, the fundamental requirement 

for HEVs and PHEVs, and BEVs, to attain consumer approval, is that they must sustain 

performance capabilities for approximately 10 to 15 years, or between 20000 to 30000 cycles. 

[6]  



 

 

2 

 

EDVs need to meet consumer requirements in order to gain significant market penetration and to 

become more economically viable, however, over time, battery performance decreases. The 

decrease in performance is a result of the degradation of the battery. Battery degradation 

phenomenon is instigated by two different sources [7] [8] [9]:  

 Operating conditions, which is influenced by a variety of parameters,  

 And engine-off storage conditions with the main parameters to monitor being 

calendar life performance, time, and temperature. 

With continual usage, throughout the day, cycling the cells will have a more dominant impact on 

the degradation of the battery, but generally, a vehicle is not used on a constant basis throughout 

the day. [8] 

On a typical day a vehicle is only used for the express purpose of getting the consumer to and 

from their place of business. In 2011, the most common mode of transportation to work for 

Canadians was car, truck or van (74.0% of commuters, or 11.4 million workers), with an average 

commute time of 25.4 minutes (note that 17.2% of commuters experience commute times of 

more than 45 minutes). [10] The vehicle can then be considered to be under engine-off storage 

conditions from the point the vehicle is shut down to when the consumer comes back and uses 

his or her vehicle again for the commute home, approximately 8 or more hours later. It is 

estimated that a personal car will spend about 95% of its life in parking mode making battery life 

during storage seems particularly relevant. [8] As said previously, under engine-off storage 

conditions the system is undergoing degradation with respect to processes related to calendar 

aging, which are affected by temperature and state-of-charge (SOC). Thus, as the vehicle usage 

increases and the battery pack ages, the all-electric range will begin to diminish. [8] [11] [8] 

In order to understand, how a battery pack will age over time and usage, lifetime assessment 

models are designed to depict the degradation and determine how long the battery pack will 

sustain life. The end-of-life point for a battery as declared by the United States Advanced Battery 

Consortium (USABC) is when the battery capacity delivered to the powertrain is less than 80% 

of the rated capacity, or if the battery’s peak power is less than 80% of the rated power at 80% 

depth-of-discharge (DOD). [12] The rate at which a battery degrades with time is crucial in 

determining available SOC in the battery. Thus it is very important to develop accurate battery 
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models that utilize degradation relationships to model the available capacity in the battery at a 

given time. [11] 

The most fundamental assessment method, and the one used herein, is to utilize a semi-empirical 

based model of the battery from experimental data. Battery testing is conducted to understand 

how the cells will degrade at different conditions and collect the necessary data to fit the model 

parameters. After the model is validated, simulations on various load profiles can be run to 

predict battery performance and degradation. Integrating the battery degradation model into a 

vehicle model combines a real world simulation of driving to predict battery performance and 

degradation on any drive cycle. In other words, battery performance and degradation over its 

lifetime can be determined by implementing different driving profiles for various drivers.  

In order to be able to perform such an analysis in this work, an A123 AMP20 pouch battery of 

LiFePO4 chemistry will be tested, modeled, and simulated to predict lifetime performance and 

degradation according to the Environmental Protection Agency (EPA) drive cycles. Physical 

experiments will be performed on commercial cells to determine the degradation pathways 

occurring within the cells, thereby improving the modelling of the battery pack. In doing so, the 

extent of degradation due to operating conditions versus aging due to length of storage can be 

compared and the factors affecting battery degradation will be determined to create more 

effective control strategies or preventative measures to reduce battery pack degradation. Finally, 

an assessment of potential secondary uses of depleted batteries will be conducted to analyse the 

potential for repurposing depleted electric vehicle battery packs in a stationary storage 

application.  
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2 Background 

2.1 Batteries 

Batteries are devices that convert stored chemical energy into electrical energy via an oxidation-

reduction (redox) reaction. [13] [14] [15] As the process is electrochemical, it is not subject to 

the limitations of the Carnot cycle (internal combustion engines restricted by this law), and 

higher energy conversion efficiencies can be achieved. [16]  

Batteries can be classified as primary batteries, secondary (rechargeable) batteries, and flow 

batteries. [16] Primary batteries can only be discharged once, but are composed of materials that 

can attain high energy densities. Secondary batteries are used as energy storage devices as they 

are capable of recharging, by connecting a power supply to the battery, and then subsequently 

delivering the energy to a load on demand. [16] [17] Finally, a flow battery can be considered 

similar to both a fuel cell and an electrochemical accumulator. It utilizes chemical energy outside 

of the battery in a fluid state. The fluid is passed through the battery, reacting electrochemically 

to produce electrical energy. [16] [17]  Depending on their design flow batteries can be used as 

primary batteries, with the fluid acting as a fuel that is spent to produce electrical energy, or as 

secondary batteries, with the reversal of the electrochemical process to store chemical energy in 

the fluid once again. [16] To further develop and provide innovations to the automotive industry, 

it is necessary to understand how these batteries work to determine their applicability. 

Secondary batteries have been typically utilized to power small portable devices such as tools, 

toys, lighting, and consumer electronic devices. [16] [18] As the fuel economy and emissions 

requirements of vehicles has increased in the past few decades, though, renewed interest has 

been given to the potential of electrifying vehicles by introducing secondary batteries as a power 

source. [16] The automotive industry has taken advantage of this by applying secondary batteries 

in one of two scenarios [17]: 

1. The secondary battery is used as an energy storage device. The battery is charged by a 

prime energy source and then provides power only when demanded. 

2. The battery is discharged and then recharged after use, allowing for convenience and 

overall cost savings as, opposed to primary batteries, the battery can be recharged rather 

than replaced.  
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The range that a user is able to drive over a single charge is greatly influenced by the choice of 

battery. Thus, vast amounts of research have been completed on determining the battery 

chemistry with the best energy density, to extend distance and lower battery weight. In Table 1, a 

list of the batteries used by different vehicle manufacturers for their different vehicles is given.  

Table 1: List of vehicle manufacturers and the battery chemistries used in each electric vehicle [2] [19] [20] 

[21] 

Company Vehicle Model Battery Technology 

GM 
Chevy-Volt Li-ion 

Saturn Vue Hybrid NiMH 

Ford 
Escape, Fusion, MKZ HEV NiMH 

Escape PHEV Li-ion 

Toyota Prius, Lexus NiMH 

BMW Mini E Li-ion 

Nissan Leaf EV Li-ion 

Tesla Roadster Li-ion 

 

2.2 Lithium-ion Batteries 

There are a variety of secondary batteries to be used for electric vehicle applications. The Toyota 

Prius uses a Nickel Metal Hydride (NiMH) battery as an energy storage source (ESS) and the 

Tesla EVs use lithium-ion cells for their battery packs. [19]  When these batteries are compared 

in Figure 1, the Li-ion cells are found to be able to attain higher specific energies as well as 

higher specific powers. As a result, lithium-ion batteries have achieved significant market 

penetration in the electric vehicle market as the most viable secondary battery for hybrid and 

battery electric vehicle applications. [8] [9] 
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Figure 1: Ragone plot of various ESSs with time constants obtained through the division of energy density 

with power density [22] 

Lithium-ion (Li-ion) batteries utilize cells whose chemistries employ lithium intercalation 

compounds in both the positive and negative electrodes. [6] [23] During operation (cycling), 

lithium ions are exchanged between the two electrodes, which have resulted in these batteries 

being designated as “rocking-chair” batteries. [16] [19] 

Lithium ion batteries come in many different varieties and are classified based on their cell 

chemistries and electrode composition. A typical lithium-ion battery is composed of three parts: 

an anode (negative electrode), a cathode (positive material), and an electrolyte with a specialised 

chemistry to mitigate the transfer of ions from anode to cathode and vice-versa. [16] [19] In 

terms of electrode material the positive electrodes are typically composed of a metal oxide with a 

layered structure (LiCoO2) or a material with a tunneled structure (LiMn2O4) on a current 

collector of aluminum foil. [16] [19] [24] As for the negative electrodes, they are typically 

composed of graphitic carbon adhered on a copper current collector. [16] [19] [24] Graphite is 

the most widely used material for anodes because of its availability, cycling performance, and its 

safety compared to lithium. [18] [24] 

During discharging, the lithium ions de-intercalate from the negative electrode providing free 

electrons to power a load, according to Equation 2.1. [16] [19] 
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 𝐿𝑖𝑥𝐶 → 𝐶 + 𝑥𝐿𝑖
+ + 𝑥𝑒− Equation 2.1 

The lithium ions are transported through the electrolyte to meet the electrons at the positive 

electrode and intercalate into the metal oxide active material, according to Equation 2.2. [16] 

[19] 

 𝐿𝑖1−𝑥𝑀𝑂2 + 𝑥𝐿𝑖
+ + 𝑥𝑒− → 𝐿𝑖𝑥𝑀𝑂2 Equation 2.2 

 

2.3 Vehicle-grade Batteries 

In order to meet the requirements for operation, vehicle-grade batteries are designed and built to 

maintain the highest standards, for both safety and function. With time, though, the battery will 

degrade to the point that it reaches its end-of-life (EOL) and must be retired from its vehicle 

application. [9] [25] This EOL point is typically when the battery pack has reached 70 to 80% of 

its original energy storage capacity (loss of ~20 to 30% of its range). [26] Due to the possibility 

of unexpected increased rates of degradation, vehicle manufacturers will oversize the battery in 

order to account for this. In doing so, it increases the range of the vehicle to aid in decreasing 

consumer’s range anxiety. [17] The downside of this, though, is that the price and mass of the 

battery pack in the vehicle increases. 

Battery size is an important parameter of the vehicle as the battery is one of the heaviest 

components, with the amount that the battery is oversized by being dependent on the 

unpredictability of the degradation effects. [27] By being able to accurately determine the battery 

degradation the extent to which the battery is oversized can be decreased as controls can be put 

in place to reduce the rates of degradation for various aging phenomena. [5] Battery size 

reduction will create significant financial benefits due to the high cost of the battery and need for 

other structural components. 

Battery size, also, greatly affects the range of the vehicle and is dependent on the energy density 

of the cells being used in the pack (in addition to the size of the battery pack). [26] The range the 

vehicle is capable of travelling on a single battery charge is a very important parameter for the 

consumer as it will dictate how far he or she can travel on a daily basis. When designing batteries 

for vehicle applications, one must consider the performance requirements and their impact on 
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battery degradation. [9] [28] Over time the degradation of the lithium ion battery will impact the 

drivable range of the vehicle, limiting the range that the vehicle can travel. Thus, it becomes an 

optimization problem for vehicle manufacturers to select an appropriate battery chemistry to 

maximize range while limiting the size of the battery pack in the vehicle to decrease cost and 

overall weight. 

2.4 Pouch cells 

Battery packs are composed of battery cells linked together in a series or parallel arrangement, or 

some combination of the two. Combining cells in series and parallel allows manufacturers to 

generate higher voltages and/or currents for operation. [17] Battery cells come in a variety of 

configurations, including: button, cylindrical, prismatic and soft-pouch. [16] [29] The various 

cell configurations are displayed in Figure 2. 

 

Figure 2: (a) Cylindrical, (b) prismatic, (c) coin, and (d) pouch packaging for lithium ion batteries [29] 

Of the four cell configurations, the soft pouch-cell, also commonly referred to as pouch, 

polymer, or Li-Po cells, is the configuration that is most predominantly utilized for electric 

vehicles. [30] The major difference between the pouch cell and its other battery cell counterparts 

is that fabrication of a pouch cell does not require a rigid metal enclosure, reducing the weight. 

Instead a pouch cell enclosure can be made from polymer-coated aluminum foil. The pouch cell 
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makes the most efficient use of space, due to its slender design, and achieves a 90 to 95 percent 

packaging efficiency, the highest among battery packs. [31] Despite these major benefits, 

though, this form of the lithium-ion battery has a lower energy density and is less durable than its 

cylindrical counterpart. Also, if the pouch becomes polarized it will likely corrode and result in 

cell leakage and swelling. [31] [32] Swelling is caused from the gases generated within the cell 

during charge and discharge and it poses a dramatic concern for battery safety. [31] [32] Since 

pouches offer limited mechanical protection to cell electrodes, protection of the cells must be 

accomplished by surrounding materials that enclose the cells. 

2.5 Battery Pack Construction 

Battery pack construction must take into account a variety of parameters including: the voltage 

and runtime requirements, the loading conditions, and the size and weight limitations. [33] In 

order to better meet the pack requirements, the design of the battery pack must utilize the space 

provided effectively. Thus, the selection of the type of cell to be used within the pack will decide 

its overall packing capability. With higher packing capability, a greater number of cells will fit 

into the battery pack, extending vehicle range, especially if the cell has high energy densities. 

The A123 battery pack is composed of AMP20 Prismatic Cells (lithium iron phosphate cell 

chemistry) that are tightly packed together, as indicated in Figure 3. 

 

Figure 3: Cross-Section of De-Constructed A123 Battery Pack 

Although, extending range with higher packing is an advantage of this battery pack design, the 

system does suffer overheating problems due to a lack of space to promote proper cooling. Thus, 

despite the cylindrical cell not being ideal, due to having lower packing capability compared to 
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the pouch cell, the empty spaces it creates in a multi-cell configuration allows for better 

dissipation of heat. [34] The battery pack designed by Tesla for their S85 EV uses over 7,000 

18650 cells (modified Panasonic cells with nickel-cobalt-aluminum cathodes of the 18650 

format). [35] This battery pack configuration, also, allows for more flexibility in terms of losses 

to the pack. For instance, if a cell in series was to open, there is minimal total power loss and if 

one in parallel shorts the integrated fuse protection will remove (isolate) the cell from the circuit. 

[34] [36] 

EV manufacturers are certainly not limited in their choices to one particular cell type for battery 

pack design, but there is a tendency to migrate towards packs composed of larger cells. [35] 

Using larger cells will reduce the need for supportive electronics, which typically adds up to 20–

25 percent to the finished pack. [35] These electronic components, though, become more 

expensive as they have to endure higher current handling. Thus, despite the drop in complexity 

the increase in price can greatly affect the pack design’s market acceptance. Table 2 lists the 

prices of the battery packs for different EVs and HEVs.   

Table 2: Comparison of Battery Pack in Electrified Vehicles 

Make and Model Cell Type Cost Per kWh Specific Energy (Wh/kg) 

Chevrolet Bolt, 60 kWh (2016) 

[21] 
Prismatic/Pouch $145/kWh 138 Wh/kg 

Tesla S 85, 90kWh (2015) [35] 18650 $260/kWh 250 Wh/kg 

Best practices DoE/AABC [35] Pouch/prismatic $350/kWh 150–180 Wh/kg 

Nissan Leaf, 30kWh (2016) 

[35] 
Pouch/prismatic $455/kWh 80–96 Wh/kg 

 

In terms of cost per kWh, Chevrolet’s Bolt battery pack has the least cost/kWh and they, along 

with many other battery manufacturers are pursuing a cost per kWh of less than $100. In 

pursuing this goal, though, all battery manufacturers must first provide the necessary safety 

design features to ensure consumers will be protected from the possible failure modes that can 

occur at the cell or pack level. A variety of tests and regulations must be strictly performed and 

adhered to before a cell or battery pack can be used by a consumer.  
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2.6 Regulations and tests 

In order to ensure the safety risks associated with the use of lithium-ion batteries are decreased 

(or eliminated), a number of standards and testing protocols have been developed. These 

standards aid in providing manufacturers with guidance on the safe construction and use of 

lithium-ion batteries. [37] The subsequent tests ensure that the cells will be able to effectively 

function in the potential environment that they are placed in or fail safely. Safety tests for 

lithium-ion batteries are typically intended to assess specific risks from electrical, mechanical 

and environmental conditions. [37] 

The completed battery must be tested and registered to assure correct assembly and compliance 

with safety standards. [37] As set by the United Nations, the Recommendations on the Transport 

of Dangerous Goods on lithium-ion batteries outline the necessary test requirements that must be 

fulfilled in order to transport a completed battery. [35] These verification and validation tests fall 

under UN 38.3, which includes [35] [37]: 

 T1 – Altitude Simulation (Primary and Secondary Cells and Batteries) 

 T2 – Thermal Test (Primary and Secondary Cells and Batteries) 

 T3 – Vibration (Primary and Secondary Cells and Batteries) 

 T4 – Shock (Primary and Secondary Cells and Batteries) 

 T5 – External Short Circuit (Primary and Secondary Cells and Batteries) 

 T6 – Impact (Primary and Secondary Cells) 

 T7 – Overcharge (Secondary Batteries) 

 T8 – Forced Discharge (Primary and Secondary Cells) 

Additional testing expectations for vehicle-grade batteries have been created by a number of 

standards organisations, including: SAE, ISO, ANSI, IEC, UN, and UL. [37] All of the tests 

developed are meant to assess the battery’s ability to withstand different forms of abuse and are 

designed to ensure that the products fulfill all of the necessary safety protocols. A list of these 

tests is provided in Appendix A: Regulation Test Criteria in Table 28. In order to have battery 

packs, or simply the cells themselves, enter into the consumer market they must be able to pass 

all of the safety requirements. [37] If they do not pass the requirements the cells cannot be 

utilized and will have to be destroyed. 
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2.7 Battery Failure Modes 

Despite the great advantages electrification will bring to creating a future for the electric vehicle 

market, it should be kept in mind that the materials being used to create these energy storage 

systems are hazardous to consumers. Should a battery fail it can do so in an uncontrolled manner. 

[32] The destructive potential of LiBs has increased public awareness for battery safety, 

especially since the 2013 incident of the full grounding of the entire Boeing 787 fleet. [38] This 

was a result of many incidents of the planes’ lithium-ion batteries undergoing thermal runaway 

and catching fire during operation. Governments have responded to the changing energy climate 

with new policy, such as Natural Resources Canada project for Developing Electrical Safety 

Standards to Introduce Electric Vehicles into Canada [39], and companies have further refined 

the development of safety systems on their batteries. 

Table 3 describes some examples of the potential failure modes of LiBs as defined by Hendricks 

et al. [32] 

Table 3: Examples of Failure Modes of Lithium-Ion Batteries 

Battery 

Component 
Failure Mode Failure Cause Failure Effects 

Anode 

(active 

material) 

Thickening of 

SEI layer 

Chemical side reactions 

between lithium, 

electrode, and solvent 

Increased charge transfer resistance, 

reduction of capacity, reduction of 

power 

Cathode 

(active 

material) 

Particle 

fracture 

Mechanical stress from 

intercalation of lithium ions 

Reduction of capacity, reduction of 

power 

Separator 
Hole in 

separator 

Dendrite formation, 

external crushing of cell 

Perforation of separators in cell 

causes electrolyte to leak making 

contact with other cell components. 

Organic 

solvents 

Gas generation 

and bloating of 

cell casing 

High external temperature, 

overcharging of the cell 

Increased diffusion resistance, and 

may lead to thermal runaway. 

 

Any of the battery failure modes determined through Failure Modes and Effect Analyses 

(FMEAs) can result in the failure of the entire battery. Some failure modes, though, are less 

severe and unavoidable. [32] [40] For instance, the capacity fade occurring within the cell is a 

progressive failure mode and cannot be avoided. Other failure modes, though, can be potentially 

disastrous and require mitigation strategies. [32] 
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The failures described in Table 3 are presented from the view of the cell under operation. The 

cell failures can be potentially caused by a number of other factors including: poor cell design 

(electrochemical or mechanical), cell manufacturing flaws, external abuse of cells (thermal, 

mechanical, or electrical), poor battery pack design or manufacture, poor protection electronics 

design or manufacture, and poor charger or system design or manufacture. [36] [40] 

2.7.1  Assessment of Battery Failure Modes Using DFMEA 

Design Failure Modes and Effects Analysis (DFMEA) is a method to assess potential failure 

modes and identify the resultant effects on system operations in the design. [32] These 

assessments can be performed at the system, subsystem, assembly, subassembly or part level and 

are, therefore, an essential assessment method for determining methods of failure for systems in 

the workplace. [41] These can then be mitigated by determining controls, detection methods, and 

action plans to alleviate the risk of failure. Establishing these mitigation actions help the systems 

and the vehicle, in general, to be safer to use and operate on. 

In order to complete a DFMEA on the battery pack and its associated components, one must 

become acquainted with all of the respective parts to determine how they may potentially fail. A 

significant amount of research is required to better understand the failure modes associated with 

each component and operation.  

After establishing each part and how they function within the system, each function and the 

associated risk are assigned a number from 1-10 for the following three categories: 

Severity (SEV): Defined as the extent to how damaging a failure can be 

Risk of Occurrence (OCC): Defined as the probability of an incident occurring 

Probability of Detection (DET): the extent to which a failure mode can be determined 

The Risk Priority Number (RPN) can then be calculated by using Equation 2.3. The higher the 

RPN, the higher the risk of the failure mode occurring. 

 
𝑅𝑃𝑁 = (

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 
𝑅𝑎𝑡𝑖𝑛𝑔

) ∗ (
𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒
𝑅𝑎𝑡𝑖𝑛𝑔

) ∗ (
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 
𝑅𝑎𝑡𝑖𝑛𝑔

) Equation 2.3 

Based on the calculated RPN, a person can determine the highest risks to the battery pack. By 

targeting the greatest risks, more attention can be given to these potential failure modes during 
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the design phase. Thus, appropriate mitigation techniques and processes can be implemented to 

prevent the failure from even occurring. 

2.7.2 Battery Safety Precautions 

In order to ensure safe operation for the consumer, a variety of safety precautions have to be 

implemented at both the chemistry level and in the design of completed modules. By having 

proper cell and pack design features in place, manufacturers ensure that any potential faults 

encountered during operation, can be mitigated, whether they be at the cell, pack, or vehicle 

level. [42] It is also required to have many safety redundancy layers. [34] [42] Should one of the 

layers fail the additional layers of safety will ensure that, if a potential fault occurs, the fault 

condition for the battery pack or cell can still be safely and effectively mitigated. [34] 

2.7.2.1 Battery Pack Level 

At the battery pack level there are a number of advanced safety systems that work in tandem. It 

is important to have three levels of safety integrated into the design of the pack: electronic 

controls, electrical disconnects (also referred to as contactors) and electrical fuses. [42] Should 

one of the safety features of the pack fail to function properly, the other safety measures will be 

able to identify and address any potential faults in the battery pack. For instance, at the electronic 

controls level, the Battery Management System (BMS) continuously monitors the voltage of 

every cell, the temperature of numerous points in the pack and current at the pack level. If the 

safety algorithms determine that a particular operating condition is out of range, which could 

result in a hazard occurring, a fault code is recorded and transferred to the supervisory controller. 

[15] [33] The supervisory controller will initiate some form of mitigation to prevent the hazard 

from occurring, or if the system does not respond to the fault within an appropriate amount of 

time, the BMS can open the contactors to disconnect the battery from the vehicle. [33] Should 

the BMS fail, though, the pack also has a hardwired safety protection circuit with three layers of 

fuses: one at the individual cell, module and overall pack level. [33] 

In addition to electrical systems being able to provide mitigation of various faults occurring in 

the battery pack, the overall material construction of the battery pack needs to be selected based 

on a criterion of providing safety. [36] Choice of material must be done based on the requirement 

of avoiding conditions that could lead to a path for low level current leakage (current that flows 

through the protective ground conductor to ground) or direct short circuiting. To achieve this, the 
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proper insulating materials must be utilized that possess high insulation resistance. In addition, 

the chosen materials surrounding the cells have to be strong and durable in order to sustain 

abrasions or puncturing. [41] 

2.7.2.2 Cell Level 

At the cell level, battery manufacturers can affect a number of factors within the cell chemistry 

and overall cell construction to increase its safety. A list of some of these factors, along with 

their descriptions of what is affected is provided in Table 4. 

Table 4: Safety modification for lithium-ion cells [36] [37] 

Battery Component Description of Safety Modification 

Cell chemistry 

Using a less reactive chemistry, or by introducing some form of chemical 

retardant. Example: substituting Lithium Cobalt oxide cells for Lithium 

Manganese oxides or Lithium phosphate cells.  

Electrolytes 
Electrolyte chemistry modified to include chemical inhibitors. They make 

the system self-extinguishing or flame retarding, if cell is abused. 

Cell Construction Design cells to remove excess heat, else localised hot spots can develop. 

Separators 

A cell overheating can cause the separators to distort or melt, leading to a 

short circuit between the electrodes. External circuits cannot protect 

against internal short circuits, but better separators can be used including: 

 Rigid separators that do not distort even under extreme 

temperature conditions. 

 Flexible ceramic powder coated plastic: prevents contact between 

the electrodes, resists penetration by impurities, reduces shrinkage 

at high temperatures and impedes the propagation of a short circuit 

across the separator. 

 Shut down separators: melting plastic closes up the pores avoiding 

a short circuit, but it is irreversible. Cell will no longer function. 

Once an internal short occurs, though, the occurrence can be detected by a 

drop in cell voltage, triggering isolation of the battery from charger or 

load. This will not prevent the short, but the mitigation will prevent 

further damage to neighbouring cells and the pack. 

Circuit Interrupt 

Device (CID) 

Should a cell reach an internal gas pressure that exceeds its manufacturing 

specifications, the CID will interrupts the flow of current. 

Safety Vents 

Side reactions can produce gases and the active materials will also expand 

due to the temperature rise. This expansion and gas build-up will lead to a 

pressure increase inside the cell that may rupture the case or cause the cell 

to explode. Safety vents are installed on each cell to release pressure. To 

prevent external air being absorbed into the cell, automatic release guard 

vents allow controlled release of excess internal pressure. This avoids the 

potential for leakage and prevents uncontrolled rupture of the cell case. 
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The above safety precautions are only beneficial if the quality of the battery manufacturing 

process is maintained throughout production, otherwise they will be useless. Burrs on the 

electrodes, misaligned or out of tolerance components, and contaminated electrode coatings or 

electrolytes can all cause short circuits or penetration of the separator. [36] [37] These conditions 

may result in the thermal runaway of the cell. Thus, the entire manufacturing process needs to be 

well maintained and continually monitored. [36] [37]  

2.7.2.3 Battery Management Systems 

To re-iterate the discussion on safety systems provided in the previous section, protecting the 

consumer from the battery pack undergoing a potentially catastrophic failure is of the utmost 

importance. As a result, there have been vast developments in the area of battery management 

systems (BMS) to increase consumer safety. [43] [44] These systems are used to manage 

rechargeable batteries, in order to prevent them from operating outside of their safe operating 

limits. Overcharging the lithium-ion battery can have very damaging effects on the cell, so a 

BMS system is required for any battery pack to monitor each individual cell. [15] [32] The BMS 

will monitor the state of the cells with time, using the collected data as parameters to make 

calculations to determine if it is outside of its threshold. If this occurs then the BMS will take 

steps to control the system and, also, communicate the results to a higher level controller through 

CAN-bus signals. [17] [43] 

Depending upon the specifications, a BMS may monitor many different parameters in a battery 

pack, including [15]: 

 Voltage: measuring total voltage, as well as the voltages of individual cells; 

 Temperature: be it the average temperature, coolant input and output temperatures, or, 

once again the temperatures of individual cells; 

 Capacity: to measure the remaining capacity within the battery, or cells, to calculate state 

of charge (SOC) or depth of discharge (DOD); 

 State of health (SOH): the overall condition of the battery; 

 Coolant flow; and 

 Current: current in or out of the battery. 
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By being able to monitor these parameters, the BMS can determine if a problem will arise in the 

battery and apply the necessary controls to mitigate the issue. 

