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Abstract

Semilattices are algebras known to have an important connection to partially ordered

sets. In particular, if a partially ordered set (A,≤) has greatest lower bounds, a semilattice

(A;∧) can be associated to the order where a∧ b is the greatest lower bound of a and b. In

this thesis, we study a class of algebras known as 2-semilattices, which is a generalization

of the class of semilattices. Similar to the correspondence between partial orders and

semilattices, there is a correspondence between certain digraphs and 2-semilattices. That

is, to every 2-semilattice, there is an associated digraph which holds information about

the 2-semilattice. Making frequent use of this correspondence, we explore the class of

2-semilattices from three perspectives: (i) Tame Congruence Theory, (ii) the “residual

character” of the class of 2-semilattices, and (iii), the constraint satisfaction problem.

Tame Congruence Theory, developed in [29], is a structure theory on finite algebras

driven by understanding their prime congruence quotients. The theory assigns to each

such quotient a type from 1 to 5. We show that types 3, 4, and 5 can occur in the class

of 2-semilattices, but type 4 can not occur in a finite simple 2-semilattice.

Classes of algebras contain “subdirectly irreducible” members which hold information

about the class. Specifically, the size of these members has been of interest to many authors.

We show for certain subclasses of the class of 2-semilattices that there is no cardinal bound

on the size of the irreducible members in that subclass.

The “fixed template constraint satisfaction problem” can be identified with the decision

problem hom(A) where A is a fixed finite relational structure. The input to hom(A) is a

finite structure B similar to A. The question asked is “does there exist a homomorphism

from B to A?” Feder and Vardi [22] conjectured that for fixed A, this decision problem is

either NP-complete or solvable in polynomial time. Bulatov [15] confirmed this conjecture

in the case that A is invariant under a 2-semilattice operation. We extend this result.
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Chapter 1

Introduction

One of the broad goals in universal algebra is to understand and classify algebras and

classes of algebras called varieties. One such coarse classification was given by Hobby and

McKenzie in [29]. This six-fold classification of locally finite varieties (defined in Chapter 2)

has provided a popular way of restricting interesting problems to a more approachable

context. One of these six classes is the class of varieties having the congruence meet

semidistributive property, which will be defined in Chapter 2.

Perhaps the simplest congruence meet semidistributive variety is the variety of semilat-

tices. A semilattice is a set A equipped with a binary operation ∧ which is commutative,

associative, and idempotent. By idempotent, we mean a ∧ a = a for every a ∈ A. An

important feature of semilattices is their connection with partial orders. Indeed, every

semilattice (A;∧) carries a natural partial order given by a ≤ b if and only if a∧ b = a. As

well, every partially ordered set with greatest lower bounds gives rise to a semilattice. In

this case, ∧ is the binary operation on the domain of the partial order which selects the

greatest lower bound. Semilattices have received attention from researchers in a variety of

areas of mathematics. Anderson and Ward in [1] and Rhodes in [50] discuss semilattices
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with topological motivation. Ellis [21], Papert [45], Nieminen [44], and Freese and Nation

[26] have written about semilattices from are algebraic point of view. Jeavons et. al. [31]

and Rehof and Torben [49] are papers on constraint satisfaction problems. Semilattices

are well-studied and well-understood from many perspectives. For a survey of the theory

of semilattices, see Chajda et. al [17].

From the perspectives of this thesis, semilattices are very easily understood. On the

purely algebraic side, semilattices are simple in the sense that every semilattice embeds in

a direct product of copies of the two-element semilattice. This was essentially shown for

finite semilattices in [45] by Papert, but the proof given extends to the infinite case. When

an algebra embeds in a product of finite algebras, it is called residually finite. Papert’s

result shows that semilattices are residually finite. Semilattices are also simple from the

perspective of the constraint satisfaction or homomorphism problem. For a relational

structure A with domain A, we say that A is invariant under a semilattice operation ∧

on A if each relation of A is a subuniverse of some power of the algebra (A;∧). If A

is a relational structure which is invariant under a semilattice operation, the problem of

determining whether or not a relational structure B similar to A has a homomorphism to

A is decidable in polynomial time. This was first shown using arc-consistency by Jeavons

et. al. in [31]. For a more in-depth discussion of arc-consistency, see Chapter 11 of Dechter

[20].

This thesis studies a class of algebras called 2-semilattices, which generalizes the class

of semilattices. The class of 2-semilattices is another concrete example of a congruence

meet semidistrbutive variety. In the general theme of understanding congruence meet

semidistributive varieties, the class of 2-semilattices is a natural place to look once one has

understood the variety of semilattices. Indeed, Bulatov’s understanding of the constraint

satisfaction problem when A is invariant under a 2-semilattice operation in [15] was a key

insight towards Barto and Kozik’s solution to the so-called “bounded width conjecture” in

2



Figure 1.1: The operation table for T3

∗ 0 1 2

0 0 1 0
1 1 1 2
2 0 2 2

[3]. This will be discussed in Chapter 6.

A 2-semilattice is a set A equipped with a commutative, idempotent, binary operation

∗ which satisfies a ∗ (a ∗ b) = a ∗ b for every a, b ∈ A. Using the associative and idempotent

identities, if (A;∧) is a semilattice, then for any a, b ∈ A, we have a∧ (a∧ b) = (a∧a)∧ b =

a ∧ b. This shows that every semilattice is a 2-semilattice. We now give an example of a

2-semilattice which is not a semilattice. The algebra T3 in Example 1.0.1 will be mentioned

several times throughout this thesis.

Example 1.0.1. Let T3 = (T3; ∗) be such that T3 = {0, 1, 2} and ∗ is defined in Figure 1.1.

It can be seen immediately from the table that ∗ is commutative and idempotent and easily

checked that a∗(a∗b) = a∗b for every a, b ∈ T3. Therefore, T3 is a 2-semilattice. However,

0 ∗ (1 ∗ 2) = 0 ∗ 2 = 0, but (0 ∗ 1) ∗ 2 = 1 ∗ 2 = 2, so ∗ is not associative. Thus, T3 is not a

semilattice.

The algebra T3 in Example 1.0.1 satisfies the additional property that for every a, b ∈

T3, a∗b ∈ {a, b}. A 2-semilattice satisfying this property is often called a tournament. Any

semilattice whose associated partial order has two incomparable elements is an example

of a 2-semilattice which is not a tournament. Tournaments will be discussed briefly in

Chapter 3.

The earliest explicit reference to 2-semilattices that I have been able to find is by

Quackenbush in [47]. In [47] 2-semilattices are mentioned in the introduction and nowhere
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else in the paper. However, Quackenbush does point to an earlier paper he coauthored

with Ježek [34] where they explore the class of commutative directoids. A 2-semilattice A

is a commutative directoid if it satisfies a∗ ((a∗ b)∗ c) = (a∗ b)∗ c for every a, b, c ∈ A. The

class of commutative directoids lies strictly between the class of semilattices and the class of

2-semilattices. There has been some foundational work done on commutative directoids.

They were introduced in [34], further explored by Gardner and Parmenter in [27], and

have been mentioned by several other authors such as Chajda et. al. in [17] and Ježek and

McNulty in [33].

In Maróti’s PhD thesis [40], the main objects of study were tournaments. As mentioned

earlier, the class of tournaments is properly contained in the class of 2-semilattices. Given

a 2-semilattice A, there is a natural class obtained by closing {A} under products, subal-

gebras, and homomorphic images. This class it known as the variety generated by A. The

answer to certain questions about this class boils down to understanding its subdirectly

irreducible members. “Subdirectly irreducible” will be defined in Chapter 2. When A is

a semilattice with more than one element in its domain, the generated variety is always

the class of all semilattices. In this case, the only subdirectly irreducible member up to

isomorphism is the two-element semilattice as shown by Papert in [45]. In [40], Maróti

proved that if A is a tournament then there are only finitely many subdirectly irreducible

members up to isomorphism in its generated variety and they are all finite.

Bulatov in [15] studied 2-semilattices from the point of view of the homomorphism

problem mentioned at the end of the third paragraph. In particular, he showed that if

A is a finite relational structure which is invariant under a 2-semilattice operation, then

the path consistency algorithm correctly answers the question “Given a finite relational

structure B similar to A, is there a homomorphism from B to A?”

The new results in this thesis up to and including Chapter 5 are purely algebraic.
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Chapter 3 is a collection of basic properties of 2-semilattices, most of which were previ-

ously known. Chapter 4 is a more in-depth exploration of the structure of 2-semilattices.

In particular, we give a structure theorem on minimal congruences in finite 2-semilattices.

We then use this theorem to explore the “tame-congruence-theoretic” types, as defined

by Hobby and McKenzie in [29], which occur in varieties of 2-semilattices. Tame Con-

gruence Theory will be introduced in Section 4.2. In Chapter 5 we show that if a finite

2-semilattice has certain properties, its generated variety contains arbitrarily large subdi-

rectly irreducible members. Chapter 6 is devoted to extending the result of Bulatov from

[15] mentioned in the previous paragraph. We prove that if A is a finite relational structure

which is invariant under a binary operation satisfying certain properties, then the homo-

morphism problem described in the previous paragraph can be answered in polynomial

time. The properties required of the binary operation are strictly weaker than being a

2-semilattice operation.

Chapter 2 is an introduction to the basics of universal algebra that will be used in this

thesis. The reader may wish to skip Chapter 2 and refer to it as needed. As mentioned

above, Chapter 3 contains elementary facts about 2-semilattices. Results from Chapter 3

will be applied in Chapters 4, 5, and 6. Chapter 6 does not refer to any results or definitions

in either Chapter 4 or Chapter 5, but Chapter 5 does use results from Chapter 4. Finally,

we note that Section 6.5 does not really seem to naturally fit anywhere in this thesis. The

notation and results introduced there will not be needed until Section 6.6, so it seems as

appropriate a choice as any to include them just before they are needed.

Before proceeding to Chapter 2, we acknowledge that since November 2016, three proofs

of the “dichotomy conjecture”, which will be stated in Chapter 6, have been circulated.

The first proof was circulated by Feder, Rafiey, and Kinne, the second by Zhuk, and the

third by Bulatov. References to their respective write-ups on arXiv.org can be found

in [48], [53], and [10], respectively. At the time of the writing of this thesis, all three
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proofs are unverified and unpublished. If true, these results will imply Theorem 6.6.5 and

Corollary 6.6.9, the main results in Section 6.6. It therefore seems appropriate to note that

the results in Section 6.6 had all been obtained by the summer of 2015.
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Chapter 2

Universal Algebra

This chapter is intended to introduce the algebraic background needed to understand this

thesis. For a more in-depth exposition of basic universal algebra, we point the reader

to text books of Burris and Sankapanavar [16] and Bergman [4]. Both are well-written

introductions to the subject. The reader may wish to skip this section and only consult it

as needed.

For a set A and a non-negative integer n, an n-ary operation on A is a function,

f : An → A. The integer n is called the arity of f , and we say that f is n-ary. When n = 1

or 2, we will call f unary or binary, respectively. When n = 0, the set A0 is identified with

A∅, the set of functions from ∅ to A. By convention, there is exactly one such function,

the “empty” function. What is important here is that A0 contains one element, so any

function f : A0 → A chooses one element from A. For this reason, we think of a zero-ary

operation on A as a distinguished element of A.

For a nonempty set I, we call a function ρ : I → N a similarity type. We will frequently

omit the word “similarity” and just say type. For a similarity type ρ, an algebra of type ρ is

a pair A = (A;F ) where A is a nonempty set called the universe of A, and F = (fi : i ∈ I)
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is a set of operations on A indexed by I such that the arity of fi is ρ(i) for every i ∈ I. We

will always denote the universe by a capital letter and the algebra by the corresponding bold

letter. From this point on, we will sacrifice some formality in order to improve readability

by thinking of a similarity type as a set of symbols with built-in arities. In this sense, if F

is a similarity type, the operations of an algebra A of type F are, for each n-ary symbol

f ∈ F, an operation fA : An → A. The superscripts are used as in the previous sentence

to distinguish the operations corresponding to the same symbol in different algebras of the

same type. For example, we think of the similarity type of a group as a binary operation

symbol ·, a unary operation symbol −1, and a zero-ary operation symbol, 1. A group A has

a binary operation, ·A, and unary operation −1A, and a distinguished constant 1A. The

superscripts will be omitted whenever the algebra is clear from context.

An algebra A is said to be finite if A is finite, and A is said to have finite type if the set

of symbols in its type is finite. When a type F contains just one symbol f , we will denote

an algebra A of type F by (A; fA) or (A; f) rather than (A; (fA)).

Two algebras are similar if they have the same similarity type. As described in the

previous paragraph, all groups are similar since they all can be thought of as having the

symbol set F = {·,−1 , e} where · is binary, −1 is unary, and 1 is zero-ary. For an algebra

A = (A;F ), the set F is called its set of basic operations. The term operations of an

algebra consist of the basic operations, all projections, and all operations obtained by

composition of these. From the perspective of first-order logic, a term operation of A is

the natural interpretation as an operation of some term in the type of A. For example,

if A has type F and F contains a binary symbol f and a three-ary symbol g, then F

has a term fx4gx1x3fx5gx2x2x3. This gives rise to a five-ary term operation hA, defined

by hA(x1, x2, x3, x4, x5) = fA(x4, g
A(x1, x3, f

A(x5, g
A(x2, x2, x3)))) for every algebra A of

type F.
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For an algebra of type F, a subuniverse of A is a subset, B ⊆ A which is closed under

all operations of A. A subalgebra of A is an algebra B = (B;G) similar to A where

B is a nonempty subuniverse of A and fB = fA �B for each symbol f ∈ F. That is,

G = (fB : f ∈ F) where fB is as defined in the previous sentence. We write B ≤ A if B

is a subuniverse of A, and B ≤ A if B is a subalgebra of A. We now give two definitions

regarding subuniverses and subalgebras that will be referred to later.

Definition 2.0.1. For an algebra A and a subset X ⊆ A, the subuniverse generated by X

is the intersection of all subuniverses of A which contain X. The subuniverse generated

by X is denoted by SgA(X). We say that an algebra A is finitely generated if there is a

finite set X ⊆ A such that A = SgA(X).

It can be shown for any algebra A and X ⊆ A that

SgA(X) = {t(a1, . . . , an) : t is an n-ary term operation of A and a1, . . . , an ∈ X}.

See Theorem 4.32 in [4] for a proof of this fact.

Definition 2.0.2.

1. A subuniverse B ≤ A is absorbing in A if A has an n-ary term operation t with

n ≥ 2 such that t(a1, a2, . . . , an) ∈ B whenever at least n− 1 of a1, . . . , an are in B.

In this case, we write B C A.

2. An absorbing subuniverse B C A is proper if it is not equal to A or ∅.

3. An algebra A is absorption free if it has no proper absorbing subuniverses.

If A and B are similar algebras, a homomorphism from A to B is a function h : A→ B

such that for every n-ary operation symbol f of arity n and any a1, . . . , an ∈ A,

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).
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In the case that h is surjective, B is called a homomorphic image of A. As usual in algebra,

a homomorphism which is a bijection is called an isomorphism. In this case, we say that

A and B are isomorphic and write A ∼= B.

For a family (Au : u ∈ U) of similar algebras, the direct product or product A =∏
u∈U Au has universe

∏
u∈U Au, which is formally the set{

σ : U →
⋃
u∈U

Au : σ(u) ∈ Au for each u ∈ U

}
.

For each n-ary operation symbol f in the type of the Au, the operation fA is defined

by fA(σ1, . . . , σn)(u) = fAu(σ1(u), . . . , σn(u)). When U is finite, that is, |U | = n for

some integer n, the product can be visualized as the usual cartesian product consisting of

n-tuples with coordinate-wise operations.

A congruence on an algebra A is an equivalence relation on its domain so that the

operations of A act in a well-defined way on equivalence classes. This means that an

equivalence relation θ is a congruence on A if for any n-ary operation f of A and any

(a1, b1), . . . , (an, bn) ∈ θ, we have that (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ as well. We will

often use the notation a
θ≡ b to denote (a, b) ∈ θ. Congruences will usually be denoted

by Greek letters, with a notable exception in the next sentence. Every algebra A has two

congruences, 0A = {(a, a) : a ∈ A} and 1A = A × A. Unless |A| = 1, these congruences

are different. We say that an algebra A is simple when it has exactly two congruences.

This implies that a simple algebra has at least two elements in its universe. Some au-

thors, such as Burris and Sankappanavar in [16] also consider one-element algebras to be

simple. We will stick to the convention that simple algebras have at least two elements

and say that an algebra is trivial if and only if it has a one-element universe. If θ is a

congruence on A, the quotient A/θ is the algebra similar to A defined as follows: The

universe, denoted by A/θ, is the set of θ-classes. For each a ∈ A, we denote by a/θ the
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θ-class containing a. For each n-ary operation symbol f , the operation fA/θ is defined

by fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ. That this definition gives rise to well-defined

operations is precisely the condition that distinguishes congruences among equivalence

relations. For a homomorphism h : A→ B, the kernel of h is defined by

ker(h) = {(a1, a2) ∈ A2 : h(a1) = h(a2)}.

The kernel of h is an equivalence relation, and for any (a1, b1), . . . , (an, bn) ∈ ker(h) and

n-ary operation fA of A, we have

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

= fB(h(b1), . . . , h(bn))

= h(fA(b1, . . . , bn)),

which means (fA(a1, . . . , an), fA(b1, . . . , bn)) ∈ ker(h). The first and third equalities

in the above calculation are because h is a homomorphism, and the second is because

(ai, bi) ∈ ker(h) for each i. This shows ker(h) is a congruence on A. Furthermore, if h is a

surjective homomorphism, A/ ker(h) ∼= B. For a congruence θ on A, θ is the kernel of the

homomorphism h : A → A / θ which sends a 7→ a/θ. This gives a correspondence be-

tween quotients and homomorphic images which is an extension of the same phenomenon

in the setting of groups and rings. The reader may wish to verify that the congruences

of a group are precisely the equivalence relations on its domain whose set of equivalence

classes is the set of cosets of a fixed normal subgroup.

We now include a brief discussion of lattices. We will not frequently appeal to lattice

theory, but the language of lattices will be used when discussing congruences. A lattice

can be thought of as a structure with an order or as an algebra with two binary operations.

Specifically, one definition of a lattice is a partial order in which every pair of elements

has a least upper bound and a greatest lower bound. Another definition of a lattice is an
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algebra whose similarity type consists of two binary symbols, ∧ and ∨, which satisfy some

identities including commutativity and associativity. For a complete list of the defining

identities of lattices, see Definition 1.7 in [4]. One of the ideas in lattice theory that will be

important for us is that there is a correspondence between these two definitions. A lattice

in the order theoretic sense can be assigned binary operations ∧ and ∨ where x ∧ y is the

greatest lower bound of x and y, and x ∨ y is the least upper bound of x and y. A lattice

in the algebraic sense can be assigned a partial order by x ≤ y if and only if x ∧ y = x if

and only if x ∨ y = y. These processes are inverses of each-other. For this reason, we will

think of a lattice as a structure with both a partial order ≤, and two operations ∧ and ∨

which are compatible in the sense that a ≤ b if and only if a∧ b = a if and only if a∨ b = b.

Our main use of the language of lattices will be to discuss congruences. We now define

congruence lattices, which will be mentioned frequently.

Definition 2.0.3. For an algebra A, we denote by Con(A) its set of congruences. For

congruences α and β on an algebra, we define α ≤ β if and only if α ⊆ β, α ∧ β = α ∩ β

and α ∨ β to be the transitive closure of α ∪ β.

It can be shown that ≤, ∧ and ∨ give a lattice structure on Con(A) and satisfy all

of the conditions in the last sentence of the previous paragraph. In particular, it can be

shown that α ∧ β and α ∨ β are congruences on A. Therefore, we will often call Con(A)

the congruence lattice of the algebra A.

Definition 2.0.4. For an algebra A and congruences α, β ∈ Con(A), we say α ≺ β if the

following conditions are satisfied:

1. α < β, and

2. α ≤ γ ≤ β implies γ ∈ {α, β}.
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When α ≺ β, we use the terminology “α is a lower cover of β” and “β is an upper cover

of α”.

Definition 2.0.5. Let A be an algebra and a, b ∈ A. The congruence generated by (a, b),

denoted CgA(a, b) is the intersection of all congruences on A which contain (a, b).

If A is an algebra and α ≤ β are congruences on A, then the relation β/α on A/α

defined by

β/α = {(u/α, v/α) : (u, v) ∈ β}

is a congruence on the algebra A/α. Furthermore, we have the following generalization of

the Correspondence Theorem for groups. For a proof of Theorem 2.0.6, see Theorem 3.6

from [4].

Theorem 2.0.6 (Correspondence Theorem). Suppose A is an algebra and α ∈ Con(A).

The set of congruences on A/α is exactly the set {β/α : α ≤ β ∈ Con(A)}. Furthermore,

β/α = γ/α if and only if β = γ, and β/α < γ/α if and only if β < γ.

The Correspondence Theorem implies that a congruence α ∈ Con(A) is maximal if and

only if A/α is a simple algebra. We will use this fact frequently.

We say that R is a subdirect product of (Au : u ∈ U) if R ≤
∏

u∈U Au and pru(R) = Au

for every u ∈ U . In this case, we write R ≤sd

∏
u∈U Au. When we are only referring to the

universe of R, we will write R ≤sd

∏
u∈U Au. If R ≤sd A1×A2×A3, we will occasionally use

the fact that R is isomorphic to a subalgebra of pr1,2(R)×A3 where (a1, a2, a3) is identified

with ((a1, a2), a3). In fact, the image of this isomorphism is subdirect in pr1,2(R) × A3.

We will occasionally abuse notation and write R ≤sd pr1,2(R) × A3 in this and similar

situations. If h : B ↪→
∏

u∈U Au is an embedding with h(B) ≤sd

∏
u∈U Au, h is called a

subdirect embedding.
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Definition 2.0.7. An algebra B is called subdirectly irreducible if for any subdirect em-

bedding h : B ↪→
∏

u∈U Au, there is some u ∈ U with the property that pru ◦h : B → Au

is an isomorphism.

As is pointed out in [4], the property of an algebra being subdirectly irreducible is

completely encoded in its lattice of congruences. Fix an algebra A and a congruence

θ ∈ Con(A). We say that θ is completely meet irreducible if whenever
∧
α∈C α = θ for

C ⊆ Con(A), it must be that θ ∈ C. The connection between subdirect irreducibility and

the congruence lattice is that A/θ is subdirectly irreducible if and only if θ is completely

meet irreducible. In particular, A is subdirectly irreducible if and only if 0A is completely

meet irreducible. The statement “θ is completely meet irreducible” is equivalent to the

existence of a congruence µ satisfying (i) θ < µ, and (ii), if θ < α then µ ≤ α. For a

proof of this and more discussion on subdirectly irreducible algebras, see Section 3.3 of

[4]. When θ is a completely meet irreducible congruence on an algebra A, the congruence

µ defined by µ =
∧
θ<ψ ψ is the unique upper cover of θ. See Definition 2.0.4 for the

definition of “upper cover”. Putting the facts in the previous few sentences together, we

get that an algebra is subdirectly irreducible if and only if the intersection of its non-

zero congruences is non-zero. For any algebra A, let Θ be the set of its completely meet

irreducible congruences. It can be shown using Zorn’s Lemma that
∧

Θ = 0A. Because of

this, the homomorphism h : A ↪→
∏

θ∈Θ A/θ is a subdirect embedding, where each A/θ

is subdirectly irreducible. This is a sketch of a proof that every algebra is isomorphic to

a subdirect product of subdirectly irreducible algebras. This result is due to Birkhoff [8].

As with simple algebras, there is some inconsistency in the literature about whether or not

one-element algebras are subdirectly irreducible. For example, Burris and Sankappanavar

in [16] and Gardner and Parmenter in [27] consider one-element algebras as subdirectly

irreducible. We will stick with the convention that one-element algebras are not subdirectly

irreducible.
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An identity is a universally quantified equation of terms. For example, consider an

algebra A whose similarity type yields terms s and t. We say that A satisfies s ≈ t

and write A � s ≈ t if sA = tA. This may seem nonsensical as sA and tA need not

even be functions of the same variables. For example, perhaps A has a binary basic

operation symbol f , s = fx3fx1x2, and t = fx3fx5x4. In this case, sA = tA means for

any assignment (a1, a2, a3, a4, a5) ∈ A5 of (x1, x2, x3, x4, x5), we have that sA(a1, a2, a3) =

tA(a3, a4, a5). In the previous sentence, we consider s and t as functions of x1, . . . , x5. That

is, s = s(x1, . . . , x5) and t = t(x1, . . . , x5). The variables that s mentions syntactically are

x1, x2, and x3, and s does not mention x4 or x5 syntactically. Similarly, t mentions x3, x4,

and x5 syntactically, but it does not mention x1 or x2 syntactically.

Returning to our discussion on identities, we say that a class V of similar algebras

satisfies s ≈ t and write V � s ≈ t if every algebra in V satisfies s ≈ t. This thesis will

almost exclusively deal with algebras which are idempotent. This was defined for binary

operations in the introduction, but here we give a more general definition.

Definition 2.0.8.

1. An operation t on a set A is idempotent if it satisfies t(a, a, . . . , a) = a for every

a ∈ A.

