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Abstract

In many queueing systems, customers have been observed to exhibit strategic behavior.

Each customer gains a value when receiving a product or getting served and suffers when

incurring a delay. We consider a nonlinear waiting cost function to capture the sensitivity

of customers toward delay. We investigate customers’ behavior and system manager’s

strategy in two different settings: (1) customers are served in a service system, or (2) they

receive a product in a supply chain.

In the first model, we study an unobservable queueing system. We consider that cus-

tomers are impatient, and are faced with decision problems whether to join a service system

upon arrival, and whether to remain or renege at a later time. The goal is to address two

important elements of queueing analysis and control: (1) customer characteristics and be-

havior, and (2) queueing control. The literature on customer strategic behavior in queues

predominately focuses on the effects of waiting time and largely ignores the mixed risk at-

titude of customer behavior. Empirical studies have found that customers’ risk attitudes,

their anticipated time, and their wait time affect their decision to join or abandon a queue.

To explore this relationship, we analyze the mixed risk attitude together with a non-linear

waiting cost function that includes the degree of risk aversion. Considering this behavior,

we analyze individuals’ joint balking and reneging strategy and characterize socially op-

timal strategy. To determine the optimal queue control policy from a revenue-maximizer

perspective, which induces socially optimal behavior and eliminates customer externali-

ties, we propose a joint entrance-fee/abandonment-threshold mechanism. We show that

using a pricing policy without abandonment threshold is not sufficient to induce socially

optimal behavior and in many cases results in a profit lower than the maximum social wel-

fare the system can generate. Also, considering both customer characteristics and queue

control policy, our findings suggest that customers with a moderate anticipation time pro-

vide higher expected revenue, acknowledging the importance of understanding customer

behavior with respect to both wait time and risk attitude in the presence of anticipation

time.

In the second model, we consider a two-echelon production inventory system with a
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single manufacturer and a single distribution center (DC) where the manufacturer has a

finite production capacity. There is a positive transportation time between the manufac-

turer and the DC. Each customer gains a value when receiving the product and suffers a

waiting cost when incurring a delay. We assume that customers’ waiting cost depends on

their degree of impatience with respect to delay (delay sensitivity). We consider a non-

linear waiting cost function to show the degree of risk aversion (impatience intensity) of

customers. We assume that customers follow the strategy p where they join the system

and place an order with probability p. We analyze the inventory system with a base-stock

policy in both the DC and the manufacturer. Since customers and supply chain holder are

strategic, we study the Stackelberg equilibrium assuming that the DC acts as a Stackelberg

leader and customers are the followers. We first obtain the total expected revenue and then

derive the optimal base-stock level as well as the optimal price at the DC.
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Chapter 1

Introduction

In daily life, we face many queueing systems with different fashions. For instance, in service

systems, customers wait in line until they are served; however, in production systems,

customers place an order at a retailer and wait until receiving that product. In these cases,

customers gain a value by receiving the service or product and may incur a waiting cost.

In practice, customers have strategic behavior wishing to maximize their own expected

utility and may not join the system if they believe that the waiting time is too long. In

this study, we analyze customers’ behavior and system manager’s strategy considering two

different queueing systems, namely service and production systems, respectively.

1.1 Service Systems

Individuals who act in their self–interest to maximize their own welfare using a shared

resource, may impose costs as negative externalities on each other. For instance, in a

telecommunication system, individual user demands for bandwidth create congestion to

the point that the network is busy and the speed of communications decreases to the point

of being unusable. In queueing systems, customers by maximizing independently their own

welfare, cause future customers to spend more time in the system resulting in externalities
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in the form of delays. By ignoring these externalities, joining customers impose waiting

cost on others and resulting in excessive congestion.

Customer’s decision in queueing systems is associated with a trade-off between a reward

and cost. Customers obtain a reward once they receive service, but there is an associated

cost proportional to the time spent in queue. Some customers opt not to queue when

they perceive a long wait time whereas others may abandon the queue after waiting for

some time. Rational customers can join the queue or balk, and also can renege the queue

when they feel frustrated from waiting too long. If all customers were to act in a way

that maximizes the social welfare, fewer people would wait in line and more people would

balk or renege. However, as a utility–maximizing individual, a customer does not consider

the effect of her action on others when she decides to join and wait in a queue, i.e. her

waiting lengthens the delay for others, thus increasing others’ queueing costs. Under this

premise, the more people that join a queue and consequently wait longer, the worse off

everyone is. The question here is how to manage these queueing systems in order to achieve

organizational goals such as greater efficiency, increased revenues, lower congestion collapse

rate, fewer service interruptions and failure rates and so forth. We propose a mechanism

to control the queue to achieve a profit equal to the maximum social welfare while the

waiting cost of customers is non-linear and customers are strategic regarding balking and

reneging from the queue.

1.1.1 Existence of Customer Behavioral Factors

Designing a control mechanism, we consider behavioral factors which influence customers’

behavior while they are waiting in a queue. Psychological factors, which have not been

covered in classical queueing models, govern customer behavior when they are waiting.

Ignoring the psychological cost of waiting leads to inappropriate conclusions in service

systems and may not be consistent with empirical results (Carmon et al. 1995).

For example, Osuna (1985) illustrates how stress and anxiety shape customer behavior

in a waiting queue. Stress and anxiety result in aversiveness to the waiting time and lead to

increasing marginal waiting costs. However, in predictable wait settings, when customers
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anticipate that waiting is nearly over, they show less aversive behavior compared to the

beginning of wait (Carmon and Kahneman 1996). It seems that having knowledge about

the duration and ending time has a significant effect on how customers experience waiting

time. Janakiraman et al. (2011) argue that two opposite forces can shape abandonment

behavior; on one hand customers suffer from waiting in a queue and on the other, they

commit to remain in the queue until the end. Customers define their own waiting and

completion utility to capture these two effects. This commitment to remain in the queue

has been studied by considering that in the presence of a goal and anticipation time, as the

goal is closer to attainment, a customer is urged to stay and shows less aversive behavior

with respect to the delay (Carmon and Kahneman 1996).

However, there is a distinct lack of research concerning how both waiting cost and

anticipation time simultaneously affect customer behavior. Classical queueing models as-

sume that waiting time has a linear effect on customer waiting cost and all customers have

the same perception regarding waiting cost (Hassin and Haviv 2003). We argue that, in

addition to waiting time, customer’s anticipation about waiting time influences decision of

joining or abandoning a queue. This situation happens in many real-world settings, such as

downloading from free file hosting and sharing services (e.g., www.mediafire.com); before

downloading a file from a hosting service, the system provides some information regarding

estimated downloading time which results in customer’s anticipation about delay.

1.1.2 Impact of Strategic Behavior and Behavior Factors

Since customers are impatient and may renege from the system after sometime, time lost

has a significant effect on their behavior and shapes their reactions to a wait. We assume

that customers have a non-linear waiting cost function which captures (1) wait aversiveness

and (2) sensitivity with respect to the delay anticipation time. In this context, risk is

defined as the loss of time for a customer. According to Guo and Zipkin (2007, 2009),

different sensitivities toward risk can be associated with the shape of waiting cost function.

Convex waiting cost function refers to strong aversion to the waiting time and concave cost

function represents risk-seeking customers. In some cases, utility loss with respect to the
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waiting time is not pure convex or concave, i.e. customers show a mixed attitude toward

the risk.

This study also addresses the disconnect between empirical results and existing strategic

behavior in queueing theory. Take for example the 2017 empirical study which found that

patients exhibit a mixed-risk attitude toward a waiting cost when faced with long-term

delays in accessing health care (Liu et al. 2017). Up to a certain point in time, individuals

were found to be risk-averse with respect to quality of care and patiently wait to receive

service. After the specified amount of time passed, they become risk-seeking with respect

to quality of care. Patients tend to sacrifice care quality for time and want to receive

their desired service as soon as possible. The concave-convex waiting cost function reflects

the observed risk-seeking behavior relative to time (risk-averse in relation to care quality)

prior to the anticipation point, and the risk averse behavior relative to time (risk-seeking

in relation to care quality) after the anticipation point.

We assume that customers have a non-linear waiting cost function which captures both

aversiveness of wait and sensitivity with respect to the anticipation point before reaching

the point and after passing it. Moreover, our waiting cost function fully captures the

diminishing aversiveness near the anticipation point as demonstrated by Janakiraman et

al. (2011). In particular, we assume that customers have a target (hereafter referred to

as a anticipation point) for their waiting time. Their waiting cost function is concave

up to the anticipation point, indicating the marginal cost of their wait for service is not

increasing. Their waiting cost function becomes convex after the anticipation point is

reached, reflecting the fact that customers increasingly lose their patience after a certain

amount of time has passed and their marginal cost of waiting increases.

We seek to contribute to the literature in customer strategic behavior, specifically in the

nexus between mixed behavior and non-linear waiting cost functions. Customers intuitively

assess the trade-off between the perceived value of their time and their perceived value of

the service, and decide (1) whether to join the queue and (2) how long to wait before

reneging. However, when everyone considers only their own interests, their actions have

negative externalities on others, such as increasing waiting time. To this end we propose
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a control mechanism to eliminate these effects caused by externalities among customers.

The revenue maximizer wants to control the effects of externalities to maximize customers’

surplus and by doing so gain maximum profit. We use an abandonment threshold policy

to control the waiting time and a pricing policy to control the arrival rate. In such a case,

customers know the abandonment threshold and if the waiting time for a customer exceeds

this time threshold, they automatically renege the system (this customer is abandoned from

the system by the planner). While this type of control policy may appear undesirable from

an individual’s perspective, as all customers are aware no one will wait longer than the

abandonment threshold, this mechanism decreases the uncertainty of waiting, which in

turn declines anxiety while waiting in the queue. We show that when using a pricing

policy without such an abandonment threshold, the maximal profit is not guaranteed.

1.1.3 Related Research

This study bridges research streams on customer behavior and queueing control. We

categorize the related literature into three streams: impatient customers, risk attitude,

and queueing control.

Strategic Behavior of Impatient Customers

A number of studies address customer strategic behavior in queues. Naor’s (1969) sem-

inal work proposed a linear reward-cost structure that accounts for the possibility that

customers may balk upon arrival and then characterizes the optimal joining threshold

from individual, social and revenue maximizer perspectives. Optimal joining and balking

strategies for a general arrival process with both single and multiple servers have also been

investigated (Yechiali 1971 and 1972). Besides balking, customers may strategize regard-

ing their abandonment while waiting in a queue. Abandonment was first captured by

Barrer (1957) who introduces a queueing model with impatient customers whose patience

is modeled using a threshold.

Hassin and Haviv (1995) examine the behavior of customers who decide on both the
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balking probability and reneging time. Homogeneous customers trade off the service re-

ward, which is dropped to zero after a time threshold, and a waiting cost represented as

a linear function with respect to delay. In contrast, Mandelbaum and Shimkin (2000)

consider that customers have some knowledge regarding the waiting time but are hetero-

geneous in their utility function and decide to abandon the queue strategically. While a

linear waiting cost function results in trivial abandonment, not joining the queue at all

or joining and never reneging, a non-linear waiting cost function leads to a non-trivial

abandonment strategy (Haviv and Ritov 2001, Shimkin and Mandelbaum 2004). Shimkin

and Mandelbaum (2004) show that a non-linear cost function leads to multiple equilib-

rium points for an abandonment threshold resulting in sub optimal decisions. We refer the

reader to Mandelbaum and Zeltyn (2013), and Wang et al. (2010) for a comprehensive

recent review dealing with impatient customers, and Hassin (2016) for a comprehensive

review of the research on customer strategic behavior.

The above literature lays the groundwork for describing customer strategic behavior.

Against this backdrop, another stream of literature explores how psychological factors in-

fluence a customer’s decision to queue as well as her anticipation of the service or product.

Researches have noted the effect of anticipation on customer behavior while waiting in

queue and the relation between this anticipation and a customer’s decision whether to

renege the system (Kumar et al. 2014, Zohar et al. 2002, and Janakiraman 2011). We

argue that, in addition to waiting time, a customer’s anticipation regarding the wait time

influences her decision of whether to join or abandon a queue. There is a distinct lack

of research concerning how both waiting time and anticipation time simultaneously affect

customer behavior. From the customer behavior point of view, we are the first that in-

vestigate customer decisions regarding balking and reneging from queue while considering

both the anticipation time and impatient sensitivity.

Risk Attitude

A second stream of research related to our study is the examination of customer risk

attitudes as they relate to strategic behavior in queueing systems. Guo and Zipkin (2009)
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assume risk-aversive behavior and analyze the relationship between the value of information

and customer characteristics. Sun and Li (2012) consider a queueing system with a single

server, risk-neutral customers, and risk-averse customers. They analyze the joining and

balking behavior of customers when partial information about the service time distribution

is provided. Afèche et al. (2013) investigate lead-time dependent pricing with risk-neutral

and risk-averse customers. Finkelstein et al. (2014) investigate patient behavior under an

open-access scheduling appointment system. They show that risk-seeking and risk-averse

patients place difference premiums on speedy access to care and exhibit different degrees of

willingness to wait to see their own doctors. Liu et al. (2017) investigate patient behavior

during the wait time in an emergency department. They show that whereas the waiting

cost function for the males is convex, females exhibit mixed behavior with regard to the

waiting delay and an S-shaped waiting cost function. Although a number of effective

approaches exist to capture customer strategic behavior or risk attitude independently,

few address both simultaneously.

Queueing Control

Against the backdrop of customer strategic behavior and risk attitude, we consider con-

gestion control as a means to maximize social welfare or revenue. The implications of

imposing tolls on customers as a queue control policy were introduced by Naor (1969).

Since then a number of studies explored a variety of queue control policies (Adiri and

Yechiali 1974, Hassin 1985 and 1995, Cachon and Feldman 2011, Afèche 2013, Hassin

and Koshman 2015). For a comprehensive recent review of economic analyses of queueing

systems with strategic customers we refer reader to Hassin (2016). Afèche et al. (2013)

and Afèche and Sarhangian (2015) present techniques which are most closely related to

ours. To achieve optimal social welfare and control the congestion in the system, the au-

thors propose a pricing policy to decrease the negative externalities caused by individual

self-interested decision makers. We propose two control policies to eliminate the negative

effect of externalities in such queueing systems. We are the first to propose a joint pricing

and abandonment threshold mechanism to control the waiting time and congestion in a
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queueing system. We demonstrate how using this mechanism, a revenue maximizer can

achieve the optimal expected revenue.

1.2 Production Systems

In production systems, customers gain a value when receiving a product and suffer a waiting

cost when incurring a delay. However, customers who act strategically may not join the

system and place an order if they believe that the waiting time is too long. In this study,

we consider a supply chain including a single DC and a manufacturer that operates from a

warehouse. The DC and the warehouse manage their inventories using a base-stock policy.

Customers arrive at the DC and either choose to place an order and wait until receiving

the product or balk the system without placing any order. All system parameters are

common knowledge and customers receive no information regarding the inventory position

at the DC. Customers are assumed to be homogeneous who strategically choose to place

an order with probability p based on trade-off between the value gained and the waiting

cost which is a non-linear function with respect to delay. We assume that customers’

waiting cost depends on their degree of risk aversion toward delay. This non-linear waiting

cost function is convex in the waiting time and reflects the case that the waiting time is

increasingly unattractive (Ata and Olsen 2009). We assume that the DC has complete

information about customers’ characteristics and plays as a Stackelberg leader. The DC

manages its expected revenue by controlling the base-stock level and imposing a price. We

investigate the effect of the shape of the waiting cost function on the supply chain policy.

1.2.1 Related Research

We categorize the related literature into two streams -inventory system, and attitude to-

ward risk- based on the components studied in strategic supply chain management.
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Multi-Echelon Production Inventory System

Multi-echelon inventory system with stochastic demand has been studied by many re-

searchers in the last decades: see for example, Federgruen (1993), Zipkin (2000), Simchi-

Levi and Zhao (2007) and Wang (2011), and references therein. Meanwhile, many re-

searchers consider production facilities as well as inventory systems in analyzing supply

chain performance. He et al. (2002) analyze a production inventory system with one ware-

house and a production workshop with no lead-time. They use Markovian decision process

to find the optimal replenishment policy. Abouee-Mehrizi et al. (2011) consider a manu-

facturer operating from a warehouse and multiple DCs with positive transportation time

between the manufacturer and the DCs using the base-stock policy in both the warehouse

and the DCs. They use the Flow-Unit method introduced by Axsäter (1990) to find the

exact cost for a joint production inventory problem. This paper is extended by Zare et al.

(2017) by considering an (R,Q) inventory policy at the DC in a two-echelon production in-

ventory system with a single manufacturer and a DC. They assume that the manufacturer

operates from a warehouse using a base-stock policy to manage its inventory. They find

the optimal reordering point at the DC and develop a two-phase heuristic to approximate

the optimal inventory level at the warehouse as well as the optimal batch order size at

the DC. We consider a production inventory system with stochastic demand where both

DC and the production facility use the base-stock policy to manage their inventories. We

assume that there is a positive transportation time between the warehouse and the DC.

We use the Flow-Unit method applied by Abouee-Mehrizi et al. (2011) and Zare et al.

(2017) to derive the average inventory holding at the DC.

Risk Attitude

In recent decades, analysis of customer risk attitude toward delay in queueing systems

have been considered in the literature of operation management. A common assumption

in the literature is that customers are not risk neutral with respect to lead-time uncertainty

and investigate the effect of delay cost function on firm’s policies (see, e.g., Kumar and

Randhawa 2010, and Afèche et al. 2013). Ata and Olsen (2009) consider convex, concave
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and convex-concave delay cost functions to capture sensitivity to deadline in a system in

which the manager quotes lead times (and prices) to each arriving customer. In this setting,

a convex-concave curve refers to a situation where customers become increasingly impatient

when an acceptable deadline passes. Akan et al. (2012) consider the similar system but

for multiple class customers assuming that the delay cost function has a convex-concave

curve.

In our study, we consider a convex waiting cost function to capture delay sensitivity of

customers (risk aversion), and investigate how the strategic and risk aversive behavior of

consumers affects the supply chain manager’s decision and the system equilibrium.

Risk aversion in inventory management have been also studied in the literature. Berman

and Schnabel (1986) were among the first to study the impact of risk aversion on the order

quantity. They considered a mean-variance utility function in the news vendor problem.

We refer readers to Tekin and Ozekici (2015), Agrawal and Seshadri (2000), Chen et al.

(2007) and Afèche and Sanajian (2013) for comprehensive reviews in this field. However, we

assume that instead of the system manager, customers are risk averse and make decisions

considering a trade-off between the value of the product and the cost of waiting. We

consider a centralized supply chain decision maker which can control the base-stock level

at the DC and charge a price to make profit. We show that for any level of risk aversion,

there is an optimal policy, i.e. optimal price and base-stock level, for the DC.
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Chapter 2

Control Mechanisms in Queues with

Joint Balking and Reneging Strategy

We consider an unobservable queueing system with a single server in which customers

arrive to the system according to a Poisson process with the rate of λ and are served based

on a first-come first-served (FCFS) policy. Also, service times are exponentially distributed

with the rate of µ. We assume that customers are homogeneous and decide (1) whether to

join the queue and (2) how long to wait before reneging. When a new customer arrives to

the system, she decides to join the system with probability p or to balk the system with

probability 1− p. Each customer is rewarded a value V once served, however, she exhibits

mixed-risk behavior with respect to the delay and changes her behavior from risk-seeking

to risk-averse after spending a certain amount of time in the system. We assume that

customer utility is a value (reward) for receiving the service less a waiting cost. Customers

are forward-looking decision makers and decide whether to join a queue and when to renege

based on their expected utility function, E[U(x)], where U(x) = V − C(x) is linear with

respect to the service value V and non-linear with respect to the waiting cost C(x),

C(x) = c((x− β)2α−1 + β2α−1). (2.1)

Note that x is the waiting time in the system, including the service time, α is a positive

integer greater than 1, β is a non-negative number, and c is a positive constant. Both the

11



Figure 2.1: The behavior of cost func-

tion with different anticipation points

(β), c = 1 and α = 2.

Figure 2.2: The behavior of cost func-

tion with different degrees of risk aver-

sion (α), c = 1 and β = 1.

anticipation point (β) and risk aversion degree (α) shape customer behavior and determine

the customer’s attitude toward the delay. The utility function, U(x), captures two customer

behavioral characteristics. First, customers have an impatience intensity (sensitivity) with

respect to any delay with a level of α. Second, customers have an anticipation point

β after which they become more impatient regarding any further delay. Recall that β

refers to the anticipation point, which is the point in time when a customer’s waiting cost

function changes from concave (willing to wait) to convex (increasingly impatient). Figure

2.1 illustrates the customer waiting cost function with respect to the delay with different

values of β.

Consider the impact of the anticipation point on U(x). As β → 0+, customers waiting in

the queue become more sensitive to further delays, and the marginal waiting cost increases.

That is, customers tend to be risk-averse with respect to time (placing greater value on

their time than on receiving service). These customers place a high value on their time

and tend to renege early, meaning they are unwilling to wait long for the service once they

are in a queue. However, as β approaches infinity, customers are patient exhibiting a risk-

seeking behavior. These customers are less sensitive to small increases in delay and place a

high value on the service compare to the time. Finally, when β > 0 with a moderate value,
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customers adopt a mixed–risk behavior. The anticipation point measures the customer’s

attitude toward delay by reflecting their anticipation/impatience with respect to receiving

a certain service.