Despite being able to analyze all of these parameters, though, Battery Management Systems still 

do not possess an accurate and dependable method for determining the SOC. [15] In comparison 

to its counterpart, the internal combustion engine, attempting to determine the remaining energy 

in a battery is much more complex than reading the level of liquid fuel in a gas tank and the rate 

at which it is being transferred to the engine. The most prominent problem is trying to assess the 

flow in and out of coulombs as the battery ages, in order to assess the State of Health (SOH) and 

capacity fade of the battery. [45] BMS systems do have the capacity to provide information on 

the SOH of the battery but, in order to remain computationally efficient they have lost accuracy 

in their assessments. [44]  

2.8 Modelling Battery Degradation 

As described previously, a battery will degrade over time via a variety of different processes. [9] 

[24] Being able to understand and quantify these different processes is paramount to determining 

the state of health of a battery over its lifetime. [15] Thus, lifetime prediction models are 

developed in order to better understand the design and operational consequences on performance 

degradation of Li-ion batteries. [11]  [46] With these models, predictions are made regarding 

specific properties of the battery as it ages, such as its resistance, capacity, or power.  The 

degradation model developed for the application can be: empirical, chemistry/physics-based, or 

some combination of both. This has led to the creation to a wide variety of model forms. [11] 

The specific form that the model takes will, most likely, depend on the particular technology that 

is used and the set of stress factors that are being monitored for degradation analysis. [47] [48]  

2.8.1 Electrochemical Modelling 

Electrochemical models are used to optimize the physical aspects of batteries and characterize 

power, voltage and current parameters. [49] The models are based on the chemical processes that 

occur within the cell using a combination of electrical and physical properties. The goal of these 

types of models is to capture all key behaviours within a cell, including characterizing power, 

voltage and current parameters [49]. The models utilize equations that are based on the chemical 

processes that occur within the cell using a combination of electrical and physical properties. 

These equations include: Fick’s and Ohm’s laws, and the Butler-Volmer and Tafel equations. 
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The models are highly accurate and can describe the cell parameters in an enormous amount of 

detail [50].  

Although highly descriptive, the level of detail that is incorporated into these models results in 

them being very complex and difficult to configure requiring significant memory and 

computation [49] [50]. In terms of time to reach a solution, the solver may take hours to solve the 

non-linear differential equations with a large number of unknown parameters [49].  

Furthermore, another issue arises when attempting to measure the physical parameters over time 

and use, as the battery usage and the battery aging causes them to change. [50] Thus, it is 

difficult to obtain an accurate model and apply it to vehicle applications. As a simplifying 

measure to decrease the experimental and computational costs, a single source of degradation is 

assumed limiting the number of dimensions involved in the equations and, in doing so, the 

general complexity. [49] [50] This will help limit the calculation time, which is very important. 

In battery management systems for vehicles, PDE-based electrochemical models are not 

desirable and are mostly only used in research settings. As these models are too computationally 

intensive to run for a long duration simulation, it would not be advantageous to pursue modelling 

the battery pack from the electrochemical scheme [49]. 

2.8.2 Electrical-based Modelling 

Electrical based models utilize equivalent circuit components to predict the terminal 

characteristics of the batteries (i.e. current and voltage). [50] An equivalent circuit for a battery 

represents it as an electrical circuit containing components that capture the various phenomena 

within the battery during operation. [26] For instance, based on Figure 4, the R0 represents the 

internal resistance of the cell while the resistor-capacitor (RC) components represent the 

impedance from each electrode. These models can then be extended and become more complex 

by including more electrical components with different circuit architectures [49]  
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Figure 4: Equivalent Circuit Model Example [48] 

The equivalent circuit parameters change with operating conditions (i.e. temperature, SOC, 

current) and as the battery ages. [49] [50] Thus, when performing both performance and aging 

analyses for batteries, an HPPC test is required to define how they change under different 

operating conditions and their degradation trends. [49] [50] Predictions, through extrapolation of 

the degradation trends, can then be made in regards to which battery components (electrolyte, 

anode, cathode, etc.) are degrading and the rate of degradation. Using these pieces of information 

the lifespan of the battery can be predicted. As extrapolation attempts to predict the future health 

of the battery, the model is inherently inaccurate as it is unknown what possible degradation 

events may occur.  

2.8.2.1 RINT Model 

The RINT model is the simplest equivalent circuit, using a resistor to model the internal resistance 

of the battery. [51] The parameters in this model vary with SOC, temperature, and the direction 

of current flow (dependent on whether the battery is charging or discharging). Figure 5 displays 

the equivalent circuit of the RINT model. 

 

Figure 5: RINT Model Equivalent Circuit [51] 
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2.8.2.2 Thevenin Model 

The Thevenin Model is an extension of the Rint model, which connects a parallel RC network in 

series with the resistor from the Rint model. [51] By having the additional equivalent circuit 

components, the model is capable of describing the dynamic characteristics of the battery. [51] 

The new equivalent circuit is displayed in Figure 6.  

 

Figure 6: Thevenin Model Equivalent Circuit [51] 

2.8.3 Empirical Modelling 

As opposed to electrochemical models, empirical models use experimental data from cells to 

interpret the battery degradation over a testing period for specific operating conditions [49]. With 

the fitted model, future behavior can be extrapolated without the consideration of 

physicochemical principles that would require large computing requirements. Their simplicity 

allows empirical models to be able to perform fast computations and be able to look at much 

larger aging timespans. [26] Unfortunately, since the models are based on fitting experimental 

data for only a small subset of potential operating conditions, predictions can be very poor for 

other battery conditions [52]. This is a fatal flaw for empirical models attempting to predict 

battery degradation on-board HEVs, PHEVs, and BEVs, because operating conditions are 

constantly in flux [49]. In addition extrapolating data, from 1 year of aging experiments, all the 

way to 10 or even 15 years of operation, can be quite risky as the aging phenomena can change 

over time [49] [52]. 

To alleviate some of the problems from using empirical models, a semi-empirical approach can 

be taken to describe the aging phenomena occurring within cells. In some cases, this approach 

relies on combining some of the physiochemical aspects of cells with simple neuronal network 

models (an aspect of empirical models) to create the combined model [11]. Ecker et al. used this 
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particular approach to develop a semi-empirical model to describe the calendar aging process 

within LiFePO4 cells. 

Based on the research completed by Ecker et al., they were able to develop a semi-empirical 

model for the calendar aging of lithium-ion batteries, utilizing the parameters of: temperature, 

aging period, and potential which is related to the SOC of the cell. [11] The following equations 

can be derived to fit the measured calendric aging data: 

 
𝐶

𝐶𝑛𝑜𝑚
= 1 + 𝐵(𝑇, 𝑉) ∗ 𝐹(𝑡) Equation 2.4 

Where C is the new capacity of the cell following degradation, Cnom is the nominal capacity, B is 

a function of temperature and potential, and F is a function of aging time. [11] 

These functions B and F can be described by the following equations: 

 𝐵(𝑇, 𝑉) = (𝑐𝑇

𝑇−𝑇0
∆𝑇 )(𝑐𝑉

𝑉−𝑉0
∆𝑉 ) Equation 2.5 

 𝐹(𝑡) = 𝑐𝑎𝑡
𝛽 Equation 2.6 

Where ca, cT, and cV are fitting parameters determined through a regression analysis. T0 and V0 

are a reference temperature and voltage and ΔT and ΔV are unit parameters for the system. The 

collected calendar aging data for the cells is then used to fit the parameters (cT, cA, and cV) and 

develop an aging equation.  

2.9 Drive Cycles 

A drive cycle is a series of data points of vehicle speed versus time that resembles actual driving. 

[53] It is produced in order to assess the performance of vehicles, especially in regards to fuel 

consumption and release of emissions. The driving cycle is performed on a chassis 

dynamometer, where tailpipes emissions of the vehicle are collected and analyzed to assess the 

emissions rates. The Environmental Protection Agency (EPA) utilizes a variety of different drive 

cycle series for investigating each vehicle. Table 5 describes the characteristics of some of the 

drive cycles run by the US EPA. [53] [54] 
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Table 5: US EPA Drive Cycle Characteristics 

Drive cycle UDDS HWEFT US06 

Description City driving conditions Highway driving conditions 
High acceleration aggressive 

driving schedule 

Duration (s) 1369 765 596 

Distance (mile) 7.45 10.26 8.01 

Average Speed (mph) 19.59 48.3 48.37 

 

Two of the drive cycles most frequently used for testing is: the Federal Test Procedure (FTP) 

cycle, and the Highway Fuel Economy Test (HWFET). [53] [54] The FTP cycle represents a 

commuting cycle. Contained within the cycle are periods of urban driving, frequent stops, and a 

part of highway driving. This cycle utilizes the Urban Dynamometer Driving Schedule (UDDS) 

cycle followed by the first 505 seconds of the same cycle. [53] Figure 7 depicts the FTP cycle. 

 

Figure 7: Drive Cycle Federal Test Procedure (FTP) [53]  

The HWFET is used to assess fuel economy over highway driving cycle. The speed of the 

vehicle is less than sixty miles per hour for the entire cycle. [53] [54] Figure 8 depicts the 

highway fuel economy test drive cycle. 

 

Figure 8: Highway Fuel Economy Test Procedure [53] 
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Drive cycles are also used is in vehicle simulations. Utilizing a series of drive cycles, an annual 

schedule can be developed to simulate vehicle operation and determine information on the 

diagnostics of the vehicle over a year or for even longer durations. In the case of this work, 

simulations will be run over the course of ten years (the consumer required lifespan of a battery 

[6]) to determine information on the degradation of the battery. 

2.10 Degradation Mechanisms for Lithium Ion Batteries 

Li-ion batteries provide one of the best energy-to-weight ratios, exhibit no memory effect, and 

have low self-discharge when not in use. [16] These aspects have spurred the adoption of lithium 

ion batteries as the main power source for most electronic devices, and by consequence they 

have also aided in spurring the development of hybrid and battery electric vehicles. [55]. In order 

to make an impact on the existing vehicle market, largely composed of internal combustion 

engine (ICE) vehicles, these battery powered vehicles have to satisfy existing performance 

requirements and last long enough for consumer acceptability. [6] Due to these requirements, 

rigorous research has been completed in determining and quantifying the processes by which the 

battery will degrade. [9] [24] [49] Limiting these degradative processes will increase battery life 

and thereby increase consumer acceptability.  

Battery lifetime is the measure of battery performance and longevity. The value can be 

quantified in several ways: as run time on a full charge (estimated by a manufacturer in 

milliampere-hours or ampere-hours) or as the number of charge cycles until it degrades 

irreversibly and cannot hold a useful charge. [56] For vehicle-grade batteries the End-of-Life 

(EOL) point has been defined as the point in the life in the battery that it has degraded to 80% of 

its original SOC. [12] 

It was found that the performance loss of these batteries is caused by various mechanisms, and 

depends on the electrode materials. [9] The aging mechanisms within batteries are often difficult 

to identify and quantify due to the many different and complex reactions and physical changes 

that are taking place within them. [6] The capacity fade and impedance increase are distinct and 

vary depending on the conditions at which the battery is stored at, cycled at, and what materials 

make-up the batteries. [6] 
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2.10.1 Calendar Aging: 

The aging mechanisms can be classified as one of two types: cycling and calendar aging. 

Calendar aging is the degradation of the battery over time with the battery being stored under 

Open Circuit Potential (OCP) conditions. [8] [13] [23] With time lithium-ion cells will lose 

capacity, even when it is not being utilized. Calendar aging losses are smaller than those 

experienced by cycling aging losses in the cell, but a personal vehicle is in park (OCP 

conditions) for most of its service life. [8] While parked the battery pack is undergoing calendar 

aging.  

The largest capacity loss within lithium-ion cells, due to calendar aging, occurs early in the life 

of the battery (when lithium concentration in battery is at its highest) and then they continue to 

lose capacity at a much more gradual rate from that point on. [23] The loss of capacity can be 

quite detrimental for the lifespan of the battery and its overall effectiveness. Within a cell there 

are two sets of processes that result in capacity loss in the cell with time (calendar aging). They 

are reversible and irreversible capacity loss. [24] 

2.10.1.1 Reversible Capacity Loss 

Reversible capacity loss in lithium-ion cells is the result of the spontaneous re-intercalation of 

the lithium-ions from the electrolyte into the framework of the unstable de-lithiated cathode, and 

electrochemical processes. [8] [57] This phenomenon occurs when the cell is fully charged. This 

is due to the high potential of Li-ion batteries at a completely charged state increasing the 

likelihood for the lithiated graphite negative and de-lithiated positive electrode to be oxidized or 

reduced by the electrolyte, respectively. [14] The lithium-ions that are exposed to the electrolyte 

can de-intercalate from the graphite electrode and be shuttled to the positive electrode (same 

species at both electrodes). [14] This process is the result of a diffusion-limited transfer of 

lithium across the two-phase interface that increases with increasing current density. [58] The 

side reactions at both electrodes occur simultaneously with equal amounts of cyclable-lithium 

ions being exchanged between the electrodes and electrolyte at both electrodes. [14]  

Identification of what species is shuttling the lithium-ions has been difficult to determine. Some 

researchers have suggested that the reaction of acidic impurities generated at the cathode with the 

SEI is an example of a shuttle mechanism. [59] Sloop et al. proposed that the LiPF6 salt within 
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EC-containing electrolytes acts as a Lewis acid generating transesterification products, PEO 

polymers and CO2. The CO2 produced becomes reduced at the anode to form oxalate or CO. The 

oxalate moves through the electrolyte to the cathode where it is re-oxidized back to CO2. [14] 

Safari and Delacourt found that the main contributor to the reversible capacity loss of the cell 

(resulting in a decrease of the OCP) was mainly due to the LFP electrode. The LFP electrode is 

very sensitive to small variations of lithium content at a completely charged state. [14] Even 

though there is only a minor uptake of lithium ions from a side reaction of the cell, there is a 

substantial contribution to the OCP decrease. In order for this to happen though, there must be 

another side reaction at the graphite electrode to release the lithium. [14] Thus, the cell is 

balanced. 

In lithium-ion cells the reversible capacity loss is typically very low [60], however, lithium-ion 

cells are not capable of enduring overcharging [60]. Thus, they are not able to bear extra battery 

recharge that is typically used to balance the self-discharge losses in the cells, unless some form 

of charge control is in place. [60] Also, when a number of cells are connected in series to form a 

battery, recharge of each cell to the desired voltage level cannot be done unless the cells remain 

perfectly matched in voltage and capacity, or unless some form of charge control is provided. 

[60] The amount of self-discharge experienced by the cell under OCP conditions is directly 

related to the temperature and SOC at which the cell is stored at. These two variables have a 

direct influence on irreversible losses but, Safari and Delacourt found that the temperature has 

less effect than the SOC on reversible losses. [14] 

2.10.1.2 Irreversible Capacity Loss 

The other set of processes are irreversible as they are chemical in nature and the losses in 

capacity cannot be reclaimed. The irreversible process is caused from side reactions occurring 

within the cell. [24] [49] The predominant mode of decomposition is due to side reactions 

occurring at the negative and positive electrodes and is governed by the electronic conductivity 

of the SEI layer, with a larger extent of side reaction at the graphite negative electrode. [9] [24] 

[49] Electrolyte decomposition decreases the available lithium concentration in the electrolyte 

that can be utilized the cell and the extent of degradation is influenced by a variety of factors, 

such as: purity of the active material or electrolyte, the specific surface area of the electrodes, 

conductors, binders or separators. [60]  
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Research completed by M. Kassem et al. found that cells aged under stored conditions 

experienced increases in impedance resulting in cutoff potentials being reached sooner for the 

individual cells. In addition, the cells experienced a decline in rate capability. [9] The main 

factors affecting capacity fade and impedance increase in cells under OCP conditions is the 

temperature at which they are stored at, the SOC at which the cells are stored, and the length of 

storage.  

2.10.1.2.1 Effect of Temperature 

The most predominant cause of degradation under OCP is the storage temperature of the cell. 

When the temperature is high, secondary reactions such as corrosion proliferate causing losses of 

the cyclable lithium. [6] M. Kassem et al. determined through rate capability, impedance and 

PITT tests that the loss of cyclable lithium is the main source of aging [7]. In research performed 

by Grolleau et al., 15 Ah Li-ion cells aged at three different storage temperatures resulted in the 

following capacity fades: cells stored at 30oC experienced less than 10% capacity loss after 450 

days of storage whereas, at 45oC, capacity fade was 20% for fully charged cells [8]. In 

comparison, fully charged cells stored at 60oC, reached a 20% capacity loss within only 60 days 

[8]. 

To counteract this manufacturers store the cells at low temperature conditions to limit the 

development of these phenomena but even storage at these conditions can cause other problems 

for the cells due to the loss of material diffusion and the altering of the battery chemistry [6]. 

2.10.1.2.2 Effect of State of Charge (SOC) 

Testing of various cells at different SOCs but under the same temperature storage conditions has 

led to the determination that SOC plays a major role in cell degradation. From Ohue et al. results 

of cells stored at equal temperatures but for different SOCs were found to not age in the same 

manner [61]. The cells stored at elevated SOCs experienced increased battery degradation 

compared to those stored at lower SOCs [61]. SOC represents the proportion of ions present on 

either electrode, thus, for high SOC there is a significant number of lithium-ions available at the 

graphite electrode to partake in potential side reactions with the electrolyte. 
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2.10.1.2.3 Morphology of Electrodes 

In order to determine the impact of aging on the electrodes Scanning Electron Microscopy 

(SEM) can be used to find possible changes of the electrode morphology after storage. Based on 

the research done by Kassem and Deleacourt, aging leads to the appearance of round-shape 

particles that vary in size depending on the temperature of storage. [13] The particles were found 

to be rich in fluorine, and that the atomic percentage of fluorine within these particles becomes 

larger with the severity of the storage condition. [13] In terms of aging at the positive electrode 

under OCP conditions, Koltypin et al. [62] found that the cells experienced decreased 

performance, increases in the electrode resistance, as well as the Fe dissolution at elevated 

temperatures. [62]  

Kassem and Delacourt also analyzed the graphite electrode using SEM. Storage temperature 

influenced the electrode by causing a change of the electrode color. At 60oC it was found that the 

dark brown colour becomes bluish, but for cells aged at 45oC or less there were no changes in 

colour. [13] The colour of the graphite electrode plays a big role in understanding the degree of 

lithiation. Graphite electrode colour depends on the lithium content. [13] [63] Despite being fully 

discharged the graphite electrodes sampled were found to still be lithiated. Also, the SEM studies 

found that aging leads to some roughening of the particle facets, likely related to the growth of 

the SEI film (becomes fluffy as it increases). [13] 

Analysis of the SEM found that there is no change in particle-size distribution, however, the 

researchers did find that the atomic percentage of oxygen in aged electrodes is relatively larger 

than those of the fresh electrode. Kassem and Delacourt believed that it was related to the 

presence of SEI compounds, such as Li2CO3 or lithium alkylcarbonates, at the particle surface 

that are O-rich. [7] 

2.10.2 Cycling Aging 

The term cycling aging refers to aging mechanisms that occur within the cell while the cell is in 

operation (cycled under load). The losses that occur under these conditions are typically 

irreversible and are attributed to a number of processes. [7] These include: (i) loss of capacity in 

the formation of the Solid Electrolyte Interface (SEI) layer when cell is first formed and 

continually throughout its lifespan (occurring at both electrodes), (ii) loss of active materials due 

to: material dissolution, structural degradation, particle isolation, and electrode delamination, as 
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well as, (iii) impedance increase from the formation of the SEI layer that passivates the active 

particle surface. [7] 

As previously described, aging can occur at both electrodes, but many researchers have 

determined that the most prominent loss of available capacity occurs at the anode. [14] Negative 

electrodes of LIBs are typically composed of graphite, carbon, titanate, or silicone. Of these 

materials, though, graphite is the most commonly used anode material in lithium-ion batteries, 

thus, many degradation models are based off of graphite-based cells. [18] Experimental data 

from the literature is difficult to analyze as each lithium-ion cell system has its own chemistry 

and many aging effects are influenced by the nature of the cell components. To simplify 

equations, this study will therefore focus on only the dominant aging mechanisms of graphite 

anodes. 

There are a variety of mechanisms which result in the degradation of the carbonaceous material, 

many of them considered to be the primary components in lithium-ion battery degradation. [64] 

[23]These aging mechanisms can predominantly be attributed to changes of the electrode and 

electrolyte occurring at the interface between the two. [23] 

2.10.2.1 Aging of Negative Electrode: 

Negative electrodes of LIBs are typically composed of graphite, carbon, titanate, or silicone. Of 

these materials, though, graphite is the most commonly used anode material in lithium-ion 

batteries, thus, many degradation models are based off of graphite-based cells. [18] Experimental 

data from the literature is difficult to analyze as each lithium-ion cell system has its own 

chemistry and many aging effects are influenced by the nature of the cell components. To 

simplify equations, this study will therefore focus on only the dominant aging mechanisms of 

graphite anodes. 

There are a variety of mechanisms which result in the degradation of the carbonaceous material, 

many of them considered to be the primary components in lithium-ion battery degradation. As 

explained previously there are two forms of aging, cycling and calendar aging. For the electrode, 

calendar aging in the cell is primarily caused by parasitic reactions occurring at the 

electrode/electrolyte interface that develops an irreversible passivation film on the surface (solid 
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electrolyte interface (SEI)). Cyclic aging is the result of several degradation processes caused 

from mechanical stresses and continual SEI formation. 

2.10.2.1.1 Degradation of Electrode due to Solid Electrolyte Interface Formation 

The formation of the solid electrolyte interface is the primary source of aging at the anode. The 

reduction of compounds in the electrolyte leads to formation of this solid film on the negative 

electrode. The interphase has the role of acting as a barrier between the electrolyte solution and 

the electrode, preventing solvent decomposition and graphite exfoliation, and facilitates the 

movement of lithium ions from electrolyte to electrode surface (and vice versa). From a safety 

point of view, the SEI limits the reactivity of the cell by decreasing the dendritic nature of the 

lithium that could potentially cause an internal short circuit. This safety feature aids in promoting 

lithium ion batteries for use in consumer applications.  

As the cell is cycled, though, the SEI continues to increase. The electrode can potentially become 

damaged during cycling, as it exposes the graphite to the electrolyte resulting in the utilization of 

more lithium to form an SEI layer over the exposed surface. Thus, there is both a loss of cyclable 

lithium from the cell and an increase in resistance on the electrode from the increase of thickness 

of the SEI, leading to capacity fade (from the loss of lithium) and power fade (from SEI 

thickness increase). 

Throughout the life of the cell, the resistance of the electrode continues to rise resulting in 

significant power fading. The increase in resistance is caused from thickening of the SEI and 

continual chemical changes of the SEI. The growth of the SEI creates resistance to lithium ion 

flow as it reduces the number of active sites available for intercalation and de-intercalation to 

occur. Also, with the growth of the SEI, the number of available lithium ions in the electrolyte 

decreases resulting in reduced capacity. 

Formation of various SEI components is characterized by the following reactions [23]: 

 

 

Equation 2.7 
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Equation 2.8 

 
𝐿𝑖+ + 𝑒− + 𝑇𝑟𝑎𝑐𝑒 𝐻2𝑂 → 𝐿𝑖𝑂𝐻 +

1

2
𝐻2 Equation 2.9 

 
𝐿𝑖𝑂𝐻 + 𝑒− + 𝐿𝑖+ → 𝐿𝑖2𝑂 +

1

2
𝐻2 Equation 2.10 

 2𝐿𝑖+ + 2𝑒− + 2𝐶𝑂2 → 𝐿𝑖𝐶𝑂3 + 𝐶𝑂 Equation 2.11 

 𝑛𝐿𝑖+ + 𝑛𝑒− + 𝑃𝐹6
− → 𝐿𝑖𝐹 + 𝐿𝑖𝑥𝑃𝑂𝐹𝑦 Equation 2.12 

In addition to the lithium ions and electrolyte components, mechanisms at the cathode, also 

occurs resulting in the dissolution of the cathode electrode metal from the lattice [23]. The metals 

are subsequently incorporated into the SEI. 

2.10.2.1.2 Anode Mechanical Failure 

As intercalation, and subsequently de-intercalation, of the lithium ions occurs during the 

charging and the discharging of the battery, there is the potential for the anode to fracture. This is 

due to the fact that a large volume change occurs during the process, referred to as diffusion-

induced stresses (DISs). [23] Cycling the battery at high C-rate and high state of charge (SOC) 

will induce higher mechanical strain on the graphite lattice of the anode electrode due to the 

steep gradient of lithium ions. 

In addition to the mechanical stresses placed on the anode caused from the intercalation process, 

electrolyte reduction and gas evolution inside the graphite also causes a rapid decay of the 

electrode. Gas evolution inside the cell has been known to have a large influence on cell 

operation, resulting in accelerated aging through degradation of active materials. [23] 

2.10.2.1.3 Degradation from Lithium Plating 

Under the right conditions, lithium can become plated onto the active material of the anode, 

instead moving into the carbon intercalation sites. The graphite electrode materials are 

susceptible to lithium plating and lithium dendrite growth because of the close proximity of its 

reversible potential to that of Li+/Li. [23] This leads to loss of capacity from the loss of lithium 

ions and increases the potential for a short circuit to occur due to accumulation of conductive 

metal in the separator, while also changing cell compression. [65]  
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This form of deposition can be caused by a number of factors. When fully charged, lithium ions 

are unable to intercalate any further as the graphene layers are filled. If the system becomes 

overcharged, further lithium deposition will result in lithium plating. In electrified vehicles, 

overcharging can occur when charging current is very high, as might occur during regenerative 

braking. [23] [65] Lithium plating is also promoted when the cell is operating at low 

temperatures because the normal intercalation kinetics (diffusion of lithium within the SEI and 

graphite) into the graphite electrode becomes too slow and Li plating becomes the dominant 

process. [23] The depositing of metallic lithium can continue to grow within the cell forming 

dendrites between the polymer separator and the anode. This will lead to an internal short circuit 

occurring, which then can lead to thermal runway and battery failure. [23] 

2.10.2.2 Aging of Positive Electrode 

Selection of the cathode materials will have a significant impact on determining the performance 

of lithium-ion batteries, but also their calendar and cycle lives. [23] The aging mechanisms 

occurring at the cathode will differ when assessing different electrode chemistries as the physical 

nature of the cathode is dependent on its composition and structure. As is the case with the 

negative electrode, there are a variety of mechanisms that can cause aging in the battery via the 

positive electrode. Results from Bourlot et al. found that the positive electrode went through the 

following degradative changes after accelerated cycle life: less active lithium in the material, and 

some binder or conductive carbon dissolution. [66] Figure 9 from J. Vetter et al. is a schematic 

diagram that displays the different aging phenomenon for cathode materials. 
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Figure 9: Cathode Degradative Processes [18] 

Several of the degradation mechanisms are similar between the two electrodes. As the batteries 

tested were composed of LiFePO4 active material, the aging mechanisms being discussed will 

focus on degradation of this type of electrode.  

2.10.2.2.1 Structural Factors 

The cathode, much like the anode, is susceptible to damage when the cell is operating. The 

intercalation and de-intercalation of lithium ions from the cathode material causes changes in the 

molar volume. These changes result in mechanical stress and strain on the metallic oxide 

particles that form the crystal lattice structure. In addition, when cell operation takes place at 

elevated temperatures and voltages, dissolution of oxide particles into the electrolyte is 

promoted, which as previously stated can become incorporated within the SEI. [23] [6]  

Loss of the metal in the cathode and its subsequent incorporation increases cell impedance. In 

addition, the loss in active material causes a reduction in the cell capacity. The most significant 

of issues, though, is the phase change will cause even higher mechanical stresses on the cathode, 

and if the stress is too great for the cathode material to handle micro-fractures will begin to 
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occur. In comparison to the anode, though, the aging rate of the cathode material is much lower, 

depending on the chosen material [6].  

As depicted in Figure 9, the materials that make up the cathode are: the current collector, cathode 

material, and a chemical binder. Changes at the surface of the cathode material can become 

severe enough that there can be a loss of contact between binder and material and/or current 

collector and binder. The loss of contact between the binder and the current collector can be 

caused from the binder degrading through decomposition.  

2.10.2.2.2 Solid Electrolyte Interface (SEI) Formation 

An SEI layer can also build-up along the cathode, formed from the decomposition of the 

electrolyte. This SEI is formed from oxidation of compounds in the electrolyte and contaminants 

in the electrolyte that catalyze polymerization reactions. It is also, susceptible to damage from 

gaseous products also produced by the contaminants [19]. Gases can also cause damage to the 

active material. Again as with the anode, the formation and overall stability of the SEI is 

dependent temperature, SOC, and voltage. As only a thin SEI film is formed, very few lithium 

ions are consumed, thus the overall effect on the battery degradation is marginal. The SEI film 

products can, also, affect ionic motion due to pore plugging, or could contribute to resistive 

electrical paths to parts of the cathode structure. 