2. An algebra is idempotent if all of its basic operations are idempotent.

3. A class of algebras is idempotent if each algebra it contains is idempotent.

We note that for any algebra A, the statements “all basic operations of A are idem-

potent” is equivalent to the statement “all term operations of A are idempotent”. One of

many useful properties of idempotent algebras is stated in the next proposition.

Proposition 2.0.9. Let A be an idempotent algebra and θ ∈ Con(A). Every equivalence

class of θ is a subuniverse of A.
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The class of groups are a familiar example of a class which satisfies identities. In fact,

the class of all groups is precisely the class of algebras with similarity type given by the

symbol set {·,−1 , e} having arities 2, 1, and 0, respectively, that satisfy the familiar group

identities. Such a defining set of identities is often called an axiomatization. A class of

similar algebras which has an axiomatization is called a variety. Birkhoff in [7] showed

that a class of similar algebras is a variety if and only if it is closed under the formation

of products, subalgebras, and homomorphic images. We note that an axiomatization of a

variety need not be finite or unique.

For a class K of similar algebras, the variety generated by K is defined to be the

intersection of all varieties containing K. In [7], Birkhoff proved that the variety generated

by a set K of similar algebras is exactly the class of homomorphic images of subalgebras

of products of members of K. For this reason, we make the following definition:

Definition 2.0.10. Let K be a class of algebras. The variety generated by K, denoted

HSP(K) is the class of all algebras which are a homomorphic image of a subalgebra of

a product of members of K. When K consists of just one algebra A, we abbreviate

HSP({A}) by HSP(A).

For varieties V and W of the same type, we denote by V ∨W the variety generated by

their union. We finish off with a definition concerning varieties.

Definition 2.0.11. A variety is called locally finite when each finitely generated algebra

it contains is finite.

It is well known that every variety generated by finitely many finite algebras is locally

finite. For a proof of this, see Theorem 3.49 in [4].
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Chapter 3

Basic Properties of 2-Semilattices

The goal of this chapter is to formally define 2-semilattices and establish some of their im-

portant properties that will be used later. In Section 3.1, we associate to each 2-semilattice

a digraph and prove Lemma 3.1.5 which is a collection of properties of this digraph. Sec-

tion 3.2 establishes two properties of the variety of 2-semilattices: it is not locally finite,

and it is meet semidistributive. “Locally finite” was defined in Definition 2.0.11, and meet

semidistributivity is a property of congruence lattices which will be defined formally in

Definition 3.2.2. The rest of the chapter uses the Absorption Theorem of Barto and Kozik

to establish facts about subdirect products of finite 2-semilattices. Section 3.4 is a collec-

tion of results that were known to Bulatov in [15]. We include proofs here because many

of Bulatov’s proofs were either quite terse or omitted altogether. Most of these results will

not be needed until Chapter 6

Definition 3.0.1. Let A be a set.

1. A 2-semilattice operation on A is a binary operation ∗ : A2 → A satisfying

(a) x ∗ x ≈ x,
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(b) x ∗ y ≈ y ∗ x, and

(c) x ∗ (x ∗ y) ≈ x ∗ y.

2. An algebra is called a 2-semilattice if its only basic operation is a 2-semilattice oper-

ation.

3. A 2-semilattice A is called a tournament if for any a, b ∈ A, a ∗ b ∈ {a, b}.

4. A 2-semilattice is called a commutative directoid if it satisfies x∗((x∗y)∗z) ≈ (x∗y)∗z.

5. The variety of 2-semilattices will be denoted by S.

The symbol ∗ will usually be omitted and we will simply denote the operation by

concatenation. Since 2-semilattice operations are not associative, care must be taken to

include parentheses when composing a 2-semilattice operation with itself. To avoid some

clumsiness, we adopt the convention that association takes place on the left when paren-

theses are omitted. For example, xyz will always mean (xy)z, and xyzw will always mean

((xy)z)w.

Given any algebra A and a, b ∈ A, recall from Definition 2.0.5 that CgA(a, b) is the

congruence on A generated by the pair (a, b). Proposition 3.0.2 is about congruences of

2-semilattices and is stated without proof. For proofs of more general versions of Proposi-

tion 3.0.2 parts (1) and (2), see Theorems 4.16 and 4.17 from [4]. Proposition 3.0.2 (2) is

traditionally credited to Maltsev since it is immediately implied by results from [38].

Proposition 3.0.2. Let A be a 2-semilattice, θ be an equivalence relation on A, and

a, b ∈ A.

1. The relation θ is a congruence on A if and only if for every (u, v) ∈ θ and c ∈ A,

the pair (cu, cv) ∈ θ.
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2. The congruence CgA(a, b) is the transitive closure of

{(t(a, a1, . . . , an), t(b, a1, . . . , an)) : t is a term operation of A and a1, . . . , an ∈ A}.

It is worth mentioning that Proposition 3.0.2 (1) is true for any algebra whose only

basic operation is binary, and Proposition 3.0.2 (2) is true of any algebra. The following

is a result of Papert from [45] on semilattices. This is not necessarily the best place for it,

but it will be used later and seems to fit here as well as anywhere.

Proposition 3.0.3. The only subdirectly irreducible semilattice is the two element semi-

lattice.

3.1 The Digraph

We now define the digraph mentioned in the beginning of this chapter as well as some

associated vocabulary.

Definition 3.1.1. Let A be a 2-semilattice. We define a digraph relation on A by a
A−→ b

if and only if ab = b.

1. A subset X ⊆ A is strongly connected if for any x, y ∈ X there are z1, . . . , zn ∈ X

such that

x
A−→ z1

A−→ · · · A−→ zn
A−→ y.

2. A subset X ⊆ A is a strongly connected component of A if it is strongly connected

and X ( Y ⊆ A implies Y is not strongly connected.

3. We say that A is strongly connected if and only if A is a strongly connected component

of A.

19



4. A subset X ⊆ A is acyclic if x1, . . . , xn ∈ X with

x1
A−→ · · · A−→ xn

A−→ x1

implies x1 = x2 = · · · = xn.

5. We say A is acyclic if A is acyclic.

We will sometimes write −→ rather than
A−→ when it can be done without a loss of

clarity. Notice that in the case that A is a semilattice, this digraph relation is exactly the

associated partial order with the arrow pointing to the smaller element. The terminology

in Definition 3.1.1 (1)-(3) is standard graph theoretic terminology for the digraph (A,
A−→)

imposed on the algebra A. Our notation agrees with Bulatov’s in [15], but Maróti defines

a −→ b if and only if ab = a in [40]. This difference in notation is superficial. As we will

see, the structure of (A,
A−→) holds a lot of information about A. In general, however, the

operation of a 2-semilattice can not be recovered from its digraph alone. The following

example gives two non-isomorphic 2-semilattices which have identical digraphs.

Example 3.1.2. We define 2-semilattices A1 and A2 as follows. The universes, A1 and

A2 are both equal to {0, 1, 2, 3}. The operations, ∗A1 and ∗A2 are defined by the tables

in Figure 3.1. It can be seen from the table that both ∗A1 and ∗A2 are commutative and

idempotent. That they satisfy x(xy) = xy can be easily checked. The associated digraph

for both A1 and A2 is in Figure 3.2. As will be the case for all digraphs of 2-semilattices in

this thesis, we omit all loops from the picture. We note that A2 is a commutative directoid

referred to as a “fork” by Gardner and Parmenter in [27] and Ježek and McNulty in [34].

Notice that A1 is a semilattice, but 1 ∗A2 (2 ∗A2 3) = 0 while (1 ∗A2 2) ∗A2 3 = 1.

Therefore, A2 is not associative, so A1 6∼= A2.
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Figure 3.1: The operation tables for A1 and A2

∗A1 0 1 2 3

0 0 0 0 0
1 0 1 1 1
2 0 1 2 1
3 0 1 1 3

∗A2 0 1 2 3

0 0 0 0 0
1 0 1 1 1
2 0 1 2 0
3 0 1 0 3

.

Figure 3.2: The digraph of A1 and A2

1

32

0
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Suppose A is a tournament. Since ab ∈ {a, b} for all a, b ∈ A, either a −→ b or

b −→ a, so the product ab can be determined from the direction of the arrow between a

and b. In other words, if A is a tournament, then its operation is completely defined by its

digraph. This is consistent with Example 3.1.2 since neither A1 nor A2 is a tournament

as 2 ∗Ai 3 /∈ {2, 3} for i = 1, 2.

The structure of strongly connected components of digraphs associated to 2-semilattices

will be of importance throughout the thesis. The next definition and lemma are about

strongly connected components.

Definition 3.1.3. Let A be a 2-semilattice and
A−→ be the digraph relation from Defini-

tion 3.1.1.

1. Denote by
A∼ the equivalence relation on A whose classes are the strongly connected

components with respect to
A−→. We omit the over-set symbol and denote this

relation by ∼ whenever it can be done without a loss of clarity.

2. Define a digraph relation
A/∼−→ on A/∼ by a/∼ A/∼−→ b/∼ if and only if there are a′ ∈ a/∼

and b′ ∈ b/∼ with a′
A−→ b′.

3. Write a/∼� b/∼ if there is a directed walk from a/∼ to b/∼ in the digraph (A,
A/∼−→).

Note that while ∼ is an equivalence relation on the domain of A, it is not necessarily

a congruence on A. The relation
A/∼−→ is simply a digraph relation on the set A/∼.

Lemma 3.1.4. Let A be a 2-semilattice and
A∼ and � be as in Definition 3.1.3.

1. For classes a/∼ and b/∼, a/∼ � b/∼ if and only if there is a directed walk in

(A,
A−→) from a′ to b′ for every a′ ∈ a/∼ and b′ ∈ b/∼.

2. The digraph (A/∼, A/∼−→) is acyclic.
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3. The relation � is a partial order.

Proof.

1. Suppose a/∼ A/∼−→ b/∼ . By definition, this means there are a′ ∈ a/∼ , b′ ∈ b/∼ with

a′
A−→ b′. Now let a′′ ∈ a/∼ and b′′ ∈ b/∼ be arbitrary. since a/∼ and b/∼ are both

strongly connected, there are directed walks from a′′ to a′ and from b′ to b′′. This

gives a directed walk from a′′ to b′′. If a/∼� b/∼ , there is, by definition, a directed

walk in (A/∼, A/∼−→) from a/∼ to b/∼ . Repeatedly applying the argument for when

a/∼ A/∼−→ b/∼ and concatenating the directed walks obtained shows that there is a

directed walk from every element in a/∼ to every element in b/∼ . Conversely, if

there is a directed walk from every element in a/∼ to every element in b/∼ , then

there is a directed walk from a to b in (A,
A−→). Let

a
A−→ a1

A−→ · · · A−→ an
A−→ b

be such a walk. Then

a/∼ A/∼−→ a1/∼
A/∼−→ · · · A/∼−→ an/∼

A−→ b/∼

which is a directed walk from a/∼ to b/∼ in (A/∼, A/∼−→), so a/∼� b/∼ .

2. Suppose

a1/∼
A/∼−→ a2/∼

A/∼−→ · · · A/∼−→ an/∼
A/∼−→ a1/∼ .

By part (1), this means, for each i, j ≤ n, there is a directed walk from every a ∈ ai/∼

to every b ∈ aj/∼ . Therefore,
n⋃
i=1

ai/∼

is strongly connected, so a1/∼= a2/∼= · · · = an/∼ because each ai/∼ is a strongly

connected component.
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3. Since a
A−→ a for every a ∈ A, we have a/∼ A/∼−→ a/∼ and hence a/∼� a/∼ for every

a ∈ A. This shows that � is reflexive, it is antisymmetric by part (2). To see that

� is transitive, suppose a/∼� b/∼� c/∼ . Let a′ ∈ a/∼ and c′ ∈ c/∼ be arbitrary.

For any b′ ∈ b/∼ , there are directed walks from a′ to b′ and from b′ to c′ in (A,
A−→)

by part (1). Concatenating these walks gives a walk from a′ to c′. Applying part (1)

again shows that a/∼� c/∼ . Therefore, � is a partial order.

When a/∼� b/∼, we view b/∼ as being lower than a/∼ in the partial order. When

we refer to minimal components, we mean with respect to this order. Lemma 3.1.5 is a

collection of properties of and relating to the digraph structure of a 2-semilattice. Many

of the properties appear in [15] either implicitly or explicitly. Maróti also proved parts of

Lemma 3.1.5 in [40] in the context of tournaments. We remind the reader that absorbing

subuniverses were defined in Definition 2.0.2.

Lemma 3.1.5. Let A ∈ S be finite. The following hold for the digraph (A,
A−→).

1. For any a, b ∈ A, a −→ a, a −→ ab and b −→ ab.

2. A has a unique minimal strongly connected component denoted A′ with respect to the

partial order � from Definition 3.1.3. This component has the property that for any

b ∈ A there is a ∈ A′ such that b −→ a.

3. With A′ as in (2), a ∈ A′ if and only if for every b ∈ A there is a directed walk from

b to a.

4. A′ is an absorbing subuniverse of A with respect to ∗.

5. If a, b ∈ A with a −→ b, then ({a, b}; ∗) is a semilattice with smallest element b.
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6. If B ≤ A, then
B−→ is (

A−→) ∩ B2. That is, the digraph on B is the subdigraph

induced from (A,
A−→) on the domain of B.

7. If α ∈ Con(A) then a/α
A/α−→ b/α if and only if there are a′ ∈ a/α and b′ ∈ b/α with

a′
A−→ b′.

8. Let α be a congruence on A. If (A,
A−→) is strongly connected, then (A/α,

A/α−→) is

strongly connected.

Proof.

1. a −→ a because aa = a, a −→ ab since a(ab) = ab, and b −→ ab because b −→ ba

and ∗ is commutative. We are using the identity x∗ (x∗y) ≈ x∗y from the definition

of a 2-semilattice operation.

2. The partial order � is acyclic by Lemma 3.1.4 (2), so it has minimal elements by

finiteness. By minimality, any such component U has the property that if u ∈ U

and u −→ v, then v ∈ U . Suppose U and V are minimal components. Fix u ∈ U

and v ∈ V . From (1), u −→ uv and v −→ uv. From the previous remark, we have

uv ∈ U ∩ V . Since U and V are classes of an equivalence relation, we get U = V .

We have shown that A′ exists and is unique. Now pick b ∈ A and a′ ∈ A′, then set

a = ba′. By the previous remark, a ∈ A′, and b −→ a by (1).

3. If a ∈ A′ and b ∈ A, there is c ∈ A′ such that b −→ c by (2). Since A′ is strongly

connected, there is a directed walk from c to a, so there is a directed walk from b to

a. Conversely, suppose a ∈ A and that there is a directed walk from b to a for every

b ∈ A. In particular, for any b ∈ A′ there is a directed walk from b to a. By the

minimality of A′, every vertex in any such walk must be in A′, so a is in A′.
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4. Suppose {a, b} ∩ A′ 6= ∅. Then a −→ ab and b −→ ab by (1). Since either a ∈ A′ or

b ∈ A′ there is some c ∈ A′ such that c −→ ab. This means ab ∈ A′ by minimality.

Note that this proves A′ is a subuniverse of A and that it is an absorbing subuniverse

with respect to t(x, y) = x ∗ y.

5. This is true since aa = a and ab = ba = bb = b.

6. The notation a
B−→ b means a, b ∈ B and ab = b.

7. Suppose a/α
A/α−→ b/α. By definition, this means (a/α)(b/α) = b/α. Because of how

quotient algebras are defined, (ab)/α = b/α, so there is b′ ∈ b/α so that ab = b′. This

means ab′ = a(ab) = ab = b′, so a
A−→ b′. Taking a = a′ shows one direction of the

implication. Now suppose there are a′ ∈ a/α and b′ ∈ b/α with a′ −→ b′. Then

(a/α)(b/α) = (ab)/α

= (a′b′)/α

= b′/α

= b/α,

so a/α
A/α−→ b/α.

8. Suppose a, b ∈ A. Since (A,
A−→) is strongly connected, there are a1, . . . , an such that

a = a1
A−→ a2

A−→ · · · A−→ an = b.

By (7),

a/α = a1/α
A/α−→ a2/α

A/α−→ · · · A/α−→ an/α = b/α

is a directed walk from a/α to b/α in (A/α,
A/α−→).
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Figure 3.3: The digraph of E

1
4

2 3

0

With the exception of the smallest strongly connected component, the strongly con-

nected components of a 2-semilattice A are not, in general, subuniverses of A. For an

example of this, see Example 3.1.6. By Proposition 2.0.9, the equivalence classes of a con-

gruence on a 2-semilattice A are all subuniverses of A. Thus, Example 3.1.6 also shows,

as mentioned earlier, that
A∼ will not be a congruence on A in general. In the case that A

is a tournament,
A∼ is a congruence and the quotient by

A∼ is a semilattice. For a proof of

this, see Lemma 4.2 in Maróti’s doctoral thesis [40].

Example 3.1.6. We define an algebra E with universe E = {0, 1, 2, 3, 4}, 1∗3 = 2∗4 = 0,

and all other products can be deduced from its associated digraph in Figure 3.3. Note that

the strongly connected components of (E,−→) are {0} and {1, 2, 3, 4}, the latter of which

is not closed under ∗.

There are several standard “products” in graph theory. For clarity on what we mean
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by a product of digraphs, we include the following definition:

Definition 3.1.7. Let (Di : i ∈ I) be a family of digraphs. By
∏

i∈I Di we mean the

digraph whose domain is the Cartesian product of the domains, and v −→ w if and only

if v(i) −→ w(i) for each i.

This is the usual product of relational structures from a model theoretic point of view,

and it is the tensor product from a graph theoretic point of view. For us, the product of

graphs will always be the product in Definition 3.1.7.

Lemma 3.1.8. Suppose (Ai : i ∈ I) is a family of 2-semilattices and let A =
∏

i∈I Ai.

1. The graph (A,
A−→) equals

∏
i∈I(Ai,

Ai−→).

2. If each Ai is strongly connected and there is some n ∈ ω such that |Ai| ≤ n for each

i ∈ I, then A is strongly connected.

Proof.

1. The two digraphs in question both have domain equal to
∏

i∈I Ai, so it is enough to

show that they have the same arrows. Fix a,b ∈ A. By Definition 3.1.1, a
A−→ b

if and only if ab = b. Because of the way products of algebras are defined, this is

equivalent to a(i)b(i) = b(i) for each i ∈ I, which is equivalent to a(i)
Ai−→ b(i) for

each i.

2. Suppose f, g ∈ A. Since the digraph (Ai,
Ai−→) is reflexive for each i and |Ai| ≤ n,

there is a directed walk,

f(i)
Ai−→ ai1

Ai−→ ai2
Ai−→ · · · Ai−→ ain−1

Ai−→ g(i)
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from f(i) to g(i) in (Ai,
Ai−→) of length exactly n. For each j = 1, . . . , n − 1, if we

define hj ∈ A by hj(i) = aij, we have that

f
A−→ h1

A−→ · · · A−→ hn
A−→ g,

so A is strongly connected.

In particular, Lemma 3.1.8 shows that any power of a finite strongly connected 2-

semilattice is strongly connected.

3.2 Local Finiteness and Meet Semidistributivity

This thesis will be mainly concerned with varieties generated by a finite 2-semilattice. It

was noted that such varieties are locally finite after Definition 2.0.11. We now show that the

variety of all 2-semilattices is not locally finite. The algebra A in Example 3.2.1 is a finitely-

generated 2-semilattice which is infinite. Figure 3.4 contains a partial picture of the digraph

of A. One way to visualize the digraph is in “layers”. The elements of A are denoted by

the nonnegative integers, and the layers are {0, 1, 2}, {3, 4, 5}, {6, 7, 8}, . . . . There is an

arrow from n to n+ 1 for every n, so we think of the directed path 0 −→ 1 −→ 2 −→ · · ·

as spiraling to the right through the layers. The arrows in this path are drawn thicker than

the others. Additionally, there is an arrow from i to j whenever i < j and either i ≡ j

(mod 3) or i + 1 ≡ j (mod 3). We have omitted from the picture in Figure 3.4 all such

arrows with i ≡ j (mod 3), but included some of those with i + 1 ≡ j (mod 3). There is

also a loop on each vertex which has been omitted from the picture.
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Figure 3.4: A finitely-generated infinite 2-semilattice
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Example 3.2.1. Let A = ω, the natural numbers and define f : A2 → {0, 1, 2} by

f(x, y) = (x mod 3) ∗ (y mod 3) where ∗ is the 2-semilattice operation of T3 from Defini-

tion 1.0.1. Now define a binary operation · : A2 → A as follows:

x · y =


max{x, y} if x ≡ y (mod 3)

z
where z ≥ x, y is minimal such that

z ≡ f(x, y) (mod 3), otherwise.

Let A be the algebra (A, ·). We will show that A is a finitely generated 2-semilattice.

Since A = ω is infinite, this will show that the variety of all 2-semilattices is not locally

finite. Since f is commutative, it follows that · is commutative. As well, the definition of

the operation · says that x · x = max{x, x} = x, so · is idempotent. We now fix x, y ∈ A.

If x · y = x, then x · (x · y) = x · x = x = x · y. If x · y = y, then x · (x · y) = x · y.

Therefore, the only way A can fail identity (3) in Definition 3.0.1 (1) is if x · y /∈ {x, y}.

This means x 6≡ y (mod 3), so x ·y = z where z ≥ x, y is the smallest for which z ≡ f(x, y)

(mod 3), and since z /∈ {x, y}, z > x, y. Because of how ∗T3 is defined, we have that
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f(x, y) ≡ x (mod 3) or f(x, y) ≡ y (mod 3). Suppose the first occurs and that x = n for

some n ≥ 0. Then z = n + 3k for some k ≥ 1, but since f(x, y) ≡ x (mod 3), we have

that y ≡ n− 1 (mod 3). By the minimality of z, it must be that y = z − 1. We can now

calculate x · (x · y) = n · (n + 3k) = n + 3k = z = x · y. If f(x, y) ≡ y (mod 3), then

by the same reasoning as the previous case, we have y = n, z = n + 3k for k ≥ 1, and

x = n+ 3k− 1. In this case, x · (x · y) = (n+ 3k− 1) · (n+ 3k). Since n+ 3k− 1 6≡ n+ 3k

(mod 3), the definition of · implies this product is equal to n+ 3k which is z = x · y.

To see that A is finitely generated, fix n and suppose n ≡ 0 (mod 3). Then n+ 2 ≡ 2

(mod 3), so n · (n + 2) ≡ 0 ∗ 2 = 0 (mod 3). The smallest integer which is 0 (mod 3)

and at least as large as n and n + 2 is n + 3. Therefore, n · (n + 2) = n + 3. A similar

argument holds when n ≡ 1, 2 (mod 3). This means n+3 is in the subalgebra generated by

{n, n+ 1, n+ 2} for any n. Setting n = 0, this inductively shows that A is the subuniverse

generated by {0, 1, 2}. Thus, A is finitely generated. This algebra will be used to provide

another counterexample in Section 5.2

We now define congruence meet semidistributivity and prove that the variety of 2-

semilattices is congruence meet semidistributive.

Definition 3.2.2. Let A be an algebra. We say that A is congruence meet semidistributive

if for any congruences α, β, γ, and δ of A, if α ∧ β = α ∧ γ = δ, then α ∧ (β ∨ γ) = δ. A

variety is congruence meet semidistributive if every algebra it contains is congruence meet

semidistributive.

We will often drop the word “congruence” and simply say that an algebra or a variety

is meet semidistributive.

Theorem 8.1 from [35] is a ten-fold characterization given by Kearnes and Kiss of meet

semidistributivity of a variety. Much of the theorem was shown to be true in the locally

31



finite case by Hobby and McKenzie in Theorem 9.10 of [29]. To state either of these two

theorems would be a substantial digression from the material in this thesis. Instead, we

note that as an immediate consequence of Theorem 8.1 from [35], to show that S is meet

semidistributive, it suffices to prove that a nontrivial module over a unital ring cannot have

a term operation which is a 2-semilattice operation. Put more precisely, it suffices to prove

that a nontrivial left module over a unital ring can not have a commutative, idempotent,

binary term operation t satisfying t(x, t(x, y)) ≈ t(x, y). Recall from Chapter 2 that a

nontrivial module is a module with more than one element.

Proposition 3.2.3. The variety S is congruence meet semidistributive.

Proof. Fix a unital ring R and a left R-module M. From a universal algebraic point of view,

the operations of M are a binary operation +, a unary operation −, a constant 0, and for

each r ∈ R, a unary operation tr : M →M given by tr(m) = rm. The only operations that

can be constructed by composing these are of the form t(x1, . . . , xn) = r1x1 + · · · rnxn for

some r1, . . . , rn ∈ R and variables x1, . . . , xn. This means that all binary term operations

of M are of the form t(x, y) = ax + by for some a, b ∈ R. We now suppose M has a

binary term operation t(x, y) given by t(x, y) = ax + by for some a, b ∈ R which satisfies

the conditions outlined before the statement of the Proposition. In other words, there are

a, b ∈ R such that for all m,n ∈M the following hold:

1. am+ bm = m

2. am+ bn = an+ bm

3. am+ b(am+ bn) = am+ bn.

Notice that condition 3 is equivalent to b(am + bn) = bn since am can be cancelled from

both sides of the equation. Setting n = 0 and using (2), we get am = bm for all m.
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Applying this to the simplified version of equation 3 gives a(am + bn) = bn, and again

setting n = 0 gives a2m = 0 for all m ∈ M . Applying am = bm to equation 1, we get

am+ am = m and multiplying both sides by a gives a2m+ a2m = am. The left side is 0,

so am = 0 for all m ∈ M . By what we showed earlier, this means bm = 0 for all m ∈ M

as well. Applying this to equation 1, we get m = 0 for all m ∈M . Therefore, M is trivial

and S is meet semidistributive.

