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Abstract Hydrologic models are often tasked with replicating historical hydrographs but may do so
without accurately reproducing the internal hydrological functioning of the watershed, including the flow
partitioning, which is critical for predicting solute movement through the catchment. Here we propose a
novel partitioning-focused calibration technique that utilizes flow-partitioning coefficients developed based
on the pioneering work of L’vovich (1979). Our hypothesis is that inclusion of the L’vovich partitioning
relations in calibration increases model consistency and parameter identifiability and leads to superior
model performance with respect to flow partitioning than using traditional hydrological signatures
(e.g., flow duration curve indices) alone. The L’vovich approach partitions the annual precipitation into four
components (quick flow, soil wetting, slow flow, and evapotranspiration) and has been shown to work
across a range of climatic and landscape settings. A new diagnostic multicriteria model calibration method-
ology is proposed that first quantifies four calibration measures for watershed functions based on the
L’vovich theory, and then utilizes them as calibration criteria. The proposed approach is compared with a
traditional hydrologic signature-based calibration for two conceptual bucket models. Results reveal that the
proposed approach not only improves flow partitioning in the model compared to signature-based calibra-
tion but is also capable of diagnosing flow-partitioning inaccuracy and suggesting relevant model improve-
ments. Furthermore, the proposed partitioning-based calibration approach is shown to increase parameter
identifiability. This model calibration approach can be readily applied to other models.

Plain Language Summary Hydrologic models are often tasked with replicating historical hydro-
graphs but may do so without accurately reproducing the internal hydrological functioning of the water-
shed, including the flow partitioning between low and high flows, which is critical for predicting solute
movement through the catchment. Here we propose a novel model calibration framework that utilizes an
empirical understanding about flow partitioning developed by L’vovich (1979) to constrain the outcomes of
watershed models. Our hypothesis is that this approach increases model consistency leads to superior mod-
el performance. This method is also capable of diagnosing model structural errors (in flow partitioning) and
suggesting relevant model improvements. Overall, this work is a step toward getting the right answer from
hydrologic model for the right reasons.

1. Introduction

1.1. Calibration of Hydrologic Models
The exchange of water and energy between land and atmosphere and the movement of water across the
land surface are the fundamentals of land-surface hydrology and have led to the development of several
hydrologic models. Traditionally, the calibration of hydrologic models is conducted by adjusting parameter
values to minimize the discrepancy between the time series of observed and simulated streamflow. The dis-
crepancy is quantified using a number of goodness-of-fit metrics [Gupta et al., 2009; Krause et al., 2005;
Legates and McCabe, 1999], such as sum of squared errors (SSE) and Nash-Sutcliffe Efficiency (NSE), and min-
imization is achieved using various parameter estimation methods, e.g., stochastic procedures [Clarke, 1973;
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Johnston and Pilgrim, 1976; Kuczera, 1983; Sorooshian and Dracup, 1980] and informal optimization-based
techniques [e.g., Duan et al., 1992; Tolson and Shoemaker, 2007].

It has, however, been argued that measures such as NSE or SSE do not provide the modeler with enough
ability to discriminate between different model structural forms, since different representations of storage
and discharge in a model can lead to the same aggregate statistics [e.g., Gupta et al., 2009; Martinez and
Gupta, 2010; McCuen et al., 2006; Schaefli and Gupta, 2007]. Recognizing this deficiency, diagnostic model
evaluations have been advocated [Gupta et al., 2008] based on hydrological signatures mostly derived
based on streamflow time series, e.g., the flow duration curve (FDC) [e.g., Westerberg et al., 2011; Yilmaz
et al., 2008; Yokoo and Sivapalan, 2011], the spectral density of runoff [e.g., Montanari and Toth, 2007; Vogel
and Sankarasubramanian, 2003; Winsemius et al., 2009], the rising limb density [Shamir et al., 2005b; Yadav
et al., 2007], the base flow index [e.g., Arnold and Allen, 1999; Sawicz et al., 2011], or from other sources of
data such as soil moisture [McMillan et al., 2014, 2011].

Hydrological signatures serve as model evaluation diagnostics for different purposes such as models com-
parison [Coxon et al., 2014; Euser et al., 2013; Hrachowitz et al., 2014; Martinez and Gupta, 2011; Viglione et al.,
2013; Vogel and Sankarasubramanian, 2003], top-down model development [Eder et al., 2003; Farmer et al.,
2003; Jothityangkoon et al., 2001; Littlewood et al., 2003], and constraining model outcomes against different
aspects of the hydrograph [Bulygina and Gupta, 2009; Pokhrel et al., 2012; Shafii and Tolson, 2015; Shamir
et al., 2005a; Westerberg et al., 2011; Winsemius et al., 2009; Yilmaz et al., 2008]. Among other strategies for
improving the calibration of hydrologic models include stepwise calibration based on hydrograph partition-
ing [He et al., 2015], incorporating expert knowledge and process/parameter constraints in model develop-
ment process [Gharari et al., 2014], etc. Even though implementing signature-based calibration approaches
results in the selection of models that are more consistent with watershed’s hydrological behavior and the
reduction of predictive uncertainty [e.g., Hrachowitz et al., 2014; Pokhrel et al., 2012; Yilmaz et al., 2008], it
fails to explicitly address the partitioning of water among the different flow paths, which become critically
important when modeling solute transport.

1.2. Flow Partitioning and the Use of Tracers
Solute concentrations are a function of both the flow magnitude and the flow pathway, and thus, it has
been advocated that tracer and isotope data should be routinely used for a proper identification of flow
partitioning [e.g., Didszun and Uhlenbrook, 2008; Klaus and McDonnell, 2013; Tetzlaff and Soulsby, 2008].
Among other approaches to improving flow partitioning are using ‘‘soft’’ data related to partitioning
between event and preevent water [Vach�e and McDonnell, 2006; Vach�e et al., 2004] or groundwater table
fluctuations [Seibert and McDonnell, 2002], fraction of annual groundwater nitrate load [Yen et al., 2014], and
estimates of monthly nitrogen oxide [Ahmadi et al., 2014]. Such approaches can take us one step closer to
reducing equifinality, and getting the right answers for the right reasons [Davies et al., 2011, 2013; Hracho-
witz et al., 2013; Kirchner, 2006; McDonnell and Beven, 2014].

Although the concurrent use of tracers and discharge for routine development of watershed models is desir-
able, such measurements are not available at most places. Thus, while we explicitly recognize that tracers (if
available) have to be used for flow path identification, we pose the question: Is there greater information
content in the rainfall and runoff time series that is not currently captured in traditional aggregate measures
of goodness of fit and/or more recent hydrologic signatures, and that might be used to further constrain
model partitioning skill and parameter identifiability? We propose the use of the empirical L’vovich frame-
work for flow partitioning as a way to constrain hydrologic models. L’vovich [1979], as explained in details in
section 2.2, explicitly considered the partitioning of precipitation into major catchment functions (e.g., infil-
tration, runoff, subsurface drainage, and evapotranspiration), and applied his approach to a large number of
catchments located in a variety of ecoregions of the world. Mathematical models derived based on the
L’vovich theory also proved to be robust for the characterization of water balance in a large number of
catchments across the world [Ponce and Shetty, 1995a, 1995b; Sivapalan et al., 2011].

Given the simplicity and hydrological meaningfulness involved in the L’vovich approach, it has also been
employed in multiple recent research studies for different purposes including the assessment of runoff elas-
ticity to precipitation [Harman et al., 2011] and getting ecohydrological understanding by analyzing controls
on the water balance of catchment ecosystems across the United States [Thompson et al., 2011]. More
recently, Wang et al. [2015] defended the L’vovich flow-partitioning scheme through the use of an
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optimality principle (Maximum Entropy Production). Overall, there is sufficient evidence in the literature
that the L’vovich approach adequately characterizes watersheds flow partitioning at the annual time scale,
and the forms of the L’vovich equations differ between catchments. However, at the finer time scales, prop-
er simulation of watershed temporal dynamics requires the application of detailed physically based models.
The question now is how we can constrain the responses of these models to get the flow partitioning cor-
rect. We contend that the L’vovich partitioning provides a unique and accessible representation of catch-
ment internal functioning, and thus is a useful constraint upon flow partitioning in a model, particularly in
cases where tracer or another ancillary data are not available.

