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Abstract 

Multiaxial fatigue characteristics of AM30 Mg alloy extrusion are studied through fully-reversed 

strain-controlled cyclic experiments including pure torsional and combined axial-torsional at 0, 

45 and 90° phase angle shifts. Under pure torsional cyclic loading, AM30 extrusion is realized to 

exhibit better fatigue properties than AZ31B and AZ61A extrusions, especially in low-cycle 

fatigue regime. Under proportional axial-torsional cyclic loading, twinning/de-twinning in axial 

mode results in asymmetric shear hysteresis loop. The effect of non-proportionality of biaxial 

loading on various aspects of material response is also examined and observed to be depending 

on the magnitude of axial strain amplitude. Finally, the life prediction capabilities of two critical 

plane models, i.e., modified Smith-Watson-Topper (SWT) and Fatemi-Socie (FS), as well as 

Jahed-Varvani (JV) energy-based approach are assessed, employing fatigue life data of AM30 

extrusion. Correlation data between experimental and estimated lives are found to lie within 

narrow scatter band.  

Keywords: Magnesium alloys; Multiaxial fatigue; Cyclic properties; Fatigue modelling; Strain 

energy density. 

1. Introduction 

Saving energy and conservation of environment are two major reasons for drawing 

automotive industries’ attention to wrought magnesium alloys as a light structural metal [1,2]. It 
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was stated that diminishing the vehicle’s weight by 10% would bring about a saving of 

approximately 5% in fuel consumption, assuming the appropriate adjustment of engine and 

gearbox performance [3].  

Magnesium alloys are, currently, being utilized for making non-load bearing components, 

e.g., housing and trim parts [3,4]. To exploit their full weight-saving potential, their application 

needs to be broadened to load bearing components, such as body and suspension parts. Under 

vehicle’s normal service conditions, these parts, are subjected to cyclic loading in multiaxial 

stress state, and thereby, prone to fatigue failure. Although the load bearing parts are generally 

designed to operate under low cyclic stresses in high cycle fatigue regime, they may locally 

experience high cyclic stresses at notches and other geometrical complexities. In light of what 

has been said above, understanding the multiaxial fatigue response of magnesium alloys is 

imperative to ensure the reliability and safety of vehicles throughout their service life.  

Twenty years ago, Bentachfine et al. [5] performed strain-controlled axial-torsional tests 

on a magnesium-lithium alloy extrusion at various phase angle shifts in the range of 0 to 180°. 

They concluded that increasing phase angle shift from 0 to 90° decreases fatigue life, which was 

related to the generation of more complex defect structure and higher dislocation density as 

results of constant rotation of principal strain axes with respect to grain orientation. Since that 

time, there were only a few studies dealing with the multiaxial deformation and fatigue of 

wrought magnesium alloys. Yu et al. [6] conducted fully-reversed strain-controlled pure axial, 

pure torsional and combined axial-torsional cyclic tests on AZ61A extrusion. Employing an 

equivalent strain amplitude parameter defined as the radius of a circle circumscribing loading 

path, they reported the highest resistance to fatigue failure under proportional loading and the 

shortest fatigue life under 90° out-of-phase loading. It was, further, shown that Fatemi-Socie 



  

(FS) and modified Smith-Watson-Topper (SWT) models were able to acceptably predict 

experimental fatigue life. In another study by the same authors (Zhang et al. [7]), cyclic 

deformation characteristics of AZ61A extrusion were explored. Slight cyclic hardening and 

insignificant non-proportional hardening were observed under various loading conditions. The 

asymmetry of shear hysteresis loop in combined axial-torsional tests was attributed to the 

successive occurrence of twinning/de-twinning under axial deformation mode. Similar to the 

work by Yu et al. [6], Xiong et al. [8] investigated AZ31B extrusion and reached to the same 

conclusion regarding fatigue resistance under different loading conditions. Moreover, they 

evaluated the modified SWT and Jiang critical plane models capable of predicting fatigue life 

under multiaxial loading conditions. Albinmousa et al. [9–12] carried out fully-reversed strain-

controlled cyclic tests, including pure axial, pure torsional, and combined axial-torsional 

proportional and non-proportional at 45 and 90° phase angle shifts, on AZ31B extrusion. Their 

results demonstrated that AZ31B extrusion exhibited additional hardening because of non-

proportionality, but not due to multiaxiality. Notwithstanding this non-proportional hardening, it 

was reported that phase angle shift had no significant influence on obtained fatigue life. In regard 

to fatigue modelling done by Albinmousa et al., Fatemi-Socie and Jahed-Varvani models 

resulted in better fatigue life estimations. Recently, Castro and Jiang [13] examined three critical 

plane approaches, i.e., SWT, FS and Jiang, using various uniaxial and multiaxial cyclic tests on 

AZ31B extrusion. It was deduced that FS and Jiang models gave reasonable fatigue life 

predictions and only Jiang model made a good correlation of cracking direction, which was 

ascribed to the mixed cracking mode of AZ31B extrusion. More recently, Li et al. [14] studied 

the multiaxial cyclic response of AZ31 extrusion during strain and stress-controlled experiments. 