3.3 Absorption

We will make use of the so-called Absorption Theorem of Barto and Kozik, which appeared

as Theorem 2.3 in [2]. To apply the Absorption Theorem, we usually use Theorem 3.3.2.

Before stating Lemma 3.3.1 which will be used in the proof of Theorem 3.3.2, we point the

reader to the discussion on identities in Section 2 for an explanation of what “syntactically

mentions” means.

Lemma 3.3.1. Suppose A is a finite 2-semilattice, a, b ∈ A, a −→ b, and t(x1, · · · , xn) is

a term which syntactically mentions x1. Then tA(b, a, . . . , a) = b.

Proof. Suppose t is a counterexample which is minimal with respect to the number of

times ∗ occurs in t. If ∗ does not occur in t, then t must be x1, so t(b, a, . . . , a) =

b. Since t is a counterexample, this can’t happen, so there are terms r and s so that

t(x1, x1, . . . , xn) = r(x1, x2, . . . , xn) ∗ s(x1, x2, . . . , xn). Since {a, b} is a subuniverse of A

by Lemma 3.1.5 (5), each of r(b, a, . . . , a) and s(b, a, . . . , a) is either a or b. We are also

assuming t(b, a, . . . , a) = a, so r(b, a, . . . , a) = s(b, a, . . . , a) = a because ab = ba = bb = b.

Furthermore, one of r and s must mention x1 syntactically since t does. This contradicts

the minimality of t.

33



Theorem 3.3.2. Let A ∈ S be finite and strongly connected. Then A has no proper

absorbing subuniverse.

Proof. First, we note that if B C A is proper, then there is some term operation t witness-

ing the absorption that depends on all of its variables. Indeed, if u is an n-ary term opera-

tion witnessing B C A that depends on variables x1, . . . , xk with k ≤ n, then t(x1, . . . , xk)

defined by u(x1, . . . , xk−1, xk, xk, . . . , xk) depends on all of its variables and witnesses that

B C A. Suppose B is a proper absorbing subuniverse of A with respect to some n-ary

term operation t which depends on all of its variables. Since B is proper and (A,−→) is

strongly connected, there are b ∈ B and c ∈ A − B with b −→ c. Since t depends on x1,

any term which defines t must mention x1 syntactically. By Lemma 3.3.1, t(c, b, . . . , b) = c,

which contradicts B C A.

Using what has already been done in this section, we will apply the Absorption Theorem

to 2-semilattices in the next section. Before stating the Absorption Theorem, we collect

some definitions.

Definition 3.3.3. Let A and B be finite algebras with R ≤sd A × B. Let GR be the

bipartite simple graph with vertex set A∪B and an edge connecting a and b exactly when

(a, b) ∈ R. We say that R is linked if and only if GR is connected.

We now define Taylor operations. These operations are named after Walter Taylor,

who first defined them in [52]. The defining identities of a Taylor operation cannot be

satisfied by any projection in a nontrivial algebra. Hence, an algebra having a Taylor term

operation in a sense indicates a “non-triviality” of its term operations.

Definition 3.3.4. Let A be a set and n ≥ 2. A Taylor operation of arity n is an idempotent

operation t : An → A which, for each i ≤ n, satisfies an identity t(xi1, x
i
2, . . . , x

i
n) ≈

t(yi1, y
i
2, . . . , y

i
n) where xik, y

i
k ∈ {x, y} for 1 ≤ k ≤ n and xii 6= yii.
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Definition 3.3.5.

1. An idempotent algebra A is said to be Taylor if it has a Taylor term operation.

2. A variety V is said to be Taylor if there is a term t in its type and a set of identities so

that tA is a Taylor operation with respect to those identities for each algebra A ∈ V.

For example, the variety of groups is Taylor since the operation given by t(x, y, z) =

xy−1z is a Taylor operation. To see this, note that the variety of groups satisfies t(x, y, y) ≈

t(y, y, x) ≈ t(x, x, x) ≈ x. This shows that in the variety of groups t is idempotent,

t(x, y, y) ≈ t(y, y, x) is an identity mentioning two variables with the variables unequal

in the first and third positions, and t(x, y, y) ≈ t(x, x, x) is an identity mentioning two

variables with the second variables unequal.

Proposition 3.3.6. The variety S is Taylor.

Proof. The basic operation ∗ is idempotent and satisfies x ∗ y ≈ y ∗ x which is an identity

where the first variables are different, and the second variables are different. Indeed, any

binary, idempotent, commutative operation is a Taylor operation.

Now we state the Absorption Theorem of Barto and Kozik, which appears as Theo-

rem 2.3 in [2]. We remind the reader that an algebra is absorption free if it has no proper

absorbing subuniverse.

Theorem 3.3.7 (Absorption Theorem). Suppose A and B are finite, absorption free, and

in an idempotent variety with a Taylor term. If R ≤sd A×B is linked, then R = A×B.
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3.4 Subdirect Products of Strongly Connected

2-Semilattices

We will now study subdirect products of 2-semilattices. All results in this section were

known to Bulatov in [15]. Bulatov’s proofs relied on careful analysis of the nature of

strongly connected 2-semilattices. We present shorter proofs which rely on the Absorption

Theorem, which was unknown at the time Bulatov wrote [15]. Recall from Chapter 2 that

an algebra A is simple if and only if it has exactly two congruences: 0A = {(a, a) : a ∈ A}

and 1A = A× A.

Lemma 3.4.1. Let A,B ∈ S be finite and strongly connected with B simple. If R ≤sd A×B

then either R = A × B or there is a surjective homomorphism ϕ : A → B such that

R = {(a, ϕ(a)) : a ∈ A}. In other words, R is the graph of ϕ.

Proof. Assume R ≤sd A × B. If R is the graph of a function, it is necessarily the graph

of a homomorphism. Therefore, if we assume R is not the graph of a homomorphism,

subdirectness of R guarantees that there is some a ∈ A and distinct b1, b2 ∈ B with both

(a, b1) and (a, b2) ∈ R. The relation

τ = {(c, d) ∈ B2 : there is a ∈ A such that (a, c), (a, d) ∈ R}

is a symmetric and reflexive subuniverse of B2, so its transitive closure, α, is a congruence

on B. This follows from Proposition 3.0.2 (1). We also have that (b1, b2) ∈ τ ⊆ α, so

α = B×B because b1 6= b2 and B is simple. This shows that R is linked. We also have that

A and B are absorption free by Theorem 3.3.2, and that S is Taylor by Proposition 3.3.6.

The conditions of Theorem 3.3.7 are satisfied, so R = A×B.

Lemma 3.4.2. Let A,B ∈ S be finite, strongly connected, and simple with R ≤sd A×B.

Either R = A×B or R is the graph of a bijection.
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Proof. Suppose R ≤sd A × B and that R 6= A × B. Since B is simple, Lemma 3.4.1

implies R is the graph of a surjective homomorphism from A to B. Using that A is simple

and applying Lemma 3.4.1 again, we get that this homomorphism is injective, as well.

Therefore, R is the graph of a bijection from A to B.

Recall that for a 2-semilattice D, the smallest strongly connected component of (D,−→)

is denoted by D′.

Lemma 3.4.3. Suppose A and B are finite 2-semilattices.

1. If R ≤sd A×B, then R′ ≤sd A′ ×B′.

2. (A×B)′ = A′ ×B′.

Proof.

1. First, suppose (a, b) ∈ R′ and choose any u ∈ A. Since R ≤sd A×B, there is v ∈ B

with (u, v) ∈ R. By Lemma 3.1.5 (3), there is a directed walk from (u, v) to (a, b) in

R. Restricting to the first coordinate gives a directed walk from u to a in A. Since

u was chosen arbitrarily in A, Lemma 3.1.5 (3) implies a ∈ A′. A similar argument

shows that b ∈ B′. We have that R′ ≤ A′ ×B′. Now choose a ∈ A′ and (u, v) ∈ R′.

Using Lemma 3.1.5 (3), find a directed walk,

u = u1 −→ u2 −→ · · · −→ un = a,

from u to a. Using that R ≤sd A ×B, extend u1, . . . , un to pairs (ui, vi) in R, with

v1 = v. Consider the element

(x, y) = (u1, v1)(u2, v2) · · · (un−1, vn−1)(un, vn)
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of R and recall that association takes place on the left. By construction, we have

x = un = a. Each (ui, vi) was chosen to be in R and (u1, v1) ∈ R′, so by repeated

application of Lemma 3.1.5 (4), (a, y) ∈ R′. This proves that A′ ⊆ pr1(R′). Similarly,

we can prove that B′ ⊆ pr2(R′). The opposite inclusions follow from the first part of

the argument, so pr1(R′) = A′ and pr2(R′) = B′. By definition, R′ ≤sd A′ ×B′.

2. Since A × B ≤sd A × B, we have that (A × B)′ ≤sd A′ × B′ by (1), so it is

enough to show that A′ × B′ ⊆ (A × B)′. To see this, choose (a, b) ∈ A′ × B′ and

(c, d) ∈ A × B. By Lemma 3.1.5 (3), it is enough to show there is a directed walk

from (c, d) to (a, b) in A×B. Since a ∈ A′, by Lemma 3.1.5 (3), there is a directed

walk, c = u1 −→ · · · −→ un = a, so (c, d) = (u1, d) −→ · · · −→ (un, d) = (a, d) is a

directed walk in A×B from (c, d) to (a, d). By similar reasoning, there is a directed

walk from (a, d) to (a, b) in A×B. Concatenating these walks completes the proof.

Lemma 3.4.4 will be used in several places, including the proof of Lemma 3.4.5 which

follows it. It is essentially the same as Lemma 3.7 from [15], but the proof is different.

Lemma 3.4.4. Suppose n > 1 and A1, . . . ,An are 2-semilattices which are simple and

strongly connected. Let T ≤sd A1 × · · · ×An and pri,j(T ) = Ai × Aj for all i 6= j. Then

T = A1 × · · · × An.

Before proceeding with the proof, we remind the reader that for an algebra A and a

congruence α on A, the algebra A/α is simple if and only if α is maximal in Con(A). This

follows from the Correspondence Theorem, which we stated as Theorem 2.0.6.

Proof. Let T ≤ A1 × · · · ×An be a counterexample which is minimal with respect to n.

Note that n > 2 since the result is immediate if n = 2. We will denote by Bi the algebra
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A1 × · · · ×Ai−1 ×Ai+1 × · · · ×An. For each i, we can identify T as a subdirect product

of pr1,2,...,i−1,i+1,...,n(T) and Ai. The algebra pr1,2,...,i−1,i+1,...,n(T) ≤sd Bi and satisfies the

conditions of the lemma, so by the minimality of T, it is equal to Bi. By Lemma 3.1.8 (2),

Bi is strongly connected, so pr1,...,i−1,i+1,...,n(T) is strongly connected. Since Ai is simple

and T is a counterexample to the lemma, we can apply Lemma 3.4.1 to get that, for each

i, T is the graph of a surjective homomorphism from Bi to Ai. Let αj be the kernel of the

jth projection from T to Aj. That is, αj is the congruence on T which identifies elements

of T which agree in the jth position. For now, fix i and suppose (u,v) ∈
∧
j 6=i αj. This

means u and v agree everywhere except possibly the ith position. Since T is the graph of

a function from Bi to Ai, this means u and v agree in the ith position, as well. In other

words,
∧
j 6=i αj ≤ αi. This implies(∧

j 6=i

αj

)
≤

(∧
j 6=i

αj

)
∧ αi.

Since αj is the congruence which collapses elements which agree in the jth coordinate,∧n
j=1 αj = 0T . This simplifies to ∧

j 6=i

αj = 0T .

This shows that
∧
j 6=i αj = 0A for each i.

Suppose |Ai| = 1 for some i. Since T ≤sd

∏n
i=1 Ai, in this case, T =

∏n
i=1 Ai if and

only if pr1,2,...,i−1,i+1,...,n(T) = Bi. Because we are assuming T 6=
∏n

i=1Ai, we have |Ai| > 1

for each i. If αi = αj for some i 6= j, then pri,j(T ) is the graph of a bijection. We are also

assuming pri,j(T ) = Ai × Aj, and the only way for Ai × Aj to be the graph of a bijection

is if |Ai| = |Aj| = 1. We already showed that this is not the case, so we conclude that the

αi are distinct.

For a subset X ⊆ {1, 2, . . . , n}, let θ(X) =
∧
i∈X αi. Suppose |X| = |Y | = |X ∩ Y |+ 1

with θ(X) = θ(Y ). If we set U = X ∩ Y , there must be i 6= j so that X = U ∪ {i}
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and Y = U ∪ {j}, which means θ(X) = θ(U) ∧ αi and θ(Y ) = θ(U) ∧ αj. By meet

semidistributivity, θ(X) = θ(Y ) = θ(U) ∧ (αi ∨ αj). By subdirectness, T/αi ∼= Ai and

T/αj ∼= Aj, so αi and αj are maximal because Ai and Aj are simple. By the previous

paragraph, αi 6= αj, so αi ∨ αj = 1T and it follows that θ(X) = θ(Y ) = θ(U). Applying

this, we get that if |X| = |Y | = |X ∩ Y |+ 1 and θ(X) = θ(Y ) = 0T , then θ(X ∩ Y ) = 0T .

The first part of the proof showed that θ({1, 2, . . . , n}−{i}) = 0T for all i, so by repeatedly

applying the fact in the previous sentence, we get that θ(X) = 0T whenever |X| ≥ 1, which

means α1 = · · · = αn = 0A. This forces pri,j(T ) to be the graph of a bijection between Ai

and Aj for each i, j. As argued earlier, this means |Ai| = |Aj| = 1. It was established in

the previous paragraph that this is not the case. We have a contradiction, so the proof is

complete.

The next lemma is a special case of Lemma 3.8 from [15]. The proof given is an

adaptation of Bulatov’s proof. The only place that Lemma 3.4.5 will be used is in the

proof of Lemma 6.3.4, but we include it here because it fits well in this section.

Lemma 3.4.5 (Lemma 3.8 from [15]). Let A1,A2,A3 ∈ S be finite and strongly connected

and T ≤sd A1 ×A2 ×A3 satisfy the following:

1. A3 is simple,

2. pr1,2(T ) is strongly connected,

3. pri,3(T ) = Ai × A3 for i = 1, 2.

Then T = pr1,2(T )× A3.
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Proof. For now, suppose A1 and A2 are both simple. Since T ≤sd A1 ×A2 ×A3, we get

that pr1,2(T ) ≤sd A1 ×A2. By Lemma 3.4.2, either pr1,2(T ) = A1 × A2, or it is the graph

of a bijection. If pr1,2(T ) = A1 × A2, then T = A1 ×A2 ×A3 by Lemma 3.4.4 and the

result holds. Now suppose pr1,2(T ) is the graph of a bijection. Choose (a, b) ∈ pr1,2(T )

and c ∈ A3. Since pr1,3(T ) = A1×A3, there is a b′ ∈ A2 with (a, b′, c) ∈ T , but this means

(a, b′) ∈ pr1,2(T ), so b′ = b and (a, b, c) ∈ T . This shows that T = pr1,2(T )× A3.

We now assume A1,A2,A3 and T form a counterexample minimal with respect to

|A1|+ |A2|+ |A3|. By the first paragraph, a counterexample can not have both A1 and A2

simple so we assume without loss of generality that A1 is not simple. Let α be a maximal

congruence of A1 and define Tα ≤sd A1/α×A2 ×A3 by

Tα = {(a1/α, a2, a3) : (a1, a2, a3) ∈ T}.

The algebra Tα inherits the conditions of the lemma, but since A1 is not simple, α 6= 0A,

and |A1/α| < |A1|. By the minimality of (T,A1,A2,A3), Tα = pr1,2(Tα)× A3.

Choose an α-class C, let S = {(a, b, c) ∈ T : a ∈ C} and define D = pr2(S). Since

pr1,3(T ) = A1 × A3, for any c ∈ A3 and a ∈ C, there is b ∈ A2 such that (a, b, c) ∈ T , but

a ∈ C which means (a, b, c) ∈ S. This shows pr3(S) = A3 and hence S ≤sd pr1,2(S)×A3.

By Lemma 3.4.3 (1), S ′ ≤sd pr1,2(S)′×A3 since A′3 = A3, which implies pr1,2(S ′) = pr1,2(S)′.

Because of how C and D are defined, we have pr1,2(S) ≤sd C×D. Applying Lemma 3.4.3

gives pr1,2(S ′) = pr1,2(S)′ ≤sd C′ × D′. This implies S ′ ≤sd C′ × D′ × A3, and since

pr1,2(S ′) = pr1,2(S)′ and the latter is strongly connected by definition, we have that pr1,2(S ′)

is strongly connected. If we can show that pr1,3(S ′) = C ′×A3 and pr2,3(S ′) = D′×A3, we

will have that S′ ≤sd C′ ×D′ ×A3 satisfies the conditions of the lemma.

To see that pr1,3(S ′) = C ′×A3, suppose a ∈ C ′ and c ∈ A3. Since S ′ ≤sd C′×D′×A3,

there is a triple (a, b, c×) ∈ S ′. Since pr1,3(T ) = A1 × A3, there is (a, b×, c) ∈ T and

in fact, since a ∈ C ′ ⊆ C, (a, b×, c) ∈ S. Since A3 is strongly connected, there is a
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walk, c× −→ c1 −→ . . . −→ cn −→ c, and again since pr1,3(T ) = A1 × A3, there are

b1, . . . , bn ∈ A2 with (a, b, c×), (a, bi, ci), (a, b
×, c) ∈ T for all 1 ≤ i ≤ n. Since a ∈ C, each

of these triples is in S. Multiplying, we get, (aa · · · a, bb1b2 · · · bnb×, c×c1c2 · · · cnc) = (a, b, c)

for some b ∈ A2. Since (a, b, c×) ∈ S ′ and each triple is in S, we get that (a, b, c) ∈ S ′,

as well. Therefore, pr1,3(S ′) = C ′ × A3. To show that pr2,3(S ′) = D′ × A3, we start by

choosing b ∈ D and c ∈ A3 arbitrarily. By definition of D, (C, b) ∈ pr1,2(Tα). From

earlier, we have that Tα = pr1,2(Tα) × A3, so (C, b, c) ∈ Tα, which means there is some

a ∈ C such that (a, b, c) ∈ T , and since a ∈ C, we actually have (a, b, c) ∈ S. This shows

that pr2,3(S) = D × A3. By Lemma 3.4.3 (1), S ′ ≤sd C′ × pr2,3(S)′, which shows that

pr2,3(S ′) = pr2,3(S)′. W have just shown that pr2,3(S) = D × A3, so

pr2,3(S ′) = pr2,3(S)′ = (D × A3)′ = D′ × A3

by Lemma 3.4.3 (2).

Since T was a minimal counterexample to the lemma with respect to |A1|+ |A2|+ |A3|

and α is a proper congruence on A1, we have |C ′| ≤ |C| < |A1|, so the conclusion of the

lemma applies to S ′ ≤sd C′ × D′ × A3, which means S ′ = pr1,2(S ′) × A3. If A3 were a

singleton, we would already have T = pr1,2(T ) × A3, which we are assuming is not the

case. Therefore, assume there are distinct c1, c2 ∈ A3, and choose any (a, b) ∈ pr1,2(S ′).

Then (a, b, c1), (a, b, c2) ∈ S ′ ⊆ T . This means T ≤sd pr1,2(T ) ×A3 is not the graph of a

surjective homomorphism, so by Lemma 3.4.1, T = pr1,2(T )×A3.
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Chapter 4

Congruence Lattices of Finite

2-Semilattices

In this chapter, we explore some of the properties of congruences of 2-semilattices. Sec-

tion 4.1 is devoted to Theorem 4.1.1 and its proof. Theorem 4.1.1 is about the structure

of minimal congruences in 2-semilattices. The rest of the chapter is devoted to the explo-

ration of how “Tame Congruence Theory”, developed by Hobby and McKenzie in [29], fits

into the context of 2-semilattices. Tame Congruence Theory is a broad structure theory

for locally finite varieties which is based on an understanding of minimal congruences of

finite algebras. We give a brief introduction to Tame Congruence Theory in the beginning

of Section 4.2. Sections 4.2 and 4.3 apply Theorem 4.1.1 and Tame Congruence Theory to

2-semilattices.
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4.1 Connectivity and Minimal Congruences

For a 2-semilattice A, recall from Definition 3.1.3 that
A∼ is the equivalence relation on A

whose equivalence classes are the strongly connected components of the digraph (A,−→).

In this section, when we say “component”, we mean “strongly connected component”. As

well, we will write ∼ rather than
A∼ whenever the algebra A is clear from context. The

goal of this section is to prove the following theorem:

Theorem 4.1.1. Let θ be a congruence of a finite 2-semilattice A which is minimal with

respect to the order in Con(A). Exactly one of the following two conditions holds:

1. There are two distinct components, X and Y of A and a function f : X → Y so that

θ = {(u, v) ∈ (X ∪ Y )2 : f(u) = f(v) or f(u) = v or f(v) = u} ∪ 0A,

or

2. There is a component X of (A,−→) such that θ ⊆ X2 ∪ 0A.

This structural theorem has several interesting consequences. For example, we will show

in Theorem 4.3.2 that finite simple 2-semilattices always have tame congruence theoretic

type 3 or 5 (see Section 4.2). Before moving on, we give a definition and lemma about a

type of congruence that always occurs in a 2-semilattice. Recall from Definition 3.1.3 (2)

and Lemma 3.1.4 that � is a partial order on components where X � Y if and only if

there is a directed walk from x to y for all x ∈ X and y ∈ Y .

Definition 4.1.2. Let A be a finite 2-semilattice and suppose X is a component of A.

Define ψX ⊆ A2 by

ψX = {(a, b) : X � a/∼ and X � b/∼} ∪ 0A.
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Lemma 4.1.3. Let A be a finite 2-semilattice and suppose X is a component of A. The

relation ψX from Definition 4.1.2 is a congruence on A.

Proof. Because a −→ ab for any a, b ∈ A, the set B =
⋃
X�Y

Y is an absorbing subuniverse of

A with respect to the operation ∗. Since ψX = B2∪0A, it follows that ψ is a congruence.

Definition 4.1.4. Let A be a 2-semilattice, θ ∈ Con(A), and B be a component. We say

B is θ-nontrivial if there is some b ∈ B such that b/θ 6= {b}. Naturally, we say that B is

θ-trivial otherwise.

Note that the condition θ ∩ B2 * 0A is not implied by θ-nontriviality. It is possible

that elements of B witnessing θ-nontriviality are only θ-related to elements not in B.

Suppose A is a finite 2-semilattice and θ ∈ Con(A) is not 0A. Then there must be

some θ-nontrivial component. The restriction of � to θ-nontrivial components is therefore

a non-empty, finite partial order, so it must have a minimal element. Such a component

B has the property that if b ∈ B, b −→ a, and a/θ 6= {a}, then a ∈ B. As suggested

by Theorem 4.1.1, if θ is a minimal congruence, there is a unique minimal θ-nontrivial

component in this sense and there are at most two θ-nontrivial components in total. This

will be shown along the way to proving Theorem 4.1.1.

Lemma 4.1.5. Let A be a finite 2-semilattice, θ ∈ Con(A) be minimal, and B be a

minimal θ-nontrivial component. If θ ∩B2 * 0A, then θ ⊆ B2 ∪ 0A.

Proof. Choose a, b ∈ B such that a 6= b and (a, b) ∈ θ. Since θ is minimal, θ = CgA(a, b).

We also have (a, b) ∈ ψB which is a congruence by Lemma 4.1.3. This means θ ≤ ψB,

so every θ-nontrivial component C is such that B � C. By the minimality of B, every

component C with B � C is θ-trivial. Therefore, if a/θ 6= {a}, then a ∈ B. This is the

same as θ ⊆ B2 ∪ 0A.
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Lemma 4.1.5 shows that Theorem 4.1.1 (2) holds when θ∩B2 * 0A. To finish the proof

of Theorem 4.1.1, we will show that Theorem 4.1.1 (1) holds when θ ∩ B2 ⊆ 0A. This is

the content of Lemma 4.1.6.

Lemma 4.1.6. Suppose A is a finite 2-semilattice, θ ∈ Con(A) is minimal, and B is a

minimal θ-nontrivial component. Further suppose θ ∩ B2 ⊆ 0A. There is a component

C 6= B and a function f : C → B so that c
A−→ f(c) for each c ∈ C and

θ = {(u, v) ∈ (X ∪ Y )2 : f(u) = f(v) or f(u) = v or f(v) = u} ∪ 0A.

A verbal description of θ is that the nontrivial θ-blocks are precisely {f(a)}∪f−1(f(a))

for each a ∈ C.

Proof. Since θ ∩ B2 ⊆ 0A and B is θ-nontrivial, there are a ∈ A − B and b ∈ B with

(a, b) ∈ θ. We now let X be the set of components C satisfying

1. C 6= B

2. There are c ∈ C and b ∈ B with (c, b) ∈ θ.

By the first sentence, a/∼∈ X, so X is nonempty. Thus, we can choose a component

C ∈ X which is minimal with respect to �. Note that conditions (1) and (2) guarantee

that C is θ-nontrivial. Suppose c1, c2 ∈ C and b′ ∈ B with (c1, b
′) ∈ θ and c1 −→ c2.

