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Abstract 

 

The purpose of this thesis is to describe the development of an anatomically based, young adult eye 

model, which includes a crystalline lens with a gradient refractive index (GRIN). This model will 

then be used to investigate the effect of laser refractive surgery.   

 

The first step in this process involved developing a symmetrical eye model that was found to 

be a better predictor of empirical longitudinal spherical aberration than any previous model.  Myopia 

was simulated by either a purely axial or refractive technique.   While these models were found to be 

good predictors of the spherical aberration measured in young adults, they did not predict the total 

amount of high-order aberrations.  The techniques used to simulate a single type of myopia caused 

the myopic models to become anatomically inaccurate. 

 

To improve the eye models a biconic surface was used to quantify the anterior corneal shape 

as a function of myopia.   A method to describe the refractive error and biconic shape parameters in 

Jackson Cross Cylinder terms was implemented to determine correlations.  Results indicate that a 

biconic accurately models the average shape of the anterior corneal surface as a function of myopia.      

 

Adopting the biconic model for the anterior corneal surface and adding average 

misalignments of the ocular components transformed the models from symmetrical to asymmetrical.  

Refractive error was now simulated by the anatomically accurate changes in both the anterior 

corneal shape and axial length.  The asymmetrical aberrations resulted from the misalignment of the 

ocular components and provided a good prediction of average empirical aberrations but 

underestimated the aberrations of individual subjects. 

 

Photorefractive keratectomy, a form of laser refractive surgery, was simulated by 

theoretically calculated and by empirically measured changes in the shape of the anterior corneal 

surface.  Applying the change in anterior corneal shape to the asymmetrical models was used to 

develop postoperative models.  Changes in corneal shape and model aberrations attributed to 

theoretical calculations do not match empirical observations.  The prediction of increased high-order 

 iii



aberrations in postoperative models based on empirically measured changes in the anterior corneal 

topography was similar to clinical results. 

 

  Average anatomically based, GRIN eye models have been developed that accurately predict 

the average aberrations of emmetropic and myopic young adults.  These models underestimate the 

asymmetrical and total high-order aberrations that have been measured in individual subjects but are 

still useful for investigating the average effects of procedures like refractive surgery. 
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1 Introduction 

 

For many years modelling has been used as a tool to explore the intricate workings of complex 

systems.  The optical properties and aberrations of the human eye comprise such a system. 

  Our ability to sense the visual world around us is limited by the optical properties of the eye 

and its aberrations, particularly at larger pupils. Comprehension of our visual system can only be 

attained by understanding how light propagates through the eye.  An accurate eye model could 

provide a useful tool to investigate refractive corrections like laser surgery, the process of 

accommodation and ophthalmoscopy. 

  The purpose of this thesis is to describe the development of an anatomically based, young- 

adult, eye model, which includes a crystalline lens with a gradient refractive index (GRIN).  The eye 

model predicts the average, empirical, high-order aberrations as a function of myopia.  The main 

goal for this model is to accurately predict aberrations.  The model is considered to be anatomically-

based since average, age-dependent empirical values are used to represent the shape, size and 

refractive index of its optical components whenever possible.  The model will also be used to 

investigate laser refractive surgery. 

  A brief background is provided in Chapter 2 that describes aberration theory, the 

classification and quantification of aberrations, the optical components of the human eye and 

refractive error. 

  The modelling process is initiated in Chapter 3, where a young-adult, GRIN crystalline lens 

model and emmetropic symmetrical eye model, based on the work by Piers (1997) are developed.  

Myopia was then simulated by either purely axial or refractive techniques.  The model’s predicted 

aberrations and the empirical results from a group of emmetropic and myopic young adults were 

quantified with Zernike polynomials and compared. 

  To improve the symmetrical eye models, an accurate, asymmetrical model of anterior corneal 

shape, as a function of myopia, was required.  Chapter 4 describes how a biconic surface was utilized 

to quantify the anterior corneal shape of 206 eyes.  A method to describe the refractive error and 
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biconic shape in Jackson Cross Cylinder terms was implemented to enable the determination of 

correlations between metrics describing corneal topography and refraction. 

  In Chapter 5, the symmetric model evolves to asymmetric by adopting the biconic model of 

the anterior corneal surface and misaligning the ocular components by average, empirically 

determined values.  Since the shape of the anterior corneal surface became a function of myopia, the 

model’s axial length was used to control refractive error.  Two asymmetrical models were developed 

to investigate the effect of corneal asymmetry.  In these models, the anterior corneal surface was 

modeled with either a symmetrical conic or a biconic with an average amount of asymmetry.  

Average aberration metrics quantifying spherical aberration, coma and high-order aberrations were 

calculated by two techniques.  The first method involved calculating the aberration metrics for each 

individual model or subject and then averaging across individuals.  In the second method, average 

Zernike terms were determined before calculating the aberration metrics. Model results were 

compared with empirical data.  

 The asymmetrical model was utilized, in Chapter 6, to investigate laser refractive surgery.  

This procedure alters ocular aberrations by changing the shape and thickness of the cornea and was 

modelled by modifying the symmetrical conic cornea of the asymmetrical model. Corneal changes 

were simulated from both theorectical calculations (Munnerlyn, et al., 1988) and empirical 

measurements.   Theoretical calculations were used to determine the desired depth of tissue to be 

removed at a point on the cornea (ablation pattern) as a function of preoperative refractive error and 

paraxial power of the anterior corneal surface.  The postoperative cornea model was created by 

subtracting the ablation pattern from the preoperative cornea and quantified by the best-fit conic 

surface.  Empirical, surgically induced changes in corneal shape were determined, as a function of 

preoperative refractive error, by comparing pre and postoperative topographies of the anterior 

corneal surface in 125 eyes that were quantified with Jackson Cross Cylinder terms. Postoperative 

aberrations predicted by the models were compared to empirical results.
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2 Background 

 

2.1 Aberration Theory 

In geometrical optics two associated conventions, rays and wavefronts are used to describe the 

propagation of light waves.  These concepts are defined by recalling that light travels with a constant 

velocity within a medium of constant refractive index (Welford, 1986).   Following Welford, Chapter 

2, changes in direction and speed occur when light waves encounter a change in refractive index.  

Rays define the path along which the light quanta travel.  The time it takes light to travel from A to 

B is defined as,  

= ∫
B

AB A

1t n
c

ds          2.1  

The integration is performed along a ray path, where ds is a distance element along the path in a 

medium with refractive index n and c is the speed of light in a vacuum.  If n were constant between 

A and B then 

=AB
nABt

c
          2.2  

where AB is the length of the line segment between A and B. 

The quantity ∫ n ds defines an optical path length (OPL) (Welford, 1986).  A wavefront is a 

surface of constant optical path length from a source point.  It corresponds to a surface of constant 

phase and demonstrates how far light has traveled from its source in a given time.  In a 

homogeneous medium, wavefronts radiate outward in spherical shapes that are concentric to the 

source.  This shape is maintained until a change in the refractive medium is encountered.  Rays from 

a source are orthogonal to the corresponding wavefront and represent normals to the wavefront 

surface. 
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Figure 2.1: Rays and Wavefronts in an Ideal System. 

A perfect image is defined such that its light distribution has the same form as that of the 

object.  The only difference would be a change in size or orientation due to the magnification of the 

imaging system.  An ideal image is formed when all the rays from an object point that are redirected 

by a perfect optical system are concurrent at a single image point.  The redirected wavefronts 

maintain a spherical shape and become concentric about the image point.   All portions of these 

wavefronts will converge simultaneously to the image point (Figure 2.1). 

 In a real optical system, the relative light distribution in image space is not identical to that in 

object space.  The difference between these two light distributions is referred to as blur and is 

caused by aberrations, scatter and diffraction.   

Diffraction is a spatial redistribution in the irradiance of a wave resulting from the presence of 

an object that alters the amplitude or phase of the wave.  This causes light at the edge of a beam to 

be deflected out of the beam.  Consequently, light in a point image tends to spread out and the 

amount of spread increases with decreasing width of the beam and increasing wavelength (Smith 

and Atchison, 1997).  Diffraction provides a limit as to how good an optical system can become.  

Aberrations are defined as factors that also cause the light from a point object to be imaged as 

a blurred spot.  These effects can be explained as a distortion of the wavefonts from their initial 

spherical shape, the perfect wavefront, or as a departure of the rays from their ideal paths.  
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Aberrations are investigated by tracing real rays through the optical system and then comparing their 

paths and the resulting wavefront shape to those from an ideal system.  The mathematical theory of 

aberrations shows that aberrations may be classified into different types that lead to distinct patterns 

in the light distribution of an image. The following sections will classify different types of 

aberrations and describe the mathematical theory used to quantify them.  

 

2.1.1 Classification of Optical Aberrations 

The classification of aberration types begins by dividing them into either monochromatic or 

chromatic aberrations.  Monochromatic aberrations are associated with light that is composed of a 

single wavelength.  Chromatic aberrations occur only in polychromatic light and are due to the 

dispersion of the optical medium.  Since the investigations within this thesis were performed for 

monochromatic light, the topic of chromatic aberrations will not be discussed.    

Monochromatic aberrations refer to the distinctive light patterns found in an image formed in 

monochromatic light.  For low levels of aberration, several distinct types, referred to as Seidel or 

primary aberrations, have been defined (Smith and Atchison, 1997).  These primary aberrations will 

be described by how they affect ray paths at different locations within the system aperture.   

 

2.1.1.1 Defocus 

In an ideal optical system, a perfect image can be observed at the focal plane. If diffraction and 

scatter are ignored and the image plane does not coincide with the focal plane then the 

corresponding image will be evenly blurred.  In this case the optical elements have an excess or lack 

of refractive power for the position of the image plane.  If defocus were the only type of aberration 

present in the system, then the wavefronts in image space would be spherical but would not be 

centred at the image plane.   Historically, defocus has not been considered an aberration since most 

optical systems are built to produce a focused image on the image plane.  Unfortunately the human 

eye does not always develop into a focused system.  Consequently, defocus will be an important 

aberration throughout this thesis. 
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2.1.1.2 Spherical Aberration 

Spherical aberration (SA) is a variation in focal power with radial distance from the optical axis.  

Consequently, rays positioned progressively farther from the optical axis within the system’s 

aperture, focus progressively farther away or closer to the system aperture from where the central 

rays focus.  This aberration can be interpreted as an excess or lack of peripheral refractive power, 

which creates a symmetrical blur halo around a point image.   Figure 2.2 displays excess peripheral 

power causing rays to focus closer to the optical elements as ray height from the optical axis 

increases.  When a system has more power peripherally its corresponding SA is termed 

undercorrected or positive.  Conversely, if a system has less power peripherally then its SA is 

referred to as overcorrected or negative. The shape of the refractive surfaces, object position and 

distribution of refractive indices within an optical system all contribute to its SA.  Aside from the 

possibility of some defocus, SA is the only aberration present in an axially symmetric optical system 

where:  

a) refractive surface shapes are rotationally symmetrical, 

b) all optical elements are centered along and perpendicular to the optical axis and 

c) the object is also on-axis. 

 

Figure 2.2: Positive Spherical Aberration 
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2.1.1.3 Coma 

Coma is a variation of magnification with radial distance of incident rays from the optical axis.  Rays 

at farther radial distances from the optical axis will image farther from where the central rays image.  

Figure 2.3 displays how this aberration blurs a point object into an asymmetrical comet-shaped 

image.  Objects imaged through an axially symmetric system will only be affected by coma if they are 

positioned off-axis.  Images of both on and off-axis objects will be affected by coma when they are 

formed through an asymmetrical optical system where: 

a) the refractive surfaces have asymmetrical shapes or 

b) the optical elements are misaligned with respect to the optical axis  

 

 

Figure 2.3: Coma (modified from Smith and Atchison, 1997) 
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2.1.1.4 Astigmatism 

A light beam can be described as a set of ray fans where each fan has a different angular orientation 

within the system aperture. Astigmatism creates an angular variation in focus such that each 

individual ray fan focuses at a different point along the optical axis.  The focal range along the 

optical axis is called the interval of Sturm.  Its end points are the foci from two orthogonal ray fans 

representing the lowest and highest power.  The remaining fans focus along the interval of Sturm.   

Astigmatism creates a blurred image where the shape of the blur depends on the location of 

the image plane.  When the image plane is located at one of the ends of the interval of Sturm, the 

image of a point object will be a line perpendicular to the focused ray fan.  Point objects imaged 

elsewhere will appear elliptical or circular.  The size and orientation of the elliptical blur changes 

with the position of the image plane.  The blur is minimized at a point within the interval of Sturm, 

where it is circular.  This location is called the circle of least confusion.  Figure 2.4 displays the effect 

of astigmatism on a point object.  Astigmatism affects all off-axis points but only affects on-axis 

points if the refracting surfaces are asymmetrical or misaligned from the optical axis. 

 

 

Figure 2.4: Astigmatism 
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2.1.1.5 Field Curvature 

Field curvature causes extended objects to focus on a curved surface instead of a flat image plane.  

Every optical system suffers from field curvature, which is a function of the optical elements’ 

refractive index and their surface curvatures (Smith, 2000).  The image surface is called the Petzval 

surface and it is almost spherical near the optical axis.  If a flat image surface is positioned to focus 

an on-axis point then the image of off-axis points will have circular blur because they are defocused 

at this plane.  The level of defocus will increase with the distance of the point off-axis.  Field 

curvature can be corrected with the right combination of surface shapes and refractive indicies 

(Smith, 2000).    In some optical systems, the object or image recording surface is curved to 

compensate for field curvature (Smith and Atchison, 1997). 

 

2.1.1.6 Distortion 

Distortion is a variation in the system magnification across the object field.   The farther a point is 

off-axis the larger the change in magnification.   When the magnification increases with off-axis 

position the distortion is termed positive or pincushion distortion.  When the magnification 

decreases it is called negative or barrel distortion.  Figure 2.5 displays the effect of these two types of 

distortion on the image of a square. 

   

Figure 2.5: Distortion of a Square (modified from Smith and Atchison, 1997) 
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2.1.2 Quantification of Optical Aberrations 

Aberrations are quantified by describing the error of specific rays.  The rays are defined by their 

position within a system aperture.  Various representations are used to describe the amount of error.  

These include longitudinal aberrations (LA), transverse aberrations (TA) and wave aberrations (W) 

(Figure 2.6).   

 

2.1.2.1 Longitudinal Aberrations 

The longitudinal aberration (LA) of a ray is the distance between the point where the ray intersects 

the optical axis in image space and the image plane. 

 

 Figure 2.6: Aberration Types 
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2.1.2.2 Transverse Aberrations 

The transverse aberration of a ray is the distance between where the ray and the optical axis intersect 

the image plane.  Generally this distance is split into components of the corresponding coordinate 

system. 

 

2.1.2.3 Wave Aberrations 

The wave aberration (W) of a ray is the difference in optical path length from object to image, 

between the ray and an unaberrated ray.  The unaberrated ray, known as the principal, chief or pupil 

ray, is the ray from any object point that passes through the centre of the system’s entrance pupil 

(Born and Wolf, 1999).  In Figure 2.6, W is the optical path length between point A and point B.  

The optical path difference (OPD) is currently the conventional technique used to measure 

aberrations and will be used predominately throughout the remainder of this thesis. 

 

2.1.2.4 Wave Aberration Function and Zernike Polynomials 

Aberrations affect a wavefront by distorting its shape as it passes through the optical system.  The 

wave aberration is a measure of this distortion.   If the ideal, undistorted, spherical wavefront at the 

exit pupil that is centred on the ideal image point is used as a reference sphere, then W is the optical 

path length along the ray between this reference sphere and the corresponding distorted wavefront 

(Figure 2.6).    

W is generally different for different rays from the same object point and for different object 

points with the same position in the exit pupil.  Therefore, the wave aberration is a function of the 

coordinates of the intersection point of the ray within the exit pupil (W(x,y) or W(r,θ)).  The ray 

positions within the entrance pupil can also be used. 

W varies smoothly between rays and therefore can be described as a power series expansion 

of ray position.  Originally Taylor polynomials were used to describe wave aberrations but recently 
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various representations using Zernike polynomials have become popular.  To avoid confusion, a 

specific set of Zernike polynomials has been proposed as the standard to be used in subsequent 

vision research (Thibos, et al., 2002).  This convention will be described subsequently and used 

throughout the remainder of this thesis. 

Following Thibos, et al., (2002), the Zernike polynomials are a set of functions that are 

orthogonal over the unit circle.  They are useful for describing the error of an aberrated wavefront 

for an optical system with a circular pupil.  Zernike polynomials are usually defined in polar 

coordinates (r,θ), where r is the radial coordinate ranging from 0 to 1 and θ is the azimuthal 

coordinate ranging from 0 to 2π.  Each of the Zernike polynomials (Z) consists of three 

components: a normilization factor (N), a radial-dependent polynomial (R) and an azimuthal–

dependent sinusoidal.  A double indexing scheme is used for describing these functions, with the 

index n describing the highest order of the polynomial component and the index m describing the 

frequency of the sinusoidal component.  By this scheme the Zernike polynomials are defined in 

equations 2.3, 2.4 and 2.5. 

= ≥

− <

mm m
n n n

mm
n n

Z (r, ) N R (r)cos(m ) m 0

N R (r)sin(m ) m 0

θ θ

θ
       2.3  

 

 
−

−

=

− −
=

+ − − −∑
(n m ) 2 s

m n 2s
n

s 0

( 1) (n s)!R (r) r
s ![0.5(n m s]![0.5(n m s]!

    2.4  
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=
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m
n
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2(n 1)N
1 δ

         2.5  

 δm0 is the Kronecker delta function (ie. δm0=1 for m=0, and δm0=0 for m≠0).  It should also be 

noted that the value of n is a positive integer or zero and for a given n, m can only take on values of 

-n, -n+2, -n+4, … n.    Considering this definition the first 15 Zernike terms are displayed in Table 

2.1 along with the name of their corresponding primary aberration.   
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Table 2.1: Listing of Zernike Polynomials inclusive to the 4th order 

 
order (n) frequency (m) m

nZ (r, )θ  Aberration 

0 0 1  

1 -1 2r sinθ   

1 1 2r cosθ   

2 -2 26r sin 2θ  45° astigmatism 

2 0 −23(2r 1)  defocus 

2 2 26r cos 2θ  0° astigmatism 

3 -3 38r sin 3θ   

3 -1 −38(3r 2r)sinθ  vertical coma 

3 1 −38(3r 2r)cosθ  horizontal coma 

3 3 38r cos3θ   

4 -4 410r sin 4θ   

4 -2 −4 210( 4r 3r )sin 2θ   

4 0 − +4 25(6r 6r 1)  spherical aberration 

4 2 −4 210( 4r 3r )sin 2θ   

4 4 410r sin 4θ   
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2.1.2.5 Image Quality Criteria 
 

Image quality criteria are used to assess how faithfully an optical system can image an object, apart 

from distortion. These criteria are related to the image’s irradiance, which is a measure of light flux 

density.  An image’s irradiance is an important aspect of image quality since the brightness 

(physiological perception of irradiance) of the image is related to the ability to perceive its detail.   

Geometrical optics predicts that the image of a point object focussed by an optical system 

with no aberrations will have infinite irradiance at the paraxial focus and zero irradiance elsewhere.  

Diffraction theory has shown that the real image consists of a bright central area surrounded by 

bright and dark rings (Airy pattern) and it provides a limit to the irradiance of the central area.   In 

the presence of aberrations, the central peak irradiance is generally expressed as the fraction of the 

diffraction limit.  When normalized this ratio is known as the Strehl intensity (Born and Wolf, 1999) 

or Strehl ratio. 

Without diffraction theory, aberrations do not provide image quality information directly but 

they can be used to calculate some criteria.   The derived criteria are usually the result of reducing a 

complex multi-dimensional function to a single number on a suitable scale.  When using a wave 

aberration function the common reduction is to calculate the root-mean-square (RMS) of the 

wavefront error. 

  The RMS of a wave aberration function is a measure of the variance of the wavefront error 

within the pupil.  When W(r,θ) is expressed with Zernike polynomials then the RMS can be 

calculated by   

  
= −  

  
∫ ∫ ∫ ∫
2 1 2 1

2

0 0 0 0

RMS W (r, )r d r d W(r, )r d r d
π π

θ θ π θ θ π




2

    2.6 

It has been shown (Smith and Atchison, 1997; Born and Wolf, 1999) that the Strehl ratio (E) 

of an optical system is related to the RMS of its wavefront error by  

≈ − 2 2E 1 (2 ) (RMS)π λ          2.7  
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Equation 2.7 shows that the RMS can be used as an image quality criterion, since the Strehl 

ratio is smaller than the ideal value by an amount proportional to the root-mean-square wavefront 

error (Born and Wolf, 1999). It also shows that the image irradiance is normalized to one when the 

RMS equals zero, which represents an aberration free system. 

The relationship between the Strehl ratio and the RMS of the wavefront error is only valid for 

ratio values greater than 0.8 (Smith and Atchison, 1997).  Wavefront aberrations in both eyes of 59 

normal young adults (average age of 24 years) have been measured with a near-IR (784 nm) 

Hartmann-Shack aberroscope (Castejon-Mochon, et al., 2002). The average RMS of the wavefront 

error fit by high-order Zernike terms (>2nd order) was found to be 0.15 µm for a 5 mm pupil.  

Considering equation 2.7, the measured RMS in this population would need to be less than 0.06 µm 

for the relationship between Strehl ratio and RMS to be valid.  While the RMS of the wavefront 

error in the human eye is too large to relate it quantitatively to the Strehl ratio, it is qualitatively 

known that systems with larger wavefront error will produce worse image quality and RMS is still a 

useful metric for describing the overall size of the wavefront error. 
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2.2 The Human Eye as an Optical Element 

 

The human eye is a complex optical system.  Its main anatomical features are depicted in Figure 2.7.  

The shape, position and refractive index of these structures, described in the following sections, 

provide the eye with its unique imaging capabilities. 

 

 

 

Figure 2.7: Optical Components of the Human Eye (modified from Kolb, et al., 2002) 
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2.2.1 Cornea 

The cornea is the transparent tissue that acts as the window to the eye.  It is composed of three main 

layers.  These include the epithelium, stroma, and endothelium.  Corneal thickness ranges from 

about 0.5 mm centrally to 0.7 mm on the periphery and consists mostly (∼90%) of stroma. A thin 

coating of tear film covers the external corneal surface and serves to maintain the smoothness of the 

optical surface (Charman, 1991b). 

The refractive index of the cornea has been determined to be 1.376 (Bennett and Rabbetts, 

1989).  Due to the large change in refractive index between air and cornea, its anterior surface makes 

the greatest contribution to the overall power of the eye (∼60%).  Corneal shape is consequently of 

great interest with regard to its role in determining the aberration of retinal images.   

The shape of the cornea or any surface can be expressed as the perpendicular distance of 

surface points from a reference plane (Figure 2.8).  These distances are referred to as the sag or 

elevation of the surface at that particular point.  Surface shape can then be described by the 

parameters of various known shapes, whose sag best fits the surface’s sag. 

Describing the corneal surface with a sphere will provide an overall, average description of its 

shape.  Spherical sag (Zs) at a point with polar coordinate r is commonly defined by  

= − −SZ (r) R R r2 2          2.8  

 where R is the radius of curvature of the spherical surface. 

The radius of curvature of most corneas does not stay constant across the surface as it does 

for a spherical surface.  Corneal curvature tends to either steepen or flatten for points radially farther 

from the apex.  A more flexible description uses a conic shape that accounts for the possible 

changing curvature.  Conic sag (ZC) is commonly defined (Smith and Atchison, 1997) by  

− − +
=

+C

R R (1 Q)r
Z (r)

1 Q

2 2

        2.9 
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R is the apical radius of curvature measured from the centre of curvature to the vertex 

(Figure 2.8).  Q is the asphericity, which quantifies how the radius of curvature changes.  When Q 

equals zero equation 2.9 simplifies to equation 2.8 and the defined shape is spherical.  When Q < 0 

the peripheral curvature is flatter than the central curvature and is termed prolate.  When Q > 0 the 

peripheral curvature is steeper than the central curvature and is termed oblate (Figure 2.8). 

 

Figure 2.8: Conic surfaces 

Conic sag can also be expressed as 

( )
=

+ − +
C 2 2

Z (r)
R R 1 Q r

2r

= = − = −2Q K e p 1

       2.10 

      

While equation 2.9 is not calculable when Q= -1, equation 2.10 is always calculable and is 

therefore preferred for numerical calculations (Smith and Atchison, 1997). 

Besides asphericity, a number of other quantities have been used to describe the radial 

change in curvature.  These quantities are the conic constant (K), eccentricity (e) and the shape 

factor (p).  The relationship between these quantities and the asphericity is  

         2.11 
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Most attempts to model the cornea have utilized symmetric surfaces, but in reality, the 

cornea is an irregular, aspherical surface that is not rotationally symmetric.  A more extensive 

description of corneal shape will be given in Chapter 4. 

 

2.2.2 Aqueous Humour 

Behind the cornea is the anterior chamber, which is filled with a transparent liquid called the 

aqueous humour.  Its refractive index has been found to be approximately 1.337.   

The depth of the anterior chamber is defined as the distance, measured along the eye’s 

optical axis, from the posterior vertex of the cornea to the anterior surface of the crystalline lens, 

although the term anterior chamber depth sometimes includes the thickness of the cornea (Bennett 

and Rabbetts, 1989). This is usually the case when measurements are made with A-scan 

ultrasonography, which cannot resolve the posterior corneal surface.  Due to a corresponding 

increase in the thickness of the crystalline lens, the depth of this chamber reduces throughout adult 

life (Charman, 1991b).  An average, age-independent value of anterior chamber depth excluding 

corneal thickness would be 3.0 mm (Bennett and Rabbetts, 1989). 

 

2.2.3 Pupil 

The pupil is a circular opening in the iris, lying approximately tangential to the anterior lens surface.  

It plays the important role of aperture stop in the optical system of the eye.  Consequently its 

contribution to the retinal image includes controlling the light flux as well as affecting image quality 

through its influence on diffraction, aberrations and ocular depth of focus (Charman, 1991b). 

It has been determined that the major physiological role of the pupil is to control retinal 

illumination.  The pupil diameter varies as function of the ambient lighting but is also affected by 

factors like age, accommodation, emotion and medication. 
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The pupil is not centred with respect to the rest of the eye’s components and is often 

displaced nasally (Liou and Brennan, 1997).  Research into pupil centration has revealed that it 

changes with changes in illumination and pupil size (Walsh, 1988; Wilson, et al., 1992).  Because of 

the various aberrations of the eye, investigations into the effect of pupil centration and diameter on 

ocular optical performance found that decentration caused relatively little difference at smaller pupil 

sizes, while it could produce marked degradations for larger pupil sizes (Walsh and Charman, 1988).         

 

2.2.4 Crystalline Lens 

The purpose of the crystalline lens is to provide the remaining refractive power necessary to 

dynamically focus objects located at different distances from the eye.  Through the act of 

accommodation, lens power is increased to enable near objects to be focused on the retina.   This is 

accomplished by changes in lens shape, thickness, refractive index distribution and position within 

the globe.  There are physical limits to how much these parameters can change, which provide upper 

and lower limits to the equivalent power of the lens and eye.  The resulting range of object positions, 

which can be focussed clearly onto the retina, is known as the amplitude of accommodation. 

The lens is composed of fine fibres stretched from the anterior to posterior pole.  While 

retaining old fibres, the lens continues to grow throughout life by the addition of new lens fibres 

originating at the lens equator.  Consequently the shape and size of the lens is continually changing 

(Charman, 1991b).  The amplitude of accommodation is also affected by age.  It decreases 

throughout life until the ability to accommodate by changing lens power is lost around the age of 50 

years.     

A modified form of slit lamp photography has been used to measure the shape of the lens 

surfaces.  Results indicate that the curvature of both the anterior and posterior surfaces increase with 

age (Brown, 1974; Dubbelman and van der Heijde, 2001). 

A farther consequence of lens growth is that the central region or nucleus of the lens is older 

than the outer layer or cortex.  The highest refractive index (∼1.41) is found in the nucleus while the 

lowest (∼1.38) is in the cortex.  The lens is a gradient-index (GRIN) optical component and its 

 20



properties cannot be fully described by classical eye models that assume homogeneity of the lens 

medium (Charman, 1991b). 

Experimental and theoretical techniques, which were originally developed to study the index 

distributions in GRIN optical fibres, have been applied to human lenses. One of the more powerful 

techniques involves studying the deflection of a thin laser beam as it passes through the lens at 

different locations.  Results have been used to determine the GRIN distributions (Campbell, 1984) 

and focal length and longitudinal spherical aberration of excised lenses.  This technique has shown 

that the focal length increases linearly with age and the magnitude and sign of the spherical 

aberration change with age and accommodation (Glasser and Campbell, 1998).  This information is 

then used to compute the refractive index distribution based on assumptions regarding the latter’s 

form and symmetry (Piers, 1997). 

The internal refractive index structure of in vitro human lens has also been investigated by 

analysing the path of a laser beam (ray tracing) (Pierscionek and Chan, 1989).  This method can be 

accurately applied only to a lens with a circular cross-section and consequently only the refractive 

index distribution in the equatorial section of human lenses could be measured (Smith, 2003). 

Reflectometry has also been used to measure the refractive index of in vitro human lenses.  

Measurements have been made with both an Abbe reflectometer (Piers, 1997; Clarke, et al., 1998) 

and a reflectometric fibre optic sensor (Pierscionek, 1994, 1997).   

Magnetic resonance imaging (MRI) has also been utilized to determine the refractive index 

of in vitro human lenses (Moffat, et al., 2002).  Although it is time consuming, costly and currently 

has limited resolution, the MRI technique holds the most promise for measuring the refractive index 

at any spatial location within an in vivo human lens (Smith, 2003). 
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2.2.5 Vitreous 

The space between the lens and retina is filled with a transparent gel known as the vitreous.  It has a 

refractive index of approximately 1.336 and tends to liquefy throughout adulthood.  Optically, the 

vitreous body in the young is almost clear and free of refractive irregularities, but these can become 

more prevalent during old age (Charman, 1991b).  

 

2.2.6 Retina 

Anatomically, the retina is composed of thin layers of neural tissue that lines the posterior portion of 

the globe (Vaughan, et al., 1999).  Within the retina is a layer of specialized cells, known as receptors, 

which transform light into electrical impulses.  The nerve fibre layer transmits the impulses to the 

brain via the optic nerve.  The retina’s ability to distinguish detail is governed by the density of 

receptor cells.  This density is not uniform over the entire retinal surface and reaches a maximum in 

the macular region.  The macula is an approximately circular region of about 1.5 mm diameter 

containing a smaller central area called the fovea.   It is at the fovea that the eye attains its maximum 

resolving power.   When an eye fixates on an object the image lies on the fovea.  

Optically, the retina plays the role of the imaging screen.  It can be regarded as a spherical 

surface with a radius of curvature in the neighbourhood of 12 mm. The curvature of the retina gives 

it two main advantages over the flat image planes used in most optical instruments.  First, the curved 

retina is better suited for the curved image plane created by most optical systems. Secondly the 

curved retina is able to cover a much wider field of view (Bennett and Rabbetts, 1989). 
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2.2.7 Optical Axis, Visual Axis and the Line of Sight 

The centres of curvature of reflecting or refracting elements in a conventional centred system are co-

linear.  This line is the optical axis (Atchison and Smith, 2000).  The optical surfaces of the eye may 

lack rotational symmetry.  Their nominal centres of curvature may not lie on a common axis and the 

pupil centre may also be displaced.  These various decentrations, asymmetries and tilts are small in 

most eyes and a nominal optical axis can be identified.  By itself, the nominal optical axis is of no 

specific importance but is useful as a reference for some other axes of the eye (Atchison and Smith, 

2000). The line passing through the centres of curvature of the front surface of the cornea and the 

back surface of the lens can be used to approximate the nominal optical axis (Le Grand and El 

Hage, 1980). This optical axis does not in general intersect the retina at the fovea.   The intersection 

is found approximately 1.5 mm nasal and 0.5 mm superior to the fovea (Charman, 1991b).   

Another axis, known as the visual axis, is defined as 2 parallel lines passing from the fixation 

point to the eye’s first nodal point and from the second nodal point to the fovea.  This axis is a 

convenient reference for visual functions since it does not depend on pupil size (Atchison and 

Smith, 2000).  Its use has been criticized since a ray along the visual axis is not centred on the pupil 

and would not be the chief ray of the beam passing into the eye from the fixation target (Bennett 

and Rabbetts, 1989).   

Close to the visual axis is another axis called the line of sight.  It is defined as the line joining 

the fixation point and the centre of the entrance pupil.  The direction of this axis is not fixed since 

the pupil centre may fluctuate with pupil size.  This axis is very important for defining visual 

function since it defines the centre of the beam of light (chief ray) entering the eye (Atchison and 

Smith, 2000).  Aberration measurements of the eye are referenced to the line of sight. 

Generally, the angle between the optical axis and the line of sight defined above is called 

angle alpha (α) (Bennett and Rabbetts, 1989; Atchison and Smith, 2000).  Since the method of 

measuring this angle (see Chapter 5) involves the subject fixating on a target, it may be more 

accurate to consider that angle alpha defines the position of the line of sight rather than the visual 

axis (Atchison and Smith, 2000).    Typically α takes a value of about 5° in a nasal inferior direction 

(Charman, 1991b). 
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2.2.8 Refractive Error 

An unaccommodated eye is properly focussed if it brings parallel rays from a distant object to a 

sharp focus on the retina.   Such an eye is said to be emmetropic.  If an eye is not emmetropic, it 

possesses refractive error and is termed ametropic.  Ametropia is an optical defect introducing 

defocus and it is reasonable to assume that it can be corrected by an optical means such as spectacles 

or refractive surgery.   

Ametropia is described by dividing it into spherical ametropia and axial astigmatism. An eye 

with spherical ametropia focuses images at a plane that is not coincident with the retina.   

Consequently, the axial length of the eye and its focal length are mismatched.   

If the image plane is in front of the retina the resulting refractive error is referred to as 

myopia (Figure 2.9).  The myopic eye can be regarded as having too much optical power for its axial 

length.  For images to be focused on the retina, light from the object must reach the eye in a state of 

divergence.  Without any means of optical correction, only objects at a finite distance from the eye 

will be well focussed.  This distance is inversely proportional to the size of the refractive error in 

dioptres.  The point conjugate with the fovea of the unaccommodated eye is called the far point.  

Accommodation allows a myope to focus objects at a shorter distance from the eye than the far 

point but not objects beyond it.    

 

 

Figure 2.9: Myopia 
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Hyperopia is the condition where rays within the eye are intercepted by the retina before 

reaching focus (Figure 2.10).  The unaccommodated hyperopic eye does not possess enough power 

for its axial length.  The far point is situated behind the eye and is thus a virtual one.  Consequently, 

light must reach the eye in a state of convergence in order to be focussed on the retina.     Without 

some form of correction, including accommodation, hyperopes will not be able to focus any real 

objects on the retina.   

 

 

Figure 2.10: Hyperopia 

When spherical ametropia is modelled it is generally distinguished to be either axial or 

refractive.  In the former, the eye is assumed to have a standard power and any refractive error is 

due to a defect in the axial length.  In refractive ametropia, the axial length of the model eye is 

assumed to have a standard value and any refractive error is attributed to an error in the refracting 

power.  

Axial astigmatic refractive error refers to the size of an angular variation in focal power or 

the power equivalent to the interval of Sturm previously defined for off-axis astigmatism.  The focal 

properties of most human eyes show at least a small degree of astigmatism.  This is primarily due to 

the asymmetrical nature of the cornea but the shape of the crystalline lens along with misalignments 

of the ocular components may also have an effect.    

