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Abstract 10 

This study compares formal Bayesian inference to the informal Generalized Likelihood Uncertainty 11 

Estimation (GLUE) approach for uncertainty-based calibration of rainfall-runoff models in a multi-12 

criteria context. Bayesian inference is accomplished through Markov Chain Monte Carlo (MCMC) 13 

sampling based on an auto-regressive multi-criteria likelihood formulation. Non-converged MCMC 14 

sampling is also considered as an alternative method. These methods are compared along multiple 15 

comparative measures calculated over the calibration and validation periods of two case studies. Results 16 

demonstrate that there can be considerable differences in hydrograph prediction intervals generated by 17 

formal and informal strategies for uncertainty-based multi-criteria calibration. Also, the formal approach 18 

generates definitely preferable validation period results compared to GLUE (i.e., tighter prediction 19 

intervals that show higher reliability) considering identical computational budgets. Moreover, non-20 

converged MCMC (based on the standard Gelman-Rubin metric) performance is reasonably consistent 21 

with those given by a formal and fully-converged Bayesian approach even though fully-converged results 22 

requires significantly larger number of samples (model evaluations) for the two case studies. Therefore, 23 
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research to define an alternative and more practical convergence criteria for MCMC applications to 24 

computationally intensive hydrologic models may be warranted. 25 

Keywords: Hydrologic modelling, Multi-criteria calibration, Uncertainty analysis, Bayesian inference, 26 

GLUE 27 

1 Introduction 28 

Hydrologic modelling has benefited from significant developments over the past two 29 

decades, and this has led to increasing complexity in hydrologic models and an advance from 30 

lumped conceptual models toward semi-distributed and distributed physics-based models. These 31 

models include many parameters which need to be estimated through an adjustment procedure 32 

using historical observation data. The automatic calibration conducted without sufficient 33 

hydrological expertise might yield improper parameter values which can result in unreasonable 34 

regimes of model responses that are not controlled by measurements (Refsgaard, 1997; Wagener 35 

et al., 2001). Moreover, even ‘well calibrated’ parameter values can yield poor performance with 36 

respect to an independent validation data set. 37 

Problems with parameter adjustment in hydrologic models can be attributed to different 38 

factors. Conceptually, aggregation of all residuals into a single objective function during 39 

calibration does not provide sufficient detail about model inadequacy  (Gupta et al., 1998). For 40 

example, single-objective metrics do not distinguish between high-flow and low-flow model 41 

behaviour. This realization has motivated multi-criteria calibration approaches in which multiple 42 

sets of observations and/or multiple evaluation criteria are employed (Gupta et al., 1998; Legates 43 

and McCabe, 1999; Madsen, 2000; Yapo et al., 1998).  Multi-criteria calibration uses more than 44 

one index to describe the characteristics of the error vector (e.g., separate Nash-Sutcliffe values 45 
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for high-flow and low-flow data), resulting in an objective-function tradeoff curve and 46 

corresponding set of “Pareto” optimal parameter values. 47 

Another strategy for increasing the usefulness of predictive hydrologic models is to 48 

rigorously account for different sources of uncertainty (e.g., uncertainties associated with 49 

estimated parameter values as well as uncertainties in meteorological inputs and other non-50 

calibrated forcing functions). In fact, it is very important to include an assessment of uncertainty 51 

in the calibration process. Razavi et al. (2010) named such approaches ‘uncertainty‐based 52 

calibration’ which refers to the coupling of an environmental model with an uncertainty engine 53 

such that the uncertainty engine repeatedly samples model parameter configurations to develop a 54 

calibrated probability distribution for the parameters. Other research has emphasized 55 

comprehensive model assessment (or model evaluation) procedures whereby parameter 56 

estimation is done probabilistically to derive the probability density function (PDF) of the model 57 

outcome(s) of interest, through traditional ‘frequentist’ approaches (e.g. Bates and Watts, 1988; 58 

Reichert, 1997; Seber and Wild, 1989) and Bayesian inference approaches. 59 

From a Bayesian perspective, uncertainty-based calibration seeks to elucidate posterior PDFs 60 

for various parameters and model outcomes given some prior information and available data.  61 

These posterior PDFs then form the basis of a complementary predictive uncertainty analysis 62 

(Bates and Campbell, 2001; Box and Tiao, 1973; Gelman et al., 2004; Kavetski et al., 2002; 63 

Kuczera, 1983; Kuczera and Parent, 1998; Thiemann et al., 2001). The Bayesian approach to 64 

model specification and uncertainty analysis is particularly appealing as it allows for formal 65 

specification and propagation of an error model (Marshall et al., 2007). Furthermore, in the 66 

Bayesian approach, any a priori knowledge about model parameters can be used in terms of prior 67 

distributions, which are then updated for any particular catchment using the data available. For 68 
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complex hydrologic models, Bayesian inference is aided by the use of numerical procedures that 69 

implement Markov Chain Monte Carlo (MCMC) sampling. In this regard, a number of MCMC 70 

samplers have been proposed, including BaRE (Bayesian Recursive Estimation) (Thiemann et 71 

al., 2001); SCEM-UA (Shuffled Complex Evolution Metropolis – University of Arizona) (Vrugt 72 

et al., 2003b), BATEA (Bayesian Total Error Analysis) (Kavetski et al., 2002; Kavetski et al., 73 

2006), and DREAM (Differential Evolution Adaptive Metropolis) (Vrugt et al., 2009). 74 

At the heart of Bayesian inference is the use of formal likelihood functions to analyse 75 

parameter uncertainty. A given likelihood function must make explicit assumptions about the 76 

form of the model residuals (i.e., deviations between simulations and observations) (Stedinger et 77 

al., 2008). Thus, a major criticism of the Bayesian approach is that in hydrologic modelling the 78 

appropriate statistical form for a given set of model residuals is not always clear, and this makes 79 

it difficult to establish an appropriate likelihood function (e.g., Beven et al., 2008). To address 80 

this issue, some researchers have emphasized the development of more appropriate likelihood 81 

functions by using hierarchical Bayesian structures that disaggregate different sources of 82 

uncertainties (e.g., Huard, 2008; Kuczera et al., 2006; Moradkhani et al., 2005; Renard et al., 83 

2010; 2011; Wei et al., 2010). However, development and application of such formulations to 84 

complex non-linear hydrological models is non-trivial and may be computationally intractable in 85 

some case studies using existing state-of-the-art MCMC samplers. The issue of defining an 86 

appropriate Bayesian likelihood formulation becomes even more challenging when one considers 87 

a multi-response or multi-criteria approach – an approach that some have argued is the most 88 

appropriate for hydrological modelling (e.g., Hamilton, 2007; Montanari, 2007). 89 

Recently, the concept of epistemic and aleatory uncertainties in hydrological modelling has 90 

been discussed among researchers (Beven et al., 2012; Beven et al., 2011; Clark et al., 2012; 91 
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Montanari, 2011). Uncertainties are categorized as aleatory (also called natural uncertainty) if 92 

they are presumed to be the intrinsic randomness of a stochastic process which can be 93 

represented in terms of the probabilities of different outcomes. On the other hand, many of the 94 

errors that enter into the modelling process stem from a lack of knowledge about processes and 95 

boundary conditions. These errors are called epistemic or limited-knowledge uncertainty. In 96 

statistical models (including Bayesian inference structures), uncertainties are accounted for by 97 

providing a representation of all of the important sources of uncertainty as aleatory (Beven et al., 98 