From strain-controlled tests, they observed cyclic hardening in both axial and torsional 



  

directions, as well as additional hardening due to multiaxiality in torsional mode. They also 

concluded that axial ratcheting during multiaxial stress-controlled tests depended on the shape of 

loading path in addition to the non-proportionality of loading. Circular 90° out-of-phase loading 

path generated the largest axial ratcheting strain.  

The literature reviewed herein were all on the multiaxial study of AZ family of wrought 

magnesium alloys, especially AZ31B extrusion. To the best of authors’ knowledge, no 

comprehensive study has thus far been done on the multiaxial behaviour of AM family of 

wrought Mg alloys, specifically AM30 extrusion. This article is, therefore, aimed at providing 

such study. Besides, in order to complement the uniaxial experimental cyclic data on AM30 

extrusion presented by authors in [15], extensive pure torsional experiments have been 

conducted. The capabilities of two strain-based models, i.e., Fatemi-Socie and modified Smith-

Watson-Topper, and an energy-based model, i.e., Jahed-Varvani, to predict fatigue life under 

general loading conditions are also investigated.  

2. Material and methods 

Experimental material for present study was hot-extruded AM30 magnesium alloy 

developed by Luo and Sachdev [16]. The details of the experimental alloy including its chemical 

composition and hot extrusion process parameters can be found in [17]. Thin-walled tubular 

specimens were machined from extrusion section along extrusion direction with the geometry 

and dimensions shown in Figure 1. It is worth noting that in order to make sure of 

microstructural uniformity, center region of the extrusion section (away from surface) were used 

for machining the specimens [18]. Figure 2 schematically shows the extrusion section and the 

location where the tubular specimens were cut from. The orientation of HCP crystals in 



  

connection with defined section directions, i.e., extrusion (ED), transverse (TD) and normal 

(ND), is also depicted in Figure 2. 

 

Figure 1. Tubular specimen geometry for pure torsional and biaxial tests. 

 

Figure 2. Schematic illustration of extrusion section showing crystal orientation in portion used for 
machining tubular specimens. 

Fatigue experiments were conducted using an Instron 8874 servo-hydraulic biaxial 

machine with axial and torsional load capacities of ±25 kN and 100 N.m, respectively. All of the 

experiments were done under fully-reversed (           ) strain-controlled condition at 

ambient temperature. Axial tension-compression cyclic data along ED were taken from previous 

publication [15]. Epsilon biaxial extensometer (model 3550) with the axial and shear strain 



  

ranges of ±5% and ±3°, mounted on specimen’s gauge length, was employed to record 

engineering axial and shear strains. Sinusoidal waveforms with different phase angle shifts of 0, 

45 and 90° were applied for proportional and non-proportional axial-torsional tests. Pure 

torsional tests were run at frequencies ranging from 0.03 to 0.4 Hz, depending on applied shear 

strain amplitude. At very low shear strain amplitudes, after material stabilized, tests were stopped 

to remove the extensometer. The tests were, then, resumed running at higher frequencies up to 8 

Hz under torque-controlled condition. Axial-torsional tests were done at lower frequencies 

between 0.1 and 0.3 Hz. Failure criteria were assumed to be either final rupture of the specimen 

or 50% drop in maximum load, whichever came first, unless stated otherwise. The stress-strain 

curve at half-life was identified as stabilized stress-strain response. 

Texture measurements were performed via a Bruker D8 Discover X-ray diffractometer 

equipped with a VÅNTEC-500 2D detector using Cu-   beam radiation at 40 kV and 40 mA. 

3. Results and discussion 

3.1. Pure torsional cyclic loading 

3.1.1. Hysteresis loops 

Stabilized shear stress-shear strain hysteresis loops of AM30 extrusion subjected to pure 

torsional loading are illustrated in Figure 3. Eleven shear strain amplitudes in the range of 0.4% 

to 2.5% are employed to fully characterise the torsional behaviour of the experimental alloy. 