Refractive error is quantified as the power needed to focus a ray close to the optical axis 

onto the retina.   This is the inverse of the distance (in dioptres) from the eye’s principal point to the 

ray’s far point. This refractive error is also described by the back vertex focal power of a corrective 
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lens or lenses.  The standard ophthalmic convention utilizes a sphero-cylindrical lens described by its 

spherical power (S), cylindrical power (C) and the cylinder axis (ϕ).  This description can be partially 

summarized by its spherical equivalent (SE), which is the power needed to move the circle of least 

confusion onto the retina.   A sphero-cylindrical lens’ SE is related to its sphere and cylinder by 

= +SE S
2
C           2.12 

When describing the eye’s aberration as a wavefront error it is useful to be able to convert 

the defocus in the wavefront aberration function into an equivalent refractive error.  The conversion 

was developed by examining an optical system in which defocus is the only aberration and the object 

is at infinity (Figure 2.11).   

It has been shown that for small amounts of aberration the wave (W) and transverse 

aberration (TA) of a ray are related by  

∂R W(r)
= −

′ ∂
refTA

n r
         2.13  

where Rref is the radius of the reference sphere,  is the image space refractive index and r 

represents the non-normalized radial coordinate (Welford, 1986).  Since defocus is a symmetrical 

aberration, only the radial component is considered.   

′n

 The transverse aberration can be related to the longitudinal aberration (LA) by examining 

Figure 2.11.  This diagram shows  

 =
+ −refLA R LA z

TA r          2.14  

z is the sag of the reference sphere from the pupil plane at the point where it intersects with the ray. 
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Figure 2.11: Defocused Wavefront 

If z is assumed to be small then 

 = wLA TA
r

R           2.15  

where Rw is the radius of curvature of the actual spherical wavefront.  

The refractive error (Rx) can be related to the longitudinal aberration by first rearranging 

equation 2.16 into 2.17 and then inserting , , = wf '  and  to create 

equation 2.18.  

R =l ' R ref= −LA f ' l '=Rx 1 l

 = +
l ' l f '
n ' 1 n '           2.16   

 −1 n '(f ' l ')
=

l f ' l '
          2.17  
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 =
w ref

Rx
R R
n ' LA           2.18 

  

 The relationship between refractive error and wavefront aberration can be seen from 

combining equations 2.13, 2.15 and 2.18 into 

 ∂1 W(r)
= −

∂
Rx

r r
          2.19  

 If spherical defocus is the only aberration in the wavefront then the wave aberration 

function can be represented by the 2nd order, symmetrical Zernike term.  With non-normalized 

coordinates W is   

 = −20 ρ2W(r) 3Z (2(r ) 1)         2.20  

where ρ  is the pupil radius.   The relationship between refractive error and the defocus wavefront 

aberration is then  

= − 2
2Rx

ρ

04 3Z              2.21 
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3 Symmetrical Eye Models 

 

3.1 Introduction 

When making an initial attempt to model a complex system, it is prudent to start with the simplest 

possible model.  If the proposed model is unable to simulate the desired properties of the complex 

system then it will need to be enhanced by either adjusting its existing properties or incorporating 

additional features.  To investigate the eye’s imaging capabilities, numerous attempts have been 

made to create a variety of different models. 

Many of the eye’s imaging capabilities can be calculated paraxially.  In order to make these 

calculations, a variety of paraxial eye models have been developed (Gullstrand, 1924; Emsley, 1952; 

Ogle, 1968; Duke-Elder and Abrams, 1970; Fincham and Freeman, 1980; Le Grand and El Hage, 

1980; Bennett and Rabbetts, 1988).  The most common paraxial models use centered spherical 

surfaces and assume the lens is homogeneous.  The main difference between these models is their 

choice of biometric parameters and level of simplification (Charman, 1991b).   Except for 

Gullstrand’s paraxial GRIN model (Gullstrand, 1924), schematic eyes, in which the cornea and lens 

are each represented by a pair of surfaces, are the most complex of the paraxial models.  Simplified 

schematic eyes represent the cornea with a single surface.  Further simplification is achieved with 

reduced eye models, which consist of a single refracting surface. These models do not exactly 

duplicate the cardinal point positions of the eye, needed for paraxial calculations, but their 

approximation is good.  While paraxial models are perfectly adequate for many calculations in visual 

optics they are not designed for aberration calculations.  

Advances in the knowledge of the refracting surface shapes and refractive index 

distributions, along with computerized ray tracing has led to the development of non-paraxial 

models.  The simplest approach involves introducing aspheric surfaces while retaining homogenous 

media (Lotmar, 1971; Drasdo and Fowler, 1974; Kooijman, 1983; Navarro, et al., 1985).  More 

elaborate models use inhomogeneous lenses.  These include a variety of models in which the lens’ 

refractive index distribution is either approximated with a finite number of shells of differing index 

or a smooth gradient refractive index (GRIN) (Gullstrand, 1924; Lotmar, 1971; Pomarantzeff, et al., 
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1972; Watkins, 1972; Blaker, 1980; Pomarantzeff, et al., 1983; Smith, et al., 1991; Liou and Brennan, 

1997; Piers, 1997).   

Calculations of the longitudinal spherical aberration (LSA) of these models revealed that 

most of the present models estimate values that are significantly higher than empirical results (Liou 

and Brennan, 1996).  The empirical results used by Liou and Brennan were determined by 

calculating the weighted average of the results from studies by Ames and Proctor (1921), Koomen, 

et al. (1949), Francon (1951), Ivanoff (1956), Schober, et al. (1968) and Millodot and Sivak (1979).   

For a ray height of 2.5 mm from the pupil centre the average LSA value was found to be 0.54 D. 

These studies evaluated spherical aberration by using a ray aberration concept.  They also 

assumed the primary aberration of the human eye to be spherical aberration.  This assumption 

would hold true for an optical system that is rotationally symmetric about its optical axis.  The 

human eye lacks rotational symmetry about an optical axis due to its asymmetries, such as a 

displaced fovea, tilts and decentrations of the refracting surfaces and pupil and asymmetries in 

corneal shape.  Aberrations of an individual human eye rarely display rotational symmetry about the 

pupil centre (Charman, 1991a).  The problem of ascribing all the measured aberrations to spherical 

aberration can be solved by using mathematical techniques to resolve aberration measurements into 

components from which the true amount of LSA could be inferred (Thibos, et al., 1997).     

Eye models that predict LSA values similar to empirical results, are the models proposed by 

Thibos and co-workers (Thibos, et al., 1992, 1993; Ye, et al., 1993; Thibos, et al., 1997), Liou and 

Brennan (1997) and Piers (1997).   The Thibos (Indiana Eye) model is a reduced eye model, which 

utilizes a single aspheric surface to reproduce the eye’s aberrations and is consequently not 

anatomically accurate.    When the surface asphericity was set to -0.4, this model predicted LSA of 

0.95 D for a ray height of 2.5 mm which compares well to empirical data reported by Koomen, et al. 

(1949), Francon (1951), Ivanoff (1956) and Schober, et al. (1968). 

Age has been found to change aberrations (Calver, et al., 1999; Oshika, et al., 1999; Guirao, 

et al., 2000; McLellan, et al., 2001), biometric parameters (Brown, 1974; Grosvenor, 1987; Kortez, et 

al., 1989; Goss, et al., 1990; Dubbelman and van der Heijde, 2001; Dubbelman, et al., 2001) and the 

optical properties of the lens (Clarke, et al., 1998; Glasser and Campbell, 1998).  Consequently an 

eye model can only be anatomically accurate and correctly simulate aberrations for a small range of 
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ages.  The Liou and Brennan (1997) model was designed with age dependent biometric parameters 

for an average age of 45 years, while its GRIN lens simulated the measurements from a 16-year-old 

lens (Pierscionek and Chan, 1989).   For a ray height of 2.5 mm the Liou and Brennan model 

predicted an LSA of 0.4 D, which underestimates the corresponding average empirical value 

(0.54 D) they had calculated (Liou and Brennan, 1996). 

  Piers originally set out to develop a GRIN lens model to simulate the optical properties of 

young adult lenses measured by a previously developed scanning laser technique (Glasser and 

Campbell, 1998).  Her modeling process consisted of first setting the shape and separation of the 

lens’ refracting surfaces, along with its central refractive index as constants.   She then varied the 

mathematical description of the GRIN and the refractive index of the lens’ surface.  

The laser scanning technique (Campbell and Hughes, 1981) utilizes the refraction of laser 

beams through different positions of excised crystalline lenses to determine their focal length and 

longitudinal spherical aberration (LSA).  Since excised lenses assume an accommodated shape, a 

custom device was used to stretch the lenses to an unaccommodated state. This technique was 

previously used to gather data from 10 lenses from 7 subjects (Piers, 1997).   These lenses ranged in 

age from 20 to 36 years, with an average age of 29 ± 6 years.  The average focal length of the lenses 

was found to be 60.33 mm with a standard deviation of 5.91 mm.   

The shape of the crystalline lens can be described as an asymmetric ellipsoid where the front 

and back sections differ.  Radius of curvature (R) and asphericity (Q) or the length of the semi-axes 

(a and b) can be used to describe the shape of an ellipsoid.  These parameters are displayed in Figure 

3.1 and their relationships are shown in equations 3.1 and 3.2.   

Slit-lamp photographs have been used to determine the curvature of the anterior and 

posterior surfaces of in vivo human lens (Brown, 1974). In Brown’s study, radius of curvature values 

were presented as a function of age.  Between the ages of 18 to 35 years, Brown found the anterior 

radius of curvature (RAL) ranged from 15.17 to 13.30 mm, while the posterior radius of curvature 

(RPL) values were between -8.36 and -7.85 mm. Piers used the median values of 14.2 and -8.10 mm 

for RAL and RPL respectively in her lens model.
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Figure 3.1: Ellipsoid Shape Parameters 
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Recently new lens shape measurements, made with a digital slit-lamp system have been 

reported (Dubbelman and van der Heijde, 2001).  Digital images of the contour of the vertical 

meridians of the lens surfaces were captured in the right eye of 102 subjects with an average age of 

39 years (16 to 65).  The measurements were corrected for the distortion caused by the geometry of 

the imaging system and the refraction of the eyes optical components.  Spherical fits were 

performed on the central 3 mm zone.  Only 65 images were analyzed for the posterior surface since 

its central 3 mm could not always be captured.  Like Brown (1974), the radius of curvature of both 

the anterior and posterior surfaces were found to decrease with age (ignoring the sign).  Linear 

regression revealed a 25-year-old lens would have radius of curvature values of 11.5 ± 0.6 and 5.9 ± 

0.4 mm for the anterior and posterior surfaces respectively.  Conic fits were also performed on the 

central 5mm of the anterior surface of the 90 lenses and the central 4 mm of the posterior surface of 

41 lenses.  The vertex radius of curvature of the anterior surface decreased with age.  Linear 

regression revealed a 25-year-old lens would have a vertex radius of curvature of 11.1 mm.  The 

anterior asphericity did not change significantly with age.  Its mean value was -5.0 ± 4.7.  No age 

dependence was found for the vertex radius of curvature and asphericity of the posterior surface. 

Mean values were -5.6 ± 0.6 mm and -4.0 ± 3.6.  

A few earlier attempts have been made to determine the asphericity of excised crystalline 

lenses (Howcroft and Parker, 1977).  But these measurements were made on excised lenses, which 
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are no longer unaccommodated and cannot be used for an unaccommodated lens model.   Since no 

applicable data on lens asphericity existed at the time, Piers calculated her modeling values from the 

other parameters.   

Based on the previously defined values for RAL and RPL, Piers calculated axial length (a) and 

surface asphericity (Q) of the anterior and posterior sections after taking b to be 4.6 mm, which was 

half of the scan diameter used in the laser scanning measurements.  The asphericities of the anterior 

and posterior surfaces of her lens model were 8.53 and 2.10 respectively.  The central thickness of 

the anterior and posterior sections of her lens model was 1.49 and 2.61 mm respectively. 

  These shape parameters produce a lens with an axial thickness of 4.1 mm.  Lens thickness 

has been examined with ultrasonagraphy and slit-lamp photography in 100 near emmetropic subjects 

with an age range from 18-70 years (44.5 ± 14.9 years) (Kortez, et al., 1989).  This study found that 

both methods produced nearly identical results, lens thickness increased linearly with age and their 

regression equations predicted a 25-year-old lens would have an axial thickness of 3.77 ± 0.14 mm.  

Another study, utilizing ultrasonography, found a mean lens thickness of 3.48 ± 0.21 mm in 30 

emmetropic subjects that ranged in age from 15 to 49 years (26.4 ± 5.9 years) (Carney, et al., 1997).  

This study did not attempt to correlate lens thickness with age.  

Previously mentioned digital slit-lamp images have also been used to determine lens 

thickness as a function of age (Dubbelman, et al., 2001).  Measurements, on 90 subjects with an 

average age of 39 years showed a significant increase in axial lens thickness with age.  Linear 

regression revealed a 25-year-old lens would have an axial lens thickness of 3.52 ± 0.12 mm.   

Measurements of the refractive index at the centre and surface of 18 young adult crystalline 

lenses have also been performed (Piers, 1997; Clarke, et al., 1998).  The central index was found to 

have an average value of 1.406.  The surface index was found to vary significantly between 1.37 and 

1.39.  The surface measurements were not as reliable as the central measurements since there is a 

very rapid change in the refractive index close to the lens surface.  Due to this variability, Piers used 

the average central value as a constant while the surface index was used as a variable. 

Laser ray tracing data, in the equatorial plane of human lenses, revealed that the refractive 

index profile was relatively flat over the central two-thirds and decreased sharply in the cortical 
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region (Pierscionek and Chan, 1989).  Measurements with a fibre optic sensor discovered a similar 

refractive index profile along the optical axis (Pierscionek, 1995).  The laser ray tracing data within 

the equatorial plane from (Pierscionek and Chan, 1989) has been reanalysed to reveal a central index 

of 1.403 and an edge index of 1.337 (Smith, 2003).  Measurements of the surface index with a fibre 

sensor revealed anterior surface index values ranging from 1.364 to 1.381 for the anterior surface 

and 1.338 to 1.357 for the posterior surface (Pierscionek, 1994).  The difference between these 

results may be due to the fact that the laser ray tracing method measured the refractive index at the 

equatorial plane while the fibre sensor measurements were for the polar regions (Smith, 2003). 

A more extensive investigation of surface index profiles has found that the anterior pole and 

equatorial edge indices were strongly age-dependent while the posterior pole index did not change 

with age (Pierscionek, 1997).  At 20 years of age, these results predicted refractive indicies of 1.387 

for the edge of the anterior pole and 1.339 for the equatorial edge.  The refractive index of the 

posterior pole was found to be 1.395. Central index values ranging from 1.402 to 1.404 were also 

found. 

Magnetic resonance micro-imaging has been used to map out the refractive index 

distribution throughout the sagittal plane of 18 human lenses ranging in age from 14 to 82 years 

(Moffat, et al., 2002).  In this study the edge index was found to be around 1.36 with a very slight 

age-dependence of 0.00003 per year.  The core index was found to be strongly age-dependent, 

ranging from 1.43 to 1.41. Smith (2003) has described how the core results are unexpected since the 

core consists of older fibres that have lost their water content.  For the index to decrease, the 

crystalline proteins must somehow change to a different state with a lower index or become 

rehydrated.     

   Once her constants had been selected, Piers created six models with different variations of 

GRIN.  These models included continuous gradient models, shell models and core models.  The 

refractive index of the lens surface was varied for each model until its focal length matched the 

average empirical value of the young adult lenses.  Through this process she found that a shell 

gradient model, where the lens has a shell of constant index surrounding a gradient core, produced 

LSA values that most closely resembled the empirical values of the young adult lenses.      
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Piers then proceeded to develop six eye models by positioning her lens models behind a 

symmetrical cornea.   The dimensions of the anterior surface were taken from a previous study 

(Kiely, et al., 1982).  This study found an average anterior corneal radius of curvature (RAC) of 7.7 

mm and an asphericity (QAC) of -0.26.  The results of this study were chosen because they have been 

used in most eye models since the data was published.  A more detailed discussion of the corneal 

surface shape will be given in Chapter 4. 

There is considerably less information on the shape of the posterior corneal surface than the 

anterior surface.  The first attempt to determine posterior corneal shape, involving a significant 

number of subjects, utilized a slit-lamp technique (Lowe and Clark, 1973).  This study found mean 

values of 7.65 and 6.46 mm for the anterior and posterior corneal radii in the vertical meridian of 92 

eyes from 46 normal subjects with an age range from 23 to 77 years (mean of 61 years).  No 

correlation was found between either the anterior or posterior radius of curvature and age.   

A new method of using Purkinje images has been compared to the slit-lamp method on 15 

eyes (Royston, et al., 1990).  Average posterior corneal radii were found to be 6.35 and 6.40 mm for 

the slit-lamp and Purkinje image techniques.  The Purkinje image technique was then used to study 

the normal variation in the posterior corneal surface (Dunne, et al., 1992).  This study reported that 

the mean radius of curvature of the posterior corneal surface (RPC) was 6.45 mm for 60 young eyes 

(22.0 ± 3.3 years) and 6.25 mm for 20 old eyes (74.6 ± 5.6 years).  It was suggested that the 

difference between the young and old groups was due to a predominance of myopes in the young 

group (mean sphere –2.05 D) and hyperopes in the old group (mean sphere 0.92 D).   

Measurements of the anterior surface, with a photokeratscope, and corneal thickness, with 

an optical pachometer, have been used to estimate the shape of the posterior surface (Rivett and Ho, 

1991). In 42 eyes of 21 subjects, described as young adults, Rivett, et al. found the RPC had mean 

values of 6.16 mm and 6.10 mm in the right and left eyes.  Posterior asphericity (QPC) was found to 

have mean values of  –1.49 and –1.52 for right and left eyes. 

In another study posterior corneal shape was calculated from an algorithm based on the 

shape of the anterior corneal surface and corneal thickness measurements (Patel, et al., 1993).   

Anterior corneal shape was measured with a commercially available photoelectric keratoscope. 

Ultrasonic pachymetry was used to determine corneal thickness.  Measurements were made on 20 
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normal subjects ranging in age from 19 to 23 years.  Average RPC and QPC was found to be 5.80 ± 

0.42 mm and -0.36 ± 0.37 for the vertical meridian.  Along the horizontal meridian average RPC and 

QPC was found to be 5.82 ± 0.40 mm and -0.48 ± 0.30.  Average central corneal thickness was 533 ± 

19 µm.  

 Utilizing the same technique as Patel, et al.(1993), Lam and Douthwaite (1997) calculated the 

apical radius of curvature and asphericity of the posterior corneal surface in 60 Chinese university 

students.  The subjects’ age was not reported.  The mean RPC and QPC were found to be 6.51 ± 0.40 

mm and -0.66 ± 0.38. 

A commercial apparatus incorporating a scanning slit has been developed to directly measure 

the topography of the anterior and posterior corneal surfaces (see Chapter 4 for more details).  This 

instrument (Orbscan II, Baush and Lomb) has been used to evaluate the corneal topography in 94 

normal eyes from 51 subjects (Liu, et al., 1999). This study found that, over a central 5 mm diameter, 

the mean RAC was 7.71 mm and the mean RPC was 6.49 mm.  The age of the subjects in this study 

were not reported.   

The Orbscan II has also been used to study how laser refractive surgery affects the shape of 

the posterior corneal surface (Seitz, et al., 2001).  This study included 57 eyes from 29 subjects with a 

mean age of 33 ± 9 years (19 to 53).  Their mean spherical equivalent refractive error was -5.07 ± 

2.81 D (-1 to -15.50).  Preoperatively the mean radius of curvature and asphericity of the posterior 

corneal surface were found to be 6.22 ± 0.22 mm and -0.02 ± 0.07 respectively.  Postoperative 

corneal shape will be discussed in Chapter 6. 

Recently digital slit-lamp images have been used to quantify the shape of the anterior and 

posterior corneal surfaces in the right eye of 83 subjects aged 16 to 62 years (mean 37 ± 12) 

(Dubbelman, et al., 2002).  Digital photography was used to capture the contour of the vertical 

meridians of the corneal surfaces. The shapes of the meridians were defined by fitting a conic to the 

cornea’s central 7 mm.  The posterior surface measurements were corrected for the distortion 

caused by the geometry of the imaging system and the refraction of the anterior corneal surface.  

The average radius of curvature values were 7.78 ± 0.27 mm and 6.40 ± 0.28 mm for the anterior 

and posterior surfaces respectively.  Average anterior and posterior asphericity values were -0.18 ± 
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0.18 and -0.38 ± 0.27.  Only the posterior asphericity values were found to correlate with age 

(r=-0.32, p=0.003).  Linear regression predicted a 25-year-old cornea would have a posterior 

asphericity of -0.28 ± 0.15.     

The depth of the aqueous chamber has been found to decrease with age (Fontana and 

Brubaker, 1980; Grosvenor, 1987; Kortez, et al., 1989; Dubbelman, et al., 2001).  Fontana, et al., 

measured a mean anterior chamber depth of 3.2 ± 0.3 mm for 196 near emmetropic eyes that ranged 

in age from 21-30 years.  For an age group from 20-29 years, which consisted of 46 near emmetropic 

eyes, Grosvenor found the aqueous had a mean depth of 3.5 mm.  These results were obtained with 

slit-lamp photography and aqueous depth was measured from the posterior corneal surface to the 

anterior surface of the lens. 

Utilizing ultrasonography, Kortez, et al. (1989) reported a regression equation that predicts a 

25-year-old eye would have an aqueous chamber depth of 3.85 ± 0.15 mm.  The ultrasonography 

study by Carney, et al., reported a mean aqueous chamber depth of 3.60 ± 0.37 mm.  Linear 

regression, based on digital slit-lamp images by Dubbelman, et al. (2001), predicted a 25-year-old 

lens would have an axial aqueous chamber depth of 3.62 ± 0.14 mm.  These studies measured the 

central aqueous chamber depth as the distance from the anterior corneal surface to the anterior 

surface of the lens.  Corneal thickness could be removed from these measurements by subtracting 

the average central corneal thickness of 0.5 mm (Charman, 1991b).      

The average axial length of the eye of young adults has been found to be 24.1 mm 

(Grosvenor, 1987) and 23.68 ± 0.71 mm (Carney, et al., 1997).   

Piers chose to use an RPC of 6.5 mm and a QPC of 0 in her model.  She also set her aqueous 

depth to 3.05 mm from the posterior surface of the cornea.   The emmetropic axial length of this 

model was 23.9 mm. 

Instead of utilizing the average empirical LSA data calculated by Liou and Brennan, Piers 

derived new empirical values by calculating the weighted average of wavefront aberration 

measurements by Howland and Howland (1977), Walsh and Charman (1985), Campbell, et al. (1990) 

and Collins, et al. (1995).  These studies described their measurements with either Zernike or 
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polynomial functions and were chosen since they provide a more accurate prediction of the ocular 

LSA (Piers, 1997).  At a ray height of 2.5 mm the average LSA from these studies was found to be 

0.21 D.  

While comparing her models to the new empirical data, Piers (1997) found that a model with 

a single, continuous gradient with variable ellipticity is the best match to the average ocular 

longitudinal spherical aberration derived from wavefront measurements.  This resulted in a 

contradiction since her best lens model contained a shell gradient.  Further research is required to 

determine a lens and corresponding eye model that utilize the same GRIN to predict empirical 

aberrations. 

The best Piers’ eye model predicted LSA of 0.10 D for a 2.5 mm ray height, which 

underestimates the new empirical data.   The literature results Piers used to derive the new empirical 

data were collected from a variety of studies that included subjects with unknown ages.  

Consequently, no model has been shown to be both anatomically accurate and predict the 

aberrations, including refractive error, for a given age group.  Since Piers introduced her model, new 

aberration data on young adult subjects has been reported (He, et al., 2000; Marcos, et al., 2000; 

Bueno, et al., 2002; Castejon-Mochon, et al., 2002; Paquin, et al., 2002; Cheng, et al., 2003).   

To my knowledge the Piers lens and eye models are the most anatomically accurate young 

adult models that have been published.  But her lens and eye models, that produced the best match 

to empirical LSA data, have different forms of the GRIN.  Also her lens is thicker and the depth of 

her aqueous is smaller than average empirical values.       

The purpose of this chapter is to describe the development of rotationally symmetric, 

anatomically accurate, unaccommodated, young adult lens and emmetopic eye models, based on the 

work of Piers.   These models were designed to utilize the same form of GRIN to simulate the lens 

measurements and ocular aberration data used by Piers (Piers, 1997; Glasser and Campbell, 1998).  

New model aberrations will be compared to previously described new young adult aberration data.    

Since the new young adult aberration data has been described as a function of myopia, the 

symmetrical eye model was extended to simulate myopia.  
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3.2 Methods 

Optical eye models were created by assembling parameters that describe the shape, position and 

refractive index on either side of the refracting surfaces into the optical design software program 

CodeV.  Figure 3.2 is an example of a myopic eye model in CodeV. Appendix A contains the c-code 

that was used to calculate the GRIN from within CodeV.   The entrance pupil was set to have a 5 

mm diameter and aberrations were generated at a wavelength of 632 nm.  This value was chosen 

since 632 nm is the wavelength of red HeNe lasers, which are commonly used to empirically 

measure the wavefront aberrations of human subjects.  The eye model’s wavefront aberrations were 

described with Zernike polynomials.   

 

Figure 3.2: CodeV representation of a -8D refractive myopic eye model 

 

3.2.1 GRIN Crystalline Lens Model 

The foundation of this eye model is a unique GRIN crystalline lens that is similar to one of the lens 

models developed by Piers (Piers, 1997).  Both of our lens models were designed to simulate the 

optical properties of young adult lenses measured by a previously developed scanning laser 

technique (Glasser and Campbell, 1998).   

Since the surfaces of human embryonic lenses have a spherical shape while adult lenses are 

elliptical, it has been assumed that the lens contains a spherical gradient near its centre and an 

elliptical gradient near the surface (Piers, 1997).  Consequently a logical model of the GRIN would 

consist of elliptical isoindicial surfaces that start by matching the asphericity at the surface and vary 
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to spherical at the lens centre.  This is also the gradient form that was found to be the best model 

for the optics of the rat crystalline lens and eye (Campbell and Hughes, 1981).   

When Piers (1997) investigated different variations of the GRIN in a simple symmetrical eye 

model, she found that the GRIN described by equations 3.3 and 3.4 produced the best match to the 

longitudinal spherical aberration of human eyes. Since the ultimate goal of this modeling process is 

to design an accurate eye model, I chose to use this GRIN in both my lens and eye models. 

Consequently my lens model’s GRIN will differ from the GRIN in the best model found by Piers. 
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n(r,z) is the refractive index of the lens at the position defined by coordinates r and z.  r is the 

distance from the optical axis and z is the distance along the optical axis.  The centre of the lens is 

the coordinate system’s origin. nc is the index at the centre of the lens while ns is the surface index.  k 

is the asphericity of the isoindicial surfaces and it varies from zero at the lens centre to ks at the lens 

surface.  ks is equal to the asphericity of the surface shape (Q). Since the lens is modeled as an 

asymmetric ellipsoid, the axial thickness (a) and consequently the shape of the isoindicial surfaces are 

different for the anterior and posterior portions of the lens (Figure 3.3). 

The LSA of the Piers lens with the previously defined GRIN, predicted values that were not 

as overcorrected as the empirical data (Figure 3.4).  I tried to create a model with the appropriate 

amount of overcorrected LSA, by varying the refractive index and shape parameter values used by 

Piers with the constraint that the focal length of the lens model must match the average empirical 

value of the young adult lens data used by Piers (1997). 

The effect of centre and edge refractive index on the LSA of the lens model was investigated 

by varying the values used by Piers in a lens model with her shape parameters.  This process 

consisted of selecting values for nc that were both larger and smaller than the value of 1.406 that was 

used by Piers.  Corresponding values for ns were then set to give the model a focal length of 60 mm. 
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The results of this modelling process were used to determine the core refractive index value (nc) in 

all subsequent models.   

To find the shape parameters for a new model with the desired properties, a process was 

implemented that differed from the approach taken by Piers.  This process involved first selecting 

values for the lens thickness (LT) and RAL.  Similar to Piers, b was set at 4.6 mm.  The following 

equations were then used to calculate shape parameters. 
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Equation 3.2 was then used to determine QAL and QPL.  The surface refractive index (ns) was set to 

give the models a focal length of 60 mm.  The initial values for LT and RAL were varied until a model 

was found that provided a good prediction of the empirical lens LSA. 

  

3.2.2 Symmetrical Eye Model 

Once an appropriate lens model had been developed, an attempt was made to create an emmetopic, 

symmetrical eye model.  This model was designed to provide a closer prediction to the empirical 

LSA values, used by Piers, than her model’s predictions.  This was accomplished by varying Piers 

choices for the shape and position of the cornea.  The new model’s biometric parameters were then 

compared to empirical results.    

For the symmetrical model, the anterior and posterior corneal surfaces were modeled with 

axially symmetrical aspheric shapes.  Similar to Piers, the parameters of the anterior surface were 

taken from the study by Kiely, et al. (1982).  The shape of the posterior corneal surface and depth of 

the aqueous (AD) were used as variables in the modeling process.   
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RPC and AD were varied to set the focal length such that the emmetropic model had an axial 

length of 24 mm.   QPC was then varied until the eye model predicted the empirical LSA values that 

were used previously by Piers (1997).  

 

3.2.2.1 Myopia 

Two techniques (axial and refractive) were used to add myopic refractive error to the emmetropic 

model.  Applying axial defocus involves increasing the overall axial length (AL) of the model.  This 

was achieved by increasing the depth of the vitreous while maintaining the refractive components.  

Decreasing the radius of curvature (RAC) of the anterior corneal surface, while keeping all other 

parameters constant, was used to simulate refractive defocus.  The size of the model’s refractive 

error (Rx) was determined from its  Zernike coefficient and equation 2.21.  Aberrations were 

calculated when the object point was positioned both at infinity and at the far point of the model. 

0Z2

 

3.2.2.2 Aberration Subjects 

The model’s wavefront aberrations were compared to previously measured data from the right eyes 

of 29 young adults with natural pupils.   Information on this group is displayed in Table 3.1.  This 

group was selected from 32 subjects whose aberrations were measured on a Hartmann-Shack 

aberroscope with a red HeNe laser (λ = 632 nm) at the University of Montreal (Paquin, et al., 2002) 

when the wavefront measurements were analyzed at the University of Waterloo (Bueno, et al., 2002).  

The 29 subjects were selected since this group had aberration measurements at both 5 and 7 mm 

pupils.  The myopic subjects wore their best-corrected spectacles because this measurement 

technique cannot determine wavefront aberrations if significant amounts of defocus are present.   

Analysis was performed at a 5 mm pupil diameter within a naturally dilated pupil in low illumination 

and wavefront error was described with Zernike polynomials.  It has been shown that Hartmann-

Shack aberroscope measurements will be affected by the presence of best-corrected spectacles 

(Campbell, et al., 2003).  The data I compare my models to have not been corrected for this 

phenomenon since data on vertex distance was unavailable.  
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Table 3.1: Statistics of the Aberration Subjects 

 

 Mean ± Standard Deviation Range 
Age (years) 21 ± 3 19 to 32 
Spherical Equivalent (D) -3.25 ± 2.50     0.0 to -9.25 
Cylinder (D) -0.25 ± 0.30     0.0 to -1.25 

 

3.3 Results 

 

3.3.1 GRIN Crystalline Lens Model 

The first attempt at modifying the Piers lens model involved varying the refractive index values used 

in the GRIN function in a lens model with Piers’ shape parameters.  When nc was decreased from 

the Piers’ value of 1.406, ns also had to decrease for the lens model to maintain the proper focal 

length.  This caused the LSA of the model to move in the undercorrected direction.  Increasing nc, 

above 1.406, caused the LSA to become more overcorrected.  To create a lens model with Piers’ 

shape parameters and the previously defined GRIN that predicted the empirical lens LSA required 

index values that were no longer within empirical limits.  Consequently I decided to keep nc at the 

average empirical value of 1.406 used by Piers in all future models.  The failure of the Piers’ model 

to predict empirical LSA with empirical refractive index values indicates that the either the GRIN 

distribution or the shape parameters in this model are not accurate.  Later discussions will show that 

it is likely the lens surface asphericities that are unrealistic.       

The modification of the lens model’s shape parameters was initiated by developing a series 

of models with an axial thickness of 3.6 mm and RAL values that were within the range found by 

Brown (1974) for 18 to 35 year old lenses.  The LSA of these models was overcorrected but not as 

overcorrected as the empirical lens data and the corresponding RPL values were approximately 2 mm 

outside the range measured by Brown. 
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The next step taken was to create a series of thicker lenses.  A lens thickness of 3.8 mm was 

selected to match the value for a 25-year-old lens predicted by Kortez, et al., (1989). These models 

predicted lens LSA values within the empirical limits.  From this group, I chose the model with 

Brown’s median value for RAL as the Priest lens model.  This model has refractive index parameter 

values of 1.406 and 1.377 for nc and ns respectively. Table 3.2 compares the shape parameters of the 

Priest and Piers models.  Figures 3.3 and 3.4 display the isoindicial surfaces of my lens model.  

Figure 3.5 shows the LSA of the Priest and Piers models compared with empirical data.  

 

 

Figure 3.3: Isoindicial surfaces of the Priest GRIN crystalline lens model.  r is the radial component 

in a polar coordinate system while z represents distance along the optical axis from the anterior 

surface.   
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Figure 3.4: Refractive index profile of the Priest model along the optical axis.  z represents the 

distance along the optical axis from the anterior surface (z=0) to the posterior surface (z=3.8).  

 
 
 
Table 3.2: Lens Parameters of the Priest and Piers Models. The parameters shown here that are used 

to calculate the GRIN are also repeated again in Appendix A. 

 

Model Ra (mm) Qa aa (mm) Rp (mm) Qp ap (mm) b (mm) nc ns 

Priest 14.2 8.53 1.49 -9.16 2.97 2.31 4.6 1.406 1.377 
Piers 14.2 8.53 1.49 -8.10 2.10 2.61 4.6 1.406 1.378 
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Figure 3.5: LSA of Experimental Results and Crystalline Lens Models.  Experimental and model 

data from Piers has been reprinted with permission. 
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3.3.2 Symmetrical Eye Model 

Table 3.4 shows the parameters I chose to use in my emmetropic, symmetrical eye model.  AL is the 

axial distance between optical surfaces and n represents the refractive index.  Figure 3.6 displays the 

ocular LSA of my model, the Piers model and the empirical data.  The Priest model predicted LSA 

of 0.24 D for a 2.5 mm ray height. Table 3.5 shows how the emmetropic model was changed to 

create the myopic models.  Linear regression revealed that the axial length of the models with axial 

defocus increased by 0.45 mm with every dioptre of myopic refractive error.  Similarly, the central 

radius of curvature in the refractive defocus models was found to decrease by 0.13 mm for every 

dioptre of myopia.  

 

Figure 3.6: LSA of Empirical Data and Emmetropic Symmetrical Eye Models.  Experimental and 

model data from Piers has been reprinted with permission. Empirical values determined by Piers 

(1997) by calculating the weighted average of wavefront aberration measurements by Howland and 

Howland (1977), Walsh and Charman (1985), Campbell, et al. (1990) and Collins, et al. (1995).   
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Table 3.4: Emmetropic Model Parameters of the Priest Eye Model.  GRIN calculation is outlined in 

Appendix A. 

