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Abstract 

A general framework based on pore network modeling is presented for simulation of 

reactive transport in a porous catalyst with a hierarchy of porosity. The proposed 

framework is demonstrated in the context of steady state reactive transport inside a 

nanoporous catalyst particle interlaced with macropores that result from the use of 

pore-formers. A comprehensive parametric study was performed to examine the 

influence of structural features namely macroporosity, pore size ratio, and the particle 

size, as well as transport properties namely pore Damköhler number, on the net 

reaction rate inside the particle. The results showed that depending on the Damköhler 

number, increasing the macroporosity does not necessarily improve the catalytic 

activity of the particle. It was also shown that particles with lower pore size ratios are 

more kinetically active. The key finding of this work was to demonstrate and quantify 

how microstructure influences the reactivity of hierarchical porous catalyst particles. 

Keywords: hierarchical porous particles; multiscale modeling; pore network modeling; 

hierarchical network generation; microstructure. 

  



  

1. Introduction 

Porous materials are ubiquitous in nature such as in petroleum reservoirs and biological 

tissues, and also in engineering applications such as filters, catalyst particles, and 

electrodes. The pore size and morphology of a porous material strongly influences its 

transport properties. For instance, a porous material with a unimodal pore size 

distribution ranging in the nanometer scale provides high surface area yet its transport 

properties are expected to be weak due to hindered diffusivity in the nanopores. On the 

other hand, a porous material with a bimodal pore size distribution ranging from 

micron to nanometer scales would provide better transport properties because the 

micron-sized pores act as diffusion “highways” throughout the nanometer-scale 

constrictions. Regular diffusion would occur in the micron-sized pores, while Knudsen 

diffusion prevails in the nanopores.  However, the better diffusivity comes at the price 

of having less surface area. In the context of catalysis, achieving high surface area and 

high transport properties simultaneously are two components of an ideal catalyst 

support; and hierarchical porous materials happen to provide both features. The 

applications of hierarchical particles include but are not limited to electrochemical 

energy conversion [1–3], protein adsorption and purification [4,5], supercapacitors [6–

9], and tissue scaffolds [10–13]. Although these hierarchical particles are deliberately 

engineered, there are multiple structural parameters involved in designing a 

hierarchical material such as macroporosity, pore size ratio, connectivity, so 

optimization by trial and error is time-consuming and expensive. For this reason, a 

modelling framework that incorporates the impact of structure on reactive transport in 

hierarchically porous materials would be a powerful tool for optimal design of catalyst 

supports for various applications. 

Modeling transport in porous materials is a classic and well-established area of 

research.  The proposed models in general can be categorized into two subsets of pore-



  

scale and volume-averaged continuum models. For brevity, the latter is referred to as 

continuum models here onwards. Also, note that we use the term pore-scale model only 

for those models which simultaneously solve transport equations within the porous 

domain at all length scales. Hence, multi-scale methods with upscaling fall into the 

category of continuum modeling [14,15]. In continuum models, it is assumed that the 

porous medium consists of building blocks called representative elementary volumes 

(REV). REV is the smallest control volume inside a porous domain with physical 

properties that are representative of the whole [16]. In other words, given that an REV 

exists, one could replace a porous material with a homogeneous material with 

equivalent properties. In many simple cases, for example when the structure of the 

porous material can be approximated by an ordered array of spheres or cylinders, such 

properties can be calculated analytically. For complex scenarios, however, equivalent 

properties need to be measured experimentally. While continuum models offer 

relatively low computational cost, there are two main downsides to this approach. First, 

they hinge on the fact that an REV exists. However, in certain cases such as in highly 

anisotropic or very thin materials (e.g. catalyst layer in PEM fuel cells), this is not the 

case. Secondly, experimental measurements for obtaining effective properties are not 

always easy to conduct, especially for extremely small porous materials such as 

nanoparticle agglomerates. This problem escalates for multiphysics problems where 

different physics such as diffusion, reaction, and heat conduction are intertwined, 

making it impossible to find reliable constitutive relationships for effective transport 

properties. 

Alternatively, pore-scale models account for the true geometrical heterogeneity of the 

porous material at the pore scale. They can provide detailed pore-level information 

even when the material is highly anisotropic or extremely thin. In addition, since the 

transport equations are solved for the void space within the porous material, there is no 



  

need for measuring equivalent properties as required in continuum models. Instead, 

bulk fluid properties are used in a pore-scale model, which are widely available in the 

literature. Capturing pore-level details comes with a price which is higher 

computational cost. This downside, however, can be mitigated by employing pore 

network modeling, a less computationally demanding flavor of pore-scale methods. The 

reason is that since the length-scale of the pores is relatively small, the mixing time-scale 

becomes extremely short. Therefore, it can be reasonably assumed that the variations of 

intensive properties such as pressure and concentration within an individual pore is 

negligible, which significantly reduces the computational cost. Having said that, pore 

network modeling is the only feasible way to perform a true pore-scale study on 

hierarchical porous materials. One should be aware that this assumption inevitably 

introduces some error, but the trade-off enables the study of much larger porous 

domains for given computational resources. It is worth noting that in traditional 

continuum models, a notable amount of uncertainty is introduced via volume 

averaging and experimental error in the determination of the effective properties. 