2.10.2.3 Aging due to Degradation of the Electrolyte 

The electrolyte, within the cell, provides the medium by which lithium ions can be shuttled from 

the anode to the cathode during discharge (and vice-versa during charging). The most widely 

used salt in the electrolyte is LiPF6 dissolved in a mixture of several liquid organic solvents, 

including: EC (ethylene carbonate), also a widely used compound, PC (propylene carbonate), 

DEC (diethyl carbonate) and DMC (dimethyl carbonate). [64] The basis for why LiPF6 and EC 

are so widely used is because:  

(i) LiPF6 passivates and protects Al (used as the current collector for the cathode); 

(ii) EC has high dielectric constant to supply high ionic conductivity; and 

(iii) Their presence favors the formation of a stable SEI layer on the graphite anode 

[64]. 
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In addition to these compounds, VC (vinyl carbonate) or VEC (vinyl ethyl carbonate) will 

sometimes be used, as additives, to increase the life of the battery. 

Although these compounds are necessary for ensuring the proper flow of electrical charge 

between the cathode and anode, they have the capacity to react, undesirably, in the cell at 

relatively low voltages. The partial reduction of many compounds within the electrolyte can 

result in the production of gaseous and/or insoluble species. For instance, at elevated 

temperatures and high SOC, oxidation of the electrolyte components can occur at the positive 

electrode interface resulting in the production of CO2 and ethylene gas. This is demonstrated in 

the following reaction equations, Equation 2.13 and Equation 2.14. [67] 

 𝐸𝐶 + 2𝑒− + 2𝐿𝑖+ → (𝐶𝐻2𝑂𝐶𝑂2𝐿𝑖)2 + 𝐶𝐻2 = 𝐶𝐻2(𝑔) Equation 2.13 

 (𝐶𝐻2𝑂𝐶𝑂2𝐿𝑖)2 + 𝐻2𝑂 → 𝐿𝑖2𝐶𝑂3 + (𝐶𝐻2𝑂𝐻)2 + 𝐶𝑂2(𝑔) Equation 2.14 

Equation 2.13 and Equation 2.14 is not the only method by which carbon dioxide can be 

produced in the cell. CO2 can also be produced from reactions caused from: the presence of 

traces of HF (with the presence of Lithium Carbonate as well), by the thermally driven 

decomposition of the SEI, by deterioration of the LiPF6 salt, or oxidation of EC. These reactions 

are described in Equation 2.15 through Equation 2.21. [67] 

 (𝐶𝐻2𝑂𝐶𝑂2𝐿𝑖)2  
∆𝐻
→ 𝐿𝑖2𝐶𝑂3 + 𝐶𝐻2 = 𝐶𝐻2(𝑔) + 𝐶𝑂2(𝑔) +

1

2
𝑂2(𝑔) Equation 2.15 

 𝑅𝑂𝐶𝑂2𝐿𝑖 + 𝐻𝐹 → 𝑅𝑂𝐻 + 𝐶𝑂2 + 𝐿𝑖𝐹 Equation 2.16 

 𝐿𝑖2𝐶𝑂3 + 2𝐻𝐹
∆𝐻
→ 2𝐿𝑖𝐹 + 𝐶𝑂2 + 𝐻2𝑂 Equation 2.17 

 𝐿𝑖𝑃𝐹6 → 𝐿𝑖𝐹 + 𝑃𝐹5 Equation 2.18 

 𝑃𝐹5 + 𝑅𝑂𝐻 → 𝐻𝐹 + 𝑅𝐹 + 𝑃𝑂𝐹3 Equation 2.19 

 𝑃𝑂𝐹3 + 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 → 𝐶𝑂2 + 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 Equation 2.20 

 𝐸𝐶 +
5

2
𝑂2

∆𝐻
→ 3𝐶𝑂2 + 2𝐻2𝑂 Equation 2.21 

There can also be the presence of CH4, C2H6, C3H6, and C3H8 in the cell. Additional hydrocarbon 

species, except for C2H4, are produced from the reduction of DMC, EMC, or EDC, and radical 

reactions. This side reaction is also referred to as ester exchange. The reactions to produce these 

gases are described in Equation 2.22 through Equation 2.25, from K. Kumai et al. [68] 
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 𝑅𝑂𝐶𝑂2𝑅 + 𝐿𝑖
+ + 𝑒− → 𝑅𝑂𝐶𝑂2𝐿𝑖 + 𝑅 ∙ Equation 2.22 

 𝑅𝑂𝐶𝑂2𝐿𝑖 + 𝐿𝑖
+ + 𝑒− → 𝐿𝑖2𝐶𝑂3 + 𝑅 ∙ Equation 2.23 

 
𝑅 ∙ +

1

2
𝐻2(𝑔) → 𝐴𝑙𝑦𝑘𝑙 Equation 2.24 

 𝑅 ∙ +𝑅 ∙ → 𝑅 − 𝑅 Equation 2.25 

 

The products of these reactions can have very damaging effects on the cells. They can cause 

obstruction of the electrode and separator pores and cause the reduction of available lithium ions. 

[64] With fewer lithium ions available for electrochemical reactions to take place, there is a 

decrease in the capacity of the cell.  

The production of gaseous species in the cell will, also, increase the internal pressure of the cell 

and cause it to swell outwards. [34] Cell swelling may force electrodes apart, effectively 

curtailing the transfer of ions and interrupting charging, or internal pressures can reach values 

that may lead to the triggering circuit-interrupt-devices (CIDs). [32] [69] Triggering the CID will 

permanently disable operation of the cell within the module (or battery pack) and the pressure 

exerted by the cell will cause damage to the battery pack enclosure. The most dangerous hazard 

mode is that the swelling of the cell can result in enhanced cell leakage rates, with gaseous and 

liquid species venting and seeping out, respectively, and potentially igniting. [69] 

2.11 Battery Testing 

2.11.1 State of Charge Estimations 

State of charge (SOC) is the measure of available capacity, in percent, of the battery that is 

available for operation of a device. SOC is equivalent to a fuel gauge for a battery pack system in 

electric-drive vehicles. The units of SOC are given as percentage points (0% = empty; 100% = 

full). Unfortunately, there is no way to directly measure SOC, and therefore must be estimated 

using other quantities. 

Coulomb counting is most commonly used, in which the total number of coulombs entering and 

exiting the battery over a given period are summated. [70] This then leads to the given 

expression of: 
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𝑁𝑐 = ∫ 𝐼𝑑𝑡

𝑡

𝑡0

  Equation 2.26 

Where I is the current, in coulombs per second, which is then integrated over the time period t, in 

order to provide the total number of coulombs, Nc. The total number of coulombs can also be 

expressed as a capacity, Q. Using this relation, the SOC can be estimated. Given an initial SOC 

for the battery system, SOCo, and the capacity processed during the period of usage, defined as a 

percentage of the maximum battery capacity, Qmax. 

 
𝑆𝑂𝐶 = 𝑆𝑂𝐶0 −

𝑄

𝑄𝑚𝑎𝑥
∗ 100% Equation 2.27 

Unfortunately this expression has an unfortunate drawback in that there may possibly be a lack 

of information as to the initial SOC at a given point in time. [15] The SOC measurement, though, 

is an effective quantity for controlling battery-powered systems especially for Li-ion batteries. It 

is also a useful measurement for dynamic power management and battery scheduling. [26] 

With this expression, for accurate SOC measurements, it needs to be taken into account that the 

releasable charge from a battery pack will always be less than the stored charge in a 

charging/discharging cycle. This is due to the cycling losses that occur during charging and 

discharging, as well as the calendar losses. These losses can cause accumulating errors to the 

SOC estimate, thus in order to accurately quantify SOC, modifications have to be made to the 

method used to account for said losses. [70] 

2.11.2 C-Rate 

C-rate is a measure of the current that the battery is being charged or discharged at. For instance, 

if a battery is charged, or discharged, at 1C and it has a capacity of 1,000mAh, then the current 

required at this rate is 1,000 mA and the duration of time needed to carry it out is one hour. The 

capacity, or Ah rating, is typically marked on the battery. 

 
𝐶𝑟𝑎𝑡𝑒 =

𝐼

𝑄𝑚𝑎𝑥
 Equation 2.28 
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2.11.3 Reversible Capacity Determination, Self-Discharge Test 

In order to measure the percentage self-discharge of the battery, a self-discharge test is 

completed. The self-discharge test consists of cycling the battery for five consecutive cycles at a 

constant current at 1Cnom rate (this is the nominal C-rate of the battery when first discharged). 

The first initial discharge provides the amount of capacity remaining in the cell after the storage 

period. Several cycles over the 0-100% state-of-charge range can then be used to detect 

permanent cell capacity loss. [60]  

The test procedure consists of a constant current discharge at 1 Cnom down to 2 V with a decrease 

in current until the system reaches 1A, followed by a 1 hour rest, and a constant current constant 

voltage (CCCV) charge (1Cnom) up to 3.65V and potential hold at 3.65V until a cut-off current 

(|I|=Cnom/20), and another 30 min rest period. This continues for four more cycles to pre-

condition the battery for the subsequent rate capability test. 

2.11.4 Rate-Capability Tests 

A rate-capability test cycles the cell at varying C-rates in order to generate rate capability curves. 

[7] As the cell ages, impedance increases resulting in cutoff potentials to be reached much sooner 

for the cell. Also, the rate capability of the cell declines. [7] Thus, over time, the rate-capability 

curves are expected to show a change in slope as a result of the current dependence on the 

polarization effects within the cell. [7]  After performing a “Self-Discharge” test, the rate 

capability test is performed, cycling the battery at various C-rates ranging from Cnom/20 to 3Cnom, 

for a total of 8 charge/discharge cycles. 
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3 Experimental Procedures 

Experimental studies were performed on graphite/LiFePO4 cells produced by A123 Systems 

which are designed for power-type applications (depicted in Figure 10). [71] These cells consist 

of C–LiFePO4 cathode and graphite anode with a nominal capacity of 20 Ah and cell dimensions 

of 227mm long, 160mm wide, and 7.25mm high, with a mass of 496 g, on average. LFP has a 

theoretical capacity of 170mAhg−1 and a redox potential around 3.43 V versus Li electrode. [71] 

The reason LFP is used as a cathode material in industry is because it has a high thermal stability 

making it a safe choice, and has a low toxicity and a low cost compared to cathodes such as 

LiCoO2. [9] The salt used for the electrolyte is LiPF6, but the solvent solution was not 

determined. 

 

Figure 10: Commercial 20Ah LiFePO4/graphite prismatic battery manufactured by A123 Systems [71] 

3.1 Calendar Aging Studies of LFP Cells 

The cells were stored at varying conditions over their lifecycles. There are three different 

temperatures in which the batteries were stored at: 35◦C, 50◦C, and 60◦C, and at two different 

states of charge (SOCs): 0% and 100%. For each set of experimental conditions selected for the 

respective cells, at least two cells were stored at the same conditions in order to have 

reproducibility between the results. Table 6 and Table 7 depict the storage conditions of each cell 

tested. 
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Table 6: Cells stored at constant temperature and constant state of charge (SOC) 

 State of Charge (SOC) 

Temperature 0% SOC 100 % SOC 

35oC - P37, P38 

50oC P05, P06 P45, P46 

60oC 
P09, P11, P12, P13, P14, P19, P23, P25, 

P26, P30, P31, P32, P35 
P27, P28 

 

Table 7: Cells that underwent a shift in temperature of state of charge conditions 

Cell Initial Conditions (Storage Period) Modified Storage Conditions 

P36 60oC/0% SOC (7 months) 35oC/100% SOC 

P07, P08, P16, P17 60oC/100% SOC (3 months) 60oC/0% SOC 

P21, P22 60oC/100% SOC (3 months) 35oC/100% SOC 

P33, P34 35oC/100% SOC (15 months) 50oC/100% SOC 

P18, P39 35oC/100% SOC (13 months) 50oC/0% SOC 

 

In total, 32 A123 20AH cells underwent calendar aging tests. Cells would be periodically 

removed from their storage conditions after a period of time to determine the effects of the aging 

on the cells. The length of storage was at first done on a monthly basis, with the cells being 

removed to reach ambient temperature conditions before cycling. As time progressed, however, 

the length of storage increased to analyze the effect of longer storage times for cells stored at less 

arduous conditions. 

All the experiments were conducted using a MACCOR 4200 Series multichannel battery tester. 

Aging of the cells was achieved in a temperature-controlled environment; climatic chambers 

(VWR 1410, Cincinnati Sub-Zero micro Climate, and VWR 1305U) were used for this purpose. 

The bench set-up of the test station and aging chamber is displayed in Figure 11 through to 

Figure 13. 
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Figure 11: MACCOR 4200 Series multichannel battery tester 

 

Figure 12: Battery Cycler Test Bench 

 

Figure 13: Climate Chamber 
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3.1.1 Non-destructive Testing 

Before performing the rate capability tests, a self-discharge test was run (refer to Section 2.11.3 

Self-Discharge (SD) Test for procedure) to precondition the cells. Running this test allows for 

the removal of possible outliers and establishes the degree of reversible capacity loss the cell 

underwent while being stored.  

After completing the SD test, a rate capability test was run on the cell with varying C-rates 

between cycles (refer to Section 2.11.4 Rate Capability (RC) Test for procedure). The test aids in 

determining the impact of storing the battery at various conditions. A variety of analyses can be 

completed by utilizing the data from the RC curves, including: determining irreversible capacity 

fade, differential voltage-capacity curves, resistance of batteries, and capacity between cycles.  

Once the cell had completed the necessary cycling tests, the electrode leads were enclosed in 

insulating tape to prevent short-circuiting and placed back in the appropriate oven for further 

storage. This process of aging and monitoring, with scheduled testing was completed until the 

cells reached their respective EOL points, whether it be by the capacity of the cell dropping 

below 80% of its nominal capacity, the cell short-circuiting, or by the cell swelling. After the 

cells have degraded to their end-of-life point, they can no longer be cycled and cease being 

stored under higher temperature conditions.   

3.1.2 Post-Mortem Analysis (Destructive Testing) 

Opening of each pouch cell needs to be completed under controlled conditions in a glovebox 

filled with Argon gas. Exposure of the lithium to the water vapour in the air can cause a highly 

exothermic reaction to occur and result in damage to equipment and personnel, thus the glovebox 

must be purged of all water vapour and oxygen gas. [36] [72] Before opening the cells the fresh 

and calendar-aged cells were fully discharged under constant current/constant voltage (CCCV) 

conditions down to the lower cutoff potential of the cell (2.0V) at a current of 1C, which is then 

followed by a potential hold at 2V with discharge occurring at a decreasing current until the 

values reaches a C-rate of approximately C/20. 

When opened, the electrodes within the cell can be analyzed using a variety of techniques to 

quantify, and qualitatively analyze, the extent of degradation within the aged and fresh cells. 
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3.1.2.1.1 Optical Microscopy 

Optical microscopy is a technique used to analyze materials at the micron and sub-micron level. 

[73] For this experiment the technique was used to analyze the aged electrode materials to 

determine the extent of degradation and the presence of crack formation. The scale of the images 

is shown in the lower right corner of each of the images. 

During post-mortem analysis, samples of the degraded electrodes were taken and placed under a 

microscope to determine from optical microscopy defects in the electrode from the aging effects. 

These optical micrographs were taken with an MA 200 Nikon Eclipse microscope.   

3.1.2.1.2 Scanning Electron Microscope (SEM): 

Scanning electron Microscopy (SEM) is an experimental tool used to view the surface of 

materials of interest at the nanometer range. [74] [75] The procedure utilizes a focused electron 

beam to interact with electrons at the surface of the material and delivers information about 

morphology. The scanning electron microscope used for the experiments is a Zeiss Leo 1530 

unit. The voltage for the experiments was set to 10 kV. The machine was equipped with an 

energy-dispersive X-ray (EDX) analyzer to perform atomic composition analysis of the surface 

of the electrode samples. [74] [75] [76] 

The lateral resolution can be in the nanometer range while different detectors can be used 

including the secondary electron and back-scattering detector. [74] Secondary electrons are 

electrons from the material itself which were excited by the incident electron beam giving 

different intensity depending on the tilt of the measured surface. Backscattering electrons 

originate from elastic scattering of the beam electrons on the surface of the material and travel 

back to a detector. [74] [76] They contain often more information of the material composition 

since they interact with the material directly. Additionally, they can often deliver a more 

topographic image of the surface when they are measuring from the side of the sample. [76] 

In general, the material needs to be conducting. Otherwise, local charging can occur creating an 

electric field thus decreasing the resolution drastically. Conductive additives like carbon or gold 

sputtering onto insulating materials can help to overcome this challenge. [75] 
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3.1.2.1.3 Energy Dispersive X-ray Spectroscopy 

Energy Dispersive X-ray Spectroscopy is an analytical technique used to perform an elemental 

analysis or chemical characterization of a sample. [77] The technique relies on principle that 

each element has a unique atomic structure. When stimulated using a high energy beam of 

charged particles, such as electrons, protons, or x-rays, a sample will release x-rays that are 

characteristic of the elements in the sample. The x-rays emitted produce a unique set of peaks on 

an electromagnetic emission spectrum for each of the elements. [77] [74] 

The process by which these characteristic x-rays are released from the atoms is as follows. When 

at rest, an atom in the sample contains unexcited electrons that are at discrete energy states, also 

referred to as electron shells. [77] [74] The focused beam can excite an electron in an inner shell 

to rise to a higher energy state (higher electron shell) creating a “hole”. An electron at a higher 

energy state can then drop down to a lower energy state to fill the opening created. [74] In the 

process of moving from a higher to a lower state, the difference in energy may be released in the 

form of an x-ray. To measure the number and energy of the x-rays an energy-dispersive 

spectrometer is utilized. [77]  
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4 Results of Calendar Aging Studies 

4.1 Degradation of Cells 

Batteries stored under the conditions described in Section 3.1, experienced varying degrees of 

capacity fade, resulting in either fast or slow degradation to their EOL point. Figure 14 describes 

cells that have degraded to their EOL point, the length of time in months, and the conditions that 

the cells were stored at. 

 

Figure 14: End-of-Life points (measured in months) for tested cells 

Cells stored at 60oC regardless of their SOC, reached their EOL very prematurely, only being 

able to sustain aging in the storage conditions for a maximum of 4 months. Cells tested at 50oC 

displayed a much slower rate of decline in capacity, and those stored at 35oC showed only a 

marginal decrease, even despite being stored at high SOC. After 28 months of storage a cell 

stored at 35oC and 100% SOC was only removed in order to perform post-mortem analysis for 

comparison with other cells.  

4.2 Analyzing cells stored at 100% SOC at different temperatures 

The two variables that most affect degradation within Li-ion cells under OCP conditions are 

temperature and SOC. [9] The most predominant cause of degradation under OCP is the storage 

temperature of the cell. When the storage temperature for the cell is high, secondary reactions 

proliferate causing accelerated losses of the cyclable lithium (the main source of losses within 

the cell). [6] Testing of various cells at different SOCs but under the same temperature storage 
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conditions has, also, led to the determination that SOC plays a major role in cell degradation. 

[14] Cells stored at elevated SOCs experienced increased battery degradation compared to those 

stored at lower SOCs [61]. SOC represents the proportion of ions present on either electrode, 

thus, for high SOC there is a significant number of lithium-ions available at the graphite 

electrode to partake in potential side reactions with the electrolyte. 

In addition to the irreversible capacity losses that can occur at high SOC, the degree to which 

reversible capacity will occur is also affected. In comparison to the irreversible losses that can 

occur within the cell, reversible losses were found by Safari and Delacourt to be more affected 

by SOC than by temperature. [14] Li-ion batteries do experience the lowest reversible capacity 

losses, but that can be heavily influenced by the storage temperature (if all cells are stored at the 

same SOC). 

Cells kept at 100% SOC during storage were separated into three chambers at three different 

temperatures: 35oC, 50oC, and 60oC. Many different metrics were calculated from the captured 

results to understand the extent to which the cells degraded and the various different degradation 

phenomena that would occur for cells stored at these conditions. 

4.2.1 Capacity Fade: 

Capacity losses occurring within the cells were tracked over their storage. Figure 15 and Figure 

16 shows the charge and discharge curves for 4 different cells at different storage periods at a 

fully charged state (SOC equal to 100%) and at temperatures (a) 35oC, (b) 60oC, (c) 60oC shifted 

to 35oC, and (d) 35oC shifted to 50oC. The charge/discharge curves depicted in the figures in this 

section were achieved by cycling the cell at a C-rate of Cnom/20 and T = 25oC.  
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Figure 15: Charge and discharge curves over aging period for cells stored at 100% SOC and 35oC (left), and 

60oC (right)   

The profiles generated for the cells stored at 60oC demonstrate the severe capacity loss 

occurring. After only a small period of storage the cells had reached their EOL and could no 

longer be cycled safely. Storage at this severe condition causes the cells to reach their discharge 

limits much more rapidly due to the critical decline in capacity. Cells stored 35oC, though, do not 

reveal a major decrease in capacity. Despite the long duration of storage, the capacity charge and 

discharge voltage curves only showed a small decrease in capacity. 
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Figure 16: Charge and discharge curves over aging period for cells stored at 100% SOC and 60oC, shifted to 

35oC after three months of storage (left), and cells  stored at 100% SOC 35oC, shifted to 50oC after 15 months 

(right)   

In order to determine the impact that storage has on cell degradation certain cells were shifted 

between storage temperatures. Cells initially stored at the most severe condition of 60oC, were 

shifted to 35oC, and cells initially stored at 35oC were shifted to the 50oC storage chamber. The 

reason the cells were shifted to a slightly lower temperature than 60oC, was due to the fact that it 

was already known what would happen at that temperature so the goal of the test was to see if 

the same phenomena would occur at a slightly lower temperature condition. 
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The charge/discharge curves yielded results that cells, initially stored at harsher temperature 

conditions, can have their cell life extended by shifting them to a lower temperature condition. 

The severity of the degradation occurring under the initial storage conditions within the cells, 

though, leads to continued decline of the cell capacity and the cell reaching its EOL prematurely.  

In response to the high degradation being observed at the 60oC condition, a third temperature 

condition was established for testing. Cells were stored at 50oC and 100 SOC to see if a similar 

phenomenon would be observed. Figure 17 displays the charge and discharge curves of a cell 

stored at these conditions for 6 months. 

      

Figure 17: Charge and discharge curves over aging period for cells stored at 100% SOC and 50oC  

After 6 months of storage at this condition the cell had reached approximately 16 Ah. The 

degradation was not as severe as the 60oC storage condition and the loss in capacity appears to 

be fairly similar between storage periods. 

Cells initially stored at a lower temperature that are then shifted to a higher storage temperature 

(after a period of time) will experience an increased rate of degradation.  This is to be expected, 

as the cells stored at 50oC and 60oC experienced higher degradation rates. 

4.2.1.1 Remaining Capacity 

In terms of percent capacity loss Figure 18 depicts the actual calculated capacity loss for the cells 

at each of the conditions. The capacity loss is given as a percentage of the remaining capacity of 
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the cell from its initial measured capacity. Capacity loss is calculated from using the rate 

capability test data for the discharge C-rate of C/20. 

  

  

Figure 18: Capacity fades over time for different cell conditions; top left 60oC 100%SOC shifted to 35oC 

100%SOC, top right 60oC 100%SOC, bottom left 35oC 100% SOC, and bottom right 35oC 100% SOC shifted 

to 50oC 100% SOC 

Cells stored at higher temperature conditions experienced severe degradation, resulting in the 

end-of-life point for the cells to be reached prematurely. Cells stored at 60oC and 100% SOC 

experienced almost 90% loss in capacity after only four months of storage, whereas cells stored 

at 35oC only experienced just over 10% loss in capacity despite being stored for over two years.  

Shifting the storage temperature conditions for the cells played an interesting role in cell 

degradation. Cells initially stored at 60oC and then shifted to 35oC experienced a decreased 
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degradation rate after the shift, increasing the longevity of the battery, but it was unsustainable. 

Storage of the cell at the initial high temperature condition caused irreversible and damaging 

degradation within the cells that resulted in much higher rates of capacity fade throughout its life 

than if the cells were simply stored at 35oC. This makes understanding the history of storage for 

a cell important when considering its capacity fade.  

Finally, the cells that underwent a shift to a higher storage temperature condition experienced 

higher capacity fade and the cells reach their EOL point faster than if they had been kept at the 

initial conditions. 

4.2.1.2 Loss of Capacity due to Reversible and Irreversible reactions: 

Under OCP conditions lithium-ion batteries will experience a reduction in state-of-charge due to 

the transfer of cyclable lithium ions from the anode to the cathode, or loss of them from side 

reactions occurring within the cell. The former process is a reversible one with the lost capacity 

being able to be recovered after subsequent cycling, the latter, however, is permanent and the 

capacity cannot be recovered from further cycling of the cell.  

In order to determine the reversible and irreversible capacity loss, at each storage point, the 

following protocol was put into place to establish how each should be calculated. Using the data 

from the self-discharge test, the capacity at the end of the CC-CV discharge for both the first and 

second test cycles were subtracted from each other to obtain the reversible capacity loss. 

Irreversible capacity loss was obtained from the rate-capability tests, utilizing the ending 

capacity (CC-CV) at the C-rate of C/20 for the current storage point and the capacity for the 

previous storage point. Subtracting the two values yields the irreversible capacity loss. Using this 

protocol, the two variables can be tracked over the storage period to determine the effect of 

storage conditions on the capacity losses. 
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Figure 19: Irreversible capacity loss of cells stored at 35oC and 100% SOC (top left), reversible capacity loss 

of cells stored at 35oC and 100% SOC (bottom left), irreversible capacity loss of cells stored at 60oC and 

100% SOC (top center), reversible capacity loss of cells stored at 60oC and 100% SOC (bottom center), and 

irreversible capacity loss of cells stored at 50oC and 100% SOC (top right), reversible capacity loss of cells 

stored at 50oC and 100% SOC (bottom right) 

The graphs depicted in Figure 19 show the reversible and irreversible capacity losses for cells 

stored at 35oC, 60oC, and 50oC respectively. The cells stored at the higher temperature conditions 

experienced much higher capacity losses in a much shorter period of time. This is to be expected 

as increased temperatures at high SOC will promote irreversible degradation reactions to occur at 

a faster rate.  

The increased temperature storage condition, also, promoted the increase in the reversible 

capacity losses within the cell. After only one month of storage the reversible capacity losses for 

cells stored at 60oC and 50oC were approximately 7.5% and 6% respectively. Comparing to cells 

stored at 35oC, they experienced a reversible capacity loss of only 1% (maximum reversible 

capacity loss for this condition only ended up being 5.5%). For cells stored at 35oC and 50oC the 
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reversible capacity losses occurring went through increases and decreases over the storage 

period, but remained positive. For cells stored at 60oC, though, this was not the case. 

In addition to the increase in the reversible capacity loss first experienced by the cells in the first 

month of storage, another interesting phenomenon that occurred was that the reversible capacity 

loss reached a maximum peak and then started to fall. Eventually the reversible capacity 

observed ended up going from a positive recapture of capacity to a negative irreversible loss. 

Storage of the cells at this condition caused such drastic degradation that after three months of 

storage, the cells no longer gained back capacity during the cycling test, but simply lost capacity.  

The graphs depicted in Figure 20 show the reversible and irreversible capacity losses for cells 

stored at 60oC shifted to 35oC and 35oC shifted to 50oC. Shifting the cells from a higher 

temperature condition to a lower one does prevent the cell from failing immediately after a four 

month storage period (storage at 60oC for three months). The rate of capacity loss decreased 

significantly when the cell was shifted to 35oC, but the cell degradation caused from the storage 

at the higher temperature conditions prompted the cell to continue to degrade and reach cell 

failure. The initial storage of the cells at the high temperature condition leads to increased 

capacity fade, but can also promote further degradation from additional phenomenon. One of the 

two cells (seen in Figure 20) actually experienced the same rate of degradation as if it were still 

being stored at the 60oC condition. The graph depicting the reversible capacity of these cells 

shows once again the storage at the initial condition can have some dramatically different effects 

on the capacity loss and is most likely dependent on the quality of manufacturing of the cell. One 

of the two cells experienced heightened reversible capacity loss leading up to its failure while the 

other cell experienced lower reversible capacity losses during storage. This more falls in line 

with the prediction that when shifted to a lower storage condition the extent of capacity loss 

should decrease. 