2011). As a consequence, the results of Bayesian methods might not be robust when many of the 99 

errors that affect modelling uncertainty in hydrology are epistemic (Beven et al., 2011; Beven et 100 

al., 2008). However, statistical methods are believed to be able to fit epistemic uncertainties 101 

provided that the inherent regularities are well represented by the statistical model itself 102 

(Montanari, 2011). Similar to almost all studies in the literature on uncertainty analysis of 103 

rainfall-runoff models, the Bayesian method of our paper also considers all uncertainties to be 104 

aleatory.  105 

Despite the robust theoretical underpinnings of a formal Bayesian approach to parameter 106 

inference, a variety of alternative and informal approaches have been proposed for uncertainty-107 

based multi-criteria calibration of complex hydrological models. Examples include a Pareto-108 

based calibration approach (Gupta et al., 1998) and informal MCMC sampling (Blasone et al., 109 

2008a; Vrugt et al., 2003a). Importance sampling techniques have also been used for informal 110 

uncertainty-based calibration, with GLUE (Generalized Likelihood Uncertainty Estimation) 111 

(Beven and Binley, 1992) being the most commonly used approach. GLUE is based on the 112 

concept of ‘equifinality’ and classifies Monte Carlo samples as having produced model output 113 

that is either ‘behavioural’ (i.e., plausible, given the data and one’s knowledge of the system) or 114 



6 

 

‘non-behavioural’. The behavioural solutions are then used to derive the probability distribution 115 

function for parameters and model outputs. The GLUE methodology can be easily extended to 116 

multi-criteria calibration problems (e.g. Blazkova and Beven, 2009). A drawback of informal 117 

methods is that such approaches do not require formal specification of an error model and might 118 

not be reliable for uncertainty analysis (Kavetski et al., 2002). 119 

Along with development of a variety of uncertainty-based calibration routines, some 120 

researchers have focused their efforts towards comparison between formal and informal 121 

methods. Overall, these efforts generally indicate relatively close agreement among alternative 122 

methods, in terms of predictive capability (Beven et al., 2008; Jeremiah et al., 2011; Jin et al., 123 

2010; Li et al., 2010; Qian et al., 2003; Vrugt et al., 2008; Yang et al., 2008). Note that some 124 

studies have only considered informal methods in their comparisons (e.g., Blasone et al., 2008b). 125 

From both a comparative and theoretical perspective, previous literature demonstrates that 126 

MCMC sampling and Bayesian inference can be considered a preferred approach to deal with 127 

uncertainty-based calibration, as long as the computational budget allows full convergence of the 128 

MCMC sampler. Achieving convergence is not problematic if one is dealing with rainfall-runoff 129 

models with manageable simulation runtimes. However, when computational budget limitations 130 

exist, MCMC sampling may not be an appropriate choice. Furthermore, the observed similarity 131 

between the predictive capabilities of formal and informal approaches suggests that one might be 132 

able to gain insight into predictive uncertainty by means of informal approaches without getting 133 

involved in likelihood definition and corresponding assumptions. Most of previous papers 134 

comparing formal and informal approaches have only considered single-criterion calibration 135 

scenarios. Balin-Talamba (2004) and Balin-Talamba et al. (2010) considered multi-criteria 136 

calibration of hydrologic models applying GLUE and MCMC sampling. These studies evaluated 137 
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the impact of multi-response calibration on predictive uncertainty using GLUE and MCMC, in 138 

comparison with single-criterion calibration. However, the GLUE and MCMC techniques are 139 

only visually compared in Balin-Talamba (2004) and no comparative measures are reported. To 140 

the best of our knowledge, comparison among formal and informal techniques from a multi-141 

criteria perspective using quantitative comparative measures has yet to be reported on in the 142 

literature. 143 

The main objective of this research is to evaluate the applicability of different uncertainty 144 

analysis approaches to multi-criteria calibration and uncertainty analysis of hydrologic models 145 

considering identical computational budget. The methodologies addressed in this paper are 146 

statistically-based Bayesian inference using MCMC sampling (Bates and Campbell, 2001; 147 

Kuczera, 1983; Schaefli et al., 2007; Vrugt et al., 2009), and sampling-based uncertainty 148 

estimation using GLUE (Beven and Binley, 1992; Blazkova and Beven, 2009). Bayesian 149 

inference was implemented using the DREAM MCMC sampler (Vrugt et al., 2009) through a 150 

robust multi-criteria formulation. Also, we consider an alternative Bayesian method based on the 151 

results of MCMC sampling up to a limited computational budget (i.e., using the MCMC before 152 

convergence). Such a method cannot be viewed informal, as it uses formal likelihood function; 153 

however, it would not be formal either, as convergence has not occurred, meaning that the 154 

solutions in the chain could not be considered as samples from posterior distributions. 155 

2 Methodology 156 

A typical multi-criteria model calibration process can involve multiple likelihood functions 157 

used for different sets of measurements, e.g., discharge, sediment, snow, etc. However, even in 158 

the case of a model with only one output flux to be simulated, the model evaluation may still be 159 



8 

 

considered to be inherently multi-criteria (Gupta et al., 1998). The multi-criteria numerical 160 

experiments in this study only deal with one response (discharge), splitting it into high- and low-161 

flows. This strategy is expected to be adequate for an initial exploration of multiple uncertainty-162 

based calibration techniques within a multi-criteria formulation. 163 

The comparison framework of this study uses the posterior distribution of model parameters 164 

derived from MCMC sampling, as well as the behavioural or optimal parameter sets obtained 165 

from other methods. In order to be consistent in wording, the term “posterior” is applied to all of 166 

the considered techniques even though the results of non-converged MCMC sampling and 167 

GLUE are not a formal statistical  posterior distribution. Results are then compared with respect 168 

to computational burden, complexity, and predictive capacity. Numerical experiments are aimed 169 

at exploring advantages and disadvantages of the uncertainty analysis techniques addressed in 170 

this study in multi-criteria calibration of rainfall-runoff models. The reliability of these methods 171 

is evaluated using two rainfall-runoff models, a 5-parameter lumped model, HYMOD 172 

(Hydrology model) (Boyle, 2000), and an 11-parameter semi-distributed model, WetSpa (Water 173 

and Energy Transfer between Soil, Plants and Atmosphere) (Liu et al., 2003; Wang et al., 1996). 174 

The GLUE approach of this paper employs informal likelihood functions and results are 175 

compared with those obtained from formal Bayesian inference as well as non-converged MCMC 176 

sampling. The use of GLUE without a formal likelihood function has been the subject of much 177 

debate (e.g., Beven et al., 2008; Mantovan and Todini, 2006; Montanari, 2005; Thiemann et al., 178 

2001). Nevertheless, we used GLUE with an informal generalized likelihood function in this 179 

study because the objective of the study was to assess the performance of informal methods.  180 

Much of the reason informal methods like GLUE are so well utilized in practice is because they 181 

can use informal likelihood functions based on long utilized deterministic calibration objective 182 
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functions like sum of squared errors or the Nash Sutcliffe coefficient. It is also worth noting that 183 

GLUE could also be applied using formal likelihood functions (Freni and Mannina, 2009; 184 

Romanowicz et al., 1994), but this is not addressed in the present paper. 185 

The comparison approach (informal to formal methods) of this study is exactly consistent 186 

with previous comparative studies of uncertainty-based calibration in hydrological modelling 187 