As shown in Figure 2.2, according to (2.1), around the anticipation point β, the cost

function appears to be flat, indicating that customers are indifferent to incremental changes

in waiting time (Carmon and Kahneman 1995). At this point, customers change their atti-

tude from risk-seeking to risk-aversion, reflecting a growing irritation with further delays.

Such behavior has been observed in patients waiting to be seen by a physician. Liu et al.

(2017) observe that a patient’s utility-loss function plateaus in the middle of their delay.

Parameter α is a positive integer and denotes the customer’s degree of risk aversion

(impatience) with respect to the waiting time. If α = 1, (as shown in Figure 2.2) customers

face a constant marginal waiting cost, c, exhibiting indifference to the amount of time they

wait in the system. In other words, when α = 1, customers are risk-neutral with respect

to the waiting cost. For α > 1, the marginal waiting cost depends on the time spent by a

customer in the system (Figure 2.2).

We assume that each customer has a deterministic reneging time policy; i.e., after join-

ing the system, the customer may renege the system at any deterministic time τ before her

service is complete. Each customer individually determines her reneging time considering

the trade-off between the waiting cost and the value obtained from service completion. All

system parameters are common knowledge and customers do not receive any information

regarding the queue status and their position in the queue. This reneging time is highly

related to the perceived waiting time by an individual customer. We call this perceived

waiting time as offered waiting time. An individual customer’s reneging policy changes

the offered waiting time of other customers and as a result changes their policies as well.

Thus, the best response for an individual customer as a forward-looking decision maker

will be affected by actions of others. For instance, an individual’s decision may vary when

all other customers are fully patient (never renege the system) or fully impatient (never

join the system). In the former case, the best response for such a customer can be reneging

earlier; however, in the latter case, they may do better staying in the system until service
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is completed.

One can investigate the equilibrium reneging time in this system; however, if the waiting

cost is not a linear function in time, the uniqueness of the equilibrium point cannot be

guaranteed (e.g., see Shimkin and Mandelbaum 2004). We do not aim to characterize the

equilibria of the system, rather our main focus is on finding an optimal queue control policy

to eliminate customer externalities when they make decision strategically. It means that

we are interested in characterizing the socially optimal behavior and proposing an optimal

policy from a revenue maximizer perspective where in such circumstances customers choose

that policy in the equilibrium. To find that policy, we first analyze an individual customer’s

reneging behavior under an offered waiting time. Therefore, we assume that all other

customers follow the same T strategy (they renege at τ = T ), and investigate the decision

of an arriving customer.

The probability density function (PDF) of the waiting time (offered waiting time),

including the service time, of a customer in the system who joins the queue and does not

renege when all other customers renege after T time units (assuming that µ > λp), are

obtained as (e.g., see Hassin and Haviv 1995 and Haviv and Ritov 2001):

gpT (x) =

P0µe
−(µ−λp)x, 0 ≤ x ≤ T,

P0µe
−µx+λpT , T ≤ x,

, (2.2)

where,

P0 =
µ− λ p

µ− λpe−(µ−λp)T . (2.3)

Also Gp
T (x) is the corresponding cumulative distribution function. Consider an individual

customer who decides to renege the system after τ time units, when all other customers

renege after T time units. For such a customer, the expected utility which is associated

with the strategy τ as a response against all other customers using strategy T , is obtained

as:

UT (p, τ) = E[V 1{X < τ} − C(X ∧ τ)] =

τ∫
0

V dGp
T (x)−

∞∫
0

C(min{x, τ})dGp
T (x) =
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∫ τ

0

(V − C(x)) gpT (x) dx− C(τ)(1−Gp
T (τ)). (2.4)

The expected utility function is composed of two terms. The first term is the expected

utility of joining a queue and being served before spending τ time units in the system. The

second term is the expected utility of joining the queue and reneging the system without

receiving or completing the service. We discuss the details on the customer response

function in the following section.

2.1 Preliminary Analysis

In this section we investigate local maximum points of an individual customer’s expected

utility with respect to her reneging time. We show that the local extremum points of the

customer’s expected utility function occur where the hazard-rate of the waiting time equals

to the cost-reward ratio (similar to Shimkin and Mandelbaum 2004). Let hT (x) =
gpT (x)

1−GpT (x)

and γ(x) = C′(x)
V

denote the hazard rate function associated with the offered waiting time

distribution given by (2.2), and cost-reward ratio function respectively. Using (2.1) and

(2.2), and considering the offered waiting time distribution, the hazard rate and cost-reward

ratio are obtained as

hT (x) =


µ (−λ p+µ)

µ−λ pe−(µ−λ p)(T−x) , x ≤ T

µ, T ≤ x
,

γ(x) =
c (x− β)2α−2 (2α− 1)

V
. (2.5)

Proposition 1 A new arriving customer, who joins the queue, will renege at time τ which

is one of the local extremum points of UT (p, τ) where

hT (τ) = γ(τ). (2.6)

A candidate reneging time τ is a local maximum point of the expected utility function

if hT (τ)− γ(τ) changes its sign from positive to negative at τ . When the expected utility
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Figure 2.3: Hazard rate and cost-reward

ratio functions with respect to the reneging

time.

Figure 2.4: Expected utility func-

tion with respect to the reneging

time.

function is unimodal, it has one unique maximum point, which we refer to as a global

point. However, since the waiting cost function is non-linear with respect to delay, the

expected utility function may have several local extremum points (see Figures 2.4 and

2.6). In Proposition 2 we will prove that the customer’s expected utility function has at

most two local maximum points; as shown in Figures 2.3 and 2.5, the hazard rate function

crosses the cost-reward ratio function at more than one point (the corresponding expected

utility functions are illustrated in Figures 2.4 and 2.6, respectively).

Also, an arriving customer’s reneging time depends on other customers’ action. Figure

2.3 illustrates the behavior of the hazard rate function for different values of T (resulting

in different offered waiting times) with the same cost-reward ratio function and Figure 2.4

shows their corresponding expected utility functions. As shown in Figure 2.3, the best

response for an arriving individual customer when all other customers renege at time T , is

reneging before T (blue line with T = 1.15), after T (red line with T = 0.95) or equal to

T (green line with T = 1.05). Considering this structure of the expected utility function,

we discuss an individual customer’s decision in the following section.
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Figure 2.5: Hazard rate and cost-reward

ratio functions with respect to the reneg-

ing time.

Figure 2.6: Expected utility func-

tion with respect to the reneging

time.

2.1.1 Self-Maximization Strategy

We investigate the reneging action of an individual customer given an offered waiting time,

i.e., we want to find the best response for an individual customer when all other customers

use the strategy T . First, we discuss the worst and best cases which a joining customer

may face. In the worst case scenario, all other customers never renege and stay in the

system until their service ends; therefore, according to (2.5) the hazard rate function is

limT→∞ hT (x) = µ − λp and the optimal action for an arriving individual is to renege at

(and only at) τ0, satisfying γ(τ0) = µ − λp. However in the latter case, when all other

customers are extremely impatient and never join the system, the hazard rate function is

limT→0 hT (x) = µ and the best response for this customer is to renege only at τ1 when

γ(τ1) = µ. We can conclude that in the general case, the best response for a customer is a

time between τ0 ≤ τ ≤ τ1:

Corollary 1 Consider the discussed queueing system. Then, the maximum abandonment

threshold for an arriving customer, τ1, is given by:

τ1 =

(
µV

c (2α− 1)

)(2α−2)−1

+ β. (2.7)
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Note that since the cost-reward ratio is a convex function with a minimum at x = β (see

(2.5)), γ(0) ≥ µ is not a sufficient condition to renege at x = 0. Next, we investigate the

local maximum points of the customer’s expected utility with respect to time spent in the

system. We define two functions V̄1(β, p, T ) and V̄2(β, T ), to characterize the shape of the

customer’s expected utility with respect to her reneging time. Let

V̄1(β, p, T ) =

(
µ− λ pe−(µ−λ p)T ) c (2α− 1) β2α−2

µ (µ− λ p)
, V̄2(β, T ) =

c (2α− 1) (T − β)2α−2

µ
.

(2.8)

Proposition 2 For a given joining probability p, if all other customers follow the T strat-

egy (reneging at T ), the customer’s expected utility has the following structure with respect

to the reneging time τ ≤ τ1:

1. For τ ≤ β: if V < V̄1(β, p, T ), the expected utility has a unique minimum point

less than β; otherwise, for V ≥ V̄1(β, p, T ) the expected utility function is monotone

increasing in τ .

2. For τ > β: if V < V̄2(β, T ) the expected utility is unimodal with a unique maximum

point less than T ; otherwise for V ≥ V̄2(β, T ) there exists either one or two positive

local maximum points where the first one is less than T and the other one is greater

than T and equal to τ1.

According to Proposition 2, the expected utility function for an individual customer

given an offered waiting time has at least one maximum point. Figures 2.7 and 2.8 illustrate

the structure of the customer’s expected utility function with respect to the anticipation

point and other customers’ action through reneging time T , respectively. The red (dashed

curve) and blue (dotted curve) curves represent V̄1(β, p, T ) and V̄2(β, T ), respectively. We

offer the following intuition. Considering the psychological cost of waiting, Proposition 2

explains the challenges of opposing responses in waiting behavior when a goal is anticipated.

As illustrated in Figure 2.7, the combination of the service value and anticipation point
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Figure 2.7: Segmentation of local max-

imum points of the customer’s expected

utility with respect to β.

Figure 2.8: Segmentation of local max-

imum points of the customer’s expected

utility with respect to T .

shapes an individual customer abandonment decision. When this customer can only decide

on their reneging time (no joining decision) two opposing psychic forces, namely displeasure

of waiting and commitment to wait, shape customer behavior in waiting (Janakiraman et

al. 2011). While the anticipation point and the service value is low, this customer chooses

the only existing maximum point as the reneging time where this reneging time is always

less than T and τ1 (Regions A and D). However, by increasing the service value as a

motivational factor, two local maximum points emerge to distinguish reneging policy. In

this case, this customer may choose a reneging time greater than all other customers’

choices and renege at the maximum reneging τ1 (Region B). Observe that with higher

values of V , when the anticipation point (β) increases and tends to be high, although

the expected utility function is decreasing and negative at the beginning of waiting, this

customer commits to wait and chooses a reneging time greater than T (Region C).

Other customers’ actions also affect the individual customer’s decision regarding the

reneging time. In Figure 2.8, Regions A, B, C and D with the discussed properties charac-

terize the individual customer’s expected utility with respect to others’ actions (reneging

after spending T units of time). Observe that as the others’ abandonment threshold T

increases, an individual customer tends to choose a reneging time less than T (Regions A
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and D in Figure 2.8).

Corollary 2 For a given joining probability p, if all other customers choose T as their

reneging time, an arriving customer’s reneging time τ has the following structure:

1. If T > τ1, there exists a unique positive maximum point which is less than τ1.

2. If T ≤ τ1, there exists one (τ = τ1) or two positive local maximum points, one is less

than T and the other one is τ = τ1.

Note that according to Proposition 2, τ = 0 is also a candidate for the reneging time when

V < V̄1(β, p, T ). Therefore, if for all cases provided in Corollary 2, the customer’s expected

utility function is negative, then the best response for this customer is reneging at time

τ = 0; otherwise when V ≥ V̄1(β, p, T ), there always exists a positive optimal reneging

time for this customer.

Since customers are rational and self-interested, they may not follow a strategy which

is beneficial for all. For example, when the waiting cost function is linear, the equilibrium

reneging time is a mix between not joining or joining and staying without reneging (see Has-

sin and Haviv 1995, and Mandelbaum and Shimkin 2000). In this case, self-maximization

leads to a more congested system and results in imposing waiting costs, as negative ex-

ternalities, on the rest of the society. However, if all customers commit to join less often

and also renege in a finite time, such a situation will be more beneficial for all. Next, we

characterize socially optimal behavior and then propose a mechanism to induce socially

optimal behavior.

2.2 Socially Optimal Behavior

In this section, we characterize the structure of the joint optimal balking and abandonment

strategy that maximizes the social welfare, total expected net benefit of the people in

the society, denoted by W (p, T ) and given by W (p, T ) = λpUT (p, T ). We first prove the
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existence and uniqueness of such an optimal reneging time for any given joining probability.

We then extend the results to the joint optimal balking and abandonment strategy and

find the maximum achievable social welfare.

We are interested in characterizing an optimal reneging time T ∗ which maximizes the

aggregate expected utility functions assuming that all customers will follow the same reneg-

ing time T . Since the social welfare function may have two local maximum points with

respect to the abandonment threshold T (considering T = 0 as a candidate), we refer to

type-1 (denoted by T̄1) and type-2 (denoted by T̄2) as the first (the smallest time T at

which the utility function is not strictly increasing, i.e., ∂UT (p,T )
∂T

≤ 0), and second local

maximum points, respectively. In the following proposition, we characterize the structure

of the optimal abandonment strategy for any given p using three functions V1(β, p), V2(β)

and V3(β, p) which are defined as follows:

V1(β, p) =
λ pcβ2α−1 (1−M (1, 2α, −s))

µ− λp
, V2(β) =

c (2α− 1) β2α−2

µ
,

V3(β, p) =

c

(
β

s

)2α−1
(
k2α−2

(
λ p (k − 1) ek−s + µ

)
µ

− λ pβ e−s (Γ (2α,−s)− Γ (2α,−k))

s

)
, (2.9)

where

k =
2 (α− 1) (µ− λ p)

λ p
, s = β (µ− λ p) ,

and M(a, b, z) and Γ (a, z) are the confluent hypergeometric function of the first kind

(given by (A.18)) and incomplete Gamma function (given by (A.21)) respectively (see e.g.,

Abramowitz and Stegun 1964).

Proposition 3 Consider the expected utility function given in (2.4) and the social welfare

function.

1. For a given p,
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Figure 2.9: Segmentation of the local and

global maximum points of the social wel-

fare for given p.

Figure 2.10: Segmentation of the local

and global maximum points of the social

welfare for given β.

(a) If β ≤ 2(α− 1)/λp, for V ≥ V2(β), the social welfare function is unimodal; for

V1(β, p) < V < V2(β), it is bimodal (T̄1 is zero) and for V1(β, p) ≥ V , the social

welfare is always equal to zero (the expected utility function is always negative).

(b) If β ≥ 2(α− 1)/λp, for V ≥ V3(β, p), or when V2(β) < V ≤ V1(β, p), the social

welfare function is unimodal; for V2(β, p) < V < V3(β, p) and V > V1(β, p),

it is bimodal and two positive local maximum points T̄1 and T̄2 exist, and for

V1(β, p) < V ≤ V2(β), we have T̄1 = 0. If V1(β, p) ≥ V and V2(β) > V ,

the social welfare is always equal to zero (the expected utility function is always

negative).

2. V1(β, p) and V3(β, p) are increasing in p and β. Also V2(β) is monotone increasing

in β.

Figure 2.9 illustrates the threshold structure of the optimal reneging time for a given

joining probability. The vertical and horizontal axes indicate the value V and anticipation

point β, respectively. The red, blue, and green curves in Figure 2.9 represent V1(β, p),

V2(β), and V3(β, p), respectively. Considering that all customers follow a (p, T ) strategy,
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Proposition 3 demonstrates that in region A, the social welfare function is unimodal and

there exists a unique global optimal abandonment time. In contrast, when the expected

utility function is negative for all values of T , for a given balking probability p, no maximum

point exists for Region E in Figure 2.9. Regions B and C correspond to the situations in

which the social welfare function is bimodal. In Region B, there is one minimum and two

local maximum points for T (T̄1 is zero). Conversely, in Region C, both type-1 and type-2

points are positive numbers and the social welfare function is bimodal. Finally, in Region

D, the type-1 and type-2 points coincide, which again leads to a unimodal social welfare

function.

Next, we analyze the social welfare function when the joining probability is endogenous.

First, we need to elaborate on the structure of Proposition 3 by considering the optimal

reneging time structure for different values of p, the joining probability.

Corollary 3 As the joining probability varies:

1. For p ≥ 2(α−1)
λβ

, we have V3(β, p) ≥ V2(β) and V3(β, p) > V1(β, p). Also, thresholds

V2(β) and V1(β, p) intersect each other at probability pe where

pe =
µ(2α− 1)

λµβ(1−M (1, 2α, − (µ− λ p) β)) + λ(2α− 1)
.

2. If V ≤ V2(β), as p increases, the optimal reneging time goes from a positive type-2

point (type-1 point is equal to 0) (V > V1(β, p)) to no feasible point (V ≤ V1(β, p)). If

V > V2(β), by increasing the joining probability,the social welfare function first moves

from having one unique global point (V ≥ V3(β, p) to having both positive type-1 and

type-2 points (max(V2(β), V1(β, p)) < V < V3(β, p)); then, it returns to the unique

global region (V2(β) < V ≤ V1(β, p)).

Figure 2.10 illustrates the structure of the optimal reneging time with different values

of the joining probability. In Figure 2.10, the red, blue, and green lines represent V1(β, p),

V2(β) and V3(β, p), respectively. From Corollary 3, we can also infer that when V ≥

23



Figure 2.11: Structure of the socially optimal strategy.

max(V2(β), V3(β, p)) (Region A in Figure 2.10) type-1 and type-2 points coincide, resulting

in one unique global optima reneging time. In Region C of Figure 2.10, when V3(β, p) >

V > V1(β, p), there exist both positive type-1 and type-2 points; in this case, as p increases,

the type-2 point tends to coincide with the type-1 point. When V1(β, p) ≥ V > V2(β),

there is one unique global optimal reneging time and the type-2 point coincides with the

type-1 point (Region D).

We next show that the optimal reneging time can be either greater or less than the

anticipation point β depending on the value of the service.

Corollary 4 Let T ∗ be the optimal reneging time.

1. For V ≥ V2(β) and V ≥ V3(β, p) the optimal reneging time is greater than the

anticipation point, T ∗ > β.

2. For V ≤ V1(β, p) and V > V2(β), the optimal reneging time is bounded by T ∗ ≤
β − 2(α− 1)/λp.

Corollary 4 provides bounds for the optimal reneging time for different values of V . One

interesting observation is that depending on the value of the service, the optimal reneging

time can be either less or greater than the anticipation point, β.
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Next we demonstrate that there exists an optimal behavior in which the maximum

value of the social welfare is secured.

Theorem 1 There exists an optimal (p∗, T ∗) strategy that maximizes the social welfare.

Also, if V < min(V1(β, 1), V2(β)), we can guarantee that the partial join strategy, i.e.,

p∗ < 1, is optimal.

Figure 2.11 illustrates the implications of Theorem 1. There always exits an optimal

abandonment strategy while in Region A, the fully join , i.e., p∗ = 1, is optimal, and in

Region B the partially joining strategy is the optimal strategy.

Theorem 1 defines and characterizes the socially optimal strategy. In the next section,

we investigate how a revenue maximizer service provider should design a mechanism to

guarantee a profit equal to the maximum achievable social welfare (the upper bound of the

total profit).

2.3 Mechanism Design Problem

According to the Tragedy of the Commons, when customers use a common resource and

maximize their own utilities, the equilibrium behavior leads to excessive use of the resource.

In the context of a queue, an arriving customer who maximizes her own benefit imposes

negative externalities on others. Such self-optimization induces excessive congestion which

needs to be regulated (see e.g., Hassin and Haviv 2003). A server can achieve social

optimality as the upper bound on profit if two conditions are satisfied: (i) the socially

optimal behavior is not changed and (ii) total surplus (sum of all customers’ surplus) is

fully extracted (see e.g., Erlichman and Hassin 2015). The main question is whether the

socially optimal behavior is achievable in the equilibrium by using an appropriate policy

on the system.

We assume that the planner is interested in designing an appropriate mechanism induc-

ing socially optimal behavior under which no one will deviate from the induced equilibrium.
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In such a case, the planner knows that customers are self-interested and under any policy,

they choose their own strategy (p, τ) ignoring the negative externalities on others. The

planner must design a mechanism to control these externalities inducing socially optimal

behavior.

2.3.1 Entrance-Fee/Service-Fee Mechanism

One known way to control congestion is by imposing an appropriate fee for service (Naor

1969). Because customers can renege from the system after a threshold, we consider two

types of fees: an entrance fee, denoted by θe and a service fee, denoted by θs. The entrance

fee is charged when customers join the queue, whereas the service fee is charged after they

use the service. The expected revenue functions of the two pricing scenarios, entrance

and service fees, can be defined as Φe(p, T, θe) = λpθe and Φs(p, T, θs) = λpGp
T (T )θs,

respectively. Therefore, the total provider’s expected revenue under this mechanism is

λp(θe +Gp
T (T )θs).

Proposition 4 Using a joint entrance-fee/service-fee mechanism,

1. There is no guarantee that the revenue maximizer can induce socially optimal behav-

ior.

2. If the following conditions hold, a joint entrance-fee/service-fee mechanism can in-

duce the socially optimal behavior and the maximum profit is achievable.

• Condition 1: γ(T ∗) < µ− λp
V P0

C(T ∗).

• Condition 2: C′(T ∗)
V µ

hT ∗(t) = γ(t) must have no root for β ≤ t < T ∗.

3. Under conditions 1 and 2 above, the optimal entrance and service fees are obtained

as:

θe = V P0

ρ
(1− γ(T ∗)

µ
)− C(T ∗), θs = V (1− γ(T ∗)

µ
).

26



Figure 2.12: Individual customer’s ex-

pected utility function when the first

condition does not hold.

Figure 2.13: Individual customer’s ex-

pected utility function when the second

condition does not hold.