On the opposite end, the cells that underwent a shift from 35oC to 50oC experienced very 

predictable results. Shifting the cells to a higher temperature condition led to higher rates of 

irreversible capacity loss cell failure. Also, the reversible capacity of the cell continued to 

increase with the duration of storage, until finally the cell was no longer able to recapture the lost 

capacity and only experienced irreversible capacity loss and ultimately cell failure. 
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  Figure 20: Irreversible capacity loss of cells stored at 60oC shifted to 35oC (top left), reversible capacity loss 

of cells stored at 60oC shifted to 35oC (bottom left), irreversible capacity loss of cells stored at 35oC shifted to 

50oC (top right), reversible capacity loss of cells stored at 35oC shifted to 50oC (bottom right) 

4.2.2 Comparison of capacity between cycles of battery tests 

The storage of cells at different aging conditions prompted the loss of cyclable material and, 

potentially, active material loss, demonstrated through the loss of capacity in the cell. Prolonged 

storage at high temperatures eventually caused the cells to lose the capability to reclaim capacity 

lost reversibly. Thus, with repeated cycling the cell would instead lose capacity instead of 

regaining it. This was demonstrated in how the reversible capacity losses at each of the aging 
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points of the cells eventually become negative values for certain storage conditions. In order to 

further support this, the following section presents the final capacity values after certain cycles in 

the SD and RC tests.  

In Figure 21 the capacities of the cells stored at 60oC and 100% SOC for the first, second, fifth, 

and last RC discharge are tracked over the storage periods.    

 

Figure 21: Loss of recapture of reversible capacity loss of cells stored at 60oC and 100% SOC 

After a period of four months the cells can no longer gain capacity and undergo drastic cycling 

aging. At this point the cells have failed and can no longer be cycled safely. Once again, it is 

demonstrated that there is a possible phenomenon occurring at high temperature conditions that 
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is resulting in the cells losing their capability to retain or regain capacity and are instead 

undergoing drastic cycling aging after storage. This results in the cells reaching their EOL point 

at a much faster rate.  

For cells stored at 35oC and 100% SOC (Figure 22), the reversible capacity lost during storage is 

being reclaimed even with longer storage times at this temperature condition. The drastic 

degradation that occurred at 60oC is not seen in these cells and the capacity can continue to be 

recaptured with cycling. As seen in the figure, though, there is a decrease in the amount of 

reversible capacity being gained after an extended storage period. This is most likely due to the 

irreversible losses in capacity occurring affecting the amount of potential reversible capacity 

losses that can occur. 

 

Figure 22: Gain of reversible capacity through cycling of cells, for cells stored at 35oC and 100% SOC 
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Cells stored at 50oC and 100% SOC (Figure 23) were able to recover reversible capacity loss 

with cycling over their entire lifespan, unlike their 60oC counterparts. Towards the end of 

cycling, though, it can be seen that on the final cycle of testing, after being stored for almost 200 

days, the cell started to experience capacity loss during cycling. The aging phenomena that 

occurred at 60oC, may be demonstrated by this final data collection. It takes almost twice as long 

for it to occur, though, and the cell has already almost reached its EOL point. 

 

Figure 23: Gain of reversible capacity through cycling of cells, for cells stored at 50oC and 100% SOC 
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Cells stored at 35oC and 100% SOC and shifted to 50oC and 100% SOC experienced increases in 

reversible capacity loss and then recapture upon cycling when shifting to 50oC. Figure 24 depicts 

the capacities of the cells at these conditions, over their respective storage periods.  

 

Figure 24: Decrease in recapture of reversible capacity loss of cells stored at 35oC and 100% SOC shifted to 

50oC and 100% SOC 

Continual storage at 50oC, though, eventually led to the cells experiencing degradation in 

accordance with cells stored at 60oC. Cycling of the cells after storage began to simply 

experience capacity fade. Up until the cells reached their EOL point they were able to gain back 
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some initial capacity, but further cycling ended up causing further degradation and the cell was 

no longer able to be cycled. 

Finally analysis of the capacity for cells stored at 60oC and 100% SOC shifted to 35oC and 100% 

SOC (Figure 25) found that the cells were able to regain some capacity lost over their storage 

periods, but the initial storage of the cell at 60oC had a lasting impact on the cell life. 

 

Figure 25: Loss of recapture of reversible capacity loss of cells stored at 60oC and 100% SOC shifted to 35oC 

and 100% SOC 
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As it can be seen in Figure 25, even after the cells have changed storage conditions (occurring at 

approximately 90 days) the capacity within the cells continues to decline with cycling. The 

degradation that has occurred within the cell has affected its continual performance, and although 

storing it at a less severe temperature condition can prolong its life, the cell ultimately fails. 

4.2.3 Incremental Voltage Analysis, Differential Voltage Capacity Curves: 

In addition to analysis of capacity fade, incremental voltage analyses of cells during aging can be 

completed, which involves computing the differential voltage capacity (dV/dQ) for the cells at 

each of their aging points. Various pieces of information regarding the degradation of the cell 

can be derived over the aging period. Based on previous studies performed on the aging of 

lithium-ion batteries, the plots of dV/dQ versus Capacity will be able to yield the degree to 

which the cell undergoes loss of cyclable lithium and whether or not there is the presence of 

active material loss occurring within the cell. 

In each of the figures, the total cell capacity is divided into 3 regions (denoted as regions A, B, 

and C) with the corresponding capacities in each region being calculated by measuring the 

distance in between distinct peaks in the dV/dQ versus Capacity curve. For a fresh cell the 

notation is given as Q0A, Q0B, and Q0C. Using the initial capacity in each of the regions, 

comparisons can be made between the capacities for these regions at all aging points over the 

storage life of the cell. 

For the cells stored at the condition in Figure 26 there was very little change in sections B and C 

of the dV/dQ versus capacity curve. QA did undergo minor decreases with aging time, which 

denotes a loss of cyclable lithium content within the cell, however, since there was no visible 

decrease in the value of QB or QC over the aging time it can be concluded that there was not a 

large degree of loss of active material at the negative electrode. As this is the lowest storage 

temperature condition the rate of degradation is much less than that of the cells stored at higher 

temperatures. Thus, it is understandable that only cyclable lithium loss occurred.  
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Figure 26: Discharge dV/dQ curve at a rate of C/20 for cells stored at 35oC and 100% SOC 

For the cells stored at the condition in Figure 27 the capacity in sections A and B, of the dV/dQ 

versus capacity curve, displayed drastic decline. The severe storage condition resulted in both the 

drastic loss of cyclable lithium content within the cell (seen by the decrease in QA) and a large 

degree of loss of active material at the negative electrode (seen by the decrease in QB). Reasons 

for the loss of active material can stem from possible dissolution of the active material into the 

electrolyte [9], or that the SEI layer had become so thick that the active material became 

electrochemically inactive at the carbon negative electrode. [8] After three months of storage at 

these conditions, the number of visible peaks dropped demonstrating that there were now fewer 

phase transitions in the cell.  
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Figure 27: Discharge dV/dQ curve at a rate of C/20 for cells stored at 60oC and 100% SOC 

As this is the highest storage temperature condition the rate of degradation is increased and the 

presence of large concentrations of lithium intercalated into the anode increases the rate at which 

degradative side reactions can occur. Thus, it is not surprising to see the degree of degradation 

that had occurred. 

Figure 28 depicts the differential voltage capacity curves for the cells stored at 50oC and 100% 

SOC. After the 6 months of storage the intercalation phase transitions were still maintained in the 

cell. There was a decrease in QA and QB over the life of the cell depicting both a loss in cyclable 

lithium, as well as active material loss occurring at the anode.  The losses in QA are much greater 

than the losses in QB, which means that the primary aging phenomena in the cell are losses of 
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cyclable lithium. As there is only a slight decrease in QB over time active material loss is not a 

major degradation mode at this temperature condition for this length of storage time. 

 

Figure 28: Discharge dV/dQ curve at a rate of C/20 for cells stored at 50oC and 100% SOC 

The active material loss was not as drastic as the losses observed by cells stored at 60oC, but it 

can be postulated that this is the most likely reason for the loss in reversible capacity in these 

cells. The extreme active material losses occurring at the anode are causing the cells to be unable 

to regain capacity, and if the cells depicted in Figure 28 had continued to be stored at 50oC they, 

possibly, may have demonstrated the same losses.   
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For the cells stored at the condition in Figure 29 the capacity in sections A and B, of the dV/dQ 

versus capacity curve, displayed a similar decline to that of the graphs in Figure 27. The severe 

storage condition resulted in both the drastic loss of cyclable lithium content within the cell (seen 

by the decrease in QA) and loss of active material at the negative electrode (seen by the decrease 

in QB). The storage of the cell at the highest storage temperature condition caused the initial 

decrease in QA and QB, but after the cell had shifted conditions to the lowest storage temperature 

the rate of degradation levelled off.  

 

Figure 29: Discharge dV/dQ curve at a rate of C/20 for cells stored at 60oC and 100% SOC for three months 

and then shifted to 35oC and 100% SOC 
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For the cells stored at the condition in Figure 30 there was very little change in the capacity of 

sections B and C over the time the cell was stored at 35oC and 100% SOC. Once the cell storage 

condition was changed to 50oC, though, QB displayed a small decrease in size, demonstrating the 

loss of active material at higher temperatures.  

 

Figure 30: Discharge dV/dQ curve at a rate of C/20 for cells stored at 35oC and 100% SOC for after 15 

months of storage and then shifted to50oC and 100% SOC 

QA once again displayed minor changes in value at the 35oC aging condition, but when shifted to 

the 50oC storage condition there was a significant drop in the value of QA. Thus, the shift to 
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higher temperature conditions prompted a much greater degradation of the cell, resulting in 

larger losses of cyclable lithium. In addition, after 24 months of storage, the number of visible 

peaks decreased and there were now fewer phase transitions occurring within the cell. This is 

indicative of active material loss occurring within the cell. 

4.3 Analyzing cells stored at 0% SOC at different temperatures 

4.3.1 Capacity Fade: 

As with the cells stored at 100% SOC, capacity losses occurring within the cells stored at fully 

discharged conditions (0% SOC) were tracked over their storage periods. Figure 31 shows the 

charge and discharge profiles of 4 different cells stored at 60oC and (a) a fully discharged state 

(SOCnom 0%), and (b) a fully charged state (SOCnom 100%) and then shifted to a fully discharged 

state after three months. The charge/discharge curves depicted in the figures in this section were 

achieved by cycling the cell at a C-rate of Cnom/20 and T = 25oC.  

 

Figure 31: Charge and discharge curves over aging period for cells stored at 0% SOC and 60oC (left),  and 

cells  stored at 100% SOC 60oC, shifted to 0% SOC and 60oC after 3 months (right)   
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As seen with the cells stored at 100% SOC and 60oC, there is accelerated capacity loss occurring 

within cells stored at 0% SOC and 60oC. Although this loss is not as prominent as depicted in the 

fully charged cells, after only a small period of storage the cells had reached their EOL and could 

no longer be cycled safely. This severe degradation was not seen, though, in the cells initially 

stored at a fully charged state and then shifted to being stored at a fully discharged state. 

Although there is a visible decline in the capacity it is not as drastic with the cell being able to 

sustain storage at 60oC for 14 months. 

4.3.1.1 Percentage Capacity Loss 

In terms of percent capacity loss the following graphs depict the actual calculated capacity loss 

for the cells at each of the conditions. Capacity loss is calculated from using the rate capability 

test data for the discharge C-rate of C/20. 

 

Figure 32: Percent remaining capacity of cells stored at 60oC and 0% SOC 

Figure 32 depicts the percent remaining capacity of cells stored at 60oC and 0% SOC. After 

approximately seven months of storage, cells stored at discharged conditions experienced a 

capacity fade of approximately 20%. It should be noted, though, that only two cells stored at 

these conditions were able to reach the seven month storage point. A majority of the cells were 

unable to withstand the conditions for four months, or even one month in some cases. This is 

why there is a high standard error at the four month period. 
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Other cells, which experienced a shift in their storage conditions, were able to survive in these 

conditions for much longer periods. Figure 33 and Figure 34 depict remaining capacity curves 

for cells that experienced a change in storage conditions. 

 

Figure 33: Percent remaining capacity of cells stored at 60oC and 100% SOC for three months, shifted to 

60oC and 0% SOC 

 

Figure 34: Percent remaining capacity of cells stored at 60oC and 0% SOC for seven months, shifted to 35oC 

and 100% SOC 

Cells in Figure 33 were initially stored at 60oC and fully charged conditions. After three months 

they were shifted to fully discharged conditions. This shift halted the high rate of degradation 

that was taking place and in the cell at fully charged conditions. The rate of decline in capacity 

decreased significantly and the cell did not reach its EOL point until a much later storage time 

point. 
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Cells in Figure 34 were initially stored at 60oC and 0% SOC. After seven months they were 

shifted to 35oC and 100% SOC. Based on the figure, despite the rate of degradation being slowed 

the cell continued to degrade quite drastically throughout its storage period. Comparing to the 

figures generated for cell stored only at 35oC and 100% SOC, the rate of decline in the cells is 

much more gradual. Initially storing the cells at 60oC, though, caused severe degradation to the 

cell that persisted throughout its storage life. 

Thus, it can be seen that storing the cells at 60oC, whether they be fully charged or discharged, 

results in the acceleration of aging within the cells. Shifting the cells to a lower temperature 

condition will prolong the cell’s life, but ultimately the damage done will further increase 

degradation. This makes understanding the history of the cells’ operation and storage very 

important for the study of battery degradation. 

In order to better understand the proliferation of this particular aging phenomenon, testing was 

completed at a third storage condition for fully discharged cells. The temperature of this chamber 

was set to 50oC. Since, this aging phenomena is so pronounced at the 60oC storage condition the 

goal was to see if the same aging would take place at a lower storage temperature. Figure 35 

displays the remaining capacity for cell stored at 50oC and 0% SOC. 

 

Figure 35: Remaining capacity of cells stored 50oC and 0% SOC 
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At the time of writing this, cells in Figure 35 have been stored for approximately 16 months and 

have only lost approximately 10% of their capacity. Since they have not reached their EOL 

points they are still being stored under 50oC temperature conditions.  

Despite the cells being stored for more than twice the amount of time than the cells stored at 

60oC, the aging phenomenon seen in cells stored at 60oC was not observed. Initially, the cells 

showed an increase in capacity until the fourth month of storage. From there the cells 

experienced a steady slow loss in capacity over storage time, and not a sharp decline.  

4.3.2 Incremental Voltage Analysis, Differential Voltage Capacity Curves: 

The incremental capacity curve, depicted in Figure 36 presented a picture of the degradation that 

had occurred within the cell over its storage at 60oC and 0% SOC. 

 

Figure 36: Discharge dV/dQ curve at a rate of C/20 for cells stored at 60oC and 0% SOC 
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Based on the figure, it can be noted that there was very little change in section C of the dV/dQ 

versus capacity curve. QA underwent a drastic decrease with aging time, denoting a severe loss of 

the cyclable lithium content within the cell. QB, also, experienced a decline representing a small 

loss of active material at the negative electrode. As there were still two peaks present, though, at 

the end of the testing for the cells the number of phase transitions for lithium intercalating into 

the graphite did not change.   

The storage at 60oC promotes the loss of active material within the cell at both charged and 

discharged conditions, and is most likely the reason for why these cells are reaching their 

respective EOLs prematurely. Cells stored at 50oC and 0% SOC did not demonstrate this active 

material loss.  Figure 37 displays the differential voltage capacity curves of the degradation that 

had occurred within the cell over its storage at 50oC and 0% SOC. 
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Figure 37: Discharge dV/dQ curve at a rate of C/20 for cells stored at 50oC and 0% SOC 

Despite being at only a slightly lower temperature condition, the results show that there is not a 

visible active material loss present in the cell. The cells stored at these conditions only 

experienced a loss of cyclable lithium (seen by the decrease in QA). 

Incremental capacity curves were also generated for the cells that underwent a shift in storage 

conditions. Figure 38 and Figure 39 depict the results of the analysis of these cells. 
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Figure 38: Discharge dV/dQ curve at a rate of C/20 for cells stored at 60oC and 100% SOC for three months, 

then shifted to 60oC and 0% SOC 

Storage of the cell at fully charged conditions resulted in a swift decline of QA. After the change 

in conditions, to fully discharged, the downward slope of QA declined. Thus, the degree at which 

the loss of cyclable lithium was occurring in the cell became decreased. This is in accordance 

with literature as cells stored at low states of charge do not incur as high capacity fades. [9] 

After the initial decline in the value of QB (from storage at fully charged conditions and high 

temperatures) the value of QB/ QBo remained relatively constant until the cell finally reached its 

EOL. The shift to a discharged state limited the potential for severe loss of active material at the 

negative electrode. 
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Figure 39: Discharge dV/dQ curve at a rate of C/20 for cells stored at 60oC and 0% SOC for seven months, 

then shifted to 35oC and 100% SOC 

Once again, the primary losses of capacity within the cell are caused by the loss of cyclable 

lithium, as noted by the decrease in QA. After the change in conditions (to fully charged and 

35oC) the downward slope of QA decreased and the degree at which the loss of cyclable lithium 

was occurring increased. The storage of the cell at the initial conditions though, led to the cell’s 

swift decline. The graph of QA/QAo (from seven months onward) in Figure 39 does not resemble 

the graph of QA/QAo in Figure 26, in which the cell was only stored at 35oC and 100% SOC. 

Despite being in a discharged state, storage at high temperatures had dramatic consequences on 

LiFePO4 cells even if they are shifted to a lower temperature condition. The shift can delay the 

cell from reaching its EOL, but ultimately the cell will fail. 
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The value of QB remained relatively constant until the cell finally reached its EOL. The shift to a 

lower temperature condition had a positive effect on the cell in terms of limiting the extent of 

degradation, from loss of active material at the negative electrode. Due to the cell initially being 

stored at high temperature conditions, though, continual storage, for calendar aging testing of the 

cell, resulted in a steady loss in capacity. 

4.4 Post-Mortem Analysis 

As described in the previous section, cells that have reached their EOL point are removed from 

storage and prepped for post-mortem analysis. The commercial cells are opened inside of an 

argon-filled glovebox and the aged electrode materials are sampled to undergo various analyses. 

4.4.1 Qualitative Analysis of Electrode Material 

Images of the post-mortem removal of the electrodes from their respective cells can be found in 

Appendix B: Images of post-mortem analysis of LiFePO4 cells. 

The first cell to undergo post-mortem analysis was a cell that had been stored under 100% SOC 

and 60oC temperature conditions. Once the outer metal casing had been removed to expose the 

folded electrode sheets beneath, it was discovered that the liquid electrolyte had completely 

evaporated and a substance had formed onto the graphite electrode and the separator. The loss of 

the wetting capability of the electrolyte and the severe mechanical deformation of the entire cell, 

as a result of gas formation, caused the electrode materials to become very brittle and 

subsequently delaminate from the current collectors of both the anode and cathode. This made 

the possibility of performing various analyses on the electrode material to be increasingly 

difficult. 

Similar substances that had adhered onto the graphite electrode in the cell stored at 60oC and 

100% SOC, were seen on the graphite electrodes of the cell stored at 60oC and 0% SOC, but not 

as prevalently over the whole area of the electrode. The cell also showed small build-ups of 

material on the LFP electrode which was not seen in the previous cell. 

Finally, the cell stored at 35oC and 100% SOC was opened. Both electrodes did not show any 

signs of build-up of material on them. There was not a visible difference between these 

electrodes and the fresh unaged ones. 
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Additional analyses were then conducted on all of the cells to determine more pertinent 

information, such as: imaging the electrodes at high magnification (optical microscopy and 

scanning electron microscopy (SEM)), and composition of species on the surface of the electrode 

(EDX analysis and ICP). 

4.4.2 Scanning Electron Microscopy (SEM) 

4.4.2.1 SEM Results for Graphite Electrodes 

Figure 40 through Figure 45 compares SEM micrographs of samples of fresh, unaged, graphite 

electrodes with the electrodes from cells after aging in storage chambers at 60 and 35 ◦C and 

fully charged conditions, and 60 ◦C and fully discharged conditions. 

    

Figure 40: SEM micrographs of unaged graphite electrode at 1Kx mag. (left) and 10Kx mag. (right) 

The SEM micrographs in Figure 40 depict samples of fresh graphite electrodes. As the battery 

has not been cycled as of yet, there is no SEI layer build-up present on the surface of the graphite 

grains. Grain features are clearly defined in the micrographs  

Figure 41 depicts the SEM micrographs of graphite electrodes stored at 60oC and 0% SOC. 

Based on the images, the build-up of material on the electrode is clearly its own layer adhered 

onto the graphite electrode. The material has not embedded itself into the bulk graphite material 

and is not evenly dispersed over the entire sample.  In addition to the built-up of foreign material 

on the electrode, the surface of the bulk graphite material at high magnifications (1000-10000x) 

shows the SEI film forming unevenly over the graphite grains. Backscattering images in Figure 

42 show that the particles within the SEI appear to be conductive materials. The particles appear 

brighter than the surrounding materials using this analysis technique. 
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Figure 41: SEM micrographs of aged graphite electrode (60oC and 0% SOC) at 50x magnification (top left), 

1000x magnification (top right), 5000x magnification (bottom left), and 10,000x magnification (bottom right) 

   

Figure 42: Back-scattering SEM micrographs of aged graphite electrode (60oC and 0% SOC) at 3000x 

magnification (left), and 5000x magnification (right) 

Figure 43 depicts the SEM micrographs of graphite electrodes stored at 60oC and 100% SOC.  
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Figure 43: SEM micrographs of aged graphite electrode (60oC and 100% SOC) at 50x magnification (top 

left), 200x magnification (top right), 2Kx mag. (bottom left), and 5Kx mag. (bottom right) 

The SEM images showed a similar build-up of foreign material on the graphite as to that found 

on the graphite samples aged at discharged conditions. Once again, it can be seen that the 

material is its own distinct layer adhered onto the graphite electrode. Looking at the graphite 

grains at high magnifications, it appears that the SEI film is forming more evenly over the grains, 

in comparison to the previous graphite images. The edges of the grains, also, appear to be much 

smoother in comparison to unaged graphite, possibly owing to the formation of the SEI layer. 

The reason for this more even SEI development could be due to this SEI layer being much 

thicker than the SEI layer developed in the other cell. If this is the case the SEI layer could be 

more O2 rich incorporating Li2CO3 and alkylcarbonates into the layer. [13] 

The SEM images also appear to show very small particles that are ingrained into the layer. The 

electrode samples at the other conditions do not show the proliferation of these tiny particles. 

Analyzing these particles under a back scattering diffraction lens, the particles within the SEI 

appear to be conductive materials (Figure 44).  
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Figure 44: Back-scattering SEM micrographs of aged graphite electrode (60oC and 100% SOC) at 1000x 

magnification (left), and 5000x magnification (right) 

  

   

Figure 45: SEM micrographs of aged graphite electrode (35oC and 100% SOC) at 200x magnification (top 

left), 1000x magnification (top right), 2000x mag. (bottom left), and 5000x mag. (bottom right) 

Comparing the unaged graphite and graphite aged 35oC and 100% SOC (Figure 40 and Figure 

45), there are only small differences between the two samples in terms of the shape of the 

graphite. On the surface the graphite grains appear to be very similar in shape, but at the edges 
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the graphite appears to have become smoother during the aging period. The unaged graphite 

grains have very rough edges in comparison. The passivating SEI layer that forms on the 

graphite is the most likely reason for this difference as it is non-conductive and does not provide 

the same image quality if it were not present. 

4.4.2.2 SEM Results for LFP Electrodes 

Figure 46 through Figure 49 compares SEM micrographs of samples of fresh unaged LiFePO4 

with the electrodes from cells after aging in storage chambers at the same conditions as the 

graphite electrodes. The active material particles are the oblong shaped objects, and the degree to 

which the particles are conductive can be determined by the overall brightness in the image. 

Lighter particles contain more conductive species, such as Iron. The images also show carbon 

black fibers that are contained within the electrode to increase its conductivity. [78]  LFP has a 

low conductivity and requires the addition of conductive carbon powder (“carbon black”) to aid 

in its ability to transfer electrons. [78] The fibers appear as long filaments in the SEM 

micrographs. 

   

Figure 46: SEM micrographs of unaged LFP electrode at 20,000x magnification (left) and 5000x 

magnification (right) 
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Figure 47: SEM micrographs of aged LFP electrode (60oC and 0% SOC) at 5000x magnification (top left), 

10,000x magnification (top right), 14,050x magnification (bottom left), and 10,000x magnification (bottom 

right) 
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Figure 48: SEM micrographs of aged LFP (60oC and 100% SOC) at 200x magnification (top left), 5000x 

magnification (top right), 10000x magnification (bottom left), and 10000x magnification (bottom right) 
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Figure 49: SEM micrographs of aged LFP (35oC and 100% SOC) at 1000x magnification (top left), 5000x 

magnification (top right), 10000x magnification (bottom left), and 10000x magnification (bottom right) 

Based on the SEM micrographs of the LFP electrodes, there are some particle cracks and 

fractures being observed for cells stored at 60oC. It cannot, however, be definitively concluded 

that these fractures were caused from the storage conditions for the cells. The most likely reason 

for these fractures is due to the mechanical deformation of the cells due to the production of 

gaseous species or the intercalation stresses placed on the electrodes during cycling.  

4.4.3 EDX Results 

EDX studies were performed on samples of the electrodes removed from the cell in order to 

determine the composition and complexity of the structures being formed within the SEI on the 

surface of the electrode. Performing EDX analyses will also provide a potential look into species 

being incorporated into the SEI, including iron. If iron is present within the SEI layer of the 
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graphite material it will provide evidence of Fe dissolution occurring within the cell. Dissolution 

of Fe from the LFP electrode will denote the LiFePO4 electrode becoming inactive.  

Many micrograph samples, with subsequent EDX analyses, were taken of each of the electrode 

samples. The following results are a depiction of the general compositions of species within the 

samples. Table 8 describes the composition results obtained from the EDX results for each of the 

graphite electrode samples.  

Table 8: EDX Results of Graphite Electrode samples 

Sample 
Fresh 

Graphite 

Aged Graphite (35oC 

and 100% SOC) 

Aged Graphite (60oC 

and 100% SOC) 

Aged Graphite 

(60oC and 0% SOC) 

Species Atomic % Atomic % Atomic % Atomic % 

Carbon 93.61 95.3 77.6 92.7 

Oxygen 3.41 3.4 17.6 3.0 

Phosphorous - 0.04 0.7 0.2 

Iron - 0.58 0.5 <0.01 

Fluorine 2.98 0.75 3.6 4.1 

 

Based on the results in Table 8, the primary difference between the electrodes was the increase in 

the atomic percentage of oxygen for graphite aged at 60oC and 100% SOC. An increase in the 

atomic percentage of oxygen in aged electrodes may be related with the presence of SEI 

compounds such as Li2CO3 or lithium alkylcarbonates at the particle surface that are O-rich. [13] 

Considering the cell was aged under the most severe conditions, and the differential voltage-

capacity curve showed the presence of degradation from loss of cyclable lithium and active 

material loss, the presence of high atomic percentages of oxygen would correlate to the 

formation of new SEI layers over exposed areas. Table 9 describes the composition results 

obtained from the EDX analysis for each of the LFP electrode samples. 

Table 9: EDX Results of LFP Electrode samples 

Sample 
Fresh 

LFP 

Aged LFP (35oC and 

100% SOC) 

Aged LFP (60oC and 

100% SOC) 

Aged LFP  

(60oC and 0% SOC) 

Species Atomic % Atomic % Atomic % Atomic % 

Carbon 28.6 8.92 14.7 14.5 

Oxygen 46.9 55.58 49.8 54.3 

Phosphorous 11.66 14.94 14.0 14.1 

Iron 11.86 20.44 21.3 17.1 

Fluorine - - - - 
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Despite undergoing aging for many months the results of the EDX analysis of the LFP electrodes 

show very little difference between samples. The compositions of the bulk materials remain 

fairly constant and there are no visible signs of a decrease in the iron content of the samples from 

potential active material loss. 