Then (c1c2, b
′c2) = (c2, b

′c2) ∈ θ. If c2 = b′c2 then b′ −→ c2, which means B −→ C.

This is impossible by the minimality of B. Therefore, c2 6= b′c2 and b′c2/∼ is θ-nontrivial.

Since b′ −→ b′c2, we have B −→ b′c2/∼, so B = b′c2/∼ by the minimality of B. This

means b′c2 ∈ B. If we take b = b′c2, we have shown that there is b ∈ B with c2 −→ b

and (c2, b) ∈ θ. Since C is strongly connected, this argument can be repeated to show

that every c ∈ C has this property. Furthermore, if c ∈ C and there are b1, b2 ∈ B with
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(c, bi) ∈ θ for each i, then (b1, b2) ∈ θ since θ is an equivalence relation. This means b1 = b2

since θ ∩B2 ⊆ 0A. We have shown that θ ∩ (C ×B) is the graph of a function f : C → B

that satisfies c −→ f(c) for each c ∈ C.

To complete the proof, we set

σ = {(u, v) : f(u) = f(v) or f(u) = v or f(v) = u} ∪ 0A

and show that σ = θ. Because of how σ is defined, we know that 0A 6= σ ⊆ θ. Therefore,

to prove that σ = θ, it is enough to show that σ is a congruence since θ is assumed to be

a minimal congruence. The relation σ is defined in such a way that it is an equivalence

relation, so by Proposition 3.0.2 (1), it is enough to show for any (u, v) ∈ σ and a ∈ A

that (au, av) ∈ σ. We assume u, v, and a are as stated and note that au = av implies

(au, av) ∈ σ, so we additionally assume au 6= av. We will use that (au, av) ∈ θ, which is

true because (u, v) ∈ θ. Suppose f(u) = v. In this case, (u, v) ∈ C ×B and since au 6= av,

av/∼ is θ-nontrivial. This puts av ∈ B because v −→ av and B is a minimal θ-nontrivial

component. Since θ ∩ B2 ⊆ 0A and au 6= av, we have au/∼∈ X, but u −→ au and C is

minimal in X, so au ∈ C. It follows that f(au) = av and (au, av) ∈ σ. The case when

f(v) = u is handled in the same way. Now assume f(u) = f(v) and set w = f(u) = f(v).

By definition, we also have (u,w), (w, v) ∈ σ ⊆ θ, so (au, aw), (aw, av) ∈ θ as well. Since

au 6= av, we assume without loss of generality that au 6= aw. By the previous case, this

means au ∈ C and aw ∈ B so f(au) = aw. If aw = av, we have f(au) = av which puts

(au, av) ∈ σ. Otherwise, the same reasoning leads to f(av) = aw, so f(au) = f(av) and

(au, av) ∈ σ. This completes the proof that σ is a congruence, which shows that σ = θ

and θ has the claimed structure.
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4.2 Tame Congruence Theory in 2-Semilattices

In [29], Hobby and McKenzie developed what is now known as Tame Congruence Theory,

which will hence-forth be abbreviated by TCT. In some sense, TCT is a way of relating

local and global behaviour in a locally finite variety. We now give a brief overview of TCT.

An in-depth and systematic development of the subject can be found in [29].

For an algebra A, an n-ary polynomial operation p on A is an n-ary operation defined by

p(x1, . . . , xn) = t(x1, . . . , xn, a1, . . . , am) where t is an m+ n-ary term operation, m,n ≥ 0,

and a1, . . . , am ∈ A. If we take m = 0, p is a term operation, so every term operation is a

polynomial operation. For two congruences α and β, the pair 〈α, β〉 is called a congruence

quotient if α < β. The quotient is called prime if α ≺ β. Recall from Definition 2.0.4 that

α ≺ β means α < β and there are no congruences strictly between α and β.

Given a finite algebra A and a prime congruence quotient 〈α, β〉, the authors of [29]

consider the range p(A) of unary polynomials p satisfying {(p(a), p(b)) : (a, b) ∈ β} * α.

The set {(p(a), p(b)) : (a, b) ∈ β} will be abbreviated by p(β). Since A is finite, there are

only finitely many possible ranges, so there must be such a polynomial p with p(A) = U

minimal with respect to inclusion. Such a U is called 〈α, β〉-minimal. The authors then

restrict their attention to the algebra A�U whose domain is U and whose basic operations

are the restrictions to U of all polynomials of A under which U is closed. The relations

α�U= α ∩ U2 and β�U= β ∩ U2 are congruences of this algebra, and 〈α�U , β�U〉 is a prime

congruence quotient of A�U . The authors then choose a β�U -class N which is not an α�U

class and with the same notion of restriction, consider the algebra (A�U)�N /(α�N). This

algebra is essentially one of the following:
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type 1 A set whose operations are a group of

permutations on that set,

type 2 A vector space over a finite field,

type 3 A two element boolean algebra,

type 4 A two element lattice,

type 5 A two element semilattice.

Remarkably, the type of this algebra depends only on the congruence quotient 〈α, β〉,

and not on the choices of U and N which suggests that the algebra (A �U) �N /(α �N)

should carry information about 〈α, β〉. Since the type depends only on 〈α, β〉, there is

a well defined function typ from prime congruence quotients of finite algebras to the set

{1,2,3,4,5}. The authors of [29] adapt the definition of typ to take a variety as input by

defining

typ(V) = {typ(〈α, β〉) : 〈α, β〉 is a prime quotient of finite A ∈ V}.

The set typ(V) is called the type set of V. The type set of a locally finite variety V holds

information about identities which are satisfied by V, as well as structural properties of

the congruence lattices of its members. For example, it follows from results in [29] and

[52] that a locally finite variety is Taylor (Definition 3.3.4) if and only if its type set does

not include 1. The theorem of most interest for us is Theorem 9.10 from [29] which says,

among other things, that a locally finite variety is meet semidistributive if and only if its

type set omits 1 and 2.

By Proposition 3.2.3, the variety of 2-semilattices is meet semidistributive, so any

locally finite variety of 2-semilattices is meet semidistributive. By Theorem 9.10 from [29],

a locally finite variety of 2-semilattices can only have prime congruence quotients of types

3, 4, or 5. In Example 4.3.5 we will see that each of these can occur. The remainder of
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this chapter is an exploration of the TCT types that occur in varieties of 2-semilattices.

By Corollary 5.3 in [29], the type of a prime quotient 〈α, β〉 of A is the same as the type

of 〈0A/α, β/α〉 in A/α. It follows from the Correspondence Theorem (Theorem 2.0.6) that

〈α, β〉 is a prime congruence quotient in A if and only if 〈0A/α, β/α〉 is prime in A/α.

Hence, to understand the TCT types in a locally finite variety, it is sufficient to study

prime quotients of the form 〈0A, α〉.

Definition 4.2.1. Let A be a finite algebra.

1. A tolerance τ on A is a symmetric and reflexive subuniverse of A2.

2. Let 〈0A, θ〉 be a prime congruence quotient of A. The basic tolerance τθ for 〈0A, θ〉 is

the intersection of all tolerances τ satisfying 0A 6= τ ⊆ θ.

The next theorem is a special case of Theorem 5.27 from [29]. In its statement, the

notation (θ × θ)�R represents

{(
(a, c), (b, d)

)
: (a, b), (c, d) ∈ θ

}
∩R2,

which is a congruence on R.

Theorem 4.2.2 (Hobby, McKenzie). Let 〈0A, θ〉 be a prime congruence quotient of a finite

2-semilattice A and let τθ be its basic tolerance. Let R be the subalgebra of A2 with universe

τθ. If there are more than four congruences, ψ ∈ Con(R) satisfying 0R ≤ ψ ≤ (θ × θ)�R,

then 〈0A, θ〉 has TCT type 5.

Theorem 4.2.3. Let θ be a minimal congruence of a finite 2-semilattice A. If Theo-

rem 4.1.1 (1) holds, then 〈0A, θ〉 has TCT type 5. If Theorem 4.1.1 (2) holds, the TCT

type of 〈0A, θ〉 can be 3, 4 or 5.
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Proof. The second assertion is demonstrated by the algebras in Example 4.3.5, so we will

only prove the first here. Assume θ is minimal and satisfies Theorem 4.1.1 (1), and that

X, Y , and f are as in the statement of Theorem 4.1.1 (1). That is, X and Y are distinct

components of (A,−→), f : X → Y , and

θ = {(u, v) ∈ (X ∪ Y )2 : f(u) = f(v) or f(u) = v or f(v) = u} ∪ 0A.

Suppose τθ is the basic tolerance of θ and x1 6= x2 are elements of X such that (x1, x2) ∈

τθ. Then (x1, x2) ∈ θ, so there is y ∈ Y such that f(x1) = f(x2) = y. This y ∈ Y has

the property that |y/θ| 6= 1. Since θ is minimal, θ = Cg(x1, x2). By Theorem 3.0.2 (2),

there is an n+ 1-ary term operation t of A, elements a1, . . . , an ∈ A, and z 6= y such that

(t(x1, a1, . . . , an), t(x2, a1, . . . , an)) = (y, z) or (t(x1, a1, . . . , an), t(x2, a1, . . . , an))) = (z, y).

Either way, this gives a z ∈ A so that y 6= z and (y, z) ∈ τθ. Because of the structure of

θ, we now can conclude that τθ contains a pair (x, y) ∈ X × Y such that f(x) = y. Now

suppose x′ ∈ X is such that x −→ x′. Then (xx′, yx′) = (x′, yx′) ∈ τθ ⊆ θ. It is not

possible that x′ = yx′ because x′ ∈ X and y −→ yx′, so yx′ /∈ X. This means yx′ ∈ Y ,

and it follows that f(x′) = yx′ and (x′, f(x′)) ∈ τθ. Because X is strongly connected, this

reasoning can be applied to get (x, f(x)) ∈ τθ for all x ∈ X. Since τθ is symmetric, we also

have (f(x), x) ∈ τθ for all x ∈ X. We have shown that

σ = {(x, f(x)) : x ∈ X} ∪ {(f(x), x) : x ∈ X} ∪ 0A ⊆ τθ,

so if we can show that σ is a tolerance, we will have that σ = τθ by the minimality of

τθ. We already know that σ ⊆ θ. In fact, σ is exactly [θ − θ ∩ (X × X)] ∪ 0A. Assume

(a, b), (c, d) ∈ σ. Then (a, b), (c, d) ∈ θ, so (ac, bd) ∈ θ. The only way this pair can fail to

be in σ is if ac 6= bd and ac, bd ∈ X. If this is the case, then either a 6= b or c 6= d. Without

loss of generality, assume a 6= b. Since (a, b) ∈ σ, either a or b is in Y , but this means

either ac or bd is not in X. We conclude that σ is a subuniverse of A2, which shows that

it is a tolerance because it is symmetric and reflexive by construction. Therefore, σ = τθ.
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Now that we have our hands on τθ, we can show that the main hypothesis of The-

orem 4.2.3 is satisfied. Let R ≤ A2 have universe τθ. We extend f to a function

f : X ∪ Y → Y by f(b) = b for b ∈ Y . Note that if (a, b) ∈ θ ∩ (X ∪ Y )2, then

f(a) = f(b). Define ψ ⊆ R2 to be the relation

ψ =
{(

(a, b), (c, d)
)
∈ R2 : f(a) = b = d = f(c)

}
∪ 0R.

We will show that ψ is a congruence on R. First of all ψ is reflexive and symmetric by

definition. For transitivity, assume
(
(a, b), (c, d)

)
,
(
(c, d), (e, g)

)
∈ ψ. If (a, b) = (c, d) or

(c, d) = (e, g), then
(
(a, b), (e, g)

)
∈ ψ, so we assume (a, b) 6= (c, d) and (c, d) 6= (e, g). This

implies
(
(a, b), (c, d)

)
,
(
(c, d), (e, g)

)
/∈ 0R, so b = d and d = g. Therefore, a 6= c and c 6= e.

We also have that f(a) = f(c) = b = d and f(c) = f(e) = d = g, so f(a) = f(e) = b = d.

Now that we have shown ψ is an equivalence relation, we can verify that ψ is a congruence.

By Proposition 3.0.2 (1), it suffices to show for every (u, v) ∈ R and
(
(a, b), (c, d)

)
∈ ψ

that
(
(ua, vb), (uc, vd)

)
∈ ψ. If (a, b) = (c, d) then

(
(ua, vb), (uc, vd)

)
∈ 0R ⊆ ψ, so we

assume (a, b) 6= (c, d). This means b = d, f(a) = f(c) = b = d, and {a, c} ∩ X 6= ∅.

The last of these three assertions is because if a, c ∈ Y , then a = f(a) = f(c) = c. Since

f : X ∪ Y → Y , we have b, d ∈ Y . Assume, without loss of generality, that a ∈ X. Since

(u, v), (a, b), (c, d) ∈ θ, we have that (ua, vb), (uc, vd) ∈ θ. If vb /∈ Y , then ua = vb because

Y is a minimal θ-nontrivial component, b ∈ Y , and b −→ vb. Since b = d, we have, vb = vd,

which means uc = vd by the same reasoning. In the case that vb /∈ Y , we have shown(
(ua, vb), (uc, vd)

)
∈ 0R ⊆ ψ. Otherwise, vb = vd ∈ Y , which means, by the structure of

θ, that ua, uc ∈ X ∪ Y , and f(ua) = vb = vd = f(uc), so
(
(ua, vb), (uc, vd)

)
∈ ψ.

Similar to (θ × θ)�R, define (0A × θ)�R by{(
(a, b), (c, d)

)
: a = c and (b, d) ∈ θ

}
∩R2

and define (θ× 0A)�R similarly. Both of these relations are congruences on R. Notice that

the congruences 0R, (θ×θ)�R, ψ, (θ×0A)�R, and (0A×θ)�R are all between 0A and (θ×θ)�R.
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Figure 4.1: Distinguishing the congruences in the proof of Theorem 4.2.3

0R (θ × θ)�R ψ (θ × 0A)�R (0A × θ)�R(
(b, a), (a, a)

)
no yes no yes no(

(a, b), (b, b)
)

no yes yes yes no(
(a, b), (a, a)

)
no yes no no yes

To complete the proof, we will show that they are all distinct. To see this, choose a ∈ X

and b ∈ Y such that (a, b) ∈ θ and consider the table in Figure 4.1. The rows are indexed

by pairs in R2 and the columns are indexed by the five congruences above. A cell contains

a “yes” if the pair is in the congruence, and “no” if the pair is not in the congruence.

Notice that for each pair of congruences, there is a row where one of the congruences has

“yes” in its column and the other congruence has “no” in its column. The hypotheses of

Theorem 4.2.2 hold, so 〈0A, θ〉 has TCT type 5.

4.3 Maximal Congruences

The following Theorem is a special case of Theorem 5.26 in [29].

Theorem 4.3.1 (Hobby, McKenzie). Let α be a minimal congruence on a finite algebra

A. Then 〈0A, α〉 has type 4 or 5 if and only if there is a partial order η ≤ A2 with the

property that α is the transitive closure of η ∪ {(a, b) : (b, a) ∈ η}.

We will use Theorem 4.3.1 to give a tame-congruence-theoretic dichotomy on finite

simple 2-semilattices.
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Theorem 4.3.2. Let A be a finite simple 2-semilattice. If A is strongly connected, then

〈0A, 1A〉 has TCT type 3. Otherwise, it has TCT type 5.

Proof. If A is not strongly connected, then it has at least two components. However,

simplicity and Lemma 4.1.3 together imply that A has at most two strongly connected

components. Since 1A is minimal, it must satisfy Theorem 4.1.1 (1), so it has TCT type 5

by Theorem 4.2.3.

We now assume A is simple and strongly connected, and that 〈0A, 1A〉 has type 4 or

5. By Theorem 4.3.1, there is a partial order η ≤ A2 such that the transitive closure of

η ∪ {(a, b) : (b, a) ∈ η} is 1A. Since η is reflexive, η ≤sd A × A. Let u, v ∈ A. Since

(u, v) ∈ 1A, we have that (u, v) is in the transitive closure of η ∪ {(a, b) : (b, a) ∈ η}. This

means there are w1, w2, . . . , wn such that

(u,w1), (w2, w1), (w2, w3), (w4, w3), . . . , (wn−1, wn), (v, wn) ∈ η.

If we think of R as a bipartite graph as in Definition 3.3.3, this shows that there is a

walk from every vertex on the left to every other vertex on the left. Since (v, v) ∈ η by

reflexivity, we conclude that η ≤sd A × A is linked. Since A is strongly connected, it is

absorption free by Theorem 3.3.2. By the Absorption Theorem, η = A × A, which is not

antisymmetric unless |A| = 1. If |A| = 1, then |A| is not simple, so we have contradicted

the fact that η is a partial order. This shows that if A is simple and strongly connected,

then 〈0A, 1A〉 can not have TCT type 4 or 5. By Theorem 9.10 from [29], 〈0A, 1A〉 can not

have type 1 or 2, so it must have type 3.

By the correspondence theorem and the remark before Definition 4.2.1, Theorem 4.3.2

implies that if A is a finite 2-semilattice and α ∈ Con(A) is maximal, then 〈α, 1A〉 has type

3 exactly when the quotient is strongly connected, and type 5 otherwise. A two-element

2-semilattice is a semilattice, and a semilattice is simple if and only if it has two elements
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by Proposition 3.0.3. Therefore, among maximal congruences α on A with 〈α, 1A〉 of

type 5, the quotient A/α is a semilattice if and only if α has two equivalence classes. In

Chapter 5.2 we will show that the appearance of a type 5 maximal congruence with more

than two equivalence classes implies the generated variety has no cardinal bound on the

size of its subdirectly irreducible members.

Proposition 4.3.3. Let A be a finite 2-semilattice and θ be the smallest congruence such

that A/θ is a semilattice. Set Φ = {ϕ ∈ Con(A) : |A/ϕ| = 2}. Then θ =
∧

Φ.

Proof. In the paragraph following Definition 2.0.7, it was mentioned that for any algebra

A,

0A =
∧
{α : A/α is subdirectly irreducible}.

By the correspondence theorem, θ is equal to the meet of all congruences, α ∈ Con(A)

with the property that A/α is a subdirectly irreducible semilattice. It follows from Propo-

sition 3.0.3 and the fact that a two-element 2-semilattice is a semilattice that α has this

property if and only if |A/α| = 2. Therefore, θ =
∧

Φ.

We can also prove a somewhat similar result for the meet of maximal congruences α

with the TCT type of 〈α, 1A〉 equal to 3.

Proposition 4.3.4. Suppose A is a finite 2-semilattice and let S be the set of maximal

congruences ϕ on A such that 〈ϕ, 1A〉 has type 3. Set Φ =
∧
S. Then

A/Φ ∼=
∏
ϕ∈S

A/ϕ.

Proof. Since A is finite, so is S, so let α1, . . . , αn be an enumeration of the members of

S. The homomorphism h : A → A/α1 × · · · ×A/αn given by a 7→ (a/α1, . . . , a/αn) has

kernel Φ. This means A/Φ embeds subdirectly in A/α1 × · · · ×A/αn. If B is the image
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Figure 4.2: The operation table of A from Example 4.3.5

∗ 0 1 2 3

0 0 1 2 0
1 1 1 2 1
2 2 2 2 3
3 0 1 3 3

of h, we have B ≤sd A/α1 × · · · × A/αn. For each i, 〈αi, 1A〉 has type 3, so A/αi is

strongly connected by Theorem 4.3.2. Also, each αi is maximal so A/αi is simple. By

Lemma 3.4.4, the result will follow if we can show that pri,j ◦h(A) = A/αi × A/αj for

each i and j. Since αi and αj are different and both maximal, there is a pair (a, b) such

that (a, b) ∈ αi but (a, b) /∈ αj. Applying pri,j ◦h gives pri,j ◦h(a) = (a/αi, a/αj) and

pri,j ◦h(b) = (b/αi, b/αj). These pairs are equal in the first coordinate, and unequal in

the second. This shows pri,j ◦h(A) ≤sd A/αi ×A/αj is not the graph of a bijection, so it

must be A/αi ×A/αj by Lemma 3.4.2. As mentioned earlier, the result now follows by

Lemma 3.4.4.

We will finish off this chapter with Example 4.3.5. It finishes the proof of Theorem 4.2.3.

That is, Example 4.3.5 presents minimal congruences satisfying Theorem 4.1.1 (2) whose

corresponding quotients have each of the types 3, 4, and 5. The Universal Algebra Calcu-

lator [23] was used to compute congruences on the algebras presented in Example 4.3.5.

Example 4.3.5. The directed three cycle T3 from Definition 1.0.1 is simple and strongly

connected, so the congruence quotient 〈0T , 1T 〉 has TCT type 3 by Theorem 4.3.2. Since

1A is minimal in this case, this gives an example of a type 3 minimal congruence which

satisfies Theorem 4.1.1 (2).

The algebra A = ({0, 1, 2, 3}, ∗), where ∗ is defined in Figure 4.2, has a minimal con-

gruence θ which only collapses 0 with 1. Figure 4.3 is a picture of the digraph of A, and it
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Figure 4.3: The graph of B from Example 4.3.5

0

1

23

is not hard to see from this picture that A/θ ∼= T3. The algebra A is strongly connected,

so θ trivially satisfies Theorem 4.1.1 (2). Since θ only collapses two elements, the only

nontrivial tolerance it contains is itself. This means θ is its own basic tolerance. If R is

the subalgebra of A2 whose universe is θ, one can easily check that the partitions below

all correspond to equivalence relations which are congruences:∣∣∣(0, 0)
∣∣∣(0, 1)(1, 1)

∣∣∣(1, 0)
∣∣∣(2, 2)

∣∣∣(3, 3)
∣∣∣∣∣∣(0, 0)

∣∣∣(0, 1)
∣∣∣(1, 0)(1, 1)

∣∣∣(2, 2)
∣∣∣(3, 3)

∣∣∣∣∣∣(0, 0)
∣∣∣(0, 1)(1, 0)(1, 1)

∣∣∣(2, 2)
∣∣∣(3, 3)

∣∣∣.
Furthermore, these congruences are all strictly between 0R and (θ × θ)�R, so 〈0A, θ〉 has

type 5 by Theorem 4.2.3.

Congruence quotients of type 4 seem somewhat more elusive in the variety of 2-

semilattices. The following 10 element 2-semilattice is the smallest the author has found

with a type 4 congruence quotient. The domain is B = {0, 1, 2, . . . , 9} and ∗ is defined in

Figure 4.4
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Figure 4.4: The operation table of B from Example 4.3.5

∗ 0 1 2 3 4 5 6 7 8 9

0 0 0 2 3 0 0 2 9 0 9
1 0 1 2 3 1 1 3 9 1 9
2 2 2 2 3 4 5 2 4 9 9
3 3 3 3 3 4 5 3 5 9 9
4 0 1 4 4 4 4 9 4 0 9
5 0 1 5 5 4 5 9 5 1 9
6 2 3 2 3 9 9 6 9 9 9
7 9 9 4 5 4 5 9 7 9 9
8 0 1 9 9 0 1 9 9 8 9
9 9 9 9 9 9 9 9 9 9 9

Of course, this is an eleven by eleven array that is rather offensive to the eye, so

Figure 4.5 is a partial picture of the digraph of B and is intended to explain the operation

and how the type 4 congruence quotient arises.

The picture omits the vertex 9, the arrow from each other vertex to 9, and all loops.

When constructing this algebra, the plan was to have a unary polynomial p(x) which would

send (0, 1) to (2, 3), a unary polynomial q(x) to send (2, 3) to (4, 5), and a unary polynomial

r(x) to send (4, 5) back to (0, 1). Introducing the element 6 and setting p(x) = 6∗x achieved

this. Similarly, q(x) is defined to be 7∗x and r(x) is 8∗x. Each of {0, 1}, {2, 3}, and {4, 5}

are two element subuniverses which are semilattices. The key here is that the subalgebra

with universe {0, 1} is a meet semilattice (the operation chooses the minimum), and the

subalgebra with universe {2, 3} is a join semilattice (the operation chooses the maximum).

The element 9 is introduced as a default for all remaining undefined products. The UACalc

was used to verify that the partition∣∣∣01
∣∣∣23
∣∣∣45
∣∣∣6∣∣∣7∣∣∣8∣∣∣9∣∣∣

is a congruence on B. We will refer to this congruence as θ. It is a minimal congruence
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since collapsing any of its nontrivial blocks generates all of θ using the polynomials p, q,

and r above. Notice that 0, 1, 2, 3, 4, and 5 are mutually reachable from one another via

directed walks. Therefore, they are all in the same component of B. This means there is

only one θ-nontrivial class in the sense of Definition 4.1.4. We have shown that θ satisfies

Theorem 4.1.1 (2).