Unlike its axial cyclic behaviour, explored elsewhere [15], AM30 extrusion possesses normal 

symmetric hysteresis loops under torsion. This can more clearly be seen from Figure 4, where 

the maximum and minimum tips of hysteresis loops at various shear strain amplitudes are plotted 

in one graph. From this figure, it can also be concluded that no significant mean stress is 

developed upon cyclic torsion testing. The observed symmetry alludes to the dominance of slip 



  

deformation mechanisms, although the occurrence of twinning was also reported at high shear 

strain amplitudes [7,8,19]. The slightly sigmoidal shape of hysteresis loop at shear strain 

amplitude of 2.5% (can also be seen from Figure 7c) is probably due to twinning, which is in 

consistence with twin observation by other researchers.  

To contrast monotonic with cyclic shear flow, monotonic shear stress-shear strain curve 

of AM30 extrusion up to 3% shear strain is also included in Figure 4. It is seen that stresses from 

cyclic curve are higher than the ones from monotonic curve. Cyclic shear hardening coefficient, 

  
 , and exponent,   

 , are calculated to be 335.6 MPa and 0.3023, respectively, while monotonic 

shear hardening coefficient,   , and exponent,   , are 154.78 MPa and 0.2019. The results 

suggest that AM30 extrusion shows greater hardening capacity when subjected to cyclic shear 

deformation. Hardening disparity between cyclic and monotonic data grows with the shear strain 

to reach to roughly 25% increase in shear stress at the shear strain of 2.5%.  

  

Figure 3. Half-life hysteresis loops of AM30 extrusion at different strain amplitudes under pure torsion. 



  

 

Figure 4. Cyclic and monotonic shear stress-shear strain curves of AM30 extrusion. 

Texture measurements represented by basal        and prismatic         pole figures 

can be used to verify twin occurrence at high shear strain amplitudes. Figure 5(a) shows pole 

figures of as-extruded material and Figure 5(b) shows pole figures of a specimen subjected to 

2.5% cyclic shear strain amplitude. XRD measurements in Figure 5(b) were done on a section far 

away from final fatigue crack. According to Figure 5(a), the as-extruded material displays a 

rather strong basal texture with the majority of        poles lying almost parallel to normal 

direction (ND), noting the peak intensity of 18.74 MUD (multiples of uniform distribution). The 

reduction of peak intensity of basal poles to 9.96 MUD and emergence of new texture 

components in Figure 5(b) can only be justified by the formation of mechanical twins during 

pure torsional straining. However, mechanical twinning does not seem to have a noticeable effect 

on the symmetry of shear hysteresis loops (Figure 3 and Figure 7). This probably hints at the 

equal amount of twinning/de-twinning under positive and negative shear stresses, because of the 

rotational symmetry of basal poles about extrusion direction [7].  



  
 

 

Figure 5. Basal and prismatic pole figures of (a) as-extruded material and (b) specimen tested under pure 

torsion at 2.5% shear strain amplitude. 

The variations of shear stress amplitude with cycling at different shear strain amplitudes 

are depicted in Figure 6. As is seen, AM30 extrusion hardens during cyclic shear straining. 

However, the rate of hardening depends on the strain amplitude. Generally, the hardening rate 

increases with increasing shear strain amplitude. This increase in hardening rate is more 

pronounced for the shear strain amplitudes above 1%. This may be due to the occurrence of 

twinning at high shear strain amplitudes, which hinders free dislocation movements [7]. These 

results are in accordance with the cyclic shear behaviour reported for AZ61A extrusion [7]. 

Moreover, compared to AZ31B extrusion [12], the experimental alloy exhibits stronger cyclic 

shear hardening. The overall cyclic shear hardening response can also be inferred from Figure 7, 

where second-cycle along with the half-life hysteresis loops at low, intermediate and high shear 

strain amplitudes are plotted.  



  

 

Figure 6. Shear stress amplitude evolution with cycling at various shear strain amplitudes. 

 

  

Figure 7. Typical shear hysteresis loops of AM30 extrusion at second and half-life cycles during cyclic 

tests at (a) low, (b) intermediate, and (c) high shear strain amplitudes. 