4.4.3.1 SEM Micrographs of Adhered Materials to Electrodes 

In addition to analyzing the bulk graphite materials, the different materials that have adhered 

onto the surface of the graphite were also analyzed. Figure 50 and Figure 51 display images of 

the adhered material on the aged graphite (aged at 60oC, and fully charged and fully discharged 

respectively). 

   

Figure 50: SEM micrographs of adhered particulate matter for graphite stored at 60oC and 0% SOC  

   

Figure 51: SEM micrographs of adhered particulate matter for graphite stored at 60oC and 100% SOC  
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EDX analyses were then carried out on these materials to determine their elemental 

compositions. Table 10 displays the compositions for the particulate matter for the two 

electrodes. 

Table 10: EDX analysis of particulate matter 

Sample Aged Graphite (60oC and 100% SOC) Aged Graphite (60oC and 0% SOC) 

Species Atomic % Atomic % 

Carbon 47.5 36.7 

Oxygen 26.5 51.3 

Phosphorous 4.3 6.4 

Iron 2.3 1.4 

Fluorine 19.4 3.2 

 

The EDX results found that the particulate matter on the cell stored at fully charged conditions 

was largely composed of carbon and oxygen in almost a 2:1 ratio of carbon to oxygen. The cell 

stored at discharged conditions, though, was the opposite. The largest atomic percentage of the 

species within the substance was found to be oxygen and then followed by carbon. The 

additional elements, Fluorine and Phosphorous, most likely come from the LiPF6 salt in the 

electrolyte and have been combined within the substance. The presence of Iron in the samples 

suggests the possibility that there may be some iron dissolution occurring at the cathode, but 

further tests will need to be completed to confirm.  

EDX results of other SEM micrographs yielded similar results to those depicted in Table 10. 

Sources for the carbon and oxygen in the particulate are most likely the result of contamination 

of the cell producing lithium carbonate, alkylcarbonates, and gaseous species. [13] These 

compounds are then incorporated into the material along with the salt of the electrolyte to form 

the particulate. 

4.4.4 Optical Microscopy 

Optical microscopy is a technique used to analyze materials at the micron and sub-micron level. 

[73] During post-mortem analysis, samples of the degraded electrodes were taken and placed 

under a microscope to determine from optical microscopy, defects in the electrode from the 

aging effects. Samples were approximately 3 cm long and 3 cm wide. These optical micrographs 
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were taken with an MA 200 Nikon Eclipse microscope.  Figure 100 through Figure 107, in 

Appendix C: Optical Microscopy Images, depicts the results of the microscopy studies. 

Prior to observation under the microscope, the cells had been washed in a DMC (dimethyl 

carbonate) solution to remove any remaining LiPF6 salt that had precipitated out of the 

electrolyte. From the micrograph results, it was observed that cells stored under 60oC conditions 

have a significant build-up a particulate matter. Despite the DMC wash, this particulate matter 

could not be removed. 

Observations of all electrode samples were unable to definitively conclude that there was the 

presence of any cracks in the electrodes. Imaging at this magnification was not sufficient to 

determine this degradation condition.  

4.4.5 Inductively coupled plasma (ICP) Analyses: 

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) is a technique used to 

analyze the elemental composition of electrodes. Inductively coupled plasma is used to create 

excited ions and atoms from a sample, which will release characteristic electromagnetic radiation 

in the visible range. [74] The particular wavelength of the radiation will describe the presence of 

a particular element and use of this method will be able to give the ratio between elements. [74] 

ICP is very effective and can detect the presence of elements all the way down to the ppm range. 

Thus, ICP-OES measurements are useful in determining if the dissolution of transition metals 

from the cathode is occurring, by detection of the migrated material on the anode. [13] 

A drawback of this technique, however, is that ICP-OES will not give the complete sample 

composition. [74] Additional methods are therefore required. ICP-OES is often compared to 

EDX, but ICP-OES has the advantage of detecting Li. 

4.4.5.1 ICP Analysis Procedure: 

In the glovebox, the electrodes were removed from the cell and samples of approximately 4 (2 

cm by 2 cm) to 9 (3 cm by 3 cm) cm2 were cut using ceramic scissors. Samples were placed into 

vials and filled with DMC to cover the sample. The vials were shaken to thoroughly wash the 

sample and left overnight to dissolve any remaining salt. All of the vials were removed from the 

glovebox, and the samples were dried. Once dry, the active material can be scraped from the 

electrode. The mechanical treatment will not change the chemical composition, and is therefore 
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not an issue when trying to obtain pertinent composition data. The samples are then dissolved in 

an acid solution (digestion) to have the samples enter into solution. 

4.4.5.2 ICP Analysis Results: 

ICP-OES analysis was done for both electrode samples to measure the types and amounts of 

metallic species present for cells stored at the different conditions. Trace metal concentrations 

were measured to assess the migration of cathode material within the cell. Table 11 describes the 

results of ICP analysis. 

Table 11: ICP Results of Metallic Species 

 
Mn (mg/kg) Fe (mg/kg) Ni (mg/kg) Co (mg/kg) Li (mg/kg) 

Fresh Graphite 35.971 1662.47 203.84 83.93 7976.02 

Fresh LFP 2086.60 334612.84 51.35 45.34 37799.52 

Graphite Stored at 

60oC/0% SOC 
25.75 693.39 145.92 60.09 15765.92 

LFP Stored at 60oC/0% 

SOC 
2355.43 355028.83 140.85 143.99 34736.29 

Graphite Stored at 

60oC/100% SOC 
38.99 1803.12 220.92 90.97 26447.30 

LFP Stored at 

60oC/100% SOC 
1965.87 317858.88 51.26 57.41 20502.90 

Graphite Stored at 

35oC/100% SOC 
108.11 1110.27 612.61 252.25 11193.51 

LFP Stored at 

35oC/100% SOC 
1940.64 322254.04 94.31 41.50 35609.21 

 

Based on the results it can be determined that there is a significant amount of lithium present on 

the graphite electrode. All cells stored in the glovebox, for destructive testing, are in a fully 

discharged state. The cyclable lithium should be intercalated into the LFP electrode. Thus, it 

would appear that the lithium has reacted with the electrodes in side reactions prompting its loss 

and subsequent incorporation into the SEI or other products. Table 12 describes the increase, or 

decrease, in metallic species within the electrode samples in comparison to the fresh electrode. A 

negative value represents a gain of that particular specie from the fresh electrode, while a 

positive value is a loss. 

  



 

 

88 

 

Table 12: Percentage increase or decrease of metallic species 

 Mn (%) Fe (%) Ni (%) Co (%) Li (%) 

LFP Stored at 

35oC/100% SOC 
6.995% 3.693% -83.662% 8.475% 5.795% 

LFP Stored at 60oC/0% 

SOC 
-12.883% -6.101% -174.275% -217.582% 8.104% 

LFP Stored at 

60oC/100% SOC 
5.786% 5.007% 0.176% -26.625% 45.759% 

Graphite Stored at 

60oC/0% SOC 
28.412% 58.292% 28.412% 28.412% -97.667% 

Graphite Stored at 

60oC/100% SOC 
-8.382% -8.460% -8.382% -8.382% -231.585% 

Graphite Stored at 

35oC/100% SOC 
-200.541% 33.216% -200.541% -200.541% -40.340% 

 

As determined from the differential voltage graphs, much of the lithium loss within the cell can 

be attributed to the loss of cyclable lithium, most likely due to the build-up of the SEI layer on 

the graphite electrode. The values for the lithium content in the samples correlate well to the 

conditions at which the cells were stored. Graphite stored at 100% SOC and 35oC yielded the 

smallest increase in lithium, whereas graphite stored at 60oC gave a much higher value. Finally, 

the graphite stored at discharged conditions, but at the same high temperature conditions yielded 

lower lithium contents in comparison to the fully charge cells. Along with temperature, the SOC 

of the cell greatly affects the extent of the loss of lithium.  

Build-up of the SEI layer is not the only explanation for why the value of the Li content was so 

high for the Graphite samples. Cells stored at 60oC experienced active material loss resulting in 

the electrodes being unable to allow for the intercalation and de-intercalation of Li. Also, the 

formation of lithium carbonate within the cell and its subsequent incorporation into the SEI layer 

will decrease the amount of cyclable lithium. 

Finally, it was concluded that there was not a significant deposition of Fe on the anode. Cells 

stored at 100% SOC actually experienced a loss of iron, and graphite stored at 60oC and 0% SOC 

had only a marginal increase. Looking at the cathodes, there appears to be only a marginal 

decrease and is not significant. Thus, dissolution of the iron from the LFP cathode cannot be 

concluded to have occurred during calendar aging for these storage conditions. 
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4.4.6 Profilometry 

Profilometry is an experimental procedure to measure the topography of a sample. An optical 

profilometer was used for these experiments. [79] As opposed to a stylus profilometer, optical 

profilometers are a non-contact experimental procedure that makes use of the wave properties of 

light to compare the optical path difference between the sample surface and a reference surface. 

[79] [80] 

An RTEC Instruments Optical Profilometer was used to obtain the profile readings for the 

electrodes. Resolution for the machine is 0.01 nm. The changes in the Z position of the optical 

path can then be used to digitally reconstruct the surface. The results of the average profile 

heights are depicted in Table 13. 

Table 13: Profilometry measurements of electrodes 

Storage Condition 
LFP Electrode 

Average Profile Height (μm) 

Graphite Electrode 

Average Profile Height (μm) 

Fresh Cell (no aging) 56.0 32.4 

Aged at 60oC and 100% SOC 72.8 62.1 

Aged at 60oC and 0% SOC 92.2 44.1 

Aged at 35oC and 100% SOC 73.3 42.0 

 

The aging of the electrodes under calendar aging conditions lead to greater electrode thicknesses, 

most likely attributed to the build-up of the SEI layer on the respective electrode surfaces. 

Increasing the storage temperature conditions leads to increased development of the SEI. SOC 

may also play a role in the thickening of the electrodes during aging as the electrodes stored at 

discharged conditions yielded much higher heights than electrodes stored at charged conditions. 

The opposite effect can be seen in the graphite electrodes. 

It must be noted that the electrode samples taken from the cell stored at 35oC and 100% SOC 

were aged for 24 months in comparison to the other cells that were only able to sustain aging at 

60oC for 4 months (100% SOC) and 7 months (0%) respectively. Thus, the higher thickness 

values reported for these samples is most likely attributed to the longer aging period rather than 

the specific aging conditions. 
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4.4.7 4 Point Conductivity Measurement 

In order to determine the effective electronic conductivity of the electrode samples a four-probe 

setup was utilized. Before being able to run this experiment, the samples had to be delaminated 

from the current collector. For the lithium-iron phosphate electrode the samples were submerged 

in a 1M NaOH solution at ambient conditions. [81] The production of hydrogen at the interface, 

between the porous electrode and the aluminum current collector, is the principal reason for the 

rapid delamination of the electrode from the current collector. The aluminum reacts according to 

the following reaction [81]: 

2𝐴𝑙 + 6𝐻2𝑂 ⇌ 2𝐴𝑙(𝑂𝐻)3 + 3𝐻2 

𝐴𝑙(𝑂𝐻)3 +𝑁𝑎𝑂𝐻 ⇌ 𝑁𝐴
+ + [𝐴𝑙(𝑂𝐻)4]

− 

This procedure, to remove the electrode from the current collector, will not damage the porous 

electrode material. [81] A similar procedure is completed on the anode to delaminate the graphite 

from the copper current collector, except in this case a solution of 1 M FeCl3 is used instead. 

The samples were then dried to remove any remaining solution. It should be noted that once 

removed from the current collector, all of the electrode samples became very difficult to handle. 

Samples from the cells stored in the highest temperature conditions were the most brittle and it 

was more difficult to complete the tests on those. 

Once the samples were prepared the following equipment was used to complete the experiment. 

The probe being used in the experimental setup consists of four equally spaced metal tips with 

finite radii. The tips make contact with the sample along a line with electric current being carried 

through the two outer probes. The inner two probes are used to record the resulting voltage. The 

probe being utilized to complete the test is a C4S-57/1S probe which has a probe spacing of 1 

mm, with 70-180 g applied force, 250 µm tip size made of Osmium metals. 

In order to determine the effective electronic conductivity the following equation is used [81]: 

 
𝜌𝑒𝑓𝑓 =

𝜋

𝑙𝑛2
𝑡 (
𝑉𝑡𝑒𝑠𝑡
𝐼𝑡𝑒𝑠𝑡

) Equation 4.1 

Where Itest is the applied current, Vtest is the measured potential, and t is the thickness of the 

electrode. 
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Using the results obtained from measuring the voltage and current values with the 4 point 

conductivity meter, and the thickness measurements from the profilometry studies, the effective 

electronic conductivity is calculated using Equation 4.1. The estimated value of the effective 

electronic conductivity for each of the samples is summarized in Table 14. 

Table 14: Electric conductivity of LFP samples 

Storage Condition LFP Electrode Electric Conductivity (Sm) 

Fresh Cell (no aging) 52.7031 

Aged at 60oC and 100% SOC 10.4500 

Aged at 60oC and 0% SOC 10.1956 

Aged at 35oC and 100% SOC 14.5558 

 

Electrical conductivity is the measure of a material's ability to allow the transport of an electric 

charge. Having good electrical conductivity is very important when selecting materials for 

cathodes and anodes of cells. [81] All of the aged electrodes reported a loss of electronic 

conductivity, with the samples from the higher storage temperature conditions experiencing the 

most significant losses. SOC did not appear to play a factor in loss of conductivity as samples of 

LFP electrodes from cells stored at discharged and charged conditions obtained similar values. 

4.5 Summary of Calendar Aging of LiFePO4 Cells 

In this chapter, results for non-destructive and destructive testing of LiFePO4 cells were 

completed to determine the extent of aging occurring within the cells and to attempt to determine 

which degradative phenomena were arising. Storage of the cells at different aging conditions 

promoted the loss of capacity in a number of ways and, depending on the storage conditions, 

resulted in the cells reaching their EOL points much sooner than they would have if stored at 

ambient temperature conditions.  

The highest capacity loss was observed in cells stored at high temperature and fully charged 

conditions. This was demonstrated by tracking irreversible capacity loss over storage time and 

was observed in the ICP analysis (cells stored at 60oC and 100% SOC had the highest Li content 

within the bulk graphite). Utilizing differential voltage capacity curves, it was found that the 

modes of degradation resulting in the capacity loss were the result of the loss of cyclable lithium 

and a loss of active material at the anode. This is in accordance with what the literature states 
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would occur, as the increased temperatures and high concentrations of lithium at the anode 

promote the proliferation of degradative side reactions to occur. [8] [18] Post-mortem analysis 

(SEM and optical microscopy images of the electrode samples) of these cells found that there 

was a build-up of a secondary layer of material on the anode, although it did not cover the entire 

area. The formation of this material over the anode is most likely correlated to the loss of active 

material as the build-up of this material may be preventing Li ions from being able to intercalate 

within the active graphite material. In literature, it has been found that with continual build-up of 

the SEI layer at the anode areas of the active graphite material can become inactive, preventing 

further intercalation of lithium ions. [8] It can be suggested that a similar phenomenon is being 

observed here. 

Temperature played the most significant role in the degradation of the cell. As depicted in the 

capacity loss curves for cells stored at 0% SOC and 60oC and 50oC, despite the cells being stored 

at a lower state of charge, storage at the 60oC temperature condition led to much higher capacity 

losses compared to the 50oC storage condition. These losses were not as high if the cell had been 

stored under fully charged conditions, but the cell storage temperature played the most distinct 

role in the degradation of the capacity of the cell. During post-mortem analysis, SEM 

micrographs displayed the presence of a material that had adhered onto the surface of the 

graphite that was similar in composition to that of the material found on the graphite samples for 

cells that had been fully charged. The high temperature storage conditions are likely promoting 

the proliferation of the side reactions that form this material and is a likely reason for the active 

material loss that is being observed to be occurring within the cell as it ages (observed through 

differential voltage capacity curves). The SOC at which the cell was stored at then determined 

the extent of the loss of the active material. Similar results were seen when comparing cells 

stored at 50oC and charged and discharged conditions respectively, although the losses were not 

as severe at this temperature condition. 

Finally, a “history” effect could be observed from cells that were stored at initially high 

temperature conditions and then shifted to less severe ones. Storage of LiFePO4 batteries at high 

temperatures had a pronounced effect on the rate of degradation, even after the cells had been 

switched to new, less severe storage conditions. Based on the capacity fade results, depicting the 

irreversible capacity losses in cells that underwent a shift in temperature conditions (from a 
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higher temperature to a lower one), there will be a decrease in the rate of degradation observed. 

The storage of the cells at the initial, much higher, temperature condition, however, promoted 

continual and increased degradation throughout the storage life of the cell. The differential 

voltage capacity curves demonstrated that the active material losses would continue to increase 

despite the shift. Had the cell been stored at much less severe conditions over its entire lifespan, 

the degradation would have been a steady and much smaller decrease with time and would be 

more likely caused only by a loss of cyclable lithium. These results lead to the observation that 

the history of storage for a cell will have a dramatic impact on its continual usage.  

4.6 Failure of LiFePO4 Cells due to Cycling and Calendar aging conditions 

4.6.1 Failure of cells stored under OCP conditions 

LiFePO4 cells were stored under different conditions to determine the degradation reactions that 

were occurring. By storing the cells at much higher temperature conditions than would normally 

be experienced, degradation phenomena that would not be observed for long periods of time at 

ambient conditions can be studied.  

The two most prevalent modes of degradation occurring within the cell were the loss of cyclable 

lithium and active material losses. Both forms of degradation were observed, very distinctly, in 

cells stored at over 50oC (based on differential voltage-capacity curves created). Eventually the 

capacity within the cells had dropped so far that they could no longer be safely stored within the 

environmental chambers and were removed. 

In addition, the severe degradation caused from storage at these temperatures also promoted the 

production of gases within the cell. After a cell was removed from storage, cycling of the cell to 

determine the degradation was performed at ambient conditions and the cells in question did not 

show any visible signs of swelling during this process. Gas production within the cell was 

observed only after the cycling procedure was completed and the cell was placed back into 

storage. For some cells the resulting gas expansion within the cell was quite drastic. From then 

on, due to safety concerns, the cells were then segregated from testing equipment and were not 

cycled again.  
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Cells were stored for a period of 1 to 2 years under ambient conditions. In some cases, the cells 

retained their respective volumes. Figure 52 displays the extent of swelling experienced by the 

cells. For cells tested at a temperature of 60oC and 100% SOC.  

 

Figure 52: Extent of swelling of aged cell (right) compared to fresh cell (left) 

Some cells, however, experienced a volume reduction, in comparison to their initial volumes 

when first removed from the thermal chamber. These cells were primarily cells stored at 60oC 

and 0% SOC. When comparing these cells with the ones under discharged conditions, but at the 

same temperature, the amount of gas produced in the discharged cells was significantly less than 

those stored under charged conditions. Figure 53 displays the comparison of cells tested under 

60oC temperatures at 0% SOC (left) and 100% SOC (right).  
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Figure 53: Swelling Observed between Aged cells stored at 0% SOC (left) and 100% SOC 

(right) 

In an article published in 2016, by D.J. Xiong, et al., gas production in vacuum sealed Li-ion 

cells (NMC/graphite electrode cells) were studied under OCP storage conditions. [82] Full pouch 

cells were combined with electrolyte and stored at 60oC conditions and 100% SOC. Others were 

first separated into their individual electrode components, washed with DMC, and the individual 

electrodes were combined inside pouch bags with electrolyte, before being placed inside thermal 

chambers. The electrodes contained within the respective bags were fully lithiated graphite and 

delithiated NMC to match the stored Li-ion pouch cells. [82] 

From the results of the article, it was found that there the productions of gases within the pouch 

bags, with the delithiated NMC, was much greater than the gas production in all of the other 

tests. [82] Pouch bags stored with lithiated graphite electrodes experienced negligible gas 

production, while the pouch cells that had not been dismantled at all experienced some gas 

production but not as significantly as the pouch bags. The conclusion was that the graphite 

electrode within the cell plays a role in limiting the production of gaseous species. Additional 

studies of this phenomenon determined that within the pouch cell that the primary gaseous specie 

produced is carbon dioxide (produced at the cathode). Carbon dioxide in a pouch cell migrates to 

the anode where it is reduced decreasing the amount of gas within the cell. [82] 
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This phenomenon was also seen during the calendar aging experiments completed for this 

research. Cells stored at 60oC and 0% SOC, showed much greater volumes of gas production 

during storage when first removed (as described previously), but over the yearlong storage at 

ambient conditions the volume decreased. As these were full cells and not half-cell electrodes, 

the loss of gas over time was most likely promoted by the graphite electrode. As the active 

material of the graphite electrode had not fully degraded (based on the voltage capacity 

differential curves) it is logical that the remaining active material would allow for the reduction 

of the gaseous species. 

This assessment is also supported by the cells stored at 60oC and 100% SOC. The most likely 

reason why the cell volumes stayed relatively the same is because the extent of aging led to 

severe degradation of the active material at the anode (as seen in differential voltage capacity 

curves).  With the active material lost from the anode electrode the gaseous species within the 

cell cannot be reduced and the gas within the cell does not decrease.  

4.6.1.1 Calendar Aging of LiBs and Influence on Battery Pack Design 

Prolonged storage of batteries at extreme conditions has already shown that severe degradation 

will take place resulting in a high degree of capacity failure and large quantities of gases 

produced from side reactions occurring within the cell. Figure 52 displays the extent of swelling 

from storing the cell at 60oC and 100% SOC. The cells have ballooned outward in a very 

dramatic way, and if this were to have occurred in a battery pack, there would be insufficient 

space to accommodate the increase in volume and the cell would subsequently burst. Bursting of 

the cell will cause exposure of the electrolyte to the air can have very damaging results on the 

battery pack, resulting in the potential for thermal runaway to occur and fire.  

This is an unfortunate failure mode of LiBs as the space between cells cannot be increased. The 

increase would expand the footprint of the battery pack within the vehicle, resulting in the 

potential decrease in the range of the vehicle (with removal of cells) and increase in the weight 

of the battery pack in the vehicle. To protect the battery module or battery pack from 

catastrophic failure, though, cell vents or tear-away tabs are built into the cells to allow the safe 

release of gas if excessive pressure builds up. [72] The gas is then expelled from the battery pack 

by means of a built-in vent, which connects the internal surroundings of the battery pack to those 

external to the vehicle.  
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The cell can then be disconnected from the battery through the use of integrated circuitry module 

so as to prevent further damage to the battery pack and fuses can be used in the battery to prevent 

electrical fire, spark, and shock hazard. Additional safety features can also be added to detect the 

presence of flammable gases within the battery enclosure and if the concentration is rising. A 

signal can then be sent to the controller to increase airflow out of the battery pack case or have 

vehicle enter into emergency shutdown conditions. Further design considerations for the battery 

pack include: using self-extinguishing materials inside the battery case, and installing a firewall 

between battery case and driver and passenger spaces to protect the consumers. 

4.6.2 Case study of Safety of cycling LiFePO4 Cells at high and low temperatures 

The cycling procedure for these cells was to first perform a characterization test of each cell 

consisting of a charge, discharge and then a charge to fifty percent of the capacity of the cell. 

This was then followed by an HPPC test to obtain the resistance at that particular point of the 

cell’s life. This characterization test was completed at four different temperatures (-30oC, 0 oC, 

25 oC, 60 oC) using a climate chamber to maintain constant temperature. After the 

characterization the cell was removed from the climate chamber and cycled for 50 cycles at room 

temperature.  

After 50 cycles of the battery at CCCV cycling, the cell was beginning to experience signs of 

swelling. After 100 cycles the swelling continued to increase within the cell, but it was only 

during the characterization following that the cell underwent a catastrophic failure. The 

characterizations at -30oC, 0 oC, and 25 oC had been completed, but during the 60oC 

characterization the cell experienced an internal short circuit causing the cell to undergo thermal 

runaway.  

Once the cell had reached the upper limits of the test conditions, the equipment entered 

emergency shutdown conditions and ceased cycling. The cell, though, continued to climb in 

temperature reaching temperatures over 300oC.  Figure 54 depicts the extent of the damage that 

the cell incurred after the thermal runaway. 
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Figure 54: LiFePO4 cell thermal runaway aftermath 

The cell was removed from the climate chamber for post-mortem analysis. The reason for the 

failure was, most likely, due to the fact that the cell was cycled at sub-zero temperatures at 

1Cnom. Charging at sub-zero temperatures can result in the plating of lithium onto the negative 

electrode (anode). If dendrites form and puncture the separator it can lead to a short circuit. 

Post-mortem analysis of the battery has revealed severe degradation of the battery has occurred. 

On the exterior casing the battery had been severely damaged showing significant melting at the 

contacts and on the side of the cell that was leaning up against the support blocks (Figure 55). 

    

Figure 55: Post-mortem analysis first assessment of thermal runaway 

On the interior, the electrodes had become extremely brittle, having dried out from the extreme 

temperatures experienced during the thermal runaway. The coated LFP and graphite coatings 
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from the positive and negative electrodes were delaminating from their respective current 

collectors. Many of the electrodes had actually fused together and required excessive force to 

separate the layers. 

An internal short-circuit is the most likely cause of the thermal runaway, resulting from 

electrodes within the cell coming in contact with each other to cause the short. A cell is 

composed of two electrodes, electrolyte, and a separator. If the two electrodes make contact with 

each other a short can be created. When cycling at low temperatures, there is the risk of 

deposition of solid lithium metal on the anode of the cell, causing the loss of cyclable lithium. If 

enough lithium becomes plated onto the electrode it can puncture through the separator and 

contact the cathode electrode causing an internal short circuit. [83] Lithium plating can also be 

caused from: cycling the cell at high rates and due to the presence of microscopic metal particles 

making contact with other parts of the cell. [37] 

 

     

Figure 56: Extent of damage to anodes and cathodes 

4.6.3 Thermal Runaway Conditions 

When an internal short has been created, the cell discharges through it creating a hot-spot. Active 

materials will undergo exothermic reactions and given the right conditions (amount of heat 

generation and insufficient heat removal from the hotspot and the cell) thermal runaway occurs 

As the cell heats up the separator will begin to melt causing other internal short-circuits to occur, 

referred to as secondary internal short circuits, and increasing the possibility for the cell to 

undergo thermal runaway. [83] 
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In addition to the lithium plating, the swelling of the cell created additional pressure on the 

electrodes. Forcing electrodes closer together can aid in instigating the internal short-circuit. Gas 

formation within the cell is believed to have been caused by a number of factors. Based on 

previous work, gas formation has been found to occur due to the partial reduction of many 

compounds within the electrolyte. At elevated temperatures and high SOC, oxidation of the 

electrolyte components can occur at the positive electrode interface resulting in the production of 

CO2 and ethylene gas. [69]. 

In order to remove the excess gas from the cell, a pressure valve installed on the cell will allow 

small amounts of gas to escape as the pressure in the cell increases. Based on the analysis of the 

destroyed cell, though, it appears as if the plastic surrounding the pressure relief valve melted 

sealing the area. Gas was then unable to escape as the pressure rose with the thermal runaway 

overheat. When the pressure became too great for the casing to endure the thermally damaged 

casing exploded outward releasing the electrolyte. 

Cycling the cell at sub-zero temperatures became the initial catalyst for the destruction of the 

lithium-ion cell. Combining the lithium plating that occurred with the rigorous cycling at higher 

than normal temperature conditions aided in furthering the degradation (with the formation of 

gaseous compounds). After only approximately 100 cycles, the cell eventually lead to the short 

circuit seen in the figures and underwent thermal runaway. Although, the system was able to 

shutdown safely and cease cycling the damaged cell it is not able to ultimately protect against an 

internal short-circuit. 

4.6.4 Preventative Measures 

As previously discussed, there are a variety of standard safety related technologies to guard 

against abuse of the Li-ion batteries (external short-circuits, overcharging, etc.). [33] Internal 

short circuits are particularly hard to prevent from occurring within a cell as they cannot be 

prevented from adding additional circuit protection. [32] [34] To prevent internal short circuits, 

lithium-ion cells rely on the use of chemical means to supress the short from occurring.  

