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Abstract

In this thesis, we study a Spin Foam model for 4D Riemannian quantum gravity, and propose
a new way of imposing the simplicity constraints that uses the recently developed holomorphic
representation. Rather than imposing the constraints on the boundary spin network, one can im-
pose the constraints directly on the Spin Foam propagator. We find that the two approaches have
the same leading asymptotic behaviour. This allows us to obtain a model that greatly simplifies
calculations, but still has Regge Calculus as its semi-classical limit.

Based on this newly developed model, we aim at answering the following questions that
previously has never been properly addressed in the field: how to efficiently evaluate arbitrary
Spin Foam amplitudes in 4D? Do we have residual diffeomorphism invariance of the model?
What happens to the amplitudes under coarse graining? Can we learn the degree of divergence
of an amplitude simply by its graphic properties? What type of geometry in the bulk has the
dominant contribution to the partition function?

Using the power of the holomorphic integration techniques, and with the introduction of new
methods: the homogeneity map, the loop identity and a natural truncation scheme, for the first
time we give the analytical expressions for the behaviour of the Spin Foam amplitudes under
4-dimensional Pachner moves. The model considered is not invariant under the 5–1 Pachner
Move, as the configuration of five 4-simplices reduces to a single 4-simplex with an insertion of
a nonlocal operator inside. Similar behaviour occurs also for the 4–2 move. The non-invariance
under 5–1 move means that the vertex translation symmetry, the residual of diffeomorphism
invariance for discrete gravity, is broken in this path integral formalism. We also developed a
natural truncation scheme that captures the dominant contribution and preserves the geometrical
structures, while at the same time efficiently reduces the complexity.

We then push the result to be more general – evaluating arbitrary amplitudes. We study the
amplitudes on arbitrary connected 2-complexes and their degrees of divergence. First we derive a
compact expression for a certain class of graphs, which allows us to write down the value of bulk
amplitudes simply based on graph properties. We then generalize the result to arbitrary connected
2-complexes and extract a formula for the degree of divergence only in terms of combinatorial
properties and topological invariants. By regulating the model, this result allows us to find the
dominant contributions to the partition function, which gives us some valuable hints about the
continuum limit. The distinct behaviors of the model in different regions of parameter space
signal phase transitions. However, in the regime which is of physical interest for recovering
diffeomorphism symmetry in the continuum limit, the most divergent contributions are from
geometrically degenerate configurations. We finish with discussing possible resolutions, the
physical implications for different scenarios of defining the continuum limit and the analytical
insights we have gained into the behavior of Spin Foam amplitudes.
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Chapter 1

Introduction

1.1 The challenge of finding quantum gravity

Quantum mechanics and general relativity are distinct frameworks trying to describe our universe
from the two different aspects – microscopical and astrophysical. The two frameworks meet
when we confine a large amount of energy into a tiny region of space. So far we have yet to find
a consistent theory that could describe this regime.

We have however learnt valuable lessons from three different intersections of gravity with
quantum mechanics: quantum field theory on curved spacetime, gravitons on a fixed spacetime
background, and the conjecture of holographic duality. By studying quantum field theory on
curved spacetimes, we have understood how the cosmic microwave background could encode
information from the early universe, but this approach fails when we try to describe physics
close to the cosmological singularity [1, 2]. We also learnt that black holes radiate, but we still
do not fully understand whether the radiation encodes information of the collapsed matter as well
as what the end-stage of this evaporation is [3, 4, 5]. We have learnt that non-inertial observers
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measure Unruh tempreature in vacuum, but we do not know whether an inertial observer is still
a valid concept in quantum spacetime[6]. From the perturbative approach of treating gravity
like a quantum field theory on a fixed background, we have understood the structure of graviton
scattering amplitudes, but we also know that gravity is perturbatively nonrenormalizable, and
also the ambiguity of choosing background versus the perturbation brings ambiguity of causal
structure [7, 8, 9, 10]. This implies that either new degrees of freedom are yet to be discovered,
like the W bosons in the Fermi’s four-fermion interaction, or that new nonperturbative methods
need to be developed. Lastly, through the AdS/CFT correspondence, we have gained insights into
strongly coupled quantum systems by studying AdS black hole solutions and obtained interesting
results of probing geometry in the bulk using entanglement entropy on the boundary, but we have
not yet learnt anything new about the black hole interior itself [11, 12, 13, 14, 15].

Nature never fails to surprise us when we try to go beyond the current knowledge and pursue
a more fundamental theory. Quantum gravity lies in the heart of this pursuit. We expect a theory
of quantum gravity to be able to provide a description of the microstructure and dynamics of
quantum spacetime, while at the same time surprise us with novel predictions in the regions of
high curvature, such as the interior of black holes and the beginning of our universe. The central
questions of quantum gravity are about the very nature of spacetime, hence we are at the same
time facing some of the biggest philosophical questions regarding the existence of our universe,
its origin and its fate.

A unique challenge of such a research field is that we lack the guidance from experimen-
tal data. The relevant scale of quantum gravity is very remote from our current technological
capabilities[16]. However, we are guided by the strong constraints of the known physics, such
as the structure of Hilbert space, diffeomorphism invariance, unitarity, semiclassical dynamics
etc. The theory needs to be UV complete, mathematically well-defined, and at the same time
consistently bridge a vast range of scales to connect to the known physics. Due to these strict
constraints, we do not have many theories on the market to get confused about which is the right
one yet. Indeed, one could argue that we have none that satisfy all the requirements yet.

Different approaches to quantization of gravity take different subsets of the known principles
as the starting point. However, we have to keep in mind that while the known physical principles
can provide guidance, they can also be misleading at the same time: the framework we will need
for quantum gravity might be so dramatically different with what we have known that certain
assumptions we have previously taken for granted might have to be dropped. For example,
locality, which has been central to the construction of quantum field theories, has been shown to
be relaxed in several approaches of quantum gravity [17, 18, 19, 20]

The successful framework of quantum field theory cannot be directly applicable to quantum
gravity. One crucial reason is that standard field theory needs a rigid pre-established spacetime
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geometry, since even the inner product on Fock space depends on a background metric. Hence,
a key step for formulating quantum gravity is to invent a framework of quantum theory that does
not refer to the pre-existent notion of background. Loop quantum gravity aims at addressing this
task [21, 22, 23, 24]. It has had a great success in constructing the kinematical Hilbert space for
quantum gravity: the state space of the theory consistently solves the spatial diffeomorphisms
constraints [23, 25, 26]. However, solving the dynamics of the theory, namely the Hamiltonian
constraint, has turned out to be a great challenge. The Spin Foam approach was invented to tackle
the dynamics via the path integral formalism[27]. It is this covariant approach that we will focus
on in this thesis.

1.2 A brief history of Spin Foams

Spin Foam models attempt to rigorously define a path integral formalism of Quantum Gravity.
Their construction was inspired by the discretization of general relativity á la Regge, loop quan-
tum gravity and topological quantum field theories. Historically, the very first spin foam model
was proposed by G. Ponzano and T. Regge in 1968 as a state sum model for 3-d quantum gravity
[28], long before the term Spin Foams was introduced [30]. In 90’s a path integral formalism of
quantum gravity was invented to tackle the dynamics of loop quantum gravity from the covariant
perspective, through defining transition amplitudes between spin network states as “sums over
surfaces.[29].

It is a hope that the path integral formalism would not only provide a mathematical tool
to implement the projector on physical states satisfying the Hamiltonian constraint, but also
provide a physical picture of the quantum spacetime for loop gravity. It was later that the state-
sum models obtained from discretizing the path integral for 3D BF theory were shown to be
related to the Spin Foam amplitudes from the “sum-over-surfaces path integral formalism [30].
Along this path, inspired by the relation between gravity and topological field theories, various
4 dimensional Spin Foam models were proposed [35][36] [37] [38] [41][42]. These early Spin
Foam models had certain insights, but also limitations. The proposal which has stimulated a
lot of explorations was the Barrett-Crane model in both Euclidean and Lorentzian signatures
[33, 34, 37, 38]. It was constructed by using geometric quantization techniques [39][40]. The
model has remarkable simplicity, however, it over-constrains the solution space and results in the
wrong semi-classical limit.

After many years of clarifying the foundations of Spin Foams, and introducing new tech-
niques – using coherent intertwiners to build Spin Foam amplitudes, labelling boundary states
with classical geometric data and using saddle-point techniques to study asymptotics – finally
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a new class of Spin Foam models was invented, which is now known as Engle-Pereira-Rovelli-
Livine and Freidel-Krasnov (EPRL-FK) models [43, 44, 45, 46]. At the level of a single 4-
simplex, this class of models provides the desired semiclassical limit – Regge Calculus. It has
been suggested in [47, 48] that we can bring the models closer to reality by including the cosmo-
logical constant with deforming the underlying group structure to quantum groups. In 3-d this
has been achieved by Turaev and Viro [32, 49], while in 4-d the work is ongoing, see for example
[50, 51, 52, 53]. An alternative construction by using Chern-Simons theory has been given in
[54].

Having defined the EPRL-FK models, a lot of effort has been made in recent years towards
obtaining physical predictions, such as studying graviton propagators, the resolution of spacetime
singularities, Planck stars and attempting cosmological predictions [55, 56, 57, 58, 59]. While
many interesting results have been obtained, their validity is questionable because some very
fundamental questions at the heart of the model have not been fully understood yet.

The first question is the gauge symmetry of the model. In 3D Spin Foams this is not an
issue, because the model does not have local propagating degrees of freedom – any discretization
captures the continuum physics. In 4D however, discretization in general breaks diffeomorphism
invariance [60, 61, 62]. One open question is whether the EPRL-FK model has any residual
diffeomorphism symmetry and how to check it. The next question would be whether we can
recover the full diffeomorphisms in the continuum limit.

The crucially related question is about the renormalization of the model. The Spin Foam
paradigm is essentially a bottom-up approach – postulating the dynamics of quantum spacetime
at the smallest scales. To see whether the theory recovers general relativity in the large scale limit
and whether we can connect predictions with any observable phenomena, we need to bridge the
gap of scales. The physical predictions we can get from the model will not be reliable without a
consistent renormalization procedure relating observables at different scales [62].

Before we even attempt renormalizing the Spin Foam models, we have to first be able to eval-
uate the divergences of Spin Foam amplitudes. A crucial aspect of studying quantum field the-
ory is understanding the behavior of divergence. Ultraviolet divergence comes from integrating
degrees of freedom to arbitrarily high energy scales and should be removed through renormal-
ization, while infrared divergence is due to an infinite number of soft massless particles and does
not influence measurable quantities. The generic divergences in Spin Foams are very different
to those in quantum field theory. In Spin Foams, the existence of minimum length scale re-
moves the ultraviolet divergence [10, 24, 27]. However, the arbitrarily large length scale degrees
of freedom in the path integral can in principle lead to infrared divergences. The divergences
from self-energy and radiative corrections in 4-d models have been studied in [74, 75, 76]. The
general structure has been studied in 3-d [79, 80, 81, 82, 83] and also in 4-d topological group
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field theory [84, 85]. Understanding the general behavior of divergences is a basis for studying
renormalization in Spin Foams.

As a Spin Foam model is defined by a path integral over all the geometrical degrees of free-
dom with a given boundary, it is crucial to understand what type of geometry has the dominant
contribution to the partition function. It will give us hints as to whether the theory will lead to
smooth 4-d geometry in its continuum limit. In the colored tensor models [86, 87, 88, 89, 91],
as it has been shown in the 1/N expansion, the dominant contribution to the partition function
comes from melonic graphs, which leads to branched polymers phase [91, 92]. Such a complete
analysis of dominant contributions has always been missing in non-topological 4-d Spin Foam
models.

Only achieving the correct semi-classical limit without addressing the above points does
not quantum gravity make. One crucial reason of why they have not yet been answered is the
technical difficulty of precisely evaluating amplitudes for more than one single building block.

1.3 The aspirations of this research

The main goal of this thesis is answering the following questions:

• How to evaluate arbitrary amplitudes efficiently?

• Do we have residual diffeomorphism invariance?

• What happens to the amplitudes under coarse graining?

• Can we learn the degree of divergence of an amplitude simply by its graphic properties?

• What type of geometry in the bulk has the dominant contribution to the partition function?

1.4 Plan of the thesis

Chapter 2 serves as the background and basis. I will introduce the basic idea of Spin Foam
models. We start with a topological field theory, known as BF theory, which at the classical level
can be constrained to a first-order formulation of General Relativity. A Spin Foam model is a
proposal for a discretized version of these constraints at the quantum level, which are imposed
on the partition function of BF theory. The desired semi-classical limit of a Spin Foam model
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is the Regge calculus, which is a discrete approximation of the smooth geometrical solutions in
General Relativity by piece-wise flat simplicial manifolds.

In the discrete approaches towards 4-d quantum gravity, a subtlety is the gauge symmetry.
This is even present at the classical level: the discretization breaks diffeomorphism invariance
in general[60, 61]. I will review a series of works identifying gauge symmetry in Regge Calcu-
lus. At the quantum level, in the canonical formalism the difficulty is solving the Hamiltonian
constraint, which generates the diffeomorphisms in the time direction. In the path integral for-
malism, the challenge of finding the correct continuum limit is deeply related to recovering the
diffeomorphism invariance through renormalization[99, 100, 101, 102, 103, 62].

The divergences in Spin Foam models (with vanishing cosmological constant) are expected
to encode information about gauge symmetry [93, 94, 95, 96, 97]. Diffeomorphism symmetry
leads to non-compact gauge orbits, thus a path integral over such orbits leads to divergence.
This is known exactly in the 3-d Ponzano-Regge Model. Residual action of the diffeomorphism
group acts at the vertices of triangulation of a 3D manifold as a vertex translation symmetry. In
the Ponzano-Regge Model, the divergences which are due to this translation symmetry can be
removed by using the Faddeev-Poppov procedure [93]. 3D gravity is topological and has no local
degrees of freedom, hence its continuum limit is fully described by the discrete model, which
is not the case for 4D gravity. In the case of 4D models, the situation is non-trivial, because
the diffeomorphism symmetry in discrete models is broken[60, 61] and is only expected to be
recovered in the continuum limit through renormalization [62]. Nevertheless, the discretized 4D
Regge action has the vertex translation symmetry under the 1–5 refining Pachner Move [61].
Therefore, understanding the behavior of divergence in 4D Spin Foam models can give us hints
about the residue of diffeomorphisms present in the model.

In Chapter 3, I will go through the construction of a Spin Foam model with the holo-
morphic representation. It is a 4D Riemannian model with vanishing cosmological constant
[105, 106]. The model arose from rewriting Spin Foams in terms of coherent states using
the SU(2) holomorphic representation beginning with the work in [108, 109] and continued in
[110, 111, 112, 113, 114, 115, 116, 117, 119, 121, 122, 123]. In the holomorphic representation
complicated integrals over SU(2) irreducible representations can be rewritten as spinor integrals
over the complex plane. This allows for exact evaluations of complicated spin network functions
[121, 123].