Consequently, it is entirely possible that the accuracy of the model is dominated by the 

uncertainty in volume averaging, rather than the accuracy of the employed numerical 

scheme for solving the governing equations. Note that pore network modeling was 

originally meant for multiphase flow where continuum models failed to provide an 

accurate front-tracking due to structural heterogeneity [17]. The same principles apply 

to reactive transport problems where structural heterogeneity can potentially cause the 

results to deviate from what one usually obtains from continuum models. One of the 

more useful features of pore network modeling is that random structures can be created 

in silico, and the performance of that structure can be determined numerically. The 

equivalent process with continuum modeling is treating the transport properties as 

adjustable parameters, but then one has no way of determining which physical 

configuration of pores and solids leads to a given performance. With pore network 



  

modeling, since structural features such as pore connectivity and tortuosity are built-in, 

one can physically inspect the network properties as a guide to realizing an actual 

material. 

Modeling transport in hierarchical materials has been conducted using both continuum 

[14,18–21] and pore-network models [22–24] with emphasis on the former. In the realm 

of continuum modeling, the common procedure in general is to solve the transport 

problem at the smallest length scale, and then calculating the bulk properties (e.g. 

diffusivity) at that scale by means of volume-averaging, and repeating this process until 

reaching the largest length scale [21]. This approach has both upsides and downsides 

which were critically discussed above. Although pore network modeling is a powerful 

tool for studying transport in hierarchical materials, most of the available works in this 

area date back almost two decades, such as the works of Meyers and Liapis [23,24], and 

Petropoulos et al. [22]. Petropoulos et al. (1991) set the groundwork for studying 

transport in hierarchical materials [22], however, the size of the network they chose, 

presumably due to limited processing power, was not large enough to entail the 

interesting interactions between structural features and transport properties. Moreover, 

the hierarchical network they proposed is an ordered cubic network (i.e. macropores) 

mapped onto a finer network (i.e. nanopores) rather than a true hierarchical network. In 

addition, they did not study the influence of different structural parameters on 

transport properties. Some years later, Meyers and Liapis (1998, 1999) extended the 

framework developed by Petropoulos et al. to incorporate reactive transport with 

advection in hierarchical materials in the context of an adsorption column [23,24]. 

Although interesting, their work lacks generality and is limited to studying the 

influence of pore connectivity and fractional saturation of active reaction sites on bulk 

properties such as intraparticle interstitial fluid velocity. Hence, their work does not 



  

provide a clear picture of the interplay between structural features of hierarchical 

materials and transport properties. 

The objective of the present study is to extend previous attempts and to formulate a 

general yet easy-to-use modelling framework for simulating reactive transport in 

hierarchical porous materials. Furthermore, an extensive study on the interplay 

between structural features and transport properties in the context of hierarchical 

materials is missing in the literature and in this respect, this study is an attempt to fill 

this gap. The present analysis is performed on a hierarchically porous particle with a 

bidisperse pore size distribution, such as nanoporous particle interlaced with 

macropores that resulting from the use of porogens or pore-formers. The numerical 

recipe introduced in the present work can be used to estimate performance in terms of 

net reaction rate of an arbitrary hierarchical porous particle with certain structural 

features such as pore/throat size distribution given as the model inputs, to come up 

with optimal designs for applications of interest. 

2. Model development 

2.1. Pore network modeling 

Pore network modeling is a pore-scale method for studying transport phenomena and 

fluid flow in porous media. In this approach, the porous domain is mapped onto a set 

of pores (i.e. void spaces) connected through throats (i.e. constrictions in the void 

space). How well a pore network model represents a realistic particle depends on how 

faithfully the model geometry matches the network structure. It is possible to extract 

networks from tomography images of the porous material [25–28], but this is not 

feasible for nanoscale and hierarchical materials due to resolution limitations, and 

moreover, network extraction algorithms are not trivial [29–32]. Fortunately, it has been 

shown that randomly generated networks can be calibrated such that they show 



  

equivalent static and dynamic properties such as pore/throat size distribution and 

percolation threshold, compared to those of the actual network [17,33,34]. The 

calibration can be done by performing different simulations such as capillary drainage, 

gas diffusion, and permeability [35,36], and adjusting the network geometry until all 

experimental data is simultaneously matched. The aim of the present work is to 

facilitate designing hierarchical catalyst supports, so instead of matching existing 

materials, new structures are explored and analyzed. To this end, hierarchical particles 

with certain structural features as tunable parameters are realized in silico. Then, by 

performing a parametric study on the tunable parameters, performance curves in terms 

of net reaction rate within the particle are obtained, which can finally be used as 

guidelines for designing actual catalyst supports.  All the computer implementation of 

this study was performed using OpenPNM, which is an open-source software in 

Python for simulation of transport and fluid flow in porous media [37]. 

2.2. Generating hierarchical networks 

In this work two methods for generating networks with a hierarchy of porosity are 

proposed, namely top-down and bottom-up. The bottom-up approach, as shown in 

Figure 1a, begins with a cubic network that consists only of nanopores with an arbitrary 

pore size distribution. To create macropores, a random nanopore and all its nearby 

nanopores within a certain distance �� are chosen. These pores are then removed from 

the network and replaced with a single macropore. By repeating this process, arbitrary 

hierarchical porous structures with increasing macroporosity can be achieved. 

Macroporosity �� is defined as 

 �� = �1 − N	
N	,�
 × 100 (1) 



  

where N	
 is the number of nanopores, and N	,� is the number of nanopores in the initial 

nanoporous network.  In the Top-down approach, as shown in Figure 1b, we start with 

a cubic network that consists entirely of macropores. Next, we consecutively select a 

random pore and replace it with a finer network that consists of only nanopores. By 

repeating this process, arbitrary hierarchical porous structures with decreasing 

macroporosity can be obtained. The top-down approach is used in this work since this 

represents the physical process by which nanoporous particles with pore-forming 

additives are generated. A summary of the networks generated in this study is 

presented in Table 2. 