 
Surface R (mm) Q AL (mm) n 
Anterior Cornea 7.7 -0.26 0.5 1.376 
Posterior Cornea 6.3 -0.30 3.4 1.336 
Anterior Lens 14.2 8.53 3.8 GRIN 
Posterior Lens -9.16 2.97 16.3 1.336 

 

 Table 3.5: Myopic Model Parameters 

 

 Axial Model Refractive Model 
Rx AL (mm) 0

4Z  (µm)  RAC (mm)  0
4Z  (µm) 

0 24.00 0.031 7.700 0.031 
-1 24.41 0.033 7.552 0.041 
-2 24.79 0.035 7.409 0.052 
-3 25.20 0.037 7.271 0.064 
-4 25.61 0.039 7.136 0.076 
-5 26.05 0.041 7.007 0.089 
-6 26.50 0.043 6.882 0.103 
-7 26.97 0.045 6.760 0.118 
-8 27.46 0.047 6.643 0.133 
-9 27.97 0.050 6.529 0.149 
-10 28.51 0.052 6.418 0.165 

 

3.3.3 Wavefront Aberrations of the Symmetrical Eye Model 

Wavefront aberrations of the myopic models were quantified with a series of Zernike polynomials 

for a 5 mm pupil. Since the model has symmetrical surfaces and is centered on the optical axis, it has 

only symmetrical aberrations.  These include defocus ( Z ) and spherical aberration ( Z & Z ).  The 

 term was found to be insignificant since it was always less than 10% of the  term.   

0 0 0

0Z 0Z

2 4 6

6 4
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Although moving the object to a model’s far point was found to remove the model’s 

defocus it had little affect on the spherical aberration.  The largest change observed was a decrease 

of 1.8% for the -10D refractive model.   This indicates that symmetrical myopic eye models can be 

created with their object positioned at infinity without affecting the model’s aberrations. 

Figure 3.7 displays the spherical aberration (SA) and high-order RMS (3rd and 4th order 

terms) for the wavefront aberrations of the young subjects compared to the model’s results.  The 

subject’s SA is not dependent on refractive error (p=0.63).  The SA of both the axial and refractive 

models increase linearly with refractive error.  Linear regression revealed that the SA of the axial 

defocus model increased at a rate of 0.002 µm/D of myopia (p<0.0001).  The SA of the refractive 

model was found to increase at rate of 0.013 µm/D of myopia (p<0.0001).  While there is a 

statistically significant increase in the SA of both types of models all predicted values are contained 

within 2 standard deviations of the subject’s mean SA.  Since the SA data from the young subjects 

and the refractive model passed a normality test but failed an equal variance test, a Mann-Whitney 

Rank Sum Test was used to compare their means.  The resulting p-value of 0.79 revealed there is not 

a statistically significant difference between the mean SA of the young subjects and mean SA of the 

refractive model.  The SA data from the subjects and axial model failed a normality test.  

Consequently, a Mann-Whitney Rank Sum Test was used to compare the median values of these 

two groups.   The p-value of 0.02 revealed there is a statistically significant difference between the 

median values of the young subjects and the axial model.  

The rate at which SA increased with myopia for the empirical and model data was compared 

by analyzing the slopes of their linear regressions with t-tests.  The SA of the refractive model 

increased with myopia at a statistically significantly higher rate (p<0.01) than the axial model.  

Compared to the empirical data, the difference in the rate of increase in SA with myopia for both 

the refractive  (p=0.17) and axial (p=0.64) models were not statistically significant.     

 The high-order RMS from both models is significantly less than that measured for the 

subjects. 

 49



 

Figure 3.7: Aberrations of the subjects and the symmetrical models. The shaded region highlights 

the mean and 2 standard deviations of the empirical SA.  
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3.4 Discussion and Conclusions 

Piers developed crystalline lens and eye models by fixing the shape parameters and varying the form 

of the GRIN.  While her best eye model is relatively good at predicting ocular empirical LSA values, 

when compared to previous models, some of its biometric parameters, like lens thickness (4.1 mm) 

and anterior chamber depth (3.05 mm), do not have average values. She also found that different 

mathematical forms of the GRIN produced her best lens and eye models.  These results were a 

consequence of the approach she used to develop her models.  To develop an eye model with 

average biometric parameters that was a better predictor of LSA, a different methodology was 

needed.  Instead of fixing the shape parameters and varying the form of the GRIN, like Piers, I 

chose to fix the GRIN and vary the shape parameters.  This approach was chosen so that the lens 

and eye models, I developed, would use the same GRIN. 

 Previous GRIN models (Smith, 2003) use polynomial equations of different orders to 

calculate their GRIN.  The refractive index values, calculated from the GRIN equation chosen for 

the model developed here, are more constant over the inner two thirds and decrease more sharply 

near the surface than values calculated from a polynomial equation.  Consequently the GRIN used 

here more closely estimates the shape of the refractive index profile determined by Pierscionek 

(1995) than models with a polynomial GRIN.     

My model was designed to predict the empirical LSA data that Piers (1997) had calculated.  

Model predictions were then compared to newer empirical wavefront aberration data (Bueno, et al., 

2002; Paquin, et al., 2002).  Since the model presented here was originally developed, newer 

empirical wavefront aberration data has been published (He, et al., 2000; Marcos, et al., 2000; 

McLellan, et al., 2001; Porter, et al., 2001; Castejon-Mochon, et al., 2002; Cheng, et al., 2003).  If the 

model was redesigned to predict the newer wavefront aberrations, its biometric parameters or GRIN 

might have to change.  This could affect the model’s anatomical accuracy.  

 Newer measurements of empirical biometric parameters have also been published since this 

model was developed.  If these measurements had been incorporated, the predicted aberrations and 

anatomical accuracy of the model would change. 
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The values for RAL and RPL, used by Piers, were based on the slit-lamp measurements of 

Brown (1974).  Glasser and Campbell (1999) have discussed how slit-lamp measurements of an 

ocular surface are necessarily made through the optical components that precede them.  They 

describe how the anterior lens surface measurements are influenced by the cornea and anterior 

chamber depth while the posterior lens surface measurements are additionally biased by the optics 

of the lens.   Brown made corrections for an average central corneal curvature, but slit-lamp imaging 

is done through the peripheral corneal where the asphericity of the cornea and possible age-

dependent changes in corneal curvature and anterior chamber depth could be sources of systematic 

errors in measuring the anterior lens surface curvature.  The posterior lens surface measurements are 

additionally influenced by the unknown gradient refractive index of the lens.  Since Brown provided 

no corrections for the lens gradient, his values for RAL are considered to be more accurate than his 

values for RPL.   Consequently I chose to use the same constant value for RAL, like Piers, while RPL 

was used as a variable in my modeling process.   

Using this methodology, I chose to use a RPL value of –9.16 mm.  This value differs from 

Brown’s median value of –8.10 mm, used by Piers, and is 0.8 mm beyond his range of experimental 

values.  Since I used the same relationship between shape parameters in my lens model as Piers had, 

changing the RPL value caused my lens to be thinner.  The axial length of my lens is 3.8 mm, which is 

closer to the young adult average value of 3.77 ± 0.14 mm (Kortez, et al., 1989) than the axial length 

of the Piers model at 4.1 mm.  Even though my RPL value is different than Brown’s data, my lens 

model’s thickness and predicted LSA values are closer to empirical averages than the Piers model. 

Recently published lens shape data (Dubbelman and van der Heijde, 2001) have found that 

average radius of curvature and asphericity values are 11.1 mm and -5.0 for the anterior surface.  

Average radius of curvature and asphericity values of the posterior surface were found to be -5.6 

mm and -4.0.  The radius of curvature (14.2 mm and -9.16) and asphericity values (8.53 and 2.97) 

that I used for the anterior and posterior surfaces of my lens model are quite different from the 

results of Dubbelman and van der Heijde.   This indicates that calculating the asphericity of the lens 

surfaces based on the asymmetric ellipsoid model that was used does not create an anatomically 

accurate lens.  If their measurements had been available when this modelling was initiated they could 

have been utilized to create an anatomically accurate lens model.  Even though this lens model has 
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now been found to be anatomically inaccurate, the methodology used to create is still valid and may 

still be a good foundation for eye models since it predicts empirically determined lenticular LSA.    

Using my newly developed lens model I was able to create an emmetropic eye model that 

predicted the empirical LSA values calculated by Piers better than the models proposed by Piers, 

Liou and Brennan and Thibos (Figure 3.8).  The difference with the Thibos model can be explained 

by realizing that their model was selected to predict a different set of empirical LSA data than the 

empirical LSA data calculated by Piers.  Besides the lens models, the differences between the Priest 

and Piers eye models included the shape of the posterior corneal surface and depth of the aqueous. 

To produce an emmetropic axial length of 24 mm, I chose to use an RPC of 6.3 mm and an 

AD of 3.4 mm.  The Piers model had an emmetropic axial length of 23.9 mm with a RPC of 6.5 mm 

and an AD of 3.05 mm.  The axial lengths of these models are slightly below the average young 

adult value of 24.1 mm found by Grosvenor (1987).  Average empirical values for RPC have been 

found to range between 5.8 and 6.5 mm (Lowe and Clark, 1973; Royston, et al., 1990; Rivett and 

Ho, 1991; Dunne, et al., 1992; Patel, et al., 1993; Lam and Douthwaite, 1997; Liu, et al., 1999; Seitz, 

et al., 2001; Dubbelman, et al., 2002).  In most of these studies the age of the subjects was either not 

reported or no age dependence was found.   The values used in the Piers and Priest models are both 

within the range of empirical RPC values.  The AD value of 3.4 mm used in the Priest model is closer 

to average young adult empirical values of 3.2 ± 0.3 mm (Fontana and Brubaker, 1980), 3.5 mm 

(Grosvenor, 1987), 3.35 ± 0.15 mm (Kortez, et al., 1989) and 3.10 ± 0.37 mm (Dubbelman, et al., 

2001) than the value of 3.05 mm used in the Piers model.   

During my modeling, I determined a QPC of –0.3 produced a model that was the best 

predictor of the LSA of the wavefront data used by Piers.  This value is significantly different from 

the value of 0 used by Piers.  Average empirical QPC values of -1.5 (Dunne, et al., 1992), -0.44 (Patel, 

et al., 1993), -0.66 (Lam and Douthwaite, 1997) have been determined from measurements of the 

anterior corneal surface shape and corneal thickness.  My QPC value is close to the average, empirical, 

young adult value of -0.28 ± 0.15 found by Dubbelman, et al. (2002) with a digital slit lamp 

technique.  
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Figure 3.8: Empirical and model LSA for a ray height of 2.5 mm.  The empirical values shown here 

were calculated by Piers (1997). The model from Thibos, et al (1997) was designed to predict 

empirical LSA data that was older than the data used by Piers. 

The empirical wavefront data that I compared my myopic models against were measured 

through spectacle corrections (Bueno, et al., 2002).  Consequently, this aberration data is a 

combination of the spectacle lens and the eye.  While spectacle lenses are expected to have negligible 

on-axis aberrations (Atchison, 1985), Bueno, et al. (2002) and Campbell, et al. (2003) have described 

how increasing negative spectacle power could cause Hartmann-Shack aberroscope measurements 

to increase.  They calculated that such an effect would remove up to 20% of the increase they 

observed in the RMS of the high-order aberrations with increasing myopia.    

Cheng, et al. (2003) investigated the effect of spectacle lens correction by using a commercial 

ray-tracing program to compute the aberrations of trial lenses.  They determined that negative trial 

lenses produced negative spherical aberration, which tend to cancel a very small portion of the 
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positive spherical aberration of the eye.   But this compensation was not large enough to be 

significant.      

Bueno, et al (2002) also describe how the change in the vergence of the light caused by the 

spectacle lens is equivalent to changing the position of the far point of the eye which could cause a 

real change in the ocular aberrations with increasing myopia.    This idea was investigated by 

determining my model’s aberrations when the object was moved to the model’s far point.  The result 

that object position had little to no effect (<2% decrease) on the higher order aberrations was 

surprising since it goes against the current theory.  For most optical systems, the wavefront 

aberration will usually be different for rays from different object points with the same position in the 

exit pupil (Smith and Atchison, 1997). Cheng, et al. (2003) found that the SA predicted by a single 

surface model will significantly increase with axial myopia that is corrected with spectacle lenses.  

Since this result does not match empirical results, a single surface model with axial myopia cannot 

adequately predict the aberrations of myopes (Cheng, et al., 2003). 

These models are the same as most optical systems except for the GRIN.  To investigate if 

the GRIN was balancing the expected change in aberrations from the change in object position, I 

calculated the aberrations for the myopic models after replacing the GRIN with the constant 

refractive index value of 1.416 used in the Gullstrand-Emsley schematic eye.  When the lens model 

had a constant refractive index, changing the vergence of the incoming light was seen to change the 

aberrations by up to -4.5% for a -10D refractive model.   The corresponding change in aberrations 

for the corresponding GRIN models was only -1.8%.  This indicates that the GRIN was balancing 

the expected change in aberrations with changing object position by a small amount.  

The results of Bueno, et al. (2002), shown here for a 5 mm pupil, have been found to be 

consistent with previous literature.  In a study of 37 subjects (0 to -7D, 17-30 years, 4.5 mm pupil) 

Collins, et al. (1995) used a crossed-cylinder objective aberroscope to find that spectacle-corrected 

myopes had lower 4th order terms than emmtropes.   However, these results could be misleading 

since the aberrations in at least a third of the myopic subjects were too large to be measured by this 

technique and were excluded.  He and colleagues (2000) also found that spherical aberration did not 

change as a function of ametropia in a study of 70 subjects (11-29 years) measured with a spatially 

resolved refractometer.  Marcos, et al. (2000) used a laser ray tracing technique on 22 dilated eyes 

(23-33 years, -0.6 to -13D, 6.6 mm pupil) and found a significant increase in the spherical aberration 
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term with myopia.   This is similar to the results found by Bueno, et al. (2002) for a dilated 7 mm 

pupil, which have not been shown here.  

The proposed symmetrical models provide a good estimate of the spherical aberration of 

young adults with natural pupils.   Even if the subjects had their high-order RMS values 

compensated for spectacle magnification, the models would still not contain enough total 

aberrations to simulate the amount of high-order aberrations observed in young adults.  This is not 

surprising since symmetrical spherical aberration is the only high-order aberration in the symmetrical 

models and the high order aberrations of human subjects are dominated by asymmetrical aberrations 

like coma (Charman, 1991b).   

Consider the standard reduced eye model, which has a power of 60 D and an emmetropic 

axial length of 22.2 mm (Bennett and Rabbetts, 1989).  Paraxial calculations show that axial myopia 

is induced in these models by increasing the axial length by 0.37 mm/D and decreasing the radius of 

curvature of the refracting surface by 0.09 mm/D induces refractive myopia.   These values differ 

from the rates for axial myopia (0.45 mm/D) and refractive myopia (0.13 mm/D) that were found 

for the models introduced here.  These differences illustrate how a GRIN model differs from a 

reduced model.     

Measurements of the biometric parameters in myopic subjects have shown that there is a 

statistically significant relationship between the refractive error and both the axial length and 

curvature of the anterior corneal surface (Carney, et al., 1997).  Linear regression of Carney’s results 

predicted that a refractive error of -10 D would correlate with an anterior corneal radius of curvature 

of 7.4 mm and an axial length of 26.8 mm.  A comparison to the values used in the myopic models 

show that creating defocus by either a purely axial or refractive method causes the models to no 

longer be anatomically accurate. 

Carney, et al. (1997) also found that the asphericity of the anterior corneal surface correlated 

with myopic refractive error.  Adding this relationship to the myopic models could enhance their 

ability to predict the aberrations of myopic subjects.   

While the refractive myopic models were found to provide a good prediction of the amount 

of SA in young adults, the axial myopic models did not.  Both models predict a small variation in SA 
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with refractive error.  This suggests that the combinations of corneal power and axial changes 

inherent in myopia produce little change in SA with refractive error.  Any measured change in 

aberrations may be due to additional changes in shape and GRIN parameters.  Axial models could 

be developed that predict the SA values closer to the mean of the empirical data by adjusting the 

asphericity of the posterior corneal surface.  But this could have adverse effects on the SA predicted 

by refractive models with the same corneal shape parameters.  Regardless it has been shown that 

rotationally symmetric, GRIN myopic eye models, which accurately predict the SA in young adults, 

can be developed.  But these models do not possess the same amount of total aberrations as young 

adult myopes and are not anatomically accurate because in the real eyes both corneal power and axial 

length differ from emmetropia.   Consequently their use as a tool to investigate the eye’s imaging 

capabilities will be limited.  In order for them to be more useful they need to possess the appropriate 

amount of asymmetrical aberrations and accurately simulate how myopia develops.
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4 Corneal Topography and Myopia 

 

4.1 Introduction 

 

To improve the myopic eye models, introduced in the last chapter, they need to become more 

anatomically accurate and predict the correct amount of rotationally asymmetric aberrations.  In the 

last chapter, the corneal surfaces were modeled with a symmetric surface but normal corneas have a 

characteristic asymmetry in the surface shape that can produce a corresponding astigmatic refractive 

error.  To accurately describe this shape, a rotationally asymmetric surface should be used.  Myopia 

was simulated, in Chapter 3, to be either purely axial or refractive.  The anatomical changes in axial 

length and corneal shape, from these simulations, do not correspond with previous measurements 

(Carney, et al., 1997).  An accurate simulation of myopia would utilize the true changes in corneal 

shape as a function of refractive error.    

Many attempts have been made to quantify corneal shape with a variety of surfaces and 

mathematical functions.  A description of these studies will be given in the next section.  

Unfortunately they do not provide all the necessary information to improve the models from 

Chapter 3.    To my knowledge, there is not a single study that describes both corneal shape with an 

asymmetrical surface and correlates shape parameters with myopia.    

  It has been suggested that a biconic model would provide a useful representation of the 

corneal surface (Schwiegerling and Snyder, 1998).  A biconic surface shape is defined with conic 

profiles that change with meridian.  The central curvature and asphericity of the conic profiles varies 

between the values from two perpendicular meridians.  If a biconic surface can accurately describe 

corneal shape then its use in an eye model may allow the model to predict some of the rotationally 

asymmetric aberrations that have been observed clinically.   

To facilitate mathematical processing and statistical analysis, it has been shown that a 

sphero-cylinder correction (refractive error) can be described by a function with orthogonal 

components known as Jackson Cross Cylinders (JCC) (Thibos, et al., 1994).  If a biconic surface can 
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also be mathematically described with JCC components, then these descriptions could be useful in 

determining correlations between corneal shape and refractive error. 

Previously, clinical measurements of corneal topography have mainly depended on 

specularly reflected images from the anterior corneal surface.  Only a small amount of information 

exists about the shape of the posterior corneal surface.  New techniques of measuring corneal 

topography have recently become clinically available.   The PAR Corneal Topography System (PAR 

CTS) utilizes diffusely reflected images and has been found to be more accurate than the specular 

reflection techniques used in previous studies of corneal shape (Priest and Munger, 1998).  Images 

of a slit, formed by light scattered from the anterior and posterior corneal surfaces, have been used 

to provide a measure of the anterior and posterior corneal topography (Mejia-Barabosa and 

Malacara-Hernandez, 2001).  Commercially, this technology is applied in an instrument called the 

Orbscan II, which has also been shown to accurately predict the shape of calibrated surfaces (Cairns, 

et al., 2002).  Utilizing measurements from these instruments may provide a more accurate 

description of both corneal surfaces. 

   This chapter will describe an analysis of the corneal topographies from a large group of 

emmetropes and myopes, measured on either the PAR CTS or Orbscan II.  Analysis of these 

measurements will be used to investigate whether a biconic provides a more accurate representation 

of corneal shape than simpler geometric surfaces.  A JCC based function will be used to describe the 

corneal shape.  This description will be used to show how shape parameters change as a function of 

myopia.       
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4.2 Background 

 

For more than a century it has been known that the cornea is the major refractive element of the 

eye.  Numerous attempts have been made to qualitatively and quantitatively assess both corneal 

shape and power.   

Originally corneal curvature was estimated by matching the size of images reflected from a 

subject’s cornea with those produced from calibrated spheres (Belin and Misery, 1999).  This 

method takes advantage of the fact that the cornea reflects like a mirror, where its radius of 

curvature determines paraxial magnification.  If an object of known size is placed a known distance 

from the cornea then the radius of curvature can be deduced from the size of the reflected image 

(Rubin, 1993).   Utilizing this principle, the keratometer was developed.  This instrument determines 

the average corneal curvature from two sets of diametrically opposed points (∼ 3mm apart) on the 

central cornea (Belin and Misery, 1999). 

Since the keratometer only analyzes a small portion of the corneal surface, efforts to obtain 

qualitative information about the shape of the entire cornea led to the development of keratoscopic 

imaging.  The technique of keratoscopy involves analysing the shape of an image reflected from the 

corneal surface.  Usually the target object is a series of circular concentric rings referred to as a 

Placido disk.  In general, the reflective rings will appear minified (closer together) on steeper sections 

of the cornea and magnified (farther apart) on flatter areas.  Corneal astigmatism will cause the 

image to appear as a series of elongated ovals. Irregularities in the corneal surface will produce 

deformed images.   A significant limitation of this technique is its precision.  Small irregularities that 

produce significant visual defects cause only minor deformations in the reflected images.  The 

limitations of this technique made it clear that more sensitive and quantitative measurement 

techniques and descriptions of corneal shape were needed (Belin and Misery, 1999). 
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4.2.1 Corneal Shape Descriptions 

 

Quantitative descriptions of corneal shape are usually made in terms of the surface’s curvature or 

elevation as a function of spatial coordinates (x, y or r, θ).   These functions are commonly plotted 

as colour-coded contour maps or three-dimensional surfaces for visual inspection.  

Early attempts to quantify surface shape began with the evolution of keratometry and 

keratoscopy into a new instrument, which will be discussed in the next section.  This technique 

provides an estimate of the surface tangent at numerous points.  Surface shape, at a particular point, 

is then expressed as the curvature or radius of curvature of a reference sphere with the same tangent 

as the point in question (Belin and Misery, 1999).   For display purposes, a paraxial calculation is 

used to transform radius of curvature values into refractive power. 

The first description to utilize this technique is generally referred to as axial curvature. Axial 

curvature is constrained such that the reference sphere’s centre of curvature must lie on the optical 

axis.  In this representation, surface shape is described by the distance from a surface point to the 

optical axis along the normal to the curve at that point.  In strict mathematical terms, this 

description behaves quite differently from curvature, as it will underestimate areas of relatively 

greater curvature and overestimate areas of relatively lesser curvature.  This is due to the fact that the 

axial curvature formulation is a smoothing function that flattens out the steepest areas and steepens 

the flattest areas (Roberts, 1996).  Due to this limitation, surface shapes tend to be smooth and 

localized changes in curvature and peripheral data are poorly represented.  For central areas this 

description provides a reasonable approximation of refractive power (Belin and Misery, 1999). 

A second curvature description is called tangential, instantaneous or local curvature.  It is 

similar to axial curvature except that the centres of curvature of the reference spheres do not have to 

fall on the optical axis.  The positions of the centres of curvature depend on the intersection of the 

normals from neighbouring points.  This representation is a true depiction of surface curvature.  It 

reflects local changes and peripheral shape better than axial curvature but it is not a good depiction 

of refractive power (Belin and Misery, 1999).  
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Compared to the curvature descriptions, elevation is a more straightforward measure of the 

true surface shape.  It is defined as the separation of the actual surface from a reference surface.  

These distances are also referred to as the sagital height or sag of the surface.  The simplest 

reference surface is a plane perpendicular to the optical axis of the system, which is commonly 

through the corneal vertex.  While this description provides a good overall representation of the 

surface shape, it does not visually convey subtle yet optically important features such as radial 

asymmetry.  Since the cornea is approximately spherical, a useful reference surface is the sphere that 

has the minimum deviation from the actual surface.  By using this best-fit sphere as the reference 

surface, subtle changes in the corneal surface are visually magnified and more readily apparent to an 

observer (Belin and Misery, 1999).  The difference between these representations of the same 

surface is apparent in Figure 4.1. 

A mathematical relationship exists between the curvature descriptions and elevation of the 

surface.  Axial curvature is based on the first-order derivatives of the surface elevation, while 

tangential curvature is related to the elevation by second-order derivatives (Belin and Misery, 1999).  

It is a relatively straightforward process to determine the curvature of a surface by differentiating its 

elevation data.   Conversely, elevation data cannot be determined by integrating curvature data 

without first making some assumptions about the surface’s form and continuity.  Consequently, 

elevation referenced to an arbitrary fixed plane has been proposed as the standard description since 

it defines surface shape in the simplest terms without any assumptions (Applegate, et al., 1995).   

This description should be used for any attempts to quantify corneal shape or compare 

measurement techniques and will be used exclusively in this thesis. 

Corneal surface shape can be quantified by comparing measured topographies to known 

surfaces.  The parameters that describe the shape of the known surface that best fits the topography 

can also be used to describe the cornea’s shape.  A best-fit surface is found by minimizing the 

difference between the known and the measured surface. 

   In Chapter 2, spherical and rotationally symmetric conic surfaces were introduced as 

descriptors of corneal surface shape (equations 2.8, 2.9 and 2.10). But the cornea is not rotationally 

symmetric.  Utilizing a complex, rotationally asymmetric surface descriptor may be more accurate.   
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Figure 4.1: Different topographic descriptions of the same anterior corneal surface from the PAR 

Corneal Topography System  
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The central topography from a normal cornea can generally be described by the position and 

curvature of its steepest and flattest (principal) meridians, which are separated by 90° (Long, 1982).    

This variation in the central radius of curvature (R) can be described by a function that varies 

sinusoidally with the azimuthal angle (θ) as 

= − +2 2
1 1 2R( ) R cos ( ) R sin ( )− 1θ θ θ θ θ        4.1 

where R1 and R2 are the radius of curvature of the principal meridians and θ1 denotes the position of 

R1. 

The relationship defined in equation 4.1 can be used to transform a spherical surface into a 

new rotationally asymmetric surface.  This new surface is defined by two spherical profiles situated 

on perpendicular meridians and I refer to it as a bisphere.  I define bispheric sag (ZBS) as  

= − + − − − + −2 2 2 2
BS 1 1 2 1 1 1 2 1Z (r, ) R cos ( ) R sin ( ) (R cos ( ) R sin ( ))θ θ θ θ θ θ θ θ θ −2 2r  4.2 

where r and θ are the radial and angular components of a polar coordinate system.  θ1 is the angular 

offset of the bisphere’s principal meridians from the xy-coordinate axes.  Along meridian θ = θ1 the 

surface has a spherical profile defined by a radius of curvature of R1.  The profile along the 

perpendicular meridian (θ = θ1 + 90°) is a spherical section with a radius of curvature of R2.  

Between these principal meridians the radius of curvature varies between R1 and R2.  In the special 

case where R1 = R2 equation 4.2 simplifies to the spherical equation defined in equation 2.8.   

The bispherical surface can be made more complex by symmetrically aspherizing it.  This is 

accomplished by adding an asphericity parameter (Q).  The sag of a bispherical surface with a single 

asphericity parameter (ZBS1Q) is   

− + −
=

+ − + − + −

2 2 2
2 1 1 1

BS1Q 2 2 2 22 2
1 2 1 2 2 1 1 1

(R cos ( ) R sin ( ))rZ (r, )
R R R R ((1 Q)(R cos ( ) R sin ( )))r

θ θ θ θθ
θ θ θ θ 2

  4.3 
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For this surface R1 and R2 represent the apical radius of curvature along the principal meridians.  

The asphericity parameter describes how the curvature along any meridian changes for points away 

from the apex similar to a conic surface. 

Another more complicated surface can be defined if the asphericity parameter from the 

BS1Q surface varies between the two principal meridians along with the apical curvature.  This 

surface is a termed a biconic since it is defined by two conic profiles situated on the principal 

meridians.  Biconic sag (ZBC) is defined as  

− + −
=

+ − + − + + −

2 2 2
2 1 1 1

BC 2 2 2 22 2
1 2 1 2 1 2 1 2 1 1

(R cos ( ) R sin ( ))rZ (r, )
R R R R ((1 Q )R cos ( ) (1 Q )R sin ( ))r

θ θ θ θθ
θ θ θ θ 2

 4.4 

θ1 is now the angular offset of the biconic’s principal meridians from the xy-coordinate axes.  Along 

meridian θ = θ1 the surface has a conic profile defined by a central radius of curvature of R1 and an 

asphericity of Q1.  The profile along the perpendicular meridian (θ = θ1 + 90°) is a conic section 

with a central radius of curvature of R2 and an asphericity of Q2.  Between these principal meridians 

the radius of curvature at the apex varies between R1 and R2 and the asphericity varies between Q1 

and Q2 (Schwiegerling and Snyder, 1998). In the special case where R1 = R2 and Q1 = Q2 equation 

4.4 simplifies to the symmetrical conic defined in equation 2.10.     

 

4.2.2 Topography Measurement Techniques 

 

Increases in computing speed and optical technology such as digital video, along with the emergence 

of refractive surgery have led to the modern techniques used to measure corneal topography.   The 

current techniques can be categorized by the optical phenomenon used in their measurement such 

as specular reflection, diffuse reflection or scattered light (Mejia-Barabosa and Malacara-Hernandez, 

2001).  This section will not describe all the possible measurement techniques that have been 

developed, but only the most common methods that are used clinically.   
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The specular reflection technique assumes the anterior corneal surface reflects like a convex 

mirror and is utilized most frequently in videokeratoscopy.  This technology is the evolution of both 

keratometry and keratoscopy.  It measures topography by projecting an illuminated Placido disk 

onto the corneal surface.  A digital camera focussed on the image plane of the cornea captures the 

reflected image (Figure 4.2).  Instrumental optics are designed so that each ring segment is imaged 

by a small region of the cornea.   Analysis of the size and/or displacement of each individual ring 

segment in the captured image provide a measurement of the angle of the reflected light incident on 

the corresponding corneal surface.  This information is used to calculate an estimate of the surface 

tangent.   

A variety of different commercial videokeratoscopes have been developed with their own 

unique implementations of the technique.  The original algorithms used to reconstruct the corneal 

surface were spherically biased (Roberts, 1994).  These algorithms along with the limitations of axial 

curvature and the transfer of curvature data into elevation are a significant source of systematic 

error.    

One of the more popular, early, videokeratoscopes is the Topographic Modeling System 

(TMS) (Tomey Corp.).  Its original configuration, the TMS-1 has been utilized for various studies of 

corneal shape, which will be described in later sections and chapters.  It has been shown that the 

TMS-1’s elevation topography provides of good description of uniform, spherical surfaces but is 

unable to accurately represent non-uniform surfaces that contain changes in curvature (Applegate, et 

al., 1995; Priest and Munger, 1998).  Subsequent improvements in the software of the TMS-1 have 

been shown to improve its ability to accurately measure rotationally symmetric conic surfaces 

(Hilmantel, et al., 1999).  Since the cornea possesses an irregular, aspherical surface that is not 

rotationally symmetric any estimates of its shape by the TMS-1 may contain a significant amount of 

error. 

Diffuse reflection techniques determine surface topography by analyzing the distortion of a 

known pattern projected onto the unknown surface.  These techniques provide a direct 

measurement of elevation topography and do not suffer from the assumptions needed to derive 

corneal shape from curvature data.    In theory, this advantage should provide a more accurate 

representation of surface shape than videokeratoscopy. 
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Figure 4.2: Image of Placido rings reflected 

from the corneal surface.   

 

Figure 4.3: Diffusely reflected PAR grid image

 

One implementation of utilizing diffuse reflection is the PAR Corneal Topography System 

(PAR Vision Systems Corp.).  It projects a two-dimensional grid with a sampling density of 

approximately 0.2 mm onto a cornea infused with fluorescein. Illumination through a blue excitation 

filter is used to stimulate fluorescence at the anterior surface of the cornea.   Consequently, the 

cornea is an extended source emitting an image of the grid distorted by the corneal surface (Figure 

4.3).  Measurement of the grid is observed, by a CCD camera, through a yellow barrier filter to 

eliminate specular reflections.  Corneal elevation at any point on the grid can be determined from 

the geometry of the measured grid position and instrumental optics.   

 Quantification of PAR measurements has shown it to provide an accurate description of 

both uniform and non-uniform shapes.  Compared to the TMS-1, it provides a significantly more 

accurate representation of surfaces containing changes in curvature (Priest and Munger, 1998).  

Consequently, it promises better accuracy when measuring corneal surfaces. 

 A similar technique of utilizing scattered light evolved from the slit-lamp.  The slit-lamp is a 

diagnostic instrument that projects a sharp, bright image of an adjustable slit over any portion of the 

eye.  When the slit image passes through the cornea, it splits into a specular reflection and a 
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refracted beam.  The refracted beam penetrates the surface and is scattered by the tissue of the 

cornea.   Since the scattering phenomenon in the tissue of the cornea is stronger than in the 

aqueous, the image of the light in the cornea layer is observed as a curved bright band (Figure 4.4).  

The outer and inner edges of this band are said to correspond to the anterior and posterior surfaces 

of the cornea (Mejia-Barabosa and Malacara-Hernandez, 2001).  An image of the scattered light can 

be used to determine the elevation topography of the anterior and posterior corneal surfaces based 

on the geometry of the optical system.     

 

 

Figure 4.4: Orbscan Slit Images 

 

This technique has been combined along with videokeratascopy in a clinical instrument 

called the Orbscan II (Baush and Lomb).  Its optical acquisition head projects a vertical light slit 

onto the cornea, which is scanned across the eye from both the left and right sides.  Twenty slit 

projections are sequentially acquired for each scan across the eye, providing a total of 40 interlaced 

images for computer analysis in several seconds.  A tracking system monitors involuntary eye 

movements and mathematically accounts for them to piece together the mathematical surface being 

analyzed.  The edges of the slit beam image are analyzed in all of the 40 images to detect both the 

anterior and posterior corneal surfaces.  Elevation topography is then constructed from this data.  

Analysis of calibrated spherical, conical and toroidal (bispherical) surfaces have shown that 

the Orbscan II can accurately measure the shape of a stationary surface that scatters light evenly 
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(Cairns, et al., 2002).   This study did not address variables such as eye movement, light scatter, tear 

inconsistencies and surface irregularity would could effect the ability of the Orbscan II to accurately 

measure the anterior corneal surface of a human eye.   

The performance of the Orbscan II on normal human corneas was evaluated by measuring 

the anterior corneal surface of 22 subjects (Cho, et al., 2002).  Two repeated readings were taken by 

one examiner followed by a single measurement by a second examiner.  The results indicated that 

two repeated measurements of the central power of the anterior corneal surface could differ by up 

to 2.5 D.  Measurements of central power by two different examiners could differ by up to 3.5 D.  

The authors suggested that the repeatability and reproducibility of the Orbscan II is clinically 

unacceptable and the poor results could be caused by a lack of proper alignment between instrument 

and subject throughout the measurement process.   

The accuracy of posterior corneal surface measurements made by the Orbscan II has not 

been established.  

 

4.2.3 Previous Studies 

 

Along with the emergence of techniques to measure corneal topography, there have been numerous 

attempts to investigate the variation in corneal shape within the human population.  The accuracy of 

each study is limited by the measurement techniques used and the analysis that was performed.  

Within the past two decades several studies have examined corneal shape.  

In the study by Kiely et al. (1982), the shapes of the anterior corneas from 176 eyes (88 

subjects) were measured with an autocollimating photokeratoscope. The subjects’ ages were evenly 

distributed between between 16 and 80 years and their refractive error was from -5 to 5 D.  

Measurements were first quantified by fitting each with a symmetrical conic surface.  The average 

apical radius of curvature (R) was 7.72 ± 0.27 mm (7.06 to 8.64).  The mean asphericity (Q) was 

-0.26 ± 0.18 (-0.76 to 0.47). A statistically significant, positive correlation was found between the R 

and Q values.  Steeper central corneas were found to flatten out more rapidly. 