An overheating cell can cause the separators to distort or melt, which can cause contact between 

the electrodes and a short circuit to occur. [32] To prevent this much stronger separators or 
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separators with different physical properties can be utilized. For instance: rigid separators, 

flexible ceramic powder coated plastic, or shutdown separators. [36] 

Rigid separators do not distort even under extreme temperature conditions, but do not prevent 

against impurities within the cell. [36] [84] A flexible ceramic powder coated plastic, though, 

prevents contact between the electrodes, resists penetration by impurities, and does not shrink at 

high temperatures. All of these properties aid in preventing the propagation of a short circuit 

across the separator, Finally, a shutdown separator contains plastic that melts closing up the 

pores to avoid a short circuit. Unfortunately, for shutdown separators, when the pores close the 

cell will no longer function. 

If an internal short were to occur, though, its occurrence can be detected by a drop in cell 

voltage, triggering isolation of the battery from charger or load. [15] [36] This will not prevent 

the short, but the mitigation will prevent further damage to neighbouring cells and the pack. 

Another method for protecting the battery pack from a potential thermal runaway event due to an 

internal short is by relying on the battery management system.  A battery pack has to be 

equipped with a BMS system to ensure that the cells within the pack do not operate outside of 

their voltage and temperature thresholds during cycling. In addition, a BMS can isolate a cell in 

the battery pack if an internal short occurs. This can be detected by a drop in cell voltage, 

triggering isolation of the battery from charger or load. Once again, the short cannot be 

prevented, but the mitigation will prevent further damage to neighbouring cells and the pack. 

4.6.5 Summary of Degradation Case Study 

As previously stated, in the world of battery systems the lithium-ion battery has become the 

foremost energy storage technology for electric vehicles. [76] Ensuring the proper safety 

measures are in place to prevent damage to personnel and components are paramount, when 

running a battery system, whether it is in a laboratory setting or in a battery pack within a 

vehicle. The reactions occurring under adverse conditions will promote degradation of the cell 

that can cause Li-ion batteries to potentially fail in a very hazardous manner. 

LiFePO4 cells from two different manufacturers were subjected to calendar testing and cycling 

testing respectively under different temperature conditions. Cells subjected to high temperatures 

under OCP conditions experienced gas formation, with the highest degree of swelling occurring 
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at the conditions of 60oC and 100% SOC. If left at the increased temperatures the cells may have 

potentially undergone thermal runaway damaging the other cells in the chamber. The cells 

undergoing cycling aging at low and high temperatures promoted both gas formation and lithium 

deposition. This ultimately led to the cell undergoing thermal runaway. With the cell in an 

enclosed space minimal damage was done and the program was able to stop itself, but if in a 

battery pack system external circuits and a BMS could have prevented the cell from being cycled 

at temperatures below and above it operating points. 

Unfortunately, the safety concerns regarding violent failure of the LIB system are a major 

obstacle to overcome in order for there to be higher consumer appeal of EDV technologies. The 

cycling of LiFePO4 cells can be very dangerous if operating outside of the operating thresholds 

of that particular cell. It is crucial that all the necessary safety systems are effectively tested and 

correctly validated.  

4.7 Battery Pack Design for EcoCar 3 Competition 

UWAFT has had a long tradition of competing in Advanced Vehicle Technology Competitions 

(AVTCs). The team has now embarked on participating in the EcoCAR 3 competition, 

sponsored by the US Department of Energy and General Motors. The task for the university 

students participating in the challenge is to complete the entire development process, from design 

to integration, completely re-engineering a stock V6 Camaro into a hybrid-electric vehicle. [41] 

This will not be the first time UWAFT has designed and built a hybrid-electric vehicle. The team 

has significant experience in performing the design and building of battery pack systems gained 

from participating in: the EcoCAR 2 competition, EcoCAR: the Next Challenge and Challenge X 

which focused on the design and building of FCEVs. 

The goals of this challenge are: to improve fuel economy, reduce emissions, and maintain 

performance of the vehicle. [41] The competition runs over a four-year period, with various 

milestones having to be completed annually, and, at the end, the teams pursue the goal of having 

a full operational hybrid-electric vehicle. 
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4.7.1 UWAFT Procedure for Developing a Battery Pack Design: 

UWAFT is currently participating in the EcoCAR 3 competition, the most recent Advanced 

Vehicle Technology Competition (AVTC) (2014 – 2018), challenging participating universities 

across North America to re-design a 2016 Chevrolet Camaro. The goal of the competition is to 

design a vehicle which reduces the environmental footprint of the stock vehicle while 

maintaining design aspects including safety and consumer acceptability.  

Determination of the chosen architecture, in Year One, required developing the requirements set 

by the team and the competition. These requirements are found in Appendix D: Vehicle 

Technical Specifications. Teams then use software and model-based design to generate a variety 

of hybrid vehicle concepts/architectures that attempt to meet the requirements and would be 

innovative to build in the following three years of the competition. Based on the assessments, 

which used tools such as MATLAB/Simulink, Autonomie, and Unigraphics NX, UWAFT 

selected a split-parallel architecture for construction. The selected architecture is unique in the 

fact that the vehicle can run in series, parallel, or split operation depending on the SOC of the 

battery and the torque demanded by the driver. 

In accordance with choosing the architecture, a selection of the battery pack modules (number 

and configuration) was completed. Utilizing battery module data provided by the competition, 

through two suppliers, UWAFT was able to decide upon a module design that met the desired 

vehicle technical specifications (VTS). Table 15 outlines the module designs that UWAFT could 

select from. 

Table 15: Battery pack options for EcoCAR3 competition 

Manufacturer Model Capacity 

(kWh) 

Peak 

Current (A) 

Continuous 

Current (A) 

Nominal 

Voltage (V) 

A123 6x15S2P 10.8 350 115 292 

A123 7x15S2P 12.6 350 115 340 

A123 6x15S3P 16.2 520 175 292 

A123 7x15S3P 18.9 520 175 340 

Enerdel PE 350-394 12.1 105 70 317 

Enerdel PP 320-394 11.2 320 125 317 

 

The battery chosen for the vehicle is a 16.2 kWh A123 pack, which uses six 15S3P modules, 

which are connected in a series configuration. Based on the analyses and simulations performed, 
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this pack configuration is able to provide the user with approximately 70 km of all-electric range, 

meeting the daily driving range of North Americans of 40.55 km. [85] Based on the 

specifications outline in Table 15, the pack can run at a nominal voltage of 292 V, and can 

provide a peak current of 400 A to the two electric motors. Figure 57 displays the battery pack 

configuration and equipment provided by A123. 

 

Figure 57: High Voltage Routing for A123 Battery Modules in a 6x15S3P Arrangement [86] 

Equipment provided by A123, to construct the battery pack, includes: the battery modules, the 

Current Sense Module, the BMS, and the battery contactors. [86] From this initial stage, 

UWAFT then designs and builds the battery pack enclosure and pack configuration to surround 

the system, providing it protection and safeguarding consumers from the high voltage 

connections, in accordance with EcoCAR3 Safety requirements. [41] 
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4.7.2 Construction and Design Criteria 

The vehicle supplied by GM is a stock 2016 Camaro with all of the stock vehicle components. 

[41] Utilizing the stock structure, the team must determine how to modify the vehicle to 

accommodate the components of the new architecture. The team must not, however, make any 

major structural modifications. [41] 

When considering the design of the battery pack, there are several criteria which need to be 

considered. First and foremost, as required by the competition, the vehicle has to have a curb 

mass of 1860 kg. [41] As the battery modules are one of the heaviest components being 

integrated into the vehicle significant work must be done to keep the mass of the design low, 

while being able to meet load requirements. In addition, being able to lower the mass of the 

vehicle will aid in meeting the performance and fuel economy. Also, it is important to consider 

the ease of fabrication of the mounts. If the design is very complicated it will be time-consuming 

to construct as it may require specific equipment and costly. [87] Finally, as high voltage is a 

very dangerous hazard present in the vehicle, with the incorporation of a battery pack system, 

significant design work has been performed to ensure safety of the component and that it 

conforms to competition and vehicle standards. [41] [86] 

4.7.2.1 Placement 

When considering the placement of the battery pack for installation in the vehicle, the size of the 

components and their general safety have a dominant impact on determining its location. To 

protect the battery pack in the case of a crash, the battery pack cannot be located in any of the 

crash zones of the vehicle, eliminating select areas in the engine bay and trunk as they are 

designed to crush in the event of a collision. [41] Thus, the decision was made to situate the 

battery pack in the front of the vehicle’s trunk. The trunk is the only location with the area to 

accommodate the modules and fulfills the necessary requirements for the rules of the 

competition. Based on the designs, the battery pack enclosure can be built into the trunk to 

optimize both passenger and cargo capacity. With the remaining trunk area, additional 

powertrain components, required for the hybrid retrofit, can be installed as well.  

4.7.2.2 Load Cases for ESS Mounting Structure 

Battery pack assembly is crucial to ensuring the safe-guarding of the batteries within the battery 

modules and protecting consumers from high voltage and fire hazards (if punctured Li-ion cells 
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will explode). A battery pack enclosure needs to be finger-proof so as to protect from the 

battery’s lethal electrical potential, and the battery frame must be designed from durable 

materials and be able to sustain loading conditions endured during operation of the vehicle. [41] 

If the battery pack modules were to become dislodged and slide out of alignment they could 

become severely damaged resulting in potential harm to the consumer. In order to properly hold 

the battery modules in place, the battery frame is to be designed to withstand the following 

loading conditions from the competition [41]: 

 20g Loading in the Front – Rear Longitudinal Direction; 

 20g Loading in the Left – Right Lateral Direction; and, 

 8g Loading in the Up – Down Vertical Direction. 

4.7.2.3 Space Claim: 

Due to the limited space, and requirements of the competition to maintain cargo capacity, a space 

claim analysis for the trunk space was completed. By maneuvering the modules in different 

arrays inside the trunk area, the team could find the best fit. [87] The following images, Figure 

58, Figure 59, and Figure 60, show three of the preliminary module configurations that were 

considered for placement within the vehicle’s trunk. The vehicle CAD has been removed due to 

confidentiality reasons. 

   

Figure 58: Module Design 1 Figure 59: Module Design 2 Figure 60: Module Design 3 

The module configuration determines how the mounting structure will be designed to hold the 

modules. After the space claim analysis, Figure 60 was chosen based on its smaller volume, 

height, and weight considerations. [87] 
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4.7.2.4 Mounting Structure: 

Module placement determines how the mounting structure will be designed to hold the 

components. The mounting structure of battery pack is comprised of two sections: a lower and 

upper section.  In the upper section, this mount will hold two of the six modules, with the 

modules lying on their side to decrease the overall height of the battery pack in accordance with 

the space claim. The lower section will houses the remaining four modules, standing upright, 

side by side. The mounting structure was then developed from many iterations of design 

optimization. This was completed using the team’s CAD software. All design work is completed 

using Siemens Unigraphics NX 9 software.  

In order to maintain structural stability and reduce the overall weight of the vehicle the battery 

mount will be constructed out of 6061 aluminum. 6061 aluminum is approximately three times 

lighter compared to the 4130 steel used to make up the EcoCAR 2 battery pack. For the 

preliminary design of the battery pack, the enclosure shall be constructed out of aluminum, but 

subsequent designs will be constructed from carbon fibre. The carbon fibre construction will 

further aid in the weight reduction of the vehicle and work towards the team’s goal of achieving 

a 47/53 weight ratio. 

4.7.2.5 Structural Considerations: Structural FEA 

Structural Finite Element Analysis (FEA) is used in structural mechanics to develop a numerical 

solution as to the structural integrity and durability of complex systems. [87] The technique is 

completed on the final design of the structure, to ensure that it can withstand the loading 

conditions, with a safety factor of 1.5. These loading conditions are the same as those used 

during the optimization, and are placed at the center of gravity of each battery module. All 

optimization/FEA is completed using Altair Hyperworks 13. Iterations are made on the exact 

design of the frame based on FEA results. The results of the FEA analysis show areas where the 

frame can become damaged under load and require further design iterations if they do not meet the 

requirements. After subsequent iterations UWAFT submitted a design that passed the Preliminary 

Design Review for the EcoCAR 3 competition and are now integrated into the vehicle. 

4.7.2.5.1 Meshing 

In order to be able to perform the FEA analysis the mounting structures need to have a meshing 

system applied to both. The battery pack is initially set up in NX and then the geometry is 
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imported to Hypermesh, The Hypermesh program allows the user to create two-dimensional 

shell elements and three-dimensional solid elements in the imported object to calculate the stress 

and strain over the entire geometry. The designer initially sets up the design and non-design 

spaces where the optimization solver can and cannot place material to meet the loading 

conditions. The battery assembly is primarily made up of shell elements, simulating the aluminum 

tubing and plate which the structure is made up of. Shell elements are used as they best represent the 

bending that may occur in the thin frame members. 

Figure 61 and Figure 62 show the completed meshing of the upper and lower sections of the battery 

frame. To achieve the proper meshing of the elements, 5 mm CQUAD4 and CTRIA3 first order shell 

elements were utilized. To model the effect of having the modules placed onto the mounts and to 

distribute the loads at the boltholes spokes were created using RBE2 rigid elements from the center of the 

bolt hole to the edge of the bolt hole. These RBE2 elements were then connected together to represent the 

center of gravity of each battery module. 

 

Figure 61: Meshing of lower battery mount 
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Figure 62: Meshing of upper battery mount 

All six degrees of freedom are fixed at the mounting holes of the battery frame. The load and constraint 

locations are shown in Figure 63. 

 

Figure 63: Load and constraint location for upper battery frame 

The loads for the load cases were applied to the center of gravity of each of the battery modules. All six 

degrees of freedom are fixed at the mounting holes of the battery frame. The load and constraint locations 

are shown in Figure 64. 
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Figure 64: Load and constraint location for upper battery frame 

4.7.2.5.2 Upper Frame Finite Element Analysis 

As the battery mount is split into two sections, the FEA can be split into two separate analyses. 

The loading conditions are the same as those used during the optimization, and are placed at the 

COG of each battery module. Starting with the upper battery mount, Figure 65 through Figure 67 

display the FEA analysis completed for each of the loading cases for the upper mounting section. 

Table 16 also describes the results of the FEA analysis. 

 

 

Figure 65: Upper frame design von Mises stress contour for 20g longitudinal load case 
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Figure 66: Upper battery frame design von Mises stress contour for 20g lateral load case 

 

 

Figure 67: Upper battery frame design von Mises stress contour for 8g vertical load case 

The areas indicated in blue in the figures, show that the depicted areas endure minimal loading in 

most areas. In all of the figures, there are no areas that endure very high stress (depicted in 

“red”), and the areas that are depicted in “green” are within tolerance levels for what the mount 

can endure, as the safety factors calculated (shown in Table 16) exceed the 1.5 safety factor 

required by the competition. 
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Table 16: Upper Battery Frame FEA Results 

Load Case Maximum Stress [MPa] Safety Factor Contour Plot 

20g Longitudinal 145.64 1.7 Figure 65 

20g Lateral 129.23 1.9 Figure 66 

8g Vertical 132.47 1.8 Figure 67 

 

Based on the FEA analysis done for the upper section, the design will meet the load 

specifications and not plastically deform under static conditions. Under all of the loading 

conditions the safety factor for the mount was found to be in excess of the 1.5 factor as set by the 

competition, resulting in the frame being appropriate for construction. 

4.7.2.5.3 Lower Frame Finite Element Analysis 

The figures depicting the FEA analyses of the three different loading cases are shown in Figure 

68 to Figure 70. Table 17 also describes the FEA analysis of the ESS lower section. 

 

 

Figure 68: Lower frame von Mises stress contour plot for 20g longitudinal load case 
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Figure 69: Lower frame von Mises stress contour plot for 20g lateral load case 

 

 

Figure 70: Lower frame von Mises stress contour plot for 8g vertical load case 

Once again, it was found that the areas endure minimal loading in most areas. In all of the 

figures, there are no areas that endure very high stress (depicted in “red”), and the areas that are 

depicted in “green” are within tolerance levels for what the mount can endure, as the safety 

factors calculated (shown in Table 17) exceed those required by the competition. 
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Table 17: Lower Battery Frame FEA Results 

Load Case Maximum Stress 

[MPa] 

Safety Factor Contour Plot 

20g Longitudinal 152.00 1.6 Figure 68 

20g Lateral 56.24 4.3 Figure 69 

8g Vertical 77.13 3.1 Figure 70 

 

As the design was able to meet all of the load conditions, Figure 71 and Figure 72 became the 

resulting design for the battery pack for the Camaro. The figures are the CAD images of the 

battery mounting structure. 

 

Figure 71: Upper mounting Structure of ESS 

  

Figure 72: Lower Mounting Section of ESS

4.7.3 Additional Requirements 

4.7.3.1 High Voltage Interlock Loop 

As the ESS operates at high voltages, it is required that the system have a high-voltage interlock 

loop (HVIL) installed. An HVIL circuit consists of a series of switches that will disconnect the 

battery from the other HV sources. [88] In the event that someone attempts to tamper with a 

system connected to the HVIL circuit, the circuit will disconnect and result in the system being 

de-energized, rendering the system safe to repair, service, or install. [88] In accordance with 

competition rules and electric vehicle regulations [89], the team has installed the circuit indicated 

in Figure 73 into the ESS system. 

The HVIL circuit in question combines the Manual Service Disconnect, inertial switch, and both 

emergency stop switches into the circuit. If any of these pieces of equipment are triggered the 

circuit will open and prevent current from flowing from the battery.  
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Figure 73: High Voltage Schematic for UWAFT Team
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4.7.3.2 Venting 

As previously described, gases can build-up in cells and be released within the battery pack 

enclosure.  In order to prevent the continual build-up of gases within the enclosure, a built-in 

vent, connecting the internal surroundings of the battery pack to those external to the vehicle, 

aids in the expulsion of the gases. The vent needs to have adequate flow to avoid excess pressure 

buildup of gases, should the cells within the battery pack fail. 

Requirements for placement of the vent on the battery pack are that the vent on the pack side 

should be located as high as possible and must be above the expected vehicle water line to 

prevent water intrusion. For routing the vent gas line connection to the external surroundings, 

there should be at least one bend (angle greater than 45 degrees), to prevent splash from entering 

the pack, and the vent path must have no areas where water can accumulate.  Also the connection 

should slope towards the output to allow any water in the vent line to drain.  

In accordance with these requirements UWAFT has provided the following vent location in the 

battery pack (Figure 74), which has easy access to connect the hose to the passenger side rear 

wheel well vent. 

 

Figure 74: Battery Pack Vent 

4.7.3.3 Manual Service Disconnect (MSD) 

Battery packs built for the EcoCAR3 competition must incorporate a manual service disconnect 

(MSD) into the battery pack configuration. Its role is to disconnect and de-energize the ESS HV 
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electrical system while service is performed on the vehicle. [88] The MSD also acts as a vital 

part of the HVIL system, preventing an external short circuit and “breaking” the connection in 

the middle of the pack to split the pack potential in half. [88] 

4.7.3.4 Battery Management System 

In order to ensure that the battery in an electric vehicle is able to sustain life for the duration that 

it is required by consumers, a comprehensive controls sequence is utilized to limit battery 

degradation. [32] The battery management system (BMS) measures the overall SOH of the battery 

pack and controls the current, voltage, temperature, and other parameters of the system when in 

operation. [45] For lithium-ion batteries safe-operating windows are very strict and exceeding 

these restrictions will lead to rapid degradation and even result in safety complications [15]. 
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5 Warranty Simulation Lifespan Analysis of a LiFePO4 

Battery Pack 

Long term studies of the life of a product (many years in duration) must be performed using a 

simulation. The long-term nature of the project would create heavy costs to track the various 

parameters associated with a product at each of the stages, from initial construction to eventual 

end-of-life (80% of remaining capacity within battery pack). Using the model described in 

Section 2.8.3, a life cycle model can be developed to analyse the battery pack capacity over a 

long-term lifespan. As the criterion for an EV battery pack is at least 10 years of life, simulations 

of the battery pack life cycle will be completed over this duration. In doing so, an assessment of 

the amount of degradation, as a result of cycling aging, can be compared to that of the total 

calendar aging degradation. 

5.1 Modeling degradation  

The two degradation modes that need to be modeled are cycling and calendar aging. Each 

degradation mode relies on different parameters in order to calculate the extent to which the cells 

will degrade within a battery pack.  

5.2 Calendar Aging 

Based on the research completed by Ecker et al., they were able to develop a semi-empirical 

model for the calendar aging of lithium-ion batteries, utilizing the parameters of: temperature, 

aging period, and potential which is related to the SOC of the cell. The equations can be found 

under Section 2.8.3.  

5.3 Cycling Aging 

For the cycling aging model, the work done by Wang et al. was selected to represent the 

degradation of cells due to cycling. Results from testing of LiFePO4 cells aged by Wang et al. 

found that the capacity fade is primarily caused from the loss of active lithium, mostly associated 

with degradation at the anode. The team analyzed the effects of: time, temperature, depth of 

discharge, and rate of discharge. From their work, the following semi-empirical model was 

developed (Equation 5.1):  
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𝑄𝑙𝑜𝑠𝑠 = 𝐵𝑒𝑥𝑝 [

−31500 

𝑅𝑇
] (𝐴ℎ)0.55 Equation 5.1 

Where Qloss is the capacity lost within the cell over the duration of cycling, B is the pre-

exponential constant, R is the universal gas constant, T is the temperature in Kelvin, and Ah is 

the number of amp-hours that flow through the battery. Fitting of the parameters for the above 

equation is determined, once again, through a regression analysis. It should be noted that the 

parameters for the above equation are fitted for the LiFePO4 chemistry and cannot be used for 

other battery chemistries without completing the same testing and fitting the model. 

5.4 Model Parameters’ Identification Method 

Long term studies of the life of a product (many years in duration) must be performed using a 

simulation. The long-term nature of the project would create heavy costs to track the various 

parameters associated with a product at each of the stages, from initial construction to eventual 

end-of-life (80% of remaining capacity within battery pack). Using the model described in 

Section 5.2, a life cycle model can be developed to analyse the battery pack capacity over a long-

term lifespan. As the criterion for an EV battery pack is at least 10 years of life, simulations of 

the battery pack life cycle will be completed over this duration. In doing so, an assessment of the 

amount of degradation, as a result of cycling aging, can be compared to that of the total calendar 

aging degradation. 

5.5 Simulation Assumptions 

Certain assumptions will be taken into account in this life cycle model to simplify the system. 

All of the cells in the battery pack will be considered to have the same chemistries and physical 

parameters. Thus, the aging processes will be similar in each cell over the ten year simulation. 

As an extension, the battery pack itself will be considered as an entire system, with temperatures 

assumed to be constant (35oC) during cycling, as controlled by the on-board BMS. During points 

when the vehicle is in the “off” condition the battery will be susceptible to the surrounding 

temperature conditions (daily temperature data, for the Waterloo area, for the weather conditions 

outside of the vehicle), with the degree of degradation being dependent on those conditions. 

Transients of the temperature depletion from “on” state to “off” state will be removed as the total 

time duration in the “off” condition is much greater than the time it takes to reach the 

temperature outside of the vehicle.  



 

 

120 

 

Assessing the aging at each individual time step of the simulation will be too small to create 

significant loss in the battery thus, the aging time is summed until the system reaches a point 

where the vehicle is activated and the system will begin to run. As the effects of the drive cycle 

need to be captured in the simulation a one second time step is selected. The total number of 

amp-hours being fed through the battery then has to be calculated over the time period to assess 

the cycling degradation. 

In order to simulate the vehicle being driven each day for the ten year span, a drive cycle was 

developed for a typical consumer to drive each day for a morning commute to work, go into 

engine-off storage conditions for an eight hour work day, and then have a drive cycle for the 

commute back home. The assumption for this vehicle is that it will only be used to drive to and 

from work to simplify the analysis. Weekend driving is also included to account for the driver 

completing additional tasks, but will follow the same driving pattern for simplicity. The vehicle 

is charged overnight and the cycle repeats. 

5.6 Vehicle Model 

5.6.1 Proposed Architecture: 

The vehicle architecture selected for this study is a fully electric vehicle, or a Battery Electric 

Vehicle (BEV). As the name describes, the primary energy source is a battery pack. This 

electrical source can be charged from the grid and recharged during driving using regenerative 

braking. To provide propulsion, DC electrical energy from the battery is converted into AC to 

provide power to the motor. The motor converts the electrical energy into mechanical energy and 

transmits it through the vehicle’s transmission, axles, and finally to the wheels to meet the road 

load. Figure 75 displays the architecture described for a typical BEV. (Iqbal Husain, Electric and 

Hybrid Electric Vehicles Design Fundamentals, Second Edition) 

 

Figure 75: Vehicle Architecture 
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For batteries in pure electric vehicles the conditions become much more simplistic. When the 

vehicle is moving, other than a little braking regeneration, the batteries are mainly undergoing 

discharge [90]. When the vehicle is being charged in a charging station, their batteries are in a 

charge state. If the system is not being charged or discharged, the vehicle is in open circuit 

conditions. 

The vehicle being utilized in this study for simulation of the degradation is a 2016 Camaro. The 

Camaro has been retrofitted into a plug-in hybrid electric vehicle (PHEV) by the UWAFT team 

to participate in the EcoCAR3 competition. Since the work is analyzing the degradation of the 

batteries within the vehicle, the assumption of this work is that the vehicle will only be driven as 

an electric vehicle and will not utilize the engine satisfying the vehicle architecture in Figure 75. 

The battery pack currently in the vehicle is composed of six LiFePO4 battery modules arranged 

in series. This yields a total nominal voltage and nominal capacity of 292 V and 58.8 Ah 

respectively. The battery modules are provided by A123 Systems and the configuration within 

each module is that there are three strings of fifteen cells (15s3p). From simulations of the 

powertrain, using the Autonomie software, the vehicle was able to attain over 70 km of range 

simply using the battery pack and charge depleting from 90% SOC to 10% SOC. The electrified 

range is well within the limits of the simulation which will require approximately 59 km of range 

(not taking into account the battery receiving energy from regenerative braking). 

5.7 Fitting the Data and Model Verification 

The data obtained from the cell degradation was used to fit the parameters of the Ecker et al. 

equation using the built-in “nlinfit” function within Matlab. The resulting values of the 

parameters are displayed in Table 18. 

Table 18: Fitted parameters of calendar aging model 

cA cT cV 

9.40349505079611e-05 5.1901857057731 1.08931697767615 

 

Due to time constraints, parameter identification for the cycling aging model was done using the 

manufacturer’s data. In another researcher’s future work, a cycling aging battery model will be 

developed, but it is currently beyond the scope of this work. 
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5.7.1 Model Verification 

In order to verify the model being generated from the non-linear fit operation, a subset of the 

data collected was selected. The parameters for these data points were used in the model to 

generate comparison results. It is important to note that results with capacities lower than 15 Ah 

(25% or greater capacity loss within the cell) were omitted as the extent of degradation includes 

both the loss of cyclable lithium and active material loss. Since the study is mainly focusing on 

the loss of cyclable lithium over time in the battery pack, considering the data from cells that 

experienced such severe degradation would not yield a representable model. The loss of active 

material will lead to issues when operating with a BMS and may cause a complete cell failure. 

Therefore, such data points will not be included for the purpose of the creation of the model or 

its validation.  

The capacity loss determined from the model was compared to the data from the experiment 

using the root mean squared error formula. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

 Equation 5.2 

Where yi is the actual value and f(xi) is the predicted value, and n is the number of data points. 

Validation of the model was completed by taking 10 random data points from the collected data, 

omitting them from the non-linear regression model, and then utilizing them to generate a 

predicted value based on the calculated model parameters. The RMSE value was then calculated. 

The RMSE was determined to be 0.025. This shows that the difference between calculated 

capacity loss and the data measured from experiments is very small, which shows that the model 

fits well with the experimental data. 