(e.g. Vrugt et al., 2008; Yang et al., 2008). Beven (2009) noticed that in Vrugt et al. (2008) the 188 

formal Bayes estimates are based on an autoregressive error model, while such information is not 189 

supplied to the GLUE simulations. Despite the difference between the formulations of the 190 

Bayesian approach and GLUE in Vrugt et al. (2008), it is shown in that paper that formal and 191 

informal uncertainty analysis methods have some common ground with respect to the total 192 

predictive uncertainty in single-criterion calibration cases. In this paper, multiple quantitative 193 

comparative measures are applied and we evaluate the similarity in behavior of MCMC and 194 

GLUE in the multi-criteria context. As such, we consider the same implementations of MCMC 195 

sampling and GLUE as used in Vrugt et al. (2008).    196 

2.1 Formal multi-criteria Bayesian inference 197 

Bayesian statistics have been shown to be a robust methodology for formal multi-criteria 198 

calibration and uncertainty analysis of hydrologic models, as long as all underlying assumptions 199 

are satisfied. Both analytical and numerical Bayesian approaches have been used to deal with 200 

multi-criteria calibration (Balin-Talamba et al., 2010; Hong et al., 2005; Kuczera, 1983; Kuczera 201 

and Mroczkowski, 1998; Mroczkowski et al., 1997; Schaefli et al., 2007). The notion of multi-202 

criteria in Bayesian inference structures is mostly concerning cases in which multiple responses 203 

of observations are employed (e.g., measured streamflows and measured soil water content), and 204 
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thus, it is also called multi-response calibration in the literature. There are also reports of multi-205 

criteria Bayesian formulations using a single response. For instance, Schaefli et al. (2007) 206 

considered multiple likelihood functions which were associated with high- and low-streamflows. 207 

The research presented here used a previously published multi-criteria formulation (Balin-208 

Talamba et al., 2010; Schaefli et al., 2007). 209 

Moreover, the initial experiments of Bayesian inference in these case studies showed that 210 

errors were correlated. As a result, we had to consider development of a formal likelihood 211 

function which accounts for auto-correlation. As such, auto-regressive (AR) parameters were 212 

introduced to the high- and low-flow time series to address auto-correlation among residuals 213 

(e.g., Bates and Campbell, 2001; Kuczera, 1983). The resulting Bayesian inference formulation 214 

introduces a first-order AR scheme to represent the residuals (Balin-Talamba et al., 2010; 215 

Schaefli et al., 2007), details of which are provided in the Appendix of this paper. Note that the 216 

AR scheme was applied separately to the low- and high-flow regimes and this resulted in the 217 

addition of two AR parameters ( L  for low-flows and H  for high-flows) to the set of calibrated 218 

parameters.  219 

For this paper, the DREAM MCMC sampler was used for formal Bayesian inference (Vrugt 220 

et al., 2009). DREAM maintains ergodicity while showing excellent efficiency even if the target 221 

posterior distributions are complex, highly nonlinear, and/or multimodal. DREAM runs multiple 222 

Markov chains simultaneously to facilitate efficient global exploration of the parameter space. 223 

Like other adaptive samplers, DREAM speeds convergence by dynamically adjusting the scale 224 

and orientation of the proposal distribution. 225 

 226 
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2.2 Sampling-based Uncertainty Estimation using Non-converged MCMC 227 

Even though applications of MCMC sampling with pseudo-likelihood functions have been 228 

previously reported in the literature (Blasone et al., 2008b; Vrugt et al., 2003a), there has been no 229 

report on evaluation of the results from non-converged MCMC samplers with formal likelihood 230 

functions. In this paper, non-converged DREAM results are used to approximate the converged 231 

MCMC sampling strategy. The number of solutions taken from a given DREAM chain was 232 

defined to be consistent with the informal methods considered in this paper (explained below). 233 

For example, if the informal methods use a budget of 10000 simulations, then we only consider 234 

10000 solutions from the initial part of the long DREAM chain. Afterwards, the last 1000 235 

solutions of this set would be treated as posterior solutions to derive prediction intervals. Clearly, 236 

such an approach is neither formal (as convergence has not occurred) nor informal (as it uses 237 

formal likelihood function). That is the reason why we separated this approach from formal 238 

Bayesian and informal GLUE approaches. 239 

2.3 Sampling-based Uncertainty Estimation using GLUE 240 

The GLUE technique (Beven and Binley, 1992) is the most commonly applied method in the 241 

family of informal sampling-based methods. In GLUE, parameter uncertainty accounts for all 242 

sources of uncertainty, because ‘‘the likelihood measure value is associated with a parameter set 243 

and reflects all these sources of error and any effects of the covariation of parameter values on 244 

model performance implicitly’’ (Beven and Freer, 2001). The GLUE analysis conducted here 245 

consisted of the following four steps: 246 

1. Defining the generalized informal likelihood measure )(θl . Generally, the measure )(θl  is 247 

a pseudo-likelihood function which demonstrates the model performance for a particular 248 
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parameter set θ . In this study, we used the generalized likelihood function provided in previous 249 

multi-criteria GLUE studies (Balin-Talamba, 2004; Lamb et al., 1998) as follows: 250 
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where 
iW  represents the weighting factor for criterion  i  (explained later), M  is the number 252 

of criteria, 2
,i  and 2

,io  are the variance of simulation errors and the variance of observed data, 253 

respectively, over the time window in which criterion i  is calculated. The likelihood function 254 

)(l  equals 1 if the observed and simulated data are the same for all criteria, and reduces 255 

towards zero as the similarity decreases. Note that, in the multi-criteria calibration problem of 256 

this paper, we calculate this likelihood function based on the information in high- and low-flow 257 

time periods (M=2). 258 

2. After defining )(θl , a large number of parameter sets are randomly sampled from the prior 259 

distribution and each parameter set is assessed as either ‘‘behavioural’’ or ‘‘non-behavioural’’ 260 

through a comparison of the likelihood measure with a selected threshold value which is 261 

explained in details later in this section of the paper. 262 

3. Each behavioural parameter set is given a likelihood weight according to 263 
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)()( θθ , where N  is the number of behavioural parameter sets. 264 

4. Finally, prediction uncertainty of streamflow is described by quantiles of the cumulative 265 

distribution realized from the weighted behavioural parameter sets, i.e., at each time step, the 266 

model outcome associated to behavioural solutions are identified and prediction intervals (for 267 

example 95% intervals) are constructed based on quantiles (such as 2.5 and 97.5 percentiles). 268 
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The behavioural threshold for the GLUE pseudo-likelihood function defines the boundary 269 

between behavioural and non-behavioural solutions. In this study, based on the strategy in Balin-270 

Talamba (2004) and Lamb et al. (1998), we followed the same strategy (also described below) to 271 

filter out behavioural samples. Once samples are taken from prior distributions, the generalized 272 

likelihood function Eq. (1) is calculated considering high- and low-flow time periods whereby 273 

the weights are equal for both periods, i.e., 5.0LW and 5.0HW  (note that L and H stand for 274 

low- and high-flows, respectively):  275 
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 Parameter sets are now sorted based on the combined criterion, and the top N samples are 277 

considered behavioural solutions. Identifying N is in fact a subjective decision in GLUE, and 278 

would probably affect the uncertainty bounds computed using the GLUE method. Among the 279 

traditional choices reported in literature is N being equal to the number of top 10% of solutions 280 