 

Figure 1- (a) Bottom-up approach for generating hierarchical pore networks: (1) generating the initial network, containing 

nanopores only (top left), (2) randomly selecting a pore and finding its nearby pores within a certain distance (top right), (3) 

removing the pores that satisfy the condition from the network (bottom right), and finally (4) inserting the largest macropore 

that fits in the created empty space (bottom left).  (b) Top-down approach for generating hierarchical pore networks. (1) 

generating the initial network, containing macropores only (top left), (2) randomly selecting a pore (top right), and (3) 

removing it from the network (bottom right), (4) and finally replacing the removed pore with a finer network (bottom left). 

Table 1- Summary of some of the generated networks in this study 

�� (��) �� (��) �� (%) ��� ��� 

(a) (b) 



  

40 1,000 15 106,760 60 

40 1,000 50 62,800 200 

40 500 50 62,800 800 

20 1000 15 26,690 15 

20 500 35 20,410 140 

10 500 20 6280 20 

10 200 75 1963 468 

Note that the pore/throat size (diameter) distributions of the nanoporous networks used 

in either of the two strategies were set according to a Gaussian distribution as shown in 

Figure 2. The spacing of the nanoporous networks was 100 nm. Spacing in a cubic 

network is defined as the center-to-center distance of two arbitrary neighbor pores. The 

center-to-center distance between two macropores varies randomly between � and 2� 

due to the bottom-up construction process, which selected macropore centers at 

random from existing nanopores.  These nanopores are always more greater than � 

from the nearest macropore, and macropores only connect to each other if they are with 

2�. The throat length distribution can be readily calculated once the pore size 

distribution is established. The present study is focused on 2d networks and therefore, 

surface areas and volumes are calculated accordingly, i.e., throat and pore cross-section 

areas become their diameters, available reaction area within a pore becomes its 

circumference, and finally total particle volume becomes its surface area. 



  
 

Figure 2- Pore/throat size distribution of the nanoporous networks used in the present study. 

We used an Intel Xeon® CPU E5-1650 v3 @ 3.50 GHz computer with 16 GB of memory 

for network generation and transport simulations. The transport simulation runtime for 

even a 3d network consisting of 1 million pores was less than a minute. However, the 

network generation was very slow since the calculations are serial in nature. Since we 

wanted to perform several parametric studies, we decided to perform the simulations in 

2d rather than 3d. 

2.3. Mathematical formulation 

Once the network topology and physical properties are set, it is possible to model 

transport processes occurring through the network.  A steady-state mass balance 

around pore � in the network gives 

 − � � !" !
#$

!%&
' � = 0 � = 1,2, … , N
 (2) 

where N� is the number of neighboring pores, N
 is the total number of pores in the 

network, � !  is the mass flux from node � to ), " !  is the cross-section area of the 

connecting throat, and �  is the net reaction within pore �. In this study, it was assumed 



  

that nanopores are entirely covered with catalyst. Here, because of the small length 

scale of the nanoporous particle, advection is assumed to be negligible. Hence, � !  only 

consists of molecular diffusion and is 

 � ! = −*+ ,! − , ℓ !  (3) 

where *+ is the effective diffusivity in throats and is composed of Knudsen and bulk 

diffusion, and ℓ !  is the length of the connecting throat between pore � and ). For the 

reaction term, it was assumed that reaction sites are only present in nanopores. This 

assumption is valid since macropores do not significantly contribute to the total surface 

area. For this study, first order reaction kinetics were assumed 

 � = −). ,  � = 1,2, … , N	
 (4) 

where ) is the rate constant per unit area, .  is the internal surface area of pore �. In case 

of a nonlinear reaction kinetics, nothing changes except the system of equations need to 

be solved iteratively. 

2.3.1. Knudsen diffusion 

When the pore diameter in a porous structure is comparable to the mean free path of 

the enclosed molecules, molecular diffusion gets hindered by frequent collisions with 

the pore wall, otherwise known as Knudsen diffusion. The Knudsen diffusivity can be 

calculated from  

 */0 = 123 48�67890 	 (5) 

where 12 is the pore diameter, �6 is the universal gas constant, 7 is the system 

temperature, and 90 is the molecular weight of species .. The relation for Knudsen 



  

diffusivity can be derived from the self-diffusion coefficient from the kinetic theory of 

gases [38]. Since the diffusive resistances due to binary and Knudsen diffusion are in 

parallel, the effective diffusivity of species . in a binary mixture containing . and ; can 

be calculated from  

 
1*0+ = 1*0< ' 1*/0 (6) 

where *0+ is the effective diffusivity of . in the mixture, *0< is the binary diffusivity of 

., and */0 is the Knudsen diffusivity. The values of the parameters used in Eq. (1) to (6) 

are listed in Table 2. 

Table 2- Parameters used in this study 

Parameter Value Unit Description 

�� - - Macroporosity 

=�� - - Number of nanopores in the hierarchical network 

=�,> - - Number of nanopores in the initial network 

�>? - )@/�B. D Mass flux from pore � to ) 

E>? - �B Cross-section area of the throat between pore � and ) 

F>? - � Length of the throat between pore � and ) 

G> - )@/D Reaction rate in pore � 
? - �/D First order reaction rate constant 

H> - �B Active reaction area of pore � 
I> - )@/�J Concentration of species in pore � 
�� - � Pore diameter 

GK 8.314 L/�MN.O Universal gas constant 

P 298.15 O Temperature 

QH 16 )@/)�MN Molecular weight of the species 

RHS 0.176 ,�B/D Bulk diffusion coefficient of the species 

RTH - ,�B/D Knudsen diffusion coefficient of the species 

RHU - ,�B/D Effective diffusion coefficient of the species 



  

2.3.2. Boundary conditions 

The proposed mathematical model for a hierarchical nanoporous particle as shown in 

Figure 3 was numerically solved under steady state conditions and with first order 

reaction in nanopores, and constant concentration ,0 = 1	mol/mJ for the external 

boundary pores. 