1.3. Objectives of the Paper
The aim of this paper is to develop a novel partitioning-based multicriteria calibration technique that uti-
lizes both L’vovich partitioning relations and hydrograph goodness-of-fit measures as calibration objectives
to better constrain the flow partitioning in hydrologic models. Our hypothesis is that inclusion of the
L’vovich partitioning increases model consistency and parameter identifiability and leads to superior model
performance with respect to flow-partitioning than using hydrologic signatures only. To test this hypothesis,
we first use the L’vovich approach to assess the hydrologic partitioning skill of models that were con-
strained using conventional signatures. Second, we improve the partitioning skill of models by including
L’vovich partitioning in the calibration process. Third, we investigate the possibility of improving parameter
identifiability by incorporating the partitioning-focused signatures in the model calibration process. Our
proposed methodology is considered as a diagnostic approach to model selection and parameter identifica-
tion that has been advocated in the literature [Gupta et al., 2008; Hrachowitz et al., 2014; Kirchner, 2006; Mar-
tinez and Gupta, 2011], and its novelty is in the simultaneous use of rainfall and streamflow time series in
defining partitioning-focused calibration objectives.

The paper is organized as follows. Section 2 provides a background on functional approaches to water bud-
get analysis (section 2.1), especially the L’vovich framework (section 2.2), and elaborates on our proposed
methodology and the numerical experiments in which we compare our proposed calibration methodology
with the traditional signature-based model calibration approach (section 2.3). Case studies and results are
explained in sections 3 and 4, respectively. Finally, we provide the concluding remarks from our study in
section 5.

2. Methodology

2.1. Functional Approaches to Hydrologic Partitioning
Functional approaches to hydrologic analysis are methods that focus on how the catchment functions, for
example, the partitioning of annual precipitation into soil moisture storage, evapotranspiration [Wagener
et al., 2007]. Even though process-based models have shown to be useful for modeling catchment functions
mediated by climatic properties [e.g., Eagleson, 1978; Milly, 1994; Reggiani et al., 2000; Salvucci and Ente-
khabi, 1995], we focus here on empirical functional approaches that use only hydrologic data [e.g., Budyko,
1974; Horton, 1933; L’vovich, 1979; Troch et al., 2009]. The most famous example of this is likely the study by
Budyko [Budyko, 1974] in which the conceptual limits for the ratio of actual evaporation to precipitation are
identified based on the ratio of potential evapotranspiration to precipitation. Whereas the Budyko frame-
work and its more recent developments [e.g., Yang et al., 2007; Zhang et al., 2001] describe only the long-
term annual water balance, the temporal variability of the water balance components has been described
by the Horton and the L’vovich models [Horton, 1933; L’vovich, 1979; Ponce and Shetty, 1995a, 1995b; Troch
et al., 2009].

2.2. Hydrologic Partitioning: L’vovich and Ponce and Shetty Models
L’vovich [1979] developed an empirical theory of annual flow partitioning based on a simple two-stage pre-
cipitation (P) partitioning approach (see Figure 1). At the first stage, P is partitioned into a quick flow compo-
nent, S, and an infiltrated component called the catchment wetting, W . At the second stage, W is further
partitioned into a slow-flow component, U, and an energy-dependent vaporization component, V , which is
composed of evaporation and transpiration. The terms S, W , U, and V are henceforth called L’vovich compo-
nents. This hydrologic partitioning, neglecting the carryover of storage between consecutive years (an under-
lying assumption in the L’vovich approach), is mathematically represented using four simple equations,

Water Resources Research 10.1002/2016WR019736

SHAFII ET AL. DIAGNOSTIC HYDROLOGIC MODEL CALIBRATION 3281



P5S1W , W5U1V , P5V1Q, and
Q5S1U. This formulation requires the
availability of continuous precipitation
and streamflow data.

L’vovich [1979] derived the empirical
relationships for S and W versus P,
and U and V versus W in the form of
nomographs and tables for a large
number of watersheds in the world
[see Sivapalan et al., 2011, Figure 2, for
example]. Ponce and Shetty [1995a,
1995b] developed simple mathemati-
cal models based on the first-stage
and second-stage partitioning in the
L’vovich theory [see Ponce and Shetty,
1995a, 1995b, for details], which
were fully defined by four parameters.
Recently, Sivapalan et al. [2011] applied

the Ponce-Shetty model to 431 catchments in the United States and elaborated on how the four parameter of
this model should be estimated (using nonlinear regression). Subsequently, the model estimates annual values
of L’vovich components (such as wetting and quick flow) based on observed precipitation and streamflow
data. Note that Ponce-Shetty mathematical relationships assume that there is no carryover of the soil storage
between years. The violation of this assumption might introduce uncertainties in these relationships, e.g., con-
siderable scatter in the relationships as shown in Sivapalan et al. [2011].

The L’vovich approach to hydrologic partitioning relies on base flow separation from the observed stream-
flow time series. Multiple base flow separation techniques exist in the literature [see for example, Arnold
and Allen, 1999] and the choice of separation approach may change the estimated hydrologic partitioning.
However, Troch et al. [2009] previously demonstrated that the estimation of annual water balance metrics
was not highly sensitive to the method of base flow separation. As a result, in this study, we followed Siva-
palan et al. [2011] and applied a simple one-parameter low-pass filter developed by Lyne and Hollick [1979]
to partition the streamflow into slow flow and quick flow; the value of 0.925 was imposed for the parameter
of the base flow separation equation.

2.3. Model Calibration Framework Based on Flow Partitioning
We hypothesize that the empirical relationships developed in L’vovich [1979] and Ponce and Shetty [1995a,
1995b] can be used to constrain the responses of any hydrologic model if there is a one-to-one correspon-
dence between L’vovich components and two or more model components. For instance, consider a simple
saturation-excess one-bucket model (Figure 2) for streamflow simulation in which precipitation (P) enters the
bucket as infiltration (INF) and outflows via base flow (B) and runoff (Q); the bucket is also exposed to evapora-

tion (E). Estimating the parameters of this
bucket model based only on the fit between
simulated and observed streamflow would
not guarantee consistent hydrologic partition-
ing (the same streamflow value may be gen-
erated by different combinations of B and Q).
However, matching different components of
the model to the corresponding L’vovich
components (W ,S,U, and V that are also
shown in Figure 2) will force the model to
capture the flow partitioning, in addition to
fitting the output hydrograph.

To properly reproduce flow partitioning, sim-
ple hydrological signatures are traditionally

Figure 1. Schematics of the two-stage flow partitioning in the L’vovich approach.

Figure 2. Schematic representation of single-bucket saturation-excess
model with different processes including precipitation (P), evapotranspira-
tion (E), infiltration (INF), surface runoff (Q), and base flow (B). Also shown
are the corresponding L’vovich components W, S, U, and V.