(Binley and Beven, 1991; Lamb et al., 1998) sampled from the prior distributions. However, 281 

Lamb et al. (1998) showed that relaxation of the rejection threshold to define a larger proportion 282 

of the total number of samples as behavioural would cause only slight modifications of 283 

uncertainty bounds. The reason for this insensitivity to the rejection threshold is that even after 284 

selecting a larger number of behavioural samples, the majority of samples would achieve only 285 

small likelihood values. Therefore, the predictions associated with these poor samples would fall 286 

within the tails of the cumulative distributions of model outcome. Given the rescaling stage in 287 

GLUE, these predictions would have little effect on the location of uncertainty bounds (Lamb et 288 

al., 1998). In this paper, we also considered the top 10% strategy to define behavioural samples. 289 
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2.4 Comparison measures 290 

The main goal of calibration and uncertainty analysis is to assess models’ predictive 291 

capability. Therefore, in order to evaluate uncertainty-based calibration techniques, it seems 292 

necessary that we focus more on the validation time period rather than the calibration period. 293 

Nonetheless, a portion of our analysis examined differences between calibration and validation 294 

results. The comparative measures are calculated based on the results obtained using the 295 

posterior parameter sets. It should be noted that the parameter uncertainty is derived based on the 296 

envelope of model outputs using the posterior parameter sets. Moreover, in order to derive the 297 

predictive uncertainty, the entire set of posterior parameters is first used in simulation model to 298 

derive the parameter uncertainty. Afterwards, error parameters are sampled to generate a 299 

correlated residual time series which is then added to model outputs. 300 

To evaluate the quality of resulting model outcomes, efficiency measures such as NS is used 301 

to assess model performance. In the multi-criteria context of this paper, we illustrate the 302 

scatterplot of posterior parameter sets in bi-criteria space (i.e., NS for high- and low-flows).  303 

In addition, the generated model outcomes using the posterior solutions derived from 304 

different techniques are used to derive the predictive uncertainty which can be assessed using a 305 

variety of measures. Among the simplest measures for comparing alternative realizations of 306 

predictive uncertainty are the reliability and sharpness measures (Yadav et al., 2007). For a given 307 

prediction interval, the reliability measure is the percentage of discharge observations that are 308 

captured by the prediction interval. Reliability values are calculated by counting the number of 309 

times the observed streamflow falls within the prediction band, divided by the length of the time 310 

series. Sharpness is a measure of the prediction intervals’ width relative to the hydrograph 311 

prediction bounds obtained from sampling prior feasible parameter ranges. If the posterior 312 
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prediction bounds for the hydrograph form a single line, sharpness would be 100%. Whereas 313 

when the posterior prediction bounds are the same as those obtained using priori feasible 314 

parameter ranges, sharpness would be 0% (clearly undesirable). Ideally, and for a given 315 

prediction interval, the reliability should be equal to the desired interval percentage (i.e., 90% of 316 

observations should be captured by a 90% prediction interval) and larger values of the 317 

corresponding sharpness measure are better than smaller values. 318 

The Bayesian posterior predictive p-value is another measure of the predictive capacity of 319 

uncertainty-based calibration techniques (Gelman et al., 2004, pp. 162–163). The Bayesian p-320 

value is the probability that the model prediction at a particular time step could be more extreme 321 

than the observed data at that same time step. Such values may be estimated by the proportion of 322 

simulations for which the simulated value equals or exceeds the observed value. Probability 323 

distributions of p-values can be constructed from the complete series of p-value calculations. If 324 

the model output and measured data are consistent, the corresponding p-value distribution should 325 

be uniformly distributed over the interval [0,1]. This can be checked graphically using QQ-plots 326 

(Laio and Tamea, 2007; Thyer et al., 2009) and deviations from the bisector (the 1:1 line) denote 327 

interpretable deficiencies (see Figure 1). 328 

[ Figure 1 goes here. ] 329 

Our approach to compute comparative performance metrics with GLUE such as reliability, 330 

sharpness and Bayesian p-values is consistent with studies computing one or more of these 331 

metrics for GLUE results based on a pseudo-likelihood function such as Vrugt et al. (2008), 332 

Yang et al. (2008) and Jin et al. (2010) 333 
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2.5 Case Studies 334 

Bayesian inference is expected to result in robust expression of predictive uncertainty, as 335 

long as all assumptions are satisfied and the posterior PDFs are taken from a converged MCMC 336 

sampler. Two case-studies involving real data from two catchments are used in this paper, for 337 

which the DREAM sampler is run to convergence to extract formal posterior distributions. The 338 

non-converged MCMC sampling and GLUE methods are also applied to the same problems. One 339 

case-study applies the HYMOD hydrologic model to the Leaf River catchment, and one applies 340 

the WetSpa hydrologic model to the Hornad River catchment, where details about these 341 

catchments are provided below. 342 

The first study area addressed in this paper is the 1994 km2 Leaf River watershed located 343 

north of Collins, Mississippi. This catchment has been studied intensively in the past (e.g., 344 

Boyle, 2000; Sorooshian et al., 1993; Thiemann et al., 2001; Vrugt et al., 2003b; Vrugt et al., 345 

2008) and may be considered a standard benchmark for parameter estimation of hydrological 346 

models. In this regard, three years (i.e., 1953-1955) of hydrologic data (i.e., mean areal 347 

precipitation [mm/d], potential evapotranspiration [mm/d], and streamflow [m3/s]) were used. 348 

The first two years of data were used for model calibration, while the third year served as a 349 

validation dataset for assessing predictive capability. We used the simulation model HYMOD in 350 

this catchment to predict streamflow at a single location in the Leaf River channel network. The 351 

HYMOD model is a relatively simple rainfall excess model (Moore, 1985) connected with a 352 

series of linear reservoirs. HYMOD requires estimation of five parameters and these are listed in 353 

Table 1 along with their prior range. 354 

[ Table 1 goes here. ] 355 
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The second case study is the 1,131 km2 Hornad River catchment located in Slovakia. The 356 

observations for this catchment were collected from 1991 to 2000, and the first five years (i.e., 357 

1991 to 1995) were used for calibration and the remaining data (i.e., 1996 to 2000) was used for 358 

validation. We used the simulation model WetSpa in this catchment to predict streamflow at a 359 

single location in the Hornad River channel network. Unlike HYMOD, WetSpa is a grid-based 360 

hydrologic model that simulates water and energy transfer between soil, plants and the 361 

atmosphere. WetSpa can be configured to run in semi-distributed or fully distributed mode of 362 

which the former was chosen for this study. According to the previous applications of WetSpa 363 

model to Hornad catchment (Bahremand et al., 2007; Liu et al., 2003; Shafii and Smedt, 2009), 364 

and as shown in Table 2, 11 WetSpa parameters were targeted for calibration. 365 

[ Table 2 goes here. ] 366 

The multi-criteria formulation used in this paper was created by splitting a single time series 367 

of responses (i.e., discharges) into high- and low-flows. Following Schaefli et al. (2007), high-368 

flows corresponded to time steps in which the hydrograph was rising, and low-flows were 369 

defined based on the recession part of hydrograph. Separate Nash-Sutcliffe values (or formal 370 

likelihood values, in the case of MCMC sampling) were then calculated for each flow regime, 371 

yielding a bi-criteria calibration problem. 372 

The computational overhead required for GLUE and DREAM are both dominated by the 373 

simulation model run time and as such, for the same number of model simulations completed, 374 