 

Figure 3- Schematic of the hierarchical nanoporous particles at three different macroporosity �� = 25%,50%, and 67% (left 

to right). Blue/black circles refer to macropores/nanopores. 

3. Results and discussion 

The results of this study are presented in the format of a parametric sweep of a variety 

of physical properties of particles to understand the effects of different structures on the 

net reaction rate within the nanoparticle. The aim is to determine a recipe for a particle 

that provides the highest reaction rates with the smallest amount of catalyst material. 

Since network are generated randomly and subject to variability, each simulation was 

repeated five times with different random seed numbers. For this reason, most of the 

figures include error bars indicating two standard deviations. Figure 4 shows typical 

results obtained from these simulations. In this figure, concentration contours (units are 

mol/mJ) are illustrated for four hierarchical particles with different macroporosities. For 



  

clarity, macropores are shown as void spaces. Note that the color bars have different 

scales, so the particle with 58% macroporosity shows a more uniform concentration 

distribution than the others.  This reason for this is that the macro pores facilitate 

transport into the center of the particle, which will be analyzed in depth in a subsequent 

section.   

 

Figure 4- Concentration contours of four hierarchical porous particles (1 = with macroporosities �� of 8% (top-left), 25% 

(top-right), 41% (bottom-left), and 58% (bottom-right). Void spaces refer to the macropores. 

3.1. Influence of macroporosity 



  

 

Figure 5- Net reaction rate vs. macroporosity at different average pore Damköhler numbers; �2 = 20	]�, PSR= 20. 

Figure 5 shows the net reaction rate versus macroporosity at different average pore 

Damköhler numbers for a particle with a radius of 20	μm and an average pore size ratio 

of 20. Pore size ratio is defined as the ratio of the average diameter of macropores to 

that of nanopores. The average pore Damköhler number _*`a is defined as the average 

of local Damköhler numbers in nanopores. The local Damköhler number is the ratio of 

reaction rate constant within a pore ).  to sum of the diffusive conductance of its 

neighboring throats. Thus, average pore Damköhler number can be expressed as 

 _*`a = 〈 ). ∑ *" !/ℓ !! 〉 � = 1,2, … , N
 (7) 

Based on Figure 5, two distinct trends for the net reaction rate can be observed as the 

macroporosity increases: in some cases the reaction rate monotonically decreases, and 

in other cases, it shows a maximum at some intermediate macroporosity. As the 



  

macroporosity increases, less reaction sites are available and thus the net reaction rate is 

expected to decrease. However, at higher macroporosities more diffusion highways (i.e. 

macropores) are available which provide enhanced transport of species. Hence, by 

increasing the macroporosity the net reaction rate does not necessarily increase or 

decrease, but depend on other structural factors. 

The trends that are shown in Figure 5 can be explained by considering the average pore 

Damköhler number. As defined in the previous sections, average pore Damköhler 

number is a measure of relative strength of reactivity to diffusivity of species inside 

individual pores. At relatively low average pore Damköhler numbers (Da ≈ 10hi), 

diffusivity of species is far superior to their reactivity. Therefore, increasing the 

macroporosity does little to help the transport of the diffusing species, and also 

decreases the number of available reaction sites. Under these circumstances, it is 

expected that the net reaction rate monotonically decreases by increasing the 

macroporosity. At moderate average pore Damköhler number (Da ≈ 10hj to 1.0), 

diffusivity of species starts to decline and therefore the inner core of the particle 

gradually becomes underutilized. Under such conditions, creating macropores within 

the particle improves the diffusivity and helps reactant penetrate deeper into the 

particle, causing the net reaction rate to increase. Even though some of the reaction sites 

are removed, the resulting boost in diffusivity compensates for the loss of reactive 

surface area. Nevertheless, by further increasing the macroporosity the subsequent 

enhanced diffusion cannot anymore compensate for the loss of reactive surface area, 

causing the net reaction rate to decrease. Finally, at relatively high average pore 

Damköhler numbers (Da ≈ 10B), diffusivity of species is significantly limited compared 

to their reactivity. Consequently, the diffusing species is rapidly consumed at the 

surface pores, leading to a complete starvation of the internal pores within the porous 

network. Under these circumstances, one might expect that increasing the 



  

macroporosity facilitates the diffusing species to reach the innermost regions as well. 

However, this is not the case since the diffusivity of species is significantly hindered 

such that the subsequent boost in diffusivity as a result of creating macropores cannot 

account for the loss of reactive surface area. Consequently, net reaction rate is 

monotonically decreased by increasing macroporosity. Note that macroporosities above 

90% were not investigated since such a physical particle is likely to fall apart, while the 

active surface area decreases dramatically, which is not desirable. 

 

Figure 6- Locus of maximum reaction rates vs. average pore Damköhler number; �2 = 20	]�, PSR= 20. 