 69



To quantify the asymmetry of the anterior cornea, the measured data was also fit with a non-

rotationally symmetric conic surface where the R and Q vary sinusoidally with meridian.  The model 

assumed the maximum and minimum values of the R and Q lie in mutually orthogonal directions 

and was defined with equations similar to 4.23, 4.24 and 4.30.  The range of the meridional R and Q 

values were from 6.94 to 8.74 mm and 1.28 to -1.44, respectively.  There was a tendency (74% of the 

eyes) for the larger R-values to occur in the region of the horizontal meridian (±45°), which is 

referred to clinically as “with-the-rule astigmatism”.  78% of the eyes had a difference between R-

values of ≤ 0.3 mm. 80% of the eyes had a difference of ≤ 0.5 between the maximum and minimum 

Q-values but no specific trend was found for maximum Q to favour one meridian to another. The 

results indicated that R and Q of individual corneas can vary with azimuthal angle and an 

asymmetric conic could provide a more accurate representation of corneal shape than a symmetrical 

conic. 

Guillon et al. (1986) reported on a study where the shapes, measured with a 

photokeratoscope, of the steepest and flattest meridians were described with a conic profiles.  

Profiles were determined by separately finding the best-fit conic for the principal meridians.  This 

study included 220 eyes from 110 subjects.  The subjects had a mean age of 33 ± 11 years (17 to 60).  

Their mean spherical refractive error was -1.0 ± 2.4 D (-15.0 to 3.5). Mean cylindrical error was -0.8 

± 1.0 D (0.0 to 5.0).  Mean central radius of curvature was found to be 7.87 ± 0.25 mm (7.14 to 8.54) 

for the flattest meridian and 7.70 ± 0.27 mm (7.03 to 8.86) for the steepest meridian. The mean 

difference between R-values of the steepest and flattest meridians was found to be 0.17 ± 0.13 mm. 

The orientation of the flattest meridian revealed that 85.5% of the eyes exhibit “with the rule 

astigmatism”.  The mean asphericity of the flat and steep meridians was reported as -0.17 ± 0.13 

(-0.79 to 0.20) and -0.19 ± 0.16 (-0.89 to 0.16) respectively.  This study found the average difference 

between asphericity values of the flattest and steepest meridians was only 0.02 ± 0.15. 

In a similar study, Douthwaite, et al. (1999) used a commercial videokeratoscope (EyeSys) to 

quantify the conic parameters of the principal meridians of the anterior corneal surface in 98 

subjects.  Their median age was 36 years (20 to 59). The refractive error of these subjects was not 

reported.  The data analyzed from 90 right eyes revealed that the mean apical radius of curvature and 

asphericity of the near horizontal principal meridian were 7.93 ± 0.23 mm and -0.22 ± 0.12 
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respectively.  The mean conic parameters (R & Q) for the near vertical principal meridian were 

found to be 7.80 ± 0.22 mm and -0.15 ± 0.15.  Almost identical results were found for the 

corresponding data in 97 left eyes, which were not significantly different.  A highly significant 

difference was observed between the two principal meridians in any individual eye.  Within the age 

range in this investigation, age did not correlate with either the apical radius of curvature or 

asphericity of the principal meridians of the anterior corneal surface.   

Recently, Douthwaite (2003) reanalysed his previous data set to determine if tilt in the 

corneal surface, with respect to the optical axis of the videokeratoscope, was affecting his 

measurement of apical radius of curvature and aphericity.  His results revealed average tilts of 2.09 ± 

3.02° for the near horizontal and 0.17 ± 4.58° for the near vertical principal meridians. The 

measured tilt did not affect apical radius of curvature measurements but asphericity decreased.   The 

average asphericity was found to be -0.23 ± 0.10 and -0.18 ± 0.13 for the near horizontal and near 

vertical principal meridians of the right eye data.   Similar results were found for the left eye data.   

No attempt was made to determine if the change in asphericity was statistically significant.  

One of the limitations of the previous studies was no attempt was made to correlate shape 

parameters with refractive error.   Carney et al. (1997) investigated this relationship.   Their study 

included 113 eyes with a mean age of 27 ± 6 years (15 to 52). Spherical equivalent refractive error 

(SE) had a mean of -2.29 ± 2.15 D (-9.88 to 0.25).  Refractive error was determined with manifest 

refraction.  Corneal topography was measured with a TMS-1 and fit with a symmetrical conic 

surface.  The mean apical radius of curvature was found to be 7.68 ± 0.27 mm (no range was 

reported).  Mean asphericity was -0.33 ± 0.23 (-1.03 to 0.29).  Results revealed that there is a 

statistically significant positive correlation between R and SE (p = 0.008).  A statistically significant, 

negative correlation was found between Q and SE (p = 0.005).  This study did not find a correlation 

between Q and R. (p = 0.28). 

The correlation between refractive error and the central refractive power of the anterior 

corneal surface was also found in an investigation of 176 subjects (Goss, et al., 1997).  This study 

included 53 emmetropes (-0.25 to 1.00 D), 115 myopes and 8 hyperopes.  The mean age of the 

subjects was 26 ± 5 years (21 to 44).  The power and refractive error of the near vertical principal 

meridian was determined by keratometry and retinoscopy.  On average, myopes were found to have 
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steeper corneas (more power) than emmetropes (p = 0.008).  A statistically significant correlation 

was found between refractive error and central corneal curvature in the measured meridians (p < 

0.001). 

Correlations between parameters describing refractive error and anterior corneal shape have 

also been investigated in a study involving 287 eyes from 150 subjects (Budak, et al., 1999). The 

average age of these subjects was 41 ± 12 years (8 to 71) and their mean spherical equivalent 

refractive error was -2.41 ± 3.70 D (-20.00 to 6.87).  The subjects’ refractive error was determined 

with manifest refraction and their anterior corneal topography was measured with a 

videokeratoscope (EyeSys).  Shape parameters were defined as the effective (mean) refractive power 

of the central 3 mm diameter and anterior corneal asphericity was the mean value within the central 

4.5 mm diameter.  The mean effective refractive power and asphericity of the anterior corneal 

surface was found to be 43.86 ± 1.65 D (38.14 to 50.00) and -0.03 ± 0.23 (-0.90 to 0.82) respectively.  

Weak correlations were found between higher effective refractive power and lower asphericity 

values (r = 0.15) and myopic spherical equivalent refraction (r = 0.21).  Highly myopic eyes (< -6.0 

D) were found to have anterior corneal surfaces with significantly higher effective refractive power 

than eyes with moderate myopia (-2.0 to -6.0 D) or hyperopia (> 1.0 D) (p < 0.001).  No correlation 

was found between asphericity and spherical equivalent refraction (p = 0.21) but eyes with moderate 

myopia had larger (more positive) asphericities than emmetropic eyes (p = 0.003).        

Average changes in biometric parameters have also been observed with the progression of 

myopia in adolescents (Horner, et al., 2000).  In this study, refractive error (subjective refraction), 

axial length (a-scan ultrasonography) and conic shape of the anterior corneal surface 

(videokeratoscopy) were observed, in 48 subjects, for 5 years.  At the beginning of the study, the 

subjects ranged in age from 11 to 13 years, had mean myopia of -2.74 ± 1.51 D and mean asphericity 

of -0.08 ± 0.12 D. Central radius of curvature values were not reported.  Over the period 

investigated, myopia increased by an average of 1.46 D, average axial length increased by 0.56 mm 

and asphericity increased by an average of 0.014.  The change in axial length and asphericity were 

both found to individually correlate with the change in spherical equivalent refractive error.  The 

contribution of the central radius of curvature to the increase in myopia was insignificant. 
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Attempts have been made to use rotationally asymmetric, geometric shapes to quantify the 

shape of the anterior corneal surface (Langenbucher, et al., 2002b; Langenbucher, et al., 2002c).  

One study uses a 3-dimensional ellipsoidal surface and determines the central curvature and 

asphericity of the principal meridians from the size of their semi-axes (similar to equations 3.1 and 

3.2) (Langenbucher, et al., 2002b).  In the other study a biconic surface (similar to equation 4.4) was 

used (Langenbucher, et al., 2002c).  Both studies used their respective methods to quantify the shape 

of the anterior corneal surface by fitting videokeratoscopy measurements after keratoplasty. 

Methods have been developed to fit corneal topography data with mathematical functions 

such as Fourier series (Hjortdal, et al., 1995; Raasch, 1995), Zernike polynomials (Schwiegerling, et 

al., 1995; Iskander, et al., 2001a), radial polynomials (Iskander, et al., 2002) and wavelets 

(Langenbucher, et al., 2002a).  These techniques are particularly useful to characterize surfaces that 

do not resemble geometrical shapes.   Fourier series have been used to analyze the amount of 

irregular astigmatism in rings of videokeratoscopic axial curvature data for normal, keratoconic and 

post surgery eyes (Hjortdal, et al., 1995; Raasch, 1995; Olsen, et al., 1996; Keller, et al., 1998; Oshika, 

et al., 1998; Hayashi, et al., 2000). Wavelets have been used to characterize the shape of corneas 

suffering from keratoconus (Langenbucher, et al., 2002a).  Iskander et al. (2001b) have shown that a 

fourth order expansion of Zernike polynomials is generally sufficient to describe a normal cornea 

while kerataconic corneas that are significantly deformed require a larger number of terms.  Zernike 

polynomials have also been used to analyze corneal shape after transplant surgery (Langenbucher, et 

al., 1999).  While Zernike polynomials can describe the shape of normal corneas, it has been shown  

(Smolek and Klyce, 2003) that Zernike polynomials up to the tenth order do not accurately describe 

corneal aberrations in cases of keratoconus and postoperative keratoplasty. 

Zernike polynomials have also been used to study how corneal shape changes with age 

(Guirao, et al., 2000).  In this study, the average central radius of curavture (R) and asphericity (Q) of 

the cornea was calculated from a fourth order Zernike expansion of videokeratographic height data 

by  
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where r0 is the maximal radial extent of the surface (Guirao and Artal, 2000).  Measurements were 

obtained from 59 near emmetropic (|SE| < 2D) subjects of three age ranges: young (20-30 years), 

middle-aged (40-50 years) and old (60-70 years).  The average corneal radius of curvature was found 

to decrease with age while the cornea became more spherical.  Similar results were found in a study 

that fit videokeratoscopic data from the horizontal meridian of 20 young (14 to 33 years) and 20 

older (45 to 84 years) subjects with a conic section (Pardhan and Beesley, 1999).  

In a recent study, Preussner, et al (2003) compared how accurately a rotationally asymmetric 

conic shape and Zernike series of different orders fit topography measurements of the anterior 

corneal surface.  Their rotationally asymmetric conic model was defined by first fitting a conic 

section to the height data of 360 semi-meridians from the topographic measurement of a 

videokeratoscope (Technomed C-scan).  Their analysis was restricted to data from the central 6 mm 

of the corneal surface.  Meridional central radius of curvature values were determined by averaging 

the values from semi-meridians spaced 180° apart.  A cos2 function was fit to the meridian data to 

find the central radius of curvature (R1, R2) and orientation (θ1) of the steepest and flattest (principal) 

meridians. It was assumed that R1 and R2 were positioned orthogonally.  Finding the average sag of 

the measured surface, at 0.3 mm intervals from the centre, and fitting these values with a conic 

section determined an average asphericity (Q).    The resulting asymmetric conic model, defined by 

R1, R2, θ1, and Q, is similar to the bispherical surface with 1 asphericity parameter that I defined in 

equation 4.3.  The topography data was also fit with two Zernike series (models). These series were 

inclusive to 4th order terms (Z4) and 8th order terms (Z8), which included 15 and 45 parameters 

respectively.  The analysis was applied to the topography data of 100 normal eyes from 100 subjects 

with a mean age of 62 ± 18 years (18 to 88).  The average root-mean-square differences between 

model predictions and measured height data was used to determine how accurately each model 

represented the measured data.   The Z8 series provided a more accurate representation than the Z4 

series but the asymmetric conic model was more accurate than either Zernike series.  The authors 

suggest that in an individual case with strong deformation a Zernike model would clearly provide a 

better approximation but normally there is no need to approximate the shape of the anterior corneal 

surface with a Zernike polynomial series.   
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4.2.4  Jackson Cross Cylinder Description of Refractive Error 

 

Refractive errors of the eye are specified by the power of the correcting lens required to render the 

eye emmetropic.  The standard ophthalmic convention utilizes a sphero-cylinder lens described by 

its spherical power (S), cylinder power (C) and the cylinder axis (ϕ).  Unfortunately, this description 

is not well suited for mathematical manipulation or statistical analysis (Thibos, et al., 1994).  

The problem occurs for two reasons.  First, the astigmatic component is specified in polar 

form, which is not convenient for even the simplest statistical computations.  Secondly, a sphero-

cylinder lens is not simply the sum of a spherical lens of power S and a cylindrical lens of power C.  

These components are not independent of each other since a cylindrical lens contains some 

spherical power.  To solve this problem a Fourier analysis approach has been suggested (Harris, 

1990, 1991, 1992; Thibos, et al., 1994). 

Following Thibos et al., the optical power of a sphero-cylindrical lens varies sinusoidaly with 

meridian.  Consequently, a simple Fourier series with a single harmonic component like  

= + − + °2RE( ) S Ccos ( ( 90 ))θ θ ϕ         4.7  

can be used to describe a subject’s refractive error (RE).  The 90° term is necessary since the angle ϕ 

describes the position of the cylinder axis and a cylinder’s power axis is situated perpendicular to the 

cylinder axis.   

In Fourier analysis, the trigonometric identity in equation 4.8 is used to transform equation 

4.8 into equation 4.9 
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 = + + − + °
C CRE( ) S cos(2( ( 90 )))
2 2

θ θ ϕ       4.9  

 

 75



 Equation 4.9 displays the refractive error as a formal Fourier series, which contains a 

constant term (S+C/2) plus one harmonic term (C/2 cos(2(θ-(ϕ+90°)))).  The benefit of the Fourier 

approach is that the constant term is mathematically independent of the cosine term since the basis 

functions of a Fourier series are mutually orthogonal.  

 Similar to the conventional description, the terms of the Fourier series also correspond to 

physical lenses.  The constant term is a spherical lens while the cosine term describes the power 

profile of a Jackson cross-cylinder (JCC) lens of power C/2 with its axis inclined at the angle ϕ+90°.  

A JCC lens is made from a combination of a cylinder of positive power and a negative cylinder of 

the same power positioned perpendicularly.    

To remove the remaining angular parameter in equation 4.9, the JCC lens can be replaced by 

two JCC lenses, one at axis 0° and the other at axis 45°.  Mathematically this is achieved by using the 

trigonometric identity in equation 4.10 to transform equation 4.9 into equation 4.11. 
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By utilizing this Fourier analysis, any arbitrary refraction (sphero-cylinder lens) can be 

expressed as the sum of a spherical lens and two JCCs.  Based on the refraction data, the spherical 

lens will have a power of REM.  This is the mean power value and is commonly known as the 

spherical equivalent (SE).  One of the JCC lenses will be orientated with the axis of the positive 

cylinder at 0° with a power of REJ0.  The other JCC lens has the axis of its positive cylinder at 45° 

and a power of REJ45.  These three power values can be used to completely describe any arbitrary 
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sphero-cylindrical lens.  They do not have an angular component, are independent of each other and 

consequently do not suffer from the problems associated with the sphero-cylinder description. 

In this chapter corneal topographies, measured with newer commercial instruments, will be 

quantified with biconic surfaces.  A new description of corneal curvature, analogous to the JCC 

description of refractive error will be developed.  Biconic surface and refractive error parameters will 

be expressed with JCC terms and compared with each other to determine if any correlations exist.  

The results will then be used, in the next chapter, in an attempt to develop more accurate eye 

models. 
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4.3 Methods 

 

The corneal topographies used in this investigation were obtained from either myopic laser 

refractive surgery patients or emmetropic young adults.  Their topographies were measured, at the 

University of Ottawa Eye Institute, on either the PAR CTS or Orbscan II.   The refractive error of 

these subjects was determined by manifest refraction. 

Topographies were obtained from a total of 206 eyes from 118 subjects.   159 eyes from 93 

subjects were measured on the PAR CTS.  Measurements on 47 eyes from 25 subjects were from 

the Orbscan II.   

To test the efficacy of the fitting procedure (section 4.3.1) height data from a group of 12, 

randomly selected topographies were fit with spherical, conic, bispherical, bispherical with a single 

asphericity parameter and biconic surfaces.  The RMSE from each fit were compared.  F-tests were 

performed to determine if increased accuracy provided by the more complex surfaces was 

statistically significant.  For simplicity, this procedure will be referred to as the shape test for the 

remainder of this thesis. 

  On the basis of the results of the first 12, the 206 topographies were fit with a biconic 

surface.  A new terminology was developed so that the refractive error of the subjects and the results 

from their biconic fits could be described in Jackson Cross Cylinder terminology (section 4.3.2).  

The biconic JCC parameters were tested to determine if the necessary approximation was accurate 

enough.  In cases where the difference between the approximation and the actual surface was 

deemed to be too large, the topographies were removed from the remaining analysis. 

Initially all refractive error and corneal shape descriptions were in the conventional right-

handed coordinate system.  In this system, the positive x-axis is directed nasally for OD eyes while 

the negative x-axis points nasally for OS eyes.  Due to a tendency to bilateral symmetry between OD 

and OS eyes, a descriptive function (F(x,y)) with odd symmetry about the y-axis would make F(x,y) 

for an OD eye the same as F(-x,y) for an OS eye (Thibos, et al., 2002). 

 78



     To facilitate the analysis of OD and OS eyes together, a binasal coordinate system was used.  

In this system the positive x-axis is directed nasally for all eyes (Jalie, 1984).  The transformation to a 

binasal system involves changing the sign of all x coordinates (x→-x) for data from OS eyes.  Since 

the refractive error and corneal shape are ultimately described with JCC terms, the transformation to 

a binasal system was accomplished by reversing the sign on all the J45 terms for all OS eyes.  This 

transformation is similar to the one proposed by Thibos, et al. (2002) for comparing the aberrations 

of OD and OS eyes described with Zernike polynomials. 

The statistical software package Stata 7 (Stata Corporation) was used to calculate correlation 

coefficients between the shape and refractive error parameters.  To determine if any correlations 

were statistically significant, linear regression with a Huber/White robust estimate of variance was 

used.  This was justified because, in many cases, data points were from the two eyes of the same 

subject, which cannot be considered to be independent of each other even though they originate 

from different eyes.  This test pools the data from a single subject into a cluster and then treats the 

clusters as if they are independent of each other.  

 

4.3.1 Fit Procedure 

 

Most commercial corneal topographers provide a method of exporting their elevation data in a 

numerical format.  The PAR CTS exports its data points in a rectangular array with approximately 

0.2 mm spacing.  Its reference plane is situated behind the cornea so the corneal apex has the 

highest elevation.   

The Orbscan II system can export height data in a variety of formats.  A format very similar 

to the one employed by the PAR CTS was chosen.   The main difference was the Orbscan II 

specified the corneal apex as the origin of their spatial coordinate system.  

A similar coordinate system was set up for the PAR CTS data by specifying the data point 

with the highest elevation (apex) as the origin.  Data points lying within 2.5 mm radius of the apex 

were used in the fitting procedure. 

 79



To eliminate the assumption that the specified points were the actual corneal apex, 

coordinate offsets (xo, yo, zo) were added to the fit equations so the apex of the best fit surfaces were 

not forced to coincide with the apex of the measured data.     Polar coordinates (r, θ) were then 

defined as  

= − + −2 2
or (x x ) (y y 2

o )         4.12  

−
=

−
o

o

y yarctan( )
x x

θ          4.13 

where xo and yo describe the offset of the surface apex from the origin of the coordinate system. 

The fit equations used were similar to the sag equations of the previously defined surfaces 

(ZS, ZC, ZBS, ZBS1Q or ZBC, equations 2.8, 2.10, 4.2 - 4.4) except for an offset (zo) that represents the 

distance of the surface apex from the reference plane.  As an example the fit equation for a biconic 

was  

( ) ( )= −o BCZ r, z Z r,θ θ         4.14 

    

To determine the residual variation of the data that was not fitted by the equations, the Root 

Mean Squared Error (RMSE) was calculated as 

  ==
∑

N
2

i
i 1

( residual )
RMSE

N
        4.15  

Residuali is the measured data minus the fit prediction at an individual data point.  N is the total 

number of data points.  The size of the RMSE indicates how closely the reference surface resembles 

the experimental data.  

The parameters of the fit equations are determined, in custom software, by using a simplex 

algorithm to minimize the differences between the measured data and fit prediction.  The simplex 

algorithm is very good at finding local minimum but it requires the fit parameters to be initialized 
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with appropriate values to find the best fit. The importance of the starting values depends on the 

number of parameters or degrees of freedom in the fit.  For the rotationally symmetric surfaces 

there are only 4 or 5 parameters to fit and it was found that the value of the starting parameters had 

no affect on the results of the fit.  The rotationally asymmetric surface fits have from 6 to 8 fit 

parameters.  By varying the starting parameters and observing the RMSE, it was found that the 

simplex algorithm must be initialized with a good estimate of θ1, to find the rotationally asymmetric 

surface prediction with the smallest RMSE. 

Based on the following observations, a routine was devised to determine suitable estimates 

of R1, R2 and θ1.  The central topography from a normal cornea can be defined by the position and 

curvature of its steepest and flattest (principal) meridians, which are normally separated by 90° 

(Long, 1982).  The predicted curvature from a spherical fit will lie near the average of the curvatures 

from the principal meridians.  Consequently, the residuals from a spherical fit will have a 

characteristic “saddle-like” shape (Figure 4.5).  Residuals from corneal areas that are flatter than the 

corresponding areas of the spherical fit will be positive.  Conversely, steeper corneal areas will have 

negative spherical fit residuals.  If the spherical fit residual surface is circumnavigated at a constant 

small radius from the origin, a sinusoidal pattern, with a frequency of 2 cycles/revolution, will be 

observed.  Figure 4.6 displays this pattern of fit residuals measured from an emmetropic subject 

approximately 2mm from the corneal apex.  Characterizing this pattern with a sinusoidal function 

will lead to estimates of R1, R2 and θ1. 

The procedure used to fit a biconic surface to corneal topographies is initiated by fitting a 

sphere to the measured data.   A ring of data is then extracted from the residuals of the spherical fit 

at a constant radius (1.9 mm ≤ r ≤ 2.1 mm).  This data is then fit with the cosine function  

= + ⋅ −0F( ) F A cos(2( ))θ θ φ         4.16  

A is the amplitude of the cosine function.  F0 represents a constant offset.  φ is the angular offset 

which represents the location of the positive peak in the cosine fit.  This peak corresponds to the 

position of the flattest meridian and is a good estimate of θ1. 
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Figure 4.5: Residual surface of a spherical fit from a biconic surface 

 

Figure 4.6: Ring of residual data from a spherical fit of an emmetropic subject measured on the PAR 

at approximately 2 mm from the corneal apex.  The solid line is the best fit of a cosine function 

(equation 4.16) to the measured data.  
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To further enhance the biconic fitting procedure, estimates of R1, the larger radius of 

curvature, and R2 were made based on the amplitude of the cosine function and the radius of 

curvature of the spherical fit surface (RS).  This was accomplished by first assuming both principal 

meridians had a spherical profile (Q1 = Q2 = 0).  If this were true then the amplitude of the cosine 

function would be the difference in sag values, at r = 2 mm, between the principal biconic meridians 

and the spherical fit surface and defined as 

= − − − − − − −2 2
o 1 1 o S S

2 2A z (R R 2 ) (z (R R 2 ))      4.17 

− = − − − − − − −2 2
o 2 2 o S S

2 2A z (R R 2 ) (z (R R 2 ))     4.18 

  R1 and R2 can then be estimated from  

− + − +
=

− − + −

2 2
S S

1 2
S S

(A R R 4 ) 4
R

2(A R R 4 )
       4.19 

+ − − +
=

+ − −

2 2
S S

2 2
S S

(A R R 4 ) 4
R

2(A R R 4 )
        4.20 

Estimates of the asphericity parameters were based on previously published values of 

average corneal shape.  Estimates of the coordinate offsets were determined from the spacing of the 

measured data and the position of the reference plane used by the topographic systems.  The 

estimates of the biconic parameters were then used as the starting point, which allowed the simplex 

algorithm to find the best fit for each surface. 
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4.3.2 Jackson Cross Cylinder Theory for Corneal Shape 

 

Once the corneal shape parameters have been established, comparisons will be made between them 

and the subject’s refractive error to determine if any significant relationships exist.   

To make comparisons between refractive error and corneal shape, it is logical to describe the 

corneal surface in terms of its refractive power.  Since paraxial corneal shape varies sinusoidally with 

meridian, like refractive error, an attempt will be made to try to describe corneal shape with a 

function consisting of JCC components.  

Surface shape is related to paraxial refractive power by  

′ − ′= = ⋅ −
n nP( ) c( ) (n n)
R( )

θ θ
θ

        4.21 

where c is the paraxial surface curvature, which is the reciprocal of the radius of curvature (R).  n 

and  denote the refractive indicies on either side of an interface.    For the anterior corneal surface 

n is the refractive index of air (1) and n` is the cornea’s refractive index (1.376). 

′n

The JCC description of the corneal surface is developed from the biconic sag equation (4.4).  

In terms of surface curvature, it appears as  

− + −
=

+ − + − + + −

2 2 2
1 1 2 1

BC 2 22 2
1 1 1 2 2 1

(c cos ( ) c sin ( ))rZ (r, )
1 1 ((1 Q )c cos ( ) (1 Q )c sin ( ))r

θ θ θ θθ
θ θ θ θ 2

  4.22  

where c1 and c2 are the paraxial surface curvatures along the principal meridians.  

Following Schwiegerling and Snyder (1998), equation 4.22 can be written as  

=
+ − +

2

BC 2 2

c( )rZ (r, )
1 1 (1 Q( ))(c( )) r

θθ
θ θ

      4.23 

2 2 2
1 1 2 1 1 2 1c( ) c cos ( ) c sin ( ) c (c c )sin ( )= − + − = + − 1−θ θ θ θ θ θ θ    4.24 
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+ − + + −
= −

2 22 2
1 1 1 2 2 1

2

(1 Q )c cos ( ) (1 Q )c sin ( )Q( ) 1
(c( ))

θ θ θ θθ
θ

         4.25  

where c( )θ  and Q( )θ  represent the central curvature and asphericity along the meridian at angle θ . 

 By applying the same procedure that was used with the refractive error, the JCC paraxial 

power profile of the corneal surface, near the vertex where Q ∼ 0, can be determined as  

= + +

′= − + −

′= − −

′= − −
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2 1 2
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2 R R
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2 R R

)

θ θ θ

θ

θ

           4.26 

   

The asphericity variation, equation 4.25, cannot simply be decomposed with Fourier analysis.  

To describe  with JCC terms will require an approximation.  Consider the difference between 

the maximum and minimum curvature values (δc = c2 – c1). The denominator in equation 4.25 

becomes 

Q( )θ

( )( )
2

2 2 22 2 4 2
1 1 1 1 1

1

cc c 2 c c sin ( ) c sin ( ) c 1 sin ( )c 1
 δθ = + ⋅δ ⋅ θ − θ + δ θ − θ = + θ − θ  

       4.27 

 
Equation 4.25 can be written as 

( )2 2 2 2
1 1 2 1 1 2

1 1 1
2

2
1

1

c c cQ cos ( ) Q sin ( )) sin ( ) Q 2 cos (c c c
Q( )

c1 sin ( )c

 δ δ δθ − θ + θ − θ + θ − θ ⋅ + + θ − θ 
 θ =

 δ+ θ − θ  

1 )
4.28 

To simplify equation 4.28 its denominator is approximated as a binomial series and 

expanded in orders of 1 (equation 4.29).   Orders greater than 2 have been dropped since their 

contribution to the overall value is negligible. 

c cδ
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( )2 2 2 2
1 1 2 1 2 1 1

1

cQ( ) Q cos ( ) Q sin ( )) 2 Q Q sin ( )cos ( )c 1
δθ ≈ θ − θ + θ − θ + − θ − θ θ − θ   4.29 

If it assumed that (1 2 1c c Q Q− )δ is small then equation 4.25 or 4.28 can be approximated by 

≈ − +2 2
1 1 2Q( ) Q cos ( ) Q sin ( )− 1θ θ θ θ θ       4.30 

If the assumption is applicable, the Fourier analysis can be applied to equation 4.30 and the 

asphericity variation can be described by 
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Assumption validity was established by deriving an expression for the error in the 

approximation of Q and determining when the approximation would result in a significant 

difference in shape and consequently aberrations of the real and approximated surfaces.    

By examining equations 4.25 and 4.30, the largest difference in asphericity and consequently 

surface shape and aberrations between the real and approximated surfaces will occur when 

− = °451 .  Along this meridian, surface shape can be described by the profile of a symmetrical 

conic where its central curvature (c), real and approximate asphericities (QR & QA) are 

θ θ

 +
= 1 2c cc

2
          4.32  

 + + −
=

+

2 2 2
1 1 2 2 1 2

R 2
1 2

2(Q c Q c ) (c c )Q
(c c )

       4.33  
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The error in the approximation was found by first rewriting equation 4.33 as 

  + + +
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+

2 2
1 2 1 1
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1

Q Q (1 c c ) ( c 2c )Q
2(1 c 2c )

δ δ
δ

      4.35 

where δc = c2 – c1.   The bracket in the denominator in equation 4.35 was then expanded as a 

binomial series. 

   
  + + + = −     

22 2
1 2 1 1

R
1 1
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2 c 4 c

δ δ δ δ + +


   4.36 

The error in the approximation is found by expanding equation 4.36 in orders of 

1 (equation 4.37).   Orders greater than 2 have been dropped since their contribution to the 

overall value is negligible. 

c cδ
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 The error term ( ) is seen to be = −E RQ Q Q

   − + −
= +   

   
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2 1 1 2
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1 1

Q Q c 2 3Q Q cQ
2 c 8 c

δ δ        4.38 

It can be seen that the error term will be small when the variation of the asphericity times 

the percentage change in curvature is small, and the square of the fractional curvature variation is 

small. Consider the average values measured by Douthwaite, et al. (1999), (R1 = 7.93 mm, R2 = 7.80 

mm, Q1 = -0.22, Q2 = -0.15).  For these values δc = 0.002 mm-1, 1  = 0.017 and Q2-Q1 =0.07. 

In terms of surface power the average difference between principal meridians is 0.79 D.  Along the 

meridian bisecting the principal meridians, QR= -0.1844, QA = -0.1850 and QE = 0.0006.  The 

difference between equations 4.33 and 4.37 is less than 0.1% of the value of QR, which shows that 

c cδ
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using a binomial series expansion to calculate the asphericity approximation (QA) and the 

corresponding error (QE) is accurate for an average cornea.     

QR ≈ QA will be a valid assumption if the aberrations of the real and approximated surfaces 

are not significantly different.  A significant difference in aberrations can be determined by 

considering that an optical system is relatively aberration free if the Strehl ratio is greater than 0.8 

(Smith and Atchison, 1997).   In terms of the system’s RMS it follows, from equation 2.7, that 

( ) <
22

2RMS 20
λ

π          4.39 

If equation 4.39 is written in terms of the RMS and the denominator is rounded to an integer then 

<RMS 14
λ           4.40 

This is known as the Maréchal criterion (Smith and Atchison, 1997).   

The largest difference in aberrations between the real and approximated surfaces is along the 

− = °451 meridian.  The surface shape along this meridian is described by the profile of a 

symmetrical conic.  The largest difference in aberrations will be estimated by comparing the SA of 

these symmetrical conic surfaces. 

θ θ

In general the aberrations of an optical system (W) can be quantified with a polynomial 

function.  If the object is an on-axis point at infinity and the optical system consists of a symmetrical 

surface then the Taylor series expansion of high-order aberrations described by Smith and Atchison 

(1997) can be simplified to 

           4.41  = 4
4,0W(r) w r

Schwiegerling and Synder (1998) have shown that  
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= 
 

3 2
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1 c (n 1)(1 n Q)w
8 n          4.42 
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for a conic surface with central curvature of c, asphericity of Q and a refractive index of n. 

If a system’s wavefront can be defined by equation 4.41, it can be shown by using equation 

2.6 that 

( ) ( )=
2

2 P4 WRMS 45          4.43  

where WP is the wavefront error at the pupil edge.  The criterion for this system to be aberration 

free can be expressed as   

 <PW
4
λ           4.44  

This condition is sometimes referred to as the “quarter wavelength” rule (Smith and 

Atchison, 1997).  I assume that if the real and approximate corneal surfaces differ in their optical 

path difference at the pupil edge (WP) by less than ¼λ, they produce equivalent results and the 

approximation will not significantly change the aberrations.  

Since the shape of any meridian in a biconic surface can be described with a conic function, 

the OPD along this meridian can be determined from equations 4.41 and 4.42.  To determine if the 

difference in shape resulting from the asphericity assumption, given in equation 4.30, caused a 

significant change in aberrations, the OPD was calculated from equations 4.41 and 4.42, along the 

− = °451 meridian, for both the real and approximated surfaces of each subject.  This calculation 

was performed at the pupil edge (r = 2.5 mm) where the OPD will be maximum, using the refractive 

index of the cornea (n = 1.376).  The shape parameters (c, QR, QA) were calculated from the fit 

parameters (c1, c2, Q1, Q2) by using equations 4.32, 4.33 and 4.34.  The absolute difference between 

the OPD (∆W) of the real and approximated surfaces was then determined and expressed in 

wavelength units (λ = 633 nm).   If any specific case was found to have ∆W > ¼λ along the 

− =1 45θ θ meridian assuming a 4th order variation of W, the JCC surface approximation was 

deemed to be invalid for this subject and it would not be appropriate to describe the biconic 

representation of their corneal shape with JCC terms.  This analysis will also be used to set an upper 

limit on an acceptable value for QE. 

θ θ

°
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4.4 Results 

 

The results from the shape test show that the RMSE (Table 4.1) decreased for each subject as the 

complexity of the fit equations increased.  The corresponding F-tests (Table 4.2) revealed that for 

each subject, a surface that is not rotationally symmetric produced a fit that was statistically 

significantly more accurate than the symmetric surfaces.  The F-tests reveal that, in 8 of the 12 

subjects a biconic surface provided a statisitically significantly better fit than the less complex 

surfaces.  In 2 of the 12 subjects the biconic surface did not produce a statistically significantly better 

fit than the bispherical surface with a single asphericity parameter but these fit surfaces were 

statistically significantly better than the less complex surfaces.  Likewise in another 2 of the 12 

subjects the biconic and bispherical with one asphericity parameter did not produce a statistically 

significantly better fit than the bispherical.  

 

Table 4.1: Shape Test Subject Information and RMSE Values 

 

Subject Age Eye Sphere Cylinder Axis RMSE Values (µm) 
 (years)  (D) (D) ( ° ) S C BS BS1Q BC 
1 30 OD 0.00 0.00 -- 1.681 1.679 1.509 1.508 1.504 
2 28 OD -0.25 0.25 100 3.399 3.396 2.758 2.753 2.743 
3 35 OD -1.50 1.00 90 2.993 2.990 2.492 2.490 2.464 
4 36 OD -2.75 1.75 172 2.272 2.251 0.866 0.809 0.806 
5 25 OD -2.50 0.00 -- 2.164 2.159 1.211 1.202 1.176 
6 46 OD -2.75 0.50 170 3.353 3.314 3.074 3.030 2.925 
7 43 OD -5.00 1.00 95 2.981 2.978 0.955 0.953 0.952 
8 32 OD -5.25 0.00 -- 2.205 2.190 1.929 1.911 1.910 
9 36 OD -6.25 0.00 -- 1.900 1.898 0.839 0.834 0.830 
10 32 OD -7.00 0.50 55 1.791 1.791 1.431 1.431 1.423 
11 51 OD -7.75 0.50 115 2.668 2.664 1.032 1.027 1.025 
12 34 OD -8.50 2.50 115 5.381 5.380 1.905 1.897 1.824 
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Table 4.2: Shape Test F-test Results.  The shaded cells highlight cases where a more complex surface 

provides a statistically significantly better fit.  For each subject a non-rotationally symmetric surface 

provided a statistically significantly better fit than the symmetric surfaces. 