The standard framework for imposing the simplicity constraints corresponding to the EPRL/FK
models was implemented in the holomorphic framework by Dupuis and Livine in [115], which
we will refer to as the DL model. In the Riemannian case of the gauge group S U(2)L × S U(2)R,
the constraint imposes left and right spinors to be proportional to each other on the boundary
spinor network of a 4-simplex. Different with the conventional approach, we impose the simplic-
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ity constraints on the Spin Foam propagators rather than on the boundary spinor networks. This
effectively imposes the constraints not only on the boundary, but also in the bulk. This choice
allows us to calculate the Spin Foam amplitudes much more efficiently. Naively it is not obvious
that imposing more constraints does not spoil the semi-classical limit of the Spin Foam model.
We will show that with the alternative way of imposing the simplicity constraints, the model still
has the same semiclassical limit as the EPRL/FK model [126, 127, 63, 64, 65, 66, 67, 70] at the
leading order [106], but the computability of the model has been tremendously simplified. The
differences in asymptotics between the models reside in the Hessian, the overall normalization
and the higher order terms as well as on the off-shell trajectories.

Chapter 4 is a whole package of newly developed techniques and methods which enable us to
evaluate amplitudes beyond one single 4-simplex. As the partition function is defined on the dual
of simplicial lattice – the 2-complex, we will first analyze the graph structure. We will introduce
the concepts of a spanning tree, a fundamental cycle, and an optimal spanning tree , which will
play a crucial role in expressing the result of arbitrary amplitudes. Then we will review the
partial gauge fixing procedure to fix the subgroups SU(2) – the internal rotational symmetry on
a spanning tree of edges.

In the holomorphic Spin Foam model, the computation of evaluating the partition function
essentially amounts to integrations of power series of spinor polynomials. We will introduce the
homogeneity map – a useful tool which allows us to perform the calculation in a very tractable
and compact way. Graphically, integrating the geometrical degrees of freedom from the shared
faces of simplices is to integrate loops in the cable diagrams. We will summarize this structure
in Section.4.4. In 3D case, the triviality of such loop structures is just another aspect of the
fact that 3D gravity is topological and does not have local degrees of freedom. In 4D model,
we will see immediately where the nontriviality comes from. The simplicity constraints break
certain invariance from a topological theory and integrating along a loop results in non-local
couping among different fundamental building blocks. This is a very generic feature which is
insensitive to different ways of imposing the simplicity constraints. We expect this carries over
to the Lorentzian case.

For coarse graining the Spin Foam model, or trying to evaluate arbitrary amplitudes, identify-
ing relevant degrees of freedom is essential. We will introduce a natural truncation scheme, and
the resulting amplitudes are structure preserving, while at the same time encode the non-local
degrees of freedom as a non-local coupling function of spins.

Chapter 5 provides examples of applying the techniques developed in the previous chapter.
We evaluated all the 3D and 4D Pachner Moves. We are interested in this type of moves because
they are the most basic local coarse graining moves on a simplicial decomposition of a manifold
[68]: Pachner moves are local changes of triangulation that allow to go from some triangulation
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of a manifold to any other triangulation in a finite number of steps. An n–(2 + d − n) Pachner
move changes a triangulation composed out of n d-simplices to one with (2 + d − n) d-simplices.
Only the n–1 Pachner moves are pure coarse graining moves.

We first reproduce the calculation of Pachner moves in the 3D Ponzano-Regge model in
terms of the holomorphic representation. There are two Pachner moves: the 4–1 move and 3–2
move. The results have been long known: the 3–2 move is invariant and 4–1 move is invariant
up to a factor of an SU(2) delta function, which results from not fixing the gauge translation
symmetry. It is however the first time, that Pachner moves have been calculated explicitly in a
simplicity-constrained Spin Foam model of 4–dimensional Quantum Gravity in [105]. We find
that the model considered is not invariant under the 5–1 Pachner move, as the configuration of
five 4-simplices reduces to a single 4-simplex with an insertion of a nonlocal operator inside.
Similar behavior occurs also for the 4–2 move. The truncation scheme allows us to make both
the 4–2 and 5–1 moves structure preserving up to a non-local weight depending on the boundary
data. The 3–3 move is not invariant, unless very special symmetric boundary data are considered,
as expected for a model of 4D quantum gravity.

In Chapter 6 we first start with gaining some preliminary intuition of the structure of ampli-
tudes through understanding coupling of loops and adding edges. We then find a more efficient
approach and push the analytical results to arbitrary amplitudes[107]. The goal here is under-
standing some physical questions, such as what type of geometry has the dominant contribution
to the partition function, and what is the exact degree of divergence for the partition function as-
sociated with general diagrams. The quantity of interest here is the bulk amplitude Abulk, which
is the evaluation of partition function on a fully contracted 2-complex, or the evaluation on a
connected 2-complex with zero boundary spins.

For certain class of graphs, in which there exist optimal spanning trees, we derive an expres-
sion to capture the dominant degrees of freedom in the partition function. Using this expression,
one can simply read out the evaluation of truncated bulk amplitude through combinatorial prop-
erties of a graph. We will also introduce simplifed diagrams to make the structure of the result
more transparent. For more general graphs, with a generic choice of spanning trees, we need to
evaluate nesting of loop identities which leads to truncation within truncation. However, with the
gauge fixing choice along an optimal spanning tree, the error of truncation is minimized. We then
show that even though the truncated degrees of freedom depend on the choice of gauge-fixing
tree, the dominant contribution is tree-independent and can be captured by a simple expression.
A very good approximation to arbitrary 4-d Spin Foam bulk amplitude can be expressed in a
compact closed form, which allows us to derive the exact degree of divergence for any amplitude
in the next Chapter.

In Chapter 7, using the asymptotic formula of the hypergeometrical functions, we extract
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a simple formula for the exact degree of divergence for arbitrary 2-complexes, in which the
variables are the number of vertices |V |, number of faces |F| and the number of edges |E|:

D(Γ) = Λ(η+2)|F|−6|E|+3|V |−3, (1.1)

where Λ is a large spin cut-off and η is the power of face weight (2 j + 1)η. The dependence
on Barbero-Immirzi parameter has dropped out in the asymptotic analysis. The only parameter
in the degree of divergence formula is the power of the face weight η. When the face weight
is (2 j + 1)3, i.e. η = 3, the 5–1 Pachner move has Λ2 divergence, while 4–2 Pachner move is
finite. This is the desired degree of divergence one would expect for recovery of diffeomorphism
symmetry in the model [94, 96].

The above expression can also be written in terms of topological invariants. In terms of a
topological quantity called the degree of the graph ω4d(Γ), we find

D(Γ) = Λ(η−2)|F|−4ω4d(Γ)/3+13. (1.2)

Hence there are regimes of the face weight η with distinct behaviors and we analyze them in
section 7.2. We find that when η = 2, the divergence solely depends on the degree of the graph
as in the colored tensor models [90]. In this case the continuum limit defined by summation of
all graphs is described by the branched polymers phase[91]. In the region when 5–1 move is
divergent while 4–2 is not, the dominant contribution comes from melonic graphs while maxi-
mizing the number of vertices. We finish with discussing the physical implications for different
scenarios of defining the continuum limit, and the analytical insights we have gained into the
behavior of Spin Foam amplitudes.
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Chapter 2

Spin Foams and diffeomorphisms

In this chapter, we will review basic ideas and construction of the Spin Foam approach to quan-
tum gravity, especially focusing on the fate of diffeomorphism invariance.

We start with introducing Regge Calculus, a simplicial approximation of General Relativ-
ity, which is the desired semi-classical limit of Spin Foam models. Then we will review the
relationship between gravity and a topological field theory, known as BF theory, which can be
constrained to a first-order formulation of General Relativity at the classical level. This observa-
tion has been at the heart of Spin Foam construction. Then we will discuss quantizing BF theory,
the constraints at quantum level, and the general structure of Spin Foam amplitudes.

In the discrete approaches towards 4D quantum gravity, a key subtlety is the diffeomorphism
invariance. We will review and discuss the state of art regarding this question related to the
Spin Foam approach, including the diffeomorphisms in 3D classical and quantum gravity, the
divergence from the residual gauge symmetry, identifying gauge symmetry in Regge Calculus,
and the challenge for 4D quantum gravity.

2.1 Regge Calculus

Regge Calculus was developed as a powerful tool of analyzing gravitational systems that are not
amenable to perturbation approach and are devoid of symmetries. The formalism was introduced
by Tullio Regge in 1961 [72]. It is a discrete approximation of the smooth geometrical solutions
in General Relativity by piece-wise flat simplicial manifolds.

More precisely, Regge Calculus approximates a smoothly curved n-dmensional manifold
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as a collection of n-simplices, joined by codimension-2 hinges on which all the curvature is
concentrated. In 4D, the curvature is concentrated on triangles.

The deficit angle εt associated with a hinge t is defined as summing over the angles for all the
simplices t ⊂ σ that meet on the given hinge and subtracting from 2π. If we parallel transported
a vector from one simplex to the next around the hinge, it would result in a rotation by an angle

εt = 2π −
∑
σ⊃t

ξσt , (2.1)

where ξσt is the dihedral angle between the two tetrahedra inσ sharing the triangle t. It is the angle
between the two 4-vectors Na,Nb which are normal to the two tetrahedra a, b ⊂ σ respectively.
In 4 dimension, the action of Regge Calculus reads:

S Regge =
∑

t

Atεt (2.2)

which is the total sum of deficit angles weighted by the area of the hinge. Its continuum limit is
the Einstein-Hilbert action. Below we provide a summary of the formalism in different dimen-
sions.

Dimensionality of manifold 2 3 4
Hinge where cycle of sim-
plices meet with a deficit an-
gle εt

Vertex Edge Triangle

“Weight” of such hinge 1 Length lt Area At

Contribution from all hinges
to curvature

∑
t εt

∑
t ltεt

∑
t Atεt

Continuum limit of this con-
tribution

∫ √
−g(2)R(2)d2x

∫ √
−g(3)R(3)d3x

∫ √
−g(4)R(4)d4x

Table 2.1: Regge Calculus in different dimensions.

2.2 Basics of Spin Foams

Spin Foam models originated from the insight that classical gravity can be described as a topo-
logical field theory, known as BF theory, with a simplicity constraint. As BF theory only has
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topological degrees of freedom, it can be quantized very easily. Spin Foam models are then a
path integral quantization of BF theory, with simplicity constraints imposed at the quantum level.

2.2.1 From BF theory to Gravity

Classically, BF theory is defined on a principal G-bundle over a d dimensional manifold M,
with a group G and connection ω. B field is a d-2 form in the adjoint representation of G. The
connection is defined to be a g-valued one-form on a local trivialization of the principal bundle,
and the curvature 2 form associated to ω is F(ω) = dω + ω ∧ ω. The action is defined as

S BF =

∫
M

Tr [B ∧ F(ω)] . (2.3)

which is invariant under the gauge transformation

g∗(ω) = g−1ωg + g−1dg, g∗(B) = g−1Bg, g ∈ G (2.4)

After varying the action, we can get the equations of motion:

F = 0, dωB = dB + ω ∧ B = 0 (2.5)

Hence the connection ω is flat and B is closed. It is a topological field theory in the sense that all
the solutions of equations of motion are locally gauge equivalent. Hence the theory has no local
degrees of freedom.

In 3 dimensions, if we choose the gauge group to be S U(2), the B field is a Lie algebra valued
1 form – same as the triads in 3d gravity. We can see that the BF action is precisely 3d gravity in
Euclidean signature without cosmological constant:

S 3d[e, ω] =

∫
M

Tr [e ∧ F(ω)] . (2.6)

We will analyze its gauge symmetry in section 2.3.2.

In 4 dimensions, B field is a bivector that lives at the tangent space ofM, in which the tetrad
e span the basis. It was proved in [43] [ lemma II.1 3] that a bivector BIJ in R4 or M1,3 is a
simple bivector iff there exists a vector nI such that nI BIJ = 0. When this condition is satisfied,
BIJ is constrained to be proportional to eI ∧ eJ or ∗(eI ∧ eJ). Using a parameter γ, known as the
Barbero-Immirzi parameter to distinguish these two sectors, one gets the Palatini formulation of
gravity from S BF:

S Palatini =

∫
M

tr
[
∗(e ∧ e) ∧ F(ω) +

1
γ

e ∧ e ∧ F(ω)
]

(2.7)
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in which the tetrad and connection are independent variables. Spin Foam models are then a
path integral quantization of BF theory, with simplicity constraints imposed at the quantum level
such that, semiclassically, the B field is a simple bivector. To well-define the path integral, we
discretize the classical BF theory on a simplicial complex first. We will show this in the next
section. Using simplicial complexes allows us to have a natural connection with Regge Calculus
that we have just introduced, and which is also the critical action for Spin Foam models in the
semiclassical limit [126, 127, 63].

2.2.2 BF partition function and diagrammatics

Here we will briefly review the discretized path integral formalism of SU(2) BF theory. We
then introduce a convenient graphic notation – the cable diagrams, and discuss their geometrical
meaning. We will arrive at two equivalent ways of writing BF partition function: in terms of
projectors or vertex amplitudes.

Let ∆ be a discretization homeomorphic to a d-dimensional manifoldM and let Γ be its dual
2-complex. The edge e is dual to the (d-1) cell, and the face f is dual to the d − 2 cell in the
discrete manifold. Now let us discretize the d − 2 form B on ∆ by smearing it on the d − 2 cell,

B f =

∫
(d−2)cell

B, f ⊂ Γ (2.8)

which is an Lie algebra element of the gauge group. There is a group element assigned to each
edge e of the dual graph Γ by the path-ordered exponential:

ge = P exp(−
∫

e
ω) ∈ S U(2), e ⊂ Γ (2.9)

If we use g f to represent the product of group elements around a face

g f ≡

−→∏
e⊂ f

ge, (2.10)

then the partition function of SU(2) BF theory is simply

ZBF(M) =

∫ ∏
e∈Γ

dge

∏
f∈Γ

δ(g f ). (2.11)

The delta function for each face ensures the flatness of the connection. It is the discrete analog
of vanishing curvature for 3d gravity.
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We can expand the delta functions in terms of the fundamental representations j f by using
the Peter-Weyl theorem,

δ(g f ) =
∑

j f

d j f tr
(
ρ(g f )

)
(2.12)

where d j f is the dimension of the representation space d j = 2 j+1, the trace on the RHS is over the
representation j f . Inserting the resolution of identity on the representation space V j f1 ⊗ · · · ⊗V j fd

between each group element in the trace, the partition function of BF theory can be written as

ZBF(M) =
∑

j f

∏
f∈Γ

(2 j f + 1)
∏
e∈Γ

P j f1 ,..., j fd , (2.13)

where P j f1 ,..., j fd is the projector onto the SU(2) invariant subspace of V j f1 ⊗ · · · ⊗ V j fd given by
group averaging the tensor product of irreducible representations ρ j

P j f1 ,..., j fd =

∫
dge ρ

j f1 (ge) ⊗ · · · ⊗ ρ j fd (ge), (2.14)

where the basis labels of the representations ρ j f have been suppressed. The projector is the
unique map P j1,..., jd : ρ j1 ⊗ .... ⊗ ρ jd → InvSU(2)[ρ j1 ⊗ .... ⊗ ρ jd ], and is often called the Haar
projector.