5.8 Battery Control System of Simulation  

In order to ensure that the battery in an electric vehicle is able to sustain cell life for the duration 

that it is required by consumers, a battery management system (BMS) implements various 

strategies to limit battery degradation and ensure safety constraints are met. To ensure the 

strategy is effective, and to ensure that cell health is adequate for function, the BMS measures 

the overall cell SOH and manages the operation parameters of the system to keep them within 

safe bounds. In lithium-ion batteries, cell SOH is important as safe-operating windows are very 
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strict and improper management leads to rapid degradation and this can develop safety 

complications [15]. Specific ways the BMS can minimize degradation and safety hazards are: 

managing charge/discharge voltage and current, and by monitoring cell temperature.   

When charging or discharging, it is critical that the cell voltages are maintained within the 

operating range (2.0V and 3.65V for Lithium-Iron Phosphate) [16]. As voltage is not being 

tracked in the model, capacity thresholds shall be utilized instead. The vehicle shall be 

discharged to 10% SOC and charged to 90% SOC. Charging to a full 100% SOC and 

discharging all the way to 0% SOC greatly increases the cell degradation that can occur. 

Temperature conditions of the LiFePO4 cells cannot go below -30oC or above 55oC during 

cycling. The BMS measures each individual cell to ensure that the temperature does not exceed 

these thresholds. Many BMS systems will actually prevent a user from operating the battery pack 

or optimize the temperature of the battery pack. In Tesla’s electric vehicles, if the temperature of 

the battery pack falls below freezing, the car will not permit charging, as this will damage the 

cells [91] [92]. This is very beneficial in maintaining the life of the battery pack, but in the short 

term, until the battery pack warms up, regenerative braking is lost. Protocols in the simulation 

will dictate that during charging and discharging that the cell will only be able to be charged and 

discharged at 25oC.  

5.9 Simulation Results 

The simulation was run for a period of ten years. Each day the drive cycle was run twice and the 

battery was charged at the end of the day. As the system being analyzed is specifically the 

lithium-ion battery pack, the drive cycle was converted from a vehicle speed demand value to a 

realistic current demand value for an HEV. The values of current for each time step in the drive 

cycles were determined by utilizing Autonomie and analyzing current output from the battery 

pack. The current profile is depicted in Figure 76. 
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Figure 76: Current profile of drive cycle for battery pack 

Using this profile to cycle the battery, the aging of the battery pack can be investigated under 

realistic operation conditions. 

5.10 Temperature: 

Figure 77 through Figure 80 display random samples of the temperature conditions that the 

battery pack experiences on a given day within a particular time of year, going from winter to 

fall. The first two figures are for temperature conditions in the Waterloo area, and the second two 

figures are for temperature conditions in Tampa, Florida. As the duration of the simulation is 

going to be for ten years and the vehicle is only operational for a short period of time throughout 

the day, transient temperature fluctuations have been removed from the system. Also, in this 

system it is assumed that the operating temperature of the battery pack can be maintained as a 

constant value. 

 

Figure 77: Temperature samples for a random day in the Waterloo data for winter (left) and spring (right) 
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Figure 78: Temperature samples for a random day in the Waterloo data for summer (left) and fall (right) 

 

Figure 79: Temperature samples for a random day in the Tampa data for winter (left) and spring (right) 

 

Figure 80: Temperature samples for a random day in the Tampa temperature data for summer (left) and fall 

(right) 
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The temperatures for the year are used for each year of the simulation. The temperature data is 

real-world hourly temperature data taken for ambient temperatures in Waterloo, Ontario, Canada 

[93], and in Tampa, Florida, United States. Thus, the battery pack will go through similar 

fluctuations as to those described in the figures each year, as if a person was driving in the 

Waterloo or Tampa area. 

5.11 Daily Cycling Schedule 

The battery packs were cycled at 30oC from 10% DOD all the way down to 90% DOD as a 

maximum. Thus, the change in SOC is at most 80% and the vehicle will require recharging or 

must rely on a secondary source of power to continue to operate. Figure 81 displays a capture of 

the capacity changes that the battery pack undergoes each day.  

 

Figure 81: Capacity profile of vehicle given as SOC change over 1 day of usage 

The vehicle begins with charge depletion of the cell as the vehicle operates over the drive cycle. 

Once the drive cycle ends there is a period of OCP conditions, followed by another drive cycle 

and the vehicle finally being charged to its maximum capacity (90% SOC). The vehicle is once 

again under OCP conditions until the following morning when it is to be used again, repeating 

the cycle. After each day, though, the total capacity that the vehicle can be potentially fully 

charged to begins to decrease as the cell has sustained a certain amount of degradation in that 

time. 
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5.12 Capacity Fade Results after 1 year duration 

The primary parameters being monitored in the simulation is the capacity and the capacity fade 

that is occurring within the battery pack. Results for both conditions of the vehicle being driven 

in Waterloo and Tampa were tabulated and comparisons drawn from the data. 

Figure 82 shows simulation results for capacity fade endured by the cell if the electric vehicle 

were operating in Waterloo. The figure depicts three different data sets, one for the results of 

calendar aging alone (marked by the red line), cycling aging alone (marked by the blue line), and 

the total capacity fade (marked by the yellow line). Despite the battery pack being in OCP 

conditions for an estimated 92% of its life, after one year the primary capacity fade mechanism is 

in fact cycling aging.  

 

Figure 82: Total, Calendar, and Cycling aging losses after 1 year of simulation in Waterloo area  

At the end of 1 year, the battery pack had endured approximately 1.8 % aging from calendar 

aging and 4% from cycling aging. This yields a total aging for the cell of almost 6%. As calendar 

aging is directly related to the SOC and temperature of the battery during storage, it can be seen 

in the figure the effect of increasing ambient temperature conditions. With higher temperatures, 

there is a noted increase in capacity fade due to calendar aging. As the temperatures begin to 

decline, the changes in capacity fade decreases and returns to a similar rate as seen in the 
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beginning of the year. Overall, though, the losses from cycling aging play a much greater role in 

the decline of capacity when simulating a vehicle in the Waterloo climate.  

Figure 83 shows simulation results for capacity fade endured by the cell if the electric vehicle 

were operating in Tampa for one year. Once again, the degradation due to cycling aging played a 

greater role in the loss of capacity within the battery pack for this first year of operation. The 

total loss due to cycling was approximately 4% (no difference in driving patterns or battery 

operation temperature, so degradation due to cycling will be similar between simulations). One 

major difference between the two simulations, though, is the extent of degradation from calendar 

aging. The values for calendar aging are much greater in this simulation, due to the temperatures 

in the Tampa area being much greater over the entire year. 

 

Figure 83: Total, Calendar, and Cycling aging losses after 1 year of simulation in Tampa area 

Figure 84 displays the actual loss in capacity over the one year simulation for the vehicle battery 

pack in both geographical areas. In terms of capacity, this is a loss of approximately 3.53 Ah for 

the simulation run for Waterloo and 4.26 Ah for the simulation run for Tampa. In the first year of 

operation the battery pack has lost an additional 0.73 Ah just because of the geographic location 

in which the vehicle was simulated. 



 

 

129 

 

 

Figure 84: Actual capacity fade of battery pack over one year 

5.13 Extent of degradation after ten years 

The simulation was run for a whole ten years, for both geographical areas, with the end capacity 

fade for each year being monitored. The vehicle was either being used (undergoing charge 

depletion) or charging for only 8% of its life. The other 92%, the battery pack was under OCP 

conditions. Figure 85 depicts the cycling, calendar, and total capacity fade for the vehicle 

simulated in the Waterloo area. 

 

Figure 85: Capacity fade from calendar and cycling aging using simulations of temperature in the Waterloo 

area 
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After only five years the total capacity fade within the battery pack had exceeded the 20% EOL 

condition and the battery pack would be considered no longer viable. This EOL is much less than 

the consumer requirement of 10 years. After only five years the battery pack endured 

approximately 9.923% of capacity fade from calendar aging and an additional 13.53% from 

cycling aging. In order to track the total possible degradation that can occur, the full ten years of 

simulations were completed. After ten years, the battery pack endured approximately 20% of 

capacity fade from calendar aging alone and another 22% capacity fade from cycling aging.  

Ultimately, the aging incurred by calendar aging did not exceed that of cycling aging. There is a 

significant gap in the amount of aging with respect to calendar aging and cycling aging at the 

EOL point (five years). Despite the battery pack being in OCP conditions for much of its life, the 

extent of calendar aging was not as severe as the cycling aging that had occurred. Even after the 

full ten years of simulations were completed, cycling aging still exceeded the total calendar 

aging. It can be noted, though, that the difference between the values for capacity fade from the 

two different aging phenomena is decreasing. 

Now making a comparison to the vehicle being simulated as driving in the Tampa area, Figure 

86 depicts the cycling, calendar, and total capacity fade that the battery pack endured for ten 

years of simulation.  

 

Figure 86: Capacity fade from calendar and cycling aging using simulations of temperature in the Tampa 

area 
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This time after only four years the total capacity fade within the battery pack had exceeded the 

20% EOL condition and the battery pack would be considered no longer viable. At the fourth 

year of the simulation the battery pack had endured approximately 13.25% of capacity fade from 

calendar aging and an additional 11.46% from cycling aging. In order to track the total possible 

degradation that can occur, the full ten years of simulations were completed. After ten years the 

battery pack endured approximately 34% of capacity fade from calendar aging alone and another 

22% capacity fade from cycling aging.  

The increased temperature conditions that the battery pack has to endure throughout the year 

increase the capacity fade due to calendar aging. Within two years of operation the capacity fade 

due to calendar aging has actually surpassed the cycling aging. This trend continues onward for 

the entire ten year simulation with a final capacity loss differential between the two types of 

aging being 12%. 

Ultimately, the aging incurred by calendar aging is highly dependent on the temperature at which 

the battery pack is exposed to. If the surrounding conditions are quite high throughout the year, 

the battery pack will incur more capacity fade due to calendar aging and will become the 

dominant aging mechanism in the cell.  

5.14 Summary of Lifetime Prediction Modelling 

In this work a simulation model was presented to predict lifetime of a high power lithium-ion 

battery under realistic operation conditions in two different geographic areas and the impact of 

the various aging phenomena that can occur within the cell. A LiFePO4 battery module with a 

nominal voltage of 292 V and a nominal capacity of 58.8 Ah, currently being used in the 

UWAFT prototype vehicle for the EcoCAR3 competition, is researched. Ten year simulations 

were completed for both scenarios and the cycling and calendar aging was determined based on 

degradation models. It has to be kept in mind that the findings presented here are only valid for 

the specific cell considered in this work. 

The two different geographic locations had dramatically different effects on the degree of 

calendar aging that the vehicle endured. Despite the vehicle being under OCP conditions for 

much of its lifespan (approximately 92%) exposure to the ambient conditions for the vehicle 
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being simulated in the Waterloo area resulted in the calendar aging being less than the cycling 

aging. After ten years cycling aging was still the most dominant aging mechanism.  

This changes, though, if the vehicle is placed in a warmer climate. The degree to which calendar 

aging takes place in the vehicle is much greater if the ambient temperature conditions are also 

more severe. Over ten years the extent of calendar aging far exceeded the amount of cycling 

aging that occurred within the battery pack. As a result of this new climate exposure, the battery 

pack reached its EOL point a full year ahead of the other simulated pack. 

In both scenarios, the effect of calendar aging does have a distinct effect on overall battery 

lifetime. Both vehicles experienced greatly depleted ranges over a short period of time and 

reached their EOL point much sooner than the ten year consumer requirement. Thus, when 

considering battery lifetime, it is very important to take both cycling aging and calendar aging 

into consideration for losses of capacity in lithium-ion batteries in an electric vehicle. Calendar 

aging does play a significant role in the loss of capacity within the battery pack, due to the 

battery pack not being utilized on a constant basis in the vehicle, and incorporating it into the 

analysis resulted in the battery pack reaching its EOL much sooner than the consumer 

requirement. 

In future work the relation between calendar and cycle life has to be investigated in more detail 

to account for this effect. Also, with more testing capabilities a cycle life model will be further 

developed by being able to model degradation with drive cycles. 
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6 Second-Use of Vehicle Batteries 

As previously described, a lithium-ion battery pack used in a BEV application must be able to 

sustain life for approximately 10 years in order to meet consumer requirements [8], but the EOL 

for vehicle applications is defined as being when the remaining capacity of the battery pack 

reaches 80% of its original capacity. [94] These depleted batteries are then sent off to be recycled 

to re-use the materials and re-gain some of the investment. Recycling batteries may not be 

economical in the future, though, as a larger number of battery chemistries are being changed to 

iron and manganese presenting a diminishing recycled end-of-life value, especially as lithium-

ion batteries have a high manufacture cost. [94] EOL EV batteries still have an estimated 80% of 

their remaining capacity and the remaining capacity can be utilized in other applications. [95] 

This will delay the battery from being recycled and increase the economic viability of the battery 

pack. [94] One method of utilizing this investment past the initial vehicle use phase of the 

battery’s lifecycle is through repurposing. In a battery repurposing scheme a Li-Ion battery pack 

can be implemented in a stationary setup to offset energy use in the application after it has been 

used in a vehicle.   

Through the increased use of Hybrid-Electric Vehicles (HEVs), Plug-In Hybrid-Electric 

Vehicles (PHEVs) and EVs, the utility grid system will experience an increased strain [96]. The 

use of these vehicles, in coordination with the increased development of renewable energy 

sources which fluctuate with weather patterns, is adding to this strain issue [96].  By using a 

repurposed battery pack, loads on the grid are able to be shifted to more opportune times.  The 

benefits of this load-shifting as part of future ‘smart-grid’ developments have been shown to 

have economic benefits for the consumer at its end use [97]. 
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Figure 87: Vehicle Battery Life Cycle [98] 

In Ahmadi et al. the lifecycle of Li-ion batteries was explored with the focus on making 

comparisons of current practices to looking at second-use potential, as described in Figure 87 

[99]. It was found that repurposing the battery, for stationary grid storage, resulted in significant 

potential emissions reduction of 56% (24 t CO2e) over the total eighteen year lifetime [99]. The 

sources of CO2 reduction primarily came from the proliferation of PHEVs over ICEs and the 

subsequent re-use of the batteries for grid storage. 

6.1 Canada’s Energy Market and the Need for Repurposed Batteries 

Figure 88 displays the Average Household Annual Energy Usage in Canada for various fuel types.  

Each year an average Canadian household uses approximately 4.3x104 kJ of electricity (117.73 

kJ/day), per the energy mix shown in Figure 3 [100]. This electricity can be supplied, or offset at 

least, throughout the day by renewable and surplus energy stored within a repurposed battery pack. 
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Figure 88: Average Household Annual Energy Usage 2009 [100] 

In order to supply electricity to the millions of households, business, and industries in Canada, a 

wide variety of energy sources are utilized. Figure 89 details Canada’s electricity generations mix.   

 

Figure 89: Canada’s Energy Mix for Electricity Generation 2014 [101] 

Electricity generation in Canada is largely provided by hydroelectric and nuclear power [101]. 

Although, hydroelectricity supply can be somewhat increased and decreased depending on 

electricity demands, nuclear only provides a base load of power and cannot simply be ramped up 

or down depending on electricity demand transients. To account for these fluctuations, non-

renewable energy sources are utilized during points of increased demand, but these sources 

typically produce greenhouse gases. Non-hydro renewable energy sources would be an excellent 

method of providing energy during transient demand conditions, but one of their greatest 

disadvantages is that supply and demand mismatches can occur. A mismatch in this context 
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refers to the time that electricity is generated (supplied) not aligning with the time that the energy 

is demanded. This energy can then not be effectively utilized in Canada’s energy grid. 

The benefit of having a dedicated stationary battery pack is that it can aid in the smoothing of 

these grid transients. By charging the battery pack during the “off-peak” times of the day, the 

stored energy can be supplied when it is actually required and the need for additional energy 

sources to supply the power would then be deemed unnecessary. In addition, these re-purposed 

battery packs can also aid in decreasing the mismatch problem of renewable energy sources by 

being able to transfer the energy supplied at the time that it is generated to the battery to be 

stored for later use (when it is actually demanded). Excess energy in Ontario is currently being 

exported at a lower cost, causing huge losses. From January to October 2013 Ontario exported 

14,983,776 MWh at a rate of 2.54 cents per kWh. This resulted in a $1.2 billion loss causing the 

rates for Ontario to increase. [102] 

Industry leaders are beginning to see the benefits of dedicated home battery packs for smoothing 

grid demands and have released their own products in the market. In April 2015, for example, 

Tesla announced the Powerwall, a 6.4 kWh battery pack that can be installed in a residence for 

daily cycle applications [103]. One useful application is to charge the Powerwall battery pack with 

zero-emission electricity from solar panels. After Tesla’s release of the Powerwall, Nissan released 

a design for vehicle-to-grid technology called xStorage [104]. Unlike other energy storage 

systems, xStorage differentiates itself by utilizing repurposed batteries from Nissan’s electric fleet. 

As a result of the roll out of xStorage, Nissan has made a design change to their battery packs 

making them more modular so that they are easier to remove by technicians and be transferred 

over to second-life applications. 

6.2 Controlling Battery Degradation in Electric Vehicles 

In order to ensure that the battery in an electric vehicle is able to sustain cell life for the duration 

that it is required by consumers, battery management system (BMS) implements strategies to limit 

battery degradation and ensure safety constraints are met. To ensure the strategy is effective, and 

to ensure that cell health is adequate for function, the BMS measures the overall cell SOH and 

manages the operation parameters of the system to keep them within safe bounds. In lithium-ion 

batteries, cell SOH is important as safe-operating windows are very strict and improper 

management leads to rapid degradation and this can develop safety complications [15]. Specific 
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ways the BMS can minimize degradation and safety hazards are: managing charge/discharge 

voltage and current, and by monitoring the cell temperature,   

When charging or discharging, it is critical that the cell voltages are maintained within the 

operating range (3.0V and 4.2V for Lithium-Colbalt Oxide) [16]. This is accomplished through 

the use of many analog voltage measurement channels within the BMS that read per-cell voltage 

[15]. Because the BMS manages charging and discharging, it is possible to limit or halt current 

flow to ensure that these voltage limits are respected.  

In terms of discharge current, protection against cell damage takes place in a similar manner to 

that of discharge voltage protection - halting or limiting current flow in case of over-consumption 

from cells [15]. Note that it is also possible to limit battery consumption to a percentage based 

upon the battery SOC, increasing the lifespan of the cells [105]. 

The BMS is also capable of elongating cell life and ensuring safe performance with the use of cell-

level, or module-level temperature measurements [15]. The operating temperatures of Li-ion 

batteries is dependent on their cell chemistry but, generally speaking, the range of temperatures 

within which Li-ion batteries can be safely operated (charged and discharged safely) is 0oC to 45oC 

[16]. Outside of this safe range, the BMS can prevent further use of the battery through opening 

contactors or performing an emergency stop of the system. Within this range however, there is 

also the capability to limit cell discharge as a function of cell temperature to ensure the (usually 

significant) thermal mass of the battery does not exit the safe operating range by accumulating 

heat during strenuous or lengthy discharge cycles [40] [32].  

In addition to limiting battery degradation, the BMS provides the necessary SOH information to 

characterize the cells after they have reached their EOL point (80% remaining SOC) Once the ESS 

has reached its limitations for use in vehicle applications, the information provided by the BMS 

will be necessary for determining the extent of degradation experienced by the battery over its 

lifetime [18]. This information is pertinent to determining whether or not the battery pack can be 

utilized for secondary applications, detailing the history of state of charge (SOC) or depth of 

discharge (DOD), and the state of health (SOH) of the battery pack [15]. 
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6.3 Barriers to Adoption 

Although Li-Ion batteries have tremendous potential for stationary energy storage applications, 

there are technical and regulatory barriers to their use. For example, Li-Ion batteries are classified 

as “Dangerous Goods” by Transport Canada [106], due to their high voltage, risk of exposure of 

reactive materials and fire risk. In addition to the risk involved in transporting EV batteries, there 

is risk associated with the performance of the battery in its second life. 

After a battery pack has gone through many cycles (approximately 1000 or more to meet consumer 

requirements [18]) it can no longer be used to power an EV. Several degradative mechanisms 

occur within the cells of the battery pack, reducing capacity and increasing the risk of failure of 

one or more of the cells. Although it is difficult to ensure the safety of an EV battery pack for re-

purposing, due to the risks involved in installing, servicing, and using it, there has been an increase 

in insurance codes and standards. 

6.3.1 Insurance Codes and Liability Standards 

Insurance costs, or premiums, are calculated based on the risks of a failure occurring to a given 

object and is further refined with the accumulation of statistics which consider cost of repair, 

frequency of claims, and severity of injuries over time [107]. With a higher risk of failure there is 

a higher premium, and with lower risk there is a lower premium. 

As using repurposed EV batteries for energy storage is an innovation, there are no previous 

statistics to aid in properly assessing the coverage for the unit within a home or business. An 

insurance company can consider potential risks such as power surge protection, liability for 

damage to the local power grid, or the risk of fire from a burning or exploding battery; however, 

with a lack of available standards and certifications, insurance companies are unsure of how such 

a system will influence coverage and are unsure of how to guide consumers. The unfamiliarity of 

the technology may cause disruptions to the insurance market with no comprehensive assessment 

being capable for the systems now [108]. It should be noted though, under CA PUC Tariff Rule 

21, that all equipment must be certified (either through UL or another Nationally Recognized 

Testing Laboratory (NRTL)) when attempting to connect new components to the grid, which 

requires standards for the certification testing.  The development of appropriate standards and 

statistics on repurposed battery packs will come with time, but is not available yet.  
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 Liability and ownership of an EV battery at its end-of-life (EOL) is an important concern 

Defects in an EV battery can cause leaks, explosions or fires which may, result in harm to people 

or property [109]. When a defect within a battery results in damages to people or property, the 

owner of the battery is liable for some portion, if not all, of the cost of damages [109]. An 

Original Equipment Manufacturer (OEM) will make a battery and insure its use for the vehicle 

application that the OEM intends. The OEM may not anticipate, though, that the vehicle owner 

will allow the battery to be repurposed by a third party. If the second-life uses of the battery 

result in damages, then the automotive manufacturers may be liable as current regulations and 

standards are unclear. Because of this lack of clarity around their liability, OEMs are hesitant to 

allow their EV batteries to be repurposed for grid storage applications and will, most likely end 

up being recycled or sent to a wrecking yard [109]. 

6.3.2 Lack of data on degradation of battery packs 

For an EV battery pack to be repurposed, its State-of-Health (SOH) must be determined so that it 

may be properly classified. The condition of an EOL EV battery pack varies widely based on the 

vehicle it was in, how aggressively it was cycled, and the environment in which it was operated. 

With these varying conditions battery packs, will degrade at different rates and have varying 

SOHs.  

In industry, there is uncertainty about how to define the SOH of a battery and how it should be 

evaluated [90]. Currently, the SOH parameter is a unitless percentage which measures the current 

condition of a battery cell, module, or system, compared to its ideal conditions. [90]. In the 

automotive industry, it is generally accepted that if the battery capacity drops below 80% of its 

initial value, the SOH is also considered less than 80%, and the batteries should be removed and 

replaced in the vehicle [99]. 

The capacity of a Li-Ion battery decreases over time, due to the degradation of the battery 

increasing the cell’s internal resistance. This degradation occurs in every cell in a battery module 

over time in addition to the degradation from operating the battery, resulting in a decline in the 

SOH of the battery module. The aging of the cells can be evaluated using battery aging models, 

but these models cannot characterize all the influences on SOH, such as battery damage caused by 

vehicle collision or battery short circuits [90]. 
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This is a concern for automotive recyclers as storing and managing EOL EV batteries creates 

uncertainty and increases the risk of a hazard occurring with the battery pack. This risk is increased 

especially as most automotive recyclers lack the specialized knowledge that the OEM and its dealer 

network have with safe servicing practices of the system. Additionally, many recyclers do not 

understand how to properly test the battery, nor have access to testing equipment, nor understand 

its SOH after coming out of the vehicle. [110] These drawbacks create problems in attempting to 

repurpose batteries for a second life application and can result in a significant environment and 

safety risk for automotive recyclers. To combat these concerns  re-manufacturing firms may need 

to test batteries for degradation and quality to establish baselines for each pack, after acquiring 

them. These assessments of the EOL EV battery may include fade mechanisms associated with 

capacity, and power as well as the testing for cells which have catastrophically failed [110]. 

Currently, only vehicle manufacturers and dealers can check the diagnostic codes displayed by the 

packs to check their SOH. Establishing a classification system for deciding on how repurposed 

battery packs would be best utilized is needed for repurposing EV batteries.  

6.3.3 Availability and Variability 

As electrification of the vehicle market is a recent undertaking, there are a limited number of EVs 

on Canadian roads today. The current fleet stands at just over 18,000 vehicles (10,034 (54%) of 

are BEVs while the balance, 8,417 (46%), are PHEVs), [111] and in 2010 less than 1,000 EVs 

were sold in Canada. [112] The number of EVs being sold is climbing, as illustrated in Figure 90, 

but, currently there is not a significant supply of depleted EV battery packs. In accordance with 

consumer requirements, EVs are expected to have their batteries last at least 10 years for BEVs 

and 15 for HEVs [18]. Thus, with almost 7000 EV sales in 2015 [111], it will not be until at least 

2025 until these batteries may be available for repurposing.  
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Figure 90: EV sales in Canada over the past four years 

When these batteries are available for repurposing, it is not known how many of them will have 

an SOH that will be useful. With the small current supply of EVs in Canada, there is a limit on the 

potentially available EV batteries with an adequate SOH for repurposing. In addition to the lack 

of availability, the variability of battery designs between companies is a barrier to creating uniform 

procedures for construction of repurposed battery packs. Table 19 details the various battery types 

and designs utilized by a few of the many EV manufacturers. 

Table 19: List of Battery Types and Designs 

Make and Model Design 

Chevrolet Bolt, 60 kWh (2016) [21] Prismatic/Pouch 

Tesla S 85, 90kWh (2015) [113] 18650 

Nissan Leaf, 30kWh (2016) [20] Pouch/Prismatic 

Toyota Prius 4.4 kWh (2016) [2] Prismatic 
 

Repurposing each of these different types of batteries will require reassembling each of the 

different types of cells into different configurations, as well as developing the control system, 

which will also be dependent on the application and type of battery. This can be an arduous task 

with each battery type requiring a unique design, controls logic set, and manufacturing process 

[114]. Also, based on research done by SEED, it was determined that unless the batteries of the 

battery pack were modular it would be too risky and costly to break apart the packs. 
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6.3.4 Installation into Residences 

As the repurposed battery pack is a depleted high voltage battery, installation inside a household 

or small commercial area comes with a set of requirements. For example, Tesla provides owners 

of their Powerwall with requirements that must be adhered to, to safely operate the system [115]. 

Tesla specifies that the Powerwall must be installed: 

 At a height that prevents damage from flooding; 

 In an area that is not exposed to ambient temperatures above 60oC or below -30oC; 

 And in conditions where it is not susceptible to high humidifies or near any water sources. 

Installation of a battery pack system would require that these specifications be met before final 

placement of the equipment. These specifications may limit placement options for homeowners 

and business owners. 

6.4 Current Applicable Design Codes 

To determine the safety measures needed for repurposing an EV battery, an analysis of the 

applicable codes is completed.  As in-home energy storage using Li-ion batteries – both new and 

repurposed – is a new technology it is not explicitly referred to in many published codes. Design 

specifications for the battery pack are thus drawn from similar codes for lead-acid stationary 

storage applications. 

A report by the Pacific Northwest National Laboratory outlines the codes and standards in the 

United States for energy storage systems [108]. In Table 20 and Table 21, the codes applicable to 

the design of repurposed packs, outlined in this report, are displayed. Table 20 focuses on codes 

which are specific to the battery pack used in the stationary assembly, while Table 21 focuses on 

codes which outline design considerations for the repurposed pack assembly. 
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Table 20: Applicable Codes for Repurposed Li-ion Battery Packs in a Stationary Application 
C
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e 
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ry

 

Code Title Connection to Repurposed Packs 

B
a
tt

er
y

 P
a

ck
 

IEC 61960 Ed 3: Secondary lithium cells and batteries 

for portable applications  

Covers criteria for the selection of secondary lithium cells for 

remanufacturing 

IEC 62485-2: Safety requirements for secondary 

batteries and battery installations – Part 2: Stationary 

batteries  

Covers protections from hazards with stationary battery packs 

with nominal voltages less than 1500 V  

IEC CD 62619: Secondary cells and batteries 

containing alkaline or other non-acid electrolytes. 