 

Subject S  vs. C S  vs. BS C  vs. BS BS  vs. BS1Q BS  vs. BC BS1Q  vs. BC
 F p-value F p-value F p-value F  p-value F  p-value F  p-value
1 1.7   0.188 80.0  <0.001 -- -- 1.1  0.285 2.2  0.108 -- -- 
2 1.2   0.268 172.8  <0.001 -- -- 2.2  0.130 3.7  0.025 -- -- 
3 1.6   0.205 146.6  <0.001 -- -- 1.1  0.293 7.7  <0.001 -- -- 
4 12.7   <0.001 -- -- 3789.9 <0.001 96.5  <0.001 -- -- 5.7   0.017
5 2.9   0.084 716.2  <0.001 -- -- 9.5  0.002 -- -- 29.5   <0.001
6 15.2   <0.001 -- -- 106.1 <0.001 19.2  <0.001 -- -- 47.5   <0.001
7 1.1   0.286 2889.7 <0.001 -- -- 2.1  0.142 2.1  0.122 -- -- 
8 216.3   <0.001 -- -- 187.3 <0.001 12.0  <0.001 -- -- 0.6   0.437
9 1.1   0.285 1365.5 <0.001 -- -- 8.3  0.004 -- -- 5.3   0.020
10 0.1   0.781 184.0 <0.001 -- -- 0.1  0.713 3.5  0.029 -- -- 
11 2.0   0.149 1844.0 <0.001 -- -- 7.0  0.008 -- -- 1.8   0.178
12 0.2   0.667 2261.1 <0.001 -- -- 5.2  0.022 -- -- 52.8   <0.001

 

Of the 159 eyes from 93 subjects measured with the PAR CTS only 8 eyes from 8 different 

subjects were found to have a ∆W > ¼λ when the asphericity approximation, needed to describe 

their biconic fits in JCC terms, was tested (Table 4.3).  The ∆W for these eyes were all less than 0.3λ.  

When P1 and P2 are the powers in each of the principal meridians, the error in the asphericity 

approximation (QE), the change in the paraxial power ( 2 ) and the asphericity 

( ∆ = − 1Q Q Q2 ) between principal meridians, of the biconic fits to the anterior corneal topography 

measurements, in each of these cases are much larger than the average values of QE = 0.004 ± 0.005, 

∆P = 1.21 ± 0.85 D and ∆Q = 0.38 ± 0.32 for the rest of the subjects.  The value of the error term 

QE (equation 4.33) in each case was smaller than 0.04. 

∆ = − 1P P P

To determine if the PAR CTS and Orbscan II provide equivalent results, a comparison was 

made between their measurements of the same eye.  Two eyes from two different subjects had three 

consecutive measurements taken on each instrument.  The measurements were all found to pass the 

asphericity approximation test.   The comparison was performed with a repeated measures analysis 

of variance.  This test revealed that there was a statistically significant difference in the PJ0 and QJ0 
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parameters (p-values of .01 and .004, power of .99 and 1.0 respectively) in the first eye that was 

tested.  No statistically significant difference was found for the remaining shape parameters of the 

first eye and in all the shape parameters of the second eye (p-values > .05, power < 0.8).  In only the 

two instances where a statistically significant difference was found, was the power of the performed 

test greater than the desired power of 0.8.  The results of these tests did not inspire enough 

confidence to believe that these instruments provided equivalent measurements and consequently 

the measurements made with the Orbscan II have been excluded.      

 

Table 4.3: Cases that Violate the ¼ λ Rule.  ∆W is the maximum absolute difference between the 

OPD of the real and approximated surfaces.  QE is the error in the asphericity approximation.  ∆P 

and ∆Q are the change in the paraxial power and asphericity between the principal meridians. 

 

Sub Eye Sphere (D) Cylinder (D) ∆W (λ) QE ∆P (D) ∆Q 
1 OD -2.75 0.50 0.274 0.038 2.50 1.55 
2 OS -4.25 1.00 0.251 0.039 3.75 0.97 
3 OS -4.50 0.75 0.261 0.036 3.34 1.07 
4 OD -5.00 0.75 0.277 0.038 5.23 0.80 
5 OD -6.00 1.00 0.254 0.039 4.46 0.81 
6 OS -6.25 1.00 0.255 0.036 3.54 0.99 
7 OD -7.00 0.50 0.260 0.035 3.42 1.02 
8 OS -11.00 2.25 0.287 0.038 3.95 1.01 

 

Statistics on the remaining 151 eyes from 92 subjects and results from their biconic fits are 

shown in Table 4.4.  The correlation coefficients relating the JCC terms of the refractive error and 

biconic corneal shape are shown in Table 4.5.  The linear regression results, from relationships with 

correlation coefficients with an absolute value that was approximately 0.2 or greater, are shown in 

Table 4.6 and were further tested for significance.  The relationships with statistically significant 

correlations (p<0.05) are displayed in Figures 4.7 and 4.8. 

Coefficients were also calculated to test for correlations between age and the JCC 

components of refractive error and anterior corneal shape.  Results from the 151 eyes, whose 

anterior corneal shape was approximated with JCC components, revealed that a statistically 

significant correlation was found only between age and REM (p = 0.025).  The age and REM 
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dependence was caused by the fact that the emmetropic eyes (REM > -1 D) in this group were all 

less than 30 years old. If the analysis was repeated after removing the 8 emmtropic eyes from 5 

subjects the dependence between age and REM disappeared (p = 0.5). The correlations between age 

and the remaining JCC terms were still not statistically significant. 

It should be noted that the age of the 151 eyes was not evenly distributed through its range 

(Figure 4.9).  Any dependence that exists between age and the JCC components of the anterior 

corneal shape could be masked since a large majority of the eyes were between 30 and 40 years old.  

A second test for age dependence was performed on a group with a more even age distribution 

(Figure 4.10) and a smaller range of refractive errors.  Correlation coefficients were calculated and 

tested for significance for the 48 eyes from 26 subjects whose REM was less than -2 D and greater 

than -4 D.  For this group of eyes no statistically significant age dependence was found with any of 

the JCC components of refractive error or anterior corneal shape. 

   

Table 4.4: Age, refractive error and biconic parameters of the 151 eyes whose topography was 

described with JCC terms. 

 

  Age  SE  Cylinder R1 Q1 R2 Q2 θ1 
  (years)  (D) (D) (mm)  (mm)  (°) 
 Average 38 -4.95 0.68 7.76 -0.24    7.60 -0.11     0.9   
 SD 9 2.20 0.68 0.24 0.31    0.28 0.32     17.9   
 Minimum 17 -9.75 0.00 8.44 0.56    8.44 0.66     62.3   
 Maximum 62 0.00 2.50 7.08 -1.42    7.01 -1.01     -48.6   
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Table 4.5: Correlation Coefficients.  The highlighted coefficients were deemed large enough to test 

for statistical significance. 

 

  REJ0 REJ45 PM PJ0 PJ45 QM QJ0 QJ45 
  REM -0.382 -0.146 -0.270 0.346 0.074 -0.202 -0.028 -0.093 
  REJ0  0.222 0.186 -0.730 -0.017 0.124 0.049 0.076 
  REJ45   -0.120 -0.162 0.043 0.075 0.011 0.135 
  PM    -0.248 -0.033 -0.056 -0.025 0.084 
  PJ0     -0.033 -0.084 -0.481 -0.059 
  PJ45      -0.019 0.151 -0.198 
  QM       0.133 0.313 
  QJ0               -0.043 

 

Table 4.6: Linear Regression Results 

 

Independent Dependent F(1,92) p-value R2 Slope Intercept 
REM REJ0 14.68  < 0.001 0.146 -0.070   -0.149  
REM PM 8.20  0.005 0.073 -0.203   48.085  
REM PJ0 12.55  0.001 0.120 0.081   -0.099  
REM QM 6.78  0.011 0.041 -0.023   -0.285  
REJ0 REJ45 3.58  0.062 0.049   
REJ0 PM 2.65  0.107 0.035   
REJ0 PJ0 148.58  < 0.001 0.532 -0.886   -0.318  
PM PJ0 5.96  0.017 0.062 -0.078   3.345  
PJ0 QJ0 28.62  < 0.001 0.231 -0.212   -0.155  
PJ45 QJ45 4.75  0.032 0.059 -0.103   -0.010  
QM QJ45 8.23  0.005 0.098 0.147   0.008  
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Figure 4.7: Data and Linear Fits for REJ0 vs. REM, PM vs. REM, and PJ0 vs. REM  
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Figure 4.8: Data and Linear Fits for QM vs. REM, PJ0 vs. REJ0, PJ0 vs. PM, QJ0 vs. PJ0, QJ45 vs. PJ45 and 

QJ45 vs. QM 
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Figure 4.9: Age histogram of the 151 eyes whose anterior corneal shape was quantified with JCC 

components 

 

Figure 4.10: Age histogram of the 48 eyes whose REM was less than -2 D and greater than -4 D 
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4.5 Discussion and Conclusions 

 

The results from the shape test show that the fit provided by a biconic surface was generally 

statistically significantly more accurate than the other surfaces tested.  For the cases where the 

increase in accuracy provided by adding asphericity parameters to the bispherical surfaces was not 

statistically significant, the asphericity values of these surfaces were not significantly different from 

zero (Table 4.7).  In the cases where the increase in accuracy provided by a biconic over a bispherical 

surface with a single asphericity parameter, was not statistically significant, it can be seen (Table 4.7) 

that the mean asphericity of the biconic is not significantly different from the asphericity of the 

BS1Q surface and the range in asphericity values in the biconic is small.  These results are not 

surprising since the bispherical surface is just a biconic where the asphericity parameters equal zero 

and the bispherical surface with one asphericity parameter is just a biconic where the asphericity 

parameters are equal.  In all cases the biconic fit had a smaller RMSE and the cases where this 

increase in accuracy was not statistically significant were because these individual corneas were either 

nearly bispherical or their asphericity parameters were nearly equal.  Consequently, a biconic surface 

would provide the most accurate means, over all the surfaces tested, to describe the shape of normal 

corneas. 

On average, the best-fit biconic parameters (Table 4.4) found in this chapter are similar to 

the results of previous studies but statistically significant differences do exist.  There is not a 

statistically significant difference (p=0.4) between the mean central radius of curvature (7.68 ± 0.25 

mm) determined from the JCC analysis in this investigation and the results from Kiely, et al. (1982), 

Carney, et al. (1997) and Budak, et al.(1999).  A statistically significant difference (p<0.05) was found 

between the mean asphericity (-0.18 ± 0.24) found in this investigation and the results of Kiely, et al., 

Carney, et al. and Budak, et al.  Studies that reported the average conic parameters of the principal 

meridians were also compared.  A statistically significant difference (p<0.05) was found between the 

average central radius of curvature values in this study and the results of Guillon, et al. (1986) and 

Douthwaite, et al. (1999) for both principal meridians. A statistically significant difference (p<0.05) 

was also found for the average asphericity values for both principal meridians between the results 

from this study and those of Guillon, et al.  A similar difference was not shared between the results 
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Table 4.7: Asphericity Parameters of the Rotationally Asymmetric Surfaces from the Shape Test.  

The shaded rows highlight cases in which the more complex surfaces were not found to provide a 

statistically significantly better fit.   

  BS1Q BC  
Subject Q QM ∆Q 

1 -0.080 -0.079 0.252 
2 -0.195 -0.222 0.570 
3 -0.131 -0.143 0.871 
4 -0.448 -0.456 0.205 
5 -0.160 -0.176 0.511 
6 -0.560 -0.522 1.551 
7 -0.058 -0.061 0.106 
8 -0.278 -0.280 0.122 
9 0.100 0.103 0.153 
10 0.023 0.016 0.297 
11 0.186 0.092 1.056 
12 -0.118 -0.115 0.114 

 

from this study and those of Douthwaite, et al. (p>0.1).   The observed differences could be due to 

the different measurement techniques and analyses that were performed in the different studies and 

differences in the populations (like age and refractive error distributions for instance).  

 The myopic population studied in this chapter could also be different from other studies 

since these subjects had elected to undergo laser refractive surgery.  While the myopic topographies 

were all acquired preoperatively, it’s possible that they could be skewed from normal measurements 

and this could be the reason these subjects elected to have surgery.  The age distribution could also 

make this study different from previous studies.  Approximately 50% of the eyes, studied here, were 

between 30 and 40 years-old.  Most of the previous studies did not discuss how age was distributed 

throughout their range and how this might affect the results. 

It should be noted that many of the studies, compared for differences, contained data from 

two eyes from the same subject.  This will adversely affect the statistical tests that were performed 

since two data points from the same subject cannot be considered to be independent.  Proper test 

for significant differences could not be performed without access to the raw data.   Despite this fact, 
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the analysis that was performed indicates that the data presented here is different from previous 

reports.   

To facilitate the process of correlating corneal shape and refractive error, it was desirable to 

have these quantities defined with independent parameters.  A Zernike polynomial expansion would 

provide a description with independent parameters and a 4th order series was found to be sufficient 

for describing a normal cornea (Iskander, et al., 2001b).  An asymmetrical conic shape similar to the 

BS1Q surface was found to provide a more accurate fit of normal anterior corneal shape than 4th 

and 8th order Zernike series (Preussner, et al., 2003).  Since I found a biconic was slightly more 

accurate than the BS1Q surface I concluded that a biconic would provide an accurate enough 

representation of normal anterior corneal shape.  A method was then implemented to describe 

biconic shape with independent, JCC parameters. 

Describing the refractive error and paraxial corneal power in JCC terms was a 

straightforward process.   To describe the asphericity in JCC terms required the assumption that the 

error term in equation 4.38 was small.  This occurred when the variation in paraxial corneal power 

with orientation was small or the variation in asphericity was small with a moderate variation in 

paraxial power.  Based on the “quarter wavelength” rule a scheme was devised that determined if the 

biconic representation of individual corneal shapes could be described in JCC terms and 

simultaneously give an accurate estimate of wavefront error.  Along with the maximum change in 

wavefront error (∆W) associated with the approximated surface, the maximum error in asphericity 

(QE), the difference in paraxial power and asphericty (∆P and ∆Q) were also calculated.   

Of the 159 eyes tested only 8 eyes from 8 subjects were found to have ∆W > ¼ λ.    Even 

though these cases can be accurately described with a biconic surface (subject 1 was subject 6 in the 

shape test) it would not be appropriate to describe their shape in JCC terms and they were not 

included in the correlation analysis. 

The eight excluded eyes were found to all have QE, ∆P and ∆Q values that significantly 

exceeded the average values of the remaining eyes (Table 4.3).  It was also observed that if ∆W > ¼ 

λ then QE ≥ 0.035.  I conclude that an anterior corneal surface can only be accurately described as a 

biconic surface in JCC terms if the magnitude of the difference in its paraxial power and asphericity 
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between the principal meridians is not large enough to cause the maximum error in the asphericity 

term to exceed 0.035.  No error larger than 0.04 was introduced into the asphericity term by the JCC 

approximation. This implies that if the allowable error in aberration were relaxed to ∆W < 1/3 λ, 

the JCC approxiamtion could be used for all normal corneas at a 5 mm pupil diameter. 

 The association between corneal power and refractive error has been well established.  A 

weak but statistically significant correlation has been shown to exist, such that corneal power 

increases with increasing myopia (van Alphen, 1961; Garner, et al., 1990; Goss, et al., 1990; Goh and 

Lam, 1994; Grosvenor and Scott, 1994; Carney, et al., 1997; Goss, et al., 1997; Budak, et al., 1999).  

Consequently the correlation between REM and PM was expected.  Correlations between REJ0 and PJ0 

and REJ45 and PJ45 would also be expected since the cornea is the most powerful optical element in 

the eye and the spatial distribution of its refractive power would be expected to greatly influence the 

spatial distribution of ocular power.  While a very strong correlation was found between REJ0 and 

PJ0, no correlation was found between REJ45 and PJ45.  The lack of correlation between the J45 terms 

may be due to the fact that only 18% of the eyes that were analysed had refractive cylinders that 

were located more than 20° away from the horizontal or vertical meridians.  The size of the cylinder 

refractive error (≤ 2.50 D) could also play a role.  

No previous studies have used a non-rotationally symmetric surface descriptor to study how 

the shape of the anterior corneal surface changes with refractive error.  Carney, et al. (1997) used 

linear regression to shown how a symmetrical conic descriptor of the anterior corneal surface shape 

changes with refractive error.  The mean components from my asymmetrical study (REM, PM, QM) 

correspond to the components of the symmetrical study (SE, P, Q).  A comparison of the linear 

regression results of these studies is shown in Table 4.8.  The slopes relating paraxial corneal power 

(P) to spherical equivalent (SE) are equivalent since the robust standard error (RSE) for my slope 

value was 0.07 while the difference between slopes is 0.032.  Similarly the intercepts from this 

relationship are not significantly different since the RSE on my intercept value was 0.38 D and the 

difference was 0.33 D.  The slopes relating Q to SE are equivalent while the intercepts are 

significantly different between these studies because I found RSE of 0.009 and 0.048 while the 

differences are 0.009 and 0.117 for the slope and intercept respectively.  No specific tests for 

statistical significance could be performed since Carney, et al. did not report the standard errors of 
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their linear regression analysis.  Neither study found a statistically significant correlation between 

central corneal power and asphericity.   

The differences between the results of these two studies could be due to the statistically 

significant differences in the age of the subjects (p<0.001), except that age was not found to 

correlate with the results reported here.  I believe it is more likely that the observed differences may 

be related to the different shape measuring techniques used by the TMS-1 and PAR CTS.  Similar 

differences have been observed when these systems attempt to quantify the shape of calibrated 

aspheric test surfaces (Priest and Munger, 1998).   

Contrary to the findings of this study and Carney, et al., Budak, et al. (1999) did not find any 

correlation between spherical equivalent refractive error and anterior corneal asphericity.  This 

difference could be due to the range of refractive errors that were measured.  Budak, et al. measured 

subjects with a wide range of refractive errors (-20.00 to 6.87 D) while this study and Carney, et al. 

included only emmetropes and moderate myopes (>-10 D).  Budak, et al. did find that eyes with 

moderate myopia had more positive asphericities than emmetropic eyes which is the same trend 

observed by this study and Carney, et al. 

 

Table 4.8: Comparison of Linear Regression Results 

 

 Slope Intercept r2 p-value 
 Priest Carney Priest Carney Priest Carney Priest Carney

SE vs. P -0.203 -0.235 48.09 48.42 0.073 0.067 0.005 0.008 
 SE vs. Q -0.023 -0.032 -0.285 -0.402 0.041 0.076 0.011 0.005 
   P vs. Q      --- --- --- --- 0.003 0.011 0.531 0.282 

 

.     The previously mentioned correlation between refractive error and central power of the anterior 

corneal surface reveals that anterior corneal shape plays a large role in determining the position of 

the eye’s best focal plane.  The asphericity of the anterior corneal surface is a large contributor to the 

eye’s spherical aberration, which in turn affects the position of the best focal plane.  Consequently, 

the asphericity of the anterior corneal surface would be expected to correlate with refractive error. 
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Even though there is no correlation between PM and QM, statistically significant correlations 

were found between PJ0 and QJ0 and PJ45 and QJ45.  For a biconic surface defined in JCC terms, the 

variations of P and Q with azimuthal angle (θ) (equations 4.26 and 4.31) are similar.  The minimum 

and maximum values of both P and Q will be located on the principal meridians.  If both P and Q 

vary with azimuthal angle then a correlation between their J0 and J45 terms would be expected.  The 

existence of these correlations in the empirical data further emphasizes that a biconic in JCC terms is 

a good descriptor of anterior corneal shape. 

The statistically significant correlation between REM and REJ0 suggests that as the mean 

refractive error increased most subjects within this group have larger amounts of cylinder.  This 

result has also been observed in two large populations (more than 2000 subjects in each) of all ages 

and may be due to increasing variance in astigmatism with increasing refractive error (Horner, et al., 

2003).  Consequently, it is not surprising that statistically significant correlations between REM and 

PJ0 and PM and PJ0 were found since REM is correlated with PM and REJ0 is correlated to PJ0.  

Although the relations, given in Table 4.6, were statistically significant (p<0.05), the low 

coefficient of determination (r2) indicates that only a small percentage of the variance could be 

accounted for by the correlation between these variables. 

These results prove a rotationally asymmetric corneal shape versus refractive error model 

can be created.  In the last chapter, refractive myopia was modelled by changing the central radius of 

curvature of the symmetrical, anterior corneal surface by 0.128 mm/D. The empirical results from 

Carney, et al., (1997) and this chapter found that the mean central radius of the curvature of the 

anterior corneal surface changed by 0.036 mm/D and 0.031 mm/D respectively.  Based on the 

results from the symmetrical models, it can be seen that the empirical rate of change between the 

central radius of curvature of the anterior corneal surface and myopic refractive error will not 

account for the corresponding level of myopia.   This indicates that a corresponding change in some 

other ocular parameters must also contribute to myopic refractive error. Axial length has been 

observed to increase with myopic refractive error (Carney, et al., 1997; Goss, et al., 1997).  Results 

from this chapter suggest that the J0 component of central power and mean asphericity also change 

with refractive error. Eye models of cylindrical refractive error are also possible based on these 

results.  It remains to be seen if utilizing a corneal model, based on the results from this chapter, will 

improve the previously defined eye models.  This will be partially addressed in subsequent chapters. 
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5 Asymmetrical Models 

  

5.1 Introduction 

 

Chapter 3 described the development of average, young-adult, symmetrical, GRIN eye models as a 

function of myopia.   These models were found to accurately predict the amount of symmetrical 

spherical aberration that has been observed in young adults.  Due to their lack of asymmetrical 

aberrations, these models do not predict the overall amount of total high-order aberrations observed 

in young adults.  Myopia was simulated through either a purely axial or refractive technique, which 

created myopic models that were not anatomically accurate.  New models need to be developed 

which eliminate the inadequacies of the previous symmetrical models. 

Studies of the wavefront aberration of human eyes have shown that there are real inter-

subject differences in the amount and form of the measured aberrations.  Generally, at moderate 

pupil sizes, asymmetric aberrations like coma are often more prominent in an individual eye than 

symmetrical (spherical) aberration (Charman, 1991a).   If the wavefront errors of many eyes are 

averaged, then the results tend to display a much greater degree of rotational symmetry.  The radial 

change in refractive power that can be deduced from such an average wavefront corresponds closely 

to that measured in experiments which assume only spherical aberration exists (Charman and Walsh, 

1985). 

As was described in Chapter 2, optical elements are not coaxial but a nominal optical axis 

and the line of sight, separated by an angle alpha (α), can be defined.  Small tilts and decentrations of 

the crystalline lens and pupil from the nominal optical axis can then be identified.  Artificial pupil 

decentration is known to produce marked degradation in optical performance for large pupil sizes 

(Van Meeteren and Dunnewold, 1983; Walsh, 1988; Artal, et al., 1996).  The existence of angle α 

will affect the optical performance at the fovea (Van Meeteren, 1974; Van Meeteren and 

Dunnewold, 1983; Bing and Campbell, 1994; Atchison and Smith, 2000). In certain cases, pupil 

decentration could actually be helpful in reducing the aberrations of the eye at the fovea if the 

existence of angle α is considered (Bing and Campbell, 1994). 
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Pupil decentration with changing pupil size has been reported (Walsh and Charman, 1988; 

Wilson, et al., 1992; Yang, et al., 2002).  Walsh made his measurements by aligning the limbus in 

photographic images.  Pupil centration measurements by Wilson, et al. were made with respect to 

the achromatic axis and the limbus.  Yang, et al. used the geometric centre of the cornea and the 

limbus as their reference. 

The optical surfaces of the eye each reflect a portion of the incoming light, which forms a 

corresponding image.  These reflected images, known as the Purkinje images, are usually referred to 

as PI, PII, PIII and PIV and arise from the anterior and posterior surfaces of the cornea and the 

anterior and posterior surfaces of the lens respectively.  The fraction of incident light that is 

reflected from an optical surface is proportional to the refractive index change at the surface.  

Considering the refractive index change at the anterior corneal surface, 2.5% of the incident light 

will be reflected as PI.  The refractive index changes within the eye are much smaller than at the 

anterior corneal surface and consequently PI is about one hundred times brighter than PII, PIII and 

PIV (Bennett and Rabbetts, 1989). 

When all the ocular surfaces are aligned, the Purkinje images can be aligned along one 

direction. Conversely, as is normally found, if the ocular surfaces are not coaxial then the Purkinje 

images cannot be aligned.  The relative positions of PI and PIV can be used to approximate a 

nominal optical axis (Le Grand and El Hage, 1980). 

Tscherning (1924) first described the misalignment of the Purkinje images when he reported 

on lens tilt and angle α.  He found angle α had a range of 4° to 7° in the horizontal meridian and 2° 

to 3° in the vertical meridian.  This indicates that the line of sight is nasal and superior to the 

nominal optical axis defined by aligning Purkinje images PI, PIII and PIV.   

Barry, et al. (1994a; 1994b) have utilized pattern evaluation of PI and PIV to determine 

ocular alignment.  This work concentrated on measuring angle α at several fixation distances to 

investigate strabismus. 

  More recently Cui (1998) developed a relationship between the relative positions of PIII and 

PIV from PI as functions of lens tilt and decentration with respect to the cornea for the Gullstrand-

Emsley (GE) unaccommodated eye model.  The GE model consists of a single surface cornea and a 
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two surface lens with a constant refractive index and is adequate for calculating the positions of PI, 

PIII and PIV.  PII was not included because it is difficult to empirically observe since it is dim and 

obscured by PI (Cui, 1998). 

Calculation of the Purkinje image positions is accomplished by assuming their reflective 

surfaces behave like spherical mirrors.  While the position of PI is simply determined by treating the 

anterior corneal surface like a convex mirror, the calculation of the other Purkinje image positions is 

complicated by the refracting surfaces that precede their reflecting surfaces.  The calculation is 

simplified by replacing the optical surfaces with an equivalent spherical mirror.  The images formed 

by the equivalent mirror will coincide with the image formed by the mirror and the refracting 

elements (Bennett and Rabbetts, 1989).   

To perform the calculations, Cui defined an optical axis as the axis through the model 

cornea’s apex, its centre of curvature and the centre of the pupil.  This axis is identical to the optical 

axis of the centred, symmetrical eye model introduced in Chapter 3.  In his models the origin of the 

coordinate system was set at the corneal apex and the optical axis served as a reference axis.  The 

positions of the Purkinje images for the GE model were then determined as functions of lens tilt 

and decentration by paraxial calculations.  Cui then rearranged his equations so that lens tilt and 

decentration could be derived from the relative positions of PIII and PIV from PI.    

To empirically measure the tilt and decentration of the crystalline lens, pupil decentration 

and angle alpha, Cui (1998) used a Purkinje image photography system.  This system included an 

imaging system, fixation target and four infrared light emitting diode sources that were used to 

create Purkinje images.  The fixation target could be moved around a calibrated fixation plane that 

was perpendicular to the optical axis of the imaging system.  The origin of the fixation plane was 

coaxial with the imaging system.  The four Purkinje sources are equally spaced around the optical 

axis of the imaging system.    

The measurement procedure Cui employed involved first aligning the subject until their PI 

images were equally spaced around the optical axis of the imaging system.  The position of the 

fixation target was adjusted until the corresponding PI and PIV images were aligned.  The line 

connecting PI and PIV was then used to define a nominal optical axis.  Displacement of PIII from 

the nominal optical axis was then used to calculate lens tilt and decentration based on the equations 
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derived for the GE model.  Pupil decentration was defined as the position of the geometrical centre 

of the pupil from the axis joining PI and PIV.  The magnitude of angle α was determined from the 

position of the fixation target, which gives the aligned PI and PIV (this corresponds to the nominal 

optical axis).  The position of the fixation target was measured relative to the origin of the fixation 

plane, which is the coaxially sighted corneal axis (this is the line joining the fixation point and the 

corneal Purkinge image). Cui argues that this angle will be close to the angle between the optical axis 

and the nodal axis. In turn for a distant fixation point, the nodal axis and the line of sight will be 

very close to parallel. 

Utilizing this instrument, Cui (1998) reported measurements of the tilt and decentration of 

the crystalline lens, decentration of the pupil and position of the line of sight with respect to a 

nominal optical axis in the left eye of 21 emmetropic young adults that ranged in age from 17 to 35 

years.  The average age of these subjects was not reported.  The mean values of these results are 

shown in Table 5.1.  In the coordinate system used, the temporal and superior directions were 

considered positive. 

 

 Table 5.1: Average Values for the Misalignment of the Ocular Components.  These values were 

 determined from measurements made with respect to an axis joining PI and PIV. 

 

 Horizontal Vertical 
Misalignment Parameter Average SD Average SD 
Lens Tilt (°) 0.88 0.97 -1.91 0.76 
Lens Decentration (mm)  -0.05 0.06 0.12 0.05 
Pupil Decentration (mm) -0.31 0.19 -0.28 0.21 
Angle α (°) -5.25 0.96 -0.72 1.28 

 

In another investigation, Marcos, et al. (Marcos, et al., 2001a) utilized a similar Purkinje 

image technique, to measure the pupil decentration, angle α and aberrations in 15 eyes from 9 

normal subjects (aged 25-50, mean 34).  Spherical refractive error ranged from 0 to -7D, and 

astigmatism from 0 to 1.5D.  The total angle α measured ranged from 1.8 to 7.4°.  Pupil 

decentration ranged from 0.05 to 0.40 mm.  Average values were not reported.  When the 
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misalignment parameters were correlated with the aberrations’ RMS (excluding defocus) it was 

found that the magnitudes of angle α and pupil decentrations were individually not major 

contributors to the individual variability of the observed aberrations. 

So far there have only been a few investigations involving asymmetry in eye models.  Pupil 

decentration and the existence of an angle α have been used to produce coma in a reduced single-

surface eye models (Thibos, et al., 1997).  Simple symmetrical eye models, built from on-axis 

rotationally symmetric components have been shown to predict coma and larger amounts of RMS if 

their pupils are decentered (Atchison and Smith, 2000). 

The only GRIN model with asymmetry is the model proposed by Liou and Brennan (1997).  

Liou and Brennan’s model contained a pupil that was decentered 0.5 mm and an angle α of 5°.  

Both components were misaligned nasally from the optical axis.  This model was used to calculate 

its modulation transfer function, which compared well to empirical data.   There was no mention of 

the asymmetrical aberrations that the model predicted. 

In the previous chapter it was shown that a more accurate description of the anterior corneal 

surface is obtained by using a rotationally asymmetrical shape.  It was also shown how this surface 

changes with myopia.  

This chapter describes the development of myopic, anatomically accurate, young adult, 

asymmetrical GRIN models.  The goal is to develop a model that simulates myopia in an 

anatomically accurate fashion and to predict empirical asymmetrical aberrations while maintaining 

the accurate prediction of symmetrical aberrations that has already been established.   

Investigations will concentrate on how tilting and decentering the crystalline lens and pupil, 

adding a line of sight away from the optical axis, utilizing a rotationally asymmetrical shape for the 

anterior corneal surface and simulating myopia by simultaneously changing both the corneal shape 

and axial length will affect the predicted aberrations.  The aberrations predicted by the asymmetrical 

models will be compared to the young adult empirical aberrations and symmetrical model 

predictions that were introduced in Chapter 3. 
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5.2 Methods 

 

The asymmetrical models described here are an extension of the symmetrical models introduced in 

Chapter 3.  Optical component misalignment was based on the average values reported by Cui 

(1998).  Since Cui’s values were from left eyes while the empirical aberration data is from right eyes 

the directions of the misalignments were adjusted for bilateral symmetry.  The adjustments consisted 

of changing the sign of the horizontal components since the nasal direction is positive in the 

conventional right eye coordinate system.  Consequently the asymmetrical models described here are 

for right eyes.   

Along with the equations described in the introduction to this chapter, Cui (1998) also 

developed an equation to calculate the angle between the line connecting PI and PIV (nominal 

optical axis for empirical measurements) and the optical axis of the centred eye for the GE model as 

a function of lens tilt and decentration.  Cui’s average empirical values for lens tilt and decentration 

predict that the average angle between the nominal optical axis and the optical axis of the centred 

eye would have an absolute difference of less than 0.1°.  Since this value is so small I have assumed 

that the nominal optical axis in my asymmetrical models can be approximated by the optical axis of 

the centred eye.  Figure 5.1 depicts the misalignment of the optical components in relation to the 

nominal optical axis. 

The modeling process was initiated by sequentially adding the average misalignment 

parameters (Table 5.1) to the emmetropic symmetric model introduced in Chapter 3.  First angle α 

was added by changing the field angle of the point object.  Pupil decentration was added next by 

displacing its centre from the model’s nominal optical axis.  Lastly the lens was misaligned by tilting 

and decentering it with respect to the nominal optical axis.   At each step the model’s aberrations 

were calculated and compared to the empirical results. 

The corneal shape changes described in Chapter 4 were then utilized to develop two sets of 

asymmetrical models as a function of refractive error.  The first set had its anterior corneal shape 

described by a symmetrical conic (SC).  The second set used a biconic (BC) shape for its anterior 

corneal surface.   
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Figure 5.1: Misalignment of the Ocular Components.  Angle α is the angle between the optical axes 

and line of sight.  Pupil and lens decentration are defined as the distance separating their centres 

from the optical axis.  Lens tilt is also referenced with respect to the optical axis. The numerical 

values depicted are defined in Table 5.1. In the coordinate system used, the nasal and superior 

directions were considered positive. 

A couple of studies (Pardhan and Beesley, 1999; Guirao, et al., 2000) designed to investigate 

the dependence of anterior corneal shape on age found that the average corneal radius of curvature 

decreased with age while the cornea became more spherical.  The corneal topography data in 

Chapter 4 was measured in a group of 151 eyes that ranged in age from 19 to 62 years.  After 

removing 8 emmetropic eyes that were all less than 30 years old, no statistically significant 

correlations between age and refractive error or anterior corneal shape were found.  This study was 

not designed to look for age dependence.  The age of its subjects was not evenly distributed 

throughout its range, which could have masked an existing dependence, although in a similar study 

age was also not found to correlate with the shape of the anterior corneal surface (Douthwaite, et al., 

1999).   If the results from Chapter 4 are added to the model, the magnitude of corneal shape 

parameters may not be exactly anatomically accurate for a young adult.  The possibility of adding an 

accurate relationship between corneal shape and refractive error, which may improve the model’s 

ability to predict aberrations, is more important than absolute anatomical accuracy. 
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The anterior corneal shape of the SC models was determined by assuming the mean paraxial 

power (PM) and mean asphericity (QM) from the biconic fits in Chapter 4 could represent the paraxial 

power and asphericty of the symmetrical conic surfaces.  The necessary shape parameters could then 

be determined from the linear regression results between REM and PM and REM and QM reported in 

Chapter 4.  Central radius of curvature values were calculated from the paraxial power by 

rearranging equation 4.19.  Table 5.2 displays the values that were used.  

Empirical corneal topography results, in Chapter 4, were also used to create biconic anterior 

corneal surfaces.  The empirical aberration data, originally introduced in Chapter 3, was from 

subjects with low amounts of cylinder (≤ 1.25 D).  The difference in the paraxial power between the 

principal meridians of the anterior corneal surface of the 125 eyes from the topography subjects in 

Chapter 4 with cylinder values equal to or less than 1.25 D was 0.99 ± 0.60 D which is not 

significantly different from 1 D at a 0.05 significance level.  Consequently, the models’ biconic 

anterior corneal surfaces were designed to have a difference of 1 D between the paraxial power of 

their principal meridians. 