Cable diagrams are an intuitive and useful graphic notation for the computations of Spin
Foam partition functions (a review of these techniques is given in [100]). Here it is used to rep-
resent the structure of partition function on the dual 2-complex Γ. Cable diagrams are basically
composed by strands passing through boxes: a strand denotes a representation of a symmetry
group living on the edge e of Γ, and a box denotes the group averaging of a set of representations
in the projector.

ρ j = j and P j1,..., jd =

j1
j2
j3
j4

j1
j2
j3
j4

(d = 4) (2.15)

Strands form closed loops, which correspond to the faces in the dual 2-complex Γ. Fig.2.1 and
Fig.2.2 give an example in 3 dimensions: a 3-simplex, its dual 2-complex and the corresponding
cable diagram.

The projector P j1,.., jd can be expressed as a sum over a basis of invariant tensors called inter-
twiners, which are elements in the Hilbert space

⊕
ji

InvSU(2)

[
V j1 ⊗ · · · ⊗ V j4

]
P j1,.., jd =

∑
ι

j1
j2
j3
j4

j1
j2
j3
j4

ι ι (2.16)
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f ∈∆∗

Figure 2.1: A tetrahedron and its
dual 2-complex

Figure 2.2: A tetrahedron and
its cable diagram

where ι labels a basis of normalized intertwiners. We see that the projector factorizes on the
edges, while the intertwiners contract at the vertices of Γ expressing the partition function in
terms of so called vertex amplitudes Av( j f , ιe). For example, if M is 4 dimensional, the BF
partition function can be written as

ZBF(M) =
∑

j f

∏
f∈∆∗

(2 j f + 1)
∑
ιe

∏
v∈Γ

Av( j f , ιe) (2.17)

where the vertex amplitudes

Av( j f , ιe) :=

ιe1

ιe2

ιe3
ιe4

ιe5

. (2.18)

In 4d the vertex amplitudes of the Ooguri model (which is basically quantum 4D BF theory) are
15j symbols labelled by 10 spins and 5 intertwiner labels, which are also spins. In 3d the vertex
amplitudes of the Ponzano-Regge model are 6j symbols with no intertwiner labels since the rank
three intertwiner space is one dimensional.

2.2.3 Towards 4D quantum gravity – linearized simplicity constraints

We are now ready to discuss the simplicity constraints at the quantum level[10, 43, 46]. In the
Riemannian case, the underlying BF theory has the gauge group Spin(4) = SU(2)L × SU(2)R,
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which is the double cover of SO(4). This means that the Spin(4) BF partition function can be
written as the product of two SU(2) BF partition functions. Note that the unitary representations
of Spin(4) can be expressed as a direct sum of those of SU(2) by

V jL, jR =

jL+ jR⊕
j=| jL− jR |

V j. (2.19)

In the following we will see that the simplicity constraints are actually imposed on representation
labels, as an isomorphism between the two SU(2) sectors.

Classically, at the discrete level, we can write the constraints imposing that BIJ = ∗(eI ∧ eJ)
in a simple form if we first define

B =
γ2

γ2 − 1
(J −

1
γ
∗ J) (2.20)

where J is the variable conjugate to the holonomy, and γ is the Barbero-Immirzi parameter we
have introduced earlier. Then the linearized simplicity constraints, which impose the existence
of a common normal to the B fields, can be written in a compact form as

1
2
ε

j
klJ

kl −
1
γ

J0 j = 0 (2.21)

In the EPRL-FK models, this equation is expressed as an equation constraining the Spin(4) rep-
resentation labels. This is because J is the rotation generator and the Eq. (2.20) is a condition on
the Casimirs of the representations. In the Riemannian case, the solution to the constraints is the
restriction on the spins of the two SU(2) sectors

jR =
1 + γ

|1 − γ|
jL, (2.22)

together with selecting a projectionY into one term in direct sum of SU(2) representation spaces
in Eq. (2.19). This projection can be written as

Y j : V(1+γ) j/2,|1−γ| j/2 → V j. (2.23)

As the Spin(4) Haar projector is a product of two SU(2) Haar projectors, imposing the simplicity
constraints results in working with a constrained projector

PEPRL−FK( j1, . . . , j4) = P
|γ−1|

2 j1...
|γ−1|

2 j4
L P

γ+1
2 j1...

γ+1
2 j4

R (Y j1 ⊗ . . . ⊗ Y j4)P
|γ−1|

2 j1...
|γ−1|

2 j4
L P

γ+1
2 j1...

γ+1
2 j4

R (2.24)
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Figure 2.3: Graphic notation of projectors under the Y map.

Graphically, this can be represented as in Fig.2.3.

The EPRL-FK partition function can be then written as

ZEPRL−FK =
∑

j f

∏
f∈∆∗

d(1+γ) j f /2+1d|1−γ| j f +1

∏
e∈∆∗

PEPRL−FK( j1, . . . , j4), (2.25)

where d j = 2 j + 1 is the dimension of V j. As we have discussed in the last section, this product
of constrained projectors can be rewritten as a sum over vertex amplitudes.

More generally, a Spin Foam model is defined as a choice of the set of 2-complexes dressed
with representations and intertwiners,

Z(Γ) =
∑
j f ,ιe

∏
f

A f ( j f )
∏

e

Ae( j f , ιe)
∏

v

Av( j f , ιe). (2.26)

This expression is also known as the local Spin Foam ansatz [31]. Note that in this general
expression, when we write the model in terms of projectors1, the vertex amplitude Av is triv-
ial; whereas when we express the model in terms of 15j symbols, like in Eq.(2.17), the edge
amplitude Ae will be trivial.

The partition function we have discussed so far has been for a fixed 2-complex. Eventually,
to get the full quantum history corresponding to the boundary state ∂M, we need to sum over all
the intermediate spinfoams:

Z(∂M) :=
∑

Γ

w(Γ)Z(Γ), (2.27)

where w(Γ) is a weight associated to each 2-complex, which has been suggested to be a symmetry
factor of the 2-complex. Later in the thesis we will discuss the subtleties of this basic definition.

2.3 Diffeomorphisms

The framework of loop quantum gravity was originally invented by the inspiration of lattice
gauge theory, aiming at taking gauge invariant description of gravity as the starting point. The

1It is only really a projector in BF case, and we will use the term “propagator” for the simplicity constrained
models.
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spatially diffeomorphic invariant states in LQG are given by equivalence class of knots, which
spans the Hilbert space[26, 25]. As this canonical formalism meets an obstacle in terms of
dynamics, the path integral formalism was constructed to tackle this issue. Even though the
partition function of the model has been well-defined and uses spin networks as boundary states,
the precise connection to the canonical formalism and the fate of full spacetime diffeomorphisms
is still very unclear.

2.3.1 Gauge symmetry in the lattice gauge theory

Lattice gauge theory was initially developed in the need of a non-perturbative treatment to un-
derstand the low energy regime of QCD. In high energy, QCD is an asymptotically free theory,
which is intimately connected with the fact that the gauge group is non-abelian. In this strong in-
teracting regime, there were a lot of new questions that required techniques beyond perturbation
theory, such as confinement, hadron mass and properties, chiral symmetry breaking etc.

The path integral formalism only has a well-defined meaning for systems with countable
number of degrees of freedom. The introduction of a space-time lattice allows a well-defined
measure in the path integral since we only have a discrete set of variables to integrate. The finite
lattice spacing a also results in a cutoff in momentum space, which serves as a natural regulation
of the UV behavior.

In the seminal paper in 1974[71], Wilson introduced the gauge invariant variableWc along
a closed loop c:

Wc = Tr[P exp i
∮

c
Aµdxµ] (2.28)

In the discretization, the gauge field is replaced by a holonomy that lives on the links between
lattice points. For example, a lattice Yang-Mills action can be written as

S Y M = −
∑

c

β

N
Re(Wc) (2.29)

By using the Wilson loops variables, this discretization of the continuum theory has all the local
gauge symmetries by construction. The idea of these Wilson loops inspired the loop variables in
LQG. It is important to comment here that since the QCD gauge group SU(3) is compact, there
is no divergence involved in the path integral due to gauge symmetry. In gravity however, the
diffeomorphism invariance is more non-trivial, as we will discuss in the next sections.
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2.3.2 Diffeomorphisms in 3D classical and quantum gravity

In this section we will review the analysis of diffeomorphisms of 3D gravity, mostly based on the
work [93]. As we known that gravity in lower dimensions is a much simpler theory than the 4D,
the gauge symmetry at the quantum level is also a cleaner story. There are however some lessons
we can learn, to help us in the models relevant to the real world.

The action of 3D gravity in the natural unit reads

S 3D [e, ω] =

∫
M

Tr [e ∧ F(ω)] . (2.30)

where e and ω are su(2) valued one forms:

e = ei
µJidxµ, ω = ωi

µJidxµ. (2.31)

Here Ji are the su(2) generators. The curvature two form of ω is given by F(ω) = dω + ω ∧ ω.
The trace in the action is given by the contraction of Lie algebra indices by the antisymmetric
tensor εi jk. The infinitesimal diffeomorphism transformations parametrized by a vector field ξµ

are written as

δξe = Lξe = d(ιξe) + ιξ(de)
δξω = Lξω = d(ιξω) + ιξ(dω)

(2.32)

in which the second equal sign is due to the Cartan’s identity for Lie derivatives.

In 3D Euclidean gravity, the local Lorentz group is SU(2). If we use X to represent its Lie
algebra element, the infinitesimal Lorentz transformation δL is

δL
Xω = dωX, δL

Xe = [e, X] . (2.33)

There is also another gauge symmetry that acts as a translation of triad field. It is given by

δT
Xω = 0, δT

Xe = dωφ, (2.34)

where the parameter of the transformations is also an su(2) element φ. The invariance of the
action under this transformation follows from the second Bianchi identity. These symmetries
imply that all solutions of the theory are gauge equivalent. One can show [93] that on-shell we
have

δξ = δL
ιξω

+ δT
ιξe, (2.35)

i.e. the three symmetries are related. Hence the diffeomorphisms in 3D classical gravity can
be neatly decomposed into two gauge symmetries – internal rotational “Lorentz” SU(2) gauge
symmetry and the translational symmetry.
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Let us now examine these gauge symmetries in the path integral formalism defined on a
simplicial lattice. Following the procedure we have introduced in 2.2.2, we consider the partition
function on the simplicial decomposition ∆ of the manifold. The smearing of triads defines the
Lie algebra valued variables E f corresponding to each face E f =

∫
b

e ∈ su(2), where f is the dual
face corresponding to the bone b of triangulation. We also denote the Lie algebra valued variable
Z f from the logarithm of the holonomy Z f = ln g f ∈ su(2). The action written in terms of this set
of discrete variable reads,

S 3D discrete =
∑

f

Tr(E f Z f ) (2.36)

Since both variables Z f and E f are valued in the Lie algebra, the local Lorentz transformation at
the level of the discrete model is implemented by the action

Z f → g−1
v Z f gv, E f → g−1

v E f gv, v ∈ f , (2.37)

where v is a vertex in the dual 2-complex where faces meet. For the translation symmetry, we
need to study the discretization of the second Bianchi identity,

dωF = dF + [ω, F] = 0. (2.38)

Now consider a point p in the triangulation ∆ and the surface S constructed out of faces from
the 2-complex which surrounds p. The surface has the topology of a 2-sphere and its interior is
denoted as B. Integrating the 3-forms of (2.38) on the 3 dimensional region B gives us∫

S

F +

∫
B

[ω, F] = 0. (2.39)

To rewrite the above equation in terms of the discrete variables, consider the dual faces f sur-
rounding this vertex p ∈ B. The curvature in the discrete variables is given by the oriented
product of group elements g f on this collection of faces. The fact that F = 0 implies then

−→∏
f

g f = 1 ⇒ ln

 −→∏
f

eZ f

 = 0 (2.40)

Using the Baker-Campbell-Hausdorff formula, in [93] it shows that the Eq.(2.40) can be rewritten
as ∑

f

(Z f + [Ωp
f ,Z f ]) = 0, (2.41)

which is the Bianchi identity at the discretized level. The explicit expression for Ω
p
f as a series

of commutators in terms of Z f can be seen in [93].
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Recall that the infinitesimal version of the translation symmetry is δT
φe = dωφ, in which φ

is 0-form. After discretizing this 0-form at the points p of the triangulation as Φp ∈ su(2), the
discrete transformation reads,

δE f = Φp − [Ωp
f ,Φp] (2.42)

Then we can finally check that the action is invariant under the transformation, by applying the
discrete Bianchi identity:

δS =
∑

f

Tr
(
ΦpZ f − [Ωp

f ,Φp]Z f

)
= Tr

Φp

∑
f

(Z f + [Ωp
f ,Z f ])

 = 0 (2.43)

We have just shown that the discrete action is invariant under the local Lorentz symmetry and a
vertex translation symmetry. Since the measure of integration is obviously invariant as well, the
partition function is invariant under the full diffeomorphisms. This is as expected because 3D
gravity is topological, hence the discrete description captures the full dynamics.

2.3.3 Diffeomorphisms and divergence

Since the partition function is exactly invariant under the local Lorentz symmetry and a vertex
tanslation symmetry, if we evaluate it on a closed diagram, the degree of divergence corresponds
to the gauge volume:

Vol(SU(2))V × Vol(su(2))P (2.44)

where V is the number of vertices in the 2-complex, and P is the number of points in the trian-
gulation. Later in section 5.1, from the aspect of Pachner Moves, we will justify explicitly the
gauge invariance of partition function and its degree of divergence.

To perform a precise Fadeev-Popov gauge fixing procedure for the translational symmetry,
we need to consider the 1-skeleton of the triangulation ∆, and choose a maximum tree T along
the bones of the triangulation. Then we impose that the Eb are zero along b ∈ T . The F-P
determinant reads

∆ =
∏
e∈T

(1 + |Ωe|
2) (2.45)

One can prove that if Ze are zero on ∆/T , then the F-P determinant reduces to 1. For all external
vertices and corresponding edges of T, Ωe = 0 and Ze = 0. At the level of partition function, the
gauge fixing of Eb to zero for b ∈ T is translated into a projection on the spins jb = 0 for the
edges of the tree T. In section 7.3, we will revisit this gauge fixing again in 3D quantum gravity.
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2.3.4 The challenge: diffeomorphisms in 4D quantum gravity

As we have discussed, the discrete approaches of quantum gravity were motivated by the at-
tempt of having a well-defined measure. However, the discrete structure in gravity is a double
blade. Different with the case in lattice QCD, in which the local gauge symmetry is preserved,
in discrete models of gravity, the diffeomorphisms are broken or become approximated generi-
cally. This difference comes from the fact that in QCD, spacetime lattice is regular and provides
background where the gauge field lives; while in quantum gravity, the lattice itself is inherently
dynamical, and the action of diffeomorphisms changes it.