3.1.2. Shear strain-life curve  

Total shear strain amplitude as a function of number of cycles before fatigue failure for 

the experimental alloy under pure torsional loading is shown in Figure 8. For comparison 

purposes, shear strain-life data for AZ31B and AZ61A Mg alloy extrusions from literature [6,8] 

are also included. An arrow associated with a data point denotes a run-out test for which fatigue 

failure has not occurred at one million cycles. It should be mentioned here that the shear fatigue 

life data from this study are reported at 5% drop of maximum shear stress in a loading cycle, to 



  

be consistent with the fatigue life data from literature. It is, however, observed that, in most 

cases, final failure happens either quickly or after a few cycles upon initial load drop. According 

to results from strain-controlled cyclic experiments displayed in Figure 8, AM30 extrusion 

shows better low-cycle shear fatigue properties than AZ31B and AZ61A extrusions. Considering 

the fact that at large strains, enhanced fatigue life depends more on ductility [20], the observed 

behaviour can be connected with the better formability of AM30 extrusion [16,18]. High-cycle 

shear fatigue properties of these alloys may be better contrasted by conducting stress-controlled 

cyclic tests. 

 

Figure 8. Shear strain-life data for AM30 extrusion compared with data for other wrought Mg alloys 

(AZ31B [8] and AZ61A [6]). 

3.2. Combined axial-torsional cyclic loading 

The details of the axial-torsional experiments including applied strain amplitudes, axial 

and shear stress ranges and mean values and experimental fatigue lives are tabulated in Table 1. 

The stress ranges and mean values are extracted from half-life (stabilized) hysteresis loops under 

axial and torsional deformation modes. It is also to be noted that the middle number of specimen 

ID denotes phase angle difference between axial and torsional deformation modes. In following 

sections, the axial-torsional cyclic behaviour of AM30 extrusion will be explored from two 



  

perspectives: the interrelation of deformations in two different axes, and the influence of phase 

angle shift between axial and torsional loading cycles on cyclic hardening, hysteresis loops as 

well as obtained fatigue lives. 

Table 1. Proportional and non-proportional combined axial-torsional fatigue tests’ results. 

Spec. ID    (%)    (%)    (MPa)    (MPa)    (MPa)    (MPa)    (cycles) 

BA-0-3 0.3 0.4 235.7 11.8 79.3 1.4 8911 

BA-0-10 0.3 0.4 225.2 11.5 78.5 2.1 9197 

BA-0-2 0.4 0.4 310.9 46.1 72.9 6.2 1520 

BA-0-7 0.4 0.4 300.1 41.7 72.6 4.9 1554 

BA-0-4 0.5 0.4 355.2 55.6 68.3 6.7 1157 

BA-0-8 0.5 0.6 330.2 42.9 87.4 6.2 917 

BA-0-11 0.4 0.6 276.7 37.2 97.7 6.7 1629 

BA-0-12 0.3 0.6 223.6 20.3 99.5 5.1 3210 

BA-0-5 0.4 0.3 294.8 31.4 58.0 4.6 4027 

BA-0-9 0.4 0.5 302.0 48.0 84.5 5.8 1495 

BA-45-1 0.3 0.4 229.4 12.8 83.5 0.5 6085 

BA-45-2 0.5 0.6 345.6 50.1 107.0 -2.7 650 

BA-45-3 0.5 0.6 349.2 55.0 115.3 -3.4 669 

BA-45-4 0.3 0.6 230.0 10.3 104.8 1.3 3141 

BA-90-1 0.3 0.4 231.2 5.4 83.6 -2.3 6737 

BA-90-2 0.5 0.6 347.4 39.5 123.1 -6.1 829 

BA-90-3 0.3 0.4 237.7 0.9 87.0 -1.7 7508 

BA-90-4 0.3 0.6 244.1 9.2 110.6 -2.9 3179 



  

  : Axial strain amplitude;   : Shear strain amplitude;   : Axial stress range;   : Mean axial 

stress;   : Shear stress range;   : Mean shear stress;   : Fatigue life. 

3.2.1. Multiaxial deformation effects 

The effect of simultaneous shear deformation on the shape of axial hysteresis loop and 

the evolution of axial stress amplitude during proportional (in-phase) axial-torsional tests are 

depicted in Figure 9. The proportional tests comprise axial strain amplitude of 0.5% and various 

shear strain amplitudes of 0, 0.4 and 0.6%. A closer look at Figure 9(a) reveals that the 

accompanied shear strain does not affect twinning/de-twinning-dominated portions of the axial 

hysteresis loops, at the end of compressive reversal and the initial stage of tensile reversal. 

However, the hardening rate of slip-dominated portion that follows de-twinning saturation is 

decreased with increasing accompanied shear strain. In other words, slip happens with less 

resistance in the co-presence of larger shear strain. This may be explained by the fact that 

accompanied shear stress will contribute to resolved shear stress on a specific slip plane to reach 

to its critical value (CRSS), and thereby, accommodate axial strain under lower axial stress.  