Proposition 4 demonstrates that designing a mechanism that is only based on the en-

trance and service fees may not be able to induce the socially optimal behavior in the

system. The reason is that when the waiting cost function is non-linear, imposing a service

fee cannot completely control the customer reneging strategy. To induce socially opti-

mal behavior, the pricing mechanism should ensure that the optimal reneging time of an

individual customer coincides with the abandonment threshold which maximizes the so-

cial welfare (Condition 2), and the individual customer’s expected utility function is not

negative at this threshold (Condition 1). However, in many cases this policy leads to a sub-

optimal throughput. For instance, if the first condition does not hold, as shown in Figure

2.12, the pricing policy always causes a negative expected utility function for customers

and as a result it discourages customers to join the system. In such a case, the proposed

mechanism can not induce the socially optimal behavior. When the second condition does

not hold, the proposed pricing policy can not induce the socially optimal reneging strategy;

as shown in Figure 2.13. The second local maximum point in Figure 2.13 (T ∗ = 1.92),

indicates the socially optimal reneging time; however, an arriving customer will choose a

reneging time (the first local maximum point shown in Figure 2.13) less than the optimal

one resulting the failure of proposed mechanism. Thus, we conclude that this pricing policy
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is insufficient to induce optimal joining/reneging behavior of self-optimizing customers.

Next, we propose a joint entrance-fee/abandonment-threshold mechanism which in-

duces the socially optimal behavior and guarantees a profit equal to the maximum social

welfare.

2.3.2 Entrance-Fee/Abandonment-Threshold Mechanism

We first analyze how the planner’s chosen abandonment threshold T ∗ affects customers’

reaction and how customers choose their own strategy (p, τ) considering this policy. We

show that this abandonment threshold policy can efficiently control customers’ reneging

time and induce the optimal reneging behavior. However, since there is no control on the

joining probability, it can not guarantee the optimal joint decision, (p∗, T ∗). Therefore, we

extend the mechanism to charge an entrance fee so that the firm can control the effective

arrival rate and also fully extract total surplus (sum of all customers’ surplus) and achieve

the profit equal to the maximum social welfare the system can generate.

Considering the effect of the joining probability on the abandonment threshold, we

introduce an abandonment threshold policy for the planner to control customers’ reneging

behavior. First, we show that for a given joining probability, the planner choice will be

the unique Nash equilibrium for all customers. Then, we extend our results to when the

joining probability is endogenous. We prove that all customers will follow this policy and

the optimal abandonment threshold coincides with the equilibrium customer’s reneging

time.

Proposition 5 For a given p, using the abandonment threshold policy, reneging at T ∗ is

the unique Nash equilibrium for all customers.

Proposition 5 demonstrates that, if the planner chooses the optimal abandonment threshold

equal to T ∗, all customers will end up reneging at T ∗ and this point is the unique Nash

equilibrium for all customers under this policy. This means that no one will deviate from

this abandonment time by choosing a reneging time less than T ∗.
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Next, we consider the endogenous joining probability case which means that customers

choose their joining strategy according to this abandonment threshold. We want to answer

the question of when customers choose their own joining probability, whether the planner

can find an appropriate abandonment threshold leading to a Nash equilibrium as well.

We first analyze the behavior of an individual customer’s expected utility function

with respect to the joining probability p when the abandonment threshold is exogenous.

When the effective arrival rate to the queueing system increases, for a given abandonment

threshold, the waiting time increases and the chance of being served within a certain time

decreases. We show that there exists a unique equilibrium for the joining probability,

denoted by p, in the following proposition.

Proposition 6 For a given abandonment threshold T , if all customers follow the T policy,

the expected utility function decreases monotonically with respect to the joining probability

and there is a unique equilibrium p̄.

Since customers selfishly choose their joining strategy, then if p < p, there is an incentive

for customers to join the queue and receive positive expected utility. Otherwise, if p > p,

customers who join the queue incur losses and the equilibrium is pushed to p. Specifically,

the best response function of each customer is not increasing in p, and customers use the

avoid-the-crowd (ATC) strategy (e.g., see Hassin and Haviv 2003). While all customers

follow (p, T ), it is clear that if customers choose p < 1, then the expected utility function

should be equal to zero; otherwise, for p = 1, it is necessary to have UT (p, T ) ≥ 0 (see also

Hassin and Haviv 1995).

In the following proposition, we show that the equilibrium joining probability has a

unique maximum point with respect to the anticipation point.

Corollary 5 If the abandonment threshold is exogenous, the equilibrium p̄ is unimodal in

β.

Corollary 5 states that as the anticipation point increases, the joining probability increases

until reaching a maximum value. After that point, the joining probability begins to de-

cline as the anticipation point increases. Therefore, if the abandonment threshold T is

29



exogenous, the queueing system faces a maximum joining rate when customers are not

highly patient or highly impatient – essentially a moderate anticipation point. Corollary

5 demonstrates how the anticipation point captures the effect of opposing responses in en-

couraging customers to join or balk the system. While customers anticipate a short waiting

time but offered a longer wait, the psychological cost of waiting preponderates over their

commitment to stay in the queue longer. In this case, customers are discouraged from

joining the queue. On the other hand, if customers anticipate a longer wait and commit to

stay in queue, the queueing system will become less preferable and there is little incentive

for customers to join the queue if they know they will be forced to renege early in the wait.

As such, the maximum joining probability is brought about when there is an appropriate

balance between these two opposing tensions. This balance is achieved with a moderate

anticipation point. In this light, our model fully captures this psychological behavior.

Proposition 7 Suppose customers choose balking strategically according to an abandon-

ment threshold. Then, there exists a unique optimal abandonment threshold T ∗ and corre-

sponding Nash equilibria for customers’ balking and reneging strategy, that has the following

threshold structure:

1. There exists a unique equilibrium (p̄, T̄ ) in which T̄ coincides with T ∗.

2. In the case V3(β, 1) ≤ V or V2(β) < V ≤ V1(β, 1), customers apply the fully join

strategy, i.e., p̄ = 1.

3. In the case V < min(V1(β, 1), V2(β)), customers always apply a partial join strategy.

Figure 2.14 illustrates the structure of the customer equilibrium strategy. The red,

blue, and green curves represent V1(β, p), V2(β) and V3(β, p), respectively when p = 1. The

black curve indicates partial and fully join strategies. In Proposition 7, we are considering

the joint balking probability p and reneging time simultaneously under an abandonment

threshold policy. As depicted in Figure 2.14, there are 5 regions. In Regions A and D the

social welfare function is unimodal and there exists a unique optimal point. Likewise, in
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Figure 2.14: Structure of the equilib-

rium customer strategy under abandon-

ment threshold policy.

Figure 2.15: Summary of the equilibria

under abandonment threshold policy.

Region C the social welfare function is bimodal and there exists both positive type-1 and

type-2 points.

Note that in all these regions (A, C, D), the equilibrium joining probability is 1; that

is, all customers join the system and there is a unique pure Nash equilibrium reneging

time for all customers which is equal to T ∗. However, in Regions B and E there exists

a unique mixed Nash equilibrium and customers always apply a partial join strategy. In

this case, the customer’s expected utility and welfare functions are equal to zero and one

is indifferent between not joining or joining and reneging at T ∗ resulting in a strict mixing

between two pure strategies. Since all customers will choose the optimal abandonment

threshold as an equilibrium one, there are two types of equilibria: a unique pure Nash

equilibrium which is equal to T ∗ under which all customers join the queue (Region A

in Figure 2.15), or a unique mixed Nash equilibrium under which customers apply the

partial join strategy with a positive reneging time (Region B in Figure 2.15). Figure 2.15

shows that the anticipation point and service value significantly affect a customer’s joining

probability decision. As depicted in Figure 2.15, if customers anticipate a long wait time,
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Figure 2.16: Effect of β on the gap between the customer’s equilibrium and the optimal

joining probabilities.

they join the system but only partially. However, these customers may not keep to the

partial joining strategy monotonically with respect to anticipation point increases. As

shown in Figure 2.14, depending on the value of the service reward, customers may choose

a fully join strategy for higher values of the anticipation point (Region D in Figure 2.14).

In this case the optimal abandonment threshold is always less than the anticipation point

(Corollary 4).

The partial join region defined in Proposition 1 (depicted in Figure 2.11) shrinks if

considered under the equilibrium case characterized in Proposition 7 (see Figure 2.15).

Since customers are self-interested, as long as the expected utility function is positive,

there is an incentive for customers to join the system. This means that at the equilibrium,

the expected utility function tends to be zero and as a result the total surplus goes to

zero. Figure 2.16 illustrates the difference between the customer’s equilibrium and the

optimal joining probability, ∆p = p̄− p∗. This gap reveals the externalities that an arrival

imposes on other customers and, consequently, the amount of effort that should be applied

to regulate it. Figure 2.16 shows that this gap is unimodal in the anticipation point.
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Figure 2.17: Segmentation of the ex-

pected revenue using the entrance-

fee/abandonment-threshold mechanism.

Figure 2.18: Effect of β on the optimal

entrance fee and the expected revenue.

As the firm charges a fee to collect the total surplus (the sum of all customers’ surplus),

a lower surplus results in a lower profit for the firm. To avoid this situation, the planner

must regulate the joining probability to increase total surplus. Because the expected

utility function is decreasing in the joining probability, the planner sets p∗ smaller than

the equilibrium point p, to achieve a positive expected utility and in doing so maximizes

the profit by imposing a fee. Therefore, the abandonment threshold policy by itself is not

an optimal policy to control the congestion and to eliminate customer externalities. Next,

we show that if a planner (revenue maximizer) can impose a fee to control the arrival rate,

there exists an optimal joint pricing and abandonment threshold policy when customers

follow a (p, τ) strategy. We show that this joint policy induces socially optimal behavior,

and the revenue maximizer can obtain all the social welfare by charging a unique maximal

price and placing a restriction on customer’s reneging time.

Let p̂e and T̂e denote the equilibrium joining probability and reneging time of customers

respectively, when the joint entrance-fee/abandonment-threshold mechanism is employed

by the firm.
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Theorem 2 Using the entrance-fee/abandonment-threshold mechanism,

1. There exists an optimal entrance fee, where θe = U(p∗, T ∗).

2. The expected revenue is equal to the optimal social welfare and the equilibrium cus-

tomers’ joining probability p̂e and reneging time T̂e coincides with the optimal joining

probability p∗ and abandonment threshold T ∗, respectively.

According to Theorem 2, when an entrance fee is imposed, the customer equilibrium strat-

egy coincides with the optimal strategy stated in Theorem 1 (the same as shown in Figure

2.11). Under the entrance-fee/abandonment-threshold mechanism, the firm can induce so-

cially optimal behavior. In this case, the proposed mechanism can be used to collect the

total surplus and guarantee a profit equal to the optimal social welfare W (p∗, T ∗).

Corollary 6 Using the entrance-fee/abandonment-threshold mechanism, when V <

min(V1(β, 1), V2(β)), we can guarantee that the optimal price always leads to the adoption

of a partial join strategy.

Figure 2.17 illustrates the relationship between the anticipation point β and the expected

revenue under the entrance-fee/abandonment-threshold mechanism. As illustrated in Fig-

ure 2.17, the expected revenue function has a unique maximum point in β and also cus-

tomers will use the fully join strategy in Region A and the partial join strategy in Region

B. Moreover, numerical results show that when an entrance fee is charged, the optimal

entrance fee θe and expected revenue φe are unimodal in the anticipation point β (Fig-

ure 2.18) indicating that a moderate anticipation point provides higher expected revenue.

These findings highlight the importance of considering psychological factors in queue con-

trol which have largely been ignored in the literature.
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Chapter 3

Analysis of the Multi-Echelon

Production Inventory System with

Strategic Customers

In this chapter, we consider a two-echelon production inventory system where customers

strategically either choose to place an order and wait until receiving the product or balk the

system without placing any order. We first analyze the system assuming that the arrival

rate is exogenous. We obtain a closed-form expression to find the optimal base-stock level

at the DC, when the production and transportation times are generally distributed. Then,

we assume that arrival rate is endogenous (customers behave strategically) and use the

formula obtained in the first model to develop the DC cost and also customer expected

utility function. However, in the endogenous arrival rate scenario, to make the problem

tractable, we assume that the production times are exponentially distributed and the

transportation time from the manufacturer to the DC is deterministic.
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3.1 Two-Echelon Inventory System with Exogenous

Arrival Rate

3.1.1 Two-Echelon Inventory System with a Manufacturer

In this section, we consider a two-echelon inventory system with a single manufacturer

having no warehouse and a single DC that manages its inventory using a base-stock pol-

icy (see Figure 3.1). We assume that the DC manages its inventory using a base-stock

policy with the base-stock level S. We assume that the transportation time between the

manufacturer and the DC is uncertain and follows a general distribution with mean η and

Laplace transform (LT) δ∗(s), and the production times are generally distributed with the

mean of 1/µ. Let f (·) denote the probability density function (PDF) of the lead-time of

an order placed by the DC. This time includes the waiting time in the production system,

with the LT of w∗(s), and the transportation time from the manufacturer to the DC which

are independently distributed; therefore, the Laplace transform of the lead-time of an order

placed by the DC, denoted by f ∗(s), is obtained as f ∗(s)=w∗(s)δ∗(s). Note that, when

the transportation times are stochastic, orders may cross over time. To make the problem

tractable, we assume that no order crossing is allowed over time and products are received

by the DC sequentially (for more details concerning this assumption, see e.g., Svoronos

and Zipkin(1991)).

Assuming that the inventory holding and shortage costs per unit and time unit at the

DC are h and b, respectively, our objective is to minimize the average total inventory

holding and shortage costs at the DC.

We use the Flow-Unit method presented by Axsäter (1990) to determine the average

cost of a unit demanded at the DC. We first need to obtain the lead-time distribution

of an order placed by the DC. When the inventory is managed using the one-for-one

replenishment policy with the base-stock level S, an item ordered by the DC is used to fill

the Sth demand arrival to the DC after this order is placed. Therefore, a new order, sent to

the manufacturer upon the arrival of jthcustomer at the DC, is used to satisfy the (S+ j)th
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Figure 3.1: Production inventory system with no warehouse.

customer at the DC. If the (S + j)th customer arrives before her corresponding item is

received by the DC, she should wait until the product is received. The tail distribution

(complementary cumulative distribution function) of this waiting time is denoted by GQ(t).

If the product is received by the DC before the (S + j)th customer arrives to the DC, the

product will be held until its corresponding customer arrives. Let GP (t) denote the tail

distribution of the time elapsed between the instant that a product is received by the DC

and its corresponding customer arrives. Using GQ(t) and GP (t), we obtain the expected

shortage and holding times of a unit demanded at the DC.

Recall that customers arrive at the DC according to an Poisson process with the rate of

λ. Therefore, the time until S customers arrive has an Erlang(S, λ) distribution. Let the

random variableX denote the lead-time of an order placed by the DC, i.e., the time between

the moment an order is placed by the DC and its corresponding product is received. The

distribution of X is the convolution of the waiting time of the order in the manufacturer

and the transportation time. Moreover, let the random variable Y denote the time between

the placement of an order to the manufacturer and the arrival of the customer at the DC

who receives the corresponding product of the order. The distribution of Y is Erlang(S, λ)

since the (S + j)th customer is served using the product of the order placed at the arrival

of jth customer. Consequently, (X − Y )+ represents the amount of the time a customer

waits in DC until she receives her product with the tail distribution of GQ(t). Similarly,
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(Y −X)+ is the amount of the time a unit of the product is kept in the DC until its

corresponding customer arrives with the tail distribution of GP (t).

We use the normalized incomplete Gamma function (NIG), Q (S, λt), to find the cu-

mulative distribution function (CDF) of the Erlang distribution. Note that, 1− Q (S, λt)

is the CDF of an Erlang distribution with parameters λ and S and it has the following

properties (see e.g., Abouee-Mehrizi et al. 2011):

Q (S, λt) =

∫∞
λt
e−y yS−1 dy

(S − 1)!
,

and

Q (S,λt)−Q (S − 1,λt) = −1

λ

dQ (S,λt)

dt
=

(λt)S−1

(S − 1) !
e−λt. (3.1)

Since Y has an Erlang distribution with parameters λ and S, Q (S,λt) can be used to obtain

the tail distribution of the time that a unit of the product is kept in the DC, (Y −X)+,

as,

GP (t) = P (Y −X > t) =

∫ ∞
0

f(x)P (Y > X + t | X = x) dx=

∫ ∞
0

f(x)Q (S,λ (x+ t)) dx.

(3.2)

Similarly, the tail distribution of the time that a customer waits until she is served, (X −
Y )+, is

GQ (t) = P (X − Y > t) =

∫ ∞
t

f(x)P (Y < X − t | X = x) dx

which results in

GQ (t) =

∫ ∞
t

f(x)(1−Q (S,λ (x− t)) dx. (3.3)

Given (3.2) and (3.3), we can obtain the fraction of customers who find the DC empty and

non-empty as GQ (0) and GP (0), respectively:

GP (0) = P (Y > X) , GQ (0) = P (X > Y ) . (3.4)

From (3.2) and (3.3) we can see that the function Q (S,λx) plays the main role in charac-

terizing the tail distributions of the time a customer waits and a unit of the product is kept

in the DC. Let Za (S,λ, f(·)) =
∫∞

0
f (x)Q (S,λx) dx. In the following lemma, we provide
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a relation between Za (S,λ, f(·)) and the LT of f(·) which helps us to obtain the total cost

of the system. Let f ∗(s) denote the LT of f(·).

Lemma 1 Za (S,λ, f(·)) can be written as a function of f ∗(s) as follows:

Za (S,λ, f(·)) =

∫ ∞
0

f (x)Q (S,λx) dx=
S∑
i=1

(−1)i−1 λi−1

(i− 1) !
f ∗(i−1)(k)|k=λ, (3.5)

where f ∗(n) (·) = dn

dsn
f ∗(s).

As shown in Lemma 1, the function Za (S,λ, f(·)) is a weighted sum of derivatives of

f ∗(s). In the following lemma, we find an explicit expression for Za (S,λ, f(·)).

Lemma 2 If f (·) and F (·) are the PDF and CDF of the random variable X, then,

Za (S,λ, f(·)) =(−1)S−1 λS

(S − 1) !

dS−1

dkS−1
(F ∗(k)) |k=λ,

and

Za(S,λ, F (·)) =
1

λ

S∑
i=1

Za (i,λ, f(·)) . (3.6)

Using Lemmas 1 and 2, we next obtain the expected time that a unit of product

is kept in the DC and the expected time that a customer waits, which are denoted by

W P (S,λ, f(·)) and WQ (S,λ, f(·)), respectively.

Theorem 3 The expected holding time and shortage time of a unit demanded by the DC

are:

W P (S,λ, f(·)) =Za (S,λ, F (·)) ,

and

WQ (S,λ, f(·)) =Za (S,λ, F (·))−f ∗(1)(k)|k=0−
S

λ
. (3.7)
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Now, we can obtain the average inventory and shortage costs of a unit demanded at

the DC, denoted by Cost(S, f(·)), as:

Cost(S, f(·)) = hW p(S, λ, f(·)) + bWQ(S, λ, f(·)). (3.8)

Let Π(S, f(·)) denote the average total holding and shortage costs at the DC. Since the

demand rate at the DC is λ, we have

Π(S, f(·)) = λCost(S, f(·)). (3.9)

To obtain the optimal base-stock level which minimizes the total inventory cost, we

prove in the following proposition that the average total cost function is convex in the

base-stock level.

Proposition 8 The average total inventory cost function, Π(S, f(·)), is convex with re-

spect to the base-stock level S. Moreover, the optimal base-stock S∗ can be obtained using

S∗ = min{k : γ (k, f(·)) ≥ 0}, (3.10)

where γ (S, f(·)) is

γ (S, f(·)) = Za (S,λ,f(·))− b

(h+ b)
. (3.11)

3.1.2 Two-Echelon Production Inventory System

In this section, we consider a two-echelon inventory system with a manufacturer keeping

its stock in a warehouse to satisfy the orders placed by the DC (see Figure 3.2). We

assume that the inventory in the warehouse is managed using a base-stock policy with the

base-stock level S0. Assuming that the inventory holding cost per unit and time unit in

the warehouse is h0, we are interested in minimizing the average total inventory holding

and shortage costs at the DC and the warehouse.

To simplify the analysis, the state of the system can be broken down into two cases.

In the first case, upon an order arrival to the warehouse from the DC, the warehouse
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Figure 3.2: Production inventory system with a warehouse.

has some stock and in the second one, it is out of stock and this arriving order joins the

production queue. Since customers arrive to the DC according to a Poisson process and the

DC uses a one-for-one replenishment policy, arriving orders to the warehouse also follow

a Poisson process with the rate of λ. Let GP
0 (t) denote the tail distribution of the time

that a unit of the product is kept in the warehouse. Recall that w(t) denotes the waiting

time distribution of an order in the production system. Therefore, the probability that an

arriving order from the DC finds the warehouse non-empty, given by GP
0 (0), is (similar to

(3.4)):

GP
0 (0) =

∫ ∞
0

w(x)Q (S0,λx) dx= Za(S0,λ,w(·)). (3.12)

If the warehouse is not empty which happens with probability Za (S0,λ,w(·)), the ar-

riving order to the warehouse is immediately satisfied and is sent to the DC which takes t

time units to be received by the DC with the PDF of δ(t). Otherwise, when the warehouse

is out of stock upon an order arrival with the probability 1−Za (S0,λ,w(·)), it takes t time

units with the PDF of f(t), to be received by the DC where f(t) is the convolution of the

waiting time distribution in the manufacturer and the transportation time between the

warehouse and the DC. Therefore, we get the distribution of the time between the instant

that an order is placed by the DC until its corresponding product is delivered to the DC,
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denoted by u(S0,λ, f(·), δ(·), t), as the following:

u(S0,λ, f(·), δ(·), t) = Za (S0,λ,w(·)) δ(t)+ (1− Za(S0,λ,w(·)))f(t). (3.13)

For mathematical convenience we use u(·) to refer to u(S0,λ, f(·), δ(·), t). Let U(·)
denote the CDF of u(·) given by (3.13). Similar to Theorem 3 and using (3.13), we find

the expected holding and shortage times of a unit demanded by the DC in the following

proposition.