Water Resources Research 10.1002/2016WR019736

SHAFII ET AL. DIAGNOSTIC HYDROLOGIC MODEL CALIBRATION 3282



used to inform calibration, e.g., use of a base flow index to constrain the slow-flow component. However,
streamflow at any point in time is composed of water going through different pathways, and standard sig-
natures such as quick and slow flow volume of water do not necessarily manifest hydrologic partitioning
and the relation between different processes. We propose that, to evaluate the correctness of the flow parti-
tioning conducted by signature-based constrained models, one can utilize Ponce-Shetty model as the
benchmark and generate acceptability intervals after fitting this model to the data (section 2.3.1). We also
demonstrate that one can use a set of new partitioning-based calibration diagnostics formulated from the
Ponce-Shetty model (described in section 2.3.1) and employ them to constrain flow partitioning according
to the L’vovich theory (section 2.3.2).
2.3.1. Developing Scoring Functions Based on L’vovich Components
The identification of the Ponce-Shetty model is a curve fitting process; this model is not a perfect represen-
tation of reality and is prone to uncertainties. The confidence and prediction intervals associated with the
curve fitting process characterize the uncertainty in the Ponce-Shetty model. To account for this uncertain-
ty, we used the prediction intervals as acceptability bounds [Beven, 2006; Liu et al., 2009], instead of solely
using the mean Ponce-Shetty values. In other words, we ensure that the modeled quick flow and infiltration
fall within the prediction intervals of S and W , and the modeled slow flow and vaporization fall within the
prediction intervals of U and V , respectively. This is illustrated by an example in Figure 3 where the blue
circles represent the annual P2S calculated using base flow separation of 40 years of observed streamflow
data. Following Sivapalan et al. [2011], nonlinear regression is used to fit the Ponce-Shetty model to this
annual data (solid line in Figure 3) by estimating the underlying parameters minimizing the deviation
between observed S and the S generated by the Ponce-Shetty model. In such a standard nonlinear regres-
sion experiment, assuming an error series with zero mean and an unknown constant variance, the predic-
tion intervals (for a given future value) can be extracted as well (dashed lines in Figure 3). We use MATLAB’s
statistical package to find the model estimate and the prediction intervals. Note that other uncertainty esti-
mation method such as Bayesian inference, similar to Harman et al. [2011] can also be used to quantify the
prediction intervals, which may result in slightly different intervals. Nonetheless, our proposed calibration
approach is independent from the uncertainty estimation methodology and can be carried out as long as
the acceptability intervals are built. Upon the identification of the model and its prediction intervals, they can

be extrapolated toward both the origin
(i.e., very small rainfall) and extreme
precipitation events that have not
been observed in the historical records.

Next, a given hydrologic model is
used and the component S is derived.
The black triangles in Figure 3 are the
predictions made by the model dur-
ing a 5 year simulation period. Note
that the simulation period (5 years in
this case) may be shorter than the
entire observation period (40 years).
Now we need a quantitative metric
or scoring function to evaluate the
partitioning consistency of the given
hydrologic model. The proposed scor-
ing function (described below) quanti-
fies the deviation between the model
results (black triangles) and the pre-
diction intervals (dashed lines) in
terms of a number between 0 and 1.
Note that these scoring functions will
be incorporated as the calibration cri-
teria into a multicriteria optimization
algorithm. This is similar to the study
by Shafii and Tolson [2015] who

Figure 3. Schematic representation of precipitation-surface runoff partitioning
based on L’vovich theory (circles representing annual values), the Ponce-Shetty
model estimate (solid line), the prediction intervals associated with model estimate
(dashed lines), maximum bounds for predictions intervals (dash-dotted lines; see
equation (1)), and yearly values generated by a hypothetical hydrologic model (tri-
angles). The vertical diagram in the right-hand side shows the scoring function for
L’vovich component S.
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developed a signature-based multicriteria calibration methodology where any signatures that characterize
some part of the hydrological behavior can be implemented as calibration criteria.

Given a parameter set h of a hydrologic model, the scoring functions for the L’vovich component Mi ,
i 2 fS;W;U; Vg, are calculated through five steps:

i. Calculate My
i for each year y in the calibration period, y 2 f1; 2; . . . ; Yg where Y is the total number of

years in the period (e.g., My
S is the quick flow component for year y).

ii. Find the estimated value of that component by the Ponce-Shetty model M̂
y
i

� �
and the corresponding

upper P
_ y

95;Mi

� �
and lower P

^ y

95;Mi

� �
95% prediction intervals as the acceptability bounds (e.g., for com-

ponent S, the x coordinate of a given year is the annual precipitation in that year, used to find the corre-
sponding prediction intervals from the Ponce-Shetty model).

iii. Consider maximum limits for P
_ y

95;Mi and P
^ y

95;Mi using the following equations:

LBy
Mi5M̂

y
i 2a3P

^ y

95;Mi (1a)

UBy
Mi5M̂

y
i 1a3P

_ y

95;Mi (1b)

where a > 1; we use a value of 2, which corresponds to approximately 4 times the standard deviation
away (on both sides) from the model estimate.

iv. Calculate the scoring function for each year based on two possible cases, (1) if My
i > M̂

y
i , then:

Cy
Mi5

0; My
i > UBy

Mi

1; My
i � P

_ y

95;Mi

UBy
Mi2My

i

UBy
Mi2P

_ y

95;Mi

; Otherwise

8>>>>>><
>>>>>>:

(2)

and (2) if My
i < M̂

y
i , then:

Cy
Mi5

0; My
i < LBy

Mi

1; My
i � LBy

Mi

LBy
Mi 2My

i

LBy
Mi 2LBy

Mi

; Otherwise

8>>>>><
>>>>>:

(3)

In this way, Cy
Mi falls in the range [0,1], where 1 means that the component Mi lies within acceptability

levels in year i, 0 means that it is beyond the maximum plausible level, and numbers in the range (0,1)
indicate that Mi is between the prediction interval and the maximum plausible level—this yearly scoring
function is also shown in Figure 3.

v. Calculate the overall scoring function (Coverall) for the component Mi in two steps: (a) sort yearly scoring
function values in descending order, and (b) treat the n�11th value in the sorted vector as CoverallðMiÞ
where n� is the number of individual scoring functions that are equal to one. This value is the closest val-
ue to the acceptability intervals, and according to Shafii and Tolson [2015], selecting this value facilitates
locating all yearly components within acceptability bounds in a sequential manner.

These steps are consistent with the methodology developed in Shafii and Tolson [2015], with the difference
that L’vovich components (four overall scoring functions for S, W , U, and V ) are used as hydrological signatures,
rather than conventional hydrological signatures. The preferred solution is the one that yields a value of 1 for
all four components (i.e., full consistency with respect to the Ponce-Shetty model in the presence of uncertain-
ties). Since this model realization may not be achievable due to the existing imperfections, the multicriteria cali-
bration yields a set of acceptable Pareto-optimal solutions. We then calculate a quality measure (called the
coverage quality metric) for each L’vovich component that demonstrates how the partitioning of the Pareto
solutions fall within acceptability bounds. As such, we first calculate the total number of years modeled by the
entire Pareto set (i.e., N15np3Y where np is the number of Pareto solutions and Y is 5 in the case shown in
Figure 3). Next we find the number of years N2 ð� N1Þ in which the corresponding L’vovich component is with-
in acceptable intervals. The coverage metric is N2=N1 2 ½0; 1�, desired to be as close as possible to unity.
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The proposed formulation and scoring functions form a model-to-model comparison framework and it may
be argued that, since we already have the Ponce-Shetty conceptual hydrologic model, application of anoth-
er model is redundant. However, although the Ponce-Shetty model constrains the annual values (of S, W , U,
and V), it cannot describe the within year variations. Therefore, one still needs a hydrologic model to
account for the temporal dynamics of hydrologic fluxes in a given year, and the proposed approach helps
in constraining such a model to yield more realistic flow partitioning. Note that multiple papers have shown
the validity of the L’vovich approach to properly represent flow partitioning in any given watershed (see
section 1.2 for references), so it can be considered as a benchmark.
2.3.2. Signature-Based Model Calibration Approach
Automatic model calibration generally involves using an optimization algorithm to maximize goodness of
fit between simulated and observed streamflow, as well as the resulting hydrological signatures. To improve
flow-partitioning consistency with respect to Ponce-Shetty model, we develop a multicriteria calibration
approach where the scoring functions (related to S, W , U, and V) are applied to guide model calibration in
addition to optimizing streamflow goodness of fit. We compare this to an approach in which only
goodness-of-fit metrics such as NSE and conventional signatures are used. Section 3.2 elaborates on the
underlying criteria in these two approaches, i.e., (i) the basic approach using hydrologic signatures and NSE
and (ii) the proposed approach using the L’vovich components scoring functions and NSE.