It is known that axial cyclic hardening of AM30 extrusion can be related to the formation 

of residual twins due to successive twinning/de-twinning processes in each cycle [18,21]. On one 

hand, twinned area is rotated towards plastically hard orientations [22]. On the other hand, the 

residual twins’ boundaries hinder dislocation motions on active slip planes [23]. However, as is 

seen from Figure 9(b), the hardening effect of residual twins is found to be attenuated, 

presumably through larger driving force provided by concomitant shear deformation, which can 

help dislocation advancement.  



  

 

Figure 9. (a) Axial stress-strain hysteresis loops and (b) axial stress amplitude variations of experimental 

alloy during in-phase tests at 0.5% axial strain amplitude and various shear strain amplitudes. 

The effect of simultaneous axial deformation on the shape of shear hysteresis loop and 

the evolution of shear stress amplitude during proportional axial-torsional tests are shown in 

Figure 10. The proportional tests include pure torsional at 0.6%, and axial-torsional combining 

shear strain amplitude of 0.6% with different axial strain amplitudes of 0.3, 0.4 and 0.5%. 

According to Figure 10(a), while pure torsional hysteresis loop is symmetric, axial-torsional 

cyclic tests show asymmetric shear behaviour. With increasing axial strain amplitude, the 

asymmetry of shear hysteresis becomes more pronounced. We can even observe a sigmoidal-

shape shear unloading reversal with axial strain amplitude of 0.5%. As was reported elsewhere 

[15], 0.5% corresponded to minimum axial strain amplitude to see de-twinning saturation during 

the tensile reversal of AM30 extrusion stabilized hysteresis loop. It is stated that the asymmetry 

of shear hysteresis loop is associated with the occurrence of twinning/de-twinning and the 

induced change in texture [7,8]. Upon reorienting matrix by twinning, basal slip is more 

favoured in the twinned portion of microstructure than the matrix. Hence, a higher volume 

fraction of twins under axial mode will result in easier shear strain accommodation under 

torsional mode. This is confirmed by the results presented in Figure 10(b).  



  

 

Figure 10. (a) Torsional stress-strain hysteresis loops and (b) shear stress amplitude variations of 

experimental alloy during in-phase tests at 0.6% shear strain amplitude and various axial strain 

amplitudes. 

3.2.2. Phase angle effects 

Figure 11 illustrates the effect of phase angle shift between axial and torsional sinusoidal 

waveforms on stabilized hysteresis loops at constant axial and shear strain amplitudes of 0.3% 

and 0.6%, respectively. No significant change in the overall shapes of hysteresis loops can be 

spotted. There is only a minor reduction of mean stress with increasing phase angle shift, which 

was also observed in AZ31B extrusion and attributed to the weaker resistance of microstructure 

to shear deformation in the presence of twins [8]. The volume fraction of twins at the negative tip 

of shear hysteresis loop is highest for in-phase and lowest for 90° out-of-phase strain path. (See 

Error! Reference source not found.). 

The stabilized stress-strain hysteresis curves of AM30 extrusion subjected to axial and 

shear strain amplitudes of 0.5% and 0.6%, respectively, applied with different phase angle shifts 

of 0, 45 and 90° are shown in Figure 12. Contrary to the results presented in Figure 11, there is a 

noticeable change in the shapes of shear hysteresis loops with varying the phase angle shift, 

while axial hysteresis loops are remained unchanged. Similar observations in Mg alloy 



  

extrusions were reported by other researchers [6,8,10]. The changes in shear hysteresis loops are 

ascribed to the twinning/de-twinning phenomena under axial deformation (see Error! Reference 

source not found.). It was mentioned earlier that axial strain amplitude of 0.5% during cyclic 

tension-compression test was found to be the threshold value for the predominance of 

twinning/de-twinning deformation mechanism at half-life. Therefore, it is concluded that axial 

hysteresis characteristics are not affected by the non-proportionality of multiaxial loading, 

whereas, depending on the magnitude of axial strain amplitude, phase angle shift can influence 

shear hysteresis loops.  

 

Figure 11. Axial and torsional hysteresis loops of AM30 extrusion during cyclic tests at   = 0.3%, 

  = 0.6% and different phase angle shifts. 



  

 

Figure 12. Axial and torsional hysteresis loops of AM30 extrusion during cyclic tests at   = 0.5%, 

  = 0.6% and different phase angle shifts. 