Proposition 9 The expected holding and shortage times of a unit demanded by the DC

are:

W P (S,λ, u(·)) = Za (S,λ,U(·)) ,

WQ (S,λ, u(·)) = Za (S,λ,U(·))−u∗(1)(k)|k=0−
S

λ
. (3.14)

We next derive the warehouse inventory cost. Let W P
0 (S0, λ, w(·)) denote the expected

inventory carrying time for a unit in the warehouse. Since both the DC and the warehouse

use base-stock policy and receive demand according to a Poisson process, similar to the

derivation of (3.2) and Theorem 3, we obtain the expected inventory holding time for a

unit in the warehouse, denoted by W P
0 (S0, λ, w(·)), as:

W P
0 (S0, λ, w(·)) =

∫ ∞
0

Gp
0(t)dt = Za(S0, λ,W (·)), (3.15)

where W (·) is CDF of the waiting time distribution in the manufacturer with the PDF of

w(·).

Since the demand rate at the warehouse is λ, using Proposition 9 and (3.15), the average

total inventory cost in the system is determined by:

Π (S,S0, u(·)) =λ
(
Cost (S,u(·)) + h0W

P
0 (S0, λ, w(·))

)
,

where

Cost (S,u(·)) =hW P (S,λ, u(·)) +b WQ (S,λ, u(·)) . (3.16)
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Note that Cost (S,u(·)) denotes the average cost per unit at the DC when the lead-time

distribution is u(·).

We next show that the average total cost function given in (3.16) is convex in the base-

stock level S and derive a closed-form expression for the optimal base-stock level at the

DC.

Proposition 10 The average total inventory cost function, Π(S, S0, u(·)), is convex in the

base-stock level S. Therefore, the optimal base-stock S∗ can be obtained using

S∗ = min{k : γ (k, S0, u(·)) ≥ 0}, (3.17)

where γ (S, S0, u(·)) is

γ (S, S0, u(·)) = Za (S,λ,u(·))− b

(h+ b)
. (3.18)

Note that Za (S,λ,u(·)) is increasing in S for a given S0. Therefore, using a simple

iterative algorithm, we can find the optimal base-stock level at the DC, S∗, that satisfies

(3.17). Recall that in (3.17), u (·) is the PDF of the lead-time with the LT of u∗(s).

This lead-time is a convolution of the waiting time in the manufacturer with the base-

stock level S0, and the transportation time from the warehouse to the DC. Therefore, the

optimal reorder point depends on the base-stock level in the warehouse as well. However,

it is not straightforward to derive a closed-form expression for the optimal S∗ and S∗0 .

3.2 Two-Echelon Inventory System with Endogenous

Arrival Rate

We assume that customers arrive at the DC according to a Poisson process with a rate λ

and are served based on a First-Come First-Served (FCFS) policy. Each customer receives

the value V which is the difference between a product reward R and charged price Pr,

i.e. V = R − Pr. Once customers arrive at the DC, they decide to join the system and
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place an order with probability p or balk the system with probability 1 − p. Customers

make a decision based on their expected utility function which is linear with respect to the

product value V , and non-linear in the waiting time with the risk aversion degree θ. The

expected utility function for a customer is defined as:

U (p, Pr) = R− Pr − c x̄θ, (3.19)

where θ ≥ 1, x̄ is the mean delay before receiving the product, and c is a positive constant.

In this expected utility function, the marginal cost of waiting depends on the risk aversion

degree. If θ = 1, customers face a constant marginal cost of waiting, independent of how

much they have spent so far in the system, and suffer with a constant rate c while waiting.

In other words, customers are risk neutral with respect to the loss suffered from waiting.

In the case of θ > 1, the marginal cost of waiting in the system increases in the waiting

time. Therefore, customers are risk averse with respect to the loss.

Recall that the DC uses the base-stock policy to manage its inventory with the base-

stock level S. The orders received by the DC which find the DC out of stock are backlogged

and served based on a FCFS policy when the DC receives new units of the product. We

assume that the manufacturer operates from a warehouse that manages its inventory using

a base-stock policy with the base-stock level S0. Arriving orders that find the warehouse

out of stock are backlogged. When a production ends, the product is used to satisfy

backlogged orders, if there are any, based on the FCFS policy, otherwise, it is kept in the

warehouse. The production times at the manufacturer are exponentially distributed with

mean 1/µ. We assume that the transportation time between the manufacturer and the DC

is deterministic and is equal to T . Recall that the lead-time of an order placed by the DC is

the sum of the waiting time of the order at the manufacturer and the transportation time

from the manufacturer to the DC with the PDF f(·), CDF F (·), and Laplace Transform

(LT) f ∗(s). Assuming that the waiting time in the manufacturer and transportation time

are independently distributed, we get

f ∗(s) =

(
1−

(
λ̄

µ

)S0
)

e−sT +
e−sT

(
µ− λ̄

)
µ− λ̄+ s

(
λ̄

µ

)S0

, (3.20)

44



where λ̄ = λp is the effective arrival rate. We assume that the only cost for the DC is

inventory holding cost and revenue is collected by charging the price Pr. Let h denote

the inventory holding cost per unit per time. Note that Za(S,λ̄, f(·)) is the probability

that an arriving order finds the DC non-empty (see (3.4)). Now, considering the expected

inventory holding time given by Theorem 3, the expected revenue of the DC is obtained

as:

∆(S, λ̄, f) = λp(Pr − hW P
(
S,λ̄, f(·)

)
). (3.21)

Upon receiving a new order, the DC is not empty with probability Za(S, λ̄, f(·)) and is

thus immediately satisfied. Otherwise, the DC is out of stock and the expected lead time

to satisfy this order is (1− Za(S,λ̄,f(·)))(WQ
(
S,λ̄, f(·)

)
). Therefore, using (3.19) we can

rewrite the expected utility function of customers who join the system as:

U (p, Pr) = R− Pr − c (W̄ (p, S))θ, (3.22)

where W̄ (p, S) is the mean delay until receiving the product given by:

W̄ (p, S) = (1− Za(S,λ̄,f(·)))(WQ
(
S,λ̄, f(·)

)
). (3.23)

3.2.1 Joining Probability Equilibrium

Customers do not consider their negative externalities on others, and while their expected

utility function is positive, they join the system to gain a positive value. In this section,

we analyze the customer equilibrium joining probability and prove that the equilibrium

joining probability denoted by p is unique. First, we investigate the impact of the effective

arrival rate λ̄ on the mean delay function W̄ (p, S).

Lemma 3 Za
(
S,λ̄, f(·)

)
and W P

(
S,λ̄, f(·)

)
are monotone decreasing and WQ

(
S,λ̄, f(·)

)
is monotone increasing in λ̄.

Lemma 3 indicates that the probability that an arriving customer finds the warehouse

empty, 1− Za(S,λ̄,u(·)), is monotone increasing in the effective arrival rate (λ̄). Also, the
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expected waiting time of a unit at the DC, WQ
(
S,λ̄, u(·)

)
, increases when the effective

arrival rate rises. Consequently, according to (3.22), the customer’s expected utility func-

tion falls monotonically when the effective arrival rate increases. Using this property, we

characterize the Nash equilibrium for the joining probability p which is denoted by p̄.

Theorem 4 For a given S, the expected utility function is monotone decreasing in p and

there is a unique Nash equilibrium p where U (p̄, P r) = 0.

Theorem 4 states that if p < p, there is an incentive for customers to join the queue and

earn positive profit by placing an order. Otherwise, when p > p, customers who join the

queue incur losses and the equilibrium is pushed to p . Using Theorem 4 and (3.22), we

can obtain p as the solution of:

W̄ (p, S) = mθ, (3.24)

where mθ = ((R− Pr)/c) 1
θ which we call weighed-gain-loss ratio.

Next, we analyze the behavior of the system in two special cases where either all

customers join the system and place an order or no customer joins. First, we need to

investigate the effect of the base-stock level on the customer’s expected utility.

Lemma 4 For a given p, U (p, Pr) is monotone increasing with respect to the base-stock

level at the DC.

According to Lemma 4 and Theorem 4, it is clear that when the base-stock level increases,

the lead-time of the order declines and consequently the customer’s expected utility rises.

Since customers place an order with probability p, we are interested in finding the condi-

tions that, independently of the base-stock level, all customers will join the system or no

customer will join.

Proposition 11 Under the following conditions there is no partial join strategy.

i. The strategy p = 1 is a dominating strategy if

T +
1

µ− λ

(
λ

µ

)So

≤ mθ. (3.25)
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Figure 3.3: The effect of θ on the ex-

pected utility for S = 1.

Figure 3.4: The effect of θ on the ex-

pected utility for S = 5.

ii. The strategy p=0 is a dominant strategy if

mθ ≤ 0. (3.26)

The first condition given by (3.25) shows that if the mean lead-time in the DC is less than

the weighed-gain-loss ratio, all customers will join and p=1 is a dominant strategy. In

contrast, the second condition given by (3.26) states that no customer will join the queue

and a dominant strategy is p=0, if the weighed-gain-loss ratio is smaller than zero. We

can conclude that partial join strategy takes place if the weighed-gain-loss ratio is between

the two bounds given by (3.25) and (3.26).

3.2.2 Risk Aversion Degree Effect

In this section, we analyze the effect of θ on the customer behavior and decision. First, we

investigate the effect of θ on the customer’s expected utility function.

Lemma 5 For a given p, the customer’s expected utility function is concave in θ.
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Figure 3.5: The effect of θ on p for c =

3.8.

Figure 3.6: The effect of S on p.

Figures 3.3 and 3.4 show the effect of θ on the expected utility function in red when p = 0.4,

in blue when p = 0.5, and in green when p = 0.6 for two different base-stock levels. Lemma

5 indicates that increases in the benefit gained by a customer, declines when the risk aver-

sion degree rises. In other words, when customers become more risk averse, the marginal

benefit due to an increase in θ declines. Also, since ∂U(p,Pr)
∂θ

= −c W̄ θ(p, S) ln(W̄ (p, S)),

the customer’s expected utility can be increasing or decreasing with respect to θ based on

the base-stock level at the DC, as shown in Figure 3.3 when S = 1 and in Figure 3.4 when

S = 5.

Proposition 12 If the weighed-gain-loss ratio mθ > 1, the equilibrium joining probability,

p, is monotone decreasing and if weighed-gain-loss ratio mθ < 1, the equilibrium joining

probability is monotone increasing in θ. In both cases, p converges to p′ which is the

equilibrium joining probability when R− Pr = c.

As illustrated in Figure 3.5, when the value of the product, V = R − Pr, increases, the

equilibrium joining probability changes from increasing to decreasing with respect to the

aversion degree. When the value of product is higher than c, V > c, and customers

become more impatient (more risk averse), the weighed-gain-loss ratio declines resulting
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in a decrease in the joining probability. However, when the value of product is less than c,

V < c, and customers become more impatient, the weighed-gain-loss ratio rises resulting

in an increase in the joining probability. Also, as the risk aversion degree increases, for any

level of V , the equilibrium joining probability converges to a certain point p′.

Next, we analyze customer behavior with respect to the supply chain parameters such

as the transportation time and the base-stock levels at the DC.

Proposition 13 The equilibrium joining probability, p, is increasing in S.

Increasing the base-stock level at the DC reduces the lead-time, encouraging people to

place an order. Also as shown in Figure 3.6, by increasing the base-stock level, the marginal

increase in the joining probability is higher for the shorter transportation times. One reason

for this is that when the transportation time is low, any changes in the base-stock level has

a high impact on the expected lead-time and also on the probability of finding the DC out

of stock. Thus, in this case any changes in the base-stock level affect customer decision

much more than the case with longer transpiration times. In the following corollary, the

effect of transportation time on the joining probability is discussed.

Corollary 7 p is monotone decreasing in T .

3.2.3 DC as a Stackelberg leader

In this section, we investigate the interaction between customers as the followers and the

DC as the leader in a Stackelberg game. We then find the DC optimal expected revenue,

price, and the base-stock level. We assume that the DC as the leader, has complete

information about customers’ expected utility. According to the Stackelberg game as a

non-cooperative game, the leader (DC) takes an action first and commits to its strategy

to the followers (customers). Given the leader’s decision, the followers behaves as self-

maximization customers, then simultaneously make their own decision.
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In this system, the DC chooses the price and the base-stock level as its strategy σ =

(Pr, S), to maximize its expected revenue given in (3.21). Then, given the DC’s strategy,

customers as followers decide on choosing the probability of placing an order at the DC

considering their expected utility function given in (3.22). Customers are self-interested

and each strategy σ taken by the DC leads to an equilibrium joining probability (if any)

chosen by customers. Therefore, the objective of the DC is to find an optimal strategy σ∗

which leads to the Nash equilibrium for customers such that no customer will be better off

by unilaterally changing his strategy. To do so, the DC should consider the best response

function of customers for any given strategy σ and set the price and the base-stock level

according to this best response function. Since the DC plays as a monopolist, it can charge

a price Pr∗ to gain total surplus, i.e. U (p, Pr∗) = 0. Therefore, from (3.22) the optimal

price is obtained as:

Pr∗ = R− c W̄ θ(p, S). (3.27)

Knowing the customer response function, the DC can substitute the price Pr∗ and modify

its expected revenue function given by (3.21) as

∆̂(S, λp, f(·)) = λp
(
R−

(
c W̄ θ(p, S) + h W P (S, λp, f(·))

))
. (3.28)

Therefore, according to (3.28), the strategy of the DC as a Stackelberg leader is to find

the optimal base-stock level and the optimal joining probability (instead of price) (p∗, S∗)

which maximizes the expected revenue function defined in (3.28). We demonstrate that

for the optimal base-stock level S∗, the price Pr∗ = R− c W̄ θ(p, S) can induce the optimal

joining probability p∗, i.e. customers will choose p∗ as the Nash equilibrium, and the DC

can extract the total surplus (the sum of all customers’ surplus).

To obtain the optimal DC set (p∗, S∗), we first analyze the modified expected revenue

function given by (3.28) when the joining probability is exogenous.

Lemma 6 If the joining probability is exogenous, the modified expected revenue function

has a maximum in S.

The DC charges a price to obtain total surplus. According to Lemma 6, if the effective

arrival rate to the DC is fixed, the DC can find a base-stock level which maximizes the
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Figure 3.7: The effect of S on the mod-

ified expected revenue function for given

p.

Figure 3.8: The effect of p on the modi-

fied expected revenue function for given

S.

expected revenue function (Figure 3.7). If there is no price charged, the DC’s expected cost

(revenue) is increasing (decreasing) with respect to the base-stock level. However, since

the higher base-stock level gives a higher surplus to customers and therefore more gains

to the DC when a price is charged, there would be a unique maximum base-stock level for

the DC (Figure 3.7).

Next, we investigate the behavior of the modified expected revenue function with respect

to the joining probability when the base-stock level at the DC is given. This helps us to

prove the existence of the optimal set (p∗, S∗) for the DC.

Lemma 7 If the base-stock level at the DC is exogenous, the modified expected revenue

function has a maximum in p.

If the DC has no control on the base-stock level and only charges a price to control the ef-

fective arrival rate, there exists a joining probability which maximizes the expected revenue

(Figure 3.8). This happens because the joining probability has two opposing effects on the

modified expected revenue function; when the joining probability increases, according to

Lemma 3, the inventory holding cost at the DC decreases, however, according to (3.23)
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and (3.27), the charged price declines. Therefore, there should be a trade-off between these

two opposing forces in order to find the optimal probability and price.

Now assume that the DC can control the arrival rate by choosing the optimal base-

stock level and price. The DC knows the best response function of customers and gains

total surplus by charging a price. The firm suffers due to the inventory holding cost but it

benefits due to the charging price. Therefore, the DC is interested in choosing the optimal

policy to maximize its expected revenue. In the following theorem we develop the optimal

policy for the DC as the Stackelberg leader.

Theorem 5 If the DC operates as a Stackelberg leader, there exists an optimal set (p∗, S∗)

with corresponding Pr∗ which maximizes the modified expected revenue function.

According to Theorem 5, we can ensure that there always exists an optimal policy for the

DC as the leader. The important fact here is that the optimal set (p∗, S∗) is equivalent

to the optimal decision set (Pr∗, S∗). Since the DC gains total surplus by charging a

price, it always keeps the joining probability at the equilibrium point. In this case, instead

of choosing the optimal set (Pr∗, S∗), the DC can find the optimal set (p∗, S∗) and by

charging a price equal to the expected utility of a joining customer, the equilibrium joining

probability coincides with the optimal joining probability.

3.2.4 Observations

In this section, we discuss some interesting observations that are based on our numerical

examples. We vary the parameters as follows: the production rate µ = 1, holding cost at

the DC h ∈ {1, 2, 3, 4}, deterministic transportation time T ∈ [0, 5], the product reward

R ∈ [1, 5], waiting cost parameter c ∈ [0.1, 5.5], the risk aversion degree θ ∈ [1, 3], the

base-stock level in the warehouse S0 ∈ {1, 2, 3, 4, 5} and the arrival rate λ ∈ [0.5, 0.9].

Observation 1 The risk aversion (impatience) degree θ has a small effect on the joint

optimal (p∗, S∗) for short transportation times.
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Figure 3.9: The effect of θ on the optimal

base-stock.

Figure 3.10: The effect of θ on the opti-

mal joining probability.

As shown in Figure 3.9 and 3.10, changes in the optimal base-stock level and joining

probability are small with respect to changes in the risk aversion degree. One reason for

that is the charged price. Suppose the optimal set is (p∗, S∗) for a certain risk aversion

degree; when the risk aversion degree changes, the waiting cost changes and customers start

altering their joining probability. In this case, the DC can either change the base-stock

level, price or both. Numerical results demonstrate that the DC tends to maintain the

inventory cost at the same level, and to control the price in response to the risk aversion

degree changes. In this case, the DC is more interested in avoiding large changes in arrival

rate, resulting in small changes in the base-stock level. The DC can keep the base-stock

level at the same level by keeping the arrival rate at the same level using the charged

price. As discussed later, this observation helps us to find a good approximation for the

base-stock level and price for all levels of risk aversion degrees.

Lemma 8 If the risk aversion degree is equal to 1, the optimal base-stock level at the DC

is given by the solution of WQ (S − 1,λp, f(·)) = 0 where,

WQ (S − 1,λp, f(·)) =
hZa(S, λp, f(·))− c(1− Za(S, λp, f(·)))2

λpc(Za(S,λp,f(·))− Za(S − 1,λp,f(·)))
. (3.29)
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Figure 3.11: The relative error between the exact and approximation method.

Using (3.29) we can approximate the base-stock level for all values of the risk aversion

degree. First, we obtain the optimal base-stock level, denoted by Ŝ∗ when θ = 1; then,

for all other values of the risk aversion degree, we set the optimal base-stock level at Ŝ∗.

Since the optimal base-stock level is given for all θ, it is sufficient to find the optimal

joining probability. Using (p∗, Ŝ∗), the DC sets a price to obtain all customers’ surplus and

force customers to choose p∗ as the equilibrium joining probability. As shown in Figure

3.11, the gap in the expected revenue due to using this approximation instead of the exact

value is lower than 1% in most cases even when the risk aversion degree increases. The

importance of this result is that when the risk aversion degree changes, the DC can only

manage the price to avoid losing expected revenue. In other words, it is not necessary for

the DC to change the base-stock level and inventory holding facilities, while looking for

the appropriate price.

Observation 2 While the transportation time, T , increases, the optimal expected revenue

and price are decreasing.

As the transportation time increases, the lead-time increases. To respond to this change,

the DC increases the optimal base-stock level reducing the chance of being out of stock
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Figure 3.12: The effect of T on the p∗, S∗, optimal expected revenue, price and lead-time.

(Figure 3.12). However, it causes an increase in the inventory holding cost. Numerical

results show that an increase in the base-stock level cannot completely compensate the

effect of the transportation time. This forces the DC to slightly decrease the price to

encourage people to join the system and place an order, causing a decline in the expected

revenue (see Figure 3.12). Since the DC cannot compensate the effect of transportation

time by controlling its (Pr, S), it is beneficial for the supply chain planner to expedite the

transportation time much as possible.

Observation 3 Depending on the value of c, the optimal joining probability, price and

expected revenue can be increasing, decreasing nor neither with respect to the risk aversion

degree. Also, the value of c has very low effect on the optimal base-stock behavior.

As illustrated in Figure 3.13, the optimal base-stock level is smoothly increasing in the risk

aversion degree and also the parameter c does not change this behavior. However, when the

parameter c varies, the optimal joining probability shows different behaviors with respect

to θ (Figure 3.14). With low levels of the parameter c, customers are less interested in

joining the system when the risk aversion degree increases (see Figure 3.14). For high

values of the parameter c, by increasing the risk aversion degree, the joining probability

and expected revenue start increasing (consistent with Proposition 12). In short, we can

conclude that the behavior of the joining probability, price and expected revenue, highly
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Figure 3.13: The effect of θ on the op-

timal base-stock with different values of

the parameter c.