As suggested by Shafii and Tolson [2015], this multicriteria optimization problem is solved using a Pareto-
based multicriteria optimization algorithm, rather than aggregating all criteria into a single criterion and
then using a single-criterion optimization algorithm to maximize the aggregated metric. Both the traditional
calibration and the proposed calibration approach are performed using the same strategy suggested in
Shafii and Tolson [2015]. The optimization objective functions in these two calibration approaches can be
presented as follows:

Max
h2H

FðhÞ5 F1ðhÞ F2ðhÞ . . . FMðhÞ½ �T (4)

where F is the vector of objective functions or criteria composed of both goodness-of-fit and signature-
based metrics, h is the model parameters vector located in the optimization search space H of which the
limits are constrained by the prior range of the parameters of a given hydrologic model (see sections A1
and A2), and M is the number of objective functions, which may vary depending upon the calibration
approach (see section 3.2 for detailed information on the calibration criteria). We use AMALGAM optimiza-
tion algorithm [Vrugt and Robinson, 2007] to solve the problem defined by equation (4). The outcome is a
number of Pareto-optimal solutions (not a single solution) that have shown to be acceptable with respect
to at least one scoring function. Then, L’vovich components associated with the Pareto-optimal solutions
are used to assess the partitioning consistency of the hydrologic model with respect to the Ponce-Shetty
model.

3. Case Studies

3.1. Hydrologic Models
Our overall objective is to demonstrate that the proposed flow-partitioning-based model calibration frame-
work is applicable to any rainfall-runoff model that is generally compatible with Ponce-Shetty model (i.e.,
one-to-one correspondence between a subset of the processes involved in the model and those considered
in the Ponce-Shetty model). We consider two different conceptual (bucket) hydrologic models in this study
(sections 3.1.1 and 3.1.2) whose structural differences include: (i) one does and the other one does not mod-
el snowmelt, (ii) vertical movement of water in soil is modeled differently, and (iii) one is lumped (HYMOD;
section 3.1.1) [Boyle, 2000], while the other one is semidistributed developed in a flexible hydrological
modeling platform (Raven; section 3.1.2) [Craig, 2015]; the smallest computational units are hydrological
response units (HRUs). HYMOD is applied to a watershed in Florida, the United States, and the semidistrib-
uted model is applied to a watershed in Ontario, Canada.
3.1.1. Lumped HYMOD Model
HYMOD is a five-parameter rainfall-runoff model introduced by Boyle [2000], of which different versions
have been used in numerous studies [e.g., Kollat et al., 2012; Vrugt et al., 2003; Wagener et al., 2001]. The sim-
plest version of HYMOD (Figure 4 (top)) consists of a relatively simple rainfall excess model, described in

Water Resources Research 10.1002/2016WR019736

SHAFII ET AL. DIAGNOSTIC HYDROLOGIC MODEL CALIBRATION 3285



detail by Moore [1985], connected with two series of linear reservoirs (three in series for quick flow and a
single reservoir for the slow response). A closer look at this model structure (Figure 4 (bottom)) indicates
that the processes involved in HYMOD include precipitation (P), evapotranspiration (E), infiltration (INF) to
soil, surface runoff (R), interflow (INT ) or lateral flow from soil to quick flow routing, percolation (PERC) or
vertical drainage to slow flow routing, base flow (B) and quick flow (Q). The excess rainfall model determines
the amount of INF, INT , and PERC. Whenever the soil is saturated, R occurs. Section A1 elaborates on the
mathematical representation of these components. Putting HYMOD in the L’vovich context, W consists of
the sum of INF and PERC (because INF and PERC are two separate parts of the water infiltrated to the sys-
tem), S and U would be equal to Q and B, respectively, and V would be equal to E. The partitioning compo-
nents of HYMOD are also demonstrated in the bottom part of Figure 4. These components are directly
compared with the L’vovich partitioning components given by Ponce-Shetty model.

The above version of HYMOD requires the estimation of five parameters via calibration, the maximum stor-
age capacity in the catchment, Cmax ðLÞ, the degree of spatial variability of the soil moisture capacity within
the catchment, bexp, the factor distributing the excess rainfall between interflow and percolation, a, and the
residence time of the quick flow and base flow reservoirs, Kq and KsðTÞ, respectively.

It is worth noting that there is no snowmelt module in the standard version of HYMOD and therefore we
apply it to a watershed in Florida where there is no snow. This watershed is one of the MOPEX catchments
[Duan et al., 2006] with the USGS streamflow station ID of 02296750. The precipitation, potential evapo-
transpiration, and discharge data are used for model calibration over the time frame October 1995 to Sep-
tember 2000 (i.e., five water years). We also consider a 5 year validation period between October 1990 and
September 1995 (five water years). To extract L’vovich components, 42 years (1948–1989) of precipitation
and streamflow data are used.
3.1.2. Two-Bucket Semidistributed Hydrologic Model
The second model is developed using the modular modeling framework RAVEN [Craig, 2015] to simulate
streamflow in a semidistributed mode. RAVEN is an object-oriented hydrological model that is compatible
with a wide range of hydrologic process representations and model structures. In RAVEN, a watershed-scale
model is composed of a number of subwatersheds, each of which contains a stream/river channel and sub-
divided into one or more HRUs. The vertical water and energy balance is applied to each HRU producing
streamflow, which is then routed downstream (on the land surface) and laterally between subwatersheds. A
two-bucket rainfall-runoff model (shown in Figure 5) was developed within RAVEN. The formulations

Figure 4. Schematic representation of (top) HYMOD after Vrugt et al. [2003] and (bottom) matching processes in HYMOD with L’vovich
components.
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associated with different process-
es in the model are described in
Appendix A, but a brief descrip-
tion of the model structure is pro-
vided in the rest of this section.

Precipitation is first partitioned
into rain and snow where each
term is partly intercepted by
rain and snow canopy, and then
subject to the evaporation pro-
cess. Snow storage is trans-
formed to snowmelt using a
simple degree-day approach.
Excess rainfall and snowmelt
are then combined and a part
of this combination is stored in
depression areas, where it is
also partly evaporated. The

remainder of excess water is then partitioned into infiltration to the upper soil layer and overland runoff;
the latter is added to the surface water storage. Next, the evapotranspiration process is applied to the upper
layer soil moisture, and if the remaining storage exceeds the storage at the field capacity, water drainage
starts both vertically (i.e., percolation to the lower soil layer) and horizontally (i.e., interflow to surface water
storage). Evapotranspiration is also applied to the lower layer soil moisture and then base flow occurs to the
surface water storage. Finally, surface water (composed of overland runoff, interflow and base flow) is rout-
ed to the subwatersheds outlet (via a process called in-catchment routing) and then through the stream
toward the subwatersheds outlet (via in-channel routing). Note that evapotranspiration from the two soil
layers can exhaust soil moisture down to saturation at the wilting point and not more.

In terms of L’vovich components in this model (also shown in Figure 5), W corresponds to the infiltration, S
consists of the sum of overland runoff and interflow, base flow is equivalent to U, and V is composed of
both evapotranspiration terms to the atmosphere. Note that the percolation does not contribute to W in
this model because it is deducted from the water infiltrated into the upper soil.