Referring to the data in Table 1, fatigue lives obtained at          and          for the 

phase angle shifts of 0, 45 and 90° are 3210, 3141 and 3179 cycles, respectively. Furthermore, 

the fatigue lives at          and          for similar phase angle shifts are recorded to be 917, 

650 and 829 cycles, respectively. It appears that phase angle shift has no significant effect on the 

fatigue lives obtained at          and         , but affects the fatigue lives at          and 

        . This may be elucidated by data in Figure 13, which shows that total strain energy 

densities measured at          and          with different phase angle shifts are comparable 

to each other (Figure 13(a)), while they are different for various phase angle shifts at          

and          (Figure 13(b)). 



   

Figure 13. Measured axial and torsional strain energy densities for half-life hysteresis loops during cyclic 

tests at different phase angle shifts: (a)   = 0.3%,   = 0.6% and (b)   = 0.5%,   = 0.6%. 

In order to explore the hardening behaviour of AM30 extrusion under combined axial-

torsional loading, the variations of axial and shear stress amplitudes at          and          

and different phase angle shifts are given in Figure 14. For comparison purposes, stress 

responses from pure axial (at   = 0.5%) and pure torsional (at   = 0.6%) cyclic tests are also 

included. It can be seen that with the increase of phase angle shift from 0 to 90°, higher stress 

amplitudes are exhibited in both axial and torsional modes. This additional non-proportional 

hardening is much more pronounced in the torsional mode (Figure 14(b)). Similar results were 

reported for AZ31B extrusion [10]. It is worth mentioning that the additional cyclic hardening is 

a general phenomenon, which happens due to the rotation of principal axes during out-of-phase 

loading [24]. For a grain with arbitrary orientation, the rotation of principal axes will result in the 

activation of various slip systems and twins along different orientations. Interaction between 

these activated mechanisms brings about the additional hardening.  



  
 

Figure 14. The variations of (a) axial and (b) shear stress amplitudes with cyclic straining at   = 0.5%, 

  = 0.6% with different phase angle shifts. 

3.3. Fatigue modelling 

Various fatigue damage parameters have been formulated to quantify damage caused to a 

material under cyclic loading. Critical plane approaches and energy-based models are being 

commonly applied to a variety of metals [11,13,25–27]. In critical plane approaches a critical 

plane of material is sought in a way that gives the maximum value of a predefined parameter. To 

this end, the parameters of interest from stabilized hysteresis loops are first transformed using 

stress-strain transformation rules (via Mohr’s circle method). After pinpointing the critical plane, 

corresponding model parameters on that plane are extracted and used in a damage equation to 

find damage parameter. The damage parameter is, ultimately, coupled with a life equation to 

give life prediction. It is noteworthy that critical plane models are, theoretically, defined to 

predict early fatigue cracking orientation, in addition to final fatigue life. Nonetheless, this aspect 

of critical plane models is not being investigated here.  

This section evaluates the fatigue life prediction capabilities of two common critical 

plane approaches, i.e., Fatemi-Socie and modified Smith-Watson-Topper, as well as Jahed-

Varvani as an energy-based approach.  



  

3.3.1. Fatemi-Socie (FS) 

Fatemi-Socie model [24] was built on Brown and Miller’s work [28] by replacing normal 

strain term with normal stress. The critical plane in this model is defined as the material plane 

with maximum shear strain value. Its fatigue damage parameter takes the following 

mathematical form: 

                       
      

  
        Eq. 1 

where        is the maximum shear strain amplitude,        is the maximum normal stress on 

the maximum shear strain plane (critical plane), and   and    are material constants. The 

constant   is found in a way that the curves of FS damage parameter versus number of reversals 

for pure axial (tension-compression) and pure torsional tests are brought together (  = 1.3 in this 

study). The constant    is assumed equal to the monotonic yield strength of the material (200 

MPa for AM30 extrusion). In Eq. (1),    
  represents the sensitivity of a material to normal 

stress [29]. In Figure 15(a), the FS parameter is plotted as a function of number of reversals to 

failure under various loading conditions. Pure axial data were obtained from a previous article by 

the authors [15]. As is observed, calculated fatigue damage data using FS criterion are closely 

converged regardless of different testing circumstances. This confirms the capability of FS 

model for quantifying fatigue damage under combined axial-torsional cyclic deformation.  