Now let µ = {(0, 1), (2, 3), (4, 5)} ∪ 0B. This is a partial order which is a subuniverse

of B2. The relation µ ∪ {(a, b) : (b, a) ∈ µ} is θ, so its transitive closure is certainly θ. By

Theorem 4.3.1, 〈0B, θ〉 has type either 4 or 5. Following the discussion at the beginning of

Section 4.2, define a unary polynomial on B by q(x) = 8∗ (1∗x). Notice that 8∗ (1∗0) = 0

and 8∗(1∗1) = 1, so q(θ) 6⊆ 0A. It is also easy to check that q(B) = U = {0, 1, 9}. We now

argue that U is a 〈0A, θ〉-minimal set. Notice that any unary polynomial f has f(9) = 9,

so any minimal set contains 9. A constant unary polynomial will collapse θ to 0A, so a

minimal set must contain at least two elements. Therefore, if {0, 1, 9} is not minimal, then

either {0, 9} or {1, 9} is. However, a polynomial with such a range necessarily collapses

θ to 0A. We conclude that U is a 〈0A, θ〉-minimal set. The only nontrivial θ�U class is

N = {0, 1}, and we know that B�N is either a semilattice or a lattice. The set N = {0, 1}

is closed under ∗ and has 0∗0 = 0 and 0∗1 = 1∗0 = 1∗1 = 1. Also, the binary polynomial

given by t(x, y) = 8∗ (7∗ ((6∗x)∗ (6∗y))) has t(1, 1) = 1 and t(0, 1) = t(1, 0) = t(0, 0) = 0.

Defining x ∧ y = x ∗ y and x ∨ y = t(x, y), we have shown that A�N has at least the meet

and join operations of a lattice, so it cannot be a semilattice and hence, 〈0A, θ〉 must have

type 4.
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Figure 4.5: The graph of B from Example 4.3.5
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Chapter 5

Residually Large Varieties

5.1 Background

Recall from Definition 2.0.7 that an algebra A is called subdirectly irreducible if whenever

h : A ↪→
∏

i∈I Ai is a subdirect embedding, pri ◦h : A→ Ai is an isomorphism for some

i. This really means that the algebra cannot be represented as a subdirect product in a

nontrivial way, as the name “subdirectly irreducible” suggests. In the discussion following

Definition 2.0.7, we also mentioned Birkhoff’s theorem from [8] that every algebra embeds

subdirectly in a product of subdirectly irreducible algebras. In fact, Birkhoff showed that

every algebra embeds subdirectly in a product of its subdirectly irreducible quotients. A

weaker fact is that if V is a variety and Vsi is the class1 of subdirectly irreducible members

in V, then every A ∈ V embeds subdirectly in a product of algebras from Vsi. It follows

that Vsi generates the variety V. Therefore, much can be learned about a variety V by

studying Vsi. We now give a definition which is standard in the literature:

1There are plenty of examples where Vsi is not a set.

61



Definition 5.1.1. Let V be a variety.

1. If there is a cardinal κ such that |A| < κ for every A ∈ Vsi, then V is called residually

small.

2. If V is not residually small, it is called residually large.

3. If V satisfies (1) with κ = ω, we say that V is residually finite.

4. If V satisfies (1) with κ = n for some n ∈ ω, then we say V is residually very finite.

For an arbitrary variety V, completely understanding Vsi is an unreasonable expectation.

One way of restricting the question of understanding Vsi given V is to assume V = HSP(A)

for some finite algebra, A. In particular, the question “given a finite algebra A, which parts

of Definition 5.1.1 does HSP(A) satisfy?” has received attention in the literature. It was

shown by Papert in [45] and stated in Proposition 3.0.3 that the only subdirectly irreducible

semilattice has two elements. It follows from Birkhoff’s theorem that HSP(A) contains

a subdirectly irreducible algebra if A is nontrivial. Therefore, if A is a semilattice, then

HSP(A) has exactly one subdirectly irreducible member up to isomorphism, so HSP(A)

is residually very finite. In fact, it follows from Birkhoff’s theorem that HSP(A) is the

variety of all semilattices whenever A is a nontrivial semilattice. Maróti was able to show

in [40] that if A is a finite tournament, then HSP(A) is residually very finite. By a result

of Freese and McKenzie in [24], if A is a finite group, then HSP(A) is residually very finite

if all of the Sylow subgroups of A are abelian, and residually large otherwise.

McKenzie showed in [42] that there is no algorithm which takes a finite algebra A as

input and decides which parts of Definition 5.1.1 HSP(A) satisfies. However, as mentioned

in the previous paragraph, there is sometimes an algorithm when the question is localized.

For example, the question “Given a finite semilattice A, which parts of Definition 5.1.1

62



does HSP(A) satisfy?” always has the answer (1), (3), and (4). For the same question

with “semilattice” replaced by “group”, one algorithm which gives a correct answer is to

compute the Sylow subgroups of A and check to see if they are abelian. If they are all

abelian, the answer is (1), (3), and (4), and otherwise, the answer is (2).

By a Theorem of McKenzie in [43], which was re-phrased by Davey, Pitkethly, and

Willard in [19], there is a characterization of when a finite 2-semilattice A has the property

that HSP(A) is residually large. The characterization says that HSP(A) is residually large

if and only if there is a finite algebra B which embeds in some power of A and satisfies

a list of properties. However, this characterization is difficult to use. In fact, if A is a

finite 2-semilattice, it is not known if determining whether or not HSP(A) contains such

an algebra is decidable. The results in this chapter give some decidable conditions on a

2-semilattice A which are sufficient to imply HSP(A) is residually large.

5.2 Acyclic and Weakly Acyclic 2-Semilattices

We start this section by defining what it means for a 2-semilattice to be “weakly acyclic”

and “acyclic”. In Section 5.3, we use the facts collected in this section to prove that if A

is a weakly acyclic 2-semilattice which is not a semilattice, then it generates a residually

large variety.

Definition 5.2.1. Let A be a 2-semilattice and V be a variety of 2-semilattices.

1. A is acyclic if a1 −→ a2 −→ a3 −→ · · · −→ an −→ a1 implies a1 = a2 = · · · = an.

2. A is weakly acyclic if all of its strongly connected subuniverses are singletons.

3. V is acyclic if all of its members are acyclic.
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4. V is weakly acyclic if it has no nontrivial finite strongly connected members.

We now prove that if A is finite and acyclic, then HSP(A) is acyclic. We will later

prove the analogous result where “acyclic” is replaced with “weakly acyclic”.

Theorem 5.2.2. Acyclicity is closed under taking subalgebras and products. Furthermore,

if A is acyclic HSP(A) is locally finite, then all of its quotients are acyclic.

Proof. To see that acyclicity is closed under taking subalgebras, suppose A is acyclic and

B ≤ A. If

a1 −→ · · · −→ an −→ a1

in B ≤ A, then

a1 −→ · · · −→ an −→ a1

in A. Therefore, a1 = · · · = an since A is acyclic, which shows that B is also acyclic.

Suppose
∏

i∈I Ai is a product of acyclic 2-semilattices and let f1, . . . , fn ∈
∏

i∈I Ai satisfy

f1 −→ f2 −→ · · · fn −→ f1.

Then for each i,

f1(i) −→ f2(i) −→ · · · −→ fn(i) −→ f1(i),

so

f1(i) = f2(i) = · · · = fn(i)

for each i because Ai is acyclic for each i. Since i ∈ I was arbitrary, f1 = f2 = · · · = fn.

Now suppose A is an acyclic 2-semilattice with HSP(A) locally finite. Choose θ ∈ Con(A)

and a1, · · · , an ∈ A with a1/θ −→ a2/θ −→ · · · −→ an/θ −→ a1/θ. It follows for B =

SgA(a1, . . . , an) that

a1/θ�B−→ a2/θ�B−→ · · · −→ an/θ�B−→ a1/θ�B,
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and if

a1/θ�B= a2/θ�B= · · · = an/θ�B,

then

a1/θ = a2/θ = · · · = an/θ.

Since HSP(A) is locally finite, B is finite, so it suffices to prove the result assuming A is

finite. From now on we will assume A is finite, θ ∈ Con(A), and that

a1/θ −→ · · · −→ an/θ −→ a1/θ.

For 1 ≤ i ≤ n and j ≥ 1, define aji as follows: a1
1 = a1, and for i + j ≥ 2, aji = aji−1 ∗ ai if

i ≥ 2, and aji = aj−1
n ∗ a1 if i = 1. The aji are defined so that

a1
1 −→ a1

2 −→ · · · −→ a1
n −→ a2

1 −→ · · · −→ a2
n −→ a3

1 −→ · · · −→ a3
n −→ · · · ,

and furthermore, ai
θ≡ aji for each i and for all j ≥ 1. Since A is finite, there must some

1 ≤ i ≤ n and j < k such that aji = aki , which means

aji −→ · · · −→ ajn −→ aj+1
1 −→ · · · −→ aj+1

n −→ aj+2
1 −→ · · · −→ aki−1 −→ aki .

This takes place in A, so by acyclicity, all of the elements in the above chain are equal.

We noted that ai
θ≡ aji for all i, j, so ai/θ = ai+1/θ = · · · = an/θ = a1/θ = · · · = ai−1/θ.

This shows A/θ is acyclic.

Recall the algebra in Example 3.2.1. Since for any a, b ∈ A it is true that ab ≥ a, b

where ≥ is the usual order on the natural numbers, the algebra A is acyclic. However, it

is constructed in such a way that the relation θ = {(a, b) : a ≡ b (mod 3)} is a congruence

on A with A/θ ∼= T3 where T3 is the directed 3-cycle from Definition 1.0.1. This shows

that HSP(A) being locally finite is needed in the statement of Theorem 5.2.2.
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Since the variety generated by a finite algebra is locally finite, Theorem 5.2.2 shows

that if A is a finite acyclic 2-semilattice, then every member of HSP(A) is acyclic. The

next proposition asserts that 5 is the only TCT type in such a variety’s type set.

Theorem 5.2.3. Let A be a finite acyclic 2-semilattice. Then every prime congruence

quotient of A has type 5.

Proof. Since acyclicity is closed under taking quotients by Theorem 5.2.2, it suffices to

show that 〈0A, α〉 has type 5 for every minimal α ∈ Con(A). Since every component of A

has one element, no minimal congruence can satisfy Theorem 4.1.1 (2), so α must satisfy

Theorem 4.1.1 (1). By Theorem 4.2.3, the quotient has type 5.

As mentioned earlier, we will now prove that if A is a finite weakly acyclic 2-semilattice,

then HSP(A) is a weakly acyclic variety. We break the proof into three lemmas.

Lemma 5.2.4. If (Ai : i ∈ I) is a family of weakly acyclic 2-semilattices, then the product

A =
∏

i∈I Ai is weakly acyclic.

Proof. Suppose B ≤ A is strongly connected and has more than one element. We will

show that for some i ∈ I, Ai has a strongly connected subalgebra with more than one

element. Since B has more than one element, there is an i ∈ I such that pri(B) has more

than one element. If Bi is the algebra with this universe, then Bi ≤ Ai. For distinct

b, c ∈ Bi, there must be f, g ∈ B with f(i) = b and g(i) = c. Since B is strongly

connected, there is a directed walk, f = f1 −→ f2 −→ · · · −→ fn = g in B. Therefore,

b = pri(f1) −→ pri(f2) −→ · · · −→ pri(fn) = c is a directed walk from b to c in Bi, which

shows that Bi ≤ Ai is strongly connected. We have shown that if A has a nontrivial

strongly connected subalgebra, then so does Ai for some i ∈ I.
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Similar to the acyclic case, we can also show that weak acyclicity is closed under taking

quotients in the case that the algebra generates a locally finite variety. We will use the

following Lemma.

Lemma 5.2.5. Let A be a 2-semilattice and a1, . . . , an ∈ A. Suppose b = t(a1, . . . , an)

for some term operation, tA of A. For some i, there is a directed walk from ai to b in

SgA(a1, . . . , an).

Proof. We will use induction on how many times the operation of the 2-semilattice is

mentioned in the term t. If ∗ is not mentioned in t, then t = xi for some i, so b = ai

for some i. Now suppose t mentions the operation n + 1 times for some n ≥ 0. Then

t(x1, . . . , xn) = r(x1, . . . , xn) ∗ s(x1, . . . , xn) for some terms, r and s. This means b =

r(a1, . . . , an) ∗ s(a1, . . . , an), so r(a1, . . . , an) −→ b. By the inductive hypothesis, one of the

ai has a directed walk to r(a1, . . . , an) in SgA(a1, . . . , an). Concatenating the walks gives

the desired result.

Lemma 5.2.6. Let A be weakly acyclic with HSP(A) locally finite. If θ is a congruence

of A with finitely many equivalence classes, then A/θ is also weakly acyclic.

Proof. Let us assume that A/θ is finite and B ≤ A/θ is strongly connected. This means

B = {bi/θ}ni=1 for some b1, . . . , bn with n ≥ 3. We now set C = SgA(b1, . . . , bn). Since

HSP(A) is locally finite, C is finite. We also have that C/θ�C∼= B. Since C ≤ A, C is

also weakly acyclic. We have produced a finite weakly acyclic algebra with a nontrivial

strongly connected quotient. We will prove that this cannot happen.

From now on, we assume that A is finite and weakly acyclic, and that A/θ is strongly

connected. For each a ∈ A, the set a/θ is a subuniverse of A. By Lemma 3.1.5 (4), the

smallest strongly connected component of (a/θ,−→) is also a subuniverse of A. By weak

acyclicity, the smallest strongly connected component of (a/θ,−→) must be a singleton.
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Again, let b1/θ, . . . , bn/θ be the θ-classes and for each i, let b×i be the unique element in

(bi/θ)
′, which satisfies a −→ b×i for every a ∈ bi/θ by Lemma 3.1.5 (2). We will show

that D = SgA(b×1 , . . . , b
×
n ) is strongly connected, which contradicts weak acyclicity of A.

Suppose bi/θ −→ bj/θ. Then b×i b
×
j ∈ bj/θ, but b×j −→ b×i b

×
j , so b×i b

×
j = b×j by the choice of

b×j . This means b×i −→ b×j . Since A/θ is strongly connected, we have shown that the set

{b×1 , . . . , b×n } is strongly connected. Now let c1, c2 ∈ D and suppose c1 ∈ b×i /θ, which means

c1 −→ b×i . By the previous remark, there is a directed walk from c1 to b×j for all j. By the

remark following Definition 2.0.1, there is a term operation of A with c2 = t(b×1 , . . . , b
×
n ).

By Lemma 5.2.5, for some j there is a directed walk from some b×j to c2 that mentions only

elements of D. Therefore, there is a directed walk from c1 to b×j for every j, and a directed

walk from b×j to c2 for some j. Concatenating these walks gives a directed walk from c1 to

c2. Since c1, c2 ∈ D were arbitrary, we have shown that D is strongly connected.

Theorem 5.2.7. Let A be a finite weakly acyclic 2-semilattice. Then HSP(A) is a weakly

acyclic variety.

Proof. Let C ∈ HSP(A) be finite and nontrivial. By Birkhoff’s Theorem, there is a set

I, an algebra B, and a congruence ψ ∈ Con(B) such that B ≤ AI and C ∼= B/ψ. By

Lemma 5.2.4, AI is weakly acyclic, so B is weakly acyclic. Since we are assuming C is finite,

it is weakly acyclic by Lemma 5.2.6. In particular, C itself is not strongly connected.

5.3 Acyclic and Weakly Acyclic Varieties are Resid-

ually Large

As promised at the beginning of Section 5.2, we will prove in this section that if A is a

finite weakly acyclic 2-semilattice which is not a semilattice, then HSP(A) is residually
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large. This is Theorem 5.3.7. We first define a notion of height in 2-semilattices that will

be useful in the proofs in this section.

Suppose A is a 2-semilattice. Recall that ∼ is the equivalence relation whose equiva-

lence classes are the strongly connected components of A. By the definition of
A/∼−→ and

Lemma 3.1.5 (2), we have a/∼−→ A′ for every a/∼∈ A. This certainly shows that there is

at least one directed walk in (A/∼, A/∼−→) from each component to A′. By Lemma 3.1.4 (2),

(A/∼, A/∼−→) is acyclic, so no walk from a/∼ to A′ can be longer than |A/∼ | unless it uses

loops. We will call a directed walk loop-free if it does not contain any loops.

Definition 5.3.1. Let A be a finite 2-semilattice. The height function λ : A/∼→ ω is

the length of any maximal-length, loop-free, directed walk from a/∼ to A′ in the digraph

(A/∼,−→). For convenience, λ(A′) = 0. We lift λ to a function λ : A → ω by λ(a) =

λ(a/∼).

Lemma 5.3.2. Let A be a finite 2-semilattice which is not strongly connected. Suppose

I is a nonempty set, and f : I → A is an element of (A − A′)I . There are elements,

g1, . . . , gn ∈ AI such that

f
AI

−→ g1
AI

−→ g2
AI

−→ · · · AI

−→ gn

and λ(gn(α)) = 1 for all α ∈ I.

Proof. We will first show that the result holds in A. That is, given a ∈ A − A′, we want

to find a directed walk from a to some b with λ(b) = 1. If λ(a) = 1 there is nothing to

prove, so we will assume λ(a) = m > 1. By the remark after Definition 5.3.1, we have that

λ(a/∼) = m. There must exist some c ∈ A with a/∼−→ c/∼ and λ(c) = m − 1. Let c

have these properties. Since a/∼ and c/∼ are strongly connected and there are a′ ∈ a/∼

and c′ ∈ c/∼ with a′
A−→ c′, there is a directed walk from a to c. Inductively, there is a

directed walk from c to some element b with λ(b) = 1. Concatenating these walks gives a

directed walk in A from a to some b with λ(b) = 1.
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We now suppose f ∈ (A − A′)I , which means λ(f(α)) ≥ 1 for each α ∈ I. By the

previous paragraph, there is a directed walk form f(α) to some bα with λ(bα) = 1 for each

α. Since A is finite, we can find such a directed walk of length at most |A|. Therefore, by

possibly repeating elements and using that the digraph of A is reflexive, there is a fixed n

and elements aiα for each α and 1 ≤ i ≤ n so that

f(α) −→ a1
α −→ a2

α −→ · · · −→ anα −→ bα.

For each i, define gi by gi(α) = aiα. By definition, we have f −→ g1 −→ · · · −→ gn −→ b

where b(α) = bα for each α. This is a directed walk from f to b in the digraph of AI , and

b has the property that λ(b(α)) = λ(bα) = 1 for all α.

Lemma 5.3.3 is similar to Lemma 5.3.2.

Lemma 5.3.3. Let A be a finite 2-semilattice which is not strongly connected, A′ be its

smallest strongly connected component, D = {a ∈ A : λ(a) = 1}, and I be any set. If D is

strongly connected as a digraph, then for any f ∈ (A−A′)I and g ∈ DI , there is a directed

walk from f to g in the digraph of AI .

Proof. We suppose D is a strongly connected subset of A, that f ∈ (A−A′)I , and g ∈ DI .

Since D is finite and reflexive as a digraph, we can follow the proof of Lemma 3.1.8 (2) to

show that DI is also strongly connected and for any g′ ∈ DI , there is a directed walk in

DI from g′ to g of length at most |D|. Lemma 5.3.2 provides a walk in the digraph of AI

from f to some g′ ∈ DI , so we can concatenate to obtain a directed walk from f to g.

Lemma 5.3.4. If A is a finite subdirectly irreducible 2-semilattice and |A′| = 1, then there

is a unique strongly connected component D such that λ(D) = 1.

Proof. Let 0 be the unique element in A′. By Lemma 4.1.3, if D is a strongly connected

component and λ(D) = 1, then the relation ψD = (D∪{0})2∪0A is a nonzero congruence.
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If there are two distinct such components, D1 and D2, then ψD1 ∩ψD2 = 0A, which cannot

happen since A is subdirectly irreducible.

Lemma 5.3.5 is the key to the rest of the results in this chapter.

Lemma 5.3.5. Let A be a finite subdirectly irreducible 2-semilattice such that |A| > 2,

|A′| = 1, and {(a, b) : λ(a), λ(b) ∈ {0, 1}} ∪ 0A is the unique minimal congruence of A.

The variety HSP(A) is residually large.

We point out that a similar idea to that in Lemma 5.3.5 was used to produce subdirectly

irreducible commutative directoids by both Ježek and McNulty in [33] and Gardner and

Parmenter in [27].

Proof. By Lemma 5.3.4, A has a unique ∼ - class D with λ(D) = 1. Therefore, the

hypotheses of Lemma 5.3.3 hold in A.

Let I be any set and consider the algebra AI . Also, let 0 be the unique element in A′

and 0 be the constant 0 function in AI . The relation

θ = {(f, g) : f = g or 0 ∈ ran(f) ∩ ran(g)}

is a congruence on AI . This is true because if 0 ∈ ran(f), then 0 ∈ ran(fh) for any h ∈ AI .

Now let ψ > θ and choose (f, g) ∈ ψ − θ. This means there f, g ∈ AI such that f 6= g and

(f, g) ∈ ψ, but either 0 /∈ ran(f) or 0 /∈ ran(g). First, assume 0 /∈ ran(f) and 0 ∈ ran(g).

By Lemma 5.3.3, for any h ∈ DI , there are h1, . . . , hn such that f −→ h1 −→ h2 −→

· · · −→ hn = h. This means

(fh1h2 · · ·hn, gh1h2 · · ·hn) = (h, gh1h2 · · ·hn) ∈ ψ.

As well, since 0 ∈ ran(g), it is also in ran(gh1h2 · · ·hn), so (0, gh1h2 · · ·hn) ∈ θ. Because

θ < ψ, we get (h,0) ∈ ψ by transitivity of ψ. The same argument shows that (h,0) ∈ ψ

for every h ∈ DI if 0 ∈ ran(f) and 0 /∈ ran(g).
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Now assume 0 /∈ ran(f) and 0 /∈ ran(g). Since f 6= g, there must be some α0 ∈ I

such that f(α0) 6= g(α0). By our assumption about the structure of the unique mini-

mal congruence of A, we must have (0, d) ∈ CgA(f(α0), g(α0)) for every d ∈ D. By

Proposition 3.0.2 (2), there is an n + 1-ary term t and elements a1, . . . , an ∈ A with

t(f(α0), a1, . . . , an) = 0 and t(g(α0), a1, . . . , an) 6= 0, or vice versa. Without loss of gener-

ality, we will assume the former. We now define h1, . . . , hn ∈ AI by

hi(α) =

 ai if α = α0

g(α) otherwise.

Now consider t(g, h1, . . . , hn), which is an element of AI . For α 6= α0, we have

t(g, h1, . . . , hn)(α) = t(g(α), g(α), . . . , g(α)) = g(α)

by idempotence, which is not 0 by assumption. Also,

t(g, h1, . . . , hn)(α0) = t(g(α0), a1, . . . , an)

which is not 0 by construction. Therefore, 0 /∈ ran(t(g, h1, . . . , hn)). However,

t(f(α0), h1(α0), . . . , hn(α0)) = t(f(α0), a1, . . . , an) = 0

by construction, so 0 ∈ ran(t(f, h1, . . . , hn)). If we define f ′ = t(f, h1, . . . , hn) and g′ =

t(g, h1, . . . , hn), we have (f ′, g′) ∈ ψ, 0 ∈ ran(f ′), and 0 /∈ ran(g′). By the first case,

(h,0) ∈ ψ for every h ∈ DI .

We have shown that for ψ > θ, we have (DI ∪ {0})2 ⊆ ψ. Therefore, if we set

Θ =
∧
ρ>θ ρ, we get (DI ∪ {0})2 ⊆ Θ. Choose d ∈ D and let d ∈ AI be the element

with d(α) = d for all α ∈ I. We have (d,0) ∈ Θ, but this pair is not in θ. Following the

discussion at the top of page 13, we have shown that there is a unique congruence µ such

that θ < µ and θ < η implies µ ≤ η. Therefore, θ is completely meet irreducible so AI/θ

is subdirectly irreducible. The size of this algebra is (|A|−1)|I|+ 1 ≥ 2|I|+ 1 since |A| > 2.

This means by taking I appropriately large, we can make AI/θ arbitrarily large.
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We can apply Lemma 5.3.5 to show that type 5 simple algebras generate residually

large varieties unless they are semilattices.

Theorem 5.3.6. Suppose A is a finite simple 2-semilattice which is not a semilattice and

〈0A, 1A〉 has type 5. Then HSP(A) is residually large.

Proof. By Theorem 4.3.2, A is not strongly connected, which means there is no strongly

connected component X with 1A ⊆ X2 ∪ 0A. It follows that Theorem 4.1.1 (1) holds for

the minimal congruence 1A, which means A has exactly two 1A-nontrivial components. Of

course, every component of A is 1A-nontrivial, so A has exactly two strongly connected

components. This means every a ∈ A has λ(a) ∈ {0, 1}. The relation (A′)2 ∪ 0A is a

congruence on A, so |A′| = 1 by simplicity. Since A is simple and not a semilattice, it must

have at least 3 elements by Proposition 3.0.3. The result now holds by Lemma 5.3.5.

Theorem 5.3.7. If A is a finite weakly acyclic 2-semilattice which is not a semilattice,

then HSP(A) is residually large.

Proof. By Birkhoff’s subdirect representation theorem mentioned in the discussion after

Definition 2.0.7, A embeds in
∏

α∈S A/α where S is the set of meet irreducible congruences

on A. A subdirect product of semilattices is a semilattice, so since we are assuming A is

not a semilattice, it must be the case that A/α is not a semilattice for some α ∈ S. If the

subvariety HSP(A/α) is residually large, so is HSP(A). Also, A/α is weakly acyclic by

Lemma 5.2.6, so it suffices to prove the result assuming A is subdirectly irreducible.