The developed hydrologic model is applied to one of the headwater subwatersheds in the Grand River
Watershed (GRW) located in Southwestern Ontario in Canada. This subwatershed is associated with Water
Survey of Canada (WSC) gauge 02GA039 on the Conestogo River with a drainage area of 274 km2. Upon
spatial delineation and overlay of digital elevation model, soil data, and land use information, the subwa-
tershed is divided into 5 subbasins represented by 16 HRUs. Nine years of climatic and hydrometry data are
used, where the time frames October 2004 to September 2009 (five water years) and October 2009 to Sep-
tember 2013 (five water years) are used as the calibration and validation period, respectively. To extract
L’vovich components, 31 years of precipitation and streamflow data (1973–2003) are employed.

3.2. Experimental Setup
Two calibration scenarios are considered in this paper. The first scenario (called BASIC) involves automatic
calibration using the AMALGAM optimization algorithm considering NSE calculated based on both daily
and monthly streamflow (two fitness criteria) as well as the bias in four hydrological signatures including
overall runoff ratio, high-flow volume in monthly and daily FDC, midsegment slope in daily FDC, and base
flow index (i.e., seven optimization criteria in total). Table 1 provides detailed information on the criteria
used in the BASIC calibration scenario, which eventually results in a number of Pareto-optimal solutions
after applying AMALGAM to calibrate models.

In the second scenario (called LVOVICH), we calibrate models with six calibration criteria including monthly
and daily NSEs plus four L’vovich scoring functions calculated according to the formulation described in sec-
tion 2.3.1 (i.e., six optimization criteria in total, also shown in Table 1). Similar to the previous scenario, the
LVOVICH scenario also yields a number of Pareto-optimal solutions, all of which are used in the comparison
between the results of BASIC and LVOVICH scenarios.

Figure 5. Two-bucket hydrologic model developed with RAVEN framework with L’vovich
components shown in gray boxes.
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Note that the calibration problem in both BASIC and LVOVICH scenario is addressed utilizing the methodol-
ogy developed in Shafii and Tolson [2015] with identical calibration settings except for the scoring functions
employed for model constraining (BASIC uses traditional signatures, while LVOVICH uses the proposed sig-
natures focused on flow partitioning—see Table 1). To consider the impact of initialization, AMALGAM is
run in 10 different trials of both BASIC and LVOVICH scenarios, where each trial starts from an initial popula-
tion of 100 solutions and runs up to 1000 simulations, i.e., 10,000 simulations in total for each calibration
case. Afterward, the Pareto front solutions of all trials are pooled and sorted to find the resulting Pareto
solution set. The number of simulations per trial in this paper (1000) was selected based on computational
considerations as well as some preliminary experiments to make sure the calibrated models perform satis-
factorily with respect to NSE, i.e., NSEs greater than 0.7 are obtained.

4. Results and Discussions

4.1. HYMOD Case Study
The top row in Figure 6 shows NSE values, the deviations for the five signatures associated with the Pareto
solutions, the regime curve, and monthly and daily FDC for scenario BASIC. These results indicate high NSE
values and perfect match between the set of simulated signatures and observed signatures. Also, no model
structural failure is diagnosable by the signatures used in this case study. The bottom row in Figure 6, how-
ever, demonstrates that flow partitioning in the model is distinctly different from the Ponce-Shetty predic-
tion intervals (model components fall outside the acceptability levels). Indeed, HYMOD produces too much
surface runoff, insufficient wetting and too small base flow than would be typically expected in sandy Flo-
ridian soils. Note that this difference appears despite the fact that HYMOD captures FDC and the other sig-
natures consistently well. Overall, although the traditional signature-based calibration (scenario BASIC)
yields hydrologically consistent results according to the commonly used signatures, it does not necessarily
guarantee correct flow partitioning.

The HYMOD-predicted L’vovich components associated with the Pareto front solutions for scenario LVO-
VICH are shown in the bottom row in Figure 7. After postprocessing the streamflow time series obtained in
this scenario, we calculated the same signatures that were used in scenario BASIC, which are shown in the
top row in Figure 7. These signatures similarly indicate that the resulting simulations are hydrologically con-
sistent. Moreover, it is observed that further optimizing to the L’vovich components leads to a more realistic
representation of the flow partitioning. The flow partitioning was still not adequate and to address this we
doubled the computational budget considered and ran the model; however, L’vovich components were still
not contained within the acceptability limits (results now shown here). This finding indicated a critical struc-
tural inadequacy of the model to capture the hydrologic partitioning.

Table 1. Criteria and Signatures (B1–B5: Traditional Hydrological Signatures; L1–L4: L’vovich-Based Signatures) Used in the BASIC and
LVOVICH Calibration Scenarios; Acceptability Intervals are Also Shown in Bracketsa

Criteria Description

Scenario

ReferenceBASIC LVOVICH

1 [N/A] Nash-Sutcliffe Efficiency (NSE); daily flow X X Nash and Sutcliffe [1970]
2 [N/A] NSE; monthly flow X X Nash and Sutcliffe [1970]
Signature
B1 [65%]b Overall runoff ratio X Shafii and Tolson [2015]
B2 [65%]b Monthly FDC high-flow volume X Shafii and Tolson [2015]
B3 [610%]b Daily FDC midsegment slope X Shafii and Tolson [2015]
B4 [610%]b Monthly FDC high-flow volume X Shafii and Tolson [2015]
B5 [620%]b Base flow index X Sawicz et al. [2011]
L1 [95%]c Surface runoff X This paper
L2 [95%]c Infiltration X This paper
L3 [95%]c Subsurface flow X This paper
L4 [95%]c Evapotranspiration X This paper

aB1–B5 are traditional hydrological signatures, calculated using the time series of observed or simulated flows. L1–L4 are
partitioning-based signatures developed in this study according to the L’vovich theory and the Ponce-Shetty model (section 2.3.1).

bPercent deviation between simulated and observed values.
cPrediction intervals associated with Ponce-Shetty model estimate obtained from nonlinear regression.
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To address the above issue, we decided to improve flow partitioning by applying some changes to the
model structure. Since the model overestimated the surface runoff, we increased the number of quick flow
reservoirs (nq), increased the slow-flow component by changing the base flow algorithm from linear to non-
linear with the degree of nonlinearity (n), and added a correction factor for evapotranspiration (ec); nq, n,
and ec are additional calibration parameters, thus the modified HYMOD has eight parameters estimated
using both BASIC and LVOVICH scenarios (called MOD-BASIC and MOD-LVOVICH hereafter). Figure 8 illus-
illustrates the modified HYMOD-generated flow partitioning when it is calibrated using scenario BASIC (top

row) and LVOVICH (bottom row). The conventional signatures obtained in both cases (not shown here) are
as satisfactory as those obtained in the previous cases. However, Figure 8 indicates that, in the MOD-BASIC
case, flow partitioning is only slightly improved, whereas the flow-partitioning components generated by
the L’vovich-guided calibration approach (MOD-LVOVICH) fall within the acceptability limits. Also, the result-
ing NSE values are similarly high in both cases. Hence, the proposed calibration approach proves to outper-
form the traditional signature-based calibration approach with respect to model performance as well as the
flow partitioning according to the L’vovich theory.

The calibration results and parameter sets are carried over to the 5 year validation period. Figure 9 shows
the results obtained for the modified HYMOD case study during the validation period. Top and bottom
rows are related to the MOD-BASIC and MOD-LVOVICH scenario, respectively. We note that the simulations
generated by the modified model of which the calibration is guided by flow partitioning (i.e., the MOD-
LVOVICH scenario) are consistent with the Ponce-Shetty model during the validation period as catchment
functions are contained within the acceptability bounds for all years. Moreover, the resulting NSE ranges for
both scenarios are very close to one another.