Based on FS model, the fatigue damage parameter may be correlated with fatigue life 

using shear strain-life properties of material. Hence, the following relationship is employed to 

estimate the fatigue life under different loading conditions: 

              
  
 

 
     

  
   

      
  

       Eq. 2 



  

where   is the shear modulus (considered 15.1 GPa in this study), and    is the number of cycles 

to fatigue failure. The definitions of the shear strain-life parameters and their corresponding 

values for AM30 extrusion, calculated from Figure 15(b), are listed in Table 2. The symbols in 

Figure 15(b) correspond to experimental data obtained from half-life hysteresis loops of pure 

torsional tests and dashed lines are best power-law fits.  

Table 2. Shear strain-life parameters used in FS model. 

Shear fatigue strength coefficient,   
  (MPa) 283.818 

Shear fatigue ductility coefficient,   
  0.602 

Shear fatigue strength exponent,    -0.159 

Shear fatigue ductility exponent,    -0.531 

The predicted fatigue lives by FS model are plotted against experimental lives under 

various loading conditions and is shown in Figure 15(c). Diagonal solid line represents perfect 

match and two parallel long-dashed and dash-dotted lines indicate factor of 2 and 1.5 bounds, 

respectively, between predicted and experimental lives. Based on the results, all predictions fall 

within factor of 2 boundaries, though the fatigue lives are mostly under-predicted, especially for 

pure axial tests in the low-cycle fatigue regime. In general, the results imply the capability of FS 

model to estimate the axial-torsional fatigue life of AM30 extrusion.  

 



   

Figure 15. (a) Calculated FS parameters under various loading conditions; (b) Shear strain-life data used 

for extracting shear fatigue properties; (c) The correlation of FS-estimated life with experimental life.  

3.3.2. Modified Smith-Watson-Topper (MSWT) 

The SWT parameter has been used by Socie in the multiaxial loading analysis of 

materials that fail primarily under tensile cracking mode [29]. This critical plane model was 

shown to be incapable of correlating fatigue data under pure torsional loading of AZ31B 

extrusion [8,10]. Jiang and Sehitoglu [30] modified SWT parameter to take general cracking 

mode into account: 

                          
   

 
           Eq. 3 

where   ,    and    stand for the ranges of normal strain, shear stress and shear strain, 

respectively, and b is a material constant. The critical material plane in this model is defined as 

the plane with the maximum value of MSWT parameter. The variable b varies from 0 to 1. For 

  = 1, Eq. (3) gives the original SWT parameter. It is stated that for the values of b between 0.37 

and 0.5, mixed cracking behaviour can be evaluated, while    0.37 and    0.5 enables the 

model to be used in shear and tensile cracking modes, respectively [6,8]. Figure 16(a) depicts the 

MSWT parameter calculated for different uniaxial and axial-torsional cyclic tests by assuming 

  = 0.3. The value of b implies that shear cracking mode is dominant in the experimental alloy.  



  

According to Figure 16(b), the linear relationship between MSWT parameter and number 

of reversals to failure in a log-log scale can fairly be fitted employing a power-law equation: 

                          
      

       Eq. 4 

Eq. (4) can be used, in conjunction with Eq. (3), to estimate fatigue life under various loading 

conditions. In Figure 16(c), the estimated fatigue lives are compared with the experimental ones. 

It can be deduced that the modified SWT model provides reasonably good fatigue life 

predictions for AM30 extrusion under pure uniaxial and combined axial-torsional loading. This 

model had been successfully applied to predict the multiaxial fatigue of AZ31B and AZ61A Mg 

alloys extrusions [6,8].  

 

 

Figure 16. (a) Calculated modified SWT parameters under various loading conditions; (b) Power-law 

relationship between MSWT parameter and number of reversals to failure; (c) The correlation of MSWT-

estimated life with experimental life. 



  

3.3.3. Jahed-Varvani (JV) 

Given the invariant nature of energy as a scalar quantity, energy-based approaches have 

the potential to be used for multiaxial fatigue life prediction of anisotropic materials such as 

AM30 Mg alloy extrusion. In current study, Jahed-Varvani’s energy-based model [31] will be 

evaluated on the basis of its life prediction capabilities.  