Figure 3.14: The effect of θ on the opti-

mal joining probability with different val-

ues of the parameter c.

depends on the value of c (Figure 3.15). While the parameter c increases, the DC applies

its control policy, (Pr, S), to manage the arrival rate. As shown in Figure 3.16, when

the parameter c increases, the DC smoothly increases the base-stock level to reduce the

lead-time and lower the price to compensate the customer losses imposed by the waiting

cost. Numerical results demonstrate that the DC cannot completely compensate the effect

of the waiting cost changes using (Pr∗, S∗) control policy, and consequently loses some

revenue.
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Figure 3.15: The effect of θ on the optimal expected revenue and price with different values

of the parameter c.

Figure 3.16: The effect of c on the optimal expected revenue, p∗, S∗, price and lead-time.
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Chapter 4

Conclusions and Future Research

In this study we analyzed customer behavior and system manager’s strategy in two different

settings: (1) customers are served in a service system, or (2) they receive a product in a

supply chain.

In the first model, we analyzed customer decisions regarding balking and reneging

from a queue. To capture behavioral factors, we employed a non-linear concave-convex

waiting cost function. To the best of our knowledge, this research is the first attempt to

analyze customer decisions with respect to mixed-risk behavior in queue. We also studied

the socially optimal strategy and focused on characterizing a control policy to eliminate

the negative effects of customer externalities by proposing a joint abandonment threshold

and pricing mechanism. Using the abandonment threshold policy, we demonstrated that

customers choose this threshold as a Nash equilibrium, i.e. under this threshold no one

will be better off by choosing a reneging time less than this abandonment threshold. In

order to eliminate negative externalities imposed by customers, we proved that the planner

must charge a fee as well as applying an abandonment threshold. We determined how

a revenue maximizer can induce the socially optimal behavior and achieve the optimal

profit by adopting an appropriate joint entrance-fee/abandonment-threshold mechanism.

Our results showed that customer anticipation of the delay has considerable effects on her

strategic behavior. More broadly, we illustrated the critical impact of an anticipation point
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on the social welfare and expected revenue. From the firm’s perspective, customers with a

moderate anticipation point provide a higher expected revenue.

Our main contributions to the customer strategic behavior in a service system literature

are as follows:

1. We considered a non-linear waiting cost function with mixed-risk behavior and an

anticipation point. In this context we fully characterized the threshold structure of

customer’s decision.

2. We fully characterized the socially optimal balking and abandonment strategy and

determined when partial or fully join strategy is optimal.

3. We demonstrated that pricing mechanism cannot induce the socially optimal behav-

ior, and therefore we introduce a joint pricing and abandonment threshold mechanism

to capture total surplus. We showed how this mechanism changes customer behavior

in joining/reneging inducing a socially optimal behavior. We numerically illustrated

that the firm’s expected revenue is much greater when customers have a moderate

anticipation point compared to an excessively high anticipation point.

Our model and results provide theoretical support for queue control policies. The findings

also suggest that it is critical for firms to understand customer behavior with respect to

delay cost and anticipation point. We demonstrated how an organization can achieve

optimal profit by adopting an appropriate abandonment threshold and pricing mechanism.

Our results showed that customer anticipation of the delay has considerable effects on

self-maximization and socially optimal behavior.

In the second model, considering a two-echelon production-inventory system with en-

dogenous lead-times and the base-stock policies, we obtained a closed-form expression to

find the optimal base-stock level at the DC, when the arrival rate is exogenous. Then,

we investigated customer behavior and the supply chain manager’s strategy considering

the endogenous arrival rate scenario. We considered a two-echelon production inventory

system with a single DC and a manufacturer operating from a warehouse, in which the DC
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acts as a Stackelberg leader and customers are the followers. Customers who are impatient

and risk averse arrive at the DC according to a Poisson process. We assumed that risk

averse customers use strategy (p) where they place an order with probability p. To the

best of our knowledge, there is no study that analyzes the strategy of supply chain holder

and equilibrium behavior of customers with respect to different degrees of risk aversion

(impatience) in a multi-echelon inventory system.

Our main contributions to the customer strategic behavior in a production inventory

system literature are as follows:

1. We investigated the effect of the risk aversion degree on the customer’s expected

utility function, equilibrium joining probability and optimal expected revenue. We

demonstrated that for any level of risk aversion , there is an optimal policy, i.e.

optimal price and base-stock level, for the DC.

2. We also showed that the price has a dominant effect on customer decision and the

optimal expected revenue when the risk aversion degree changes. It means that for

different levels of impatience, the price is a principal factor in controlling the system

while the base-stock level can be kept unchanged.

This thesis can stimulate further research. There are many directions that can be

explored in the future considering either service systems or production systems:

1. Service Systems

In our research we consider a service system with a single service provider where

rational homogeneous customers decide whether to join the queue and how long

to wait before reneging. However, in future research, homogeneity assumption can

be relaxed to consider heterogeneous customers. In this case, we may consider the

following deviations: the anticipation time β and the service value V can follow

certain distributions over the population. It means that customers have different

anticipation toward delay and the server provides different values for customers.
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Another direction is related to the service provider. First of all, the assumption on

the service time distribution can be relaxed and we can assume that the service times

are generally distributed. Moreover, we may consider server vacation times which

are periods of time that the server is away from the queue. Also, assuming a finite

waiting room with multiple servers can be other possible directions. We think these

extensions are important areas of further research from both practical and theoretical

aspects.

2. Production Systems

In this research we analyze the optimal strategy of a single centralized decision maker

(DC) who plays as a Stackelberge leader in a two-echelon production inventory system

and provides a single product to homogeneous customers. Our model can be extended

to include multiple products in further investigation. In addition, we can assume

that customers have different risk aversion degrees and they also gain different values

from receiving the product. In particular, in order to study the effect of customer

heterogeneity on the supply chain planner’s strategy, we can assume that the product

reward R and the risk aversion degree θ follow certain distributions.

Furthermore, the customer’s strategy is a critical issue worth considering. In our

research we assume that customers decide whether to join the system and place

an order, however, future research can assume that customers are impatient and

may cancel the order after waiting for some time. Therefore, future work may seek

the effect of the both backorder and lost sale costs on the supply chain manager’s

strategy. Also, we can consider a decentralized supply chain where the DC and the

manufacturer make decision based on their own benefit. In this case, future research

question can focus on investigating appropriate coordination mechanisms between

the manufacturer and the DC considering risk averse customers.
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Appendix A

Proofs

A.1 Control Mechanism in a Queue with Joint Balk-

ing and Reneging Strategy

A.1.1 Proof of Proposition 1

Recall that Gp
T (x) is the distribution of offered waiting time (including service time). An

arriving customer wants to maximize her expected utility by choosing an appropriate reneg-

ing time regarding the offered waiting time. When all other customers follow the T strategy,

the expected utility function given in (2.4) can be rewritten as:

UT (p, τ) = V Gp
T (τ)−

∫ τ

0

C(x) gpT (x) dx− C(τ) (1−Gp
T (τ)). (A.1)

Applying integration by parts, we get

UT (p, τ) = V Gp
T (τ)−

∫ τ

0

∂C(x)

∂x
(1−Gp

T (x))dx. (A.2)

According to (A.2), the first derivative of the expected utility with respect to the customer’s

reneging time τ is:

∂UT (p, τ)

∂τ
= V

∂Gp
T (τ)

∂τ
− ∂C(τ)

∂τ
(1−Gp

T (τ)). (A.3)
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Therefore, local extremums occur where ∂UT (p,τ)
∂τ

= 0 for τ > 0, which results in
∂G

p
T
(τ)

∂τ

(1−GpT (τ))
=

∂C(τ)
∂τ

V
.

A.1.2 Proof of Corollary 1

According to (2.5), since the hazard rate function is bounded by µ, i.e., hT (τ) ≤ µ, and

the cost-reward ratio is monotone increasing for all τ ≥ β, and limτ→∞ γ(τ) =∞, we can

conclude that when τ → ∞, the hazard rate function is less than the cost-reward ratio

function (the cost-reward ratio will never cross the hazard rate function at a point greater

than µ) indicating that each arriving customer will eventually renege the system after

spending a certain amount of time. The best scenario for an arriving customer is when no

one is in the system and the hazard rate is equal to µ. In this case, an arriving customer

will renege the system when the cost-reward ratio function passes the hazard rate function

from below. Therefore, the maximum abandonment threshold is where γ(τ) = µ. Using

(2.5) we get the maximum reneging time given in (2.7).

A.1.3 Proof of Proposition 2

We investigate the roots of hT (τ) = γ(τ) to find the local extremums of an individual

customer’s expected utility function. According to (2.5), since the the cost-reward ration

function is monotone decreasing before reaching τ = β and monotone increasing in τ

after passing τ = β, we investigate the roots of hT (τ) = γ(τ), when τ ≤ β and τ > β,

respectively. Since the cost-reward ratio function is monotone decreasing in τ < β, without

loss of generality, we can assume that T is always greater than β. A candidate for a local

extremum is a point τ where hT (τ) = γ(τ), i.e.,
µ (µ−λ p)

µ−λ pe−(µ−λ p)(T−τ) = c(τ−β)2α−2(2α−1)
V

, τ < T

µ = c(τ−β)2α−2(2α−1)
V

, T ≤ τ
. (A.4)

1. Suppose that τ ≤ β. Note that the cost-reward function is monotone decreasing

in this interval and γ(β) = 0. Since according to (2.5), hT (τ) is a non-decreasing
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positive function, if h(0) < γ(0) we can conclude that hT (τ) = γ(τ) has exactly one

root at which the sign of hT (τ) − γ(τ) is changed from negative to positive. This

means that τ is a local minimum point. Solving h(0) < γ(0), we get

V <

(
µ− λ pe−(µ−λ p)T ) c (2α− 1) β2α−2

µ (µ− λ p)
. (A.5)

We denote the right-hand side of (A.5) by V̄1(β, p, T ).

2. Suppose that τ > β. The cost-reward ratio is monotone increasing in this interval.

Since the hazard rate function is a positive non-decreasing function and it is constant

after time T , i.e. h(T ) = µ, then hT (τ) = γ(τ) can have one or more roots in this

interval (note that γ(β) = 0 and limτ→∞ γ(τ) =∞). Reconsidering (A.4),

1− V (µ− λ p) (τ − β)−2α+2

c (2α− 1)
=


λ pe−(µ−λ p)(T−τ)

µ
β ≤ τ < T

λp/µ T ≤ τ
. (A.6)

The left hand side of (A.6), denoted by I1(τ), is concave and monotone increasing for

τ ≥ β and the right hand side, denoted by I2(τ), is convex and monotone increasing

positive function for τ ≤ T bounded by λp/µ, and it is constant after time T . Also,

we have,

I1(τ) =

−∞, τ → β

1 τ →∞
,

and

I2(τ) =


λ pe−(µ−λ p)(T−β)

µ
, τ → β

λp/µ ≤ 1 τ →∞
. (A.7)

Therefore, we can conclude that I1(τ) = I2(τ) has at least one root and at most

three roots for τ ≥ β. In this case, if I1(T ) > I2(T ) (which means hT (T ) < γ(T )),

then (A.6) has at most one root, resulting in changing the sign of hT (τ) − γ(τ)

from positive to negative (local maximum point). However, if I1(T ) ≤ I2(T ) (which

means hT (T ) ≥ γ(T )), then (A.6) has one or three roots (note that λp/µ ≤ 1),

i.e., the cost-reward ratio function crosses the hazard rate function at one or three
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points. In this case, considering I1(T ) ≤ I2(T ) and using (A.7), if I1(τ) crosses I2(τ)

at exactly one point, this point must be greater than T , resulting in changing the

sign of hT (τ)− γ(τ) from positive to negative (local maximum point); otherwise, in

the case of having three roots, at the first (τ < T ) and last point (τ ≥ T ), the sign

of hT (τ)− γ(τ) is changed from positive to negative (local maximum point). Solving

h(T ) < γ(T ), we get V < V̄2(β, T ), where

V̄2(β, T ) =
c (2α− 1) (T − β)2α−2

µ
.

A.1.4 Proof of Corollary 2

Note that for any τ ≥ T the hazard rate function is equal to µ. According to the proofs of

Proposition 2 and Corollary 1, the results are immediate.

A.1.5 Proof of Proposition 3

1. Suppose p is given. In this case the optimal T for the social welfare function λpUT (p, T ),

is the same for UT (p, T ). Therefore, instead of the social welfare function, we can consider

the expected utility function in our analysis. Based on (A.2),

∂UT (p, T )

∂T
=

V
∂Gp

T (T )

∂T
+ c

∫ T

0

(2α− 1) (x− β)2α−2(
∂Gp

T (x)

∂T
)dx− c(2α− 1) (T − β)2α−2(1−Gp

T (T )).

(A.8)

Considering (2.2),

∂Gp
T (x)

∂T
= −

µ
(
1− e−(µ−λ p)x)λ p (µ− λ p) e−(µ−λ p)T

(µ− λ pe−(µ−λ p)T )
2 ,

∂Gp
T (T )

∂T
=
µ (µ− λ p)2 e−(µ−λ p)T

(µ− λ pe−(µ−λ p)T )
2 . (A.9)
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Therefore,
∂UT (p, T )

∂T
= F1(T ) (F2(T )− F3(T )), (A.10)

where

F1(T ) =
µ (µ− λ p) e−(µ−λ p)T

(µ− λ pe−(µ−λ p)T )
2 ,

F2(T ) =

λpc

(∫ T

0

(2α− 1)(x− β)(2α−2)e−(µ−λ p)xdx+
(2α− 1)

µ
(T − β)(2α−2)e−(µ−λ p)T

)
,

F3(T ) = λcp
(
(T − β)2α−1 + β2α−1

)
+ c(2α− 1)(T − β)2α−2 − V (µ− λ p) . (A.11)

Note that F1(T ) > 0 since µ > λp. Therefore, the behavior (sign and number of

extreme points) of ∂UT (p,T )
∂T

is derived by F2(T )− F3(T ). We next investigate the behavior

of F2(T )− F3(T ). Considering (A.11), we have,

dF2(T )

dT
=
λcp

µ
e(−µ+λ p)T (2α− 1)(T − β)2α−3 (2α− 2 + λ p(T − β)) ,

dF3(T )

dT
= c(2α− 1)(T − β)2α−3(2α− 2 + λp(T − β)). (A.12)

Note that since dF2(T )
dT

= λp
µ
e(−µ+λ p)T dF3(T )

dT
and µ > λp, then

|dF2(T )

dT
| < |dF3(T )

dT
|. (A.13)

Also, dF2(T )
dT

= dF3(T )
dT

= 0 if and only if T = β − 2 (α−1)
λ p

or T = β. We denote these two

points by T1 and T2, respectively, i.e., T1 = β − 2 (α−1)
λ p

and T2 = β. Considering that α

is an integer greater than one, T1 and T2 are the local maximum and minimum points,

respectively, of both F2(T ) and F3(T ). To characterize the behavior of ∂UT (p,T )
∂T

, we need

to identify the conditions under which F2(T ) and F3(T ) cross each other (due to A.10).

We only need to examine the relative position of F1(T ) and F2(T ) at T = 0, T = T1, and

T = T2 (see Figures A.1 and A.2) since |dF2(T )
dT
| < |dF3(T )

dT
|, dF2(T )

dT
= dF3(T )

dT
= 0 at T1 and

T2, and limT→∞ F2(T ) < limT→∞ F3(T ) (based on A.11).

We next examine F1(T ) and F2(T ) at T = 0, T = T1, and T = T2.
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Figure A.1: The behavior of F2(T ) (red

curve) and F3(T ) (green curve) in T

when β < 2 (α+1)
λ p

.

Figure A.2: The behavior of F2(T ) (red

curve) and F3(T ) (green curve) in T

when β > 2 (α+1)
λ p

.

(i) Consider T = 0:

F2(0) =
λ pc (2α− 1) β2α−2

µ
,

F3(0) = c (2α− 1) β2α−2 − V (µ− λ p) . (A.14)

Therefore, F2(0) < F3(0) if V < c(2α−1)β2α−2

µ
. Let

V2(β) =
c (2α− 1) β2α−2

µ
. (A.15)

(ii) Consider T = T2 = β:

F2(β) = λ pc

∫ β

0

(2α− 1) (x− β)2α−2 e−(µ−λ p)x dx,

F3(β) = λ pcβ2α−1 − V (µ− λ p) . (A.16)

Therefore, F2(β) < F3(β) if

V <
λ pc

(∫ β
0

(2α− 1) (x− β)2α−2 e(λ p−µ)x dx− β2α−1
)

λ p− µ
.
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Let

V1(β, p) =
λ pcβ2α−1 (1−M (1, 2α, − (µ− λ p) β))

µ− λp
, (A.17)

where M(a, b, z) is is the confluent hypergeometric function of the first kind defined

as

M (1, 2α, (λ p− µ) β) = β1−2α

∫ β

0

(2α− 1) (x− β)2α−2 e−(µ−λ p)x dx. (A.18)

(iii) Consider T = T1 = β − 2 α−1
λ p

:

F2(β − 2
α− 1

λ p
) = λpc

(∫ β−2 α−1
λ p

0

(2α− 1) (x− β)2α−2 e−(µ−λ p)x dx

)

+ λpc

(
2α− 1

µ

(
−2

α− 1

λ p

)2α−2

e(β−2 α−1
λ p )−(µ−λ p)

)
,

F3(β − 2
α− 1

λ p
) = λ pc

((
−2

α− 1

λ p

)2α−1

+ β2α−1

)

+ c (2α− 1)

(
−2

α− 1

λ p

)2α−2

− V (µ− λ p) .

Therefore, F2(β − 2 α−1
λ p

) < F3(β − 2 α−1
λ p

) if

V < − c

µ − (µ− λ p)(
− (2α− 1)

(
λ pe(β−2 α−1

λ p )−(µ−λ p) − µ
)(−2α + 2

λ p

)2α−2

+p

((
−2α + 2

λ p

)2α−1

− J + β2α−1

)
µλ

)
,

(A.19)

where,

J =

∫ β−2 α−1
λ p

0

(2α− 1) (x− β)2α−2 e(λ p−µ)x dx =
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e−(µ−λ p)β
∫ β

2 α−1
λ p

(2α− 1) y2α−2e−−(µ−λ p)y dy.

(A.20)

Recall that Γ(α, z) denotes the incomplete Gamma function given by

Γ(α, z) =

∫ ∞
z

tα−1e−tdt, (A.21)

where Γ(α) = Γ(α, 0). Considering the definition of Γ(α, z) (see e.g., Abramowitz

and Stegun, 1964), we get∫ −a
0

y2α−2e−y dy = −a

(
− Γ (2α)

(2α− 1) a
+

(−a)2α ea

(2α− 1) a2
+

Γ (2α,−a)

(2α− 1) a

)
. (A.22)

Let k1 = 2 (α−1)(µ−λ p)
λ p

and k2 = β (µ− λ p). Substituting (A.22) in (A.20), we get

J =
e−(µ−λ p)β (k1

2αek1k2 −
(
k2

2αek2 + k2 (Γ (2α,−k2)− Γ (2α,−k1))
)
k1

)
− (µ− λ p)2α−1 k1k2

=
k1

2αek1−k2k2 − k1k2
2α − e−k2k2 (Γ (2α,−k2)− Γ (2α,−k1)) k1

− (µ− λ p)2α−1 k2k1

= β2α−1 −
(

2
α− 1

λ p

)2α−1

ek1−k2 +
e−k2 (Γ (2α,−k2)− Γ (2α,−k1))

(µ− λ p)2α−1 . (A.23)
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Substituting (A.23) in (A.19), we get F2(β − 2 α−1
λ p

) < F3(β − 2 α−1
λ p

) if

V < −
c (2α− 1)

(
λ pek1−k2 − µ

)
µ (µ− λ p)

(
2
α− 1

λ p

)2α−2

+
cpλ

µ− λ p

(
−
(

2
α− 1

λ p

)2α−1

+

(
2
α− 1

λ p

)2α−1

ek1−k2

−e−k2k2 (Γ (2α,−k2)− Γ (2α,−k1))

β (µ− λ p)2α

)
=

c

µ (µ− λ p)(
− (2α− 1)λ pek1−k2

(
2
α− 1

λ p

)2α−2

+ µ (2α− 1)

(
2
α− 1

λ p

)2α−2
)

+
c

µ (µ− λ p)(
−pµ λ

(
2
α− 1

λ p

)2α−1

+

pµ λ

(
2
α− 1

λ p

)2α−1

ek1−k2 − pe−k2k2 (Γ (2α,−k2)− Γ (2α,−k1))µλ

β (µ− λ p)2α

)
=

c
(
(2 (α− 1) (−λ p+ µ)− λ p) ek1−k2 + µ

)
µ (µ− λ p)

(
2
α− 1

λ p

)2α−2

−cλ pe
−k2 (Γ (2α,−k2)− Γ (2α,−k1))

(µ− λ p)2α

= c

(
β

k2

)2α−1

(
k1

2α−2
(
λ p (k1 − 1) ek1−k2 + µ

)
µ

− λ pβ e−k2 (Γ (2α,−k2)− Γ (2α,−k1))

k2

)
.