The coverage quality metric values obtained in all previously explained calibration cases are shown in Fig-
ure 10 (note that ideally all coverage values should be equal to 1). It is observed in Figure 10a that even
though the LVOVICH scenario results in higher coverage values than BASIC, these values are still not equal

Figure 6. HYMOD results for BASIC scenario in calibration period. (top row from left to right) (i) Deviations of the five signatures described in Table 1 and the range, median, and maxi-
mum NSE, (ii) regime curve (ratio between monthly flow to annual precipitation) starting from January, (iii, iv) monthly and daily FDC. (bottom row from left to right) (i) P-S, (ii) P-W,
(iii) W-U, and (iv) W-V relationships; blue circles are L’vovich partitioning-based on observed streamflow data. Vertical lines are L’vovich components of Pareto solutions (black diamonds
show median); solid line is the estimated Ponce-Shetty model; dashed lines are prediction intervals (used as acceptability bounds) associated with the Ponce-Shetty model.

Water Resources Research 10.1002/2016WR019736

SHAFII ET AL. DIAGNOSTIC HYDROLOGIC MODEL CALIBRATION 3289



to 1 in any of the components. By modifying the model structure most of these values become equal to 1
for the MOD-LVOVICH scenario, which indicates a higher level of consistency in flow partitioning. Regarding
component V , the fact that the quality metric cannot be equal to 1 indicates that, even after modifying the
model structure and introducing a correction factor for PET , the method of simulating evapotranspiration is
not wholly satisfactory in this model. This finding shows that the proposed method is also capable of diag-
nosing model structural inadequacies.

Overall, the HYMOD results imply that the proposed partitioning-based model calibration represents a
promising means of constraining the model outcome with respect to the functioning and hydrologic parti-
tioning within the watershed in both calibration and validation period. Unlike the proposed approach, the
traditional signature-based model calibration does not necessarily improve flow partitioning, and it may not
diagnose the deficiencies in the model structure properly.

4.2. Two-Bucket Semidistributed Hydrologic Model Case Study
Similar to Figure 8 for the HYMOD case study, Figure 11 illustrates the results obtained in the second model-
ing case study, where BASIC and LVOVICH scenarios results are provided in the top and bottom row, respec-
tively. Unlike HYMOD, there is no modified version of the model in this case. It is observed that the model
results of the LVOVICH scenario are more tightly contained within the acceptability bounds compared to
scenario BASIC. Moreover, the NSE plots in Figure 11 also show that it is possible to get similar daily NSE in
the second scenario, but with more consistent flow partitioning. It is worth mentioning that the values we
obtained for Ponce-Shetty model parameters in this case study are completely in agreement with those
reported in previous papers, Sivapalan et al. [2011] and Ponce and Shetty [1995a].

The top row in Figure 12 shows the signature ranges associated with the Pareto solutions obtained in sce-
nario BASIC and LVOVICH (note that these signatures are directly incorporated in the BASIC calibration,
whereas they are postcalculated in the scenario LVOVICH). The signature results indicate that there is not
much difference between the consistency of model simulations. In the validation period (results not shown
here), the resulting flow partitioning from BASIC and LVOVICH scenarios indicates that the proposed

Figure 7. HYMOD results for LVOVICH scenario in calibration period. Details on these plots are provided in the caption of Figure 6.
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approach reproduces the L’vovich components more properly in comparison with the traditional signature-
based calibration. NSE values for these two scenarios are also fairly similar in the validation period scenarios
(maximum NSE of 0.63 and 0.61 in BASIC and LVOVICH scenarios, respectively). The bottom row in Figure 12
shows the coverage quality metric for BASIC and LVOVICH scenarios, which indicate that coverage improves
in the latter compared to the former both in calibration and validation period (i.e., higher coverage values
for the LVOVICH scenario). Thus, the proposed model calibration strategy produces comparably appropriate
goodness of fit while it improves the consistency of flow partitioning with the Ponce-Shetty theory.

The findings again highlight the usefulness of the proposed model calibration framework to constrain mod-
el outcomes with respect to flow partitioning. It should be noted that this framework can be used either for
evaluating the consistency of an existing model or for guiding model calibration toward the regions in the
search space that yield consistent simulations with observed flow partitioning. In the former case, the mod-
eler can apply changes to model structure and/or parameterization to improve the consistency of the modi-
fied model. The latter case facilitates the improvement of consistency through process-based model
calibration.

4.3. Parameter Identifiability
To investigate the possibility of improving parameters identifiability using the proposed partitioning-based
calibration, we focus on the range of parameter values contained in the set of Pareto-optimal solution in
each calibration scenario. Figure 13 illustrates the range between the minimum and maximum parameter
values in the Pareto set (vertical lines) as well as the range between the first and third quartiles, i.e., 25 and
75 percentile (vertical bars), obtained in the modified HYMOD case using BASIC (red color) and LVOVICH
(black color) scenario. It is observed that the parameter ranges obtained in scenario LVOVICH are smaller
than those of scenario BASIC for all but one parameter. RAVEN results (not shown here) also demonstrate

Figure 8. Flow partitioning based on the modified HYMOD model’s results for MOD-BASIC and MOD-LVOVICH scenarios in calibration period. Details on these plots are provided in the
caption of Figure 6.
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that the Pareto range of 16 (out of 21) model parameters is reduced in scenario LVOVICH. Such range reduc-
tion in both models indicates the improvement in parameters’ identifiability. The reduction in parameter
identifiability also results in smaller ranges for the partitioning components and Figures (8 and 9), and 11
clearly demonstrate this fact.

Figure 9. Modified HYMOD model’s results for scenario (top row) MOD-BASIC, and (bottom row) MOD-LVOVICH during the validation period. Details on these plots are provided in the
caption of Figure 6.

Figure 10. Coverage quality metric for L’vovich components S, W, U, and V in HYMOD case study calculated based on the Pareto solutions of different calibration experiments. Results
are for (left) calibration and (right) validation periods.
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The reduction in the ranges of the model parameters and the corresponding partitioning components also
has implications with respect to model’s sensitivity to parameter values. Smaller parameter ranges might
mean that model is more sensitive to that parameter, but this hypothesis is not in the scope of this work,
and will be explored in future. Another research direction is to investigate the sensitivity of hydrologic mod-
el parameters to the criteria used in the proposed diagnostic model evaluation, especially in comparison to
the traditional signature-based metrics. For example, one can evaluate model’s sensitivity to different
parameters taking into account a particular process (e.g., infiltration) rather than the overall performance of
model quantified in terms of aggregate goodness-of-fit metrics.

The two-stage partitioning relationship by Ponce and Shetty is derived based on the proportionality
hypothesis, which is also the basis of the curve number approach at the event scale, i.e., Soil Conservation
Service or SCS method [Mockus, 1972]. According to this hypothesis, runoff (and vaporization in the second
partitioning stage) does not start until the corresponding initial abstraction has been met. HYMOD is a
saturation-excess runoff model and does not take into account initial abstractions and thus has to be cali-
brated to the Ponce and Shetty relationship to capture the flow partitioning. But the value of our methodol-
ogy is model independent. This is apparent in the observation that the second model used (RAVEN) does
take into account initial abstractions, but still fails to reproduce the Ponce and Shetty relationships, and has
to be constrained to satisfy it. Understanding which model process descriptions would lead to a better
match with the Ponce and Shetty relationship without additional calibration can be explored in future
papers.

4.4. Limitations
The biggest limitation of the proposed methodology is the assumption that the L’vovich flow partitioning is
‘‘correct,’’ and thus constraining the model to match it is a valid approach. The L’vovich framework and

Figure 11. Two-bucket model results for different scenarios in calibration period: (top row) BASIC and (bottom row) LVOVICH. Details on these plots are provided in the caption of
Figure 6.
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Figure 12. Hydrological signatures associated to the Pareto-optimal solutions obtained in (top row) scenario BASIC and LVOVICH in cali-
bration period, and coverage quality metric for L’vovich components S, W, U, and V calculated based on the Pareto solutions in both sce-
narios during (left) calibration and (right) validation period.