Eventually, to show that a discrete quantum gravity model can recover classical general rela-
tivity at low energy is not enough to show the correct semi-classical limit at the level of a single
4-simplex. One has to also study the continuum limit to see whether we have the correct dy-
namics for smooth manifolds. Any novel predictions from the model, which are to be compared
with direct or indirect gravitational observables in the experiments, have to be addressed in the
continuum limit of the theory. During the renormalization process to approach this limit, the
diffeomorphism invariance has to be restored and fully recovered at the end. Checking whether
we have the correct gauge symmetry is a guidance for a correct continuum limit.

We should ask ourselves now what is the situation in the Regge calculus. As the desired semi-
classical limit of Spin Foam models, studying the diffeomorphisms in Regge calculus would
provide us a first guide. In this topic, systematic analysis has been done in [73, 60, 61, 98].

In Regge calculus, as the solution is a simplicial approximation of a solution of Einstein equa-
tion, the notion of diffeomorphisms should be defined on the simplicial decomposition without
referencing to the coordinate systems. The geometric data in Regge calculus – area and angles,
or length of edges – allows to determine the relative position of the vertices with respect to each
other. The appearance of gauge degrees of freedom in Regge calculus was first shown in [73].
Any triangulation of flat spacetime is a solution of the equations of motion from the Regge ac-
tion. Through a perturbative expansion of the 4D path integral around a flat spacetime, the paper
shows that continuum gauge degrees of freedom can be expressed as the freedom of moving
an arbitrary vertex within the flat triangulation. Similarly to the 3D case we discussed in the
last section, the translation of a vertex in a flat triangulation does not change the solution of the
theory. This vertex translation symmetry has been studied precisely in [104].

However, for generic solutions the issue is more involved. For solutions with curvature there
do not exist exact gauge symmetries at the discrete level. The authors of [61, 98] developed a
systematical criterion to check gauge symmetry in the classical Regge calculus: as we know that
the solutions to the equations of motions are extrema of the actions, this means that if there is an
exact gauge symmetry, the action is constant in some directions exactly at these extrema. Hence
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one criterion to check the gauge symmetry is through the Hessian of the action, which is the
matrix of second derivatives evaluated on the solution. If the matrix has null eigenvectors (zero
eigenvalues), then it signals that there are exact gauge symmetries.

In this thesis, we will check the vertex translation symmetry in the 4D Spin Foams through
computing the 5–1 Pachner Move. We will also study the divergent behavior in general ampli-
tudes, which will help us to gain some insights about residual diffeomorphisms in Spin Foam
models.
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Chapter 3

Holomorphic Spin Foam Model

In this Chapter, we will introduce the construction of a holomorphic Spin Foam model. It is
a 4D Riemannian model with vanishing cosmological constant. We will start from reviewing
holomorphic representations and rewrite the BF partition function in this language. Next, we
review the holomorphic simplicity constraints. We will introduce a model with an alternative
imposition of these constraints, and show that this model still has the same semiclassical limit as
the EPRL/FK model.

3.1 The holomorphic representation

We choose to use a spinor representation of SU(2) in the Bargmann-Fock space L2
hol(C

2, dµ) of
holomorphic polynomials of a spinor [128, 129, 116]. One of the features of this representation
that will facilitate our calculations is that the Hermitian inner product is Gaussian:

〈 f |g〉 =

∫
C2

f (z)g(z)dµ(z), (3.1)

where dµ(z) = π−2e−〈z|z〉d4z and d4z is the Lebesgue measure on C2.

Given z ∈ C2 we denote its conjugate by ž. We use a bra-ket notation for z and square brackets
ž as in

|z〉 =

(
z0

z1

)
, |ž〉 ≡ |z] =

(
−z1

z0

)
, z0, z1 ∈ C. (3.2)

That is |ž〉 = |z]. Notice that while 〈z| is anti-holomorphic, [z| is holomorphic and orthogonal
to |z〉, i.e. [z|z〉 = 0. This non-standard notation for spinors will turn out to be useful, as we
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will always work with contractions of spinors, without the need for writing out the indices. Our
notation is related to the usual one as follows: zA = |z〉, z̄A′ = 〈z|, and the spinor invariants are
[z|w〉 = zA′wAε

A′A and 〈z|w〉 = z̄A′wAδ
A′A. The bracket [z|w〉 associated with the ε tensor is skew-

symmetric, holomorphic and SL(2,C) invariant. The bracket 〈z|w〉 associated with the identity
tensor is hermitian, and only SU(2) invariant.

Geometrically, each spinor defines a 3-vector ~V(z). If we use σ to denote Pauli matrix:

|z〉〈z| =
1
2

(〈z|z〉11 + ~V(z) · ~σ). (3.3)

Let us now study the identity on the Bargmann-Fock space L2
hol(C

2, dµ). The delta distribution
on this space is given by δw(z) = e〈z|w〉, since for any holomorphic function

∫
dµ(z) f (z)e〈z|w〉 =

f (w). Let us use a line to represent the delta graphically by

e〈z|w〉 = 〈z| |w〉 and
〈z|w〉2 j

(2 j)!
= 〈z| |w〉

j
. (3.4)

Therefore the Gaussian integral
∫

dµ(w)e〈z|w〉+〈w|z
′〉 = e〈z|z

′〉 implies the contraction∫
dµ(w) 〈z| |w〉

j
〈w| |z′〉

j′
= δ j, j′ 〈z| |z′〉

j
. (3.5)

For a function of four spinors (with obvious generalization to n spinors) we can thus define
the trivial projector, which we will denote as

1(zi; wi) = e
∑4

i=1[zi |wi〉 =

[z1|

[z2|

[z3|

[z4|

|w1〉

|w2〉

|w3〉

|w4〉

. (3.6)

Next, we will study how SU(2) acts on the elements of the Bargmann-Fock space. For a
generic holomorphic function f ∈ L2

hol(C
2, dµ), the group action is given by

g · f (z) = f (g−1z). (3.7)

The group SU(2) acts irreducibly on the subspaces of holomorphic polynomials homogeneous
of degree 2 j. Holomorphic polynomials with different degrees of homogeneity are orthogonal
with each other. Indeed,

L2
hol(C

2, dµ) =
⊕
j∈N/2

V j. (3.8)
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and an orthonormal basis of V j is given by

e j
m(z) ≡

z j+m
0 z j−m

1√
( j + m)!( j − m)!

(3.9)

and it is of dimension 2 j + 1.

In the study of gauge-invariant Spin Foam models, we will be interested in the SU(2) invariant
functions on n spinors

f (gz1, gz2, ..., gzn) = f (z1, z2, ..., zn) , ∀g ∈ SU(2). (3.10)

We will denote the invariant elements of L2(C2, dµ)⊗n to be in Hn, which is the Hilbert space of
n-valent intertwiners:

Hn =
⊕

ji

H j1,..., jn ≡
⊕

ji

InvSU(2)

[
V j1 ⊗ · · · ⊗ V jn

]
. (3.11)

The n-valent intertwiners are a basis of S U(2) invariant functions of n spinors. One way to
construct an element of Hn is to average a function of n spinors over the group using the Haar
measure. In this way we can construct a projector P : L2(C2, dµ)⊗n → Hn which is called the
Haar projector as

P( f )(wi) =

∫ ∏
i

dµ(zi)P(ži; wi) f (z1, z2, ..., zn) =

∫
SU(2)

dg f (gw1, gw2, ..., gwn) (3.12)

where the kernel is given by1

P(zi; wi) =

∫
SU(2)

dg e
∑

i[zi |g|wi〉 =

[z1|

[z2|

[z3|

[z4|

|w1〉

|w2〉

|w3〉

|w4〉

, (3.13)

where we use a box to represent group averaging with respect to the Haar measure over SU(2).
Hence the projector onto the invariant subspace is simply the group average of 1(zi; wi). From the
above, we see that a contraction of two spinors on the same strand but belonging to two different
projectors is obtained by setting z1

i = w̌2
i . This implies that the kernel of the projector satisfies

the projection property ∫ ∏
i

dµ(wi)P(zi; wi)P(w̌i; z′i) = P(zi; z′i). (3.14)

1For a review of Gaussian integration techniques see Appendix A.1.

26



We will also refer from now on to the kernel P(zi; wi) as a projector for convenience. As shown
in [112, 121], we can perform the integration over g in Eq. (3.13) explicitly, which gives a power
series in the holomorphic spinor invariants:

P(zi; wi) =
∑
[k]

1
(J + 1)!

∏
i< j

([zi|z j〉[wi|w j〉)ki j

ki j!
, (3.15)

where the sum is over a set of n(n − 1)/2 non-negative integers [k] ≡ (ki j)i, j=1,··· ,n with 1 ≤ i <
j ≤ n and ki j = k ji. A short proof of this statement is given in the Appendix A.3 for the reader’s
convenience. Thus a basis of n-valent intertwiners is given by

(zi|ki j〉 ≡
∏
i< j

[zi|z j〉
ki j

ki j!
. (3.16)

The non-negative integers (ki j)i, j=1,··· ,n are satisfying the n homogeneity conditions∑
j,i

ki j = 2 ji. (3.17)

The sum of spins at the vertex is defined by J =
∑

i ji =
∑

i< j ki j and is required to be a
positive integer. We also see from Eq. (3.15) that the identity onH ji is resolved as follows

1H ji
=

∑
[k]∈K j

|ki j〉〈ki j|

||ki j||
2 , ‖ki j‖

2 =
(J + 1)!∏

i< j ki j!
. (3.18)

with the set K j defined by integers ki j satisfying Eq.(3.17). For more details on these intertwiners
and the coherent states defined by them, see [122] where this basis was introduced for the first
time.

Before we go on to the discussion of simplicity constraints, let us notice that using a multi-
nomial expansion Eq.(3.15) can be written in terms of total spin:

P(zi; wi) =

∞∑
J=0

(∑
i< j[zi|z j〉[wi|w j〉

)J

J!(J + 1)!
, (3.19)

which will turn out to be a quite useful expression for the projector for computation purposes.
Note that this is an expansion in U(N) coherent intertwiners of total area J.

Finally, now we can write down the SU(2) BF partition function in terms of projectors written
in the holomorphic representation:

ZBF(Γ) =
∏
f∈F

∑
j f

(2 j f + 1)
∫ ∏

all

dµ(z)dµ(w)

∏
e∈Γ

Pρ(ze
i ; we

i ), (3.20)
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3.2 Holomorphic simplicity constraints

Holomorphic simplicity constraints for spinorial Spin Foam models were first introduced in [115]
for Riemannian gravity. Here we give a short summary, but refer the reader to the original paper
for their full derivation.

For the Riemannian 4d Spin Foam models, we use the gauge group Spin(4) = SU(2)L ×

SU(2)R, which is the double cover of SO(4). The holomorphic simplicity constraints are isomor-
phisms between the two representation spaces of SU(2): for any two edges i, j that are a part of
the same vertex a, they are defined by

[za
iL|z

a
jL〉 = ρ2[za

iR|z
a
jR〉, (3.21)

where ρ is a function of the real-valued Immirzi parameter γ given by

ρ2 =

{
(1 − γ)/(1 + γ), |γ| < 1
(γ − 1)/(1 + γ), |γ| > 1 (3.22)

The holomorphic simplicity constraints Eq.(3.21) essentially tell us that there exists a unique
group element ga ∈ SL(2,C) for each vertex a, such that

∀i, ga|za
iL〉 = ρ |za

iR〉. (3.23)

A general element of SL(2,C) can be decomposed into the product of an hermitian matrix
times an element of SU(2), so that ga = haua with h†a = ha. It is only when ha = 1 that the
holomorphic simplicity constraints imply the usual geometrical simplicity constraints. In the FK
formulation of the spin foam model which is only partially holomorphic this is implied since the
norm of the spinors is fixed. The fully holomorphic formulation of DL therefore relaxes at the
quantum level the simplicity constraints. Fortunately, one one can check following [122] that
in the semi-classical limit of Holomorphic amplitudes the Gauss constraints due to the gauge
invariance of the amplitude can be realized in the form∑

i

|za
iL〉〈z

a
iL| = AL1,

∑
i

|za
iR〉〈z

a
iR| = AR1. (3.24)

This imposes that in the classical limit ha = 1 and the geometrical simplicity constraints ua|za
iL〉 =

ρ |za
iR〉 with ua ∈ SU(2) are satisfied.

Let us recall the geometrical meaning of these: Each spinor defines a three vector ~V(z) ∈ R3

through the equation

|z〉〈z| =
1
2

(
11〈z|z〉 + ~V(z) · ~σ

)
, |z][z| =

1
2

(
11[z|z] − ~V(z) · ~σ

)
(3.25)
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where ~σ is the vector made by Pauli matrices. Thus around a vertex in a spin-network, each
link dual to a triangle in the simplicial manifold, is associated with two 3-vectors ~VL(z) and
~VR(z) given by the left and right spinors. Classically, they correspond to the selfdual b+ and
anti-selfdual b− components of the B field respectively :

V i
L(z) = bi

+ := B0i +
1
2
ε i

klB
kl, V i

R(z) = bi
− := −B0i +

1
2
ε i

klB
kl. (3.26)

Note here that the time norm is chosen to be NI = (1, 0, 0, 0)T . For the Hodge dual of the B field,
we find (∗b)+ = b+ = ~VL(z), and (∗b)− = −b− = −~VR(z).

For the vectors ~VL(z) and ~VR(z) defined by the spinors of the two copies of SU(2) this means
that the holomorphic simplicity constraints imply

ga . ~VL(za
i ) = ρ2~VR(za

i ), ∀i ∈ a (3.27)

which leads to the constraint that the norm of the selfdual and anti-selfdual components of the
bivector (ga,1) . (B + γ ∗ B) have to be equal to each other:

|(1 + γ)ga . b+| = |(1 − γ) . b−|. (3.28)

Thus B and ∗B are simple bivectors, and for the spin network vertex a, there exists a common
time norm to all the bivectors:

Na = (ga,1)−1 . (1, 0, 0, 0). (3.29)

The existence of this shared time norm implies the linear simplicity constraints introduced by the
EPRL and FK models [43, 44, 45, 46].

It is interesting to note that ga can be expressed purely in terms of spinors as

ga =
|za

iR〉〈z
a
iL| + |z

a
iR][za

iL|√
〈za

iL|z
a
iL〉〈z

a
iR|z

a
iR〉

, ∀i ∈ a. (3.30)

It is easy to check that this satisfies Eq. (3.23). Note here that ga is a unique group element for
all strands belonging to the same vertex.

3.3 Imposing constraints

We will now impose the holomorphic simplicity constraints on the Spin(4) BF theory in order
to obtain a model of 4d Riemannian Quantum Gravity. There are two natural ways of imposing
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these constraints - either on the boundary spin network defined by contraction of coherent states
[115], or on the whole projector (3.13). We will first summarize the usual approach, which we
will refer to as the DL prescription. Then we will introduce an alternative model in which the
constraint is imposed on the whole projector. It is very surprising that the alternative model
actually has the same asymptotic behavior as the DL prescription and EPRL/FK model (with
|γ| < 1)[126, 127, 63], i.e. the amplitude is weighted by a cosine of the Regge [72] action. It
leads however to a much simpler calculation when we evaluate the Pachner moves than the DL
case. Even though there is no technical obstacle to use the DL prescription, we will study it in a
subsequent article, and focus on the constrained projector model in this thesis.