The topography subjects, in Chapter 4, were also found to have average values of 0.03 ± 

0.23 D, 0.06 ± 0.27 D and -0.02 ± 0.11 measured for REJ45, PJ45 and QJ45, respectively.  The J45 

values are not significantly different from zero at a 0.01 significance level.  Consequently the model’s 

J45 terms from the JCC descriptions of anterior corneal shape were set to zero.  This corresponds to 

locating the biconic’s principal meridians on the x and y-axes.   

The biconic shape parameters were calculated by first setting REJ0 equal to 0.50 D, which is 

equivalent to a 1 D difference in the paraxial power of the principal meridians.  PJ0 of the anterior 

corneal surface is then calculated from its linear regression relationship with REJ0 from Chapter 4.  

The paraxial power of the principal meridians was calculated from 

= −2 MP P J0P

0P

          5.1 

= +1 2 JP P 2           5.2 

Asphericity was determined by first calculating QJ0 from its linear regression results with PJ0. 

The asphericity of the principal meridians was then determined from 
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= −2 M JQ Q Q 0

0

         5.3 

= +1 2 JQ Q 2Q          5.4 

The biconic parameter values are also shown in Table 5.2.  

 

Table 5.2: Anterior Corneal Shape Parameters 

 

 SC Model BC Model 
REM (D) PM (D) RM (mm) QM P2 (D) P1 (D) R2 (mm) R1 (mm) Q2 Q1 

0 48.09 7.819 -0.285 48.85 47.32 7.698 7.945 -0.291 -0.279
-1 48.29 7.787 -0.262 49.05 47.53 7.666 7.911 -0.268 -0.256
-2 48.49 7.754 -0.239 49.25 47.73 7.634 7.878 -0.245 -0.233
-3 48.69 7.722 -0.216 49.45 47.93 7.603 7.845 -0.222 -0.210
-4 48.90 7.690 -0.192 49.66 48.13 7.572 7.812 -0.198 -0.186
-5 49.10 7.658 -0.169 49.86 48.34 7.541 7.779 -0.175 -0.163
-6 49.30 7.627 -0.146 50.06 48.54 7.511 7.746 -0.152 -0.140
-7 49.50 7.595 -0.123 50.26 48.74 7.480 7.714 -0.129 -0.117
-8 49.71 7.565 -0.100 50.47 48.94 7.450 7.682 -0.106 -0.094

 

The anterior corneal shape in the emmetropic symmetrical model, in Chapter 3, was based 

on empirical values averaged across a large range of refractive error.   In Chapter 4, the anterior 

corneal shape was determined as a function of refractive error.  Consequently, the shape of the 

emmetropic anterior corneal surface is different between the symmetrical model and the 

measurements in Chapter 4.   If all of the remaining biometric parameters are kept constant when 

creating the asymmetric models, the axial length and spherical aberration ( Z ) prediction will differ 

between the emmetropic symmetrical and asymmetrical models.  To maintain the good spherical 

aberration prediction achieved with the symmetrical model and to facilitate a comparison between 

the symmetrical and asymmetrical models, the shape of the posterior corneal surface and depth of 

the aqueous chamber were adjusted, within anatomical limits, until the emmetropic asymmetrical 

models’ spherical aberration prediction and axial length were similar to the values of the emmetropic 

symmetrical model. 

0
4
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 The aberrations of the SC and BC models were calculated for a 5 mm pupil and fit with a 

series of Zernike polynomials.  Comparisons were made between the aberrations of the 

asymmetrical models, the symmetrical models and the young subjects, from Chapter 3, with metrics 

that represent spherical aberration, coma and all high-order aberrations.    Spherical aberration (SA) 

was represented by the coefficient of the symmetrical 4th order term ( ).  Coma was calculated as 

the RMS (RMSC) of the two 3rd order coma terms ( Z ).  The size of the high-order aberrations 

(HOA) was represented as the RMS (RMSHO) of all the terms greater than the 2nd order.  These three 

metrics describe most of the observed aberrations since coma and SA were the dominant 3rd and 4th 

order aberrations respectively. 

0Z

−1 1
3& Z

4

3

The Zernike coefficients that define the wavefront aberrations of individual subjects can take 

on both positive and negative values (Porter, et al., 2001).  RMS calculations (equation 2.6) involve 

squaring the Zernike defined wavefront aberrations before taking a square root. Consequently, 

Zernike defined wavefront aberrations with the same magnitude but opposite sign would have the 

same RMS.  An empirical RMS value determined by averaging the RMS of individual subjects could 

be significantly larger than a value that was determined by averaging the individual Zernike 

coefficients and then calculating the RMS.   

The models developed here were intended to predict average empirical aberrations.  To 

provide a complete comparison between model predictions and empirical results, average aberration 

values were calculated with two methods.  The first method involves calculating the RMS for each 

individual subject and then averaging across subjects ( CS HOSRMS ).  In the second method 

the averages of the individual Zernike terms are calculated first and then used to calculate RMS 

values. (

& RMS

CT HOTRMS & RMS ).   
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5.3 Results 

 

When the misalignment parameters were added to the emmetropic symmetrical model the resulting 

wavefront aberrations were first fit with a series of Zernike polynomials that were inclusive up to the 

6th order terms.  The coefficients of the 5th and 6th order terms were observed to be equal to or less 

than 10% of the value of the 3rd and 4th order terms.  Consequently a 4th order series of Zernike 

polynomials was used to describe the wavefront aberrations of the asymmetrical models described in 

this chapter. 

The effect of sequentially misaligning ocular components for an emmetropic model was 

observed by comparing the predicted aberrations after each misalignment was added.  The spherical 

aberration of the models remained relatively constant as it increased by 5.4% after angle α was 

added to the model, stayed constant when the pupil was decentered and then reduced to an increase 

of 2.7% from the symmetrical model’s value when the lens model was tilted and decentered.   

The addition of an angle α induced a significant amount of coma in the emmetropic model.  

Decentering the pupil decreased the induced coma by 42%.  The misalignment of the crystalline lens 

increased the induced coma by 8% from the model with only an angle alpha and pupil decentration.  

Adding angle α increased the high-order RMS above the symmetrical model prediction by a 

factor of 1.4.  Decentering the pupil reduced the increase in RMSHO by a factor of 0.61.  Tilting and 

decentering the crystalline lens changed the overall increase in the RMSHO from the symmetrical 

model to a factor of 0.68. 

In Figure 5.2, the model’s RMSC and RMSHO predictions were compared to the two types of 

average RMSC and RMSHO values for 4 emmetropes from the young subjects in Chapter 3.  In each 

model the predicted RMSC was significantly less than the CSRMS  value observed in the emmetropic 

subjects.  The asymmetrical model with the three component misalignments predicted a CTRMS  

value of 0.041 µm, which compares well to the empirical value calculated after averaging aberrations 

across subjects of 0.055 ± 0.159 µm.   
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The empirical emmetropic average RMSHO values were both observed to be significantly 

larger than the model predictions.  When the average was taken across subjects ( HOSRMS ) the value 

was 6 times larger than the emmetropic asymmetrical model prediction.  The value of the high-order 

RMS averaged across the Zernike terms ( HOTRMS

0

) was 4 times larger than the emmetropic 

asymmetrical model prediction. 

 Since the emmetropic shape of the anterior corneal surface in the asymmetrical models was 

different than the symmetrical model, the shape of the posterior surface and depth of the aqueous 

was changed to create emmetropic asymmetrical models that had an axial length and Z  term similar 

to the emmetropic symmetric model.  A trial and error process revealed that these requirements 

could be met if the central radius of curvature of the posterior corneal surface was changed from 6.3 

to 6.5 mm and its asphericity was changed from -0.3 to -0.5.  The depth of the aqueous was also 

reduced from 3.4 to 3.3 mm. 

4

Table 5.3 displays the aberrations and axial length (AL) of the SC models as a function of 

refractive error when the object was positioned at both infinity and the model’s far point.    The 

high-order aberrations from the BC models were nearly identical to the corresponding SC models, as 

the coefficients of individual Zernike terms from corresponding models never differed by more than 

0.006 µm.   

The results in Table 5.3 show that moving the object to the far point caused an increase in 

the predicted SA that ranged from 10 to 35%.  Changing the object position had virtually no effect 

on the predicted coma.  The change in the predicted SA caused the high-order RMS to increase by 

10 to 20%.
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a: symmetrical model from Chapter 3 

b: asymmetrical model with angle α 

c: asymmetrical model with angle α + pupil decentration 

d: asymmetrical model with angle α + pupil decentration + lens tilt & decentration 

e: empirical average across subjects 

f: empirical average across Zernike terms 

 
Figure 5.2: Comparison of Coma and High Order RMS Between Models Built by Sequentially 

Adding Misalignment Parameters and Average Empirical Values from Emmetropic Subjects. 
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Table 5.3: Results from the SC models when the object is placed at both infinity and the far point.  

AL refers to the axial length.   

 

SE (D) AL (mm) 
0
4Z  (µm) RMSC (µm) RMSHO (µm) 

  infinity far point infinity far point infinity far point 
0 24.07 0.030  0.038  0.048  
-1 24.35 0.036 0.040 0.036 0.039 0.051 0.056 
-2 24.63 0.043 0.051 0.039 0.043 0.059 0.067 
-3 24.93 0.050 0.062 0.047 0.051 0.069 0.081 
-4 25.23 0.058 0.074 0.057 0.061 0.081 0.096 
-5 25.54 0.065 0.085 0.069 0.072 0.095 0.112 
-6 25.87 0.073 0.097 0.082 0.085 0.110 0.129 
-7 26.20 0.081 0.109 0.096 0.097 0.126 0.146 
-8 26.55 0.090 0.121 0.111 0.111 0.143 0.164 

 

The shape of the anterior corneal surface and axial length were the components 

simultaneously altered to create the refractive error of the asymmetrical models.  To determine each 

components’ contribution to the models’ aberrations two additional models were created that 

contained only the refractive or axial components.  The refractive only model had the cornea of the 

-8 D model and emmetropic axial length, giving a refractive error of -2 D.  The axial only model 

contained the emmetropic cornea and the axial length of the -8 D model, giving a refractive error of 

-6 D.  A comparison of the aberrations between the refractive, axial, emmetropic and -8 D models is 

shown in Table 5.4.    

The refractive and axial models revealed that changing the corneal shape contributed to 

approximately 25% of the refractive error in the -8 D model while increasing the axial length 

accounted for 75%.  The SA of the -8 D model increased by 200% from the emmetropic value.  In 

comparison, the refractive model predicted an increase of 243% while the axial model predicted a 

decrease of 43%. The increase in RMSC was totally due to the change in anterior corneal shape.  

Similar to the SA, the increase in RMSHO was due to changing the anterior corneal shape but 

increasing the axial length reduced the amount of change.   These results are similar to the 

symmetrical models in Chapter 3, where adding 8 D of refractive myopia caused an increase in the 

SA of 183%.  The asymmetrical models differ from the symmetrical models because adding 8 D of 

axial myopia to the symmetrical models caused the SA to increase by 52%.   
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Figures 5.3, 5.4 and 5.5 show comparisons between  and  of the young 

adult subjects and the models.  In these graphs ASC represents the asymmetrical models with 

symmetrical corneas (SC) when the object was positioned at infinity.  AFP is the data from the 

asymmetrical SC models when the object was positioned at the far point.  SR and SA symbolize the 

symmetrical models with refractive and axial defocus from Chapter 3.  The results from the ASC 

and the asymmetrical models with biconic corneas were so similar that their predicted aberration 

values would overlap in the graphs and consequently have not been shown.   

0
4Z , CRMS HORMS

 

 Table 5.4: Contribution to Predicted Aberrations from the Components used to Simulate 

Refractive Error. SE is spherical equivalent.  SA is spherical aberration. 

 

Model SE (D) SA (µm) RMSC (µm) RMSHO(µm) 
 emmetropic 0.00 0.030 0.038 0.048 
 -8 D -8.00 0.090 0.111 0.143 
 refractive -2.03 0.103 0.112 0.152 
 axial -6.04 0.017 0.038 0.041 

 

The emmetropic asymmetrical model was designed so that its prediction of spherical 

aberration was similar to the prediction of the emmetropic symmetrical model.  Similar to the axial 

and refractive symmetrical models the predicted SA of the asymmetrical models increased as a 

function of refractive error. The predicted SA increased by rates of the 0.002, 0.013, 0.008 µm/D of 

myopia for the axial symmetrical, refractive symmetrical and asymmetrical models.  Predicted SA 

increased at a rate of 0.012 µm/D when the object was moved to the far point.  Mann-Whitney 

Rank Sum Tests revealed there is not a statistically significant difference between the mean SA of 

the young adult subjects and asymmetrical models with the object at either infinity or the far point 

(p-values of 0.13 and 0.35 respectively).   The difference in the rate of change (slope) in the SA with 

myopia between the empirical data and the SC models was not statistically significant (ASC: p=0.41, 

AFP: p=0.26).  A statistically significant difference was observed in the change in SA with myopia 

between the ASC and AFP models (p<0.001).  
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Figure 5.3: Spherical Aberration of the subjects, asymmetrical and symmetrical models.  The shaded 

area highlights the empirical data that are within 2 standard deviations of their mean. 

    

Figure 5.4: Coma RMS of the subjects and asymmetrical models 
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Both the coma (p=0.005) and high-order (p=0.015) RMS, from the young adult subjects, 

show a statistically significant correlation to their spherical equivalent (Figures 5.4 and 5.5).  The 

coma and high-order RMS of both the ASC and AFP data also increase linearly with myopia.   The 

actual data of the models is almost identical so statistical analysis was only performed on the ASC 

model data.   Linear regression of the SC model data with the object at infinity revealed the 

predicted coma and the high-order RMS also have a statistically significant correlation to their 

spherical equivalent (p<0.001).  A comparison of the linear regression results is shown in Table 5.5.  

T-tests revealed the intercepts of the empirical and model data for both the coma (p=0.029) and 

high-order RMS (p<0.001) were statistically significantly different.  Similar tests show that the slopes 

of the empirical and model data from both the coma (p=0.513) and high-order (p=0.177) RMS are 

not statistically significantly different.  When the object was positioned at the far point of the model 

the RMSHO increased at a rate of 0.015 µm/D of myopia, which was also not statistically 

significantly different from the corresponding increase observed in the young adults (p=0.693).  The 

slope of the empirical data will be reduced somewhat when spectacle magnification (Campbell, et al., 

2003).    

 

Figure 5.5: High-order RMS of the subjects and models 
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Table 5.5: Comparison of the Linear Regression Results Between Subject Data and SC models when 

the object was at infinity (ASC). 

  Slope Intercept 
  Coefficient Std. Error Coefficient Std. Error 

RMSC Subjects -0.016 0.005 0.113 0.021 
 SC Models -0.010 0.001 0.025 0.005 

RMSHO Subjects -0.021 0.008 0.288 0.031 
 SC Models -0.019 0.001 0.060 0.006 

   

To compare the results of determining average Zernike terms across subjects prior to 

calculating RMS values, the results were separated into three refractive error categories.   This 

grouping was used because the empirical  and  were found to correlate with refractive 

error.  Table 5.6 displays how the groups were defined along with empirical and model data from the 

three groups. A graphical representation of the groups aberrations are shown in Figure 5.6  

CRMS RMSHO

 

Table 5.6: Empirical and ASC Model Data for the Three Refractive Error Groups 

 Group  Emmetropic Low Myopia Moderate Myopia 

 Range (D)   0.0 ≥ SE > -1.0 -1.0 ≥ SE ≥ -4.5 -4.50 > SE > -9 

 Subjects 8 11 10 
 Number 

 Models 1 4 4 

 Subjects -0.20 ± 0.25 -2.75 ± 1.08 -5.83 ± 1.40 
 SE (D) 

 Models   0.00 ± ------ -2.50 ± 1.29 -6.50 ± 1.29 

 Subjects 0.084 ± 0.062 0.122 ± 0.101 0.089 ± 0.111 
 SA (µm) 

 Models  0.030 ± -------  0.047 ± 0.009 0.077 ± 0.010 

 Subjects 0.013 ± 0.164 0.081 ± 0.132 0.076 ± 0.227  CTRMS      
 (µm)  Models  0.038 ± -------- 0.043 ± 0.018 0.089 ± 0.020 

 Subjects 0.102 ± 0.132 0.188 ± 0.312 0.155 ± 0.420 HOTRMS     
 (µm)  Models   0.048 ± -------- 0.064 ± 0.020 0.118 ± 0.023 
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Figure 5.6: Comparison of Empirical and Model Aberrations Calculated by Averaging the 

Coefficients of Individual Zernike Terms    
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One-Way analysis of variance (ANOVA) was used to determine if there was a statistically 

significant difference between the empirical and model aberrations, calculated from average Zernike 

terms, of the refractive error groups.  The results from the ANOVA tests are shown in Table 5.7.   

For each of the empirical metrics it was observed that there was not a statistically significant 

difference between the values for each group.  The model metrics were all found to increase 

significantly with myopia.    Statistically significant differences were not found between the empirical 

and model metrics for each level of myopia.   While no statistical tests could be performed on the 

emmetropic model metrics since they consist of only a single value, these values were found to be 

within the standard deviation of the average empirical values (Table 5.7).           

  

Table 5.7: One-Way ANOVA Results.  The shaded cells highlight the tests that found statistically 

significant differences. 

 

Groups Metric p-value Power 

 All SA 0.63 --- 

 Empirical CTRMS  0.68 --- 

  HOTRMS 0.87 --- 

 Models SA 0.01 0.95 

 Moderate & CTRMS  0.01 0.80 

 Low Myopia   HOTRMS 0.01 0.83 

 Models & SA 0.17 --- 

 Empirical CTRMS  0.58 --- 

 Low Myopia HOTRMS 0.45 --- 

 Models & SA 0.84 --- 

 Empirical CTRMS  0.91 --- 

 Moderate Myopia HOTRMS 0.87 --- 
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5.4 Discussion and Conclusions 

 

The addition of an average angle α to the symmetrical model instigated the prediction of 

asymmetrical aberrations.  Decentering the model’s pupil, by an average amount, reduced the 

predicted asymmetrical aberrations.   These were the expected results, predicted by Bing and 

Campbell (1994).   

The emmetropic axial length of the asymmetrical model was set to 24.1 mm by utilizing a 

posterior corneal radius of curvature (RPC) of 6.5 mm and aqueous depth (AD) of 3.3 mm.  The axial 

length of this model matched the average young adult value of 24.1 mm found by Grosvenor (1987).  

Average empirical values for RPC have been found to range between 5.8 and 6.5 mm (Lowe and 

Clark, 1973; Royston, et al., 1990; Rivett and Ho, 1991; Dunne, et al., 1992; Patel, et al., 1993; Lam 

and Douthwaite, 1997; Liu, et al., 1999; Seitz, et al., 2001; Dubbelman, et al., 2002).  An average 

young adult empirical AD value of 3.2 ± 0.3 mm (Fontana and Brubaker, 1980) has been observed.  

The values for RPC and AD that were used in the asymmetrical model are within these anatomical 

limits.  Average young adult empirical AD values of 3.5 mm (Grosvenor, 1987), 3.35 ± 0.15 mm 

(Kortez, et al., 1989) and 3.10 ± 0.37 mm (Dubbelman, et al., 2001) have also been observed. 

To match the SA predicted by the emmetropic symmetrical model the asphericity of the 

posterior corneal surface (QPC) was set to -0.5.  Average empirical QPC values of -1.5 (Dunne, et al., 

1992), -0.44 (Patel, et al., 1993), -0.66 (Lam and Douthwaite, 1997) have been determined from 

measurements of the anterior corneal surface shape and corneal thickness.  My QPC value is no 

longer anatomically accurate with respect to the average, empirical, young adult value of -0.28 ± 0.15 

found by Dubbelman, et al. (2002) with a digital slit lamp technique. 

 A series of myopic, asymmetrical models were created by utilizing average, empirical values 

for the anterior corneal shape and adjusting the axial length.  The paraxial power of the anterior 

cornea and axial length of the -8 D SC model were 49.7 D and 26.6 mm respectively.  These values 

compare well to the values of 50.3 D and 26.2 mm that were determined from regression analysis of 

empirical data (Carney, et al., 1997). This shows that simulating myopia by this method produces 
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myopic models that are more anatomically accurate than models where myopia was simulated by 

either a purely axial (27.5 mm) or refractive technique (56.6 D). 

The aberrations predicted by the asymmetric models with biconic anterior corneas were 

identical to the corresponding models with symmetrical corneas.  This result could be due to the fact 

that the model’s biconic anterior corneal shape was designed to contain the average amount of 

asymmetry as subjects with 1 D of cylinder refractive error.  This amount of cylinder refractive error 

was chosen since the model’s predictions were to be compared to empirical data with low amounts 

of cylinder (≤1.25 D).  To test this hypothesis, the sag of the model’s conic and biconic anterior 

corneal surfaces was calculated at a radial distance of 2.5 mm from their apex with equations 2.10 

(conic) and 4.4 (biconic) and the data from Table 5.2. Biconic sag was calculated at both principal 

meridians.  For each corresponding set of models it was found that the sag of the biconic surface at 

the principal meridians only differed from the conic surface by ±7 µm.  This indicates that adding a 

biconic cornea with a small amount of asymmetry does not change the corneal surface enough from 

a conic to change the model’s predicted aberrations.  Future models with larger amounts of corneal 

astigmatism will have to be made to see their effect on the predicted aberrations. 

The SA, coma and high-order RMS of the asymmetrical models increased as a function of 

refractive error.  Increase in SA was slow and may be below measurement sensitivity. While the 

refractive error in the asymmetrical models was found to be primarily due to their increased axial 

length, the increase in the higher order aberrations was caused primarily by the change in anterior 

corneal shape.  The empirical RMSC and RMSHO of the individual subjects were observed to increase 

as a function of refractive error.  While the asymmetrical models underestimated the magnitude of 

the RMSC and RMSHO of the individual subjects, the predicted rates of increased aberrations matched 

the empirical observations.  Since it was found that increasing the axial length did not change the 

model’s prediction of coma and caused the SA to decrease with refractive error, the model’s anterior 

corneal shape must change to predict the empirical results. Contrary to the postulate of Cheng, et al. 

(2003) from a reduced eye model, axial length changes cause little change in high order aberrations.  

Refractive changes drive the observed change in high order aberrations.  This further emphasizes 

that myopia must be modeled by combining changes in axial length and anterior corneal shape.  

  Similar to Chapter 3, the aberrations of the asymmetrical models with symmetrical corneas 

were also calculated when the object was positioned at the models’ far point.  Unlike the results 
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from the symmetrical models in Chapter 3, moving the object to the model’s far point caused their 

SA and consequently RMSHO to significantly increase. For the -8 D model the SA increased by 34% 

and the RMSHO increased by 15%. This result is consistent with the current theory that states that 

wavefront aberrations will usually be different for rays with different object points with the same 

position in the exit pupil (Smith and Atchison, 1997).  While the increase in aberrations caused by 

moving the object to the models’ far point did not affect the models’ ability to predict the empirical 

SA, it did not account for the difference between the RMSHO of the models and the individual 

subjects.  

 Cheng, et al. (2003) have used a single surface (reduced) eye model to investigate how SA 

changed with axial myopia.   For their calculations the object was only placed at their model’s far 

point.  Over a range from emmetropia to -10 D their model’s SA significantly increased from 

approximately 0.1 µm to 0.3 µm.  Their large change in SA is not consistent with empirical 

measurements and the models introduced here (0.03 µm to 0.12 µm).  This discrepancy also 

emphasizes the importance of including an appropriate GRIN crystalline lens in an eye model that 

accurately predicts empirical aberrations.      

An empirical RMS value determined by averaging the RMS of individual subjects could be 

significantly larger than a value that was determined by averaging the individual Zernike coefficients 

and then calculating the RMS since the Zernike coefficients that define the wavefront aberrations of 

individual subjects can take on both positive and negative values (Figure 5.7).  This was the case 

observed in this chapter.   

When the model predictions were compared to the empirical measurements, the models 

were found to provide a good prediction of empirical SA.  The average individual RMSC and RMSHO 

of the young adult subjects ( CSRMS and HOSRMS ) were seen to be significantly larger than the 

corresponding model predictions.  But the models provided good predictions if the average RMSC 

and RMSHO were calculated by first averaging the appropriate Zernike terms ( CTRMS  and HOTRMS ).  

This shows that asymmetrical models built with average misalignment parameters can predict 

empirical aberrations derived by averaging individual Zernike terms but underestimate the amount 

of asymmetrical aberrations that are observed in individual subjects. 
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This raises the question of what an average eye model can be expected to predict.  When 

wavefront aberrations are averaged over many eyes, asymmetrical Zernike terms tend to be averaged 

out since they can take on both positive and negative values (Charman and Walsh, 1985; Porter, et 

al., 2001; Castejon-Mochon, et al., 2002). Modelling parameters like lens tilt and decentration that 

account for the prediction of asymmetrical aberrations also take on both positive and negative 

values (Cui, 1998).  If the sign of the modelling parameters is taken into account when creating an 

average eye model then the sign of the aberrations that the model should predict, needs to be 

considered when average metrics are calculated. 

It was previously described how a RMS calculation is not sensitive to the sign of the Zernike 

terms that define the wavefront aberrations.  Zernike defined wavefront aberrations with the same 

magnitude but opposite signs would have the same RMS.  If the sign of modelling parameters are 

considered when creating an average eye model then Zernike coefficients, that define the wavefront 

aberrations the model should predict, need to be averaged before RMS calculations are performed. 

An average eye model created by averaging modelling parameters, including their sign, would 

be expected to predict RMS aberrations that are calculated after averaging the Zernike coefficients 

(sign included) and would not predict average RMS values that are averaged after the RMS is 

calculated (sign excluded).  This was the case in this chapter. 

It has been observed that angle α and pupil decentration do not individually correlate with 

RMS aberration (Cui, 1998; Marcos, et al., 2001b). The models developed here incorporate the 

interaction between angle α, pupil decentration and lens decentration and tilt.  Utilizing average 

misalignment parameters created an average asymmetrical model that predicted empirical aberrations 

that were calculated by averaging Zernike terms thus averaging out variations about a minimum 

value.  This indicates that some of the aberration in the human eye is due to random misalignments 

about a minimum level.   

To create these models a few assumptions were made that could have affected their 

aberration predictions.  The shape of the posterior cornea and crystalline lens remained constant in 

all models but may change with myopia.   Misalignments of the ocular components were measured 

for a group of emmetropes.  The average values of misalignment parameters may also change with 

myopia.  
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Figure 5.7 compares the Zernike coefficients that define the high-order aberrations in 2 

subjects, with refractive errors of -4 D and -4.25 D, and the -4 D ASC model.  This graph shows the 

diversity and variety in the high-order aberrations of individual subjects.  The asymmetrical models, 

developed in this chapter, only predict significant coefficient values for the Zernike terms used to 

define coma and spherical aberration ( 3   & Z ).  If more complex descriptions, like Zernike 

polynomials, are used to define anterior corneal shape, its possible that models could be built that 

predict other high-order aberrations.  But, when aberrations are averaged, high-order terms are 

generally averaged out to a relatively insignificant amount (Charman and Walsh, 1985; Porter, et al., 

2001; Castejon-Mochon, et al., 2002).  Similarly high-order Zernike terms defining corneal shape 

could be averaged out and any advantage they may provide would be lost.  It remains to be seen 

whether this will be the case. 

3 4
−1Z , 1Z 0

Average eye models can only be expected to predict average aberrations.  Average 

asymmetrical aberrations are significantly smaller than those observed in individual subjects. An 

average eye model cannot be expected to predict individual aberrations.  It will probably take 

individualized models to accomplish this.  Considering these expectations the eye models presented 

here provide an accurate means of predicting average aberrations. 
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Figure 5.7: Comparison between high-order Zernike coefficients between two subjects and a 

corresponding asymmetrical model.  Subjects A and B had refractive errors of -4 D and -4.25 D 

respectively   
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6 Modeling Laser Refractive Surgery 

 

6.1 Background and Introduction 

The goal of refractive surgery is to eliminate a patient’s dependence on spectacles or contact lenses.  

In terms of aberrations, this means primarily removing defocus but eliminating astigmatism is also a 

goal.  Recently control of high-order ocular aberrations has become a secondary goal (MacRae, 

2000).  Correcting refractive error requires changing the focusing power of the ocular optics.  This is 

achieved by reshaping a central zone on the anterior surface of the cornea.   For a myopic subject, 

flattening the cornea reduces the eye’s power. Conversely, hyperopic subjects are corrected by 

steepening the cornea.     

Throughout its history, numerous refractive surgical techniques have been developed. 

Initially, in a procedure named refractive keratotomy, incisions were distributed radially around the 

corneal surface to induce a mechanical flattening (Thorton, 1999).  Lamellar techniques were then 

introduced where corneal shape is altered by removing tissue with a blade (Swinger, 1999).  When 

lasers were introduced to ophthalmology it was discovered that ultraviolet wavelengths could be 

used to reshape the corneal surface by ablating tissue.  This discovery has had the greatest impact on 

the development of refractive surgery and has led to the techniques that are predominately used 

today.   

The eye has developed to allow radiation from a portion of the optical spectrum to penetrate 

its tissue.  Consequently, light energy could be a useful tool in ocular surgery once the ability to 

control its delivery and intensity has been established.  This criterion was met when lasers became 

available.  Initially laser energy was used to photocoagulate the retina to treat pathological conditions 

(O'Brart and Marshall, 1999).  As laser technology developed, it was implemented in new techniques 

to improve existing ophthalmic surgical procedures including refractive surgery. 

Normally, a healthy transparent cornea transmits optical radiation from 400 to 1400 nm with 

little absorption.  Theoretically lasers with emission in the far ultraviolet (UV) or far infrared (IR) 

could be used for operating on the corneal surface.  At present it is pulsed UV excimer lasers that 

appear to have the most potential and are used commercially. 
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Excimer lasers are named after the physical state of their lasing medium, which consists of 

two atoms of an inert gas bound in a highly excited state with halogen atoms (excited dimers).  

Decay of these molecules produces the emission of very energetic UV photons.  Generally, clinical 

ophthalmic excimer lasers use an argon-flouride (ArF) gas mixture, which has an emission 

wavelength of 193 nm.  Excimer lasers are typically pulsed, with duration of 10 nsec, a frequency 

between 1 and 100 Hz and energies of 20 to 200 mJ (O'Brart and Marshall, 1999).   

Theories, based on thermal vibration and molecular decomposition, have been proposed to 

explain the effect caused by excimer laser photons absorbed by corneal tissue (Garrison and 

Srinivasan, 1985).  In the thermal theory, super-heated molecules break apart due to vibration.  

Photon induced molecular decomposition (ablation) suggests that molecules are ejected from the 

tissue surface when their intermolecular bonds are broken by the absorption of photons. Individual 

photons, at 193 nm, would be capable of ablation since they have energy in excess of 6 eV, which is 

greater than the binding energy of some proteins (O'Brart and Marshall, 1999).   

At any biological interface, excimer UV photons are virtually all absorbed within the first few 

microns of the surface. Consequently, each 193 nm pulse can remove from 0.25 to 1 micron of 

tissue by varying the pulse energy (O'Brart and Marshall, 1999) 

Typically, clinical lasers are focused to achieve the energy concentration (power) required for 

tissue damage.  Since individual excimer photons have enough energy to ablate tissue these lasers do 

not need to be focused.  Consequently, relatively large corneal areas can be treated simultaneously 

with wide excimer laser beams (O'Brart and Marshall, 1999).  

By precisely controlling the laser energy (number of pulses) delivered to specific locations 

within the ablation zone the cornea can be reshaped to achieve a desired change in refraction. A 

myopic correction requires a flattened surface, so the energy concentration delivered and amount of 

tissue removed within the ablation zone will be highest centrally and gradually decline towards the 

periphery.  A hyperopic correction requires a steepened surface that is achieved by removing more 

tissue peripherally than centrally within the ablation zone (O'Brart and Marshall, 1999).  Algorithms 

have been developed that describe the ablation depths and profiles necessary to correct both myopic 

and hyperopic refractive errors (Munnerlyn, et al., 1988). 

 131



Several techniques that depend on the beam diameter of the laser have been developed 

commercially to control the number of laser pulses (energy) delivered to a given location within the 

ablation zone.  When a broad beam (5-7 mm diameter) is used, control is achieved with either an 

ablatable mask or by progressively opening or closing an iris diaphragm.  Pulse density is achieved 

with a smaller beam by scanning it over the ablation zone.  

Since the cornea is composed mostly of stromal cells while epithelial cells undergo 

continuous cell turnover throughout adult life, a permanent change in corneal shape can only be 

attained with laser ablation by removing stroma.   There are two techniques commonly used to 

expose the stroma for treatment.   

In photorefractive keratectomy (PRK) the epithelial cells are completely removed, within the 

central 6.5 to 9.5 mm, by either mechanical, chemical or laser means.  Visual improvements are 

usually seen after re-epithelization, which will occur in 2 to 4 days after a myopic treatment while 

patients heal in 3 to 9 days after hyperopic PRK.  Refractive stability is achieved in 3 to 6 months 

after myopic PRK and 6 to 9 months for hyperopic PRK (Jackson, 2001).          

  Laser in situ keratomileusis (LASIK) involves creating a flap in the cornea by making a 

lateral incision with a device called a keratome or a laser.  The flap, which is thick enough to include 

the epithelium, is then lifted exposing the stroma underneath.  After the ablation, the flap is replaced 

and patients usually achieve good uncorrected visual acuity within a day or two.  Recently, PRK has 

been largely abandoned for LASIK due to its many apparent advantages such as minimal 

discomfort, rapid corneal healing and stabilization of refraction (Jackson, 2001).  

Although it is difficult to compare data from one commercial laser system to another, several 

studies have shown that generally over 90% of low to moderate myopic patients (≥ -10 D) are found 

to be within 1 D of emmetropia after PRK (Hersh, et al., 1998; Zadok, et al., 1998; Amoils, 1999; 

Hadden, et al., 1999; McDonald, et al., 1999; Pallikaris, et al., 1999; Kapadia and Wilson, 2000; Pop 

and Payette, 2000; Jackson, 2001).   A number of prospective trials have shown that the efficacy of 

removing refractive error with LASIK is very similar to that of PRK and that LASIK is not superior 

to PRK except in the first few post postoperative weeks (Hersh, et al., 1998; El Danasoury, et al., 

1999; Pop and Payette, 2000).   
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A survey of 690 PRK patients revealed that 92% of patients were satisfied with the results, 

even though 55% experienced significant daytime glare and 32% reported a decrease in night vision 

(Brunnette, et al., 2000).  A comparison of pre and one year post-PRK visual acuities has shown that 

most high-contrast visual acuities worsened after PRK even though they were still within a normal 

range. Most subjects lost low-contrast visual acuities after PRK and many of the post-op values were 

below the normal range (Verdon, et al., 1996).   Low-contrast visual acuity losses were also found to 

exceed high-contrast losses in a similar prospective PRK study (Casson, et al., 1995). 

The observed post refractive surgical loss in visual acuity has led many researchers to 

investigate if there exists unexpected surgically induced changes in corneal shape and aberrations 

that could account for the loss of vision. 