In the JV model, fatigue damage is expressed by total strain energy density, which 

consists of two different terms, i.e., plastic and positive elastic strain energy densities. The 

former term is calculated from area inside stabilized hysteresis loop at any strain amplitude: 

     
 
         

 
            

   
 
         

 
          Eq. 5 

where    
 
 and    

 
 are plastic axial and torsional strain energy densities, respectively. Positive 

elastic energy can be determined by the following equations: 

     
  

    
 

  
           

     
  

    
 

  
           Eq. 6 

where      and      are, respectively, axial and shear stresses at the positive tip of the 

hysteresis loops, and E and G are, respectively, the average tensile and average shear moduli of 

unloading reversals. By introducing positive elastic strain energy density, mean stress effects are 

also taken into account in this model [32,33]. The axial and shear strain energy densities are, 

then, related to fatigue life in terms of number of reversals to failure through an equation similar 

to Coffin-Manson relationship [31,34]: 

      
      

    
      

       

      
      

     
      

          Eq. 7 



  

where     and     are total axial strain energy density and axial fatigue life in reversals, 

respectively, and     and     are their shear counterparts. The remaining symbols in Eq. (7) 

denote energy-based fatigue parameters, which are defined in Table 3.  

In order to find the energy-based fatigue parameters, pure axial and pure torsional cyclic 

tests of AM30 extrusion are utilized to construct the plots of positive elastic/plastic axial/shear 

energy densities versus fatigue life in log-log scale, as shown in Figure 17(a) and (b). From these 

plots, the energy-based fatigue parameters are determined and tabulated in Table 3.  

Table 3. Energy-based fatigue parameters used in JV model. 

Axial fatigue strength coefficient,   
  (MJ/m

3
) 9.107 

Axial fatigue toughness coefficient,   
  (MJ/m

3
) 20350.770 

Axial fatigue strength exponent,   -0.340 

Axial fatigue toughness exponent,   -1.378 

Shear fatigue strength coefficient,   
  (MJ/m

3
) 2.762 

Shear fatigue toughness coefficient,   
  (MJ/m

3
) 318.753 

Shear fatigue strength exponent,    -0.325 

Shear fatigue toughness exponent,    -0.683 

To assess the fatigue life of the experimental alloy under various proportional and non-

proportional axial-torsional loading conditions, first axial and shear strain energy densities from 

stabilized hysteresis loops should be computed. Next, these values together with energy-based 

fatigue parameters are used in Eq. (7) to give two fatigue lives;    and   . These lives 

correspond to upper and lower bounds for each loading scenario. The actual fatigue life falls at 

some value between    and    [31]. In this study, the following equation is observed to result in 

best life estimations by combining two fatigue life limits: 

   
   

   
   

 

 

   

   
           Eq. 8 



  

where    is the final estimated life, and     is total strain energy density (sum of axial and shear 

components). The comparison between JV predicted life and the experimental life is illustrated 

in Figure 17(c). The long-dashed lines represent the factor of 2 limits and dash-dotted lines show 

the factor of 1.5 boundaries. It is clear that the JV model provides very good predictions within 

the life factor range of ±1.5.  

 

 

Figure 17. (a) Axial and (b) shear strain energy density-life data used for extracting JV model parameters; 

(c) The correlation of JV-estimated life with experimental life. 

4. Conclusions 



  

Pure torsional and combined axial-torsional cyclic tests under fully-reversed strain-

controlled conditions have been performed on AM30 Mg alloy extrusion. The following main 

points can be restated from the discussed results: 

1) AM30 extrusion exhibits symmetric hysteresis loops upon pure torsional cyclic loading. 

Slip is, accordingly, considered predominant deformation mechanism, although twinning 

is proved to happen at very large shear strain amplitudes.  

2) AM30 extrusion displays better low-cycle shear fatigue properties than AZ31B and 

AZ61A extrusions, during strain-controlled cyclic tests. 

3) During proportional biaxial cyclic tests, twinning/de-twinning occurrence in axial mode 

renders the shear response asymmetric. On the other hand, shear deformation is found to 

only affect the slip-dominated portion of axial hysteresis loop. 

4) Axial hysteresis characteristics are not affected by the non-proportionality of multiaxial 

loading, whereas, depending on the magnitude of axial strain amplitude, phase angle shift 

can alter shear hysteresis loops. 

5) Additional non-proportional hardening is seen for both axial and torsional modes, during 

combined biaxial deformation of AM30 extrusion. 

6) Both critical plane approaches, namely, Fatemi-Socie and Modified Smith-Watson-

Topper, as well as Jahed-Varvani energy-based model can suitably predict fatigue life of 

AM30 Mg alloy extrusion under multiaxial loading conditions. 
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 AM30 extrusion shows better low-cycle shear fatigue properties than AZ31B, AZ61A. 

 Non-proportionality of biaxial loading does not affect axial hysteresis loops.  

 Phase angle shift effects on shear hysteresis loops depend on axial strain level. 

 Additional non-proportional hardening is seen for both axial and torsional modes. 

 Critical plane and energy models give reliable multiaxial fatigue life estimations. 

 