Figure 6 displays the locus of maximum net reaction rates (in terms of macroporosity) 

against the average pore Damköhler number for particles with a radius of 20	μm and a 

pore size ratio of 20. Following the discussions above, at relatively low average pore 

Damköhler numbers since the diffusivity is superior to the reactivity, increasing the 

macroporosity only reduces the number of available reaction sites, causing the net 

reaction rate to monotonically decrease. Hence, the maximum net reaction rate is 

expected to occur at relatively low macroporosities (i.e. k� ≈ 0). At moderate pore 



  

Damköhler numbers, by increasing macroporosity, initially the net reaction rate 

increases due to the subsequent boost in diffusivity, and then declines since the loss of 

reactive surface area becomes the limiting factor. In this regime, the macroporosity at 

which the net reaction rate within the particle is maximized entirely depends on the 

average pore Damköhler number. As the average pore Damköhler number increases, 

the diffusivity of species is continually hindered. Therefore, to reach the potential 

maximum net reaction rate, the particle needs to be more macroporous in order to 

facilitate the species to penetrate deep down the particle, which causes the locus of 

maximum net reaction rate to shift towards higher macroporosities. Finally, at relatively 

high average pore Damköhler numbers (not show in Figure 6), the reactivity of species 

is much superior than their diffusivity such that the improved diffusivity from creating 

macropores cannot compensate for the resulting loss of reactive surface area, causing 

the net reaction rate to continually decrease. Thus, the maximum net reaction rate 

occurs at relatively low macroporosities (i.e. k� ≈ 0). 

3.2. Influence of pore size ratio 

Figure 7 shows the net reaction rate against macroporosity at different pore size ratios 

for a particle with a radius of 10	μm and an average pore Damköhler number of 

7 × 10hB. For a given macroporosity the particle with the lowest pore size ratio is the 

most reactive. This outcome is rather counterintuitive since a higher pore size ratio 

leads to formation of larger diffusion highways and consequently better transport of 

species. Therefore, it is expected that particles with higher pore size ratio should be 

more reactive. The observed effect can be explained by inspecting the structure of the 

particles with different pore size ratios. 

Figure 8 illustrates the structure of three identical particles 40% macroporosity except 

each was constructed at a different pore size ratio. When the pore size ratio is relatively 

high although the diffusion highways (i.e. the macropores) are larger, they are not well-



  

dispersed within the particle and they mostly appear isolated blobs within the 

nanoporous matrix. Hence, the subsequent diffusion enhancement because of the 

presence of macropores is minimal.   

 

Figure 7- Net reaction rate vs. macroporosity at different pore size ratios; �2 = 10	]�, _*`a = 0.07. 

On the other hand, when the pore size ratio is relatively low the macropores are well-

dispersed throughout the nanoporous matrix and therefore provide the diffusing 

species with decent accessibility to reach the innermost regions of the particle. One 

could argue based on percolation theory, that pore connectivity in 2d is much worse 

than that in 3d. Therefore, the significant difference in net reaction rates observed for 

different pore size ratios might be an artifact of the ill-connected macropores in our 2d 

simulation. While this behavior is important for fluid percolation simulations, it is less 

relevant for diffusive transport. The reason is that in a fluid percolation simulation, 

either a pore is invaded or not, whereas in diffusive transport, diffusion transpires 

seamlessly no matter how small the diffusive conductance is. Moreover, the advective 

flux between two pores is roughly proportional to 12J whereas the diffusive flux is 



  

proportional to 12, assuming the throat diameter and throat length are of the same 

order of magnitude. Consequently, isolated nanopores in a flow problem are much 

more likely to have virtually no contribution to the overall transport. In other words, in 

flow problems the worse connectivity in a 2d representation might lead to inaccurately 

neglecting the contribution of those isolated nanopores that otherwise in a 3d 

representation would have access to a nearby macropore and therefore contribute to the 

overall transport. Having said that, the worse connectivity in 2d is unlikely to 

qualitatively change the behavior observed in the simulations, but rather quantitatively. 

One direct outcome of above explanation is that at higher pore size ratios, because 

macropores are not well-dispersed within the particle, the average distance between a 

nanopore and the nearest macropore is relatively higher, which leads to reactant 

starvation at such nanopores. Consequently, the net reaction rate decreases. On the 

other hand, at lower pore size ratios, reactant starvation is less frequent since 

macropores are well-dispersed within particle and therefore the average distance 

between an arbitrary nanopore to the nearest macropore is shorter, increasing the net 

reaction rate. 

 

Figure 8- Microstructure of particles at different pore size ratios; �2 = 10	]�, �� = 40% 

PSR = 20 PSR = 50 PSR = 100 



  

Figure 9 shows the histogram of reaction rates in the nanopores for a particle at two 

different pore size ratios of 20 and 100, along with the ideal case where effective 

diffusivity in the particle is infinity (such that the presence of macropores is irrelevant 

to transport). Also, cumulative reaction rates for each scenario are plotted. Based on this 

figure, the histogram for PSR = 100 is shifted towards lower reaction rates, with 

indicates that that nanopores are operating at lower concentrations, therefore 

decreasing the net reaction rate within the particle. On the other hand, the histogram for 

PSR = 20 is shifted towards higher concentrations, implying that nanopores are 

operating at relatively higher concentrations, therefore increasing the net reaction rate 

within the particle. 

 

Figure 9- Histogram of reaction rates in nanopores. Lines are cumulative reaction rate; �2 = 10	]�, _*`a = 0.07 ��= 66% 

 



  

 

Figure 10- Histogram of concentration in nanopores; �2 = 10	]�, _*`a = 0.07, ��= 66% 

This pore-by-pore analysis of reaction rates and local concentrations is a specific benefit 

of pore-scale modeling. In this case, it reveals very clearly that large sections of the 

particle are performing poorly because they are essentially starved of reactant by their 

lack of proximity to a macropore. This claim is better understood and confirmed by 

looking at the concentration histogram/contour in nanopores, shown in Figure 10 and 

Figure 11. Figure 10 shows the histogram of nanopore concentration for two identical 

hierarchical particles with different pore size ratios. 