Since A is weakly acyclic, its smallest strongly connected component has just one ele-

ment which we will call 0. By Lemma 5.3.4, A has a unique strongly connected component

D with λ(D) = 1. If D = {1} for some 1 ∈ A, then {(0, 1), (1, 0)} ∪ 0A is a congruence by

Lemma 4.1.3. This congruence only collapses two elements, so it is minimal. Since A is sub-
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directly irreducible, it has a unique minimal congruence, which must be {(0, 1), (1, 0)}∪0A.

This means Lemma 5.3.5 applies, so we have shown that the result holds when |D| = 1.

For the remainder of the proof, we assume, |D| ≥ 2. The set E = D ∪ {0} is a

subuniverse of A, so we let E be the subalgebra with universe E and choose θ ∈ Con(E)

maximal. If a ∈ 0/θ for some a 6= 0, then a ∈ D and for any a −→ b, we have (ab, 0b) =

(b, 0) ∈ θ. Since D is strongly connected, it follows that D ⊆ 0/θ and θ = 1E, which

contradicts the maximality of θ ∈ Con(E). Therefore, 0/θ = {0}. We are assuming A

is weakly acyclic, so E ≤ A is also weakly acyclic. This means D is not a subuniverse

of E since D is a strongly connected subset of E with more than one element. Hence,

D is not a θ-class. Therefore, E/θ is a simple 2-semilattice with more than 2 elements,

so it is not a semilattice by Proposition 3.0.3. Since E is weakly acyclic, so is E/θ by

Lemma 5.2.6, so E/θ is not strongly connected since it has at least three elements. By

Theorem 4.3.2, 〈0E, 1E〉 has type 5. By Theorem 5.3.6, HSP(E/θ) is residually large.

Since HSP(E/θ) ≤ HSP(E) ≤ HSP(A), this implies HSP(A) is residually large.

The results of Maroti in [40] show that the variety generated by a finite tournament

has only finitely many subdirectly irreducible members which are all finite. Theorem 5.3.5

is consistent with this because any weakly acyclic tournament is necessarily a semilattice.

This can be seen by showing that if a tournament T has a failure of associativity, then it

contains a three element subalgebra isomorphic to T3.

Recall from Definition 3.0.1 (4) that a commutative directoid is a 2-semilattice which

additionally satisfies x((xy)z) ≈ (xy)z. It was shown by Ježek and Quackenbush in [34]

that the digraph of a commutative directoid is a partial order, and hence, is acyclic.

Therefore, we have the following corollary.

Corollary 5.3.8. Let D be a finite commutative directoid which is not a semilattice. Then

HSP(D) is residually large.
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Proof. Since D is acyclic, it is weakly acyclic. The result follows from Theorem 5.3.7.

We note that Ježek and McNulty produced arbitrarily large finite examples of subdi-

rectly irreducible directoids in [33], thereby showing that the variety of all commutative

directoids is not residually very finite. Gardner and Parmenter in [27] produced arbitrarily

large finite and a countably infinite subdirectly irreducible commutative directoid. Their

construction can easily be modified to produce subdirectly irreducible commutative direc-

toids of arbitrarily large cardinality. In other words, it follows from the work of Gardner

and Parmenter that the variety of commutative directoids is residually large. It follows

from Corollary 5.3.8 that any finitely generated variety of commutative directoids is either

the variety of semilattices, and hence, is residually very finite, or is residually large.

We now state a corollary which is essentially a rephrasing of Theorem 5.3.7 in the

language of tame-congruence-theoretic types.

Corollary 5.3.9. Suppose A is a finite 2-semilattice and there exists a variety W which

is not the variety of semilattices, is contained in HSP(A), and which omits type 3. Then

HSP(A) is residually large.

Proof. Suppose every finite member of W is a semilattice. Then the only finite subdirectly

irreducible members of W are semilattices. The two element semilattice is the only sub-

directly irreducible semilattice, so W has only finitely many finite subdirectly irreducible

members up to isomorphism. By a Theorem of Quackenbush in [46], the two element

semilattice is the only subdirectly irreducible member of W, so W must be the variety of

semilattices by Birkhoff’s subdirect representation theorem. Since we are assuming this is

not the case, we may choose a finite algebra B ∈ W which is not a semilattice. Suppose

B has a strongly connected subalgebra C with more than one element. For any maximal

congruence θ on C, the algebra C/θ is strongly connected by Lemma 3.1.5 (8), so 〈θ, 1C〉
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has type 3 by Theorem 4.3.2. By our assumption, no such congruence quotient can exist,

so B is weakly acyclic. By Theorem 5.3.7, HSP(B) is residually large, so HSP(A) is

residually large.

For a finite 2-semilattice A, the problem of determining whether or not it is weakly

acyclic is decidable. A possible algorithm is to find all strongly connected subsets of A

and check if any of them are subuniverses. This together with Theorem 5.3.7 gives a

decidable sufficient condition for HSP(A) to be residually large. There are still plenty of

open questions about decidability of residual character in the case of 2-semilattices. Some

of them are asked below.

Question 5.3.10.

1. Is there an algorithm that determines, given a finite 2-semilattice A, whether or not

HSP(A) is residually very finite, finite, small, or large?

2. Is the converse of Corollary 5.3.9 true?

3. For a finite 2-semilattice A, is it decidable whether or not HSP(A) satisfies the

conditions of Corollary 5.3.9?

4. For a fixed finite 2-semilattice, is it decidable which parts of Definition 5.1.1 HSP(A)

satisfies?

5. Is it possible for a variety of 2-semilattices to have arbitrarily large subdirectly irre-

ducible members but a cardinal bound on the size of its simple members?
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Chapter 6

The Constraint Satisfaction Problem

We now shift our focus away from purely algebraic properties of 2-semilattices. For the

rest of this thesis, we focus on the constraint satisfaction problem in the context of 2-

semilattices. The constraint satisfaction problem, or CSP, is polynomially equivalent to the

homomorphism problem for relational structures which asks, for finite relational structures

B and D of the same type if there is a homomorphism from B to D. In Section 6.1,

we provide some background, history, and basic definitions on the subject of constraint

satisfaction problems. The rest of Chapter 6 is devoted to generalizing a result of Bulatov,

Theorem 3.1 from [15]. It was mentioned in the introduction that if verified, the results

claimed by Zhuk in [53], Rafiey et. al. in [48], and Bulatov in [10] will imply Theorem 6.6.5

and Corollary 6.6.9, the main results in this chapter.

6.1 Background

In this section, we introduce the constraint satisfaction problem and some notation.
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Definition 6.1.1.

1. An instance is a triple I = (X,D,C) where X is a finite set of variables, D is a finite,

nonempty set, and C is a finite set of constraints. A constraint, C ∈ C is a pair (x, R)

where x ∈ Xn and R ⊆ Dn for some n.

2. A solution to an instance is a function ϕ : X → D with (ϕ(x1), . . . , ϕ(xn)) ∈ R for

every (x, R) ∈ C.

3. The constraint satisfaction problem, abbreviated CSP, is the decision problem whose

input is an instance I and output is YES if a solution exists, and NO otherwise.

Given an instance I and a function ϕ : X → D, it can be checked in time linear in the

size of I whether or not ϕ is a solution. Therefore the CSP as stated above is in NP. Given

any graph G = (V,E), let IG be the instance with variable set V , D = {0, 1, 2}, and for

each (v, w) ∈ E, a constraint ((v, w), R6=) where R 6= ⊆ D2 is {(a, b) : a 6= b}. The solutions

to this instance are precisely the homomorphisms from G to the graph (D,R6=). Therefore,

I has a solution exactly when G is 3-colourable. Since 3-colourability is NP-complete, it

follows that the CSP is NP-complete. The complexity of the CSP is more interesting for

versions of CSP where the allowed instances are restricted.

Definition 6.1.2. A relational structure is a pair D = (D,R) where D is a nonempty set

and R is a set of relations on D. We say D is finite if D is finite, and has finite type if R is

finite.

With Definition 6.1.2 in mind, we can define a version of CSP which is less general than

the one in Definition 6.1.1.

Definition 6.1.3. Fix a finite relational structure D = (D,R) of finite type. The decision

problem CSP(D) is the same as the general CSP, except the input is restricted to instances
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I = (X,D,C) where D is the domain of D, and for each constraint (x, R) ∈ C, the relation

R is in R.

The constraint satisfaction problem as stated in Definition 6.1.3 is polynomially equiv-

alent to the homomorphism problem, Hom(D). The inputs of Hom(D) are finite structures

E similar to D, and Hom(D) asks whether or not there is a homomorphism from E to D.

For an explanation of this equivalence, see Section 1 of Larose and Tesson [36].

Schaeffer proved in [51] that if D = (D,R) has |D| = 2 and R finite, then CSP(D) is

either in P or is NP-complete. Hell and Nešetřil in [28] showed that the same dichotomy

holds when D is a simple graph. By “D is a simple graph”, we mean R contains exactly

one relation which is binary, symmetric, and irreflexive. Based largely on these two known

results, Feder and Vardi in [22] conjectured the following about the version of CSP in

Definition 6.1.3: For a finite relational structure D of finite type, either CSP(D) is in P or

it is NP-complete. This conjecture has come to be known as the Dichotomy Conjecture.

Many partial confirmations of the Dichotomy Conjecture have been attained using

algebraic techniques. The framework which allows the use of algebraic techniques was laid

out in the late 1990s and early 2000s by Jeavons and a variety of coauthors in several papers

including [31], [32], [13], and [14]. Jeavons et. al. introduced the notion of a “tractable”

algebra or class of algebras, which we define in Definition 6.1.5. Roughly speaking, an

algebra Alg(D) is associated to every relational structure D, and Alg(D) is “tractable” if

and only if CSP(D) is in P.

Definition 6.1.4. Fix a finite algebra D, and a positive integer n. Define Rn(D) = {A :

A ≤ Dm for some m ≤ n}. The decision problem CSP(D, n) is the decision problem

CSP(D) where D = (D,Rn).

Using Definition 6.1.4, we now precisely define what it means for an algebra or class of

algebras to be tractable.
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Definition 6.1.5. A finite algebra D is tractable if for every n ≥ 2, there is a polynomial

time algorithm which solves CSP(D, n). A class of algebras is called tractable if each of its

finite members is tractable.

As mentioned before, to each finite relational structure of finite type D, Jeavons et. al.

associated a finite algebra Alg(D) with the property that CSP(D) is solvable in polynomial

time if and only if Alg(D) is tractable. Furthermore, they showed that one can assume

Alg(D) is idempotent.

The “Algebraic Dichotomy Conjecture” appears in several forms in [13] and [14]. Con-

jecture 4.15 of Bulatov and Jeavons in [13] is equivalent to the following: For a finite

relational structure D of finite type, if Alg(D) has a Taylor term operation, then Alg(D) is

tractable; otherwise, CSP(D) is NP-complete. Earlier in [13], Bulatov and Jeavons prove

that if Alg(D) does not have a Taylor operation, then CSP(D) is NP-complete. Therefore,

the content of their conjecture is that if Alg(D) has a Taylor operation, then Alg(D) is

tractable. In particular, their conjecture implies CSP(D) is solvable in polynomial time

when Alg(D) has a Taylor operation. The Algebraic Dichotomy Conjecture implies the

Dichotomy Conjecture of Feder and Vardi. Because of pre-existing knowledge of univer-

sal algebra, the algebraic approach to the constraint satisfaction problem has been quite

successful.

Since the Algebraic Dichotomy Conjecture was posed, there have been many partial

confirmations. The “few subpowers algorithm”, which is a generalization of Gaussian elim-

ination, is a polynomial time algorithm which solves CSP(D) when Alg(D) has an operation

satisfying a particular collection of identities. An operation satisfying such a collection of

identities is called an “edge operation” and will be defined precisely in Definition 6.6.7.

That the few subpowers algorithm solves CSP(D) when Alg(D) has an edge operation was

proved gradually by various authors in [12], [18], [30], and [6]. Another major partial con-
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firmation was established by Barto and Kozik in [3], and independently in an unpublished

work of Bulatov [9]. The authors showed that when Alg(D) generates a meet semidistribu-

tive variety, CSP(D) is solvable by “local consistency checking” which will be discussed

in more depth in Section 6.2. The local consistency checking algorithm finds, if it exists,

a specific set of partial solutions to an instance of CSP(D). It is always the case that if

this set of partial solutions does not exist, then the instance has no solution. Barto and

Kozik showed that when Alg(D) generates a meet semidistributive variety and such a set

of partial solutions exists, the instance has a solution. This showed that the local consis-

tency checking algorithm, which runs in polynomial time, can be used to answer CSP(D)

when Alg(D) generates a meet semidistributive variety. It had already been shown in [37]

by Larose and Zádori that if CSP(D) could be solved in this way by local consistency

checking, then Alg(D) generates a congruence meet semi-distributive variety. Larose and

Zádori conjectured the converse in the same paper. Their conjecture was known as the

“bounded width conjecture” until it was verified. An important step leading to the proof

of the bounded width conjecture was the following result of Bulatov in [15]: If Alg(D) has

a 2-semilattice operation as a basic operation, then CSP(D) is solvable by local consistency

checking. Since an algebra with a 2-semilattice operation generates a meet semidistribu-

tive variety (see Proposition 3.2.3), Bulatov’s result verified a special case of the bounded

width conjecture.

The main result in this chapter, Theorem 6.6.5, is a partial confirmation of the Alge-

braic Dichotomy Conjecture which is not implied by either of the two major confirmations

mentioned in the previous paragraph. Roughly speaking, we are able to prove that CSP(D)

is solvable in polynomial time in the following situation: Alg(D) has a congruence θ, and a

binary operation ∗ so that (i) ∗ is a 2-semilattice operation on Alg(D)/θ, (ii) each θ-class

considered as a subalgebra of Alg(D) is tractable, and (iii), x ∗ y is the first projection on

each θ-class. The result will be stated more precisely in Section 6.6. The result obtained
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is similar to those of Bergman and Failing in [5] and Maróti in [41].

Until recently, confirming the Algebraic Dichotomy Conjecture assuming (i) and (ii)

above, even when (i) is strengthened to “∗ is a semilattice operation” was thought to be

out of reach. However, Bulatov circulated a proof of precisely this in January of 2017 in

[11]. As of August, 2017, it remains unpublished. In any case, neither result implies the

other since, while Bulatov was able to eliminate condition (iii), he needed to strengthen

conditions (i) and (ii).

Since November 2016, three proofs of the Algebraic Dichotomy Conjecture have been

circulated. The first, by Feder, Rafiey, and Kinne in [48] was circulated in November

2016. The second proof was circulated by Zhuk [53] in March, 2017. Finally, Bulatov [10]

circulated a proof in April of 2017. As of May 2017, all three proofs remain unconfirmed.

6.2 The (2, 3)-Consistency Algorithm

Working with large arity relations can be cumbersome, so we state a proposition that shows

we can focus on binary relations. A proof can be found in Barto and Kozik [3].

Proposition 6.2.1. Let D be a finite idempotent algebra and n ≥ 2 be an integer. Then

CSP(D, n) is polynomial time equivalent to CSP(Dd
n
2
e, 2).

Because of Proposition 6.2.1, we will only consider instances of CSP(D, 2). Before

proceeding, we introduce the notation R−1 to denote the binary relation {(b, a) : (a, b) ∈ R}

for a binary relation R.

Definition 6.2.2. Fix a finite, idempotent algebra D. An instance (X,D,C) of CSP(D, 2)

is called standard if C = {(x, Px) : x ∈ X} ∪ {((x, y), Rx,y) : (x, y) ∈ X × X} for some

subuniverses, Px and Rx,y of D and D × D respectively, and Rx,y ⊆ Px × Py for every
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(x, y) ∈ X × X. We will henceforth refer to a standard instance as I = (X,P,R) where,

P = (Px : x ∈ X) and R = (Rx,y : (x, y) ∈ X2). That is, we identify it by its indexed sets

P of potatoes and R of relations. We call I a standard (2, 3)-instance of CSP(D, 2) if it also

satisfies the following four conditions.

(P1) For each x ∈ X, Rx,x = 0Px (the diagonal in Px × Px),

(P2) For x, y, z ∈ X and any (a, b) ∈ Rx,y, there is a c ∈ Pz such that (a, c) ∈ Rx,z and

(b, c) ∈ Ry,z,

(P3) For each x, y ∈ X, Rx,y ≤sd Px ×Py if Px and Py are both non-empty.

(P4) Ry,x = R−1
x,y for each x, y ∈ X.

We note that the set of solutions to a standard (2, 3)-instance, if nonempty, can be

identified as a subalgebra of the product
∏

x∈X Px. For this reason, when I has at least

one solution, we will sometimes refer to its algebra of solutions and use the fact that it

is in the variety generated by D. It is not hard to see that for a standard (2, 3)-instance,

there is an empty potato if and only if all potatoes, and hence, relations, are empty. We

call such an instance empty. It is worth noting that (P3) and (P4) follow from (P1) and

(P2). To see this, suppose a standard instance I satisfies (P1) and (P2) and let x, y ∈ X. If

(a, b) ∈ Rxy, then by (P2) there is c ∈ Px with (a, c) ∈ Rxx and (b, c) ∈ Ryx. By (P1), c = a,

so (b, a) ∈ Ryx which shows R−1
xy ⊆ Ryx. If (b, a) ∈ Ryx then (a, b) ∈ R−1

yx , so (a, b) ∈ Rxy

using the same argument, so (b, a) ∈ R−1
xy . This shows that I satisfies (P4). For any a ∈ Px,

the pair (a, a) ∈ Rxx by (P1), and by (P2) there is a b ∈ Py with (a, b) ∈ Rxy. This shows

that the first projection from Rxy to Px is surjective. Using (P4), we get that the second

projection is surjective as well. Thus, I satisfies (P3) and is a standard (2, 3)-instance. We

have shown that to prove a standard instance is a standard (2, 3)-instance, we need only

verify (P1) and (P2) from Definition 6.2.2. The intuition behind standard (2, 3)-instances
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is that “obviously” redundant elements and pairs are removed. For example, if I is a

standard instance, x, y ∈ X and a ∈ Px, but there is no b ∈ Py with (a, b) ∈ Rxy, then no

solution to I can possibly assign a to x. In this case, there is no reason to include a ∈ Px.

We leave (P3) and (P4) in the definition because they are part of this intuition behind

standard (2, 3)-instances.

We will occasionally refer to several standard instances of CSP(D, 2) in the same con-

text. In this case, we will use the instance name in a superscript to denote its potatoes

and relations. That is, if I and J are instances with a common set of variables X, we will

denote the potatoes of I by PI = (PI
x : x ∈ X) and PJ = (PJ

x : x ∈ X), and similarly

for the sets RI and RJ of relations. This will usually arise in the situation when J is a

subinstance of I, defined below.

Definition 6.2.3. Let I and J be standard instances of CSP(D, 2). We say that J is a

subinstance of I and write J ≤ I if I and J have a common variable set X, PJ
x ≤ PI

x for

each x ∈ X, and RJ
xy ≤ RI

xy for each (x, y) ∈ X2.

Algorithm 1 (found on the next page) is the (2, 3)-consistency checking algorithm,

presented to match the notation in Definition 6.2.2. It is a form of local consistency

checking. The input is an instance of CSP(D, 2). The algorithm converts the instance to a

standard instance, and then removes elements from potatoes and pairs from relations until

it is a standard (2, 3)-instance in such a way that no solutions are lost. Variations of the

algorithm appear frequently in the literature. For example, see Barto Kozik [3], Bulatov

[15], Dechter [20], Feder and Vardi [22], or Larose Zádori [37].

Proposition 6.2.4. The output of Algorithm 1 is a standard (2, 3)-instance of CSP(D)

with exactly the same set of solutions as the input instance.

Proof. We first prove the following claim:
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Algorithm 1 (2, 3)-consistency checking

1: Input: An instance, I = (X,D,C) of CSP(D, 2)
2: for (x, y) ∈ X2 do
3: if x 6= y then
4: Rxy ← D ×D
5: else
6: Rxy ← 0D

7: for ((x, y), R) ∈ C do
8: Rxy ← Rxy ∩R
9: Ryx ← Ryx ∩R−1

10: flag← 1
11: while flag = 1 do
12: flag← 0
13: for (x, y) ∈ X2 do
14: for z ∈ X do
15: for (a, b) ∈ Rxy do
16: if there is no c ∈ D with (a, c) ∈ Rxz and (b, c) ∈ Ryz then
17: Rxy ← Rxy \ {(a, b)}
18: Ryx ← Ryx \ {(b, a)}
19: flag← 1

20: for x ∈ X do
21: Px = pr1(Rxx)

22: Output: (X, (Px : x ∈ X), (Rxy : (x, y) ∈ X2))
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Claim. Suppose Rxy ≤ D×D for every (x, y) ∈ X2 when the algorithm reaches the while

loop beginning on line 11. Then Rxy ≤ D ×D for every (x, y) ∈ X2 when the algorithm

exits the while loop.

Proof of Claim. The net effect of the algorithm from line 14 to 19 is to replace, for a fixed

(x, y) ∈ X2, Rxy by

{(a, b) ∈ Rxy : there exists c ∈ D with (a, c) ∈ Rxz and (b, c) ∈ Ryz}.

This set is a subuniverse because Rxy, Rxz, and Ryz are all subuniverses. This is the only

part of the while loop where any changes are made, so Rxy ≤ D×D when the algorithm

exits the while loop.

By construction in lines 2-6 and 21, there is exactly one potato for each variable x ∈ X

and exactly one relation for each ordered pair (x, y) ∈ X2. We need to verify that Px ≤ D

and Rxy ≤ Px × Py for each x, y ∈ X. We also need to verify that the output satisfies

(P1)-(P4) from Definition 6.2.2. By the remark after Definition 6.2.2, we only need to

verify (P1) and (P2). We will prove that the solution set is unaffected by the algorithm at

the end of the proof.

When Rxy is initialized, it is either D × D or 0D. Either way, it is a subuniverse of

D×D. In the for loop spanning lines 7-9, Rxy is possibly replaced by its intersection with

other subuniverses of D ×D, so each Rxy ≤ D ×D when the algorithm enters the while

loop. By the claim, Rxy ≤ D×D when the algorithm terminates. It follows from this fact

that Px = pr1(Rxx) ≤ D. It remains to verify that the output satisfies (P1) and (P2) from

Definition 6.2.2.

To verify (P1), we note that Rxx = 0D when it is initialized, so Rxx ≤ 0D when the

algorithm reaches line 20. This means every pair in Rxx is of the form (a, a) for some

a ∈ D. Since Px = pr1(Rxx), we have that Rxx = {(a, a) : a ∈ Px} = 0Px .

86



To verify (P2), we suppose (a, b) ∈ Rxy and z ∈ X. There must be some c ∈ D such

that (a, c) ∈ Rxz and (b, c) ∈ Ryz. Otherwise, (a, b) would have been removed from Rxy in

the loop that runs from lines 15 to 19. It suffices to show that c ∈ Pz, and since Rzz = 0Pz ,

it suffices to show that (c, c) ∈ Rzz. To see this, note that (a, c) ∈ Rxz, so there is some

d ∈ D with (a, d) ∈ Rxz and (c, d) ∈ Rzz by the same reasoning as above. This means

c = d so (c, c) ∈ Rzz.

Finally, we argue that the solution sets of the input and output are identical. A function

ϕ : X → D is a solution to I if and only if (ϕ(x), ϕ(y)) ∈ R whenever ((x, y), R) ∈ C.

This is equivalent to (x, y) ∈ Rxy for all x, y ∈ X immediately after line 9. The solution

set will not change after the introduction of the Px, so the only place the solution set can

change is during the while loop. Removing a pair from Rxy can not possibly introduce

a new solution, and a pair is removed precisely when it is not a solution to the instance

restricted to some subset of X of size at most 3. If a pair does not extend to a solution to

such a restricted instance, it can not possibly be a solution to the full instance.

To finish this section, we explain why Algorithm 1 runs in Polynomial time. We first

note that since D is fixed, we take |D|, and hence |D ×D| and |{R : R ≤ D×D}| ≤ 2|D|

as constants. The input is a variable set X and some constraints of the form (x, P ) and

((x, y), R) such that P ≤ D and R ≤ D2. Therefore, the size of the input can be taken

as n = |X| + |C|. The loop that spans lines 2 through 6 makes an assignment for each

(x, y) ∈ X2. Thus, it takes no more than n2 steps. Similarly, the loop spanning lines 20-21

runs in at most n steps. The loop that spans lines 7 through 9 makes one assignment for

each constraint, and so it takes at most n steps. Each pass through the while loop considers

a triple (x, y, z) ∈ X3 and scans some subuniverses of D2. Therefore, each pass through

the while loop takes at most cn3 steps where c is a constant. If a pass through the while

loop makes no changes, then the loop terminates. Otherwise, one of the relations must
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shrink. Therefore, the number of times the algorithm enters the while loop is bounded by

a constant times the number of relations which can shrink, which is |X| + |X2| ≤ n + n2.

We conclude that there is a polynomial in n of degree 5 which bounds the number step to

run the while loop. Putting all of this together, there is a polynomial of degree at most 5

that bounds the number of steps Algorithm 1 takes.

6.3 Bulatov’s Algorithm for CSP over 2-Semilattices

In this section, we go through the proof of Theorem 3.1 from [15], in which Bulatov shows

that the local consistency checking algorithm correctly answers CSP(D, n) for all n in the

case that D is a 2-semilattice. Because of Proposition 6.2.1, we will go through the proof

with the added assumption that n = 2. The first Lemma is one of Bulatov’s observations

translated to our context.