Figure 13. Parameter ranges (minimum to maximum: line; interquartile: bar) and median values associated with the Pareto set obtained
for BASIC (red) and LVOVICH (black) scenarios in the modified HYMOD case study. Those parameters of which the Pareto range is smaller
in LVOVICH compared to BASIC are separated from other parameters. Parameters description is also provided in the table embedded in
this figure.
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subsequent studies by Ponce and Shetty have indeed been able to provide a reasonable means of describ-
ing the flow partitioning in several catchments. Model parameters have also proven to be consistent with
the climatic and physiographic settings. For example, Ponce and Shetty [1995a] demonstrate that their mod-
el results in zero initial abstraction, low to average wetting potential, low base flow, and low vaporization
potential in cold region catchments, which is corroborated by the frozen ground and low temperature in
these areas. A comprehensive study by Sivapalan et al. [2011] across the continental U.S. also shows that
the spatial patterns of the L’vovich parameters are consistent with spatial variations of climatic and land-
scape properties. Furthermore, in our Florida case study, the flow constraining based on L’vovich did lead
to more realistic surface runoff and base flow magnitudes that is expected in Floridian soils. It is worth not-
ing that, despite the suitability of this theory, we have not used it as a crisp benchmark and considered the
uncertainties involved in the estimation of Ponce-Shetty model to derive acceptability bounds.

It is also worth noting that the L’vovich theory and Ponce-Shetty model assume that there is no storage car-
ryover over years. If the proposed calibration approach is utilized, simulated storage carryover has to be ver-
ified to meet this assumption. The interannual water storage carryover was negligible for both our models
(less than 0.5 mm for HYMOD and less than 2.5 mm for RAVEN case study) and no systematic patterns were
found in them over time. Recently, Chen and Wang [2015] developed a new partitioning formulation at sea-
sonal scale that accounts for storage carryover, which should be taken into account in cases where there
exists such carryover.

Future work would involve further exploring the ability of the L’vovich approach to describe flow partition-
ing using tracers and/or stable isotopes. Moreover, as base flow separation is a key element in this method-
ology, this has to be conducted carefully and ultimately validated using independent tracer studies. It is
expected that constraining hydrologic partitioning-based on the L’vovich theory may be more appropriate
for watersheds that are not regulated by large dams, because reservoir operation may change the natural
behavior of the watershed significantly. It is also worth noting that using this approach requires long
records of precipitation and streamflow data. Acknowledging this fact, the method cannot be applied
directly to ungauged basins. However, one possible strategy to benefit from this approach in ungauged
basins may be to regionalize the Ponce-Shetty model parameters with respect to watershed’s physical
properties.

In this study, we used an optimization-based calibration approach utilizing NSE (as an informal residual-
based performance metric) as well as L’vovich scoring functions to find optimal solutions that are consistent
with respect to the partitioning as well. An alternative approach to the identification of such parameter sets
is to conduct the search by minimizing robust and statistically correct functions of model residuals (i.e., fre-
quentist or Bayesian methods), and subsequently, select those solutions that are consistent with the
L’vovich understanding of watershed response. Such a stepwise parameter estimation (using other metrics
of catchment functions) has been previously reported in the literature [e.g., Ahmadi et al., 2014; Yen et al.,
2014] and incorporating L’vovich scoring functions in it is considered as a future research avenue.

5. Conclusions

This research extends the classical theoretical approach to hydrologic partitioning introduced by L’vovich
[1979] and the corresponding mathematical representations explored in subsequent studies [Ponce and
Shetty, 1995a, 1995b; Sivapalan et al., 2011] to constrain the outcome of hydrologic models based on the
interactions among major catchment functions: annual quick and slow lateral flow, infiltration, and evapo-
transpiration. The main objective is to investigate whether hydrologic models can be guided to better
reproduce the flow partitioning in a watershed given these additional constraints. As such, we developed a
model calibration framework that employs four partitioning-based signatures quantified based on the
L’vovich approach and employed it to constrain the simulations generated with two hydrologic models
(one lumped and one semidistributed model). To do so, we guided the calibration process with the pro-
posed partitioning-based quality metrics and compared the results with those obtained from traditional
signature-based model calibration.

Our results demonstrate that the L’vovich partitioning-based calibration provided more realistic representa-
tion of the surface and subsurface flow components, compared to the traditional signature-based calibra-
tion approach. Indeed in the first case study, the traditional signature-based calibration approach produced
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acceptable goodness-of-fit metrics but led to much higher surface runoff and lower base flow than can be
typically expected in Floridian soils. The proposed methodology led to more reasonable flow-partitioning
behavior, while producing hydrological fits that were comparable to the traditional signature-based meth-
odology. Furthermore, as shown in one of the case studies in this research, the proposed model evaluation
framework can also help to improve the model structure based on the observed inconsistencies. Finally,
partitioning-based model calibration was observed to increase parameter identifiability and decrease model
uncertainty.

Our approach is designed to complement, and not replace, the novel methods that have been proposed by
others. For example, if additional data sources like isotopes are available, the use of such information would
be preferred over our approach. It would be interesting to compare our approach to isotope-based parti-
tioning when such data sources are available. Our approach is similar, but distinct, from that of He et al.
[2015] in which the hydrograph is partitioned based on the dominant runoff generation mechanisms (such
as snowmelt, glacial melt, and groundwater discharge), and the model is calibrated separately to each
mechanism via a stepwise approach. We not only partition the hydrograph but explicitly consider the inter-
actions between the various flow pathways, using L’vovich theory, and calibrate the model to each of these
distinct interactions. The expert knowledge-based constraining approach proposed in Gharari et al. [2014]
demonstrates that how conditioning a model based on experts’ knowledge can improve its predictive pow-
er. It would be interesting to not only compare our approach to these novel methods but also evaluate if
using them in conjunction leads to more consistent hydrologic predictions.

Overall, the proposed framework is deemed to be a suitable diagnostic approach to increasing the chance
of ‘‘getting the right answer for the right reasons’’ in hydrological modeling [Kirchner, 2006]. This is crucially
important in modeling exercises where flow pathways dictate biogeochemical sources and transformation
processes. Therefore, the proposed method is a step toward more reliable water quantity and quality pre-
dictions. There is a significant body of research on the diagnostic model evaluation and the use of signa-
tures (e.g., references in section 1.1); however, as demonstrated in this study, the existing approaches do
not adequately capture surface and subsurface flow partitioning. This is the contribution of our study, and
we believe that our strategy synthesizes process-based modeling with empirical data-based water balance
relationships and presents opportunities for progress in hydrologic modeling, as suggested by Wang and
Tang [2014]. The proposed partitioning-focused model calibration should also be explored in the context of
coupled hydrological-biogeochemical modeling, and research in this area is ongoing by authors.

Appendix A

A1. HYMOD Mathematical Representation
Table A1 shows the parameters and variables involved in HYMOD along with parameters’ prior ranges con-
sidered in model calibration.