Safety requirements for secondary lithium cells and 

batteries, for use in industrial applications.  

Under development, covers requirements on all aspects of 

stationary application use of Li-ion batteries including 

erection, use, inspection, maintenance, and disposal of cells  

IEC CDV 62620: Secondary cells and batteries 

containing alkaline or other non-acid electrolytes – 

Secondary lithium cells and batteries for use in 

industrial applications  

Covers tests and requirements for Li-ion cells to be used in a 

stationary application  

IEC 62620 Ed 1: Large format secondary lithium cells 

and batteries for use in industrial applications  

Covers specifications for cells in secondary industrial 

applications  

IEEE 1660: Guide for Application and Management 

of Stationary Batteries Used in Cycling Service  

Covers battery management strategies, with changes relative to 

cycling for stationary applications  

UL 1642: Lithium Batteries  

Covers requirements for lithium batteries in stationary 

applications for safety of technicians, users, and other design 

features  

Table 21: Applicable Codes for the Repurposed Battery Pack Assembly 

C
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Code Title Connection to Repurposed Packs 

E
n

ti
re

 A
ss

em
b

ly
 

ANSI C84.1: Electric Power Systems and Equipment 

– Voltage Ratings (60 Hertz)  

Standard covers nominal voltage ratings and operating 

conditions for 60-hertz systems above 100 volts  

IEC 62257-9-2: Recommendations for small 

renewable energy and hybrid systems for rural 

electrification – Microgrids  

Standard covers requirements for how microgrids can be 

maintained and safety upheld  

IEC 62897: Stationary energy storage systems with 

lithium batteries – Safety requirements (under 

development)  

Covers hazards that need to be mitigated for the use of a 

stationary pack with Li-ion cells  

IEEE 1375: Guide for the protection of stationary 

battery systems  

Covers guidelines for options of protecting stationary battery 

systems  

NFPA 111-2013: Standard on stored electrical energy 

emergency and standby power systems  

Covers safe operation of stationary energy storage systems 

with the grid in the event of service disruptions  

UL 9540: Outline for investigation for safety for 

energy storage systems and equipment  

Covers safety for all energy storage systems, being charged 

and discharged at a later point in time to shift demand  

 

The Canadian Electrical Code, or CSA C22.1, is published by the CSA to address the installation 

and maintenance of electrical equipment in Canada [116]. The repurposed battery packs contain 

electrical components that can obtain and feed electrical energy into the electrical grid. 

Incorporation of a stationary energy storage repurposed battery pack into a residential home or a 
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small commercial installation requires that all equipment be installed per the Canadian Electrical 

regulations. Current applicable design codes for installation of a repurposed battery pack are 

described in Table 22. 

Table 22: Applicable Codes for Repurposed Li-ion Battery Canadian Electrical Codes 

Code Description 
CEC 26-544 Batteries with exposed live parts shall be kept in a room or enclosure accessible only to authorized personnel. 

CEC 26-546 
Storage batteries shall not be subjected to ambient temperatures greater than 45°C or less than the freezing 

point of the electrolyte. 

CEC 26-550 

- Battery trays, racks, and other surfaces on which batteries are mounted shall be 

a) Level 

b) Protected against corrosion from the battery electrolyte; 

c) except as permitted in Subrule (5), covered with an insulating material having a dielectric strength of at 

least 1500 V; 

d) of sufficient strength to carry the weight of the battery; and 

e) designed to withstand vibration and sway where appropriate. 

- Battery cells shall be spaced a minimum of 10 mm apart. 

- Battery cells having conductive containers shall be installed on non-conductive surfaces. 

- Sealed cells and multi-compartment sealed batteries having conductive containers shall have an insulating 

support if a voltage is present between the container and ground. 

- Cells and multi-compartment vented storage batteries, with covers sealed to containers of non-conductive, 

heat-resistant material, shall not require additional insulating support. 

- Batteries having a nominal voltage greater than 150 V and with cells in rubber or composition containers 

shall be sectionalized into groups of 150 V or less. 

CEC 64-800 Storage batteries for dwelling units shall have the cells connected so as to operate at less than 50 V nominal. 

CEC 64-812 Equipment shall be provided to control the charging process of the battery. 

 

The codes culminate in the following design specifications:  

 The batteries must be stored on level ground, with sufficient storage to protect personnel; 

 This storage must also be secure, and only accessible by authorized personnel to reduce 

the risk of injury and death; 

 For the batteries themselves, it is noted that they must be sectionalized into smaller groups 

if connected as a large installation with nominal voltages greater than 150V.  

 A storage battery installed in a dwelling unit shall have the cells connected so as to operate 

at less than 50 V nominal. 

 Equipment shall be provided to control the charging process of the battery [116]. 

 

Using these standards to design the repurposed battery pack, the following design features were 

deemed as most pertinent to the preliminary bench test design. To prevent a hazard from occurring, 

a controller must be installed to ensure proper operation of the system and mitigation of faults. 



 

 

145 

 

The nominal voltage of the pack must be designed to be less than 50V. Also, the battery pack itself 

must be secured and enclosed in a protective case only accessible to the appropriate personnel. 

In a separate code, IEEE 484, regulations are stated for the design and installation of vented lead-

acid batteries.  The code states that the battery pack must be stored in an area with an ambient 

temperature of approximately 25°C.  The area must also be protected, and isolated from vibration 

which can lead to disconnects and damage to the interior components of the battery pack casing 

[108]. 

This specification is also found in Tesla’s Powerwall installation manual. Putting a limit on the 

temperature around the battery creates some limitations on the system’s placement, especially as 

Canada has a much colder climate. To maintain proper operating temperatures for the battery, a 

thermal control system needs to be installed either in the pack or additional insulation and heating 

units need to be supplied in the garage. Both solutions to the temperature mitigation of the 

repurposed battery will add cost to the installation of the unit. 

A recently approved standard for international distribution by the International Electrotechnical 

Commission (IEC), IEC 62619 Ed. 1.0 [108] focuses on the safety requirements for secondary 

lithium cells for use in industrial applications. To be approved for use, the cells and entire battery 

systems must pass a series of tests ensuring that the cells will not undergo thermal runaway and 

that the battery management system (BMS) is able to control the battery system and prevent 

overcharging and overheating [117].  

As the repurposed pack is going to be installed in a new system, in application outside of its 

original intended use, a new controls structure imbedded in the BMS must be tested once again. It 

must be ensured that there are no circumstances where a fault can occur which risks damage to the 

owner or to the system. 

6.5 Failure Analysis 

To determine the most probable failure modes and associated risks with the design of a stationary 

repurposed battery pack, two failure analyses are conducted.  The first analysis tool is the Failure 

Modes and Effects Analysis (FMEA) which begins with the function of a specific part, and breaks 

down its potential failure modes to effects and causes.  Each risk is evaluated by its Risk Priority 

Number (RPN), which ranks their relative severity and probability, with larger RPN risks being 
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targeted for mitigation.  The RPN is calculated from the risk severity (SEV), probability of 

occurrence (OCC), and ability to detect (DET).  SEV, OCC, and DET are rated on a 1-10 scale, 

with 10 reflecting the highest probability of failure.  The calculation for RPN is as follows: 

 RPN = SEV * OCC * DET Equation 6.1 

6.5.1 Severity 

The severity value in the RPN calculation is a measure of the extent which a failure can damage 

a system or component. Table 23 shows how severity is classified and the associated rank that is 

used in the RPN calculation. 

Table 23: Severity RPN Ranking 

Rank Severity  Criteria Severity of Effect 

10 Hazardous without warning  Compromises safety without warning  

9 Hazardous with warning  Compromises safety with warning 

8 Very High  Loss of Functionality  

7 High   Reduced Functionality 

6 Moderate   Customer experiences discomfort.  

5 Low   Customer experiences some dissatisfaction.  

4 Very Low  Defect noticed by most customers.  

3 Minor   Defect noticed by average customer.  

2 Very Minor  Defect noticed by discriminating customer.  

1 None  No effect. 

6.5.2 Occurrence 

The occurrence variable is the probability of the failure occurring within the life cycle of the 

analysis. Table 24 shows how occurrence criteria are associated with each rank. 

Table 24: Occurrence RPN Ranking 

Rank Occurrence Criteria Description 
10 Inevitable ≥ 1 in 2 

9 Almost Inevitable 1 in 3 

8 Very High 1 in 8 

7 High 1 in 20 

6 Moderate 1 in 80 

5 Low  1 in 400 

4 Very Low 1 in 2000 

3 Remote  1 in 15,000 

2 Very Remote 1 in 150,000 

1 Negligible 1 in 1,500,000 
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6.5.3 Detection 

Detection refers to the extent to which a failure mode can be determined. This variable has a direct 

relation to its impact on the system. The RPN system for qualifying a detection system is shown 

in Table 25 . 

Table 25: Detection RPN Ranking 

Rank Detection Criteria Description 

10 Absolute Uncertainty  Controller cannot detect failure (or no controller) 

9 Very Remote  Controller has a very remote chance of detecting failure mode 

8 Remote   Controller has a remote chance of detecting failure mode 

7 Very Low   Controller has a very low chance of detecting failure mode 

6 Low   Controller has a low chance of detecting failure mode 

5 Moderate   Controller has a moderate chance of detecting failure mode 

4 Moderately High  
Controller has a moderately high chance of detecting failure 

mode 

3 High   Controller has a high chance of detecting failure mode 

2 Very High   Controller has a very high chance of detecting failure mode 

1 Almost Certain Controller is almost certain to detect failure mode 

 

6.5.4 Results of Analysis 

The risks in the FMEA conducted for the repurposed battery pack are divided based on the 

components in the assembly (charger, inverter, battery pack, controller, and battery pack casing). 

Table 26: Highest Risks of Design 

Rank Item/Function 
Potential 

Failure 
RPN 

1 
The charger/inverter shall convert power to charge/discharge 

the battery pack. 
Overheating 180 

2 The battery pack shall store and deliver energy Overheating 180 

3 
The controller shall direct pack components 

(charger/inverter) 
Overheating 180 

4 
The cell is a single unit within the battery pack and shall 

store and deliver energy. 

Thermal 

runaway 
180 

 

Through the FMEA, it is determined that the two largest risks to the end user could occur due to 

overheating and overcharge/overdischarge.   

Overheating, with a RPN of 180, can damage the assembly, thus rendering the pack incapable of 

charging or discharging, as well as personnel injury, such as burns.  The main failure mechanisms 
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leading to overheating are loss of control input to the charger/inverter or a power surge to the unit.  

It is believed that this risk can be mitigated in the design by implementing a redundant controls 

system, which has multiple voltage and current sensors to monitor the pack’s operation. 

Thermal runaway of a cell, also with a RPN of 180, can lead to catastrophic failure of the entire 

battery pack and potentially damage its surroundings. The unit would be rendered completely 

inoperable in this case. Thermal runaway can be caused by a variety of issues including: thermal, 

mechanical, or electrical abuse, as well as an internal cell fault likely caused from the degradation. 

To mitigate the risk, a thorough controls structure must be designed to monitor pack operation and 

prevent potential abuses, as well as equipping the system with electronic circuit protection. These 

controls and pieces of hardware can be tested through controls simulation prior to the 

implementation with the pack. A Hardware-in-the-Loop (HIL) simulation will allow faults to be 

inserted in the control code and mitigate any potential errors. 

6.5.5 Fault Tree Analysis 

The second failure analysis conducted is a Fault Tree Analysis (FTA).  A FTA works from the 

opposite direction of a FMEA, breaking down a potential safety risk to its root failure [118].  Five 

main safety risks are identified with the repurposed battery pack including: electrocution, slip/fall, 

inhalation, cut/scrape, and burn/explosion. The FTA utilizes AND and OR gates which connect 

the safety risks as they are broken down [118]. An example FTA analysis for Burns/Explosions is 

described in Figure 91. The most prevalent root causes are determined based on a probability 

analysis of the FTA figure which suggests that the more “OR” gate branches (with fewer “AND” 

gates) a particular circuit has the higher the probability of this circuit leading to the top fault 

condition [118]. 

The most prevalent root causes of burns/explosions in the repurposed pack arise from installation 

issues, improper preventative maintenance, and catastrophic failure of the battery pack. As the 

packs will have to be manually created (as battery packs from different vehicles have different 

configurations and cell types [99] [94] [25]) and serviced it is very difficult to achieve precision 

and repeatability using manual assembly techniques [40] [32]. Also, during the removal and 

construction process of the battery pack there is the possibility that cells can endure handling 

damage. These manufacturing problems can easily lead to the short-circuiting of a cell within the 

battery pack and a hot cell condition occurring [40] [32]. 
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Figure 91: Fault Tree Analysis Example for Burns/Explosions 

6.6 Degradation Classification 

To provide a proper assessment of battery packs for repurposing, a 5-level system is proposed. 

This system categorizes how packs should be repurposed based on their SOH after the vehicle use 

phase. Batteries can be sorted based on a diagnostic process completed by the vehicle manufacturer 

or dealer and decisions on the battery’s future can be made with the level categories shown below 

in Table 27. 

Table 27: Repurposed Battery Pack Classification 

Level Description 

Level 1 Little or no degradation 

Level 2 Some degradation, vehicle re-use 

Level 3 Some degradation, stationary repurposing 

Level 4 Significant degradation, material recycling 

Level 5 Catastrophic failure/damage, material recycling 
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Level One and Level Two batteries have experienced minimal degradation during the vehicle use 

phase, with more than 80% of the battery pack’s capacity remaining [119]. Batteries that are 

classified into these two categories can potentially be used in the vehicle before being taken out 

for use in a repurposed application. Level Three batteries have degraded to below the 80% 

threshold for capacity remaining, but still have enough life to be used in a repurposed application. 

In this scenario, a second battery could be installed in the vehicle to extend its life and the original 

battery can be taken out for stationary storage. The Level Four and Five categories are for batteries 

which have been significantly degraded or suffered catastrophic damage. In this state, the batteries 

are unable to provide energy for either the vehicle or stationary use, and should be recycled. 

Utilizing this level classification system, after their use within vehicles, EV batteries can be 

properly sorted based on their SOH. 

6.7 Summary of Second-Use of Vehicle Grade Battery Packs 

In summary, the authors investigate the current barriers to adopting the repurposing of EV batteries 

for stationary energy storage and how battery pack designs and battery management systems may 

be affected. A design process is proposed which should be followed in the application of a 

repurposed battery pack in a stationary energy storage situation. Repurposed packs offer an 

alternative to more expensive energy storage solutions, which require new packs or specific 

infrastructure such as pumped hydro. There are many areas of research which still need to be 

sorted, in order to develop supply chains which can distribute used batteries to a re-manufacturer. 

The exact supply of vehicle batteries nearing end of life is still uncertain, as Li-ion technology is 

new to the market. Also, legislation needs to be drafted in order to properly regulate this market. 

To encourage the adoption of EV batteries for stationary applications it is important to prove that 

the battery packs are safe. The safety risks identified by the failure mode analysis and fault tree 

assessments display the need for additional safeguards to be in place to protect consumers from 

harm. As the repurposed EV batteries have been depleted, there is a higher risk of failure occurring. 

Thus, the employment of safeguards, such as those developed in the FMEA Action Plan, is crucial, 

along with ensuring that recyclers and remanufacturers have knowledge of the SOH of the battery 

and its past usage. A system similar to the SOH classification system described in this work, along 

with associated testing, needs to be implemented in order to further the technology’s development. 
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7 Conclusions and Recommendations  

7.1 Conclusions 

The objective of this thesis is to explore the degradation phenomenon occurring within 

commercial LiFePO4, with a primary focus on calendar aging of the battery. Calendar aging 

experiments were carried out at various temperatures and states of charge (SOC) to determine the 

extent of degradation. For each set of conditions, two cells were tested in order to have 

reproducibility between the results, including the cells that underwent a change in storage 

conditions. The conditions of 60oC and 0% SOC, though, required that more cells be tested due 

to the high degree of cell failure that was being observed. In total, 32 A123 20AH cells 

underwent calendar aging tests. The conclusions from this investigation are summarized as 

follows: 

1) Highest capacity loss was observed in cells stored at high temperature and fully 

charged conditions. This was demonstrated by tracking irreversible capacity loss as a 

function of storage time and was also observed in the ICP analysis (cells stored at 60oC 

and 100% SOC had the highest Li content within the bulk graphite). The capacity losses 

were the result of the loss of cyclable lithium and a loss of active material at the anode. 

This is in accordance with what the literature states would occur, as the increased 

temperatures and high concentrations of lithium at the anode promote the proliferation of 

degradative side reactions to occur. [8] [18] Post-mortem analysis (SEM and optical 

microscopy images of the electrode samples) of these cells revealed that there was a 

build-up of a secondary layer of material on the anode, although it did not cover the 

entire area. The formation of this material over the anode is most likely correlated to the 

loss of active material as the build-up of this material may prevent Li ions from being 

able to intercalate within the active graphite material. 

2) Temperature played the most significant role in the degradation of the cell. As 

depicted in the capacity loss curves for cells stored at 0% SOC and 60oC and 50oC, 

despite the cells being stored at a lower state of charge, storage at the 60oC temperature 

condition led to much higher capacity losses compared to the 50oC storage condition. The 

high temperature storage conditions are likely promoting the proliferation of the side 
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reactions that form a material that adheres onto the graphite, decreasing the available area 

for lithium to intercalate into the graphite.  

3) A “history” effect could be observed from cells that were stored at initially high 

temperature conditions and then shifted to less severe ones. Storage of LiFePO4 

batteries at high temperatures had a pronounced effect on the rate of degradation, even 

after the cells had been switched to new, less severe storage conditions. Shifting cells 

from a higher temperature storage condition to a lower one will decrease the rate of 

capacity loss observed at the previous storage condition. The storage of the cells at this 

initial high-temperature condition, though, promotes increased degradation throughout 

the storage life of the cell. Had the cell been stored at much less severe conditions over its 

entire lifespan, the loss in capacity would have been a much smaller decrease with time.   

The results of this investigation influenced the following… 

1) A lifetime prediction model was developed for a battery pack, within an electric 

vehicle, using the calendar aging data obtained from the aging experiments. The 

effect of calendar aging has a distinct effect on overall battery lifetime. Both vehicles 

experienced greatly depleted ranges after a short period of time and reached their end of 

life (EOL) point much sooner than the ten year consumer requirement target. Thus, when 

considering battery lifetime it is very important to take both cycling aging and calendar 

aging into consideration for losses of capacity in lithium-ion batteries in an electric 

vehicle. However, it must be noted that the simulation results presented in this work are 

limited to the A123 AMP20 batteries selected for testing and modeling. The model 

generated for the battery requires semi-empirically-fit models for both calendar and 

cycling aging. Also, the cycling aging model relies on the use of manufacturer data rather 

than experimentally collected data. Regardless of these limitations, the results support the 

need for further investigation into the effect of calendar aging on battery lifetime. 

2) A process for the formation of a battery pack using repurposed vehicle batteries was 

proposed. The design process outlines the process of formation of a battery pack based 

on current applicable standards, failure analysis of repurposed batteries, and market 

analysis of in-vehicle batteries. This analysis also helped to identify current barriers to the 

adoption of repurposed batteries for energy storage. Following this, the design process 
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was applied to build a bench test setup of the finalized design to prove functionality of 

the system. 

3) A process for classifying battery pack states of health has been created. To 

encourage the adoption of EV batteries for stationary applications, it is important to 

prove that the battery packs are safe. As the repurposed EV batteries have been 

depleted, there is a higher risk of failure occurring. Thus, the employment of safeguards, 

such as those developed in the FMEA Action Plan, is crucial, along with ensuring that 

recyclers and remanufacturers have knowledge of the SOH of the battery and its past 

usage. A similar system to the state of health (SOH) classification system described in 

this work needs to be developed for large scale implementation. 

 

7.2 Recommendations  

The following recommendations outline areas of focus for future work in the testing of LiFePO4 

batteries and potential methods to improve the accuracy of the simulations presented in this 

work. 

Completion of an in-depth analysis of the effect of “storage history” on the lithium-ion 

batteries. During testing it was found that initially storing cells at high temperature conditions 

led to them experiencing increased degradation throughout their lifetimes despite undergoing a 

change of conditions. Research should be completed in determining the reaction pathway for this 

increased degradation within the cells. 

Continue with post-mortem analyses of EOL cells. Many cells were utilized in the calendar 

aging experiments. Only four of these cells were utilized in the post-mortem analysis for the 

conditions: 35oC and 100% SOC, 60oC and 100% SOC, 60oC and 0% SOC, and an unaged cell. 

There are still a number of cells that require post-mortem analysis, including cells stored at the 

temperature condition of 50oC. It will be interesting to observe if there are similar degradation 

species present in the 50oC samples as there were on the 60oC samples. 

Proceed with the development of a more advanced lifetime model. In future work the relation 

between calendar and cycle life has to be investigated in more detail to account for this effect. 
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Also, with more testing capabilities the cycle life model will be further enhanced by being able 

to model degradation with drive cycles over many cycles. 

In order to better understand SOH for potential repurposed battery packs, as Li-ion 

powered electric and hybrid vehicles reach their EOL, degradation studies should be 

completed to verify estimates in SOH. A further study of the degradation of full battery packs 

is required to better understand how degradation is occurring within the cells. These studies will 

provide insight into how SOH can be assessed in a full battery pack, as they are introduced in 

repurposed applications. As a result, companies repurposing batteries will be better equipped to 

assess the SOH of incoming battery packs and be able to classify them, potentially using the 

standard described in this text.  
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Appendix A: Regulation Test Criteria 

Table 28: Regulation Testing Criteria 

Test Criteria/Standard Description Pass Criteria 

External short circuit 

Creates a connection between anode and cathode 

terminals of a cell to determine how cell can 

withstand maximum current flow. 

Cell does not explode or cause a 

fire. 

Abnormal charge/ 

Overcharge 

Applies over-charging current rate and charging 

time to determine if sample can withstand stress. 

Cell does not explode or cause a 

fire. 

Forced discharge/ 

Overdischarge 

Discharged cell connected in series with a specific 

number of charged cells of same type. The 

imbalanced pack is then short-circuited. 

Cell does not explode or cause a 

fire. 

Crush 
Determines ability to withstand a specified 

crushing force (13 kN). 

Cell does not explode or cause a 

fire. 

Impact (cell) 

Determines cell’s ability to withstand an impact. 

Impact is applied to a cylindrical steel rod placed 

across the cell. 

Cell does not explode or cause a 

fire. 

Shock 

Cell or battery is secured to testing machine 

calibrated to apply a specified average and peak 

acceleration for duration of test. 

Sample may not explode, ignite, 

leak or vent. 

Vibration 

Applies simple harmonic motion to a sample, at 

specified amplitude, with variable frequency and 

time. 

Sample may not explode, ignite, 

leak or vent. 

Heating (cell) 
Cell is exposed to an elevated temperature 

condition for a period of time. 

Sample may not explode or 

ignite. 

Temperature cycling 

Subjects each sample to a specific temperature 

above and below room temperature for a certain 

number of cycles. 

Sample may not explode, ignite, 

leak or vent. 

Low pressure (altitude) 
Sample is exposed to pressure less than standard 

atmospheric 

Sample may not explode, ignite, 

leak or vent. 

Projectile/External fire 
Cell sample exposed to a flame on a wire mesh 

structure. 

If flame causes an explosion or 

ignition of the cell, no part of cell 

sample can penetrate or protrude 

through wire mesh test cage. 

Drop 
Cell/battery is exposed to a specific number of 

free falls to a hard surface. 

Sample may not explode or 

ignite. 

Molded casing heating 

test 

Plastic encased batteries are subjected to a 

specific elevated temperature for a specific time. 

Internal cells may not show any 

evidence of mechanical damage. 

Insulation or isolation 

resistance 

Sample is subjected to a resistance measurement 

between each battery terminal and the accessible 

metal parts of the battery pack. 

Measured resistance must exceed 

the specified minimum value. 

Internal short circuit test 

or propagation test 

JIS C8714, SBA S1101 and IEC 62133 second 

edition – internal short circuit by disassembling a 

charged cell sample casing and placing a specified 

nickel particle under the cell winding 

construction.  

Sample may not explode or 

ignite. 
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Appendix B: Images of post-mortem analysis of LiFePO4 

cells 

 

Figure 92: Graphite electrode aged 60oC 100% SOC 

 

Figure 93: LFP electrode aged 60oC 100% SOC 
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Figure 94: Graphite electrode aged 60oC 0% SOC 

  

Figure 95: LFP electrode aged 60oC 0% SOC 
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Figure 96: Graphite electrode aged 35oC 100% SOC 

 

Figure 97: LFP electrode aged 35oC 100% SOC 



 

 

172 

 

 

Figure 98: Fresh Graphite electrode 

 

 

Figure 99: Fresh LFP electrode 
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Appendix C: Optical Microscopy Images 

  

   

Figure 100: Fresh LFP (upper left: 5x magnification, upper right: 10x magnification, bottom left: 50x 

magnification, bottom right: 100x magnification) 
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Figure 101: LFP aged 60oC and 0% SOC (upper left: 5x magnification, upper right: 10x magnification, 

bottom left: 50x magnification, bottom right: 100x magnification) 



 

 

175 

 

  

   

Figure 102: LFP aged 35oC and 100% SOC (upper left: 5x magnification, upper right: 10x magnification, 

bottom left: 50x magnification, bottom right: 100x magnification) 
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Figure 103: LFP aged 60oC and 100% SOC (upper left: 5x magnification, upper right: 50x magnification, 

bottom: 100x magnification) 
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Figure 104: Fresh graphtite (upper left: 5x magnification, upper right: 10x magnification, bottom left: 50x 

magnification, bottom right: 100x magnification) 
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Figure 105: Graphite aged 60oC and 0% SOC (upper left: 5x magnification, upper right: 10x magnification, 

bottom left: 50x magnification, bottom right: 100x magnification) 
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Figure 106: Graphite aged 35oC and 100% SOC (upper left: 5x magnification, upper right: 10x 

magnification, bottom left: 50x magnification, bottom right: 100x magnification) 
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Figure 107: Graphite aged 60oC and 100% SOC (upper left: 5x magnification, upper right: 50x 

magnification, bottom: 100x magnification) 
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Appendix D: Vehicle Technical Specifications 

Table 29: Vehicle Technical Specifications 

 

 

Specification Target Requirement UWAFT As Designed 

Acceleration, IVM-60mph [s] 5.9 7.9 5.82 5.6 
Acceleration, 50-70mph 

(Passing) [s] 

7.3 9.9 6.6 3.2 

Braking, 60-0mph [ft] 128 135 121.4 121 
Acceleration Events Torque 

Split (Fr/Rr) 

0/100 49/51 0/100 0/100 

Lateral Acceleration, 300ft. Skid 

Pad [G] 

0.85 0.80 0.84 N/A 

Double Lane Change [mph] 55 52 54.4 N/A 
Highway Grade ability, @60 

mph for 20 mins 

6% 6% 6% 7% 

Cargo Capacity [ft
3
] 2.4 2.4 2.4 2.4 

Passenger Capacity 4 2 4 4 
Curb Mass [kg greater than 

stock] 

** <314 275 98 

Starting Time [s] 2 15 5 N/A 
Total Vehicle Range [km] ** 226 301 396 
CD Mode Range [km] ** N/A 36 69 
CD Mode Total Energy 

Consumption [Wh/km] 

** N/A 267.8 193 

CS Mode Fuel Consumption 

[mpgge] 

** N/A 30 62 

UF-Weighted Fuel Energy 

Consumption [Wh/km] 

** N/A 736.3 183 

UF-Weighted AC Electric 

Energy Consumption [Wh/km] 

** N/A 238 105 

UF-Weighted Total Energy 

Consumption [Wh/km] 

700 840 758 287 

UF-Weighted WTW Petroleum 

Energy Use [Wh PE/km] 

420 750 621 54 

UF-Weighted WTW Greenhouse 

Gas Emissions [g GHG/km] 

225 250 222.6 96 

UF-Weighted Criteria Emissions 

[g/km] 

TBD TBD 2.64 0.40 