To investigate how laser refractive surgery altered the asphericity of the anterior corneal 

surface, Hersh, et al. (1996) compared pre and postoperative corneal topographies from 132 

patients.  These subjects underwent PRK for myopia with a broad beam excimer laser system 

(Summit Technology Inc.) with either a 4.5 mm or 5.0 mm beam diameter and attempted 

corrections ranging from 1.50 to 6.00 D.  Topography measurements were made with a 

videokeratoscope (EyeSys Laboratories) preoperatively and 1 year postoperatively.  These 

measurements were used to estimate the power differences between the patient’s cornea and an 

idealized aspheric model (Q = -0.26) at each ring location in the reflected image along 360 semi-

meridians.  The asphericity along each semi-meridian was determined by fitting an aspheric curve to 

the power differences over the central 4.5 mm.  The reported asphericities were the average of the 

semi-meridians’ values.   Following PRK, all corneas exhibited a positive central asphericity and the 

mean postoperative asphericity was 1.05.  A significant association was found between achieved 

refractive correction and increased postoperative positive asphericity. This indicates that the 

normally prolate anterior corneal contour became oblate after PRK.    

Since laser refractive surgery structurally compromises the cornea by removing tissue and 

previously described unexpected changes have been observed in the shape of the anterior corneal 

surface, investigations were performed to see if the posterior corneal surface changes 

postoperatively.  Kamiya, et al. (2000) described refractive and posterior corneal surface changes in 

37 eyes from 21 patients (average age 33 ± 10 years).  Their mean preoperative SE was -5.28 ± 1.74 

D (range -2.00 to -9.75 D).  PRK was performed on these patients with a 20/20 broad beam 
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excimer laser system (VISX).  Measurements of the posterior corneal topography and corneal 

thickness were obtained on an Orbscan pre and postoperatively.  Refractive change in the posterior 

surface was determined by comparing the pre and postoperative mean powers within the central 2.0 

mm.  Difference maps were used to determine if any surgically induced changes occurred in the 

posterior corneal topography. These maps were constructed by comparing the pre and postoperative 

topographies assuming that a peripheral annular zone (7-10 mm from the corneal apex) was 

unaffected by the surgical procedure.  Change in the elevation of the posterior corneal surface was 

assessed at the centre of the difference map generated from pre and post-op topographies.  Three 

months after PRK, the mean SE was found to be -0.41 ± 0.34 D.  The mean central corneal 

thickness had reduced to 430.1 ± 62.8 µm from 544.4 ± 35.2 µm.  The power of the posterior 

cornea was found to significantly decrease by 0.41 ± 0.34 D.  The position of the posterior corneal 

apex was found to significantly shift anteriorly by 54.3 ± 4.0 µm.  There was a correlation between 

the refractive change and the forward shift of the posterior corneal surface.  The residual corneal 

thickness individually correlated with both the amount of posterior corneal refractive change and the 

degree of forward shift. 

Naroo and Charman (2000) also examined changes in the anterior and posterior corneal 

surfaces, anterior corneal power and central corneal thickness after PRK.  This study included 16 

eyes from 16 subjects with a mean age of 30 ± 9 years (range of 20 to 47 years).   PRK was 

performed with an EC-5000 scanning beam excimer laser system (Nidek).  The ablated optical zone 

diameter was 6.5 mm, with a blended transition zone out to 7.5 mm.  The mean attempted 

correction SE was -3.66 D (range of -1.73 to -6.43 D).  Anterior corneal power changes were 

measured with an autokeratometer (ARK900S, Nidek).  Ultrasound pachymetry (Humphrey) was 

used to monitor changes in the central corneal thickness.  Topographic changes in the curvature of 

the anterior and posterior corneal surfaces, measured by an Orbscan, were determined by comparing 

the radii of curvature of best-fit spheres (BFS) derived for the central 5 mm.  At 12 weeks 

postoperatively, linear regression between the change in anterior corneal power and the intended 

correction revealed a slope of -0.66, an intercept of 0.85 D and a p< 0.01.  The changes in central 

corneal thickness were approximately the magnitude of theoretical calculations from the equations 

of Munnerlyn, et al. (1988).   The radius of curvature of the anterior BFS was found to flatten 

linearly with attempted correction.  The slope, intercept and p-value from linear regression were 

-0.19 mm/D, 0.11 mm and <0.01 respectively.  The curvature of the posterior BFS was found to 
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steepen after surgery.  Linear regression between the posterior BFS radius of curvature and 

attempted correction produced a slope of 0.19 mm/D, an intercept of -0.36 mm.  This correlation 

was significant at a p=0.05 level.   

 To assess the changes in posterior corneal power and asphericity after myopic LASIK, Seitz, 

et al. (2001) examined the corneal topographies of 57 eyes of 29 subjects.  LASIK was performed 

with a Keratom II broad beam excimer laser (Schwind).  The SE of the attempted corrections 

ranged from -1 to -15.50 D with a mean of -5.06 ± 3.84 D.  The ablation zone diameters ranged 

from 5.0 to 8.1 mm.  Mean age at the time of surgery was 33 ± 9 years.  Corneal topography and 

thickness were measured on an Orbscan preoperatively and 3 months postoperatively.  Posterior 

power and asphericity were determined by decomposing topographic height data within the central 6 

mm into a set of Zernike polynomials by a previously developed technique (Langenbucher, et al., 

1999).   At 3 months postoperatively, the power of the posterior corneal surface was found to 

become more negative, changing significantly from -6.28 ± 0.22 D to -6.39 ± 0.23 D (p=0.02).  

Asphericity was also found to change significantly from -0.02 ± 0.07 to 0.14 ± 0.20 (p<0.0001).  The 

change in posterior corneal power correlated significantly with the change in refractive SE 

(p=0.004).   Preoperatively the asphericity ranged from -0.14 to 0.22 and 50% of the values were less 

than zero indicating a predominantly prolate surface.  At 3 months postoperatively asphericity values 

were found to range from -0.02 to 1.44.  Half of these values were more than 0.14, indicating that 

the posterior corneal surface was predominately oblate after surgery.  They did not attempt to 

correlate changes in asphericity with attempted correction. 

Before ocular aberration measurements became widely available, corneal first surface 

aberrations, estimated from topographic measurements, were investigated (Oliver, et al., 1997; 

Martinez, et al., 1998; Oshika, et al., 1998). 

Oliver, et al., (1997) reported the pre and one year post-op corneal first surface aberrations 

of 50 subjects who underwent six dioptres of myopic PRK in one eye.  The surgery was performed 

on an Omnimed excimer laser (Summit Technology) with either a 5 mm or 6 mm single zone or a 6 

mm double pass mutlizone broad beam ablations (16, 18 and 16 eyes respectively).  The double pass 

mutlizone ablation consisted of a -5 D correction over 4.6 mm zone and a -1 D correction over a 6 

mm zone.  The central ablation depth of the mutlizone ablation is equal to the -5 D single zone 
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treatment but it has a blended edge.  Corneal first surface aberrations were estimated from TMS-1 

topography measurements and quantified with Zernike polynomials (Hemenger, et al., 1995).  The 

results showed that besides defocus, only spherical aberration and coma were significantly altered by 

PRK for a 5.5 mm pupil diameter.  Spherical aberration and coma were both found to increase in 

direct proportion to the change in refractive error.  On average, the corneal first surface spherical 

aberration was found to double after 1 year post-PRK for the 6 mm ablation zone while it increased 

by over 3 times for 5 mm and multizone ablations.  The coma was found to double for all three 

ablation types. 

In a similar study, Martinez, et al. (1998) measured the corneal topographies in 112 eyes of 

89 patients who had broadbeam myopic excimer PRK (VISX Inc.)  performed with an ablation zone 

diameter of 5 mm.  The average age and preoperative spherical equivalent of these subjects was 38.9 

± 0.9 years (19 to 62) and -3.9 ± 0.14 D (-.25 to -8.9).  The average attempted correction was 3.7 D 

(1.5 to 6).  Corneal topography was measured with TMS-1 preoperatively (n=112), and at 1 (n=93), 

3 (n=103), 6 (n=91), 12 (n=60), 18 (n=53), and 24 months (n=44) postoperatively.  Corneal first 

surface aberrations were determined at pupil diameters of 3 and 7 mm and quantified with Zernike 

polynomials.  This study found that the variance of 3rd order terms for a 3 mm pupil increased 

slightly at 1 month post-op but returned to preoperative values by 3 months.  For a 7 mm pupil 3rd 

order aberrations increased 4 fold 1 month postoperative, then decreased to 2.9 times by 3 months 

before stabilizing at 2.7 times the preoperative values at 24 months after surgery.  The variance of 4th 

order terms was found to significantly decrease for a 3 mm pupil following surgery.  For a 7 mm 

pupil 4th order aberrations were found to increase 30 fold 1 month postoperatively, decrease to 19 

times the preoperative value at 3 months and then stabilize at 24 times at 24 months.  The total 

high-order aberrations (sum of 3rd and 4th order variances) were found to not change significantly for 

a 3 mm pupil but they increased 11 fold postoperatively for a 7 mm pupil.  3rd order were dominant 

before and after surgery for a 3 mm pupil.  However, for a 7 mm pupil, while 3rd order aberrations 

were dominant before surgery, 4th order aberrations became dominant after surgery.  The magnitude 

of the induced increase in aberrations was found to correlate with the attempted correction.   

Utilizing the same technique as Martinez, et al. (1998), Oshika, et al. (1999a) compared the 

corneal first surface aberrations induced in 22 patients, with bilateral myopia, who received 

broadbeam PRK on one eye and LASIK on the other.  The surgeries were performed with an EC-
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5000 excimer laser (Nidek Co.).  The PRK procedure had an ablation zone diameter of 5.5 mm and 

a transition zone giving a total ablated diameter of 7 mm while the LASIK ablation zone was 6.5 

mm.  Corneal topographies were measured with a TMS-1 preoperatively (n=22), 2 weeks (n=19), 6 

weeks (n=19), 3 months (n=20), 6 months (n=19), and 12 (n=20) postoperatively. In this study, 

both PRK and LASIK were found to significantly increase the high-order corneal first surface 

aberrations at all postoperative points for both 3 and 7 mm pupils.  For a 3 mm pupil, there was no 

statistically significant difference between the post-LASIK and post-PRK eyes at any post-operative 

point.  While there was no postoperative change in the 4th order aberrations, the 3rd order and total 

high-order aberrations were found to significantly increase by 2.0 and 1.7 times on average.  For a 7 

mm pupil, the LASIK eyes exhibited increases of 24.3 and 9.0 times in their 4th order and high-order 

aberrations.  These increases were significantly larger than the corresponding increases of 19.6 and 

6.6 times that were found for the 4th order and total high-order aberrations for the PRK eyes.  There 

was no difference between the increase in the 3rd order aberrations between the LASIK and PRK 

eyes, which was found to be 3.6 times.  The authors postulated that LASIK induced larger post-op 

aberrations than PRK in this study because the overall size of the PRK ablation zone (including 

transition zone) was larger.   

In 1998, the first, direct, objective measurements of ocular wavefront aberrations after PRK 

were reported (Campbell, et al., 1998).  This study used Hartmann-Shack measurements to show 

that optical image quality was worse after PRK when compared to normal non-operated eyes for 

pupil diameters of 4 mm and larger.   

PRK induced changes in ocular optical aberrations were first quantified with Zernike 

polynomials by Mierdel, et al. (1999).  In their study, the optical aberrations of 12 eyes from 12 

subjects (aged 21 to 45 years) were measured pre and 1-3 months postoperatively with an instrument 

based on the Tscherning aberroscope.  PRK was performed on a broad beam excimer laser 

(Multiscan, Schwind) with at least a 6 mm ablation zone.  The SE of the correction was 6 D or less.  

Ocular aberrations were measured with dilated pupils of at least 6 mm.   All eyes in this study 

showed considerable changes after surgery.  In particular, the Zernike coefficients corresponding to 

spherical aberration and coma were found to significantly increase.  The sizes of these changes were 

of the same order of magnitude as in the study by Martinez, et al. (1998).   
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Seiler, et al. (2000) investigated the correlation between PRK induced changes in ocular 

aberrations and visual acuity (VA).  This study included 15 eyes with an average preop SE of -4.81 ± 

1.21 D (-2.25 to -7.0 D) and refractive astigmatism of -0.83 ± 0.8 D (-0.25 to -2.5 D).  The laser 

system and aberration measurement techniques were the same as in the study by Mierdel, et al. 

(1999).   Aberrations were quantified by the RMS of 3rd order, 4th order and total high-order 

aberrations. Three months after PRK the subject’s SE was reduced to +0.41 ± 0.7 D and their 

refractive astigmatism was -0.21 ± 0.3 D.  The 3rd order, 4th order and high-order wavefront errors 

were observed to significantly increase by factors of 4.7, 4.1 and 4.2 respectively.  The correlation 

coefficients between the increase in high-order wavefront error and best-corrected visual acuity 

(BCVA), low contrast VA and glare VA were found to be -0.50, -0.89 and -0.52.  Significance levels 

of 0.02, 0.001 and 0.03, respectively show that the increase in high-order wavefront error is 

significantly correlated with the loss in best-corrected, low contrast and glare VA. 

Once the link between laser refractive surgery and aberrations was established, the 

introduction of new surgical technology led to investigations of their impact on post-op aberrations.  

This was the case when Moreno-Barriuso, et al. (2001) studied 22 eyes from 12 subjects who had 

undergone LASIK with a narrow-beam (scanning spot) excimer laser (Chiron Technolas 217-C, 

Bausch & Lomb Surgical).  The ablation zone consisted of a 6 mm optical zone and a transition 

zone out to 9 mm.  An eye tracker assisted the surgery in 20 of the 22 eyes.  The average age of 

these subjects was 28 ± 5 years.  Their preoperative refractive error ranged from -2.5 to -13 D and 

their astigmatism was less than 2.5 D.  Aberration measurements were made with a laser ray-tracing 

technique at a 6.5 mm pupil and quantified with Zernike polynomials.  Zernike coefficients were 

also recalculated for a 3 mm pupil size.  In 20 of the 22 eyes the high-order RMS was significantly 

higher postoperatively for a 6.5 mm pupil.  The average 3rd order, 4th order and high-order RMS 

increased by factors of 2.1, 2.5 and 1.9 for a 6.5 mm pupil.  For a 3 mm pupil the same measures 

increased by factors of 1.8, 1.7 and 1.7.  Preoperative refractive error was found to directly correlate 

with the increment of spherical aberration (p<0.0001) while it did not correlate with the increase in 

coma.  No significant increases were found in the 5th and higher order terms after surgery for either 

the 6.5 or 3 mm pupils. 

Marcos, et al. (2001b), have made comparisons of the corneal first surface and total ocular 

aberrations induced by laser refractive surgery.  The laser system and ocular aberration measurement 
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techniques were the same as in the study by Moreno-Barriuso, et al., (2001).   Corneal topography 

measurements were made with the Atlas Mastervue (Humphrey Instruments-Zeis).  This study 

included 14 eyes from 8 subjects (age range 29 ± 5 years).  The average preoperative SE was -6.8 ± 

2.9 D (-2.5 to -13 D) and preoperative astigmatism was less than 2.5 D.  The reported aberrations 

were for a 6.5 mm pupil.  The postoperative increase in 3rd, 4th and high-order RMS was by factors of 

2.0, 2.5 and 1.9 for the ocular aberrations.  Corneal first surface aberrations were found to increase 

by factors of 2.7, 3.9 and 3.7 respectively.    When postoperative ocular and corneal aberrations were 

compared, it was shown that they had a significant linear relationship with a slope of 1.01 

(p<0.0001).  A similar comparison for the spherical aberration shows a significant linear relationship 

between the ocular and corneal aberrations with a slope of 1.22 (p<0.0001).  Both postoperative 

ocular (p=0.0003) and corneal (p<0.0001) spherical aberration were found to inversely correlate 

with preoperative spherical equivalent.   The authors hypothesized that since larger amounts of 

spherical aberration were induced in the cornea than in the whole eye that changes in the posterior 

corneal surface could account for this difference.  By using previously described measurements 

(Seitz, et al., 2001) they calculated an induced change in the posterior corneal surface spherical 

aberration of -0.103 µm.  This value was very similar to the average difference between ocular and 

anterior corneal spherical aberration that was measured experimentally. 

Several other researchers have also modeled refractive surgery in an attempt to explain the 

unexpected changes observed in corneal shape and aberrations post-surgery.  Gatinel, et al. (2001) 

investigated the effect that myopic ablations, defined by Munnerlyn, et al. (1988), would have on the 

asphericity of theoretical anterior corneal surfaces.  Fifteen preoperative corneal surfaces were 

defined as conic sections with apical radius of curvature (R1) values of 7.5, 7.8 and 8.1 mm and 

asphericity (Q1) values of -0.6, -0.25, 0, 0.2, and 0.4.  Postoperative anterior corneal surfaces were 

defined by subtracting the theoretically calculated ablation depths across a 6 mm diameter ablation 

zone for treatments ranging from -1 to -12 D.  The apical radius of curvature (R2) and asphericity 

(Q2) of the conic section that best-fits the calculated post-op surface, within the ablation zone, 

quantified the shapes of the postoperative anterior corneal surfaces.  The calculated values for R2 

were found to be independent of the preoperative asphericity values (Q1).  For corneas that were 

initially prolate, prolateness increased postoperatively (Q2 < Q1 < 0).  Conversely the oblateness of 

preoperatively oblate corneas was found to increase (Q2 > Q1 > 0) after the theoretical surgery.  This 

trend was directly correlated to the magnitude of the treatment and decreased as the initial apical 
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radius of curvature (R1) increased.  The results of previously described investigations do not match 

the predictions made by Gatinel, et al.  This indicates that either the Munnerlyn algorithm is not 

used clinically or some other factors, such as biomechanical changes in the cornea (Roberts, 2002), 

are affecting the results of laser refractive surgery. 

Schwiegerling and Snyder (2000) used a previously described schematic eye model 

(Schwiegerling, et al., 1996) to investigate the spherical aberration induced by PRK and propose 

customized ablation patterns to compensate for this aberration.  Their schematic model consisted of 

a two surface cornea and a two surface lens with a constant refractive index.  Pre and post-surgical 

(9 weeks post-op) corneal topographies were obtained, with a TMS-1, from 16 patients who had 

PRK with an OmniMed excimer laser (Summit).  The ablation zone in all procedures was 6.0 mm 

and the attempted corrections ranged from -1.25 to -6.12 D.  Topographic measurements from the 

TMS-1 were decomposed into a set of Zernike polynomials by previously described techniques 

(Schwiegerling, et al., 1995; Brenner, 1997).  Only the rotationally symmetric Zernike terms were 

then used to represent anterior corneal surfaces in pre and postoperative schematic eye models.  

Exact ray tracing, in optical design software (Code V), was then used to determine the longitudinal 

spherical aberration (LSA) in these models.  The surgically induced change in LSA was found by 

comparing the LSA of corresponding pre and post-op models.  Code V’s optimization routines were 

then used to propose ablation patterns that would provide the best overall optical performance.  The 

LSA was found to increase after PRK and it correlated with the amount of attempted correction 

such that approximately 0.25 D of LSA was induced for each dioptre of attempted correction for a 4 

mm pupil.  The proposed ideal ablation patterns were found to be slightly deeper centrally than 

current patterns but maintained the same central curvature.  While, the authors did not quantify how 

the proposed ablations would change corneal shape, they suggested that deeper ablations would 

cause increased peripheral flattening that could compensate for spherical aberration   

 Since it had been established that laser refractive surgery induced a strong increase in high-

order optical aberrations that correlated with a significant decrease in the quality of vision, research 

was initiated to develop ablation profiles that could control or eliminate high-order aberrations.  

Meanwhile, scanning spot lasers that precisely remove tissue in an area less than 1 mm in diameter 

and aberrometers that measure the aberrations of individual patients have become clinically 

available.   The availability of these instruments has led researchers to develop wavefront-guided 
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ablations, which are customized to remove the aberrations of an individual (MacRae, et al., 1999; 

MacRae, 2000).  The steps involved in wavefront-guided refractive surgery include measurement of 

the wavefront aberrations with an aberrometer and the mathematical transfer of the aberrations into 

an adequate ablation pattern to be performed by a scanning-spot excimer laser (Mrochen, et al., 

2001). 

 The efficacy of a clinical application of wavefront-guided LASIK was investigated by 

Mrochen, et al. (2001b). This study reported on 31 eyes from 24 patients who had received 

customized surgery with an Allegretto excimer laser (WaveLight Laser Technologie), which has a 1.0 

mm scanning-spot and an eye-tracker.  Aberration measurements were made with a Tscherning 

aberrometer and described with Zernike polynomials for a pupil size of 5.0 mm in diameter.  The 

mean age of these subjects was 31 ± 7 years (range 20 to 44).  The mean spherical correction was 

-4.8 ± 2.3 D (range -1.0 to -9.5 D) and the mean cylinder correction was -1.1 ± 2.3 D (range 0 to -3.5 

D).  Preoperatively 100% of the eyes had an uncorrected visual acuity (UCVA) worse than 20/40.  

At 3 months UCVA of 20/16 or better was reported in 64.5% (n=20) of the eyes.  All eyes had a 

best spectacle corrected visual acuity (BSCVA) of at least 20/25. A BSCVA of 20/10 or better was 

achieved in 16.1% of the eyes (n=5).  Low contrast visual acuity (LCVA) was reported to decrease in 

19.4% (n=6), not change in 54.8% (n=17) and increase in 25.8% of the eyes (n=8).  Glare visual 

acuity (GVA) was found to decrease in 25.8% (n=8), not change in 51.6% (n=16) and increase in 

22.6% of the eyes (n=7). On average, the high-order RMS was not significantly altered at 3 months 

compared to preoperative values (increase factor 1.44 ± 0.74; p=0.2).  The RMS values for all high-

order aberrations showed no significant difference 3 months after surgery except for the 4th order 

RMS (increase factor of 2.02 ± 1.35; p<0.05).  Analysis of the aberrations in each individual eye 

revealed a decrease in higher-order aberrations in 22.5% (n=7).  The 3rd order aberrations were 

reduced in 48.4% (n=15) but only 9.7% showed a decrease in 4th order aberrations.  Based on their 

desired goal to correct all high-order aberrations, the authors reported that although they achieved a 

fair correction of coma, their ability to correct spherical aberration was insufficient.     

As new surgical techniques are developed their efficacy could be tested if an eye model 

existed that has been shown to accurately predict postoperative aberrations.  To develop such a 

model, I simulated laser refractive surgery by changing the shape and thickness of the cornea in the 

previously defined asymmetric myopic model (Chapter 5) by two techniques.  
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Initially, I calculated the change in corneal shape and thickness that would occur from 

theorectical ablations defined by Munnerlyn, et al. (1988) and developed eye models based on the 

results.  It was probable that these eye models would not predict the clinically observed 

postoperative aberrations since it has been shown that the postoperative anterior corneal asphericity 

predicted by these equations (Gatinel, et al., 2001) do not match clinical observations (Hersh, et al., 

1996).   Regardless, the aberrations predicted by postoperative models developed from ablation 

equations could provide insight that leads to more accurate models. 

Based on the results from the ablation equation models, I decided to simulate postoperative 

corneal shape and postoperative eye models by utilizing clinical measurements.  Comparisons of pre 

and postoperative corneal topographies were used to determine average shape changes in the 

anterior corneal surface and to predict postoperative aberrations as a function of preoperative 

refractive error.  
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6.2 Methods 

Refractive surgery is modeled by simulating the surgically induced changes in the shape of the 

anterior corneal surface.  Shape changes will be calculated from ablation equations (Munnerlyn, et 

al., 1988) and by comparing pre and postoperative corneal topographies.  The effect of these 

simulations on the aberrations of eye models will be determined by replacing the anterior corneal 

surface of the asymmetrical models introduced in Chapter 5, with the new postoperative corneal 

surfaces. 

 

6.2.1 Post-surgery Models Developed from Ablation Equations 

Refractive surgery was simulated with ablation equations by first assuming that the anterior corneal 

surface could be described by a symmetrical conic surface.  This is a reasonable assumption since the 

ablation equations were designed to correct only a spherical refractive error (Munnerlyn, et al., 

1988).  The simulation can then be simplified by describing the shape of the anterior corneal surface 

of the model with the contour of a single semi-meridian. In the future, asymmetrical ablations 

providing astigmatic corrections could be analyzed by extending this methodology.    

Seven myopic (-2 to -8 D) preoperative, anterior, corneal contours were defined.  Each 

corneal contour consists of a series of data points defining their radial distance from the apex (r) and 

aspheric sag (ZPRE).  The spatial coordinates range from 0 to 2.5 mm and are separated by 0.1mm.  

The preoperative sag was calculated as  

 
2 2

PRE PRE PRE
PRE o

PRE

R R (1 Q
Z (r) z

1 Q
− − +

= −
+

)r
    6.1  

   

The values of RPRE and QPRE were taken from the asymmetrical models with symmetrical corneas 

(SC) that were introduced in Chapter 5 (Table 5.2).  zo is a constant offset that is used to simplify the 

modeling process. 
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 The effect of refractive surgery is defined as the change in anterior corneal elevation or 

ablation depth at each data point in the corneal contours.  The ablation depth (AD) was calculated 

from equations 6.2 and 6.3 originally developed by Munnerlyn, et al. (1988). 

PRE
PST C

PRE

R (n 1)R (Rx)
R Rx (n 1−

−
=

+ − )
       6.2 

2 2 2 2 22 2
PRE PST C PRE PST C

2AD(r) R r R r R (D 2) R (D 2− −= − − − − − + − )

Z (r) Z (r) AD(r)

 6.3 

RPST-C represents the post-op central radius of curvature of the anterior corneal surface that would be 

required to correct a refractive error of Rx if the preoperative central radius of curvature was RPRE.   

n is the refractive index of the cornea.   D, the diameter of the ablation zone, was chosen to be 6.0 

mm since this is a common clinically used value and so that the corneal contours, modeled within a 

5 mm diameter, were completely encompassed within the ablation zone.   

 The elevations of post-op, anterior corneal contours were calculated by subtracting the 

ablation depth from the preoperative elevation at each point ( PST PRE ).   The 

shape of the postoperative corneal contours, defined by their central radius of curvature (RPST-F) and 

asphericity (QPST-F), was then determined by fitting a conic sag equation (similar to equation 6.1) to 

its elevation data.   This whole process was performed with the software package Mathcad 

(MathSoft, Inc.).  

= −

Postoperative eye models were then built by replacing the anterior corneal surface of the 

asymmetrical SC models with the newly calculated postoperative anterior corneal surfaces.  Corneal 

thickness was reduced by the calculated apical ablation depth (AD(0)).  No changes were made to 

the shape of the posterior corneal surface or any other parameter in the preoperative models.   The 

aberrations predicted by the postoperative models were calculated, for a 5mm pupil, and then 

compared to the corresponding preoperative model predictions and empirical results.     
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6.2.2 Surgically Induced Changes in Corneal Topography 

Postoperative corneal topographies were obtained from 143 eyes of 97 subjects from the group 

originally introduced in Chapter 4.  PRK had been performed on these subjects at the University of 

Ottawa Eye Institute with a STAR excimer laser (VISX Inc.).  This laser utilizes an expanding 

diaphragm and all surgeries had an ablation diameter of 6 mm.  The surgery attempted to correct 

both spherical and cylindrical refractive errors but the exact surgical algorithm was unavailable.  

Postoperative measurements of refractive error and corneal topography were obtained six months 

after the surgery was performed.   

 Topography of the anterior corneal surface was once again measured on a PAR CTS.  These 

measurements were fit with a biconic and the surface parameters were converted to JCC 

components by the procedure previously described in Chapter 4.  The approximation needed to 

transform the biconic surface parameters to JCC terms was once again considered valid if the 

corresponding error in the aberration of the surface did not exceed ¼λ.  In cases where the error in 

aberration exceeded ¼λ, the approximation was considered invalid and these topographies were 

removed from the remaining analysis.   

Similar to the method described by Thibos and Horner (2001) for refractive error, the 

surgically induced change (∆) in the JCC components of both refractive error and anterior corneal 

shape were determined by subtracting the preoperative component from the postoperative 

component.  Statistically significant correlations between the changes in JCC components of anterior 

corneal shape and ocular refraction and the amount of preoperative spherical equivalent (REM-PRE) 

were determined with the same statistical tests that were performed in Chapter 4.   

Based on the statistically significant linear correlations, the average changes in paraxial power 

(∆PM) and asphericity (∆QM) of the anterior corneal surface were determined as a function of 

preoperative refractive error.  The average, topographically measured, postoperative anterior corneal 

shape parameters (PPST-T and QPST-T) were then determined, as a function of preoperative refractive 

error, by adding the average surgically induced changes to the average preoperative shape parameters 

(PPRE and QPRE) from Chapter 4.   

 145



Postoperative eye models were built by replacing the anterior corneal surface of the 

asymmetrical models with symmetrical corneas with the newly calculated average postoperative 

anterior corneal surfaces.  Although the surgeries examined here did attempt to correct the cylinder 

as well as the spherical refractive error, the subjects studied were restricted to those with 

preoperative cylinder of less than or equal to 2.50 D.  Since no data on the change in corneal 

thickness for these subjects exists, the corneal thickness of the models was reduced by the calculated 

apical ablation depth (AD(0)) from Section 6.3.1.  Once again, no changes were made to the shape 

of the posterior corneal surface or any other parameter in the preoperative models.   The aberrations 

that these models predict were calculated, for a 5mm pupil, and then compared to the preoperative 

and ablation equation model predictions and empirical results. 
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6.3 Results 

 

6.3.1 Postoperative Corneal Shape Derived from Ablation Equations 

Table 6.1 displays the shape parameters of the corneal contours from the simulation ablation 

equations.  Figure 6.1 displays the pre and postoperative corneal contours for an -8D myope.  The 

postoperative asphericity (QPST-F) values are seen to become slightly more prolate after the surgery 

simulation. 

 

Table 6.1: Results from the Ablation Equation Simulation.  RPST-C is the calculated postoperative 

central radius of curvature.  AD(0) is the calculated central ablation depth.  RPST-F and QPST-F 

represent the central radius of curvature and asphericity of the conic section that were the best fit to 

the calculated postoperative corneal elevation data.  

 

Rx RPRE QPRE  RPST-C AD(0) RPST-F QPST-F 
(D) (mm)  (mm) (mm) (mm)  
-1 7.787 -0.262 7.952 0.013 7.952 -0.281 
-2 7.754 -0.239 8.088 0.027 8.087 -0.275 
-3 7.722 -0.216 8.229 0.040 8.229 -0.267 
-4 7.690 -0.192 8.375 0.054 8.375 -0.255 
-5 7.658 -0.169 8.526 0.067 8.526 -0.241 
-6 7.627 -0.146 8.684 0.080 8.683 -0.224 
-7 7.595 -0.123 8.846 0.093 8.845 -0.203 
-8 7.565 -0.100 9.016 0.107 9.016 -0.178 
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Figure 6.1: Pre and Postoperative Anterior Corneal Contours for an -8 D myope.  The conic 

parameters defining these contours are displayed in Table 6.1 

 

6.3.2 Surgically Induced Changes in Corneal Topography 

Within the group of 143 eyes that underwent refractive surgery, 7 eyes of 7 subjects were removed 

during the analysis in Chapter 4 because the JCC approximation of their preoperative cornea 

introduced an error in aberrations (∆W) that exceeded the allowable limit of ¼λ.  Potential 

aberration errors greater than ¼λ were found when the postoperative anterior corneal shapes of 11 

eyes from 10 subjects were described with JCC components.  The results from these subjects are 

shown in Table 6.2.  The error in the asphericity approximation (QE) and the changes in the paraxial 

power ( ) and asphericity (2 1P P P∆ = − 2 1Q Q Q−∆ = ) between principal meridians in each of the 

cases shown in Table 6.2 are much larger than the average values of QE = 0.012 ± 0.015, ∆P = 1.15 
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± 0.66 D and ∆Q = 0.84 ± 0.74 for the remaining subjects.  Five of the cases were found to have 

substantially larger ∆W (>½λ, <λ) than the other 6 cases.  In these cases it can also be seen that the 

∆P and ∆Q were also substantially larger. For these 5 eyes, QE varied between 0.13 and 0.22. 

  

Table 6.2: Postoperative Cases that Violate the ¼ λ Rule  

 

Sub Eye SEPRE (D) SEPOST (D) ∆W (λ) QE ∆P (D) ∆Q 
1 OS -4.50 -1.75 0.72 0.164 3.74 3.89 
2 OD -4.50 0.13 0.38 0.084 3.22 2.34 
2 OS -5.25 -0.75 0.29 0.069 2.93 2.09 
3 OS -5.13 0.00 0.29 0.067 2.55 2.32 
4 OD -5.25 -0.25 0.28 0.076 2.81 2.29 
5 OD -6.00 -0.25 0.87 0.216 4.02 4.55 
6 OD -6.25 0.00 0.74 0.170 3.66 4.06 
7 OS -6.25 0.25 0.29 0.076 1.72 3.66 
8 OD -6.25 -1.00 0.73 0.165 3.87 3.73 
9 OD -6.75 0.00 0.25 0.071 2.19 2.67 
10 OD -7.38 0.75 0.59 0.135 3.65 3.27 

 

The age and refractive error of the remaining 125 eyes from 80 subjects that had their 

postoperative anterior corneal topography described with JCC components are shown in Table 6.3.    

Since the JCC refractive error parameters did not follow a normal distribution, Rank Sum Tests were 

used to compare pre and postoperative median values.  Both REM and REJ0 were found to have a 

surgically induced statistically significant decrease (p<0.001).  Although REJ45 was observed to 

decrease postoperatively, its change was not statistically significant (p=0.35) possibly because it was 

so small to begin with.  

 

 149



Table 6.3: Refraction Statistics of the Refractive Surgery Subjects 

 

  Age REM (D) REJ0 (D) REJ45 (D) 
  (years) pre-op post-op pre-op post-op pre-op post-op 
Average 38 -4.80 -0.07  0.19  0.02  0.04  0.00 
SD  9  1.90  0.33  0.39  0.07  0.23  0.03 
Maximum 62 -1.38  1.25  1.17  0.25  0.96  0.19 
Minimum 21 -9.00 -0.75 -0.88 -0.23 -0.87 -0.11 

 

Table 6.4: Correlation Coefficients.  The shaded values represent correlations that were tested for 

statistical significance. 

 

  ∆REM ∆REJ0 ∆REJ45 ∆PM ∆PJ0 ∆PJ45 ∆QM ∆QJ0 ∆QJ45 
REMPRE 0.974 -0.454 -0.208 0.892 -0.278 -0.001 -0.491 0.105 0.103 
∆REM  -0.351 -0.155 0.910 -0.241 0.010 -0.481 0.091 0.076 
∆REJ0   0.221 -0.315 0.550 0.034 0.118 -0.264 -0.071
∆REJ45    -0.104 -0.033 -0.022 -0.051 0.175 -0.036
∆PM     -0.288 0.069 -0.674 0.169 0.060 
∆PJ0      -0.147 0.224 -0.831 -0.081
∆PJ45       -0.149 0.165 -0.278
∆QM        -0.209 -0.088
∆QJ0         0.086 

 

The correlation coefficients between the preoperative mean refractive error and the change 

in the JCC components of refractive error and shape of the anterior corneal surface are shown in 

Table 6.4.  The statistical significance of the relationships where the absolute value of their 

correlation coefficient is greater than 0.2 was determined with regression analysis with a 

Huber/White robust estimate of variance.   This test was used since it accounts for instances when 

data points originate from the right and left eyes of the same subject.  The results of the regression 

analysis are shown in Table 6.5.  
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Very strong positive correlations are seen between REM-PRE and ∆REM, REM-PRE and ∆PM and 

∆REM and ∆PM.  Strong negative correlations were also found between ∆PM and ∆QM and ∆PJ0 and 

∆QJ0. Figure 6.2 displays the linear regressions with R2 greater than 0.4. 