DL prescription

In [115, 118] Dupuis and Livine introduced a Spin Foam model similar to the EPRL/FK mod-
els, but written in terms of spinorial coherent states with the holomorphic simplicity constraints.
Since BF amplitudes can be seen as evaluations of spin network functions, the simplicity con-
straints in this model are imposed in the usual way – on the boundary spin network given by
the amplitude. The amplitude for a single 4-simplex σ is given by a product of contraction of
coherent states for left and right sectors, with the simplicity constraints imposed on the boundary
spinors as follows

Aσ({zτ∆}) =

∫ [
dgL

τ

]5 [
dgR

τ

]5
e
∑

∆∈σ ρ
2[zs(∆)

∆
|gL −1

s(∆) gL
t(∆) |z

t(∆)
∆
〉+[zs(∆)

∆
|gR −1

s(∆) gR
t(∆) |z

t(∆)
∆
〉 (3.31)

where ∆ label different triangles/strands and τ, s(∆), t(∆) label tetrahedra/projectors. Graphically
this is presented in Fig. 3.1. This amplitude corresponds to two copies of 20j symbols from BF
theory constrained by [zs(∆)

L |z
t(∆)
L 〉 = ρ2[zs(∆)

R |z
t(∆)
R 〉 on the boundary.

Imposing the constraints on the projector

Since spin foam amplitudes for BF theory are constructed by glueing together projectors (3.19)
into graphs corresponding to 4d quantum geometries, we find it natural to instead impose the
constraints on the arguments of the projectors themselves. Let us consider the Spin(4) projector
obtained by taking a product of two SU(2) projectors

P(zi; wi)P(z′i ; w′i) =
∑

J

(∑
i< j[zi|z j〉[wi|w j〉

)J

J!(J + 1)!

∑
J′

(∑
i< j[z′i |z

′
j〉[w

′
i |w
′
j〉
)J′

J′!(J′ + 1)!
, (3.32)
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Figure 3.1: Graph for the 4-simplex amplitude in the DL model. The contractions inside corre-
spond to two copies of BF 20j symbols, constrained on the boundary.

where we use a prime to distinguish the left and right SU(2) sectors. We will now impose
the holomorphic simplicity constraints on both incoming and outgoing strands in the Spin(4)
projector

[z′i |z
′
j〉 = ρ2[zi|z j〉 [w′i |w

′
j〉 = ρ2[wi|w j〉.

This will make the two products of spinors in the two projectors proportional to each other, with
the proportionality constant being ρ4. Note that the imposition of simplicity constraints on all of
the spinors also forces the measure of integration on C2 to change to

dµρ(z) :=
(1 + ρ2)2

π2 e−(1+ρ2)〈z|z〉d2z. (3.33)

The factor of (1 + ρ2)2 is added for normalization. It insures that∫
dµρ(z) = 1. (3.34)

Moreover this choice of normalization is confirmed by the study of asymptotics of both this and
the DL model, as we will see later in the next section. It is exactly this choice that insures that
both models have the same semi-classical limit. We are now ready to define a new constrained
propagator Pρ by applying the simplicity constraints on the Spin(4) projector

Pρ(zi; wi) ≡ P(zi; wi)P(ρzi; ρwi) =
∑

J

∑
J′

ρ4J′

J!(J + 1)!J′!(J′ + 1)!

∑
i< j

[zi|z j〉[wi|w j〉


J+J′

. (3.35)

The two sums over integers J and J′ are independent, so we can simplify this expression for the
constrained propagator into a single sum by letting J + J′ → J. This allows us to arrive at a more
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compact form of the constrained propagator, given by

Pρ(zi; wi) =
∑

J

Fρ(J)

(∑
i< j[zi|z j〉[wi|w j〉

)J

J!(J + 1)!
, (3.36)

where we have recognized that the numerical factor in front of the spinors is actually the power
series expansion of the hypergeometric function

Fρ(J) := 2F1(−J − 1,−J; 2; ρ4)

=

J∑
J′=0

J!(J + 1)!ρ4J′

(J − J′)!(J − J′ + 1)!J′!(J′ + 1)!
=

J∑
J′=0

(
J
J′

)(
J + 1

J′

)
ρ4J′

(J′ + 1)
(3.37)

Now let us get some intuition of the hypergeometric function:

10 20 30 40 50
J

100

200

300

400

500

F1�3HJL

0.2 0.4 0.6 0.8 1.0
Ρ

10

100

1000

104

FΡH10L

Figure 3.2: Left: The value of hypergeometric function Fρ(J) with different spins and fixed
ρ = 1/3 as an example. Right: The value of hypergeometric function Fρ(J) with different ρ and
fixed spin J = 10.

.

Notice that the constrained Spin(4) propagator is just an SU(2) projector with non-trivial
weights (greater than 1) for each term that depends on the Barbero-Immirzi parameter. In general,
this hypergeometric function is a complicated function of ρ, but let us look at two interesting
limiting cases. For ρ = 0, which corresponds to γ → 1, we have

2F1(−J − 1,−J; 2; 0) = 1, (3.38)

so we end up with pure SU(2) BF theory. This is obvious, as ρ = 0 forces all the left spinors to be
0. Another limit often considered is ρ = 1, which in this construction surprisingly corresponds
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to both of the limits γ → 0 and γ → ∞. In this limit we get also a relatively simple expression

2F1(−J − 1,−J; 2; 1) =
(2J + 2)!

(J + 2)!(J + 1)!
. (3.39)

This limit does not have an obvious interpretation apart from its simplicity.

3.4 The partition function

The partition function of the holomorphic spin foam model is defined on a 2-complex Γ(V, E, F),
which is dual to a simplicial decomposition of a 4-d manifold. To make the geometrical relation-
ship transparent, for each 2-complex we can also draw the corresponding cable diagram to label
the degrees of freedom [10]. For an example of two 4-simplices sharing one tetrahedron, the
dual 2-complex and its cable diagram, see Fig. 3.3. In the cable diagram notation, a propagator
is represented as

Pρ(zi; wi) ≡
[z1|

[z2|

[z3|

[z4|

|w1〉

|w2〉

|w3〉

|w4〉

, (3.40)

where a strand represents a spinor, and a box represents group averaging with respect to the
Haar measure over SU(2), which is reduced from the projector of Spin(4) = SU(2)L × SU(2)R by
simplicity constraints.

The faces F in the dual 2-complex correspond to d − 2 faces shared by tetrahedra. In the
cable diagram, they correspond to loops formed by single strands. The structure of the partition
function is essentially the contraction of the constrained propagators with non-trivial face weight:

Z(Γ) =
∏
f∈F

∑
j f

A f ( j f )
∫ ∏

all

dµρ(z)dµρ(w)

∏
e∈Γ

Pρ(ze
i ; we

i ), (3.41)

where A f ( j f ) is the face weight, which is a function of spin (2 j f + 1)η. With ρ = 0 and η = 1,
the theory reduces to SU(2) BF theory. The partition function in principle can be defined for any
type of discretization of the manifold: simplicial lattice, hypercubic lattice etc. The rest of the
paper is focusing on the discussion on simplicial lattice, but the result can be easily generalized
to other cases. At the leading order, for a single simplex, the holomorphic spin foam model has
the same semiclassical limit as EPRL/FK model [106].
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P1
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z1
i w1

i z2
i
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i

w1
i z2

i=

Figure 3.3: The triangulation of two 4-simplices sharing one tetrahedron, the dual 2-complex
and its cable diagram. The shared tetrahedron is dual to an edge propagator in the 2-complex. P1

ρ

and P2
ρ belong to the same edge but two different 4-simplices. The spinors belonging on the same

strand but belonging to different propagators are contracted according to the strand orientation.
For example, spinors w1

i = ž2
i .

Each constrained propagator comes with an orientation, with spinors z incoming into the box
and spinors w outgoing in this paper’s convention. A change of this edge orientation results in
overall minus sign for the amplitude. Additionally we also put an orientation on each strand,
which dictates how spinors on different propagators are contracted. An example is shown in Fig.
3.3. When we glue 4-simplices, we have two propagators contracted on the dual edge along
which they are glued.

If we want to write the partition function in terms of intertwiner basis:

Z∆∗

G =
∑

j f

∏
f∈∆∗
A f ( j f )

∫ ∏
all

dµρ(z)dµρ(w)

 ∑
ke

f f ′∈K j

∏
e

P
ke

i j
ρ (ze

i ; we
i ), (3.42)

where the set K j was defined previously in Eq. (3.17) to be the set of integers ki j satisfying∑
i, j ki j = 2 ji and contraction of spinors according to the 2-complex ∆∗ on different edges is

implied. The constrained propagator at fixed spins is given by

P
ke

i j
ρ (ze

i ; we
i ) :=

Fρ(Je)
(Je + 1)!

∏
i< j

([ze
i |z

e
j〉[w

e
i |w

e
j〉)

ke
i j

ke
i j!

. (3.43)

It is interesting to note here that, unlike in the usual Spin Foam models, this definition in
terms of propagators does not necessarily constrain the partition function to be a product of
vertex amplitudes, thus allowing for more general non-geometrical structures.
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3.5 Asymptotics

In this section we will calculate the asymptotics of the two models with different imposition of
simplicity constraints. First we show that the Dupuis-Livine model indeed has the same asymp-
totic behavior as the EPRL-FK models. We then show that there are non-trivial cancellations
in the asymptotic expansion of the constrained propagator model that lead to the same semi-
classical limit as the DL model.

3.5.1 The dihedral angle

Before we calculate the asymptotic expansion of the Spin Foam amplitudes, we have to under-
stand how to reconstruct from our data the angle appearing in the classical area-angle Regge
action [120]:

S =
∑
a<b

Aabξab, (3.44)

where Aab is the area of face shared by tetrahedra a and b, which share a common face with each
other, and ξab is the 4-d dihedral angle, which is the angle between the two 4-vectors Na,Nb

normal to the two tetrahedra a, b.

We can find the expression for the 4-d dihedral angle using Eq. (3.29) from the section on
simplicity constraints:

cos(ξab) = Na · Nb

=
1
2

tr
[
g−1

a · gb

]
=

1
2

tr
[
g−1

b · ga

] (3.45)

Using the expression of eq.(7.3), we can write the cosine of dihedral angle in terms of spinors,

cos(ξab) =
[za

iR|z
b
jR〉〈z

b
jL|z

a
iL] + 〈za

iL|z
b
jL〉〈z

b
jR|z

a
iR〉 + c.c.

2 |za
iL||z

a
iR||z

b
jL||z

b
jR|

(3.46)

From the above two expressions, we can see that to decide the cosine of the dihedral angle ξab,
we need the data of two group elements associated with two nodes (tetrahedra), or the data of
both left and right spinors of any one strand from each of the two tetrahedra. In summary,

{ga, gb} → cos(ξab), or {za
iR, z

a
iL, z

b
jR, z

b
jL} → cos(ξab) ∀i ∈ a,∀ j ∈ b

Let us recall additionally, that the models we consider have Spin(4) symmetry, so we can
rotate these results by a Spin(4) transformation G = (gL, gR).
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3.5.2 The asymptotics of DL model

An apparent difference between the holomorphic simplicity constraints and the ones in Euclidean
EPRL/FK models is that they are constraints on spinors. However, they lead to the same con-
straint between spins,

〈zL|zL〉 = jL = ρ2 jR = ρ2〈zR|zR〉 (3.47)

for the coherent intertwiners in the large |z| limit [115]. In this section, we briefly show that for
the amplitude of a 4-simplex, the DL model has the same action at critical points as EPRL/FK
models for Barbero-Immirzi parameter γ < 1.

We can rewrite the amplitude (3.31) of a 4-simplex σ by expanding it in power series as

Aσ =

∫ ∏
a<b

dgL,R
a,b eρ

2[za
b |g

L−1
a gL

b |z
b
a〉+[za

b |g
R−1
a gR

b |z
b
a〉

=

∫ ∏
a<b

dgL,R
a,b

∑
jL,Rab

(
ρ2[za

b|g
L−1
a gL

b |z
b
a〉
)2 jLab

(
[za

b|g
R−1
a gR

b |z
b
a〉
)2 jRab

(2 jL
ab)!(2 jR

ab)!
.

(3.48)

Now that we have made the summation over spins explicit, we can re-exponentiate this expres-
sion to get the effective action of a 4-simplex amplitudeAσ =

∑
jL,Rab

∫ ∏
a dgL,R

a eS e f f ( jL,Rab ) with

S e f f ( jL,R
ab ) =

∑
a,b∈σ

2 jL
ab ln[za

b|g
L−1
a gL

b |z
b
a〉 + 2 jR

ab ln[za
b|g

R−1
a gR

b |z
b
a〉 + N. (3.49)

where the numerical factor N is given by

N =
∑
a,b∈σ

4 jL
ab ln ρ − ln(2 jL

ab)! − ln(2 jR
ab)! (3.50)

It is important to note that this action is complex-valued. To study the asymptotic behavior of the
amplitude, we have to separate the real and imaginary parts. The real part of the action is

ReS e f f ( jL,R
ab ) =

∑
a,b∈σ

jL
ab ln

1
2

(|za
b|

2 |zb
a|

2 − (gL
a . ~V

a
b ) · (gL

b . ~V
b
a ))+

+ jR
ab ln

1
2

(|za
b|

2 |zb
a|

2 − (gR
a . ~V

a
b ) · (gR

b . ~V
b
a )) + N.

(3.51)

In the asymptotic analysis of complex functions the main contribution to the integral comes from
critical points, which are stationary points of the action for which the real part is maximized. The
critical point equations we get from variation of spinors |z〉 are the closure constraints∑

b,a

|za
b〉〈z

a
b| =

∑
b,a

jR
ab1 (3.52)
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and the orientation condition requiring certain vectors to be anti-parallel, which we get from the
maximization of the real part of the action:

gL
a . v̂a

b = −gL
b . v̂b

a, gR
a . v̂a

b = −gR
b . v̂b

a, where v̂ = ~V/|~V |. (3.53)

Using the relation between vectors and spinors, we find that these conditions imply that the action
of group elements on a spinor zb

a rotates it up to a phase into ẑa
b:

gL−1
a gL

b |z
b
a〉 = eiφab

L |za
b], gR−1

a gR
b |z

b
a〉 = eiφab

R |za
b]. (3.54)

This implies that the following identity holds

gR−1
b gR

a gL−1
a gL

b |z
b
a〉 = eiφab

L −φ
ab
R |zb

a〉. (3.55)

The reconstruction theorem from [127] tells us now that given non-degenerate boundary data
satisfying the closure constraint (3.52) and a set of group elements gL,R

a ∈ SU(2), a = 1, . . . , 5
solving the orientation condition (6.19), we can reconstruct a geometric 4-simplex with the B
field given by

Bab = ±( jR
ab + jL

ab)(gL
a , g

R
a ) . (va

b, v
a
b), (3.56)

with the outward-pointing normalNa obtained by acting with the Spin(4) element (gL
a , g

R
a ) on the

vector Na = (1, 0, 0, 0).