  

 

 

Figure 11- Concentration contour in nanopores (units are �MN/�J); �2 = 10	]�, _*`a = 0.07, ��= 66% 

According to the histogram plot, almost all the nanopores in the particle with PSR = 20 

are operating at concentrations greater than 0.5	mol/mJ. On the other hand, a 

substantial portion of the nanopores in the particle with PSR = 100 are starving of 

reactant, working at concentrations below 0.5	mol/mJ. The concentration contour plots 

shown in Figure 11 confirm such behavior. According to the contour plots, it is clearly 

observed that for the particle with the largest pore size ratio (PSR = 100), the nanopores 

which are not in the proximity of a macropore are starved of reactant. However, this is 

not the case for the particle with the lowest pore size ratio (PSR = 20) since a larger 

PSR = 100 PSR = 50 

PSR = 20 



  

fraction of the nanopores are close to at least one macropore, providing them with 

sufficient amounts of reactant. 

 

Figure 12- Net reaction rate vs. macroporosity at different pore size ratios and pore Damköhler numbers; �2 = 10	]� 

Figure 12 is the same as Figure 7 except plotted at different average pore Damköhler 

numbers. Based on Figure 12, the average pore Damköhler number can significantly 

attenuate the effect of pore size ratio on the reactivity of the particle. At relatively high 

average pore Damköhler numbers (_*`a ≈ 0.01) since diffusion is very limited, particles 

can benefit from the enhanced diffusion due to the lower pore size ratio. On the 

contrary, when the average pore Damköhler number is relatively small (_*`a ≈ 10hj), 

diffusion is already at its maximum state. Accordingly, varying the pore size ratio has 



  

minimal effect on the diffusivity, therefore particles with different pore size ratio 

approximately show the same performance. 

It noteworthy that merely by playing with the structure, the particle with PSR = 20 at 

about 66% macroporosity has almost achieved 350% increase in the net reaction rate 

compared to a nonhierarchical nanoporous particle. While 350% improvement is a poor 

increase compared to what potentially can be achieved by playing with the kinetics of 

the reaction (see Figure 5), kinetics is usually not considered a manipulating parameter 

and is rather forced by the reaction/catalyst. However, structure can be more easily 

manipulated to obtain highly reactive particles. 

Figure 13 illustrates how particle size influences the effect of pore size ratio on the net 

reaction rate. Based on this figure, when the particle is relatively small, those with 

different pore size ratios show nearly identical performances, while for relatively big 

particles, the performance of those with different pore size ratios differ. The reason is 

that at relatively small particle sizes diffusion is not the limiting mechanism and 

therefore, the boosting effect of pore size ratio on diffusivity, which was discussed 

above in detail, becomes irrelevant. As the particle size increases, reactant diffusion 

gradually gets hindered and consequently, the boosting effect of pore size ratio becomes 

significant, causing particles with different pore size ratios to show different 

performance curves. 



  

 

Figure 13- Net reaction rate vs. macroporosity at different pore size ratios and particle sizes; _*`a = 2 × 10hj 

3.3. Analysis of particle utilization 

One of the performance metrics that can be used to analyze the efficiency of the 

particles is net reaction rate normalized with respect to their bulk volume. Such analysis 

is beneficial for certain applications such packed bed reactors where total volume is 

fixed. Figure 14 illustrates the effect of particle size on the reactivity of the particles. The 

y-axis shows the net reaction rate normalized by the volume of the particle m2 defined as 

 m2 = 8�2B × 1 (8) 



  

where �2 is the radius of the particle. Note that since we are performing 2d simulations, 

the volume of the particle is its surface area, which should be multiplied by 1 meters 

depth to account for the correct dimension. Each curve represents a particle with a 

particular radius. Based on this figure, the particles with smaller radius are favorable in 

terms of net reaction rate per unit volume. This observation can be explained by the fact 

that for the case of larger particles, a large portion of the diffusing species gets 

consumed near the surface of the particle. Hence, many reaction sites in the innermost 

regions of the particle are unused. Therefore, it is expected for the smaller particles to be 

more kinetically-active. 

 

Figure 14- Normalized net reaction rate vs. macroporosity at different particle size; _*`a = 7 × 10hj, PSR= 10 

Another interesting feature of Figure 14 is the locus of maximum net reaction rate. 

Based on this figure, as the particle size increases, the macroporosity at which the 

particle is most reactive increases as well. For instance, a particle with a radius of 5	μm 

is most reactive at around 10% macroporosity whereas a particle with a radius of 20	μm 

is most reactive when the macroporosity is about 60%. Having said that, creating a 



  

hierarchy of porosity is not always favorable. In fact, larger particles tend to be more 

reactive at high macroporosities while smaller particles are most reactive when there is 

no hierarchy of porosity present. This is of course because in small particles all reaction 

sites are generally near the surface concentration, which is the situation being emulated 

by the addition of macroporosity in larger particles.   

4. Conclusion 

In this work, a general framework based on pore-network modeling was developed to 

study reactive transport within a single 2d porous particle with a hierarchy of porosity 

at steady state conditions. A parametric study of particle physical properties was 

performed to capture the effects of pore structure on the performance of the particle in 

terms of net reaction rate. These parameters include particle size, average pore size, 

macro to nano pore size ratio, and average pore Damköhler number. The results 

showed that as macroporosity increases, depending on the average pore Damköhler 

number, two distinct trends can be observed for the net reaction rate: monotonic 

decrease, and mixed behavior. In addition, it was shown that at a constant 

macroporosity, the particle with a lower pore size ratio is more reactive. The results of 

this can be used as a guideline to design hierarchical catalysts supports that are more 

reactive due to their optimal structure. Note that, however, a single recipe cannot be 

realized for making more reactive particles since the reaction kinetics plays an 

important role. Hence, depending on the reaction kinetics of the system, the optimum 

structure for the catalyst particle to be most reactive could vary from being entirely 

nanoporous to mostly macroporous. 