GLUE and DREAM require approximately the same computation time.  The simulation model 375 

run time for HYMOD and WetSpa are 0.65 and 2.25 seconds, respectively, on a PC with 3-GHz 376 

Intel processor. 377 
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3 Results 378 

For each of the case studies, the DREAM sampler was first applied to establish a converged 379 

chain of samples, and the non-converged DREAM and GLUE were then applied. Note that, as 380 

mentioned earlier, we used an AR-based Bayesian formulation in this paper. Transformation 381 

and/or scaling of parameters is an important factor that can affect the difficulty of parameter 382 

estimation (Bates and Watts, 1981; Johnston and Pilgrim, 1976; Kuczera, 1983) and the 383 

convergence behaviour of MCMC samplers (Hills and Smith, 1992). For the HYMOD Leaf 384 

River and WetSpa Hornad River case studies, a series of preliminary numerical experiments 385 

were performed to explore alternative parameter transformations within the DREAM sampler. 386 

These experiments indicated that the most suitable transformation was to logarithmically 387 

transform HYMOD and WetSpa model parameters and use un-transformed auto-regressive 388 

parameters. It should also be noted that, in the formal Bayesian approach, discharges were also 389 

transformed logarithmically to stabilize the error variance. 390 

3.1 HYMOD 391 

When applied to the HYMOD Leaf River case study, the DREAM sampler converged after 392 

approximately 143000 simulations. The convergence of MCMC sampler was checked using the 393 

Gelman-Rubin convergence metric, which was also cross-checked to verify residuals normality 394 

(via inspection of a QQ-plot) and non-correlation (via inspection of the auto-correlation 395 

function). Furthermore, 1000 out of the last 10000 post-convergence samples were taken from 396 

the DREAM chain and used to derive baseline posterior parameter distributions. For the non-397 

converged DREAM approach, a new trial of DREAM was considered up to 10000 simulations of 398 

which the last 1000 samples were used to derive corresponding posterior distributions. The 399 
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GLUE method was applied using the generalized likelihood function Eqs (1-2) considering two 400 

scenarios, (i) a budget of 10000 simulations called ‘GLUE Low-budget’, and (ii) identical 401 

computation budget to DREAM (i.e., 143000 simulations in HYMOD case study) and is called 402 

‘GLUE Full-budget’. 403 

Figure 2 illustrates the posterior parameter information derived by the various calibration 404 

methods when applied to the HYMOD Leaf River case study. As observed in Figure 2 the 405 

posterior parameter ranges varied across methods, especially with respect to parameters Rs and 406 

Rq. Most of the ranges given by non-converged DREAM were wider than those given by 407 

converged DREAM. The difference between the location of posterior solutions derived from 408 

Bayesian inference and GLUE is not surprising, and can be explained by the fact that different 409 

likelihood functions have been used in these methods. However, comparison between these 410 

posterior ranges indicates that incorporating two additional error parameters (i.e., higher 411 

complexity in comparison to informal formulation) resulted in a higher level of identifiability, 412 

especially for parameters Rs and Rq.  413 

[ Figure 2 goes here. ] 414 

 415 

Figure 3 illustrates the Nash-Sutcliffe (NS) values of the HYMOD Leaf River case study for 416 

calibration (upper panel) and validation (lower panel) period, demonstrating the results of 417 

DREAM (light points) versus non-converged DREAM and GLUE (dark points) along low and 418 

full computational budget. Conversion of DREAM likelihood values into equivalent NS values 419 

was non-trivial because the fitted error series should also be accounted for. Proper conversion 420 

into equivalent NS values must consider additional elements of the revised Bayesian 421 
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formulation, namely, the two extra auto-regressive parameters (i.e., L  and H ) and the AR-422 

based residuals term ( t ). Thus, for a given parameter vector iφ  containing a model parameter 423 

set iθ
 and corresponding iL,  and iH ,  auto-regressive parameters, the corresponding error 424 

variances were sampled to generate 100 different time series of error realizations. These errors 425 

were then combined with simulated discharges and auto-regressive terms to yield 100 different 426 

NS values for parameter vector iφ . The average of these NS values was then used as the 427 

equivalent NS value converted from the original DREAM likelihood value. Repeating this 428 

process for all parameter vectors contained in the DREAM posterior samples yielded the 429 

equivalent NS values plotted in Figure 3 for calibration and validation period. 430 

[ Figure 3 goes here. ] 431 

As shown in the calibration part in Figure 3 (upper panel), the results obtained from DREAM 432 

were superior (based on NS values) to those given by other methods, and there was some overlap 433 

between the posterior sets of solutions given by converged and non-converged DREAM sampler. 434 

Note that we sometimes call these sets of solutions ‘posterior clouds’, as they look like a cloud in 435 

NS space. In the validation part of Figure 3 (lower panel), the non-converged DREAM posterior 436 

cloud very closely resembles the DREAM posterior cloud.   This is a good indication that much 437 

of the high-density areas of the parameter space were explored prior to the DREAM sampler 438 

satisfying the Gelman-Rubin convergence criteria.  439 

The results of GLUE in Figure 3 also indicate that regardless of the computation budget 440 

considered, the samples were located in fairly identical space in NS space (but with different 441 

densities) both in calibration and validation period. However, GLUE with full computational 442 
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budget performed slightly better considering extreme NS values of GLUE in Figure 3. The 443 

GLUE results in calibration period showed that 8% of behavioural samples resulted in negative 444 

NS values for low-flows, but since their NS values for high-flows were high, they could rank in 445 

the top 10% of all GLUE samples. It should be pointed out that, similar to previous studies 446 

(Balin-Talamba, 2004; Lamb et al., 1998), the threshold for classifying solutions as behavioural 447 

utilized the formulations in Eqs. (1-2), and did not take into consideration the condition of 448 

positive NS values. This explains why there are some solutions with negative low-flows NS 449 

values among posterior samples.    450 

Figure 3 also shows that GLUE yielded good performance in terms of matching the 451 

simulations with observation in validation low-flows, but not as good in high-flows compared to 452 

DREAM sampler. In contrast, the posterior cloud generated by DREAM in validation period 453 

(Figure 3 lower panel) emphasized matching high-flows (i.e., points clustered in the 0.8 to 1.0 454 

range for NShigh) at the expense of matching low-flows (i.e., points clustered around NSlow = 0.5).  455 

Ideally, all posterior samples would generate positive NS values in validation period for low- 456 

and high-flows. The vertical dashed lines in Figure 3 (lower panel) separates the region with 457 

positive NS values for low-flows, and thus, the ideal region would be the right half of the scatter 458 

plots. It is observed that all posterior samples from DREAM and all but one of the non-459 

converged DREAM posterior samples were located in this ideal region. However, almost 40% of 460 

posterior GLUE (full-budget) samples generated negative validation period NS values for ‘low-461 

flows’. It should be pointed out that almost 92% of these samples had resulted in positive NS 462 

values both for low- and high-flows in calibration period. 463 

Figure 4 (left panels) illustrates the tradeoff between reliability and sharpness measures for 464 

the HYMOD Leaf River case study (only in validation period) for the various methods that were 465 
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considered (i.e., DREAM, non-converged DREAM, and GLUE with low and full computational 466 

budget). The reliability and sharpness values were calculated based on 95% prediction intervals 467 

on the corresponding posterior PDFs of simulated discharges. The reliability was calculated 468 

based the percentage of coverage of observations by prediction bounds, whereas sharpness was 469 

based on the amount of reduction in discharge ranges through comparison with the range of 470 

model simulations using prior parameter ranges. In order to define such prior intervals, 100000 471 