Lemma 6.3.1. Let D ∈ S and suppose I = (X,P,R) is a nonempty standard (2, 3)-

instance of CSP(D, 2). The instance, I′ = (X, {P ′x : x ∈ X}, {R′xy : (x, y) ∈ X2}), is a

nonempty standard (2, 3)-instance.

Lemma 6.3.1 is essentially Proposition 3.2 from [15]. The proof given by Bulatov is

rather terse, so we include a detailed proof of the result.

Proof. Since Px and Rxy are nonempty for each x, y ∈ X, we also have that P ′x and R′xy

are nonempty for all x, y ∈ X. By Lemma 3.4.3 (2), R′xy ≤sd P′x × P′y, so certainly

R′xy ⊆ P ′x × P ′y.

To see that I′ satisfies (P1), Observe that (P1) for I implies that Px and Rxx are

isomorphic via the map given by a 7→ (a, a) for a ∈ Px. This means R′xx is precisely
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{(a, a) : a ∈ P ′x} = 0P ′
x
. We now show that I′ satisfies (P2). First, for fixed (x, y, z) ∈ X3

we define the algebra of triangles on (x, y, z) by

T = {(a, b, c) ∈ Px × Py × Pz : (a, b) ∈ Rxy, (a, c) ∈ Rxz, (b, c) ∈ Ryz}

and show that its subuniverse,

S = {(a, b, c) ∈ P ′x × P ′y × P ′z : (a, b) ∈ R′xy, (a, c) ∈ R′xz, (b, c) ∈ R′yz},

is nonempty. If we take (a1, b1) ∈ R′xy, by (P2) for I, there is c1 ∈ Pz so that (a1, b1, c1) ∈ T .

Similarly, there is (a2, b2, c2) ∈ T with (a2, c2) ∈ R′xz, and (a3, b3, c3) ∈ T with (b3, c3) ∈ R′yz.

If we set a = a1a2a3, b = b1b2b3, and c = c1c2c3, then an application of Lemma 3.1.5 (4)

shows that (a, b, c) is in S, so S is nonempty. Now we take (d, e) ∈ R′xy and find f ∈ P ′z
such that (d, e, f) ∈ S. Again, we can use (P2) of I to find f ′ ∈ Pz so that (d, e, f ′) ∈ T .

Since (d, e) ∈ R′xy, Lemma 3.1.5 (3) guarantees a walk in Rxy from (a, b) to (d, e). Using

this and (P2) of I, we can find a sequence, {(ui, vi, wi)}ni=1 of elements of T so that

(a, b)
Rxy−→ (u1, v1)

Rxy−→ · · · Rxy−→ (un, vn)
Rxy−→ (d, e).

Now define w×1 = cw1, and w×i = w×i−1wi for 2 ≤ i ≤ n. As well, set f = w×n · f ′. It follows

from Lemma 3.1.5 (1) that

(a, b, c)
T−→ (u1, v1, w

×
1 )

T−→ · · · T−→ (un, vn, w
×
n )

T−→ (d, e, f).

Since each of R′xy, R
′
xz, and R′yz is closed with respect to taking out neighbours, it follows

that S is as well. Therefore, since (a, b, c) ∈ S, the entire walk, including (d, e, f), is in

S.

Lemma 6.3.1 allows us to reduce a nonempty standard (2, 3)-instance to a smaller

nonempty standard (2, 3)-instance in the case that one of its potatoes or relations is not
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strongly connected. We will next show that when a nonempty standard (2, 3)-instance

has only strongly connected potatoes and relations, we can again reduce the instance

to a smaller nonempty standard (2, 3)-instance as long as some potato has at least two

elements. By alternating these reductions, a nonempty standard (2, 3)-instance can be

reduced to a nonempty standard (2, 3)-instance in which every potato is a singleton and

any solution to the reduced standard (2, 3)-instance is a solution to the original. We will

show that a nonempty standard (2, 3)-instance in which every potato is a singleton must

have a solution. This is roughly how Bulatov’s proof of Theorem 6.3.6 goes. In fact,

Barto and Kozik’s proof of the bounded width conjecture follows the same process, but

with “strongly connected” replaced by “absorption free”. Definition 6.3.2 is very similar

to Barto and Kozik’s Definition 8.2 of a decomposition from [3].

Definition 6.3.2. Let D ∈ S and I be a standard (2, 3)-instance of CSP(D, 2) in which

every potato and relation is strongly connected. Further suppose there is some u ∈ X with

|Pu| > 1. Choose a maximal congruence, αu of Pu. Let W ⊆ X be the set of variables

such that {(a, b/αu) : (a, b) ∈ Rxu} is the graph of a surjective homomorphism from Px to

Pu/αu, and for each x ∈ W , let ϕxu be this surjection. Now let P 1
u , P

2
u , . . . , P

k
u be the αu

classes in Pu, and define instances I1, . . . , Ik, each with variable set X by

- P Ii
x = ϕ−1

xu (P i
u) if x ∈ W , and Px, otherwise.

- RIi
xy = Rxy ∩ (P Ii

x × P Ii
y )

Since Ruu = 0Pu , we have that u ∈ W and P Ii
u = P i

u. We now state a Lemma based on

Definition 6.3.2.

Lemma 6.3.3. Let I be a standard (2, 3)-instance of CSP(D, 2), u ∈ X be such that

|Pu| > 1, αu ∈ Con(Pu) be maximal, and W and I1, . . . , Ik be as in Definition 6.3.2.
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1. If x ∈ W , then Rxy ∩ (P Ii
x × Py) = Rxy ∩ (P Ii

x × P Ii
y ) = RIi

xy for every y ∈ X.

2. If s is a solution to I, then it is a solution to Ii for some i.

3. For x ∈ W , the sets P Ii
x are the classes of a congruence αx ∈ Con(Px) satisfying

Px/αx ∼= Pu/αu via the isomorphism P Ii
x 7→ P Ii

u .

Proof. For (1), the second equality is by definition, so we are only concerned with the

first. Of the two inclusions needed to verify the equality, the left to right inclusion is

the interesting one. To see that it is true, we first note that if y /∈ W , then P Ii
y = Py,

so there is nothing to prove. From now on, we assume that y ∈ W as well. Suppose

(a, b) ∈ Rxy ∩ (P Ii
x × Py). By (P2) of I, we get some c ∈ Pu such that (a, c) ∈ Rxu and

(b, c) ∈ Ryu. Since x ∈ W and a ∈ P Ii
x , we have that c ∈ P Ii

u . This is because (a, c) ∈ Rxu

means c ∈ ϕxu(a) = P Ii
u . Since y ∈ W and (b, c) ∈ Ryu, the same reasoning in reverse puts

b ∈ ϕ−1
yu (P Ii

u ) = P Ii
y .

To prove (2), it suffices to show that there is some i such that s(x) ∈ P Ii
x for all

x ∈ X because of the way the RIi
xy are defined,. Since the P I1

u , . . . , P
Ik
u partition Pu,

there is some i such that s(u) ∈ P Ii
u . For x ∈ W , since (s(x), s(u)) ∈ Rxu, we have that

s(x) ∈ ϕ−1
xu (P Ii

u ) = P Ii
x , and for x /∈ W , s(x) ∈ P Ii

x since P Ii
x = Px.

Part (3) is true because the P Ii
x are defined to be the classes of the kernel of ϕxu : Px →

Pu/αu.

Lemma 6.3.4. Let D ∈ S and I be a standard (2, 3)-instance of CSP(D, 2) in which each

potato and relation is strongly connected and u ∈ X is such that |Pu| > 1. Choose a

maximal congruence αu on Pu and construct I1, . . . , Ik as in Definition 6.3.2. Then each

Ii is standard (2, 3)-instance.

Proof. For any x ∈ W , let αx be the kernel of ϕxu from Definition 6.3.2. We first show

that for any x ∈ W and y /∈ W that Rαx
yx := {(a, b/αx) : (a, b) ∈ Ryx} = Py ×Px/αx. Since
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Ryx ≤sd Py ×Px, we get that Rαx
yx ≤sd Py ×Px/αx. By Lemma 6.3.3 (3), Px/αx ∼= Pu/αu

and since αu is maximal, Px/αx is simple. It now follows from Lemma 3.4.1 that Rαx
yx is

either the graph of a surjective homomorphism or the full direct product. We will show

that if it is the graph of a surjective homomorphism, then y ∈ W . Assume Rαx
yx is the graph

of a surjective homomorphism from Py to Px/αx and assume (a, c1), (a, c2) ∈ Ryu. Since

(P2) holds in I, there are b1, b2 ∈ Px with (a, b1), (a, b2) ∈ Ryx and (b1, c1), (b2, c2) ∈ Rxu.

Since Rαx
yx is the graph of a surjective homomorphism, the former implies b1/αx = b2/αx.

From this and the latter, we get that c1/αu = c2/αu. This means {(a, b/αu) : (a, b) ∈ Ryu}

is the graph of a surjective homomorphism, so y ∈ W . Therefore, if y /∈ W and x ∈ W ,

Rαx
yx = Py×Px/αx, as desired. We will now show that each Ii is a standard (2, 3)-instance.

By definition, RIi
xy ⊆ P Ii

x × P Ii
y . Each Ii also satisfies (P1) because of the way the RIi

xy

were defined. We now fix i and show that Ii satisfies (P2). This means we need to show

that for any z ∈ X and (a, b) ∈ RIi
xy, there is c ∈ P Ii

z such that (a, c) ∈ RIi
xz and (b, c) ∈ RIi

yz.

We do know that there is some c ∈ Pz such that (a, c) ∈ Rxz and (b, c) ∈ Ryz. If z /∈ W ,

then P Ii
z = Pz, and since (a, b) ∈ RIi

xy ⊆ P Ii
x ×P Ii

y , we have a ∈ P Ii
x and b ∈ P Ii

y as well. By

definition, this means (a, c) ∈ RIi
xz and (b, c) ∈ RIi

yz.

From now on, we assume z ∈ W . First, suppose x ∈ W and (a, b) ∈ RIi
xy. (P2) for I

provides c ∈ Pz such that (a, c) ∈ Rxz and (b, c) ∈ Ryz. Since (a, b) ∈ RIi
xy, we know that

a ∈ P Ii
x , so (a, c) ∈ Rxz ∩ (P Ii

x × Pz) which equals RIi
xz by Lemma 6.3.3 (1), so c ∈ P Ii

z and

the argument is completed in the same way as in the previous paragraph. The case when

y ∈ W is similar, so the only remaining case is when x, y /∈ W . First we set

T = {(a, b, c/αz) : (a, b) ∈ Rxy, (a, c) ∈ Rxz, and (b, c) ∈ Ryz}.

Now we set A1 = Px,A2 = Py, and A3 = Pz/αz. Since A3
∼= Pu/αu, A3 is simple. Since

(P2) holds for I and x, y /∈ W , we have pr1,2(T ) = Rxy, which is strongly connected by

assumption. By the first paragraph of this proof and the fact that I has (P2), we also
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get that pri,3 = Ai × A3 for i = 1, 2. The conditions of Lemma 3.4.5 are satisfied, so

T = Rxy × (Pz/αz). Therefore, (a, b, P Ii
z ) ∈ T , so there is some c ∈ P Ii

z with (a, c) ∈ Rxz

and (b, c) ∈ Ryz. Similar to before, since a ∈ P Ii
x , b ∈ P Ii

y , and c ∈ P Ii
z , we have (a, c) ∈ RIi

xz

and (b, c) ∈ RIi
yz. This completes the proof that Ii satisfies (P2).

To finish off this section, we will give a proof of Theorem 3.1 from [15] where Bulatov

showed that a nonempty standard (2, 3)-instance of CSP(D, 2) has a solution when D ∈ S.

The proof given only asserts the existence of a solution, but his proof can be followed to

actually produce a solution with certain desirable properties. Before stating and proving

Bulatov’s result, we introduce some notation in Definition 6.3.5 to help keep track of how

these solutions with desirable properties arise.

Definition 6.3.5. Let D ∈ S, I be a standard (2, 3)-instance of CSP(D, 2), and suppose

J is a subinstance of I. See Definition 6.2.3 for the definition of a subinstance.

1. We write I ≥1 J if P J
x = (P I

x)′ for each x, and RJ
xy = (RI

xy)
′ for each (x, y) ∈ X2.

2. If every potato and relation in I is strongly connected and some u ∈ X is such that

|Pu| > 1, we write I ≥2 J if J is one of the subinstances I1, . . . , Ik from Definition 6.3.2

for some choice of u and αu.

Here is the main result of [15], rephrased in our language.

Theorem 6.3.6 (Theorem 3.1 in [15]). Let D ∈ S and I be a nonempty standard (2, 3)-

instance of CSP(D). Then I has a solution.

Proof. Since all of the potatoes in I are finite, we can use Lemmas 6.3.1 and 6.3.4 repeatedly

to construct a sequence of standard (2, 3)-instances

I = I0 ≥1 I1 ≥2 I2 ≥1 · · · ≥2 In−1 ≥1 In

93



where the potatoes, and hence, relations in In each have one element. The function ϕ :

X →
⋃
x∈X P

In
x given by ϕ(x) = ax where ax is the unique element of P In

x is a solution by

(P3) of In.

6.4 Bulatov Solutions

In this section, we develop Algorithm 2 which finds a special solution to a nonempty

standard (2, 3)-instance I of CSP(D, 2) where D is a 2-semilattice. We have called these

special solutions “Bulatov solutions” and they are defined precisely in Definition 6.4.2.

Since the algebra of solutions is in HSP(D), it is a 2-semilattice, so it has a digraph

structure as defined in Definition 3.1.1. We are working towards showing that if I is a

standard (2, 3)-instance with a solution s, and In is the standard (2, 3)-instance from the

proof of Theorem 6.3.6, there is a directed walk from s to the solution of In. This will be

formulated more precisely in Theorem 6.4.3.

Lemma 6.4.1. Suppose D ∈ S, I is a standard (2, 3)-instance of CSP(D, 2), J is a subin-

stance of I, and s is a solution to I.

1. If I ≥1 J, there is a solution r to J with s −→ r.

2. If I ≥2 J, there is a directed walk from s to some solution, ri to J.

Proof. Suppose I ≥1 J. We know from Lemma 6.3.1 that J is a standard (2, 3)-instance,

so by Theorem 6.3.6, it has a solution, r′. Then r = sr′ has the property that s −→ r by

Lemma 3.1.5 (1). By Lemma 3.1.5 (4), r(x) ∈ P ′x and (r(x), r(y)) ∈ R′xy for each x, y ∈ X,

so r is a solution to J.
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We now suppose I ≥2 J. This means there are u ∈ X with |P I
u| > 1 and αu ∈ Con(PI

u)

so that J is Ii where I1, . . . , In are the instances from Definition 6.3.2. By Lemma 6.3.3 (2),

we have that s is a solution to Ij for some j. Since we can order the instances any way we

like, we’ll assume s is a solution to I1. Now suppose, for some j, that P I1
u ∗Pu/αu P

Ij
u = P

Ij
u .

By Theorem 6.3.6, Ij has a solution, r′j, so let rj = sr′j. By Lemma 3.1.5 (1), s −→ rj. We

now show that rj is a solution to Ij. By the assumption on j, P I1
u −→ P

Ij
u in Pu/αu, so

by Lemma 6.3.3 (3), P I1
x −→ P

Ij
x as well for any x ∈ W . It follows that for x ∈ W that

rj(x) ∈ P Ij
x . Since P

Ij
x = Px for x /∈ W , we get that rj(x) ∈ P Ij

x for all x ∈ X. This shows

that rj is a solution to Ij. To finish off the proof, note that Pu/αu is strongly connected

by Lemma 3.1.5 (6), so the previous argument can be repeated to obtain a directed walk

from s to a solution through Ii = J.

We now define the set of Bulatov solutions to a standard (2, 3)-instance of CSP(D, 2)

where D ∈ S.

Definition 6.4.2. Let D ∈ S and I be a nonempty standard (2, 3)-instance of CSP(D, 2).

A Bulatov solution to I is a solution r that arises as a solution to some standard (2, 3)-

instance In whose potatoes are all singletons occurring at the end of a sequence of instances,

I0, . . . , In with n odd and

I = I0 ≥1 I1 ≥2 I2 ≥1 · · · ≥2 In−1 ≥1 In.

In Definition 6.4.2, we assume n is odd since if n is even and all potatoes and relations

are singletons, then In ≥1 n. Theorem 6.3.6 proves that a nonempty standard (2, 3)-

instance of CSP(D, 2) has a Bulatov solution when D ∈ S. By applying Lemma 6.4.1

repeatedly, we get the following stronger result.

Theorem 6.4.3. Let I be a standard (2, 3)-instance of CSP(D, 2) with D ∈ S. Suppose s

is a solution to I, and r is a Bulatov solution to I. There is a directed walk from s to r in
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the algebra of solutions to I.

Proof. Repeatedly apply Lemma 6.4.1 and concatenate the walks each application provides.

The proof of Theorem 6.3.6 shows us how to find a Bulatov solution to a nonempty

standard (2, 3)-instance of CSP(D, 2) for D ∈ S. Algorithm 2 formalizes this process.

Algorithm 2 Find a Bulatov solution to a nonempty standard (2, 3)-instance.

1: Input: I, a nonempty standard (2, 3)-instance of CSP(D, 2).
2: for x ∈ X do
3: if (Px,

Px−→) is not strongly connected then
4: Px ← P ′x
5: for (x, y) ∈ X2 do

6: if (Rxy,
Rxy−→) is not strongly connected then

7: Rxy ← R′xy

8: if |Pu| > 1 for some u ∈ X then
9: Choose αu maximal in Con(Pu) and find W (Definition 6.3.2)
10: for x ∈ X do
11: if x ∈ W then
12: Px ← ϕ−1

xu (P 1
u )

13: for (x, y) ∈ X2 do
14: Rxy ← Rxy ∩ Px × Py
15: Go to 2
16: else
17: r(x) = a where a is the unique element in Px

18: Output: r

Proposition 6.4.4. The output of Algorithm 2 is a Bulatov solution to I.

Proof. Each pass from lines 2 to 15 replaces the working instance I with an instance J

where I ≥i J for i = 1 or i = 2. When the algorithm proceeds to line 16, the working
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instance has a unique solution which is a Bulatov solution by the definition of a Bulatov

solution.

We finish this section by sketching a proof that Algorithm 2 runs in polynomial time.

Similar to the sketch that Algorithm 1 runs in polynomial time, since we consider D, D2,

their subuniverses, the smallest strongly connected subuniverses, and congruences as fixed,

the size of the input is essentially n = |X| + |X2|. In lines 16 and 17, the output is being

prepared. This is done in linear time since the algorithm has to make one assignment for

each variable x ∈ X. Other than these two lines, the algorithm takes place in a single loop

spanning lines 2 through 15. Each time through the loop, the algorithm either shrinks some

potato or relation, or it exits. Therefore, the number of times the algorithm will return to

line 2 is bounded by a constant times n. Therefore, we need only show that each pass from

line 2 to line 15 runs in polynomial time. In lines 2 through 7, the algorithm replaces each

potato and relation by its smallest strongly connected component. This is one assignment

for each relation, so it takes n steps. In line 9, the algorithm must compute W . To do

this, each variable x ∈ X must be examined. Every pair of elements (a, b), (c, d) ∈ Rxu

are checked to see if a = c implies b
αu≡ d. If a failure of this implication is found, x /∈ W .

Otherwise, x ∈ W . There are at most |D2| elements in Rxu, so each relation can be

examined in constant time. Therefore, line 9 takes at most a constant multiple of n steps.

The block from lines 10-15 makes one assignment for each x ∈ X and (x, y) ∈ X2, so it

runs in a constant multiple of n steps. We conclude that the block from lines 2 through

15 runs in linear time, so there is a polynomial of degree 2 which bounds the number of

steps needed to run Algorithm 2.
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6.5 Maltsev Products Involving 2-Semilattices

For this section, we temporarily shift our focus away from the constraint satisfaction prob-

lem to discuss Maltsev products. The definitions and results in this section are needed in

order to precisely state the results in Section 6.6.

The Maltsev product of similar varieties V and W is, like V ∨W, a certain class of

algebras which contains both V and W. We remind the reader that V ∨W is the smallest

variety containing V∪W, known as their join. Unlike the join, however, the Maltsev product

of two varieties need not be a variety. As well, the join and Maltsev product of two varieties

are not comparable as classes in general. In [39], Maltsev defined the product of two classes

of algebras. He did not assume that the classes were varieties. We will give Maltsev’s

definition specialized to idempotent varieties. We do this for two reasons: the first is that

we are only concerned with idempotent varieties in this chapter, and the second reason is

that the definition can be simplified because congruence classes are always subalgebras of

an idempotent algebra. Restricting Maltsev’s definition to idempotent varieties is not an

idea original to this thesis. For example, Freese and McKenzie have done precisely this in

[25].

Definition 6.5.1. Let A and B be idempotent varieties of the same type. The Maltsev

product of A and B, denoted A ◦B, is the class of all idempotent algebras C similar to A

and B which have a congruence θ ∈ Con(C) satisfying the following:

1. Each equivalence class of θ as subalgebra of C is in A,

2. The quotient C/θ is in B.

If C is an algebra and θ ∈ Con(C) has these properties, we will say that θ witnesses

C ∈ A ◦B.
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As mentioned earlier, the Maltsev product of two varieties is not necessarily a vari-

ety. The following observation of Ross Willard gives a situation relevant to the results in

Section 6.6 where the Maltsev product is a variety.

Proposition 6.5.2. Let A and B be idempotent varieties of the same type and suppose

the following hold:

1. There is a binary term, t in the type of A and B so that A � t(x, y) ≈ x and

B � t(x, y) ≈ t(y, x).

2. A has an axiomatization consisting only of identities mentioning at most two vari-

ables.

Then A ◦B is a variety.

There is an unfortunate conflict of standard notation in this proof. For two binary

relations α and β on a set A, the relational product α ◦ β is defined to be the set

{(a, c) : there is b ∈ A such that (a, b) ∈ α and (b, c) ∈ β}.

The relational product is associative, so we will write a three-fold product, for example,

α ◦ β ◦ γ, without parentheses.

Proof. It can be shown that A ◦B is closed under taking products and subalgebras even if

(1) and (2) do not hold. If C ∈ A ◦B is witnessed by θ and B ≤ C, then the congruence

θ�B= θ∩ (B×B) on B witnesses B ∈ A ◦B. If (Ai : i ∈ I) is a family of algebras in A ◦B

witnessed by θi ∈ Con(Ai) for each i with
∏

i∈I Ai = A, then the congruence
∏

i∈I θi on

A defined by ∏
i∈I

θi =
{

(f, g) ∈ A2 :
(
f(i), g(i)

)
∈ θi for each i

}
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witnesses A ∈ A ◦ B. The real content of this proposition is that conditions (1) and (2)

force A ◦ B to be closed with respect to taking quotients. We begin with a claim that is

inspired by Corollary 7.13 from [29].

Claim. Let A ∈ A ◦ B and suppose θ ∈ Con(A) witnesses this. For any α ∈ Con(A), we

have θ ◦ α ◦ θ ⊆ α ◦ θ ◦ α. Here, ◦ refers to the relational product defined between the

statement of the proposition and its proof.

Proof of Claim. Suppose (a, d) ∈ θ ◦ α ◦ θ, which means there are b, c ∈ A satisfying

(a, b) ∈ θ, (b, c) ∈ α, and (c, d) ∈ θ. Then

a = t(a, b)
α≡ t(a, c)

θ≡ t(b, d)
θ≡ t(d, b)

α≡ t(d, c) = d,

so (a, d) ∈ α ◦ θ ◦ α. The equalities at the ends are because θ-classes are in A where t is

the first projection. The second θ-equivalence holds because, modulo θ, t is commutative.

The other equivalences are simply because α and θ are congruences.

For the remainder of the proof, we fix A and θ ∈ Con(A) witnessing A ∈ A ◦ B. We

will show, for α ∈ Con(A), that A/α ∈ A ◦B. Since θ ∨ α is transitive and contains both

α and θ, we have α ◦ θ ◦α ⊆ θ∨α. Now suppose (a, b) ∈ θ∨α. Since θ∨α is the transitive

closure of θ ∪ α, we have (a, b) in some k-fold product of α and θ. Using that α and θ are

transitive and reflexive, we have that (a, b) is in a product of the form α◦θ◦α◦· · ·◦α◦θ◦α.

That is, (a, b) ∈ β1 ◦ β2 ◦ · · · ◦ βn where n is odd, βi = α for odd i, and βi = θ for even i.

If n ≥ 5, then β2 ◦ β3 ◦ β4 = θ ◦ α ◦ θ is contained in α ◦ θ ◦ α by the claim. Therefore,

β1 ◦ β2 ◦ · · · ◦ βn ⊆ β1 ◦ α ◦ θ ◦ α ◦ β5 ◦ · · · ◦ βn,

and since β1 = β5 = α, we have

(a, b) ∈ β1 ◦ θ ◦ β5 ◦ β6 ◦ · · · ◦ βn,
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which is a shorter product with the same properties. Therefore, (a, b) ∈ α ◦ θ ◦α. We have

shown that α ◦ θ ◦ α = α ∨ θ.