Future work should include modeling 3d particles to provide more realistic 

connectivity which was found to be a key factor in this work. Because of the 2d 

limitation of the present work, these reported trend are qualitatively only, although we 



  

expect the trends to hold for 3d particles.  Also, for multicomponent systems it is more 

rigorous to employ Maxwell-Stefan theory for diffusion calculations. The present 

approach is completely agnostic to the network dimensionality, but computational 

requirements grow very quickly.  Also along the lines of more realistic simulations, it 

would be quite relevant to include heat evolution from the reaction and heat transfer 

out of the particle, as this would impact the local kinetics.  In the context of this work, 

the existence of macropores in the particle allow faster gas diffusion, but will hinder 

heat conduction and reduce heat capacity. Truly optimizing a particle requires coupling 

multiple physics. 

Acknowledgment 

The authors would like to express their gratitude to the Natural Science and 

Engineering Research Council (NSERC) of Canada, as well as Ballard Power Systems 

for providing financial support throughout the course of this project. 

References 

[1] P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, M.-O. Coppens, Hierarchically 

Structured Nanomaterials for Electrochemical Energy Conversion, Angew. 

Chemie Int. Ed. 55 (2016) 122–148. doi:10.1002/anie.201506394. 

[2] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-

performance lithium-ion anodes using a hierarchical bottom-up approach., Nat. 

Mater. 9 (2010) 353–358. doi:10.1038/nmat2749. 

[3] F. Cheng, J. Liang, Z. Tao, J. Chen, Functional Materials for Rechargeable 

Batteries, Adv. Mater. 23 (2011) 1695–1715. doi:10.1002/adma.201003587. 

[4] Q. Fu, X. Wang, Y. Si, L. Liu, J. Yu, B. Ding, Scalable Fabrication of Electrospun 



  

Nanofibrous Membranes Functionalized with Citric Acid for High-Performance 

Protein Adsorption, ACS Appl. Mater. Interfaces. 8 (2016) 11819–11829. 

doi:10.1021/acsami.6b03107. 

[5] Z. Sun, Y. Deng, J. Wei, D. Gu, B. Tu, D. Zhao, Hierarchically Ordered Macro-

/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective 

Adsorption of Proteins, Chem. Mater. 23 (2011) 2176–2184. 

doi:10.1021/cm103704s. 

[6] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, 

Chem. Soc. Rev. 38 (2009) 2520. doi:10.1039/b813846j. 

[7] D.-W. Wang, F. Li, H.-M. Cheng, Hierarchical porous nickel oxide and carbon as 

electrode materials for asymmetric supercapacitor, J. Power Sources. 185 (2008) 

1563–1568. doi:10.1016/j.jpowsour.2008.08.032. 

[8] K. Xia, Q. Gao, J. Jiang, J. Hu, Hierarchical porous carbons with controlled 

micropores and mesopores for supercapacitor electrode materials, Carbon N. Y. 

46 (2008) 1718–1726. doi:10.1016/j.carbon.2008.07.018. 

[9] D.-W. Wang, F. Li, M. Liu, G.Q. Lu, H.-M. Cheng, 3D Aperiodic Hierarchical 

Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive 

Energy Storage, Angew. Chemie Int. Ed. 47 (2008) 373–376. 

doi:10.1002/anie.200702721. 

[10] S.J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater. 4 (2005) 

518–524. doi:10.1038/nmat1421. 

[11] S.S. Liao, F.Z. Cui, W. Zhang, Q.L. Feng, Hierarchically biomimetic bone scaffold 

materials: Nano-HA/collagen/PLA composite, J. Biomed. Mater. Res. 69B (2004) 

158–165. doi:10.1002/jbm.b.20035. 



  

[12] J.R. Jones, P.D. Lee, L.L. Hench, Hierarchical porous materials for tissue 

engineering, Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 364 (2006). 

[13] J. Wei, J. Jia, F. Wu, S. Wei, H. Zhou, H. Zhang, J.-W. Shin, C. Liu, Hierarchically 

microporous/macroporous scaffold of magnesium–calcium phosphate for bone 

tissue regeneration, Biomaterials. 31 (2010) 1260–1269. 

doi:10.1016/j.biomaterials.2009.11.005. 

[14] P. Koci, F. Stepanek, M. Kubicek, M. Marek, Modelling of micro/nano-scale 

concentration and temperature gradients in porous supported catalysts, Chem. 

Eng. Sci. 62 (2007) 5380–5385. doi:10.1016/j.ces.2006.12.033. 

[15] P. Koci, V. Novak, F. Stepanek, M. Marek, M. Kubicek, Multi-scale modelling of 

reaction and transport in porous catalysts, Chem. Eng. Sci. 65 (2010) 412–419. 

doi:10.1016/j.ces.2009.06.068. 

[16] R. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. 

Mech. Phys. Solids. 11 (1963) 357–372. doi:10.1016/0022-5096(63)90036-X. 

[17] M. Blunt, Flow in porous media—pore-network models and multiphase flow, 

Curr. Opin. Colloid Interface Sci. 6 (2001) 197–207. doi:10.1016/S1359-

0294(01)00084-X. 

[18] N. Hansen, R. Krishna, J.M. VanBaten, A.T. Bell, F.J. Keil, Analysis of diffusion 

limitation in the alkylation of benzene over H-ZSM-5 by combining quantum 

chemical calculations, molecular simulations, and a continuum approach, J. Phys. 

Chem. C. 113 (2009) 235–246. doi:10.1021/jp8073046. 

[19] H. Li, M. Ye, Z. Liu, A multi-region model for reaction–diffusion process within a 

porous catalyst pellet, Chem. Eng. Sci. 147 (2016) 1–12. 

doi:10.1016/j.ces.2016.03.004. 