(A.24)

Let V3(β, p) = c
(
β
k2

)2α−1
(
k1

2α−2(λ p(k1−1)ek1−k2+µ)
µ

− λ pβ e−k2 (Γ(2α,−k2)−Γ(2α,−k1))
k2

)
. We next

examine the behavior of UT (p, T ) considering two cases: 1) T1 ≤ 0, 2) T1 > 0. Recall that

T1 and T2 are the local maximum and minimum points, respectively, of both F2(T ) and

F3(T ).
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(a) Suppose T1 ≤ 0, i.e., β < 2 (α+1)
λ p

.

• Considering that T2 is the global minimum of both F2(T ) and F3(T ) as well as

the fact that |dF2(T )
dT
| < |dF3(T )

dT
| (due to (A.13)), if F2(0) < F3(0) and F2(β) >

F3(β), the equation F2(T ) − F3(T ) = 0 has two roots such that it is positive

between these roots and negative otherwise. Note that F2(0) < F3(0) and

F2(β) > F3(β) if and only if V1(β, p) < V < V2(β) due to (i) and (ii). Thus,

considering (A.10), we conclude that if V1(β, p) < V < V2(β), then UT (p, T ) is

bimodal and decreasing at T = 0.

• On the other hand, if V > V2(β), then F2(0) > F3(0). Therefore, according to

(A.12) and (A.13), F2(T ) − F2(T ) = 0 has exactly one positive root at which

the function is decreasing. Considering (A.11), we conclude that if V > V2(β),

UT (p, T ) is unimodal in T (≥ 0) and has a positive maximum point.

• If V < V2(β) and V < V1(β, p) or equivalently F2(0) > F3(0) and F2(β) <

F3(β) (based on (i) and (ii)), then the equation F2(T ) − F3(T ) does not have

a nonnegative real-value solution. This is due to |dF2(T )
dT
| < |dF3(T )

dT
|. Therefore

if V < min (V2(β), V1(β, p)), according to (A.11) the expected utility function

UT (p, T ) is monotone decreasing in T .

(b) Suppose that T1 and T2 are positive.

• If V1(β, p) < V < V2(β) or equivalently F2(0) < F3(0) and F2(β) > F3(β),

according to (A.12) and (A.13), F2(T )−F3(T ) = 0 has two roots; thus, UT (p, T )

is bimodal and decreasing at T = 0.

• If V2(β, p) < V < V3(β, p) and V1(β, p) < V or equivalently F2(0) > F3(0),

F2(β − 2 (α+1)
λ p

) < F3(β − 2 (α+1)
λ p

), and F2(β) > F3(β), then according to (A.12)

and (A.13), F2(T )− F3(T ) = 0 has three roots. Based on (A.11), UT (p, T ) has

two positive maximum points and one minimum point.

• When V3(β, p) < V or V2(β, p) < V < V1(β, p), F2(β − 2 (α+1)
λ p

) > F3(β − 2 (α+1)
λ p

)

or F2(0) > F3(0) and F2(β) < F3(β) due to (i), (ii) and (iii). Then, according
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to (A.12), F2(T )− F3(T ) has one root resulting in UT (p, T ) to be unimodal in

T and there is a positive maximum point.

• If V < V2(β) and V < V1(β, p) or equivalently F2(0) > F3(0) and F2(β) < F3(β),

similar to the case T1 ≤ 0, UT (p, T ) is monotone decreasing in T .

2. Before proving V1(β, p) and V3(β, p) are increasing in p and β, we provide a lower

and an upper bound for the confluent hypergeometric function M (1, 2α, − (µ− λ p) β).

Lemma 9 For M (1, 2α, (λ p− µ) β) we have,

2α− 1

(µ− λp) β + 2α− 1
< M (1, 2α, − (µ− λ p) β) <

2α

(µ− λp) β + 2α
. (A.25)

Proof.

Using the definition of M (1, 2α, − (µ− λ p) β) given in (A.18) we have,

∂M (1, 2α, − (µ− λ p) β)

∂p
=

λ ((−β λ p+ β µ+ 2α− 1) M (1, 2α, (λ p− µ) β)− 2α + 1)

µ− λ p
> 0. (A.26)

The last inequality is due to µ > λp. Therefore, the lower bound is obtained as,

2α− 1

(µ− λp) β + 2α− 1
< M (1, 2α, − (µ− λ p) β).

We next obtain the upper bound. Note that for any x > 0 we have e−x < 1/(x+ 1). Thus,∫ β

0

(2α− 1) (x− β)2α−2 ((µ− λp)x+ 1) e−(µ−λ p)x dx <

∫ β

0

(2α− 1) (x− β)2α−2 dx = β2α−1. (A.27)
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Multiplying both sides by λβ−(2α−1) we get,

λβ−(2α−1)

(∫ β

0

(2α− 1) (x− β)2α−2 ((µ− λp)x) e−(µ−λ p)x dx

+

∫ β

0

(2α− 1) (x− β)2α−2 e−(µ−λ p)x dx

)
< λ.

Therefore, considering (A.18), we get

∂M (1, 2α, − (µ− λ p) β)

∂p
+

λ

µ− λp
M (1, 2α, − (µ− λ p) β) <

λ

µ− λp
. (A.28)

Substituting (A.26) in (A.28), we get

λ ((−β λ p+ β µ+ 2α− 1) M (1, 2α, (λ p− µ) β)− 2α + 1)

µ− λ p
<

λ

µ− λp
(1−M (1, 2α, − (µ− λ p) β)) .

Therefore,

M (1, 2α, − (µ− λ p) β) <
2α

(µ− λp) β + 2α
. �

(i) We first prove that V1(β, p) is increasing in p. Considering (A.17), we get

∂V1(β, p)

∂p
= (λβ2α−1c)

((p2β λ2 − p (β µ+ 2α− 1)λ− µ)M (1, 2α, − (µ− λ p) β) + p (2α− 1)λ+ µ)

− (µ− λ p)2 .

(A.29)

Note that (p2β λ2 − p (β µ+ 2α− 1)λ− µ) is the only term in (A.29) that can be

negative. Substituting the upper bound given in Lemma 9 in (A.29), we get

∂V1(β, p)

∂p
>

β2αcλ

(µ− λ p) β + 2α
> 0.

Thus, V1(β, p) is monotone increasing in p.
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(ii) We next prove that V3(β, p) is increasing in p when T1 = β − 2(α−1)
λp

> 0.

Let V̂ (β, p, T ) denote the value of service (V ) at which F2(T ) = F3(T ). Then,

V̂ (β, p, T ) =
c (2α− 1)

(
λ pe−(µ−λ p)T − µ

)
(T − β)2α−2

µ − (µ− λ p)

+
cpλ

(∫ T
0

(2α− 1) (x− β)2α−2 e(λ p−µ)x dx− (T − β)2α−1 − β2α−1
)

λ p− µ
.

(A.30)

According to (A.11), V3(β, p) denotes the value of the service (V ) at which F2(T1)

= F3(T1) where T1 = β − 2(α−1)
λp

. Therefore,

∂V3(β, p)

∂p
=
∂V̂ (β, p, T )

∂p
+
∂V̂ (β, p, T )

∂T

∂T

∂p
|
T=β− 2(α−1)

λp

. (A.31)

The second term in (A.31) is zero based on (A.12),

dF2(T )

dT
|
T=β− 2(α−1)

λp

=
dF3(T )

dT
|
T=β− 2(α−1)

λp

= 0.

Therefore, ∂V3(β,p)
∂p

= ∂V̂ (β,p,T )
∂p

;

∂V̂ (β, p, T )

∂p
=
λ c (−Z1(p, T ) + Z2(p, T ))

µ − (µ− λ p)2 , (A.32)

where

Z1(p, T ) = µ2

∫ T

0

(2α− 1) (x− β)2α−2 e−(µ−λ p)x dx− µ p

− (µ− λ p)
∫ T

0

(2α− 1) (x− β)2α−2 λxe−(µ−λ p)x dx,

Z2(p, T ) = µ
(
(2α− 1) (T − β)2α−2 + µ

(
(T − β)2α−1 + β2α−1

))
− (T − β)2α−2 (µ+ Tλ p (−λ p+ µ)) (2α− 1) eT−(µ−λ p). (A.33)

Thus, ∂V̂ (p,T )
∂p

> 0 if Z1(p, T ) < Z2(p, T ). Note that Z1(p, 0) = Z2(p, 0) = 0. Then,

to prove Z1(p, T ) < Z2(p, T ), we will show that ∂Z1(p,T )
∂T

< ∂Z2(p,T )
∂T

in the interval
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[0, β − 2(α−1)
λp

]. Considering (A.33), we get

∂Z1(p, T )

∂T
= − (2α− 1) (−β + T )2α−2 e−(µ−λ p)T (p (λ p− µ)λT − µ)µ,

∂Z2(p, T )

∂T
= (T − β)2α−3 µ ((2α− 1) (2α− 2) + (2α− 1)µ (T − β))

− (T − β)2α−3 eT (λ p−µ)

((2α− 2) (µ+ Tλ p (−λ p+ µ)) (2α− 1) + λ p (T − β) (−λ p+ µ) (2α− 1)

+ (T − β) (µ+ Tλ p (−λ p+ µ)) (2α− 1)− (µ− λ p)). (A.34)

Therefore,

∂Z2(p, T )

∂T
− ∂Z1(p, T )

∂T
= (T − β)2α−3 (2α− 1)(((

−Tp2 (T − β)λ2 − 2 p (αT − β)λ− 2α + 2
)
µ

+ (pT (T − β)λ+ 2αT − T − β)λ2p2

)
eT (λ p−µ)

+µ (2α− 2 + µ (T − β))

)
.

Considering T < β, we conclude that ∂Z2(p,T )
∂T

− ∂Z1(p,T )
∂T

> 0 if and only if(
−Tp2 (T − β)λ2 − 2 p (αT − β)λ− 2α + 2

)
µ

+
(
(pT (T − β)λ+ 2αT − T − β)λ2p2

)
+µ (2α− 2 + µ (T − β)) e−T (λ p−µ) < 0,

or equivalently if and only if

eT (µ−λ p) >

−(−Tp2 (T − β)λ2 − 2 p (αT − β)λ− 2α + 2)µ

µ (2α− 2 + µ (T − β))

− (pT (T − β)λ+ 2αT − T − β)λ2p2

µ (2α− 2 + µ (T − β))
. (A.35)
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To prove the above inequality, we first show that the right hand side of (A.35) is

increasing in β, and then demonstrate that the inequality holds even when β →∞.

Let

Z3(p, T ) =

−(−Tp2 (T − β)λ2 − 2 p (αT − β)λ− 2α + 2)µ

µ (2α− 2 + µ (T − β))

− (pT (T − β)λ+ 2αT − T − β)λ2p2

µ (2α− 2 + µ (T − β))
. (A.36)

Then,
∂Z3(p, T )

∂β
= 2

(pλ− µ)2 (α− 1) (pTλ+ 1)

µ (2α− 2 + µ (−β + T ))2 > 0.

Therefore, the right hand side of (A.35) is less than or equal to

lim
β→∞

Z3(p, T ) = −λ (Tp2λ2 + (−Tµ+ 1) pλ− 2µ) p

µ2
.

Considering that e−T−(µ−λ p) > 1 + (−λ p+ µ)T , we get

e−T−(µ−λ p) > 1 + (−λ p+ µ)T > −λ (Tp2λ2 + (−Tµ+ 1) pλ− 2µ) p

µ2
> Z3(p, T ),

which completes the proof that V3(β, p) is increasing in p.

(iii) Next, we prove that V1(β, p) and V3(β, p) are increasing in β. Similar to (A.31)

∂V1(β, p)

∂β
=
∂V̂ (β, p, T )

∂β
|T=β +

∂V̂ (β, p, T )

∂T

∂T

∂β
|T=β, (A.37)

∂V3(β, p)

∂β
=
∂V̂ (β, p, T )

∂β
|
T=β− 2(α−1)

λp

+
∂V̂ (β, p, T )

∂T

∂T

∂β
|
T=β− 2(α−1)

λp

. (A.38)

Similar to (A.31) and based on (A.12), the second terms in (A.37) and (A.38) are zero.

Therefore, to show that V1(β, p) and V3(β, p) are increasing in β, we demonstrate that
∂V̂ (β,p,T )

∂β
is increasing in β for T ≤ β. Considering (A.30), we get

∂V̂ (β, p, T )

∂β
= (A1)(A2 + A3),
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where

A1 =
c

(T − β) β µ (λ p− µ)
,

A2 = β
(
µ− λ peT (λ p−µ)

)
(2α− 2) (2α− 1) (T − β)2α−2 ,

A3 = (2α− 1) pµλ(T − β)(
β (T − β)2α−2 − β2α−1 − β

∫ T

0

(2α− 2) e(λp−µ)x (x− β)2α−3 dx)

)
.

Since µ > λp, A1 > 0 and A2 > 0 for T ≤ β. Also, A3 ≥ 0 due to T ≤ β. Thus,
∂V̂ (β,p,T )

∂β
is increasing in β for T ≤ β.

(iv) From (A.15), it is straightforward to see that V2(β) is increasing in β.

A.1.6 Proof of Corollary 3

Since V1(β, p) and V3(β, p) are increasing in p, the results are the conclusions of Proposition

3.

• Here, we show that V2(β) and V1(β, p) intersect at pe. According to part (iii) in the

proof of Proposition 3, V3(β, p) is defined for β ≥ 2 (α−1)
λ p

such that for V ≥ V3(β, p),

we have F2(β − 2 (α−1)
λ p

) ≥ F3(β − 2 (α−1)
λ p

). Since |dF2(T )
dT
| < |dF3(T )

dT
| (based on (A.13)),

we have F2(0) > F3(0) and F2(β) > F3(β). Therefore, according to the definition

of V1(β) and V2(β) given in parts (i) and (ii) of the proof of Proposition 3 we have

V3(β, p) > V2(β) and V3(β, p) > V1(β, p). Moreover, V1(β, 0) = 0 and V1(β, p) is

increasing in p. Since V2(β) is independent of p, V2(β) and V1(β, p) intersect at most

at one point called pe.

• According to the proof of Proposition 3, the results clearly follow.

A.1.7 Proof of Corollary 4

According to the proof of Proposition 3, F2(T ) and F3(T ) cross each other at most three

times. Since T1 and T2 are the maximum and minimum points, respectively, of both F2(T )
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and F3(T ), and |dF2(T )
dT
| < |dF3(T )

dT
| due to (A.13), then the first point at which F2(T ) and

F3(T ) cross each other is less than or equal to T1. Similarly, the third point at which F2(T )

and F3(T ) cross each other is greater than or equal to T2. Note that the second point at

which F2(T ) and F3(T ) intersect is a minimum point of UT (p, T ).

A.1.8 Proof of Theorem 1

We provide the proof in two parts; in the first part, we show that for any given abandonment

threshold T , there exists a unique optimal joining probability which maximizes the social

welfare function. Then, we prove that an optimal pair (p∗, T ∗) always exists.

1. We show that the social welfare function W (p, T ) is either unimodal or increasing in

p for p ∈ [0, 1]. Note that

∂W (p, T )

∂p
= λ

(
UT (p, T ) + p

∂UT (p, T )

∂p

)
.

Considering (A.2), we get
∂W (p, T )

∂p
=

V λ

(
Gp
T (T ) + p

∂Gp
T (T )

∂p

)
− cλ

∫ T

0

(
(2α− 1)(x− β)2α−2

)(
1−Gp

T (x)− p∂G
p
T (x)

∂p

)
dx. (A.39)

Using (2.2), we have

∂W (p, T )

∂p
=

(
λµ

(λ pe(λ p−µ)T − µ)
2

)
V
((
Tλ2p2 − Tλµ p− µ

)
e−(µ−λ p)T + µ

)
−(

cλ

(λ pe(λ p−µ)T − µ)
2

)(∫ T

0

(
(2α− 1)(x− β)2α−2

)
(F5(x, p))dx

)

+

(
cλ

(λ pe(λ p−µ)T − µ)
2

)(
λ pµ (λ pT + 2) e(−µ+λ p)T

(
(T − β)2α−1 + β2α−1

))
,

(A.40)
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where,

F5(x, p) =
(
e−(µ−λ p)T )2

λ2p2+

p
(
λ p (T − x) e−(µ−λ p)x)λµ e−(µ−λ p)T + e(λ p−µ)xµ2 (λ px+ 1) . (A.41)

Therefore, to prove that ∂W (p,T )
∂p

has at most one extreme point for p ∈ [0, 1], it is

sufficient to show that equation F6(p)− F7(p) = 0 has at most one root for p ∈ [0, 1]

where,

F6(p) = cλ pµ (λ pT + 2) e(−µ+λ p)T
(
(T − β)2α−1 + β2α−1

)
+ V µTλ2p2e−(µ−λ p)T ,

F7(p) = c

∫ T

0

(
(2α− 1)(x− β)2α−2

)
(F5(x, p))dx+

V µ
(
(Tλµ p+ µ) e−(µ−λ p)T − µ

)
.

(A.42)

(a) Since T ≥ 0, we have (T − β)2α−1 + β2α−1 > 0; consequently, F6(p) is convex

and monotone increasing in p.

(b) Since x ≤ T , F5(x, p) given in (A.41) is convex and monotone increasing in

p. Therefore, the first term in F7(p), c
∫ T

0
((2α− 1)(x− β)2α−2) (F5(x, p))dx, is

convex and monotone increasing in p. Moreover, the second term in F7(p) is

also is convex and monotone increasing in p since

∂
(
V µ
(
(Tλµ p+ µ) e−(µ−λ p)T − µ

))
∂p

= V µ2λ2T e(−µ+λ p)T (2 + λ pT ) > 0.

Therefore, both F6(p) and F7(p) are convex and monotone increasing in p. This

means that equation F6(p)−F7(p) = 0 has at most two roots since any two monotone

increasing convex functions (of class C1) intersect at most at two points. Note that

at p = µ
λ

(> 1) we have

F6(p) = F7(p) = cλ (2 + µT )µ2
(
(T − β)2α−1 + β2α−1

)
+ V µ3λT.

Therefore, F6(p) − F7(p) = 0 has at most one root for p ∈ [0, 1]. When p goes to

zero, F6(p) goes to zero while F7(p) approaches −µUT (p, T ) at p = 0,

F7(0) =

(
c

∫ T

0

(2α− 1) (x− β)2α−2 e−µxµdx− V
(
1− e−Tµ

))
µ,
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which is non-positive (considering the condition that at least one customer enters the

system when the system is empty). Therefore, if F6(p) and F7(p) intersect at point

p∗ < 1, the welfare is maximized at p∗. Otherwise, the welfare is non-decreasing in

p ∈ [0, 1] and p = 1 is the optimal joining probability from the social maximizer

perspective.

2. Note that the social welfare function is bounded and continuous in its domain. We

proved that for any given abandonment threshold, there exists a unique optimal

joining probability p∗ which maximizes the social welfare function. Also, based on

Proposition 3, for any given joining probability, there exists an optimal abandonment

threshold T ∗ which maximizes the social welfare function. Thus, there exists an

optimal pair (p∗, T ∗) that maximizes the social welfare function.

Moreover, according to Proposition 3, if V < min(V1(β, 1), V2(β)), the social wel-

fare function is negative for all T ≥ 0. Since according to Proposition 3, the

function V1(β, p) is monotone increasing in p, we can conclude that when V <

min(V1(β, 1), V2(β)), a joining probability less than one should be chosen to ensure

V ≥ min(V1(β, p), V2(β)).

A.1.9 Proof of Proposition 4

Let ÛT (p, T ) denote the customer’s expected utility function under the entrance/service

fee mechanism when she will renege the system after T time units. Then, using (A.2) we

have,

λpÛT (p, T ) = λp

(
(V − θs)Gp

T (T )− c
∫ T

0

(
(2α− 1)(x− β)2α−2

)
(1−Gp

T (x))dx− θe
)
.

(A.43)

Recall that W (p, T ) = λpUT (p, T ), and the total expected revenue function is Φ(p, T, θ)

= λp θsG
p
T (T )+λp θe. Considering (A.43) and the definition ofW (p, T ) we have λp Û (p, T )

= W (p, T )− Φ(p, T, θ). Therefore, Φ(p, T, θ) = W (p, T )− λpÛT (p, T ).
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Considering that under the optimal action the firm fully extracts the total surplus by

an entrance fee, i.e. ÛT (p, T ) = 0, we get Φ(p, T, θ) = W (p, T ). Therefore, the optimal pair

(p∗, T ∗) which maximizes the social welfare function also maximizes the expected revenue

function.

Now, we want to show under which conditions this pricing mechanism induces the so-

cially optimal behavior (p∗, T ∗). Using an entrance-fee/service-fee mechanism, the planner

charges a service fee to control customers’ reneging time; meanwhile it charges an entrance

fee to fully extract the total surplus (the sum of all customers’ surplus) and control the

arrival rate.

Since W (p, T ) = λpUT (p, T ), the optimal T ∗ also maximizes UT (p, T ). According to

(A.3),

∂UT (p, T )

∂T
= V

∂Gp
T (T )

∂T
− ∂C(T )

∂T
(1−Gp

T (T )) +

∫ T

0

∂C(x)

∂x
(
∂Gp

T (x)

∂T
)dx. (A.44)

Using (2.3), we have,
dP0

dT
= λpe−(µ−λp)TP 2

0 = −RP0, (A.45)

where R = λpe−(µ−λp)TP0. Therefore, considering (2.2) we get

dGp
T (x)

dT
= −RGp

T (x),

dGp
T (T )

dT
= −RGp

T (T ) +
∂Gp

T (t)

∂t
|t=T . (A.46)

Now, according to (A.44), (A.45) and (A.46) we have:

∂UT (p, T )

∂T
= V (−RGp

T (T ) +
∂Gp

T (t)

∂t
|t=T )− ∂C(T )

∂T
(1−Gp

T (T ))

−
∫ T

0

∂C(x)

∂x
(RGp

T (x))dx,

which results in

∂UT (p, T )

∂T
= V

∂Gp
T (t)

∂t
|t=T −

∂C(T )

∂T
(1−Gp

T (T ))− V RGp
T (T )
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+

∫ T

0

∂C(x)

∂x
(R−RGp

T (x)−R)dx.