Latin hypercube samples were taken from prior parameter ranges which were used in HYMOD 472 

to generate 100000 discharge hydrographs. The minimum and maximum of discharges at each 473 

time steps were then identified to serve as prior discharge ranges. 474 

[ Figure 4 goes here. ] 475 

The HYMOD results in Figure 4 (left panel) show that the converged DREAM sampler and 476 

‘GLUE Full-budget’ cannot dominate each other with respect to both reliability and sharpness. 477 

Compared to ‘GLUE Full-budget’, the converged DREAM resulted in improved sharpness both 478 

for low- and high-flows. In terms of reliability, as the goal was to generate 95% prediction 479 

intervals, both methods came fairly close to this goal given that reliabilities in validation period 480 

ranged from 93% to 97%. Comparison between non-converged DREAM and ‘GLUE Low-481 

budget’ shows that neither of these two methods is superior to the other one with respect to both 482 

reliability and sharpness. The reliabilities of these two methods were close to 95%. The 483 

sharpness of non-converged DREAM was larger than ‘GLUE Low-budget’ in low-flows, and 484 

approximately the same in high-flows. 485 

Figure 5 contains Bayesian p-values for both the calibration and validation periods of the 486 

HYMOD Leaf River case study for non-converged and converged DREAM approaches. Note 487 
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that the p-values were derived using the entire set of posterior solutions. Figure 5 shows that 488 

even though the p-value results for the converged and non-converged DREAM sampler were 489 

different during the calibration period, the results in validation period, however, were fairly 490 

similar. Also, both methods yielded underestimation of predictive uncertainty with respect to 491 

low-flows in validation period. This might be due to the fact that we used standard Bayesian 492 

formulation without disaggregation of different sources of uncertainty, which will be discussed 493 

later in the discussion section.  494 

[ Figure 5 goes here. ] 495 

Figure 6 illustrates the prediction bounds given by the posterior simulations of the considered 496 

calibration techniques for the validation period in HYMOD case study. The bounds shown in 497 

Figure 6 are derived in a manner similar to those given for posterior parameters of Figure 2 and 498 

are assumed to represent 95% prediction intervals. As shown in Figure 6, the converged 499 

DREAM sampler reliably covers the validation dataset. Prediction bounds of the non-converged 500 

DREAM sampler resemble those generated from the converged DREAM sampler but at the cost 501 

of larger width and larger peak flow values. Figure 6 also shows that the prediction bounds 502 

associated with ‘GLUE Full-budget’ are larger than those derived with ‘GLUE Low-budget’, but 503 

covered the observations better.  504 

[ Figure 6 goes here. ] 505 

Across the various comparative measures that were evaluated in the context of the HYMOD 506 

Leaf River case study, we observed that the formal Bayesian method (both converged and non-507 

converged MCMC sampling) turned out to be more appropriate than informal GLUE strategy in 508 
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calibration period. Once the validation period was used to evaluate the methods, the formal 509 

Bayesian inference (given the formulation of this paper) resulted in a level of underestimation of 510 

predictive uncertainty, which would be probably solved through more complex HBS systems, as 511 

elaborated in discussions section. On the other hand, the GLUE methodology was only 512 

successful in partially meeting the predictive criteria in validation period. The WetSpa Hornad 513 

River real case study (Section 3.2) investigates whether these findings would hold for a more 514 

complex hydrological model (involving more uncertain parameters) applied to a different 515 

catchment. 516 

3.2 WetSpa 517 

For the WetSpa case study (i.e., application to Hornad River catchment), the DREAM 518 

sampler was again configured to use a formal auto-regressive Bayesian inference formulation 519 

and the method converged (based on the Gelman-Rubin statistic) after 470,000 simulations. As 520 

with the HYMOD studies, 10000 post-convergence DREAM samples were taken to construct the 521 

Bayesian posterior distributions. Similar to the previous case, the results of non-converged 522 

DREAM were derived based on running DREAM only up to 10000 simulations (independent 523 

trial than converged DREAM). GLUE was also applied to the WetSpa case study using low and 524 

full computational budget as described in HYMOD Leaf River case study. 525 

Figure 7 contains normalized posterior ranges of the WetSpa model parameters generated by 526 

the various calibration methods. The first result noted in Figure 7 is that some parameters were 527 

deemed non-identifiable (i.e., KS, KGI, and KRD) by the converged DREAM sampler, as indicated 528 

by 95% posterior intervals covering almost the entire prior range. When informal likelihood 529 

functions were used (i.e., GLUE), most of parameters appeared to be poorly-identifiable. 530 
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However, it should be noted that the difference between the location of posterior parameter 531 

ranges and identifiability levels obtained by formal and informal methods would be explained by 532 

the difference in the likelihood functions used in these methods. It is also observed in Figure 7 533 

that the posterior parameter ranges derived from non-converged DREAM covered those obtained 534 

from converged DREAM, and this shows how the sampler located a smaller posterior region 535 

after it converged.   536 

[ Figure 7 goes here. ] 537 

Figure 8 illustrates the Nash-Sutcliffe values for calibration (upper panel) and validation 538 

(lower panel) period of the WetSpa Hornad River case study as evaluated by non-converged 539 

DREAM and GLUE (dark points), in comparison to those calculated based on the posterior 540 

solutions of the converged DREAM sampler (light points). Note that two cases were reported for 541 

GLUE, one with low and one with full computational budget. Also note that the axes in lower 542 

panel of Figure 8 were centred between ±1, the dashed lines showing the origin where both NS 543 

values were zero. A number of GLUE solutions were not within this range and were not depicted 544 

in Figure 8. The ideal region for a given calibration method to sample from would be the upper 545 

right quadrant of validation panel where both low- and high-flow NS values were positive. It is 546 

observed in the calibration panel that DREAM yielded the best NS values both for low- and 547 

high-flows. Given that non-converged DREAM and DREAM achieve these high NS values, it 548 

seems the inclusion of an error term is important to achieve such high performance. The 549 

posterior cloud from non-converged DREAM overlaps substantially the converged DREAM 550 

posterior cloud, which indicates that the posterior distribution has likely been sampled from well 551 

before the Gelman-Rubin statistic indicated convergence. The results of GLUE (low and full 552 
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computational budgets) also indicate that increasing the number of simulations in GLUE did not 553 

result in comparable model performance as DREAM (see distance between the location of 554 

posterior clouds). It is also observed in GLUE results (both low and full budgets) that there were 555 

a considerable number of points not located in the ideal region, that is, positive NS values for 556 

low and high-flows or the upper right quadrant identified by dashed lines, even though they were 557 

all behavioural in the calibration period.  558 

[ Figure 8 goes here. ] 559 

The sharpness and reliability measures for the validation period of the WetSpa Hornad River 560 

case study are given in Figure 4 (right panel). These measures were computed in the same 561 

manner as those for the HYMOD Leaf River case study. In terms of reliability, as the goal was to 562 

generate 95% prediction intervals, all methods came fairly close to this goal for high flows given 563 

that reliabilities in validation period ranged from 94% to 98%. The same is true for validation 564 

period low flows except that ‘GLUE Low-budget’ results have a slightly lower reliability of 565 