At this point, it is clear that the critical action of DL model is exactly the same as the one
calculated in the asymptotic analysis of the EPRL model in [127], and the imaginary part of the
action reads

ImS e f f ( jL,R
ab ) =

∑
a,b∈σ

2 jL
abφ

ab
L + 2 jR

abφ
ab
R =

∑
a,b∈σ

kab(φab
L + φab

R ) + γkab(φab
R − φ

ab
L ), (3.57)

where kab = jL
ab + jR

ab. To relate this to the area-angle Regge action, we have to relate the φ’s to
the dihedral angle. We cannot directly use our expression in Eq. (3.46) for the dihedral angle,
since we no longer have the information about both the left and right spinors. We can however
use the result of the reconstruction theorem from the Eq.(3.56) to construct the dihedral angle by
the data {gR

a gL−1
a , gR

b gL−1
b } as follows

cos(ξab) = Na · Nb

=
1
2

Tr
[
gR

a gL−1
a · gL

bgR−1
b

] (3.58)

37



Notice however that we can obtain the same trace from the Eq. (3.55), which tells us that we can
identify the cosine between the phase (φab

L − φ
ab
R ) and the dihedral angle ξab

cos(φab
L − φ

ab
R ) = cos(ξab). (3.59)

In [127] it has been shown explicitly that the phase difference (φab
R − φ

ab
L ) and the dihedral angle

ξab can be identified up to a ± sign, which is due to the relative orientation of the bivector and
4-simplex. The angle (φab

L + φab
R ) can be shown to be proportional to 2π [127].

Hence the semi-classical limit of the Dupuis-Livine model is the same as the EPRL-FK mod-
els and is given by the action

S =
∑
a,b∈σ

γkabξab. (3.60)

Since in Loop Quantum Gravity the spectrum of the area operator is given by A j = γ
√

j( j + 1),
in the large spin limit we have obtained exactly the area-angle Regge action [72, 120].

3.5.3 The asymptotics of constrained propagator model

Let us now finally show that the constrained propagator model also leads to the same semi-
classical limit as the EPRL-FK models. We first have to rewrite the amplitude in terms of group
variables. Recall that we can write an SU(2) propagator as

P(zi; wi) =

∫
SU(2)

dg e
∑

i[zi |g|wi〉 (3.61)

Thus taking two copies of such projectors and constraining them both in the |w〉 and in the |z〉
spinors, we get that the constrained propagator (3.36) can be written as

Pρ(zi; wi) =

∫
SU(2)L×SU(2)R

dgLdgRe
∑

i[zi |gR+ρ2gL |wi〉. (3.62)

The 4-simplex amplitude is now just a simple contraction of 5 such propagators. To compare it
however to the amplitude in the DL model, we have to perform the integrate out the |wi〉 spinors
in order to have the same number of variables. After the |wi〉 integration, the amplitude becomes

Ãσ =

∫ ∏
a

dgL,R
a e(1+ρ2)−1[za

b |(g
R−1
a +ρ2gL−1

a )(gR
b +ρ2gL

b )|zb
a〉. (3.63)

We can see that there is a mixing between left and right sectors – while in the DL model the
left and right group elements gL, gR are multiplied separately as in Eq.(3.48), here the relevant
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group elements become a combination (gR + ρ2gL). Expanding this in a power series it would
seem we would get four independent terms. However, since in the large z limit the holomorphic
simplicity constraints imply that we have jL = ρ2 jR, one can show that only three summations
are independent, so the amplitude can be written as

Ãσ =

∫ ∏
a

dgL,R
a

∑
jL,Rab ,Jab

([za
b|g

R−1
a gR

b |z
b
a〉)

2 jRab−2Jab

(2 jR
ab − 2Jab)!

(ρ4[za
b|g

L−1
a gL

b |z
b
a〉)

2 jLab−2Jab

(2 jL
ab − 2Jab)!

×

×
(ρ2[za

b|g
R−1
a gL

b |z
b
a〉)

2Jab

(2Jab)!
(ρ2[za

b|g
L−1
a gR

b |z
b
a〉)

2Jab

(2Jab)!
(1 + ρ2)−2( jLab+ jRab),

(3.64)

with the the spins satisfying
jR
ab ≥ Jab, jL

ab ≥ Jab. (3.65)
This means that the mixed left-right terms never overtake the pure left and right sectors. For the
details of this calculation, see the Appendix.

We thus get that the effective action of the constrained propagator model for a single 4-
simplex is simply

S̃ e f f ( jL,R
ab , Jab) =

∑
a,b∈σ

2( jR
ab − Jab) ln[za

b|g
R−1
a gR

b |z
b
a〉 + 2( jL

ab − Jab) ln[za
b|g

L−1
a gL

b |z
b
a〉

+2Jab ln[za
b|g

R−1
a gL

b |z
b
a〉 + 2Jab ln[za

b|g
L−1
a gR

b |z
b
a〉︸                                                     ︷︷                                                     ︸

mixed

+Ñ,
(3.66)

where the numerical factor Ñ carries all the normalization factors and is a function of the different
spins and ρ given by

Ñ =
∑
a,b∈σ

8 jL
ab ln ρ−2( jL

ab + jR
ab) ln(1+ρ2)− ln(2 jL

ab−2Jab)!− ln(2 jR
ab−2Jab)!−2 ln(2Jab)! (3.67)

We can see that compared with the DL model, the effective action of the constrained propagator
model has two additional terms which are underbraced and an additional spin Jab. Nonetheless,
we again obtain the closure equation from the variation of spinor |z〉,∑

b,a

|za
b〉〈z

a
b| =

∑
b,a

jR
ab1. (3.68)

To see how these additional terms change the asymptotics, let us examine the terms in the real
part of this action

( jL
ab − Jab) ln

1
2

(
|za

b|
2|zb

a|
2 − (gL

a . ~V
a
b )·(gL

b . ~V
b
a )

)
+ ( jR

ab − Jab) ln
1
2

(
|za

b|
2|zb

a|
2 − (gR

a . ~V
a
b )·(gR

b . ~V
b
a )

)
+ Jab ln

1
2

(
|za

b|
2 |zb

a|
2 − (gR

a . ~V
a
b ) · (gL

b . ~V
b
a )

)
+ Jab ln

1
2

(
|za

b|
2 |zb

a|
2 − (gL

a . ~V
a
b ) · (gR

b . ~V
b
a )

)
+ Ñ.

(3.69)
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At the critical points, we also require the real part of the effective action to be maximized. Since
the real part of the action can be written as ReS̃ e f f = S LL + S RR + S RL + S LR and all the coeffi-
cients in front of the logarithms are positive, the maximization condition implies that all the four
terms have to be maximized independently. Thus the following critical equations substitute the
Eq.(6.19) in DL model,

gL
a . v̂a

b = −gL
b . v̂b

a = gR
a . v̂a

b = −gR
b . v̂b

a, where v̂ = ~V/|~V |. (3.70)

When written in terms of spinors |z〉 and |z], this means that apart from the spinorial orientation
condition in Eq.(3.54),

gL−1
a gL

b |z
b
a〉 = eiφab

L |za
b], gR−1

a gR
b |z

b
a〉 = eiφab

R |za
b],

relating |zb
a〉 to |za

b] up to a phase, we also have two additional phases ψ and θ appearing between
the mixed left-right terms

gL−1
a gR

b |z
b
a〉 = eiψab

|za
b], gR−1

a gL
b |z

b
a〉 = eiθab

|za
b]. (3.71)

Let us now plug in the critical point equations (3.54) and (3.71) into the the effective action
to find the semi-classical behavior of the amplitude. The imaginary part of the effective action
becomes a function of three spins and four angles, given by

ImS̃ e f f ( jL,R
ab , Jab) =

∑
a,b∈σ

2( jL
ab − Jab)φab

L + 2( jR
ab − Jab)φab

R + 2Jab(ψab + θab) (3.72)

At first sight this is quite different from the effective action of the DL model, with two extra
angles and an additional spin label to sum over. Let us notice however, that using the critical
point equations (3.54) and (3.71), we can get the relation

gL−1
b gR

b |z
b
a〉 = ei(ψab−φab

L )|za
b] = ei(φab

R −θ
ab)|za

b]. (3.73)

This condition implies that the additional angles ψ and θ we had to introduce are actually related
to the angles φL and φR by

ψab + θab = φab
L + φab

R mod 2π. (3.74)

This is exactly the combination of angles that allows us to drop the terms proportional to Jab in
the action. Hence we have that the imaginary part of the effective action is exactly the same as
the one in DL model,

ImS̃ e f f ( jL,R
ab , Jab) =

∑
a,b∈σ

2 jL
abφ

ab
L + 2 jR

abφ
ab
R = ImS e f f ( jL,R

ab ) (3.75)
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The rest of the asymptotic analysis of this action carries over in exactly the same way, as in
the EPRL-FK models. Thus we have proved that the constrained propagator model has in the
asymptotic expansion the same effective action as the DL model, which in turn has the same
semi-classical limit as the EPRL-FK models.

It is important to note here that in the case of both of the models we have not performed
the full asymptotic analysis, which would require the calculation of the Hessian, as it is not
necessary for establishing that the models are described by Regge Calculus in the semi-classical
limit. We expect that where the two models show differences is exactly in the Hessian and the
overall normalization as well as possibly in the higher order terms in the asymptotic expansion.

We have studied the asymptotic expansion of 4-simplex amplitudes for the DL Spin Foam
model and the newly introduced constrained propagator model. In the large |z| limit (correspond-
ing to the usual large-j limit in the spin representation) we have found that the DL model has
the same first order expansion as the EPRL-FK Riemannian model. We have also shown that the
constrained propagator model has a different amplitude for a 4-simplex, which however agrees
with the DL model’s one on-shell. We expect the differences to show up in the Hessian matrix
and in the higher order terms. Hence both models lead to Regge Calculus in the semi-classical
limit.
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Chapter 4

Techniques of Evaluating arbitrary
amplitude

4.1 Graph structure

In the 4-d spin foam model, the partition function is defined on a 2-complex Γ(V, E, F), which
is dual to a simplicial discretization of a 4-dimensional manifold. The vertices v ∈ V are dual
to 4-simplices, edges e ∈ E are dual to tetrahedra, and the faces F of the 2-complex are dual to
common triangles which are shared by 4-simplices. Given a (connected) 2-complex Γ(V, E, F),
there exist at least one spanning tree [130] TΓ(ET ) in the 1-skeleton of Γ(V, E, F) and each of the
trees contains |V | − 1 branches ET .

Now if we add one edge to the spanning tree, it will create a cycle. This type of cycle is
called a fundamental cycle in graph theory [130]. Let us denote the set of fundamental cycles
which are correlated with the spanning tree TΓ(ET ) as CT . For a given spanning tree, there is one
to one correspondence between the edges not in the tree and the fundamental cycles in CT [130].
The number of fundamental cycles |CT | is a tree-independent quantity:

|CT | = |E \ ET | = |E| − |V | + 1 (4.1)

For certain graphs, for example the diagrams of Pachner moves and melons, we can always
choose a spanning tree such that all the corresponding fundamental cycles are also faces of the
2-complex (in cable diagram notation, this would be loops formed by the strands). Let us call
such type of spanning tree an optimal tree and define ΩΓ as a set of graphs which contain optimal
spanning trees:

ΩΓ ≡ {Γ | ∃ TΓ(ET ), s.t. CT ⊂ F}. (4.2)

42



A

B
C D

E

F

Figure 4.1: The solid lines represent spanning tree TΓ = AB∪ AC ∪CD∪ EF ∪ AF. Edge BC ∈
E \ ET corresponds to fundamental cycle ABC ∈ CT . Edge DE corresponds to ACDEF ∈ CT .

In section 6, we will see that the existence of optimal spanning trees in a graph is a very
convenient property. We will show that the truncated bulk amplitude in such a graph can be
written down just from reading out the combinatorics.

4.2 Partial gauge fixing

In this section we briefly review a gauge fixing procedure which was first introduced and proved
in [131]. Let us now understand how to fix the “Lorentz” gauge on a spin network. Since the
volume of the group SU(2) is finite, the gauge fixing amounts to only a change of variables along
a maximal tree. We follow [131] in defining the gauge fixing procedure. Consider a graph Γ with
E edges and V vertices. Each edge is oriented so that it starts at a source vertex s(e) and ends at
target t(e). Consider now a spin network function such that

ψΓ(ge1 , . . . , geE ) = ψΓ(h−1
s(e1)ge1ht(e1), . . . , h−1

s(eE)geE ht(eE)). (4.3)

Now choose a maximal tree T in Γ, i.e. a collection of V − 1 edges which passes through every
vertex, without forming loops. Choose a vertex A to be the root1 of the tree T and label gT

vA the
product of group elements gei along T that connect vertex v and A. Next we will use Eq. (4.3)
with hv = gT

vA, so that ψΓ = ψΓ(GT
1 , . . . ,G

T
E) with GT

e = gT
As(e)gegT

t(e)A.

Now, for any edge e ∈ T , there is a unique path along the tree connecting A and s(e) or
t(e). Let us choose this to be t(e), since the other case works in the same way. It follows

1One can show that the gauge fixing procedure is independent of this choice.
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Figure 4.2: Take the graph of 4–2 Pachner move as an example: all the fundamental cycles of
spanning tree CA ∪ CB ∪ CD are faces of the 2-complex (single loops formed by strands in the
right cable diagram): ABC, ACD, BCD ∈ F. However, for another choice of tree CA∪CB∪AD,
one of the cycles BCAD < F.

that gT
s(e)A = gegT

t(e)A and so GT
e = 1 for e ∈ T . Hence the procedure for gauge fixing is to

set all the group elements on the maximum tree to 1 and change all the other to gei = GT
ei

.
Since

∫
S U(2)

dg = 1, ending up with empty integrations does not lead to any divergences. In the
language of amplitudes written in terms of projectors, this corresponds to replacing the projectors
P(zi; wi) =

∫
SU(2)

dg e
∑

i[zi |g|wi〉 on the maximal tree by the trivial propagators 1(zi; wi) ≡ e
∑

i[zi |wi〉.
This procedure carries over to the 4-dimensional case trivially, since Spin(4) is just a product
S U(2) × S U(2). Given a (connected) 2-complex Γ(V, E, F) on which a partition function Z(Γ) is
defined, one can choose any spanning tree TΓ(ET ) ⊂ Γ and gauge fix all the propagators on its
edge Pe

ρ, e ∈ ET into

Pρ(zi; wi)→ 1ρ(z̃i; w̃i) ≡
∞∑
ji

Fρ(J)
4∏

i=1

[zi|1|wi〉
2 ji

2 ji!
, (4.4)

leaving the partition function Z(Γ) invariant. Note that J =
∑

i ji.