Thus,
∂UT (p, T )

∂T
=

V
∂Gp

T (t)

∂t
|t=T −

∂C(T )

∂T
(1−Gp

T (T ))

−R
(
V Gp

T (T )−
∫ T

0

∂C(x)

∂x
(1−Gp

T (x))dx

)
−RC(T ),

and finally using (A.2),

∂UT (p, T )

∂T
= V

∂Gp
T (t)

∂t
|t=T −

∂C(T )

∂T
(1−Gp

T (T ))−R(UT (p, T ) + C(T )). (A.47)

Recall that according to (A.3),

∂UT (p, τ)

∂τ
= V

∂Gp
T (τ)

∂τ
− ∂C(τ)

∂τ
(1−Gp

T (τ)). (A.48)

Consequently rewriting (A.47), we end up with,

∂UT (p, T )

∂T
=
∂UT (p, t)

∂t
|t=T −R(UT (p, T ) + C(T )). (A.49)

Therefore, if T ∗ is the socially optimal reneging time, then according to (A.49) we must

have

UT ∗(p, T
∗) + C(T ∗) =

∂UT∗ (p,t)
∂t
|t=T ∗

R
. (A.50)

Now consider an arriving customer decision. According to (A.43) and using (A.3),

∂ÛT (p, τ)

∂τ
= (V − θs)

∂Gp
T (τ)

∂τ
− ∂C(τ)

∂τ
(1−Gp

T (τ)). (A.51)

Therefore, we have,

∂ÛT (p, τ)

∂τ
= V

∂Gp
T (τ)

∂τ
− ∂C(τ)

∂τ
(1−Gp

T (τ))−θs
∂Gp

T (τ)

∂τ
=
∂UT (p, τ)

∂τ
−θs

∂Gp
T (τ)

∂τ
. (A.52)
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Suppose that all other customers choose T ∗ as a reneging time; therefore, a necessary

condition for an arriving individual customer to choose T ∗ as the only reneging time is

that (A.52) has only one root in τ equal to T ∗ where the sign of ∂ÛT (p,τ)
∂τ

changes from

positive to negative. If so, we have

∂UT (p, τ)

∂τ
|τ=T ∗ = θs

∂Gp
T (τ)

∂τ
|τ=T ∗ . (A.53)

According to Proposition (1), we have hT ∗(T
∗) = µ. Therefore, using (A.48) and (A.53)

we get

θs = V −
∂C(τ)
∂τ
|τ=T ∗

µ
= V (1− γ(T ∗)

µ
). (A.54)

Using this service fee and according to (A.54) and (A.51),

∂ÛT (p, τ)

∂τ
= (

∂C(τ)
∂τ
|τ=T ∗

µ
)
∂Gp

T (τ)

∂τ
− ∂C(τ)

∂τ
(1−Gp

T (τ)). (A.55)

Since all customers are homogeneous, reneging at T ∗ will be an equilibrium point for all,

if for any arriving customer, the best response is reneging at time T ∗, i.e. ∂ÛT (p,τ)
∂τ

must

have only one root equal to T ∗; therefore, using (A.55) and according to Proposition 2 for

τ > β, the equation (
∂C(τ)
∂τ
|τ=T∗
µ

)hT ∗(τ) = V γ(τ) must have only one root equal to T ∗.

Note that in this case, the necessary condition for not reneging at τ = 0 is that the

customer’s expected utility must be greater than zero at T ∗; otherwise, reneging at τ = 0

is the best response for an arriving individual customer. Thus, we next find a condition to

avoid this situation. Considering (A.50) and replacing UT ∗(p, T
∗) with ÛT ∗(p, T

∗) + θe +

θsG
p
T ∗(T

∗), we have

ÛT ∗(p, T
∗) + θe + θsG

p
T ∗(T

∗) + C(T ∗) =
∂UT∗ (p,t)

∂t
|t=T ∗

R
,

and using (A.53),

ÛT ∗(p, T
∗) = θs

(
∂Gp

T∗ (τ)

∂τ
|τ=T ∗

R
−Gp

T ∗(T
∗)

)
− C(T ∗)− θe.
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Then using (A.46),

ÛT ∗(p, T
∗) = θs

(
RGp

T ∗(T
∗) +

∂GpT (T )

∂T
|τ=T ∗

R
−Gp

T ∗(T
∗)

)
− C(T ∗)− θe

= θs

∂GpT (T )

∂T
|τ=T ∗

R
− C(T ∗)− θe,

and according to (A.54) we can conclude that

ÛT ∗(p, T
∗) = (V − C ′(T ∗)

µ
)

∂GpT (T )

∂T
|τ=T ∗

R
− C(T ∗)− θe. (A.56)

Recall that R = λpe−(µ−λp)TP0. Therefore using (2.2) and (2.3) we can rewrite (A.56) as

follows

ÛT ∗(p, T
∗) = (V − C ′(T ∗)

µ
)
P0

ρ
− C(T ∗)− θe, (A.57)

where ρ = λp/µ. Recall the necessary condition for an arriving customer to not renege

at time zero is that the expected utility function obtained in (A.57) must be positive for

θe = 0. Since the cost-reward ratio function is γ(T ) = C′(T )
V

, according to (A.57) we obtain

the following condition

γ(T ∗) < µ− λp

V P0

C(T ∗).

Therefore, if the optimal entrance fee given by (A.54) can induce socially optimal reneging

strategy, i.e. the discussed two conditions hold, then the firm collects the total surplus by

charging an entrance fee equal to the customer willingness to pay which is obtained using

(A.57).

However, under the entrance-fee/service-fee mechanism, if the discussed two conditions

do not hold, we can not guarantee that this policy induces the socially optimal behavior

and the firm may not gain a profit equal to the maximum social welfare.

A.1.10 Proof of Proposition 5

We want to prove that for a given p if all other customers follow the (p, T ∗) strategy then,

for an arriving customer (considering the offered waiting time), staying in the system until
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T ∗ is the best response. First, we prove that the customer’s expected utility is increasing

in time at time T ∗. Second, we prove that there is no positive local maximum point less

than T ∗ for the customer’s expected utility if all follow the T ∗ policy.

1. According to (A.2), we can conclude that UT (p, T ) + C(T ) ≥ V Gp
T (T ). Also, T ∗ is

the solution of ∂UT (p,T )
∂T

= 0. Therefore, considering (A.49), ∂UT (p,τ)
∂τ
|τ=T ∗ > 0, which

means the expected utility function is increasing at τ = T ∗.

2. Now we want to prove that there is no local maximum for an arriving customer’s

expected utility function before T ∗. Since the expected utility function is increasing

at τ = T ∗, so if there is a local maximum point before T ∗, denoted by τ2, there should

be also a local minimum point between τ2 and T ∗. First we prove the following lemma,

Lemma 10 Suppose that all customers follow T ∗. If there is local minimum point

τ3 for an arriving customer’s expected utility function before T ∗, then T ∗ < 2τ3.

Proof.

It is clear that x+ 1 ≤ ex, which results in 1− e−x ≥ 1− 1
x+1

. Since 2α− 2 ≥ 0 and
λp
µ
< 1,

1− λp

µ
e−x > 1− e−x > x

x+ 2α− 2
.

Substituting x by (µ− λp)x we have

µ− λpe−(µ−λp)x

µ
>

(µ− λp)x
(µ− λp)x+ 2α− 2

,

and
(µ− λp)µ

µ− λpe−(µ−λp)x < µ− λp+
2α− 2

x
.

Assuming x > β, we can conclude that µ− λp+ 2α−2
x

< µ− λp+ 2α−2
x−β ; consequently

we have
(µ− λp)µ

µ− λpe−(µ−λp)x < µ− λp+
2α− 2

x− β
. (A.58)
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Now suppose that for an abandonment threshold T , the customer’s expected utility

function has a minimum point τ3 greater than β such that ∂UT (p,τ)
∂τ
|τ=τ3 = 0. In other

words, according to (A.3),

V
∂Gp

T (τ)

∂τ
|τ3 =

∂C(τ)

∂τ
|τ3(1−G

p
T (τ3)). (A.59)

Also since τ3 is a local minimum point, we have ∂2UT (p,τ)
∂τ2

|τ=τ3 > 0; therefore, according

to (A.3),

V
∂2Gp

T (τ)

∂τ 2
|τ3 >

∂2C(τ)

∂τ 2
|τ3(1−G

p
T (τ3))− ∂C(τ)

∂τ
|τ3
∂Gp

T (τ)

∂τ
|τ3 . (A.60)

Also according to (2.2),
∂2GpT (τ)

∂τ2
|τ3 = −(µ− λp)∂G

p
T (τ)

∂τ
|τ3 . Using (A.60),

V (µ− λp)∂G
p
T (τ)

∂τ
|τ3 <

∂C(τ)

∂τ
|τ3
∂Gp

T (τ)

∂τ
|τ3 −

∂2C(τ)

∂τ 2
|τ3(1−G

p
T (τ3)),

and using (A.59),

(µ− λp)∂C(τ)

∂τ
|τ3(1−G

p
T (τ3)) <

∂C(τ)

∂τ
|τ3
∂Gp

T (τ)

∂τ
|τ3 −

∂2C(τ)

∂τ 2
|τ3(1−G

p
T (τ3)).

Since τ3 > β, then ∂C(τ)
∂τ
|τ3 > 0 and we have

(µ− λp) <
∂GpT (τ)

∂τ
|τ3

1−Gp
T (τ3)

−
∂2C(τ)
∂τ2
|τ3

∂C(τ)
∂τ
|τ3
,

and using (2.5), we get

(µ− λp) +
2α− 2

τ3 − β
< h(τ3). (A.61)

Now suppose that T ∗ > 2τ3. Using (2.5),

h(τ3) =
(µ− λp)µ

µ− λpe−(µ−λp)(T−τ3)
<

(µ− λp)µ
µ− λpe−(µ−λp)τ3

.

Using (A.61) we conclude that

µ− λp+
2α− 2

τ3 − β
<

(µ− λp)µ
µ− λpe−(µ−λp)τ3

,
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which contradicts with (A.58); therefore, we conclude that T ∗ < 2τ3.�

Next we prove that under abandonment threshold T ∗, there is no other local max-

imum for the customer’s expected utility function. Suppose that the customer’s

expected utility function has a local maximum point τ2 and consequently a local

minimum point τ2 < τ3 < T ∗. Therefore ∂UT (p,τ)
∂τ
|τ=τ3 = 0. As proven in Lemma 10,

T ∗ ≤ 2τ3. Therefore, using (A.3),

V (−λ p+ µ) = c (τ3 − β)2α−2 (2α− 1)

(
1− λ pe−(µ−λ p)(T ∗−τ3)

µ

)
< c(2α− 1)(τ3 − β)2α−2

(
1− λp

µ
e−(µ−λp)τ3

)
.

Therefore,

λpc
(2α− 1)

µ
(τ3 − β)(2α−2)e−(µ−λ p)τ3 < c(2α− 1)(T − β)2α−2 − V (µ− λ p) .

Adding the same term to the both sides,

λpc

∫ τ3

0

(2α− 1)(x− β)(2α−2)dx+ λpc
(2α− 1)

µ
(τ3 − β)(2α−2)e−(µ−λ p)τ3 <

λcp
(
(τ3 − β)2α−1 + β2α−1

)
+ c(2α− 1)(τ3 − β)2α−2 − V (µ− λ p) ,

and clearly,

λpc

∫ τ3

0

(2α− 1)(x− β)(2α−2)e−(µ−λ p)xdx+ λpc
(2α− 1)

µ
(τ3 − β)(2α−2)e−(µ−λ p)τ3 <

λcp
(
(τ3 − β)2α−1 + β2α−1

)
+ c(2α− 1)(τ3 − β)2α−2 − V (µ− λ p) .

Therefore, according to (A.11) and the proof of Proposition 3, we can conclude that

F3(τ3) > F2(τ3). Since at T ∗ the sign of F2(T ∗) − F3(T ∗) is changed from positive

to negative, we can conclude that according to the proof of Proposition 3, T ∗ must

be less than τ3 (which is greater than β) which contradicts with our assumption.

Consequently, we can conclude that there is no extremum point for the customer’s

expected utility function for all β < t < T ∗.
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A.1.11 Proof of Proposition 6

We first show that
∂GpT (x)

∂p
≤ 0. According to (2.2), for x ≤ T we have:

∂Gp
T (x)

∂p
= −

e−(µ−λp)xµ
((

(1 + p (T − x)λ)− (1 + λ pT )e(µ−λp)x) e−(µ−λp)T + xµ
)
λ

(µ− λ pe−(µ−λp)T )
2 .

(A.62)

Therefore,
∂GpT (x)

∂p
≤ 0 is equivalent to

H1(p) =
(
(1 + p (T − x)λ)− (1 + λ pT )e(µ−λp)x) e−(µ−λp)T + xµ ≥ 0. (A.63)

We next prove that H1(p) ≥ 0. According to (A.63):

∂H1(p)

∂p
= λ

(
pλ T 2 + (2− pλ x)T − x

) (
1− e(µ−λp)x) e−(µ−λp)T . (A.64)

Note that (pλ T 2 + (2− pλ x)T − x) > 0 since x ≤ T which results in ∂H1(p)
∂p

≥ 0 for

p ∈ [0, 1], µ > λp. Therefore, H1(p) gets its minimum value at p = 0 which is
(
1− e−µT

)
+

xµ ≥ 0. Therefore, Gp
T (x) is monotone decreasing in p. Thus, according to (A.2), the

expected utility function UT (p, T ) is monotone decreasing in p. Since customers are self

interested, they join the queue until the expected utility function is exactly equal to zero,

i.e. UT (p, T ) = 0.

A.1.12 Proof of Corollary 5

The equilibrium joining probability is reached when UT (p, T ) = 0. Therefore, ∂p̄
∂β

=

−
∂UT (p,T )

∂β
∂UT (p,T )

∂p

. Since the expected utility function is monotone decreasing in p, the behav-

ior of ∂p̄
∂β

is the same as ∂UT (p,T )
∂β

. According to (A.2):

UT (p, T ) = V Gp
T (T )− c

∫ T

0

(
(2α− 1)(x− β)2α−2

)
(1−Gp

T (x))dx. (A.65)

Therefore,

∂2UT (p, T )

∂β2
= −c(2α− 1)(2α− 2)(2α− 3)

∫ T

0

(x− β)2α−4(1−Gp
T (x))dx. (A.66)
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Since α is a positive integer, ∂2UT (p,T )
∂β2 given in (A.66) is non-positive and the expected

utility function is unimodal in β.

A.1.13 Proof of Proposition 7

1. As proven in Proposition 6, for a given T , the expected utility function is decreasing

in p; based on Proposition 3, for a given p there is an optimal abandonment threshold

T ∗ which maximizes the social welfare function and also according to Proposition 5,

customers choose this abandonment threshold as the equilibrium one. Note that if

the expected utility function is positive, there is an incentive for customers to join the

queue. Therefore, the joining probability increases until the expected utility function

reaches zero or the joining probability is equal to 1; thus, one of the following two

cases must occur:
∂UT (p̄, T )

∂T
|T=T ∗ = 0, UT (p̄, T ∗) = 0, (A.67)

or
∂U(1, T ∗)

∂T
|T=T ∗ = 0, U(p̄, T ∗) ≥ 0. (A.68)

2. According to Proposition 3, when V3(β, 1) ≤ V or V2(β) < V < V1(β, 1), for p = 1,

the expected utility and the social welfare functions at T ∗ are non-negative, and

condition (A.68) holds.

3. Also, based on Proposition 3, when V < min(V1(β, 1), V2(β)) with p = 1, the social

welfare function is negative for all values of T ; otherwise, there exists an optimal

abandonment threshold if V ≥ min(V1(β, p), V2(β)) for a given p. Note that for

p = 0, min(V1(β, 0), V2(β)) = 0 and also V1(β, p) is increasing in p (Proposition

3); therefore, we conclude that for any given V there exists a p < 1 such that

V ≥ min(V1(β, p), V2(β)); it means that there exists (p̄, T ∗) such that condition

(A.67) holds .
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A.1.14 Proof of Theorem 2

The optimal expected revenue of the service provider is bounded by the maximum social.

If the two following conditions hold, the planner can extract total surplus equal to the

maximum social welfare: 1. The socially optimal behavior is maintained and 2. the server

fully collects the total surplus.

According to Proposition 5, the optimal abandonment threshold can induce the socially

optimal reneging time of customers. Since according to Proposition 6 the expected utility

function is monotone increasing in p for any given abandonment threshold, the firm can

charge an entrance fee equal to the expected utility of a joining customer to maintain

the joining probability at a certain level. Therefore, using the entrance-fee/abandonment-

threshold mechanism, the planner can (1) induce the socially optimal reneging time by

choosing T ∗ as the abandonment threshold, and the optimal joining probability by imposing

an entrance fee θe, respectively; also (2) the planner fully collects all customers’ surplus by

charging an entrance fee equal to the expected utility of a joining customer.

A.1.15 Proof of Corollary 6

Since V1(β, p) is decreasing in p, using Theorem 1 and Theorem 2 the results immediately

follow.

A.2 Analysis of the Multi-Echelon Production Inven-

tory System with Strategic Customers

A.2.1 Proof of Lemma 1.

Using (3.1):

Za (S,λ, f(·))−Za (S − 1,λ, f(·)) =

∫ ∞
0

f (x)Q (S,λx) dx −
∫ ∞

0

f (x)Q (S − 1,λx)dx=
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∫ ∞
0

f (x) (Q (S,λx)−Q (S − 1,λx)) dx=

∫ ∞
0

f (x)

(
(λx)S−1

(S − 1) !
e−λx

)
dx =

(λ)S−1

(S − 1) !

∫ ∞
0

e−λx f (x)
(
xS−1

)
dx . (A.69)

Recall f ∗ (·) is the LT of f (·). Then,

E
(
(−x)ne−kx

)
=
dn

dkn
E
(
e−kx

)
=
dn

dkn
f ∗ (k) =f ∗(n)(k). (A.70)

Therefore, (A.69) can be written as follows:

Za (S,λ, f(·))−Za (S − 1,λ, f(·)) =
(λ)S−1

(S − 1) !
(−1)S−1 dS−1

dkS−1
f ∗(k)|k=λ.

Solving Za (S,λ, f(·)) recursively we get:

Za (S,λ, f(·))−Za (S − 1,λ, f(·)) = (λ)S−1

(S−1)!
(−1)S−1 dS−1

dkS−1 f
∗(k)|k=λ

Za (S − 1,λ, f(·))−Za (S − 2,λ, f(·)) = (λ)S−2

(S−2)!
(−1)S−2 dS−2

dkS−2 f
∗(k)|k=λ

.

.

.

Za (2,λ, f(·))−Za (1,λ, f(·)) = (λ)1

(1)!
(−1)1 d1

dk1
f ∗(k)|k=λ

⇒

Za (S,λ, f(·)) =
S∑
i=1

(−1)i−1 λi−1

(i− 1) !
f ∗(i−1)(k)|k=λ, (A.71)

and

Za (1,λ, f(·)) =f ∗(λ).

A.2.2 Proof of Lemma 2.

Applying integration by parts and (3.1) we get:

Za (S,λ, f(·)) =

∫ ∞
0

f (x)Q (S,λx) dx=
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F (x)Q (S,λx) |∞0 +

∫ ∞
0

F (x)λ

(
(λx)S−1

(S − 1) !
e−λx

)
dx

=
(λ)S

(S − 1) !

∫ ∞
0

e−λx F (x)
(
xS−1

)
dx .

Using (A.69):

Za (S,λ, f(·)) =(−1)S−1 λS

(S − 1) !

dS−1

dkS−1
(F ∗(k)) |k=λ. (A.72)

Now, replacing f(·) with F (·) in Lemma 1, we obtain:

Za (S,λ, F (·)) =
S∑
i=1

(−1)i−1 λi−1

(i− 1) !
F ∗(i−1)(k)|k=λ

=
1

λ

S∑
i=1

(−1)i−1 λi

(i− 1) !
F ∗(i−1)(k)|k=λ.

According to (A.72), the following result can be concluded:

Za (S,λ, F (·)) =
1

λ

S∑
i=1

Za (i,λ, f(·)) .

A.2.3 Proof of Theorem 3.

According to (3.2), we have:

W P (S,λ, f(·)) =

∫ ∞
0

GP (t) dt =

∫ ∞
0

∫ ∞
0

f(Q (S,λ (x+ t)) dxdt.

Then, according to Fubini’s theorem we can interchange the order of the integral and

rewrite it as:

W P (S,λ, f(·)) = EX

(∫ ∞
0

Q (S,λ (x+ t))) dt

)
,

where, EX(f(·)) is the expected value of f(x) with respect to the random variable X.