88%. Comparing converged DREAM with ‘GLUE Full-budget’, it is observed that DREAM 566 

results dominate GLUE in both low-flows and high flows (i.e., larger reliability and larger 567 

sharpness). In other words, DREAM generates tighter 95% prediction intervals and 568 

simultaneously improves reliability. Similarly, non-converged DREAM dominates ‘GLUE Low-569 

budget’ results in high flows and practically dominates ‘GLUE Low-budget’ results in low flows 570 

(very similar reliabilities but significantly improved sharpness for DREAM). 571 

Figure 9 compares the Bayesian p-value QQ plots for non-converged and converged 572 

DREAM sampling for the calibration (upper panel) and validation periods (lower panel) of the 573 

WetSpa Hornad River case study. As implied by the sigmoid shapes of their respective p-value 574 
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curves, both DREAM samplers (i.e., converged and non-converged) exhibited systematic under-575 

estimation of uncertainty for low-flows in validation period, even though the results of 576 

converged DREAM in calibration period were promising both for low-flows and high-flows. 577 

This finding is similar to results in Thyer et al. (2009) and the previous HYMOD case study. The 578 

under-estimation of only low-flow uncertainty by the converged DREAM procedure can be 579 

considered as indication of model structural error. This suggests that improving the low-flow 580 

modules in WetSpa may be a worthwhile enterprise. Such insight highlights the usefulness of 581 

multi-criteria Bayesian p-value separation as a post-diagnostic measure for detecting model 582 

structural deficiencies. However, it is also possible that the above-mentioned issue may be due to 583 

mis-specification of likelihood function. 584 

[ Figure 9 goes here. ] 585 

Figure 10 illustrates the prediction bounds given by the posterior simulations of the 586 

considered calibration techniques for one year (i.e., 1999) of the 5-year validation period 587 

(whereas Figure 4 reliability and sharpness values summarize prediction bounds over the entire 588 

5-year period). The bounds shown in Figure 10 were derived in a manner similar to those given 589 

for posterior parameters of Figure 7 and are assumed to represent 95% prediction intervals. As 590 

shown in Figure 10, the converged DREAM sampler reliably covered the validation dataset even 591 

though the Bayesian p-value analysis indicated that the results were not perfect with respect to 592 

low-flows. Prediction bounds of the non-converged DREAM sampler resemble those generated 593 

from the converged DREAM sampler but at the cost of larger width and larger peak flow values. 594 

The prediction bounds associated with ‘GLUE Full-budget’ are larger than those derived with 595 

‘GLUE Low-budget’, but covered the observations better.  596 
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[ Figure 10 goes here. ] 597 

Across all comparative measures, the results of the WetSpa case study suggest the following 598 

conclusions: (1) the formal Bayesian inference through the standard formulation of this paper 599 

using converged DREAM yielded good results with respect to almost all predictive measures, 600 

except for p-values of low-flows in validation period; (2) the non-converged DREAM sampler 601 

yielded results that were nearly universally consistent with the converged DREAM sampler 602 

while requiring a fraction (i.e., 2%) of the computational budget; and (3) considering the 603 

predictive measures addressed in this study, GLUE did not meet all measures as satisfactorily as 604 

formal DREAM methodology, even when the full computational budget was considered. 605 

4 Discussion 606 

The DREAM results suggest that the Gelman-Rubin convergence criterion is too stringent 607 

since non-converged DREAM results closely approximates converged DREAM results and yet 608 

requires a fraction of the computational budget. It may also be possible to further improve the 609 

results of the non-converged DREAM sampler (i.e., make it more closely approximate the 610 

converged DREAM results) by filtering out obviously low quality solutions for the calibration 611 

period (e.g., those with NS values smaller than 0.5 in upper left panels of Figures 3 and 8). Also, 612 

one might think of applying alternative convergence measures. A potential hydrology-based 613 

convergence metric can be the reproduction of hydrological signatures that represent the overall 614 

hydrologic behaviour of the catchment (Gupta et al., 2008; Yilmaz et al., 2008). Future research 615 

should explore these and other alternative convergence measures in a multi-criteria context. 616 
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Comparison between formal and informal methods could also be viewed from the standpoint 617 

of aleatory and epistemic uncertainties, which was also elaborated in the introduction section of 618 

this paper. The errors in the case studies of this paper are assumed to be aleatory (especially in 619 

Bayesian inference methodology), even though in reality they could be a mixture of both 620 

aleatory and epistemic uncertainties. The results reveal that validation period performance 621 

measures are generally poorer compared to calibration period which is expected to be caused by 622 

epistemic errors (Beven et al., 2011). Thus, in the presence of epistemic errors, neither the 623 

standard Bayesian formulation nor the informal methods (such as GLUE) would be perfectly 624 

reliable in prediction mode. There are improved informal and formal approaches for case studies 625 

where epistemic errors are thought to be significant, e.g., the use of hierarchical Bayesian 626 

structures (e.g., Huard, 2008; Kuczera et al., 2006; Moradkhani et al., 2005; Renard et al., 2010; 627 

Wei et al., 2010), or the concept of ‘limits of acceptability’ used for identifying behavioural 628 

models in GLUE (Blazkova and Beven, 2009; Liu et al., 2009). Comparison between these two 629 

more advanced formal and informal uncertainty analysis methods is an interesting future 630 

research avenue. 631 

5 Concluding Remarks 632 

This paper evaluates the applicability of formal (Bayesian inference) and informal (GLUE) 633 

multi-criteria methods to uncertainty-based calibration in hydrological modelling. Bayesian 634 

inference is implemented through DREAM sampling based on a multi-criteria formulation. The 635 

results of non-converged DREAM are also evaluated. The results are compared with those 636 

obtained from two scenarios for GLUE, using a restricted computational budget and the full 637 

computational budget equivalent to the budget required for DREAM sampler to converge. The 638 
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various methods are applied to two cases involving the 5-parameter HYMOD model and the 11-639 

parameter WetSpa model. Results demonstrate that there can be considerable differences in 640 

prediction intervals generated by formal and informal strategies for uncertainty-based multi-641 

criteria calibration. Future uncertainty-based calibration studies for simulation models with a 642 

large number of parameters should be aware of the potential considerable difference between the 643 

results of formal and informal strategies. 644 

Results also demonstrate that it is advisable to consider multiple comparative measures, 645 

including traditional metrics like the Nash-Sutcliffe efficiency, when comparing alternative 646 

calibration strategies. Furthermore, it is observed that the choice of using the validation period or 647 

the calibration period for selected comparative measures would influence the analysis and as 648 

such it is recommended that future uncertainty-based calibration method comparison studies 649 

should include and largely focus on comparative performance assessment for the validation 650 

period. 651 

In general, the Bayesian inference methodology performs well (in comparison with other 652 

methods) along all comparative measures except for low-flows in validation period considering 653 

the same computational budget, e.g., DREAM validation period prediction intervals are 654 

simultaneously tighter and more reliable than corresponding GLUE intervals. In case of limited 655 

computational budget (i.e., only 10000 simulations in this paper), non-converged MCMC 656 

sampling using DREAM proves to be fairly consistent with formal Bayesian inference.   This 657 

indicates the potential value of utilizing formal MCMC sampling results before convergence as a 658 

promising alternative to informal methods such as GLUE. 659 

The results obtained through application of Bayesian inference to the two cases of this paper 660 

indicated under-estimation of predictive uncertainty for low-flows in the validation period. We 661 
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applied a standard Bayesian formulation which lumps all uncertainties into a single additive error 662 

term. More recently, Renard et al. (2010; 2011) showed that consideration of rainfall and model 663 

structural uncertainties outside of the error term used in Bayesian formulation yielded more 664 

reliable estimation of the predictive uncertainty for all runoff ranges, as opposed to the typical 665 