The invariance of the partition function can be proved through a systematic change of vari-
ables in the SU(2) integrations of propagators. Note that for the convenience of notation later,
we will always add a tilde on the spinors which belong to the partially gauge fixed propagator.
Each spanning tree contains |V | − 1 branches, thus we can gauge fix |V | − 1 propagators based on
Eq.(4.4) in a given 2-complex.
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4.3 The homogeneity map

As evaluating the partition function essentially amounts to integrations of power series of spinor
polynomials, in [105] we introduced a useful tool - the homogeneity map - which allows us to
perform the calculation in a more tractable and compact way.

The basic idea of homogeneity map comes from the property that the holomorphic monomials
of different degrees of homogeneity are orthogonal to each other. When we perform integration
of a spinor, terms with different homogeneity do not mix:∫

dµ(w)[zi|w〉 j 〈w|z2]l = j! [z1|z2] j δ j,l. (4.5)

It would be convenient if instead of computing term by term in the power series, we could
perform the integration in a compact form, with some book-keeping parameter to keep track of
each term with different homogeneity degree. In this spirit, we define a general propagator Gτ in
terms of an exponential form

Gτ(zi; wi) =
∑

J

τJ

(∑
i< j[zi|z j〉[wi|w j〉

)J

J!
= eτ

∑
i< j[zi |z j〉[wi |w j〉 (4.6)

and denote it graphically by

Gτ(zi; wi) =

[z1|

[z2|

[z3|

[z4|

τ

|w1〉

|w2〉

|w3〉

|w4〉

. (4.7)

in which τ keeps track of the homogeneity of the polynomial in spinors. If we transform each of
these τJ into a function of J, the integrals of the polynomials stay the same. In this way we can
perform complicated calculations with Gτ and in the end we can use the following map, defined
by a functional H f mapping Gτ to the desired function f :

Hρ : Gτ → Pρ with Hρ : τJ →
Fρ(J)

(J + 1)!
(Simplicity Constraints) (4.8)

HP : Gτ → P with HP : τJ →
1

(J + 1)!
(BF Theory) (4.9)

in order to recover the propagators of the BF theory or the one of the gravity model with sim-
plicity constraints imposed. Not that P0 = P so the BF model is included in our more general
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description. We are of course not limited to only these choices and could in principle study a
much wider class of spin foam models built by non-trivial propagators.

By considering how BF projectors compose in Eq. (3.14), it is quite easy to find the homo-
geneity map for composing the propagator Pρ n times: Pρ ◦ · · · ◦ Pρ. To do this, we just realize
that if one reintroduces back the factor of 1/(J + 1)! into the definition of Gτ, it then defines just
the BF projector P with the spinors z rescaled to

√
τz. The homogeneity map for the composition

is therefore given by2

τJ →
Fρ(J)n

(J + 1)!(1 + ρ2)2(n−1)J for Gτ → Pn
ρ (n Propagators). (4.10)

Using τ to keep track of homogeneity of each term, we first perform spinor integration with
the exponential form Gτ, then expand the result in terms of power series, and use the homogeneity
map H to restore the desired coefficients to get the final answer.

Here is a simple example. To evaluate any amplitudes in which the triangulation has shared
faces, we will need to consider contracted loops of spinors. In BF theory, such a loop should
correspond to an SU(2) delta function. Using the spinorial language however, we get

=

∫
dµ(z)e〈z|z〉 =

∑
j

∫
dµ(z)

〈z|z〉2 j

(2 j)!
=

∑
j

χ j(1) =
∑

j

(2 j + 1), (4.11)

whereas a delta function is δS U(2)(1) =
∑

j(2 j + 1)2. One way of going around this is to change
measure of integration for this loop to dµ̃(z) = (〈z|z〉 − 1)dµ(z), as was suggested in [118]. This
provides the additional factor of (2 j + 1). An alternative way is to follow in the spirit of the
homogeneity map and introduce a τ′ that tracks the homogeneity in this loop. For clarity, we add
a symbol for this face weight into the graph:

f

=

∫
dµ(z)eτ

′〈z|z〉 =
∑

j

τ′2 j(2 j + 1). (4.12)

The replacement of τ′2 j → (2 j + 1) now defines a homogeneity map for a BF loop. Of course,
we now do not have to restrict ourselves to this simple face weight and can choose an arbitrary
function of spin.

2Note that the factor of (1 + ρ2)2J in (4.8) comes from the fact that the measure has changed under the simplicity
constraints to dµρ(z) = (1 + ρ2)2π−2e−(1+ρ2)〈z|z〉. Hence every contraction produces a factor (1 + ρ2)−2 j where j is the
representation of the line. There is one such contraction for each j where J =

∑
j for each τ.
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The homogeneity map we have developed in this section will be very useful in computing
the 4-dimensional Pachner moves. In later sections we will define additional homogeneity maps
as we go on, to simplify the calculations.

4.4 Loop Identity

4.4.1 3D case

The BF theory partition function is independent of the triangulation ∆. This can be shown by
demonstrating its invariance (up to an overall factor) with respect to a finite set of coarse grain-
ing moves, constructed out of Pachner moves. The Pachner moves can all be derived from one
identity which we will call the loop identity. This identity follows from the coherent state repre-
sentation of the SU(2) delta function

δ(g) =

∫
dµ̃(z)e〈z|g|z〉, (4.13)

where dµ̃(z) = dµ(z)(〈z|z〉 − 1). Therefore∫
dµ̃(zn)P(z1, ..., zn; w1, ..., žn) =

∫
dge

∑n−1
i=1 [zi |g|wi〉

∫
dµ̃(zn)e[zn |g|zn]

=

∫
dge

∑n−1
i=1 [zi |g|wi〉δ(g)

= e
∑n−1

i=1 [zi |wi〉

= 1(z1, ..., zn−1; w1, ...,wn−1), (4.14)

which is represented graphically by

|z |w
|z2 |w2 =

1 1 |z |w
|z2 |w2

1 1

f

(4.15)

Since each closed loop of the BF partition function (2.17) has a factor of 2 j f + 1 we will use
the convention that two lines are contracted with dµ(z) as in (3.5), however, the contraction of a
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line with itself, i.e. a loop, is contracted with the measure dµ̃(z) as in (4.15). An alternative way
would be to use the homogeneity map to keep track of this face weight.

The expression for the loop identity we have just derived, while compact, does not generalize
straightforwardly to the case of 4-dimensional QG models with simplicity constraints (due to
the presence of the group integrals). We will thus redo the above calculation with the projector
written in terms of only spinors without group integration.

We expect that the loop identity (4.14) applied to the projector (3.19) implies that

∑
jn

(2 jn + 1)
∫

dµ(zn)

(∑
i< j[zi|z j〉[wi|w j〉

)J

J!(J + 1)!
=

n−1∏
i=1

[zi|wi〉
2 ji

(2 ji)!
, (4.16)

where the integration is performed with wn = žn. Below we will directly show this. Let us
perform the integration on the LHS explicitly by using the homogeneity map to keep track of
the 1/(J + 1)! and the face weight (2 jn + 1) and then summing over ji. Namely, let us use the
homogeneity maps τJ → 1/(J + 1)! and τ′2 jn → (2 jn + 1). The result is then∫

dµ(zn) exp

τ ∑
i< j<n

[zi|z j〉[wi|w j〉 − ττ
′
∑
i<n

〈zn|zi〉[wi|zn〉

 =
eτ

∑
i< j<n[zi |z j〉[wi |w j〉

det (1 − ττ′
∑

i<n |wi〉[zi|)
. (4.17)

To continue, we have to be able to evaluate the determinant in the denominator. This is
thankfully not too difficult, as the matrix in question is just a 2 × 2 matrix made up by spinors.
Indeed, the following lemma comes in handy

Lemma 4.4.1. Let M = 1 −
∑

i Ci|Ai〉[Bi| then

det M = 1 −
∑

i

Ci[Bi|Ai〉 +
∑
i< j

CiC j[Ai|A j〉[Bi|B j〉.

The proof is given in Appendix A.4.

Using this result, we can immediately find the determinant in (4.17). In our case, all Ci = ττ′,
hence we get that the loop identity for the homogenized projector Pτ becomes

e
∑

1≤i< j<n ττ
′[zi |z j〉[wi |w j〉

1 −
∑

i,n ττ
′[zi|wi〉 +

∑
1≤i< j<n τ

2τ′2[zi|z j〉[wi|w j〉
. (4.18)

Now we can expand both the numerator and the denominator in a power series and then use the
homogeneity map to restore the 1/(J + 1)! terms and the face weight. This allows us to get the
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loop identity for the projector (3.19)

|z |w
|z2 |w2

1 1

f

=
∑
J,J′

CBF(J, J′)

∑
i<n

[zi|wi〉

J ∑
i< j<n

[zi|z j〉[wi|w j〉


J′

, (4.19)

where we have defined the coefficient CBF(J, J′) to be given by

CBF(J, J′) =
∑

K

(−1)J′−K (J + J′ − K)!(J + 2J′ − 2K + 1)
J!(J′ − K)!K!(J + 2J′ − K + 1)!

. (4.20)

At first glance, this is a worrisome result, as we do not only get the trivial projection (raised to
power J), but also an unwanted mixing term (raised to power J′). Notice though, that we have
an additional free sum over the variable K in the definition of the coefficient. We can actually
explicitly evaluate this sum over K to find the expected result

CBF(J, J′) =
δJ′,0

J!
. (4.21)

Hence only the J′ = 0 term is non-vanishing, so the mixing terms always drop out in BF theory.
We thus recover the result (4.16) that we set out to prove. This calculation readily is generalized
in the following section to the case with simplicity constraints. The major difference in this case
is the lack of the cancellation of the mixing terms.

4.4.2 4D case

Toy Loop

To capture the essence of the computation without too much complexity, let us start with re-
peating the calculation of the BF loop identity, but with the constrained propagator Pρ(zi; wi)
(3.36) rather than the SU(2) projector. We will follow the treatment of the loop identity from the
previous section. We will thus find the loop identity for the generating functional

Gτ(zi; wi) = eτ
∑

i< j[zi |z j〉[wi |w j〉

and at the end of the calculation use the homogeneity map to get the loop identity for Pρ(zi; wi)
by changing τJ → Fρ(J)/(J + 1)!. We also want to be able to insert a face weight, which is a
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function of the spin we will sum over. This face weight could be a priori arbitrary, but for the
sake of definiteness, let us choose it to be (2 j + 1)η with η ∈ R being a free parameter, which
keeps track of divergence properties of the Spin Foam model. The method we use allows us of
course to modify the face weight to an arbitrary function of spin. To insert the face weight, we
follow the calculation in BF theory and rescale the spinor in the loop by an additional factor of
τ′, which will keep track of homogeneity of that specific spinor. At the end of the calculation
we can restore the face weight by replacing τ′2 j → (2 j + 1)η in the series expansion. Let us now
calculate the constrained loop identity:∫

dµρ(z4)eτ
∑

i< j<4[zi |z j〉[wi |w j〉−ττ
′
∑

i<4〈z4 |zi〉[wi |z4〉 =
eτ

∑
i< j<4[zi |z j〉[wi |w j〉

det
(
1 − ττ′

1+ρ2

∑
i<4 |wi〉[zi|

) . (4.22)

Unsurprisingly, we get nearly the same result as in the previous section, the difference being the
additional factor of 1/(1 + ρ2), which arises from the modified integration measure dµρ(z). Of
course, the τ also carries a hypergeometric function of ρ. We can again use the lemma 4.4.1 to
evaluate the determinant. We arrive thus at the result∫

dµρ(z4)Gτ(z1, . . . , τ
′z4; w1, . . . , ž4) =

eτ
∑

i< j<4[zi |z j〉[wi |w j〉

1 − ττ′

1+ρ2

∑
i<4[zi|wi〉 +

∑
i< j<4

τ2τ′2

(1+ρ2)2 [zi|z j〉[wi|w j〉

= eτ
∑

i< j<4[zi |z j〉[wi |w j〉
∑
N,M

(N + M)!
N!M!

(
ττ′

1 + ρ2

)N+2M∑
i<4

[zi|wi〉

N
−∑

i< j<4

[zi|z j〉[wi|w j〉


M

. (4.23)

We can now expand the exponential, combine the mixing terms and use the homogeneity map
to reintroduce the face weight and the hypergeometric function of ρ. We hence find that the
constrained loop identity for Pρ(zi; wi) is given by

|z |w

|z3

1

|w3

1

f

=
∑
J,J′

Cρ(J, J′)

∑
i<n

[zi|wi〉

J ∑
i< j<n

[zi|z j〉[wi|w j〉


J′

, (4.24)

with the coefficient Cρ(J, J′) given by

Cρ(J, J′) =
∑

K

(−1)J′−K (J+J′−K)!(J+2J′−2K+1)η

J!(J′−K)!K!(J+2J′−K+1)!
Fρ(J + 2J′ − 2K)
(1 + ρ2)J+2J′−2K , (4.25)

where Fρ(J) = 2F1(−J − 1,−J; 2; ρ4). We have hence arrived at an expression very similar
to the one in BF theory – we again got the trivial propagation terms

∑
i<4[zi|wi〉 together with
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additional mixing terms like
∑

i< j<4[zi|z j〉[wi|w j〉. Unlike in the BF loop identity however, there is
no miraculous cancellation of the J′ , 0 terms, unless we choose ρ = 0 and η = 1, i.e. we reduce
this to SU(2) BF theory. Hence the way in which simplicity constraints break the topological
symmetry is by introducing additional mixing terms in the loop identity. We can represent this
graphically as

|z |w

|z3

1

|w3

1 |z |w

|z3

1

|w3

1

=

f

(4.26)

The Constrained Loop Identity

We are now going to see that the loop identity we need for Pachner moves is somewhat different
with the one we considered in the previous section. When we glue together 4-simplices, we
need to glue them along their boundaries, necessitating the glueing of two propagators, i.e. we
should work with Pρ ◦ Pρ, rather than a single Pρ. The reason for this being that in our model
the propagator Pρ is inserted around each vertex and we get the composition of them along an
edge. Since Pρ is not a projector unless ρ = 0 we have Pρ ◦ Pρ , Pρ . Additionally, the loops
arising in all the Pachner moves always are composed of three groups of propagators Pρ ◦ Pρ,
rather than the single one we have considered. Fortunately, two of these can be always gauge
fixed by a proper choice of a maximal tree, so that we have to consider the loop identity shown
in Fig.4.3. In BF theory the gauge-fixing reduces the projectors to trivial propagators 1(zi; wi),
so we did not have to worry about this issue.