We can now show that A/α ∈ A ◦ B. Recall from the Correspondence Theorem,

which was stated as Theorem 2.0.6, that the congruence (α ∨ θ)/α ∈ Con(A/α) has the

property that (A/α)/((α ∨ θ)/α) ∼= A/(α ∨ θ). Since θ ≤ α ∨ θ, we have A/(α ∨ θ) ∼=

(A/θ)/((α ∨ θ)/θ). This means (A/α)/((α ∨ θ)/α) is a homomorphic image of A/θ, so

it is in B. To finish the proof, we need to show that each (α ∨ θ)/α-block is in A. By

assumption (2) in the statement of the proposition, it suffices to show that for any binary

terms u and v such that A � u(x, y) ≈ v(x, y), we have that each (α ∨ θ)/α-block satisfies

u(x, y) ≈ v(x, y). Because of the way (α∨ θ)/α is defined, this amounts to showing for any

(a, d) ∈ θ ∨ α that u(a, d)
α≡ v(a, d). From the previous paragraph, there are b, c ∈ A such

that (a, b) ∈ α, (b, c) ∈ θ, and (c, d) ∈ α. We then have

u(a, d)
α≡ u(b, c) = v(b, c)

α≡ v(a, d).

Since (A/α)/((α ∨ θ)/α) ∈ B and each (α ∨ θ)/α)-block is in A, we have shown that

(α ∨ θ)/α witnesses A/α ∈ A ◦B.

In the case that similar idempotent varieties A and B satisfy hypothesis (1) from

Proposition 6.5.2, and A ∈ A ◦ B, there is a unique congruence on A that witnesses

A ∈ A◦B. The existence and definition of this congruence will be important in Section 6.6.

Definition 6.5.3. Suppose A and B are similar idempotent varieties whose similarity type

has a binary term t satisfying (1) from Proposition 6.5.2. For A ∈ A ◦B, define

θA = {(a, b) ∈ A2 : t(a, b) = a and t(b, a) = b}.

The subscript on θ will be omitted whenever possible.
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Lemma 6.5.4. Let A and B be as in Definition 6.5.3 and A ∈ A◦B. Then θA ∈ Con(A)

and it is the unique congruence which witnesses A ∈ A ◦B.

Proof. Using the assumption that A ∈ A ◦ B, there is some congruence α ∈ Con(A)

which witnesses A ∈ A ◦ B. We can prove the lemma by showing θ = α. Since α

witnesses A ∈ A ◦ B, t is the first projection on α blocks. This means if (a, b) ∈ α, then

t(a, b) = a and t(b, a) = b which puts (a, b) ∈ θ. On the other hand, if (a, b) ∈ θ, then

a = t(a, b)
α≡ t(b, a) = b since t is commutative in A/α. Therefore (a, b) ∈ α, which gives

the other inclusion.

The next two results are not about Maltsev products, but they will be used in the same

context as the rest of the content of this section.

Proposition 6.5.5. Every binary term, t in the type of S which depends on both of its

variables satisfies S � t(x, y) ≈ x ∗ y.

Proof. We use induction on the number of times ∗ is mentioned in the term t. If ∗ is not

mentioned, then t is a projection, which only depends on one variable. If ∗ is mentioned

exactly once, then t(x, y) = x ∗ y or t(x, y) = y ∗ x ≈ x ∗ y since ∗ is commutative. Now

assume the result holds for binary terms which depend on both variables and mention ∗ at

most n times. If t(x, y) mentions ∗ n+ 1 times with n ≥ 1, then t(x, y) = r(x, y) ∗ s(x, y)

for some terms r(x, y) and s(x, y) which each mention ∗ at most n times. Each of r and

s depends on x, y, or both x and y. Since t(x, y) depends on x and y, at least one of

r(x, y) and s(x, y) depends on x and at least one of them depends on y. This means,

up to commutativity, one of the following holds: t(x, y) ≈ x ∗ y, t(x, y) ≈ x ∗ (x ∗ y), or

t(x, y) ≈ y ∗ (x ∗ y). In either case, the result follows from the defining identities of a

2-semilattice operation.
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To help the reader make sense of Corollary 6.5.6, we now explain what it means for

a variety to be term-equivalent to a variety of 2-semilattices. For a more in-depth and

general discussion on term-equivalent varieties, see Section 4.8 in Bergman [4].

Suppose F is a similarity type and r is a binary term in F. By a “term in r”, we

mean any term in F that can be obtained from r by composing it with itself and variables.

For example, if F has a ternary symbol s and r(x, y) is defined to be s(y, x, y), then by

r(r(y, x), r(x, z)) we mean the term in F given by s(s(z, x, z), s(x, y, x), s(z, x, z)). This

notation is not standard since we usually only construct terms from function symbols.

However, it helps to simplify the following explanation. A variety V is term-equivalent to a

variety of 2-semilattices if V has a binary term r which defines a 2-semilattice operation in

V, and for every term s in the type of V, there is a term t in r so that V � s ≈ t. Roughly

speaking, a variety is term-equivalent to a variety of 2-semilattices if there is a binary term

r(x, y) which defines a 2-semilattice operation · in V, and for every A ∈ V and every term

operation tA of A, tA is also a term operation of (A; ·).

By Proposition 6.5.5, we now have the following corollary:

Corollary 6.5.6. Suppose T is an idempotent variety which is term equivalent to a variety

of 2-semilattices and · is the binary term from the description above. If t is a binary term

in the similarity type of T which depends on both variables, then T � t(x, y) ≈ x · y.

For the next Lemma, A and B are similar varieties with a binary term, t(x, y) which

defines a 2-semilattice operation ∗ in B, and defines the first projection in A. As usual,

we will write xy rather than x ∗ y. By Lemma 6.5.4, any algebra A ∈ A ◦B has a unique

congruence,

θA = {(a, b) ∈ A2 : a = ab and b = ba}

witnessing A ∈ A ◦ B. Furthermore, if A is finite, then A/θA has a digraph structure
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defined in the same way as in Section 3.1. That is, for a, b ∈ A, a/θ −→ b/θ when

(a/θ)(b/θ) = b/θ.

Lemma 6.5.7. Suppose A ∈ A ◦ B is finite and satisfies x(yz) ≈ x(zy). For a, b ∈

A, if a/θ −→ b/θ, then there is a function fa/θ,b/θ : a/θ → b/θ given by fa/θ,b/θ(x) =

xb. Moreover, this function is well defined in the sense that if b
θ≡ b′ then fa/θ,b/θ(x) =

fa/θ,b′/θ(x).

Proof. If x
θ≡ a, then xb

θ≡ ab
θ≡ b where the second equivalence is because a/θ −→ b/θ.

This shows that fa/θ,b/θ as defined is a function from a/θ → b/θ. It remains to show that

the function is well defined. Using the definition of θ, if b
θ≡ b′, then

xb = x(bb′)

= x(b′b)

= xb′.

6.6 Extending Bulatov’s Result

Until Definition 6.6.7, we fix an idempotent variety W and a finite idempotent algebra D

with the following properties:

1. D and W have the same type which yields a binary term t,

2. D has a congruence, θ, so that t defines a 2-semilattice operation ∗ on D/θ and each

θ-class is in W when considered as a subalgebra of D,

3. t defines the first projection in W,
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4. D satisfies t(x, t(y, z)) ≈ t(x, t(z, y)).

The variety generated by D/θ will be called T. The goal is to prove that D is tractable

under the assumption that the finite members of W are tractable. That is, we will prove

that CSP(D, n) has a polynomial time algorithm for each n ≥ 2. Note that D ∈ W ◦ T

by definition. Since Maltsev products are closed under products, this means Dn satisfies

property 2 above for any n ≥ 2. As well, identities which hold in an algebra also hold in

any power of that algebra, so if (W,D) satisfies conditions 1 through 4 above, so does Dn

for every n ≥ 2. Invoking Proposition 6.2.1, to show that D is tractable we will exhibit

a polynomial time algorithm that solves CSP(D, 2). We will re-state this precisely as

Theorem 6.6.5 once we are ready to prove it.

Since Maltsev products are closed under taking products and subalgebras, we get that

every subalgebra of D and D×D is in W ◦ T. By Lemma 6.5.4, each such algebra A has

a unique congruence θA which witnesses A ∈W ◦ T.

Definition 6.6.1. Let I = (X,P,R) be a standard (2, 3)-instance of CSP(D, 2). The

quotient instance I/θ is the instance (X,P/θ,R/θ) where P/θ = {Px/θPx : x ∈ X} and

R/θ = {Rθ
xy : x, y ∈ X} where Rθ

xy = {(a/θPx , b/θPy) : (a, b) ∈ Rxy}.

We now acknowledge that the instance I/θ constructed in Definition 6.6.1 is not tech-

nically an instance of CSP(E, 2) for any algebra, E. This is because there is no reason to

expect that there is any algebra, E such that Px/θx ≤ E for every x ∈ X. To work around

this technicality, we define

E =
∏
{A/θA : ∅ 6= A ≤ D}.

We will think of the domain of E as the set of all functions

f : {A : A ≤ D} →
⋃

A≤D

A/θA
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with the property that f(A) ∈ A/θA. In Lemma 6.6.2, we show that I/θ is essentially a

standard (2, 3)-instance of CSP(E, 2).

Lemma 6.6.2. Suppose I is a standard (2, 3)-instance of CSP(D, 2). The algebra E defined

above is in T, and furthermore, there are subalgebras, (Qx : x ∈ X) of E and subalgebras

(Sxy : (x, y) ∈ X2) of E2 such that

1. Px/θPx
∼= Qx via an isomorphism hx.

2. The map hxy : Rθ
xy → Sxy given by (a/θPx , b/θPy) 7→ (hx(a/θPx), hy(b/θPy)) is an

isomorphism for each x, y ∈ X.

3. J = (X, (Qx : x ∈ X), (Sxy : (x, y) ∈ X2)) is a standard (2, 3)-instance of CSP(E, 2).

4. J has a solution if and only if there is a function ϕ : X →
⋃
x∈X Px/θPx satisfying

ϕ(x) ∈ Px/θPx for every x and (ϕ(x), ϕ(y)) ∈ Rθ
xy for every (x, y) ∈ X2.

Proof. The quotient A/θA ∈ T for each A ≤ D, so E is a product of members of T and

hence, E ∈ T. For each ∅ 6= A ≤ D, choose an element uA ∈ A/θ. For each x, define

hx : Px → E by hx(a/θPx) = f ∈ E where f is defined by

f(A) =

 a/θPx if A = Px

uA otherwise.

If hx(a/θPx) = hx(b/θPx), then [hx(a/θPx)](Px) = [hx(b/θPx)](Px), and by definition, this

means a/θPx = b/θPx . Therefore, hx is injective, so we define Qx to be hx(Px/θPx) and

hx : Px/θPx → Qx by h(a/θPx) = hx(a/θPx). By construction, Qx ≤ E and hx : Px/θPx →

Qx is an isomorphism.

For each (x, y) ∈ X2, the algebra Sxy is uniquely defined by the properties in (2).

In particular, Sxy has to be the image of the function hxy : Rθ
xy → Qx × Qy defined by
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hxy
(
(a/θPx , b/θPy)

)
=
(
hx(a/θPx), hy(b/θPy)

)
. Hence, to verify (2), we need to check that

hxy is an injective homomorphism. This follows from the fact that hx and hy are both

injective homomorphisms.

To verify 3, we check that J satisfies (P1) and (P2) from Definition 6.2.2. For (P1), let

m ∈ Qx. Then there is some a/θPx ∈ Px/θPx with hx(a/θPx) = m, so(
hx(a/θPx), hx(a/θPx)

)
= (m,m) ∈ Sxx.

This shows that 0Qx ⊆ Sxx. If (m,n) ∈ Sxx, then (m,n) ∈ Qx × Qx because of how Sxx

is defined. To finish the proof that J satisfies (P1), we need to show that m = n. There

are a/θPx , b/θPx ∈ Px/θPx such that hx(a/θPx) = m and hx(b/θPx) = n. Furthermore,

(a/θPx , b/θPx) ∈ Rθ
xx. This means there are a′, b′ ∈ Px such that (a, a′), (b, b′) ∈ θPx with

(a′, b′) ∈ Rxx. Since I is a standard (2, 3)-instance, a′ = b′, so a/θPx = b/θPx , and m = n.

To show that J satisfies (P2), let (m,n) ∈ Sxy and z ∈ X. Because of how Sxy is defined,

there must be (a, b) ∈ Rxy such that hx(a/θPx) = m and hy(b/θPy) = n. Since I is a

standard (2, 3)-instance, there is c ∈ Pz such that (a, c) ∈ Rxz and (b, c) ∈ Ryz. Therefore,

if we take ` = hz(c/θPz), we have (m, `) ∈ Sxz and (n, `) ∈ Syz.

Finally, we prove 4. Suppose J has a solution, ψ. The function ϕ : X →
⋃
x∈X Px/θPx

defined by ϕ(x) = h−1
x (ψ(x)) has the properties required in 4. Conversely, if ϕ has the

properties in 4, the function ψ : X →
⋃
x∈X Qx defined by ψ(x) = hx(ϕ(x)) is a solution

to J.

Because of Lemma 6.6.2, we can think of I/θ as a standard (2, 3)-instance of CSP(E, 2)

for some algebra, E ∈ T.

Definition 6.6.3. Suppose I is a standard (2, 3)-instance of CSP(D, 2). Let s be a solution

to I and ϕ be a solution to I/θ. We say that s passes through ϕ if for each x, s(x)/θPx =

ϕ(x).
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If s is a solution to I, then the map given by ϕ(x) = s(x)/θPx is the unique solution

to I/θ through which s passes. Since ∗ is a 2-semilattice operation on each Px/θx, we can

define a digraph relation by a/θ −→ b/θ when a ∗ b θ≡ b as we did for 2-semilattices. This

also applies to the set of solutions to I/θ.

Lemma 6.6.4. Let I be a standard (2, 3)-instance of CSP(D, 2). Suppose ϕ and ψ are

solutions to I/θ with ϕ −→ ψ. If I has a solution which passes through ϕ, then it has a

solution which passes through ψ.

Proof. Since ϕ −→ ψ, for each x, we have ϕ(x) −→ ψ(x) in Px/θ. By Lemma 6.5.7, there

is a well defined function, fϕ(x),ψ(x) : ϕ(x) → ψ(x). Let s be a solution passing through

ϕ. The map t : X →
⋃
{Px : x ∈ X} given by t(x) = fϕ(x),ψ(x)(s(x)) is a solution to I

passing through ψ. That it passes through ψ is simply because fϕ(x),ψ(x) : ϕ(x) → ψ(x)

and s(x) ∈ ϕ(x). To see that it is a solution, we must show, for any x, y ∈ X, that

(t(x), t(y)) ∈ Rxy. Since ψ is a solution to I/θ, we have (ψ(x), ψ(y)) ∈ Rθ
xy, which means

there is some (a, b) ∈ Rxy such that a/θPx = ψ(x) and b/θPy = ψ(y). By Lemma 6.5.7, we

have that fϕ(x),ψ(x)(s(x)) = s(x)∗a, and fϕ(y),ψ(y)(s(y)) = s(y)∗ b. Therefore, (t(x), t(y)) =

(s(x) ∗ a, s(y) ∗ b) ∈ Rxy because ((s(x), s(y)) and (a, b) are in Rxy.

We now assume that for every finite A ∈ W, there is a polynomial-time algorithm

which correctly solves CSP(A, 2). Under this assumption, Algorithm 3, correctly solves

CSP(D, 2).

Note that in line 3, we have said to use Algorithm 2 on I/θ when it is technically

inappropriate. By Lemma 6.6.2, we can consider I/θ as a standard (2, 3)-instance of

CSP(E) for some E ∈ T, but Algorithm 2 only works if E ∈ S. However, since T has a

2-semilattice operation, we can simply ignore all other operations.
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Algorithm 3 Given an instance of CSP(D, 2), determine whether or not it has a solution.

1: Input: An instance J of CSP(D, 2).
2: Run Algorithm 1 on J. Call the output I.
3: if I is empty then
4: Output: NO

5: Construct I/θ from Definition 6.6.1.
6: Find a Bulatov solution ϕ to I/θ using Algorithm 2.
7: for x ∈ X do
8: Px ← ϕ(x)

9: for (x, y) ∈ X2 do
10: Rxy ← Rxy ∩ (Px × Py)
11: Run the algorithm for W on I.
12: if I has a solution then
13: Output: YES
14: else
15: Output: NO

There is also technically an issue with applying the algorithm for W to the instance

I. This is because the Px and Rxy, while in W, need not be subalgebras of one common

algebra A ∈ W and its square. We note that Algorithm 3 only references finitely many

members of W, so we can work around this issue in a way similar to that in Lemma 6.6.2.

That is, we take the direct product of all members of W which are referenced by the

algorithm, and consider each algebra as a subalgebra of their direct product.

We sketch a proof that Algorithm 3 runs in polynomial time. We have already seen that

Algorithm 1 and Algorithm 2 run in polynomial time, and we are assuming the algorithm

for W runs in polynomial time. In lines 7 through 10, the algorithm makes one assignment

for each x ∈ X and (x, y) ∈ X2. This is done in a number of steps which is bounded above

by a polynomial of degree 2. Therefore, the whole algorithm runs in polynomial time.

Theorem 6.6.5. Let W be a tractable variety, and D be a finite idempotent algebra similar

to W. Suppose D has a binary term ∗ and a congruence θ such that ∗ is a 2-semilattice
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operation on D/θ, and each θ-class as a subalgebra of D is in W. Also suppose the following

hold:

1. W � x ∗ y ≈ x

2. D � x ∗ (y ∗ z) ≈ x ∗ (z ∗ y).

Then D is tractable.

Proof. It suffices to show that Algorithm 3 correctly decides whether or not an instance of

CSP(D, 2) has a solution. To do this, we show that Algorithm 3 outputs YES if and only

if J has a solution. First, assume the output is YES. Then the instance I constructed in

line 2 must have been nonempty, and the algorithm for W found a solution to the version

of I which was reduced in lines 7 through 10. This solution is a solution to the original

version of I from line 2, and hence, is a solution to J. Now we assume that J has a solution.

Then the output of Algorithm 1 on line 2 will be nonempty. Let s be the solution to I, ϕ

be the unique solution to I/θ through which s passes, and ψ be the Bulatov solution to

I/θ found in line 6. By Theorem 6.4.3, there is a directed walk from ϕ to ψ. By applying

Lemma 6.6.4 to each arrow in this directed walk, I has a solution through ψ. This solution

will be discovered in line 11, so the output of the algorithm will be YES.

Example 6.6.6. We now give an example of a tractable algebra D which was not previ-

ously known to be tractable. The domain isD = {0, 1, 2, 3, 4, 5}, and we first define a binary

operation m on D given by the table in Figure 6.1. Let f be a ternary symbol and from m

define fD : D3 → D by fD(x, y, z) = m(x,m(y, z)). We will show that D = (D; fD) satis-

fies the conditions of Theorem 6.6.5 and then discuss why it was not known to be tractable

previously. It is easy to check that fD is idempotent. The variety W is the variety whose

type consists of f and is axiomatized by f(x, y, y) ≈ f(y, y, x) ≈ f(x, x, x) ≈ x. It follows
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Figure 6.1: The operation table for m in Example 6.6.6

m 0 1 2 3 4 5

0 0 1 2 2 0 0
1 1 0 3 3 1 1
2 2 2 2 3 4 4
3 3 3 3 2 5 5
4 0 0 4 4 4 5
5 1 1 5 5 5 4

from Dalmau’s work in [18] that W is tractable. The term ∗ is defined by x∗y = f(x, y, y).

The congruence θ is given by the partition with classes {0, 1}, {2, 3}, and {4, 5}. It can be

seen from the operation table of m that θ is closed under m, from which it follows that θ

is closed under fD, so θ is a congruence on D. Furthermore, for any a, b ∈ D, we have

a ∗ b = f(a, b, b) = m(a,m(b, b))
θ≡ m(a, b)

since m is idempotent modulo θ. It is also not difficult to see that (D;m)/θ ∼= T3, so

m defines a 2-semilattice operation on this quotient, and ∗ is a 2-semilattice operation on

D/θ. We now verify conditions (1) and (2) in Theorem 6.6.5. Condition (1) holds since

f(x, y, y) ≈ x in W. For part (2), first observe that if a
θ≡ b then m(a, a) = m(b, b). We also

know that ∗ is a 2-semilattice operation on D/θ, so y∗z ≈ z∗y in D/θ. By definition, in D

we have x∗(y∗z) = f(x, y∗z, y∗z) = m(x,m(y∗z, y∗z)) and x∗(z∗y) = f(x, z∗y, z∗y) =

m(x,m(z ∗ y, z ∗ y)). By the previous remarks, we have m(y ∗ z, y ∗ z) = m(z ∗ y, z ∗ y) in

D, so x ∗ (y ∗ z) ≈ x ∗ (z ∗ y) holds in D.

The subalgebra B = ({0, 1}, fB) of D is simple and the prime congruence quotient

〈0B, 1B〉 has type 2. By Theorem 9.10 of Hobby and McKenzie in [29], HSP(D) is not

meet semidistributive. By Larose and Zádori [37], D can not be shown to be tractable by

the local consistency checking algorithm. Similarly, the subalgebra of D with subuniverse
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{0, 2} is simple and its unique prime congruence quotient has type 5. It follows from the

work of Berman et. al. in [6] that the tractability of D can not be established using the few

subpowers algorithm. There are also results of Maroti [41], Bergman and Failing [5], and

Bulatov [11] which combine the local consistency and few subpowers algorithms in various

ways. However, all three would at least require that D have a homomorphic image which

is a nontrivial semilattice. It can be shown that θ, 0D, and 1D are the only congruences of

D, so D and T3 are the only nontrivial homomorphic images of D, neither of which is a

semilattice.

We now apply Theorem 6.6.5 to prove Corollary 6.6.9.

In [30], Idziak et. al. showed that for a finite algebra A, if HSP(A) has an edge term,

defined below, then CSP(A, 2) is tractable via the so called “few subpowers algorithm”.

We will use this fact in the proof of Corollary 6.6.9. A this point, we note that D, W, and

T are no longer fixed.

Definition 6.6.7. A n-edge operation is a (n + 1)-ary operation satisfying the following

identities:

e(y, y, x, x, x, x, . . . , x, x) ≈ x

e(y, x, y, x, x, x, . . . , x, x) ≈ x

e(x, x, x, y, x, x, . . . , x, x) ≈ x

e(x, x, x, x, y, x, . . . , x, x) ≈ x

...
...

...

e(x, x, x, x, x, x, . . . , y, x) ≈ x

e(x, x, x, x, x, x, . . . , x, y) ≈ x.

An idempotent variety W is called an edge term variety if its type has a (n+ 1)-ary term

which gives rise to a n-edge term operation for every algebra in W.
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For more on edge operations, we point the reader to Berman et. al [6]

Lemma 6.6.8. Suppose T is a variety that is term equivalent to a variety of 2-semilattices,

and W is an edge term variety of the same type as T. There is a binary term, ·, in the type

of the two varieties which is a 2-semilattice operation for T and the first projection in W.

Proof. Suppose e(x1, . . . , xn+1) is the term which is an edge term for W, and ∗ is a 2-

semilattice operation for T. Let I = {k : e depends on xk in T}. If I ⊆ {1, 2}, then

x · y = e(x ∗ y, x ∗ y, x, . . . , x) is the first projection in W and x · y ≈ x ∗ y in T because T is

idempotent. If I ⊆ {1, 3}, the term x ·y = e(x∗y, x, x∗y, x, . . . , x) satisfies the conditions.

If I = {i} for some i ≥ 4, then x · y = e(x, x, x, . . . , x, x ∗ y, x, . . . , x) satisfies the condition

because T is idempotent (The x ∗ y occurs in the i-th position).

Now suppose I = {i, j} with i < j. We have already seen that the result holds when

i = 1 and j = 2 or j = 3. Otherwise, j ≥ 3 and there is some identity e(u1, . . . , uk+1) ≈ x

which holds in W where the un ∈ {x, y}, ui = x, and uj = y. In this case, we take

x·y = e(u1, . . . , uk+1). This term is the first projection in W, and since T is term equivalent

to a variety of 2-semilattices, we have that T � x · y ≈ x ∗ y by Corollary 6.5.6. A similar

argument works if |I| ≥ 3. For example, if I = {1, 3, 5}, we take x·y = e(y, x, y, x, x, . . . , x).

This is the first projection in W, and since e depends on variables 1, 3, and 5 in T, T �

x · y ≈ x ∗ y for the same reason as above.

Corollary 6.6.9. Suppose W and T are similar idempotent varieties. If W has an edge

term and T is term equivalent to a variety of 2-semilattices, then W ∨ T is tractable.

Proof. First, we define W(2) to be the variety similar to W axiomatized by the at-most-

two-variable identities which hold in W. Since it has fewer identities, we get that W ≤

W(2) and since edge terms are axiomatized by two-variable identities, W(2) is also an edge

term variety. Therefore, it suffices to prove the Corollary in the case where W has an
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axiomatization consisting of only at-most-two variable identities. By Lemma 6.6.8, there

is a binary term, ·, which is a 2-semilattice operation in T and the first projection in W(2).

By the result from [30] mentioned earlier, W is tractable, so Theorem 6.6.5 implies that

every finite D in W ◦ T satisfying x · (y · z) ≈ x · (z · y) is tractable. By Proposition 6.5.2,

W ◦ T is a variety, so the class U of its members satisfying this identity is also a variety.

By the properties of ·, each of W and T satisfies this identity, and, as mentioned earlier,

both varieties are contained in their Maltsev product. It follows that W ∨ T ≤ U, so all

finite members of W ∨ T are tractable.
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