Substituting z for λ(x+ t), we get:

W P (S,λ, f(·)) =EX

(
1

λ

∫ ∞
λx

Q (S, z) dz

)
. (A.73)
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Taking integration by parts and using (3.1), the following yields:

W P (S,λ, f(·)) =

∫ ∞
0

GP (t) dt=Ex

[
1

λ

(
z Q (S,z) |∞λx+

∫ ∞
λx

z

(
(z)S−1

(S − 1) !
e−z

)
dz

)]

= Ex

[
1

λ

(
−λx Q (S,λx) +

∫ ∞
λx

S

(
(z)S

(S) !
e−z

)
dz

)]
=

Ex

[
1

λ
(−λx Q (S,λx) +S Q(S + 1,λx))

]
=

∫ ∞
0

f (x)

(
S

λ
Q (S + 1,λx)−xQ(S,λx)

)
dx.

Applying integration by parts again and using (3.1) leads to

W P (S,λ, f(·)) =

∫ ∞
0

F (x)

(
(
S

λ
)
(λ) (λx)S

(S) !
e−λx − xλ (λx)S−1

(S − 1) !
e−λx +Q (S,λx)

)
dx.

Therefore,

W P (S,λ, f(·)) =

∫ ∞
0

F (x)Q (S, λx) dx= Za (S,λ, F (·)) . (A.74)

Now, according to (3.3):

WQ (S,λ, f(·)) =

∫ ∞
0

GQ (t) dt=

∫ ∞
0

∫ ∞
t

f(x)(1−Q (S,λ (x− t)) dx dt

=

∫ ∞
0

∫ x

0

f(x)(1−Q (S,λ (x− t)) dt dx.

Substituting z for λ(x− t),

WQ (S,λ, f(·)) =EX

(
−1

λ

∫ 0

λx

(1−Q (S, z)) dz

)
=EX

(
1

λ

∫ λx

0

(1−Q (S, z)) dz

)
.

Since
∫∞

0
Q (S, z) dz = S, we have,

WQ (S,λ, f(·)) =EX

(
1

λ
(λx−

∫ λx

0

Q (S, z) dz)

)
=EX

(
x− 1

λ
(S−

∫ ∞
λx

Q (S, z) dz

)

= EX

(
x− S

λ

)
+ EX

(∫ ∞
λx

Q (S, z) dz

)
. (A.75)
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According to (A.73) and (A.74) and using (A.75), we get:

WQ (S,λ, f(·)) = W P (S,λ, f(·)) +

∫ ∞
0

f (x) (x−S
λ

) dx =

W P (S,λ, f(·))−f ∗(1)(k)|k=0−
S

λ

⇒WQ (S,λ, f(·)) = Za (S,λ, F (·))−f ∗(1)(k)|k=0−
S

λ
.

A.2.4 Proof of Proposition 8.

According to (3.8) and (3.9),

Π (S,f(·))−Π (S − 1,f(·)) =λ
(
hW P (S,λ, f(·)) +b WQ (S,λ, f(·))

)
−

λ
(
hW P (S − 1,λ, f(·)) +b WQ (S − 1,λ, f(·))

)
=

λ h(W p (S,λ, f(·))− W P (S − 1,λ, f(·)) +λ b
(
WQ (S,λ, u(·))−WQ (S − 1,λ, f(·))

)
.

Using Theorem 3,

Π (S,f(·))−Π (S − 1,f(·)) = (h+ b)λ (Za (S,λ,F (·))−Za (S−1,λ,F (·)))−b

According to Lemma 2 and using (3.6):

Π (S,f(·))−Π (S − 1,f(·)) =(h+ b)Za (S,λ,f(·))−b. (A.76)

Therefore, using Lemma 1, we have:

(Π (S,f(·))−Π (S − 1,f(·)))− (Π (S − 1,f(·))−Π (S − 2,f(·))) =

(h+ b)

( (∫ ∞
0

f (x)Q (S,λx) dx

)
−
(∫ ∞

0

f (x)Q (S−1,λx) dx

))
= (h+ b)

∫ ∞
0

f (x)

(
(λx)S−1

(S − 1) !
e−λx

)
dx ≥ 0.

Therefore, Π (S,f(·)) is also convex in S. The optimal base-stock level can be found by

solving (A.76).
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A.2.5 Proof of Proposition 9.

Using Theorem 3 and replacing u(·) with f(·), the results are obtained.

A.2.6 Proof of Proposition 10.

According to (3.16),

Π (S,S0, u(·))−Π (S − 1,S0, u(·)) =λ
(
hW P (S,λ, u(·)) +b WQ (S,λ, u(·))

)
−

λ
(
hW P (S − 1,λ, u(·)) +b WQ (S − 1,λ, u(·))

)
=

λ h(W p (S,λ, u(·))− W P (S − 1,λ, u(·)) +λ b
(
WQ (S,λ, u(·))−WQ (S − 1,λ, u(·))

)
.

Using Proposition 9,

Π (S,S0, u(·))−Π (S − 1,S0, u(·)) = (h+ b)λ (Za (S,λ,U(·))−Za (S−1,λ,U(·)))−b.

According to Lemma 2 and using (3.6):

Π (S,S0, u(·))−Π (S − 1,S0, u(·)) =(h+ b)Za (S,λ,u(·))−b. (A.77)

First we want to prove that Π (S,S0, u(·))−Π (S − 1,S0, u(·)) is an increasing function

with respect to S. Considering (A.77) and using (3.1), we can elicit the following:

(Π (S,S0, u(·))−Π (S − 1,S0, u(·)))− (Π (S − 1,S0, u(·))−Π (S − 2,S0, u(·))) =

(h+ b)

( (∫ ∞
0

u (x)Q (S,λx) dx

)
−
(∫ ∞

0

u (x)Q (S−1,λx) dx

))

= (h+ b)

∫ ∞
0

u (x)

(
(λx)S−1

(S − 1) !
e−λx

)
dx ≥ 0. (A.78)

Therefore, Π (S,S0, u(·))−Π (S − 1,S0, u(·)) is increasing in S. Therefore, Π (S,S0, u(·))
is also convex in S and the optimal base-stock level S∗ can be found by solving (A.77).
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A.2.7 Proof of Lemma 3.

i. First we prove that Za
(
S,λ̄, f(·)

)
is monotone decreasing in λ̄ = λp. Similar to Abouee

et. al (2011), Za
(
S,λ̄, f(·)

)
, the probability of finding the DC not empty, is obtained as

follows:

Za
(
S,λ̄, f(·)

)
=

(
λ̄

µ

)S0
(
Q
(
S, λ̄ T

)
− e(µ−λ̄)T λ̄SQ (S, Tµ)

µS

)
+

(
1−

(
λ̄

µ

)S0
)
Q
(
S, λ̄ T

)
.

Therefore,
∂Za

(
S,λ̄, f(·)

)
∂λ̄

=

1

λ̄ µS

((
λ̄

µ

)S0

λ̄SQ (S, Tµ)
(
λ̄ T − S − S0

)
e(µ−λ̄)T +

∂Q
(
S, λ̄ T

)
∂λ̄

T λ̄ µS

)
. (A.79)

According to definition of Q
(
S, λ̄ T

)
we have:

∂Q
(
S, λ̄ T

)
∂λ̄

= −
(
λ̄ T
)S−1

e−λ̄ T

Γ (S)
. (A.80)

Therefore, using (A.79) and (A.80) we get the following:

∂Za
(
S,λ̄, f(·)

)
∂λ̄

=

1

Γ (S) λ̄ µS

((
λ̄

µ

)S0

λ̄SΓ (S)Q (S, Tµ)
(
λ̄ T − S − S0

)
e(µ−λ̄)T −

(
λ̄ T
)S

e−λ̄ TµS

)
. (A.81)

If λ̄ T − S − S0 < 0, obviously
∂Za(S,λ̄,f(·))

∂λ̄
< 0. Otherwise, using (A.81), we show that

Q (S, Tµ) <
T SµS+S0

λ̄S0Γ (S)
(
λ̄ T − S − S0

)
eTµ

, (A.82)

considering that λ̄ T − S − S0 > 0. Since the right hand side of (A.82) is monotone

decreasing in λ̄, it is sufficient to prove that this inequality holds for maximum value of

λ̄ = µ, i.e.,

Q (S, Tµ) <
(Tµ)S

Γ (S) (Tµ− S − S0) eTµ
.
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Since (Tµ)S

Γ(S)(Tµ−S)eTµ
< (Tµ)S

Γ(S)(Tµ−S−S0)eTµ
, it is sufficient to show that

Q (S, Tµ) <
(Tµ)S

Γ (S) (Tµ− S) eTµ
. (A.83)

Let N(S, Tµ) denote the right hand side of (A.83), i.e.,

N(S, Tµ) =
(Tµ)S

Γ (S) (Tµ− S) eTµ
. (A.84)

Now, using induction on S, we prove that the inequality in (A.83) holds. For S = 1, we

have Q(1, µT ) = e−Tµ and N(1, µT ) = Tµe−Tµ

(Tµ−1)
. Therefore, Q(1, µT ) < N(1, µT ). Now

assume that (A.83) holds for all i ≤ S− 1, and assume that Q(S− 1, µT ) < N(S− 1, µT ).

It is easy to show that

Q(S, µT ) = Q(S − 1, µT ) +
(Tµ)S−1

Γ (S) eTµ
<

(Tµ)S−1

Γ (S − 1) (Tµ− S + 1) eTµ
+

(Tµ)S−1

Γ (S) eTµ
=

(Tµ)S

Γ (S) (Tµ− S + 1) eTµ
< N(S, Tµ).

ii. According to the definition of W P
(
S,λ̄, f(·)

)
, we have

W P
(
S,λ̄, f(·)

)
=

1

λ̄

S∑
i=1

Za
(
i,λ̄, f(·)

)
.

Since Za
(
S,λ̄, f(·)

)
is also decreasing in λ̄, we can conclude that W P

(
S,λ̄, f(·)

)
is decreas-

ing in λ̄. Note that according to (A.73) and (A.75), W P
(
S,λ̄, f(·)

)
and WQ

(
S,λ̄, f(·)

)
can

be written as:

W P
(
S,λ̄, f(·)

)
=EX

(
1

λ̄

∫ ∞
λ̄x

Q (S, z) dz

)
,

WQ
(
S,λ̄, f(·)

)
= EX

(
1

λ̄

∫ λ̄x

0

(1−Q (S, z)) dz

)
.

Therefore, while W P
(
S,λ̄, f(·)

)
is decreasing in λ̄, WQ

(
S,λ̄, f(·)

)
is increasing with respect

to λ̄.
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A.2.8 Proof of Theorem 4.

Using (3.22),
∂U (p, Pr)

∂p
= −cθ (W̄ (p, S))θ−1∂W̄ (p, S)

∂p
.

Based on Lemma 3 and according to (3.23), since 1 − Za
(
S,λ̄, f(·)

)
and WQ

(
S,λ̄, f(·)

)
are monotone increasing in λ̄ = λp, we can conclude that ∂(W̄ (p,S))θ−1

∂p
is positive and con-

sequently ∂U(p,Pr)
∂p

is negative. Since U (p, Pr) is monotone decreasing in p, the equilibrium

probability p̄ is the solution of U (p̄, P r) = 0.

A.2.9 Proof of Lemma 4.

According to the definition of Za
(
S,λ̄, f(·)

)
(see Zare et al., 2017) we have:

Za
(
S,λ̄, f(·)

)
− Za

(
S − 1,λ̄, f(·)

)
=

(
λ̄
)S−1

(S − 1) !

∫ ∞
0

e−λ̄x f (x)
(
xS−1

)
dx > 0.

Therefore, Za
(
S,λ̄p, f(·)

)
is monotone increasing in S. Also we have:

WQ
(
S,λ̄, f(·)

)
−WQ

(
S − 1,λ̄, f(·)

)
=

1

λ̄
(Za

(
S,λ̄, f(·)

)
− 1) < 0. (A.85)

Since Za
(
S,λ̄, f(·)

)
≤ 1, we get WQ

(
S,λ̄, f(·)

)
is monotone decreasing in S. According to

the definition of the expected utility function given in (3.22) and (3.23), we can conclude

that the expected utility function is monotone increasing in the base-stock level of the DC.

A.2.10 Proof of Proposition 11.

i. According to Lemma 4 and Theorem 4, since the expected utility function is monotone

increasing in S and monotone decreasing in p, if the DC sets its base-stock level at zero

and the expected utility function with fully join strategy is still positive, all customers will

join the system independently of DC policy, i.e. using Theorem 3 and (3.23):

U(1, P r) = R− Pr − c
(
(1− Za(0,λ̄,f(·)))WQ

(
0,λ̄, f(·)

))θ
= R− Pr − c(−f ∗(1)(k)|k=0)θ.
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By solving U(1, P r) ≥ 0 and using (3.20) to derive the last term in U(1, P r), the condition

is obtained.

ii. According to the definition of U(p, Pr), if R < Pr (which occurs when mθ < 0), the

expected utility function is always negative and no one will join the system independently

of the base-stock level at the DC.

A.2.11 Proof of Lemma 5.

According to (3.22):

∂2U(p, Pr)

∂θ2
= −c (W̄ (p, S))θ ln2(W̄ (p, S)) < 0.

A.2.12 Proof of Proposition 12.

According to (3.24), the equilibrium joining probability is obtained by solving mθ−W̄ (p, S)

= 0. Let

D(p, S, θ) = mθ − (1− Za(S,λ̄,f(·)))(WQ
(
S,λ̄, f(·)

)
) = mθ − W̄ (p, S). (A.86)

Therefore,

∂p̄

∂θ
= −

∂D(p̄,S,θ)
∂θ

∂D(p̄,S,θ)
∂p̄

=
∂mθ
∂θ

∂W̄ (p̄,S)
∂p̄

.

According to the proof of Theorem 4, W̄ (p, S) is monotone increasing in p and therefore
∂W̄ (p̄,S)

∂p
> 0. Also we have

∂mθ

∂θ
= − 1

θ2

(
R− Pr

c

)θ−1

ln

(
R− Pr

c

)
.

Since mθ = ((R− Pr)/c) 1
θ , if R−Pr

c
> 1 (equivalently mθ > 1), then ∂mθ

∂θ
and ∂p̄

∂θ
are less

than zero resulting in that the equilibrium joining probability is monotone decreasing with

respect to θ. Otherwise, for R−Pr
c

< 1 (equivalently mθ < 1), the equilibrium joining

probability is monotone increasing in θ.
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A.2.13 Proof of Proposition 13.

Using (A.86),

∂p̄

∂S
= −

∂D(p,S,θ)
∂S

∂D(p,S,θ)
∂p

= −
∂W̄ (p,S)

∂S
∂W̄ (p,S)

∂p

.

According to the proof of Theorem 4, ∂W̄ (p,S)
∂p

is always positive. Also from the proof of

Lemma 4, we can conclude that ∂W̄ (p,S)
∂S

is always negative. Therefore, the equilibrium

joining probability is monotone increasing with respect to the base-stock level at the DC.

A.2.14 Proof of Corollary 7.

Using (A.86),

∂p̄

∂T
= −

∂D(p,S,θ)
∂T

∂D(p,S,θ)
∂p

= −
∂W̄ (p,S)
∂T

∂W̄ (p,S)
∂p

.

We first prove that ∂W̄ (p,S)
∂T

> 0. According to (3.20), we have ∂F ∗(s)
∂T

= ∂f∗(s)/s
∂T

=

−sf ∗(s)/s = −f ∗(s); therefore, using Lemma 2 we get

∂Za(S, λ̄, f(·))
∂T

= −(−1)S−1 λ̄S

(S − 1) !

dS−1

dkS−1
(f ∗(k)) |k=λ̄ =

−
(
λ̄
)S

(S − 1) !

∫ ∞
0

e−λx f (x)
(
xS−1

)
dx < 0.

This means that 1−Za(S, λ̄, f(·)) is increasing in T . Also considering Theorem 3 we have,

∂WQ(S, λ̄, f(·))
∂T

=
∂Za(S, λ̄, F (·))

∂T
+ 1. (A.87)

Again using Lemma 2,

∂Za(S, λ̄, F (·))
∂T

= −(−1)S−1 λ̄S

(S − 1) !

dS−1

dkS−1
(F ∗(k)) |k=λ̄ = −Za(S, λ̄, f(·)).

Since Za(S, λ̄, f(·)) is the probability of finding the DC not empty, i.e. Za(S, λ̄, f(·)) ≤ 1,

using (A.87) and (3.24), we have ∂WQ(S,λ̄,f(·))
∂T

≥ 0 which results in ∂W̄ (p,S)
∂T

> 0. Finally,

according to the proof of Proposition 12 (∂W̄ (p,S)
∂p

> 0), we can conclude that ∂p̄
∂T

< 0.
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A.2.15 Proof of Lemma 6.

According to the proof of Lemma 4, W P (S, λp, f(·)) is monotone increasing in S and

W̄ (p, S) is monotone decreasing in S. Also note that when S = 0, the modified expected

revenue function has a finite value, however when the base-stock level goes to infinity,

the modified expected revenue function tends to be negative infinity. Consequently using

(3.28), the derivative of ∆̂(S, λp, f(·)), i.e., ∂∆̂(S,λp,f(·))
∂S

, has at least one root indicating the

maximum point.

A.2.16 Proof of Lemma 7.

According to Lemma 3, since W P (S, λp, f(·)) is monotone decreasing in p and W̄ (p, S) is

monotone increasing in p, using (3.28), the equation ∂∆̂(S,λp,f(·))
∂p

= 0 has at least one root.

Also note that when p → 0, the modified expected revenue function has a finite value,

however, when the joining probability increases and λ → µ, due to production capacity,

the modified expected revenue function tends to negative infinity. Consequently, it ensures

that equation ∂∆̂(S,λp,f(·))
∂p

= 0 has a root indicating the maximum point.

A.2.17 Proof of Theorem 5.

According to Lemmas 6 and 7, for a given p, there always exists an optimal S which

maximizes the modified expected revenue function and for a given S there always exists

an optimal p which maximizes the modified expected revenue function. Therefore, there

exists an optimal set (p∗, S∗) which maximizes the modified expected revenue function.

A.2.18 Proof of Lemma 8.

Using (3.28) and (3.23) and setting θ = 1, we have

∆̂(S, λp, f(·))− ∆̂(S − 1, λp, f(·)) =
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−λp (h(W p(S, λp, f(·))−W p(S − 1, λp, f(·))))− λpc((
(1− Za(S,λp,f(·)))(WQ (S,λp, f(·)))− (1− Za(S − 1,λp,f(·)))(WQ (S − 1,λp, f(·)))

))
Using Theorem 3 and Lemma 2 we have,

λp (h(W p(S, λp, f(·))−W p(S − 1, λp, f(·)))) = h (Za(S, λp, f(·)))

Therefore, using (A.85),

∆̂(S, λp, f(·))− ∆̂(S − 1, λp, f(·)) = −h (Za(S, λp, f(·)))−

cλp

(
(1− Za(S,λp,f(·)))(WQ (S − 1,λp, f(·)) +

Za(S, λp, f(·))− 1

λp
)

−(1− Za(S − 1,λp,f(·)))(WQ (S − 1,λp, f(·)))
)
,

which results in

= −h (Za(S, λp, f(·)))− cλp(
−(1− Za(S,λp,f(·)))2

λp
− (Za(S,λp,f(·)))− Za(S − 1,λp,f(·))))WQ (S − 1,λp, f(·))

)
.

Now setting ∆̂(S, λp, f(·))− ∆̂(S − 1, λp, f(·)) = 0, the result is obtained.

108


	List of Figures
	Introduction
	Service Systems
	Existence of Customer Behavioral Factors 
	Impact of Strategic Behavior and Behavior Factors 
	Related Research

	Production Systems
	Related Research


	Control Mechanisms in Queues with Joint Balking and Reneging Strategy
	Preliminary Analysis
	Self-Maximization Strategy

	Socially Optimal Behavior
	 Mechanism Design Problem
	 Entrance-Fee/Service-Fee Mechanism
	 Entrance-Fee/Abandonment-Threshold Mechanism


	Analysis of the Multi-Echelon Production Inventory System with Strategic Customers
	Two-Echelon Inventory System with Exogenous Arrival Rate
	 Two-Echelon Inventory System with a Manufacturer
	 Two-Echelon Production Inventory System 

	Two-Echelon Inventory System with Endogenous Arrival Rate
	 Joining Probability Equilibrium 
	 Risk Aversion Degree Effect
	DC as a Stackelberg leader
	Observations


	Conclusions and Future Research
	References
	APPENDICES
	Proofs
	Control Mechanism in a Queue with Joint Balking and Reneging Strategy
	Proof of Proposition 1 
	Proof of Corollary 1
	Proof of Proposition 2
	Proof of Corollary 2
	Proof of Proposition 3 
	Proof of Corollary 3 
	Proof of Corollary 4 
	Proof of Theorem 1 
	Proof of Proposition 4 
	Proof of Proposition 5 
	Proof of Proposition 6 
	Proof of Corollary 5
	Proof of Proposition 7 
	Proof of Theorem 2 
	Proof of Corollary 6

	Analysis of the Multi-Echelon Production Inventory System with Strategic Customers
	Proof of Lemma 1.
	Proof of Lemma 2.
	Proof of Theorem 3.
	Proof of Proposition 8.
	Proof of Proposition 9.
	Proof of Proposition 10.
	Proof of Lemma 3.
	Proof of Theorem 4.
	Proof of Lemma 4.
	Proof of Proposition 11.
	Proof of Lemma 5.
	Proof of Proposition 12.
	Proof of Proposition 13.
	Proof of Corollary 7.
	Proof of Lemma 6.
	Proof of Lemma 7.
	Proof of Theorem 5.
	Proof of Lemma 8.