Soil moisture storage capacity, c (mm), is assumed to vary across the catchment and the spatial variability of
soil moisture capacity is described by the following distribution function:

FðcÞ5 1
11b

12cðtÞ=Cmaxð Þ11b
h i

(A1)

Table A1. Variables and Calibration Parameters Associated With HYMOD

Variable/Parameter Description Unit Prior Range

Variable
PET Potential evapotranspiration rate mm/d
Pex Excess rainfall mm/d
Parameter
Cmax Catchment maximum storage capacity mm 1–500
b Degree of spatial variability in storage capacity 0.1–2.0
a Factor splitting excess rainfall into interflow and percolation 0.1–0.5
Kq Residence time of quick flow routing reservoirs Day 0.05–0.5
Ks Residence time of slow flow routing reservoir Day 0.001–0.5

Water Resources Research 10.1002/2016WR019736

SHAFII ET AL. DIAGNOSTIC HYDROLOGIC MODEL CALIBRATION 3296



Given the storage at the beginning of time step t as c1ðtÞ, when rainfall PðtÞ happens during the time step,
all stores of capacity less than PðtÞ (identified using equation (A1)) are filled with water and the storage at
the end of time step or c2ðtÞ is calculated, i.e., infiltration to the soil is INFðtÞ5c2ðtÞ2c1ðtÞ. Evapotranspiration
is calculated as EðtÞ5PETðtÞ:min INFðtÞ=Cmax ; 1ð Þ, interflow is INTðtÞ5a:PexðtÞ where PexðtÞ5PðtÞ2INFðtÞ, and
if PexðtÞ > Cmax , surface runoff occurs RðtÞ5PexðtÞ2Cmax . Percolation to slow flow routing is calculated as
PERCðtÞ5ð12aÞ:PexðtÞ. Quick flow is routed using three linear reservoirs, where in each reservoir the outflow
is OUTqðtÞ5K21

q :Sq;iðtÞ; Sq;i is the depth of water in reservoir i at the end of time step t. Slow flow routing
works similarly using one linear reservoir, i.e., OUTsðtÞ5K21

s :SsðtÞ. Streamflow at the end of time step t is com-
posed of the outflow from the third quick flow routing reservoir and the slow flow routing reservoir. In the
modified version of HYMOD, corrected evapotranspiration is calculated as E’ðtÞ5ecEðtÞ where ec is the evapo-
transpiration correction factor, the number of quick flow is estimated by calibration, and the modified base
flow is calculated as OUT ’

sðtÞ5K21
s :SsðtÞ

n where n is a calibration parameter.

A2. Two-Bucket Semidistributed Model Formulation
This appendix provides the equations implemented in the model described in section 3.1.2 to quantify dif-
ferent hydrological processes. Table A2 elaborates on different variables used in the model formulation, as
well as the global parameters (and their prior range) to be adjusted via calibration—see Table A2.

Potential evapotranspiration (PET): Calculated based on the formulations provided in Hargreaves and Samani
[1985]. The Hargreaves equation is an empirical approach based solely on temperature and incoming solar
radiation. The latter is approximated using the air temperature (see RAVEN’s user manual [Craig, 2015] for
more information). The calculated PET is then corrected using a correction factor (a calibration parameter).

Canopy: Upon the rainfall-snow partitioning, 5% of the rainfall and snow is intercepted in the rain and snow
canopy storage, respectively.

Canopy evaporation rate (Ec): Calculated as Ec5PET :Fc and applied to both rain and snow canopy storages.

Depression and open water evaporation rate (Ed ): A part of excess rainfall and snowmelt is stored in the
depression storage, and PET is then applied to it to evaporate open water with the rate Ed5PET :Fow .

Snow modeling: The first step in the estimation of snowmelt rate is to partition total precipitation into rain
and snow. Rather than using a simple threshold temperature for partitioning, a linear transition between all
snow and all rain is determined based on the average daily temperature, or a50:52Ta=DT where Ta is the

Table A2. Variables and Calibration Parameters Associated With the Two-Bucket Hydrologic Model

Variable/Parameter Description Unit Prior Range

Variable
PET Potential evapotranspiration rate mm/d
Fc Forest coverage proportion
usoil Soil layer water content mm
umax 5Hn Maximum soil storage mm
H Soil layer thickness mm
n Porosity
utens5uFC2uWP Tension storage mm
uFC Storage at field capacity mm
uWP Storage at wilting point mm
n Root fraction
Parameter
Fsparse Vegetation sparseness 0.1–0.99
Fow Fraction of PET to apply to open water evaporation 0.1–0.5
Mp;max Maximum percolation rate mm/d 0.1–30
Mi;max Maximum interflow rate mm/d 0.01–1.0
k Base flow coefficient 1/d 0.001–0.5
b Infiltration parameter 1.5–2.5
Srain Rain canopy storage mm 1–10
Ssnow Snow canopy storage mm 1–10
Sdep Depression storage mm 1–50
CPET PET correction factor 0.5–1.5
DT Rain-snow mixture temperature range 8C 0.0–3.0
Ma DD factor mm/d/8C 2.0–5.0
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average air temperature (8C), and DT is a temperature range (8C). In this way, alpha (i.e., the proportion of
snow) varies from 1 to 0 as temperature changes from 2DT=2 to DT=2. Upon rain and snow partitioning,
the potential melt rate is calculated using the equation Mmelt;TI5Ma:max ðTa; 0Þ where Mmelt;TI is the poten-
tial melt rate (mm/d), Ta is air temperature (8C), and Ma is the DD factor (mm/d/8C).

Infiltration rate (Minf ) and overland flow (Moverlan): Calculated as Minf 5Rð12 usoil=umaxð ÞbÞ where R is the
combination of excess rainfall and snowmelt (mm/d), and b is a coefficient. The overland flow is then calcu-
lated as Moverland5R2Minf , which is stored in the surface water storage in the model.

Soil evaporation (Es): This process is linearly proportional to the soul saturation but distributed by root frac-
tion between upper and lower soil layers. If soil moisture exceeds the tension storage utens, soil evaporation
is calculated as EU

s 5PET :nU:min uU
soil=u

U
tens; 1

� �
and EL

s 5PET :nL:min uL
soil=u

L
tens; 1

� �
where U and L refer to the

upper and lower soil layers, respectively. nU and nL are set to 0.7 and 0.3, respectively. Soil evaporation can
exhaust the storage down to the wilting point storage and not more than that.

Percolation rate: Percolation becomes active when soil moisture in the upper layer exceeds the storage at
field capacity, and is calculated as Mperc5Mp;max ððusoil2uFCÞ=ðumax 2uFCÞÞ.

Interflow rate (Mint ): Similar to the percolation, this process also becomes active when there is more water in the
upper soil layer than saturation at field capacity, and is calculated as Mint 5Mi;max ððusoil2uFCÞ=ðumax 2uFCÞÞ.
The percolation and interflow can be generally considered as the drainage of water out of the upper later
in the vertical and horizontal directions, respectively, with different potentials expressed as Mp;max and
Mi;max .

Base flow rate (Mbase). Calculated as Mbase5kusoil .

Routing: During each time step, the overland flow, interflow, and base flow components are stored in the
surface water, which is then routed toward the watershed outlet. This routing is called in-catchment rout-
ing. Furthermore, as each watershed is composed of smaller subwatersheds, the water accumulated in the
outlet of upstream subwatersheds is routed in stream toward the outlet of downstream subwatersheds.
This routing component is called in-channel routing. The in-catchment routing is a function of the time of
concentration (Tc) in each small subwatersheds, i.e., if Tc is greater than one day, a part of the streamflow
generated during a time step will get to the outlet in the next time step. However, the Tc values we calculat-
ed using empirical formulations in Fang et al. [2008] were all less than a day, which means that water gener-
ated in each time step can be transferred to the outlet on the same day, i.e., no in-catchment routing.

The in-channel routing is a function of recent time history of upstream and (upbasin) inflows to the channel
as well as a vector of channel parameters (e.g., channel rating curves, and channel and bank roughness).
Given the channel properties, we use applied the iterative Newton’s root-finding algorithm to the following
discretization of the storage relationship:

V Qn11
out

� �
2V Qn

out

� �
Dt

5
1
2

Qn
in1Qn11

in

� �
2

1
2

Qn
out1Qn11

out

� �
(A2)

where VðQÞ is the channel volume as a function of discharge Q, Qt
in, and Qt

out are the inflow and outflow in
time step t, respectively. This method is a root-finding problem for Qn11

out , which is performed in each time
step.
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