Bayesian formulation in our paper. Application of hierarchical Bayesian structures to the case 666 

studies of this paper is currently being investigated. 667 

There are many ways to formulate and conduct GLUE analyses, and to some extent DREAM 668 

calibration experiments.  Our experiments require a number of subjective decisions and as such 669 

our results are conditional on these decisions.  However, we believe that the subjective decisions 670 

we make are consistent with the decisions others have made in the literature. For example, 671 

although it is possible to apply GLUE using a formal likelihood function, the literature suggests 672 

that is relatively uncommon and thus we do not examine this.  We used GLUE with an informal 673 

generalized likelihood function in this study because the objective of the study was to assess its 674 

performance as an informal method. It may be possible that applying informal methods such as 675 

GLUE using formal likelihood functions would improve their performance, but this is not the 676 

focus of the present study. Future comparative studies systematically varying such subjective 677 

decisions would be valuable.  678 
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 862 

APPENDIX – Review of Bayesian Inference Procedure 863 

This appendix provides a summary of the Bayesian formulation used in this paper, and the 864 

details can be found in previous studies (Balin-Talamba et al., 2010; Schaefli et al., 2007). We 865 

assume the AR-based formulation as follows: 866 

ii
sim
ii YY   1),( Xθ         (A1) 867 

where tY  and sim
iY  are the observed and simulated values for the model response at time step 868 

i , θ  is the model parameters vector, X  is the model inputs vector,   is the lag-one AR 869 

parameter,  ),( Xθsim
iii YY   is the residual between observation and model prediction at time 870 

step i  (and 00  ), and i  is random error term: 871 
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),0(~ 2
ji N            (A2) 872 

with 2
j  being the residual variance for response , here considered unknown and should be 873 

estimated. If we consider  responses, then  parameters (representing error variance for  874 

responses) need to be estimated in the Bayesian inference methodology. Under the assumption of 875 

multiple and statistically independent responses, the combined statistical likelihood function for 876 

multiple responses is simply the product of the individual likelihood functions: 877 
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where 1,,,  ijijij   for observation set j  and time step i  (note that 00, j ), 879 

respectively; J  is the number of observation sets, and jt  is the number of time steps for each 880 

observation set . In order to derive the posterior distribution of parameters, a bounded uniform 881 

prior distribution is considered for  over prior feasible range, and the prior distribution of error 882 

variance is also considered to be Jeffrey non-informative distribution as follows: 883 

 222 0for    1)( jjjp          (A4) 884 

Using such prior distributions enables us to integrate out the error variances, and the 885 

Bayesian formulation results in the joint posterior distributions from which the marginal 886 

distribution of model parameters and error variances can be estimated conditioned on the 887 

observed data Y. Alternatively, we can use MCMC sampling to directly take samples from the 888 

posterior distributions, all of which are contained in the chain. In MCMC implementations, the 889 

acceptance/rejection criterion ratio (between posterior densities of the new candidate and old 890 

current samples) is used to accept/reject the candidate to be added to the chain. In the multi-891 

j

J J J

j

θ
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criteria Bayesian formulation, let 2
,currentj  and 2

,candidatej  be the error variance of the current and 892 

candidate solutions, respectively, which are estimated based on the residuals after running the 893 

simulation model. Also assume the quantity 
 jt

i ijjS 1

2

,5.0  , such that  and  894 

be the values for the current and the candidate solutions, respectively. The final form of the 895 

acceptance/rejection criterion can then be shown as follows:  896 
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Table 1. HYMOD parameters and their prior range 901 

Parameter Descritption Unit Prior Range 

CMAX Maximum storage capacity mm [1 , 500] 

BEXP Degree of the soil spatial variability moisture capacity - [0.1 , 2] 

ALPHA Distributing factor on flow between the two series of reservoirs - [0 , 0.1] 

RQ Residence time of the quick reservoirs d [0 , 0.1] 

RS Residence time of the slow reservoirs d [0.1 , 0.99] 

  902 
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Table 2. Parameters of WetSpa simulation model 903 

Parameter Description Unit Prior Range 

Ki Interflow scaling factor - [0 – 10] 

Kg Groundwater recession coefficient d-1 [0 - 0.05] 

Ks Initial soil moisture factor - [0 – 2] 

Ke Correction factor for PET - [0 – 2] 

Kgi Initial groundwater storage mm [0 – 500] 

Kgm Groundwater storage scaling factor mm [0 – 2000] 

Kt Base temperature for snowmelt οC [-1 – 1] 

Ktd Temperature degree-day coefficient mm οC-1d-1 [0 – 10] 

Krd Rainfall degree-day coefficient οC-1 d-1 [0 - 0.05] 

Km Surface runoff coefficient - [0 – 5] 

Kp Rainfall scaling factor mm [0 – 500] 

  904 
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 905 

Figure 1. Schematic of the predictive QQ plot based on Thyer et al. (2009) 906 

 907 
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 908 

Figure 2. Posterior ranges of HYMOD parameters for the Leaf River case study; The parameter 909 

ranges correspond to 95% posterior intervals for different uncertainty analysis methods. 910 

 911 
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 912 

 913 

Figure 3. NS values of low-flows (horizontal axis) and high-flows (vertical axis) in calibration (upper panels) and validation (lower 914 

panels) period for HYMOD case study, derived from DREAM (light points) versus non-converged DREAM and GLUE methods (dark 915 

points). 916 
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 918 

 919 

Figure 4. Validation period reliability and sharpness for low-flows (upper panels) and high-flows 920 

(lower panels) in application of different techniques (shown in different shapes) to the HYMOD 921 

and WetSpa simulation models.  922 
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 923 

Figure 5. QQ plot of Bayesian p-values for high- and low-flows derived from converged and non-924 

converged DREAM, for calibration (upper) and validation (bottom) periods of the HYMOD Leaf 925 

River case study. 926 
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 928 

Figure 6. Prediction bounds and observations for the validation period in the HYMOD case study. 929 
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 930 

Figure 7. Posterior ranges of WetSpa parameters derived by different uncertainty-based calibration techniques. 931 
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 932 

Figure 8. NS values of low-flows (horizontal axis) and high-flows (vertical axis) in calibration (upper panel) and validation (lower panel) 933 

period for WetSpa case study, derived from DREAM (light points) versus non-converged DREAM and GLUE methods (dark points).934 
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 935 

Figure 9. QQ plot of Bayesian p-values for high- and low-flows derived from converged and non-936 

converged DREAM, for the calibration (upper) and validation (bottom) periods of the WetSpa 937 

Hornad River case study. 938 
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 940 

Figure 10. Prediction bounds and observations for the year 1999 of validation period for the WetSpa Hornad River case study. 941 
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