The shape of the topography driven postoperative anterior corneal surfaces in the model 

(Table 6.6) was determined by first using the linear regression results to determine the average 

change in refractive error and shape parameters.  The average change in mean refractive error 

(∆REM) was determined from its relationship to preoperative mean refractive error (REM PRE).  The 

average change in the mean central power (∆PM) was then determined from ∆REM.  This 

relationship was used because its correlation coefficient (0.91) was larger than the correlation 

coefficient for ∆PM and REM PRE (0.89).  The average change in the mean asphericity (∆QM) was then 

determined from its relationship to ∆PM because their correlation coefficient (-0.67) was larger than 

the correlation coefficients for REM PRE (-0.49) and ∆REM (-0.48).  Postoperative conic shape 

parameters (RPST-T, QPST-T) were determined from 
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where RPRE and QPRE are the shape parameters of the anterior corneal surface in the preoperative 

models and n is the refractive index of the cornea.  

  The asymmetric parameters of the anterior corneal surface in the postoperative topography 

models could be determined by starting with the relationship between ∆REJ0 and ∆REM or REMPRE.  

But the corresponding preoperative asymmetric models with biconic anterior corneal shape, 

developed in Chapter 5, were designed to have a constant cylinder refractive error while the 

empirical data, introduced in Chapter 4, revealed a correlation between REM and REJ0.  It would be 

inappropriate to use ∆REJ0 values calculated from its relationship to ∆REM or REMPRE from Chapter 

4 data for postoperative models that had constant REJ0 preoperatively.  Instead the relationship 

between ∆REJ0 and REJ0PRE should be used.   
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Although it was not included in the original analysis, linear regression between ∆REJ0 and 

REJ0PRE revealed a p-value of less than 0.0001, a R2 of 0.952, a slope of -0.974 and an intercept of 

0.042.  The asymmetric models with biconic anterior corneas were designed to have REJ0 of 0.5 D, 

PJ0 of 0.765 D and QJ0 of -0.006 preoperatively.  Based on their preoperative values and the linear 

regressions between ∆REJ0 and REJ0PRE, ∆PJ0 and ∆REJ0 and ∆QJ0 and ∆PJ0 (Table 6.5) values for PJ0 

and QJ0, for the postoperative models, were determined to be 0.372 D and 0.439.  These values fall 

within the postoperative ranges of the topography subjects which are 1.07 D to -1.38 D for PJ0 and 

1.07 to -1.83 for QJ0.   

Compared to the preoperative models, the shape of the anterior cornea in the postoperative 

models shows a smaller change in paraxial power and a larger change in the asphericity between 

principal meridians. The sag of postoperative conic and biconic anterior corneal surfaces was 

calculated as it was in Chapter 5 for the preoperative models.  Similar to the preoperative case the 

sag at the principal meridians of the postoperative biconic surfaces differed from corresponding 

posteroperative conic surfaces by only ±7 µm.  Since the difference between the corresponding 

postoperative conic and biconic surfaces was similar to the preoperative cases and the small amount 

of asymmetry in the biconic corneas of the preoperative models did not affect their predicted 

aberrations, I assumed that the small amount of asymmetry in the postoperative biconic corneas 

would not affect the postoperative model’s predicted aberrations.  Consequently I decided to base 

my topography driven postoperative models on the asymmetrical models with the symmetrical conic 

anterior corneal surfaces.
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Table 6.5: Linear Regression Results.  The regression results were considered statistically significant 

if their p-value was less than 0.05. 

 

Independent Dependent F(1,79) p-value R2 Slope Intercept 
REM PRE ∆REM 1348.51 <0.001 0.948 0.993  0.388 
 ∆REJ0 15.50 <0.001 0.206 -0.086  -0.270 
 ∆REJ45 1.94 0.168 0.043  
 ∆PM 307.60 <0.001 0.796 1.064  0.115 
 ∆PJ0 6.79 0.011 0.077 -0.092  -0.273 
 ∆QM 19.52 <0.001 0.241 -0.202   -0.135 
∆REM ∆REJ0 8.21 0.005 0.123 -0.065  -0.135 
 ∆PM 410.74 <0.001 0.829 1.064  -0.335 
 ∆PJ0 4.89 0.030 0.058 -0.078  -0.170 
 ∆QM 18.97 <0.001 0.231 -0.194  -0.011 
∆REJ0 ∆REJ45 2.79 0.099 0.049  
 ∆PM 10.19 0.002 0.099 -1.979  -5.025 
 ∆PJ0 79.68 <0.001 0.303 0.956  0.033 
 ∆QJ0 18.89 <0.001 0.070 -0.369  0.114 
∆PM ∆PJ0 9.05 0.004 0.083 -1.042  -5.161 
 ∆QM 43.96 <0.001 0.455 -0.232  -0.342 
∆PJ0 ∆QM 6.84 0.011 0.050 0.279  0.848 
 ∆QJ0 143.87 <0.001 0.690 -0.669  0.183 
∆PJ45 ∆QJ45 11.30 0.001 0.077 -0.206  0.077 
∆QM  ∆QJ0 4.35 0.040 0.044 -0.135  0.172 

 

Table 6.6: Shape Parameters for the Postoperative Topography Simulation  

 

REM PRE ∆REM ∆PM ∆QM RPRE QPRE RPST-T QPST-T 

-2 -1.598 -2.035 0.130 7.754 -0.239 8.094 -0.109 
-3 -2.591 -3.092 0.375 7.722 -0.216 8.245 0.160 
-4 -3.583 -4.149 0.621 7.690 -0.192 8.403 0.428 
-5 -4.576 -5.205 0.866 7.658 -0.169 8.566 0.697 
-6 -5.569 -6.262 1.111 7.627 -0.146 8.736 0.965 
-7 -6.562 -7.319 1.356 7.595 -0.123 8.913 1.234 
-8 -7.554 -8.375 1.602 7.565 -0.100 9.097 1.502 
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Figure 6.2: Data and Linear Fits for ∆REM vs. REM-PRE, ∆PM vs. ∆REM, ∆QM vs. ∆PM and ∆QJ0 vs. 

∆PJ0.   The correlations, shown here, are the most significant (R2 > 0.4) that were found.  Table 6.5 

lists all the correlations that were significant.  Some of these correlations show that correcting the 

refractive cylinder (∆REJ0) caused a change in the asymmetry of the anterior corneal surface (∆PJ0, 

∆QJ0).  These results were not included in the postoperative topography models since it was 

determined that the asymmetry in the postoperative biconic anterior corneal surfaces did not change 

their shape significantly compared to corresponding postoperative conic surfaces defined by ∆PM 

and ∆QM.  
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6.3.3 Aberrations of the Postoperative Eye Models 

Table 6.7 and Figure 6.3 display the aberrations of the pre and the two types of postoperative 

models.  The refractive error of the ablation equation models (PostE), calculated from the 

postoperative Z  coefficient, was observed to be increasingly overcorrected, while their spherical 

aberration, coma RMS and high-order RMS all decreased as the myopic refractive error of their 

corresponding preoperative models increased.  The calculated refractive errors of the corresponding 

postoperative topography models (PostT) were increasingly undercorrected while their spherical 

aberration, coma RMS and high-order RMS all significantly increased. 

0
2

 

Table 6.7: Aberrations of the Pre and Postoperative Eye Models 

 

Refractive Pre -2 -3 -4 -5 -6 -7 -8 
Error PostE 0.19 0.27 0.34 0.40 0.45 0.49 0.53 
(D) PostT -0.03 -0.27 -0.47 -0.66 -0.82 -0.95 -1.06 

Spherical Pre 0.043 0.050 0.058 0.065 0.073 0.081 0.090 
Aberration PostE 0.020 0.016 0.013 0.010 0.007 0.005 0.003 

(µm) PostT 0.066 0.131 0.191 0.248 0.299 0.345 0.385 
Coma Pre 0.039 0.047 0.057 0.069 0.082 0.096 0.111 
RMS PostE 0.028 0.023 0.018 0.012 0.008 0.009 0.014 
(µm) PostT 0.074 0.194 0.307 0.414 0.510 0.597 0.673 

High-Order Pre 0.093 0.108 0.129 0.150 0.174 0.200 0.226 
RMS PostE 0.055 0.045 0.035 0.025 0.018 0.017 0.023 
(µm) PostT 0.157 0.370 0.572 0.763 0.936 1.092 1.228 
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Figure 6.3: Aberrations of the Pre and Postoperative Models 
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6.4 Discussion and Conclusions 

 

When PRK was simulated with the equations developed by Munnerlyn, et al. (1988), the 

preoperative prolate asphericity values of the anterior corneal surface used in my models became 

increasingly more prolate as a function of attempted correction.  This result was expected (Gatinel, 

et al., 2001) but is not consistent with the clinical observation that the asphericity of the anterior 

cornea becomes oblate postoperatively (Hersh, et al., 1996), which demonstrates that the 

postoperative shape predicted by the Munnerlyn equations is not anatomically accurate.   

 Postoperative eye models, based on the anterior corneal shape from the equation simulation 

predicted that Zernike defocus would be slightly over corrected but that high-order aberrations 

would decrease.  While correcting defocus within 0.5 D models empirical results (Jackson, 2001), the 

predicted decrease in high-order aberrations is not the clinically observed result. The increased 

prolateness of the postoperative anterior corneal surface also did not match with empirical 

measurements.  This result led me to develop postoperative eye models by incorporating anterior 

corneal surface shape derived from clinical measurements.    

 Clinical topographic and refraction measurements were made on 143 eyes 6 months after the 

PRK surgery described in the Methods.  125 eyes were analysed as described in the methods. The 

SE of 91% of the original cases and 94% of the eyes used in the correlation analysis were found to 

be within 0.5 D of emmetropia.   Refractive surgical procedures are considered to be successful if 

postoperative SE is within 0.5 D of emmetropia (Dr. Munger, personal communication, 2004).   

Any conclusions drawn from this investigation can be attributed to a surgical application that was 

considered successful at removing refractive error but did not aim to correct aberrations.  Corneal 

topography and aberration calculations were made for a 5 mm pupil diameter while the PRK had an 

ablation zone diameter of 6 mm.  Consequently the transition between ablated and unablated areas 

has been ignored and the results correspond to changes in the anterior corneal topography and 

ocular aberrations within the ablation zone.  

 

 157



The average change in the anterior corneal shape, caused by this particular PRK surgery, was 

determined, as a function of preoperative SE, by comparing pre and postoperative JCC biconic 

surface parameters.  Of the 136 eyes that had their postoperative biconic surfaces described in JCC 

terms, 11 eyes from 10 subjects had an error in their aberration estimate (∆W) greater than ¼λ.  

Since this exceeded the allowable limit these eyes were removed from the remaining analysis.   

 Similar to the preoperative cases in Chapter 4, the eleven excluded eyes were found to all 

have an error in the JCC estimate of the asphericity of the meridian half way between the principal 

meridians (QE), and the difference in power (∆P) and asphericity (∆Q) between principal meridians 

that significantly exceeded the average values of the remaining eyes.  It was also observed that their 

QE values all significantly exceeded the maximum allowable limit of 0.035 that was proposed for the 

preoperative cases in Chapter 4.  This suggests that even after successful PRK, anterior corneal 

surface shapes can exist that have differences in central power and asphericity between the principal 

meridians that are too large to be accurately quantified with biconic JCC parameters.  Removing 

these cases eliminates the chance that these surfaces could be skewing the remaining results.  

Regardless, the anterior surface shape of 88% of the postoperative corneas could be described with 

the JCC formalism. 

 The spherical equivalent refractive error in the remaining eyes was statistically significantly 

reduced by the surgery and consequently the strong correlation between REM-PRE and ∆REM was 

expected.  Similarly the significant reduction in cylinder would result in a strong correlation between 

REJ0-PRE and ∆REJ0.  Since REJ45 was not found to have a statistically significant decrease 

postoperatively, ∆REJ45 was not expected to correlate with any of the other parameters.  The lack of 

preoperative oblique cylinders in this group of subjects (Chapter 4) would account for this result.  

In Chapter 4, it was observed that for this group of subjects REM correlated with REJ0 but 

not with REJ45 preoperatively.  It is not surprising then that REM-PRE correlated with ∆REJ0 but not 

with ∆REJ45. Part of the correlation may also be due to a surgical correction of the preoperative 

cylinder.   

The surgically induced changes in refractive error (∆REM, ∆REJ0) were directly related to 

corresponding change in central anterior corneal power (∆PM, ∆PJ0).  Linear regression revealed 
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slopes of 1.06 and 0.96 for the relationships between ∆REM and ∆PM and ∆REJ0 and ∆PJ0 

respectively.  These results indicate that the induced refractive change can be accounted for by the 

change in the central power of the anterior cornea.   Even though postoperative changes in the 

central curvature of the posterior corneal surface have been previously reported, their effect on the 

overall change in refractive power will not be as great as changes to the shape of the anterior corneal 

surface.  These linear regressions are understandable since the change in refractive index (∆n) at the 

anterior corneal surface is significantly greater than the ∆n at the posterior corneal surface (Munger, 

2001).  From this analysis, any changes in posterior corneal power would be expected to either be 

small or independent of the induced change in refractive error. 

 Changes in the mean and J0 JCC asphericity parameters (∆QM and ∆QJ0) are negatively 

correlated, individually, with the reductions in the mean and J0 JCC components of both central 

anterior corneal power (∆PM and ∆PJ0) and refractive error (∆REM and ∆REJ0).  ∆QJ45 only correlated 

negatively with ∆PJ45.  These relationships indicate that removing corneal tissue to decrease 

refractive error by decreasing central anterior corneal power causes the asphericity of the anterior 

corneal surface to increase.  The magnitude of the increase in asphericity is directly related to the 

amount of tissue removed.   

 The mean asphericity (QM) was found to change at a rate of -0.19 per dioptre of the change 

in mean refractive error (∆REM).  The variation in asphericity (QJ0) with corneal meridian was found 

to change at rate of -0.37 per dioptre of the change in the angular variation in refractive error 

(∆REJ0).  This shows that correcting astigmatism changed the postoperative asphericity twice as 

much as correcting a comparable amount of the mean refractive error.  From this result, anterior 

corneal surfaces would, on average, have larger variations in asphericity with corneal meridian 

postoperatively.  This was confirmed by comparing the average difference in the asphericity between 

the principal meridians (∆Q). ∆Q was 0.38 ± 0.32 preoperatively and 0.84 ± 0.74 postoperatively by 

means of a t-test.  The surgically induced change in ∆Q is statistically significant (p<0.001).  

 The subjects studied here had low amounts of astigmatism, preoperatively, compared to 

their mean refractive error.  The linear regression slope indicates that, on average, ∆REJ0 was only 

7% of ∆REM.  On average, the change in asphericity is dominated by the change in QM.  It could 
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prove interesting to examine how larger amounts of preoperative astigmatism effect the surgically 

induced change in anterior corneal shape.  

Hersh, et al. (1996) reported the magnitude of postoperative asphericity as a function of 

attempted correction. To compare their results to the data reported in this chapter, linear regression 

was applied between the postoperative QM and attempted correction.  Attempted correction was 

assumed to have the same magnitude as preoperative REM but with opposite sign.  Linear regression 

revealed a significant relationship (p<0.0001) with a slope of 0.24 and an intercept of -0.44 while 

Hersh’s results have a slope of 0.22 and an intercept of 0.09.  T-tests revealed that the slopes were 

not statistically significantly different (p=0.71) but the intercepts were (p=0.01).  The difference 

between these results could be related to the different PRK surgeries particularly given the changes 

in surgical methods since the study by Hersh, et al. (1996) (particularly ablation zone size), and the 

different corneal topographers and measurement techniques used in these investigations.   

 An alternative approach to determining average postoperative corneal shape as a function of 

preoperative spherical equivalent (SEPRE) would be to investigate the correlation between the JCC 

components of postoperative corneal shape and SEPRE.  Applying this approach to the 125 eyes that 

were investigated here revealed coefficients of 0.68, -0.54 and -0.68 for the correlations between 

SEPRE and PM-POST, SEPRE and QM-POST and PM-POST and QM-POST respectively.  The coefficients for the 

correlations between SEPRE and ∆PM, SEPRE and ∆QM and ∆PM and ∆QM are 0.89, -0.49 and -0.67.  

The relationships between SEPRE and ∆QM or QM-POST have similar levels of correlation.  Similarly the 

correlations between ∆PM and ∆QM and PM-POST and QM-POST are nearly identical.  But SEPRE has a 

significantly stronger correlation to ∆PM than to PM-POST.  Better estimates of the average 

postoperative corneal shapes were determined by using the relationships with the stronger 

correlation. 

 To create the postoperative topography eye models, the anterior corneas of the asymmetric 

models with symmetrical corneas were replaced with the postoperative surfaces determined from 

surgically induced changes in clinical topographic measurements as a function of preoperative 

spherical equivalent.  Symmetrical conic surfaces were used since the sag of postoperative biconic 

anterior corneal surfaces was not significantly different from corresponding postoperative conic 

surfaces and it was shown, in Chapter 5, that similar biconic and conic preoperative models 
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predicted identical aberrations. Low amounts of asymmetry in the anterior corneal surface have 

negligible effect on the predicted aberrations.  Along with examining larger amounts of astigmatism 

it could prove interesting to examine models with larger amounts of asymmetry in the shape of the 

anterior corneal surface.   

Central corneal thickness was also reduced as a function of preoperative refractive error. 

Since empirical data from the postoperative topography subjects did not exist, corneal thickness was 

reduced by amounts calculated from the equations of Munnerlyn, et al. (1988).  Utilizing this 

assumption is valid since it has been observed that postoperative changes in central corneal 

thickness have the same magnitude as the theoretical calculations (Naroo and Charman, 2000). 

Postoperative eye models, based on clinical topographic measurements, predicted that 

refractive defocus would be slightly undercorrected but high-order aberrations would increase 

significantly.  Since the postoperative aberrations from the topography subjects were not available, 

comparisons were made to previously published empirical results of PRK (Seiler, et al., 2000) and 

LASIK (Marcos, et al., 2001a).  Figure 6.4 displays the comparison of the surgically induced increase 

in the RMS of the 3rd order, 4th order and high-order aberrations.  My postoperative model predicts 

induced differences in the aberrations that are similar to the empirical results but the results from 

Seiler, et al. (2000) are consistently larger while the 3rd and high-order aberrations observed by 

Marcos, et al. (2001a) are smaller. 

The results of this comparison are difficult to interpret since there are many different 

variables within these investigations.  For example, the aberrations were determined for a pupil 

diameter of 6 mm in the study by Seiler, 6.5 mm in the Marcos study and 5 mm in this investigation.  

The studies with the larger pupil sizes would observe larger aberrations, which could cause greater 

postoperative differences to be seen.  The edge of the ablation zone in each of these studies is also 

very close to the edge of their pupil, which could also cause the aberrations to increase 

postoperatively. 

The type of refractive surgery and how it is applied could also play a role in the size of the 

induced aberrations since it has been shown that the size of the ablation zone in PRK significantly 

affects the amount of induced corneal first surface aberrations (Oliver, et al., 1997).  It has also been 
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shown that an application of LASIK induced more spherical and high-order anterior corneal 

aberrations than a similar application of PRK (Oshika, et al., 1999a). 

 

Figure 6.4: Comparison of the average surgically induced increases in the 3rd, 4th and high-order 

aberrations between model predictions and empirical results  

 

The surgeries in the Seiler study and this investigation were both broad beam PRK with a 6 

mm ablation zone diameter but the pupil size I used was smaller than Seiler’s.  Consequently I 

conclude that this model makes a good prediction of the induced aberrations after this type of 

refractive surgery since its predictions are similar to but slightly less than the empirical 

measurements induced by a similar surgery measured over a larger pupil.  

In the Marcos study, the surgery performed was scanning spot LASIK with an eye-tracker 

and aberrations were determined for a 6.5 mm pupil diameter.  Since the surgery was LASIK and a 
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larger pupil size was used, postoperative aberrations would be expected to be larger than in PRK 

with a similar ablation technique.  However, it has been shown that use of an eye-tracker will 

significantly reduce the amount of induced aberrations (Mrochen, et al., 2001a).  Consequently my 

model predictions are consistent with the expected differences between surgeries. 

The predicted refractive errors of the models have been calculated from the value of the Z  

coefficient by using equation 2.21 for a 5 mm pupil. The refractive errors of the postoperative 

topography models were slightly myopic and the level of residual myopia was observed to increase 

with preoperative refractive error.  Figure 6.5 displays the relationship between pre and 

postoperative refractive error for both the topography models and the empirical data from the 

subjects studied in this chapter.  The empirical data, which was measured by subjective refraction, 

shows that, on average, the refractive error was corrected by the surgery but even though most of 

the residual refractive error was within 0.5 D of emmetropia it can still be described as a function of 

the preoperative SE.  Linear regression of the empirical data revealed a significant best-fit line 

(p<0.001) with a slope of -0.06 and an intercept of -0.37 D.   

0
2

While the postoperative topography models predict that at least 85% of the preoperative 

refractive error will be corrected, the predicted residual refractive error does not correspond to the 

empirical results.  The difference between empirical SE and model predictions were greatest at the 

largest preoperative refractive errors, which were predicted to have the most postoperative high-

order aberrations.   

Zernike polynomials represent balanced aberrations (Guirao and Williams, 2003).  This 

means that the Zernike term representing defocus (Z ) takes into account not only the paraxial 

power of the optical system but also the effect that high-order aberrations have on the position of 

the best focal plane.  A recent study of 6 young normal eyes revealed that refractive errors calculated 

from a Zernike polynomial description of their wavefront aberrations had a mean absolute 

difference of 0.5 D from their subjective refraction and increased with increases in high-order 

aberrations.  Furthermore, the difference between objective, wavefront based refraction and 

subjective refraction correlated with the amount of wavefront error across 146 subjects (Guirao and 

Williams, 2003).  Since postoperative high-order aberrations are significantly larger than in normal 

eyes, the difference between subjective and Zernike wavefront derived refraction would be expected 

0
2
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to be even higher than 0.5 D and could account for the difference between the refractive error of 

the models and empirical data.  

 

Figure 6.5: Pre and Postoperative Refractive Error of the Empirical Data and Topography Model.  

The empirical data was measured by subjective refraction while the topography model predictions 

were calculated from the defocus term in a Zernike polynomial series. 

 

The postoperative topography models were created by changing only the shape of the 

anterior corneal surface and central corneal thickness.  Previously, changes in the posterior corneal 

surface have been reported (Kamiya, et al., 2000; Naroo and Charman, 2000; Seitz, et al., 2001).  

Observed differences between the ocular and anterior corneal surface spherical aberration have been 

attributed to surgically induced changes in the shape of the posterior corneal surface (Marcos, et al., 

2001a).  Incorporating changes in the posterior corneal surface into the postoperative topography 
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model may enhance its ability to predict the induced changes in aberrations and residual refractive 

error.  However, in this analysis, changes in the front surface of the cornea accounted for changes in 

the ocular aberrations.  Differences observed by Marcos, et al. (2001a) may arise from systematic 

differences between the measurements of corneal and ocular aberrations. 

To truly gauge the efficacy of creating a postoperative model by incorporating surgically 

induced changes in the cornea would require access to pre and postoperative measurements of 

anterior and posterior corneal surface shape, central corneal thickness and ocular aberrations from a 

single large group of subjects who had received the same refractive procedure.  Unfortunately this 

information was not available but I was able to show that a postoperative eye model, which 

accurately incorporates anterior corneal surface changes between normal and postoperative 

populations, predicts how the surgery affects aberrations. 

Previous reports of surgically induced changes in anterior corneal topography (Hersh, et al., 

1996) utlilized a symmetrical conic to describe the shape of the anterior corneal surface and have 

focused on the changes in asphericity. To determine the surgically induced corneal shape changes, a 

biconic descriptor expressed in JCC terms was used.  This type of description is useful because its 

orthogonal components provide a straightforward method to determine surgically induced changes 

(post-pre) and direct correlation of parameters describing changes in refractive error and corneal 

shape.  The biconic is superior to other orthogonal descriptors, such as Zernike polynomials, 

because it has been shown that an asymmetric conic model provides a better description of normal 

corneal shape than a Zernike series (Preussner, et al., 2003). 

 The future of refractive surgery is customized ablations based on the unique aberrations of a 

specific patient.  Eye models provide useful tools to plan and evaluate new procedures.  The 

topography models, described here, would provide an excellent model to investigate new ablation 

algorithms because they show correlations between changes in refractive error and the shape of the 

anterior corneal surface.  However, these models are limited since they are developed to be average 

eye models.  In particular, the JCC description of corneal shape may not be able to adequately 

describe the shape of unusual corneas.  
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7 Summary 

 

The goal of this research was to develop an anatomically based, GRIN eye model that predicts the 

average high-order aberrations of young adults as a function of myopia.   The new models were then 

used to investigate the surgically induced high-order aberrations that have been clinically observed 

after laser refractive surgery. 

 It was shown that anatomically based, young adult, GRIN, symmetrical eye models can be 

built that accurately predict the average spherical aberration (SA) of emmetropic and myopic young 

adults.  But these models do not predict the total amount of aberrations that have been clinically 

observed since they do not predict asymmetrical aberrations.  When the object was moved from 

infinity to the model’s far point, it was observed that the predicted SA by the GRIN models did not 

change appreciably.  Slightly larger changes in the aberrations were observed if the GRIN was 

replaced with a constant refractive index. 

The myopia in these models was simulated by either purely axial or refractive means, which 

caused the models to be anatomically inaccurate.  This was not surprising, as myopia is known to be 

a combination of axial and refractive components.  Even though the symmetrical models did 

accurately predict SA, which was their primary goal, enhancements were made to see if models could 

be developed that accurately predicted average asymmetrical aberrations and simulated myopia in an 

anatomically accurate manner while maintaining the SA prediction.   

 To enhance the symmetrical models, the shape of the anterior corneal surface was 

investigated.  A biconic was found to provide a more accurate description of the shape of the 

anterior corneal surface in normal subjects than less complex surfaces.  The improved accuracy 

provided by the biconic was statistically significant for a majority of subjects.  In the cases where it 

was not significant, a specific corneal surface closely resembled a less complex surface.   

 Parameters describing the refractive error and the shape of the anterior corneal surface were 

described in Jackson Cross Cylinder (JCC) components to determine if correlations exist between 

anterior corneal surface shape and the components of refraction.  Asphericity parameters could only 

be expressed in JCC terms by utilizing an approximation.  The approximation was assumed to be 
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valid if the variation in central corneal power and asphericity were small enough that the spherical 

aberration of the approximated and real surfaces never differed by more than ¼λ. An expansion 

showed that the first approximation was valid when the square of the power variation and the 

asphericity difference with meridian were small.  

Comparisons between the JCC parameters of refractive error and biconic shape of the 

anterior corneal surface revealed that mean refractive error correlated individually with mean central 

power and mean asphericity.  The mean central power and mean asphericity of the anterior corneal 

surface were not related.  The variation in refractive error with meridian correlated individually with 

both the meridian variation in the central power and asphericity.  The variation with meridian in 

central power and asphericity also correlated.    These correlations show that the biconic JCC 

description of corneal shape is useful to understanding refractive error variation in myopia and can 

be used to develop models as a function of myopia.  

 To create models that predicted asymmetrical aberrations, the symmetrical eye models were 

enhanced by misaligning their optical components and describing the shape of the anterior corneal 

surface with the biconic parameters as a function of myopia.   Since the shape of the anterior corneal 

surface was now an anatomically more accurate function of myopia, the refractive error of the 

asymmetrical models was set by adjusting their axial length.  A comparison to empirical results 

revealed that the dependence of the model’s refractive error on axial length was anatomically 

accurate.  It was also shown that adjusting the model’s axial length accounted for two thirds of the 

change in refractive error and caused the model’s high-order aberrations to decrease.  Changing the 

shape of the anterior corneal surface as a function of refractive error accounted for a third of the 

predicted change in refractive error and was the primary source of the predicted increase in high-

order aberrations.  This proves that an average, anatomically accurate model must adjust both its 

anterior corneal surface and axial length to simulate myopia.  

 There was no difference in the aberrations predicted by the asymmetric models with a 

symmetrical conic cornea compared to those with a biconic anterior cornea with an average amount 

of asymmetry.   Consequently the predicted asymmetrical aberrations resulted from the 

misalignment of the model’s optical components. 
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 Optical component misalignments were defined by the average of empirical measurements.  

An empirical wavefront defined by averaging the individual aberration terms contains less 

asymmetrical aberrations than individual subjects.  The models, created by incorporating the average 

misalignments, underestimated the asymmetrical aberrations observed in the individual subjects but 

provided a good prediction of the average empirical aberrations.   

 Refractive surgery was modeled by changing the shape of the anterior corneal surface in the 

asymmetrical models with symmetrical corneas.  Changes in corneal shape and aberrations of 

corresponding models defined by the Munnerlyn equations (1988) did not match empirical 

observations.  

 Clinically measured changes in the anterior corneal topography caused by a particular PRK 

surgery were determined by comparing pre and postoperative biconic JCC parameters.  Significant 

correlations revealed that decreasing refractive error by laser ablation decreases the paraxial power of 

the anterior corneal surface and causes its asphericity to increase.   

 Postoperative models based on the clinically measured changes in the anterior corneal 

topography predicted that myopia would be corrected to near emmetropia and the high-order 

aberrations would substantially increase.  The models’ residual refractive error calculated from the 

corresponding Zernike term, did not predict the exact relationship between pre and postoperative 

refractive error that was observed for the post-PRK subjects and the difference between model 

predictions and empirical results increased for larger levels of high-order aberrations.   

Empirical refractive error was measured by subjective refraction while the models’ refractive 

error was calculated from the Zernike polynomial quantification of their wavefront error.  It has 

been shown that refractive error estimates from Zernike polynomials do not predict subjective 

refractions and the error increased with higher levels of high-order aberrations (Guirao and 

Williams, 2003).  This could account for the difference between the refractive error of the 

postoperative models and empirical results.  A method of relating wavefront error to subjective 

refraction, based on retinal image characteristics would likely improve the estimate.  

Despite the postoperative refractive error inadequacy, these models make a good prediction 

of the induced increase in high-order aberrations that have been observed after a similar type of 
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surgery.  A postoperative eye model that incorporates a symmetrical conic cornea and average tilts 

and decentrations of its ocular components accurately predicts changes in aberrations as a result of 

broad beam PRK.        

 Average, anatomically accurate, GRIN eye models have been developed that accurately 

predict the average aberrations of emmetropic and low to moderate myopic young adults and are 

useful for investigating the average effects of procedures like laser refractive surgery.  These models 

underestimate the asymmetrical and total high-order aberrations that have been measured in 

individual subjects.  To predict individual aberrations will undoubtedly require individualized eye 

models.  While average eye models will not be able to accurately predict the aberration of an 

individual eye, the models developed here provide a useful tool for vision research since they 

demonstrate correlations between changes in biometric parameters like corneal shape and wavefront 

aberrations. 
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Appendix A: GRIN Calculation in CodeV 
 
To incorporate a gradient refractive index (GRIN) in Code V requires creating a specialized 

subroutine that calculates the refractive index as a function of position within the lens.  The 

subroutine is written in C-code and must be stored in a file named usergrn.c.  This appendix repeats 

the values of the GRIN parameters that were used throughout the thesis and includes the C-code. 

 
A.1: GRIN Parameter Values  
  
Nc:  Core Index 1.406 

Ns:  Surface Index 1.377 

b:  Length of semi-axis in equatorial plane 4.6 mm 

a:  Length of semi-axis along the optical axis 1.49 mm anterior 2.31 mm posterior 

These values can also be found in Table 3.2 

 
 
A.2: C-code 
 
Following is the contents of the file usergrn.c that was used to calculate the GRIN within Code V.  

This file is a modified version of an example that is included with Code V.  Most of the comments 

originated in the example file and have only been modified slightly   

 
 
/* 
Purpose: Evaluates n and n*GRAD(n) of a user-defined index of refraction gradient. 
 
The function is of the form n(x,y,z), where (x,y,z) are the cartesian coordinates  
of a point in the gradient.  The origin of this coordinate system is the vertex of the surface to which 
the gradient is attached.  GRAD(n) is the three derivatives of the function n, (dn/dx, dn/dy, dn/dz).  
 
The GRIN equations given in Chapter 3 (3.3 & 3.4) utilize a coordinate system where the lens core 
is situated at the origin.  Since this was not consistent with how CodeV operates, that equation was 
modified appropriately 
      
Parameters: The following is a brief description of the parameters in the call list.  If the parameter is 
designated as "input", its value is passed to the subroutine by the calling program.  If it is designated 
as "output", its value is supposed to be calculated or set by this subroutine and passed back to the 
calling program.  
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KERROR - Error code (output). This is set to zero before this subroutine is entered.  If 
there are any error conditions which prevent normal completion of the calculation (e.g., 
negative SQRT, etc.), KERROR should be set to a non-zero value.  

    
BRIND - The base index (input). This is entered in the private catalog as the index of 
refraction.  

    
COEF   - The gradient coefficients (input). See Table 3.2 or section A.1. These are entered 
in the private catalog as the coefficients. 

  coef[1] = surface index  
 coef[2] =  length of semi-minor axis (optical axis) 
 coef[3] = flag to determine front or back side of lens  

flag >=0 for front side of lens, otherwise back side 
        

S - The position vector (input). S is an array containing the three components (X,Y,Z) of the 
position of a ray as it is traced. Z is the optical axis.  

      
RINDEX - The calculated index of refraction (output). This is the calculated value of the 
index of refraction at S using the equation programmed in this subroutine.  

      
XNGRAN - The calculated n*GRAD(n) (output).  XNGRAN is an array containing the 
three components of the calculated values of n*GRAD(n) at S using the equation 
programmed in this subroutine.  Since n*GRAD(n) is equivalent to 0.5*GRAD(n**2), either 
form can be used, depending on which is more convenient.  

      
*/ 
 
#include <math.h> 
 
#ifdef sun 
# define USERGRN usergrn_ 
#else 
# define USERGRN usergrn 
#endif 
 
void usergrn(kerror, brind, coef, s, rindex, xngran) 
int    *kerror; 
double *brind; 
double *coef, *s, *rindex, *xngran; 
{ 
 const double b = 4.6; //length of semi-major axis in equatorial plane 
 
 static double No, Ns, a, flag; 
 static double x, y, z; 
 static double A, Ks, K; 
 static double b2, a2, r2; 
 static double z2, temp; 
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 --xngran; 
 --s; 
 --coef; 
  
 *kerror = 0; 
 
 // input from private catalog 
 No = *brind; // core index 
 Ns = coef[1]; // surface index 
 a = coef[2]; // length of semi-minor axis (optical axis) 
 flag = coef[3]; // >=0 - front side of lens, otherwise back side 
 
 if ( a == (double)0 ) // check for division by zero 
 { 
  *kerror = 1; 
  return; 
 } 
 
 b2 = pow(b,2);  // pow(x,y) calculates x to the power of y  
 a2 = pow(a,2); 
 x = s[1]; 
 y = s[2]; 
 r2 = pow(x,2) + pow(y,2); 
 
 // origin of equations not same as CodeV's 

// fix origin of system depending on side of lens 
 if ( flag >= (double)0 )  
  z = s[3] - a;  
 else 
  z = s[3]; 
  
 z2 = pow(z,2); 
 
 A = ( No - Ns ) / b2; 
 Ks = b2 / a2 - 1; //Ks is also surface asphericity  
 K = Ks * ( z2 / a2 + r2 / b2 );  
 
 *rindex = No - A * ( ( 1 + K ) * z2 + r2 ); 
 

// N*Grad(N) 
 
 temp = Ks * z2 / b2 + 1; 
 xngran[1] = *rindex * ( -2 * A * x * ( temp ) ); 
 xngran[2] = *rindex * ( -2 * A * y * ( temp ) ); 
 temp = Ks * z2 / a2 + 1; 
 xngran[3] = *rindex * ( -2 * A * z * ( temp + K ) ); 
 
 }  
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