  

[20] V. Novak, P. Koci, M. Marek, F. Stepanek, P. Blanco-Garcia, G. Jones, Multi-scale 

modelling and measurements of diffusion through porous catalytic coatings: An 

application to exhaust gas oxidation, Catal. Today. 188 (2012) 62–69. 

doi:10.1016/j.cattod.2012.03.049. 

[21] M. Chabanon, B. David, B. Goyeau, Averaged model for momentum and 

dispersion in hierarchical porous media, Phys. Rev. E - Stat. Nonlinear, Soft 

Matter Phys. 92 (2015) 23201. doi:10.1103/PhysRevE.92.023201. 

[22] J.H. Petropoulos, J.K. Petrou, A.I. Liapis, Network model investigation of gas 

transport in bidisperse porous adsorbents, Ind. Eng. Chem. Res. 30 (1991) 1281–

1289. doi:10.1021/ie00054a031. 

[23] J.J. Meyers, A.I. Liapis, Network modeling of the intraparticle convection and 

diffusion of molecules in porous particles packed in a chromatographic column, J. 

Chromatogr. A. 827 (1998) 197–213. doi:10.1016/S0021-9673(98)00658-X. 

[24] J.J. Meyers, A.I. Liapis, Network modeling of the convective flow and diffusion of 

molecules adsorbing in monoliths and in porous particles packed in a 

chromatographic column, J. Chromatogr. A. 852 (1999) 3–23. doi:10.1016/S0021-

9673(99)00443-4. 

[25] A. Kaestner, E. Lehmann, M. Stampanoni, Imaging and image processing in 

porous media research, Adv. Water Resour. 31 (2008) 1174–1187. 

doi:10.1016/j.advwatres.2008.01.022. 

[26] W.B. Lindquist, S.-M. Lee, D.A. Coker, K.W. Jones, P. Spanne, Medial axis 

analysis of void structure in three-dimensional tomographic images of porous 

media, J. Geophys. Res. Solid Earth. 101 (1996) 8297–8310. doi:10.1029/95JB03039. 

[27] P. Spanne, J.F. Thovert, C.J. Jacquin, W.B. Lindquist, K.W. Jones, P.M. Adler, 



  

Synchrotron Computed Microtomography of Porous Media: Topology and 

Transports, Phys. Rev. Lett. 73 (1994) 2001–2004. doi:10.1103/PhysRevLett.73.2001. 

[28] W.B. Lindquist, A. Venkatarangan, Investigating 3D geometry of porous media 

from high resolution images, Phys. Chem. Earth, Part A Solid Earth Geod. 24 

(1999) 593–599. doi:10.1016/S1464-1895(99)00085-X. 

[29] H. Dong, M.J. Blunt, Pore-network extraction from micro-computerized-

tomography images, Phys. Rev. E. 80 (2009) 36307. 

doi:10.1103/PhysRevE.80.036307. 

[30] A.S. Al-Kharusi, M.J. Blunt, Network extraction from sandstone and carbonate 

pore space images, J. Pet. Sci. Eng. 56 (2007) 219–231. 

doi:10.1016/j.petrol.2006.09.003. 

[31] A. Rabbani, S. Jamshidi, S. Salehi, An automated simple algorithm for realistic 

pore network extraction from micro-tomography images, J. Pet. Sci. Eng. 123 

(2014) 164–171. doi:10.1016/j.petrol.2014.08.020. 

[32] D. Silin, T. Patzek, Pore space morphology analysis using maximal inscribed 

spheres, Phys. A Stat. Mech. Its Appl. 371 (2006) 336–360. 

doi:10.1016/j.physa.2006.04.048. 

[33] M.P. Hollewand, L.F. Gladden, Representation of porous catalysts using random 

pore networks, Chem. Eng. Sci. 47 (1992) 2757–2762. 

[34] Z. Jiang, M.I.J. van Dijke, K. Wu, G.D. Couples, K.S. Sorbie, J. Ma, Stochastic Pore 

Network Generation from 3D Rock Images, Transp. Porous Media. 94 (2012) 571–

593. doi:10.1007/s11242-011-9792-z. 

[35] J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, Pore network modeling 

of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells, J. 



  

Power Sources. 173 (2007) 277–290. doi:10.1016/j.jpowsour.2007.04.059. 

[36] R.D. Hazlett, Statistical characterization and stochastic modeling of pore networks 

in relation to fluid flow, Math. Geol. 29 (1997) 801–822. doi:10.1007/BF02768903. 

[37] J. Gostick, M. Aghighi, J. Hinebaugh, T. Tranter, M.A. Hoeh, H. Day, B. Spellacy, 

M.H. Sharqawy, A. Bazylak, A. Burns, W. Lehnert, A. Putz, OpenPNM: A Pore 

Network Modeling Package, Comput. Sci. Eng. 18 (2016) 60–74. 

doi:10.1109/MCSE.2016.49. 

[38] J.R. Welty, C.E. Wicks, G. Rorrer, R.E. Wilson, Fundamentals of momentum, heat, 

and mass transfer, John Wiley & Sons, 2009. 

 

  



  

 

July 17th 2017 

 

Dear reviewer, 

Here is a list of highlights concerning the submitted manuscript: 

- A general multiscale pore network reactive transport framework is proposed. 

- A flexible multiscale network generation algorithm is presented. 

- Guidelines are presented for designing high performance catalyst particles. 

- Hierarchical particles with lower pore size ratio are generally more favorable. 

- Influence of macroporosity in hierarchical particles is tightly linked with kinetics. 

 

Thank you for considering this manuscript. 

Sincerely, 

Jeff Gostick 

 