We thus have to first find the equivalent of the trivial propagator in the constrained case, i.e.
the analog of setting g = 1 in (3.13) to get (3.6) but for the propagator (3.36). We thus have to
restore the group integration. Fortunately, by tracking homogeneity for each term, we know that(∑

i< j[zi|z j〉[wi|w j〉
)J

J!(J + 1)!
=

∑
∑

ji=J

∫
dg

4∏
i=1

[zi|g|wi〉
2 ji

(2 ji)!
. (4.27)

Setting this SU(2) group element to identity and summing over all J allows us to get the partially
gauge fixed propagator, which we denote 1ρ

1ρ(z̃i; w̃i) =
∑

J
2F1

(
−

J
2
− 1,−

J
2

; 2; ρ4
) (

∑
i[z̃i|w̃i〉)J

J!
. (4.28)
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Figure 4.3: Loop identity with for the constrained projector with two extra gauge fixed projectors

Note that for the convenience of notation later, we will always add a tilde on the spinors which
belong to the partially gauge fixed propagator. As in the case of the propagator, we find that
setting ρ = 0 we recover the BF trivial propagator 1(zi; wi), as we would expect. We can now use
the homogeneity map to define a homogenized trivial propagator 1τ̃ as

1τ̃ = eτ̃
∑

i[z̃i |w̃i〉 with τ̃J → Fρ(J/2) for 1τ̃ → 1ρ. (4.29)

We thus have arrived at the expression for the gauge fixed propagators that are necessary for the
loop identity. We will have to consider however Pρ◦Pρ and 1ρ◦1ρ, rather than single propagators,
as we have mentioned above. We will thus use the following homogeneity maps: for the pair of
gauge-fixed propagators we will have

1τ̃ ◦ 1τ̃ = eτ̃
∑

i[z̃i |w̃i〉 with τ̃J →
Fρ(J/2)2

(1 + ρ2)J for 1τ̃ ◦ 1τ̃ → 1ρ ◦ 1ρ, (4.30)

while for the pair of propagators Pρ we get

Gτ ◦Gτ = eτ
∑

i< j[zi |z j〉[wi |w j〉 with τJ →
Fρ(J)2

(1 + ρ2)2J(J + 1)!
for Gτ ◦Gτ → Pρ ◦ Pρ. (4.31)

With this, we are ready to perform the calculation of this loop identity. The addition of the extra
two pairs of gauge-fixed propagators leads to very simple contractions, using our results of spinor
Gaussian integrals in the Appendix. Integrating over the three strands inside the loop leads to
nearly the same calculation as in the previous section, with the difference being the addition of
the trivial propagation in the extra strands connected to the gauge-fixed propagators. Using the
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homogeneity map, we finally find that the constrained loop identity is given by

|z | |w
|    z |3

1

|w3

1

GF 1 GF 2

f

|w |w31
1 1~ ~

   |z1
1~ |z  3

1~ || |z3
2~ |z1

2~ ||

|w |w13
2 2~ ~

=

∞∑
A,B,J,J′=0

N (A, B, J, J′, ρ)
A!B!J!J′!

×

×

 3∑
i=1

[z̃1
i |w̃

1
i 〉

A

︸          ︷︷          ︸
GF1

 3∑
i=1

[z̃2
i |w̃

2
i 〉

B

︸          ︷︷          ︸
GF2

 3∑
i=1

[zi|wi〉

J

︸         ︷︷         ︸
Trival projection

∑
i< j<4

[zi|z j〉[wi|w j〉


J′

︸                  ︷︷                  ︸
Mixing terms

,

(4.32)

with the coefficient N (A, B, J, J′, ρ) given by

N
(
A, B, J, J′, ρ

)
≡

J′∑
K=0

J′!(J+ K)!(J+2K+1)η

K!(J′−K)!(J+J′+K+1)!
(−1)K

(1 + ρ2)(A+B+12K+7J+2J′)×

× F2
ρ

(
J + J′ + K

)
F2
ρ ((A + J)/2 + K) F2

ρ ((B + J)/2 + K) ,

where we have defined Fρ(J) ≡ 2F1(−J − 1,−J; 2; ρ4). The variables |z̃1
i 〉, |w̃

1
i 〉 appear in the

strands attached to the first gauge fixing term, similarly |z̃2
i 〉, |w̃

2
i 〉 appear in the second gauge

fixing, while |zi〉, |wi〉 are are labelled for the strands we haven’t gauge fixed. The face weight
coupling constant η should be fixed by requirements of divergence, which we will discuss in a
later section. A more detailed calculation of this loop identity can be found in the Appendix.

Even though the expression in Eq.(4.32) has a few layers of summations like a Russian nest-
ing doll and the coefficients look complicated, the physical meaning behind the expression is
quite clean – up to a weight, we get the trivial propagation, like in BF theory, but we also get
additional mixing terms for J′ , 0.

For the purpose of calculating the 4-dimensional Pachner moves, it will be convenient to
again define an exponentiated expression for this loop identity, which can then be transformed
into the proper expression by the homogeneity map. Before using the homogeneity map in Eq.
(4.32), we would have an expression purely in terms of τ’s that can be exponentiated. We hence
define the exponentiated loop identity to have the following very simple form:

Lτ(zi,wi; z̃1
i , w̃

1
i ; z̃2

i , w̃
2
i ) = exp

 3∑
i=1

τ̃1[z̃1
i |w̃

1
i 〉 + τ̃2[z̃2

i |w̃
2
i 〉 + τN[zi|wi〉 + τM

∑
i< j<4

[zi|z j〉[wi|w j〉

. (4.33)

The full loop identity can then be recovered through the following homogeneity map:

τJ
Nτ

J′
M →

J′∑
K=0

(−1)K(J + K)!J′!
K!(J′ − K)!

(J + 2K + 1)ητJ′−K

(
τ̃1τ̃2τ

(1 + ρ2)3

)J+2K

(4.34)
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and the τ̃’s and τ keep track of the Fρ factors according to the rules given in Eq. (4.30) and Eq.
(4.31).

4.5 Truncation

To evaluate a partition function Z(Γ) is to integrate out all the loops in its cable diagram. In [105],
we have calculated an identity for a partially gauge fixed loop with only one propagator not gauge
fixed (see Appendix). It is crucial for evaluating Pachner moves in both 3-d and 4-d. The special
feature that differentiates BF theory and the spin foam model with simplicity constraints, is that
integrating out loops results in mixing of strands:

|z | |w
|    z |3

1

|w3

1

GF 1 GF 2

f

|w |w31
1 1~ ~

   |z1
1~ |z  3

1~ || |z3
2~ |z1

2~ ||

|w |w13
2 2~ ~

=
∑
A,B,J

N(J′ = 0)
A J B

+
∑

A,B,J,J′
N(J′ , 0)

A J' B

. (4.35)

In [105], it was shown that the mixing terms are sub-leading. We introduced a natural truncation
scheme, in which we keep only the non-mixing term in Eq.(4.35). The resulting amplitudes are
structure preserving, and at the same time encode the non-local degrees of freedom as a non-local
function of spins. To see this, let us define an error function as:

Error(A, B, J, ρ) :=
∑∞

J′=1 N(A, B, J, J′, ρ)∑∞
J′=0 N(A, B, J, J′, ρ)

(4.36)

For large spins, the truncation scheme leads to very small errors compared with the full ampli-
tude. Examples are shown in Fig.4.4

After truncation, the simplest and the most useful way of expressing the loop identity is in
terms of an exponentiated form L using the homogeneity map trick. In general, for a partially
gauge fixed loop with one original propagator and ñ gauge fixed propagators labeled by k = 1...ñ,
the truncated loop identity is given by

Lτ(zi,wi; z̃k
i , w̃

k
i ) = exp

3∑
i=1

 ñ∑
k=1

τ̃k[z̃k
i |w̃

k
i 〉 + T [zi|wi〉

. (4.37)

We can see that this is essentially a product of ñ + 1 trivial propagators with different book-
keeping parameters τ̃k and T . The truncated loop identity can be recovered through applying the
homogeneity map:

T J →
J!(J + 1)ητJ

(1 + ρ2)J·(ñ+1)

(∏ñ

k
τ̃k

)J
(4.38)
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Figure 4.4: Plots of the error from truncation for a single loop identity. The left plot is for large
spin. The total spin on each propagator is 100 (A = B = J = 100). The right plot is for small
spin, in which the total spin on each propagator is 5 (A = B = J = 5). Blue, red, yellow and
green lines correspond to face weight η equal to 1,2,3,4 respectively. The truncation is a better
approximation for larger spins and larger face weights.

in which the propagators are tracked by

τJ →
Fρ(J)2

(1 + ρ2)2J(1 + J)!
, τ̃J

k →
Fρ(J/2)2

(1 + ρ2)J . (4.39)

From Eq.(4.38), we can see that the homogeneity map associated with the original propagator
contains the information (τ̃k) from the gauge fixed propagators. Thus integrating out loops creates
non-local spin couplings in 4-d spin foam amplitudes. We graphically represent this non-local
coupling as in Fig.4.5.

|z | |w
|z |3

1

|w3

1

GF 1 GF 2

f

|w |w31
1 1~ ~

|z11~ |z3
1~ || |z32~ |z1

2~ ||

|w |w13
2 2~ ~

Figure 4.5: We use blue dashed lines to represent the resulting non-local spin coupling from
integrating out the loop.
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Chapter 5

Computing Pachner Moves

5.1 Pachner moves in 3D topological theory

In this section we review the notion of Pachner moves and their calculation in 3d SU(2) BF
theory, to set up the stage for comparison to the 4-dimensional models. To show that a theory
defined on a triangulated manifold is topologically invariant, we need a way to relate different
triangulations. This is provided by the Pachner moves, which are local replacements of a set of
connected simplices by another set of connected simplices. They are a special class of moves
because one can prove any simplicial piecewise linear manifold M can be transformed into
any other simplicial piecewise linear manifoldM′ homeomorphic toM by a finite sequence of
Pachner moves. [68].

Pachner moves are constructed by adding (or removing) vertices, edges, triangles etc. to
(from) the existing triangulation. They can be also obtained in d dimensions by glueing a (d+1)-
simplex onto the d-dimensional triangulation. There are several Pachner moves in each dimen-
sion and they correspond to changing a configuration of n basic building blocks (d-simplices)
into a configuration of m building blocks - we call them n–m Pachner moves. In two dimen-
sions we hence have the moves 2–2, 1–3 moves and their reverse. The 2–2 move corresponds
to changing the edge along which two triangles are glued, while the 1–3 move corresponds to
adding a vertex inside a triangle and connecting it to the other vertices by three edges, arriving
in a configuration with three triangles. Fig. 5.1 shows the inverse. In three dimensions we have
3–2, 4–1 moves and their reverse, see Fig. 5.2. The 3–2 move corresponds to removing an edge,
along which three tetrahedra were glued and changing it into a configuration of two tetrahedra.
The 4–1 move is combining four tetrahedra into one tetrahedron through removing a common
vertex.
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(a)                                       (b)

Figure 5.1: Two dimensional Pachner moves: a) 3–1 move, in which three triangles are merged
into one by removing a vertex inside; b) 2–2 move, in which two triangles exchange the edge,
along which they are glued.

(a)                                                                         (b)

Figure 5.2: Three dimensional Pachner moves: a) 3–2 move, in which three tetrahedra are
changed into two tetrahedra by removing a common edge; b) 4–1 move, in which four tetra-
hedra are combined into one by removing a common vertex.

We will now proceed to show the invariance of the 3-dimensional SU(2) BF theory under
3–2 and 4–1 Pachner moves using the language of spinors. In the case of 4-1 move we find a
divergence directly related to the translational symmetry.

3–2 move

As can be seen in the Fig. 5.2 a), the configuration of three tetrahedra in the 3–2 move is glued
along one edge. This corresponds to a loop of a single strand in the cable diagram, see Fig.5.3.

By choosing a maximum tree (with a root at the projector 1) in the diagram, we can gauge fix
the projectors number 7 and 9. This allows us to apply the loop identity (4.14) to integrate out
the strand number 10 by performing the group integral in projector number 8. We can identify
now that the resulting cable diagram is exactly that of the two tetrahedra glued together, see Fig.
5.2 b). Hence it is immediate that the SU(2) BF theory is invariant under the 3–2 Pachner move,
as the two configurations are gauge equivalent.
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a) b)
Figure 5.3: a) Cable diagram for the 3-2 move. The internal loop is colored. b) After gauge-
fixing projectors 7 and 9 and performing loop identity on projector 8, the diagram reduces to
gluing of two tetrahedral graphs.

4–1 move

The configuration of four tetrahedra in the 4–1 move shares in total four edges, which corre-
sponds to four loops in a cable diagram, see Fig. 5.4 a).

We choose a maximum tree with a root at vertex 1, which allows us to gauge fix the projectors
number 5, 6 and 9. We can now apply the loop identity (4.14) to the projector 10 to remove the
blue loop. Similarly we can apply the loop identities to projectors 7 and 8 to remove the yellow
and green loops respectively. This leaves us with the last loop and no projectors left inside the
graph, as in Fig. 5.4 b). This final loop corresponds to the following integral∫

dµ̃(z)e〈z|z〉 =
∑

j

∫
dµ̃(z)

〈z|z〉2 j

(2 j)!
=

∑
j

(2 j + 1)
∫

dµ(z)
〈z|z〉2 j

(2 j)!

=
∑

j

(2 j + 1)χ j(1) = δS U(2)(1).
(5.1)

Hence, we have shown that the BF partition function is invariant under the 4–1 move up to an
overall divergent factor. The divergence we obtain in SU(2) BF theory is exactly a SU(2) delta
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Figure 5.4: a) Cable diagram for the 4–1 move. The 4 different loops are colored. b) After
applying three loop identities we are left with a tetrahedral cable graph with an insertion of one
loop.

function δS U(2)(1) =
∑

j(2 j + 1)2. In [93] it was shown that this is the same as the volume of the
su(2) Lie algebra. If we put on a cut-off Λ on spins, then the divergence scales as

∑
j(2 j + 1)2 ∼

Λ3. Since in 3d spin is proportional to length, we get a divergence that corresponds to the
translation symmetry of placing the extra vertex inside the tetrahedron. A correct Fadeev-Popov
procedure [93] divides the amplitude by exactly this divergence, so the Ponzano-Regge model
is invariant after gauge fixing under both the 3–2 and 4–1 Pachner moves. This gauge fixing
procedure was subsequently refined in [77, 78, 79, 80] to lead to a complete definition of 3
dimensional manifold invariant.

5.2 Pachner moves in 4D quantum gravity

In this section we compute all the Pachner moves in the 4-d holomorphic Spin Foam model based
on the techniques we have developed in the previous sections. All these moves are based on the
configurations of 6 vertices (ABCDEF). In the following we adopt the following notation: a
simplex A indicates the 4-simplex opposite to the vertex A, i.e. it is composed by [BCDEF]. AE
indicates the tetrahedron A∩ E composed of the vertices [BCDF], with vertex A and E removed
from the triangulation. Triangle ABD indicates the one composed by [CEF]. Also in order to
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keep track of which vertex is “active”, i-e dual to a 4-simplex and which vertex is “inactive”, i-e
not dual to a 4-simplex, we introduce a distinction in our notation: an upper case letter A, B · · ·
denotes an active vertex, while a lower case letter c, d · · · denotes an inactive vertex.

5.2.1 3–3 move

According to these conventions the move 3–3 corresponds to

ABCde f → abcDEF.

The 3–3 move is shown as Fig.5.5. In the first figure the 4-simplices A, B,C are sharing the blue
triangle. After the move the configuration is changed into three 4-simplices D, E, F which share
the green triangle.

AB

C

E F

Dd

e f

c

a  b

(a) (b)
Figure 5.5: Triangulations for the 3–3 move.

The corresponding cable diagram is shown in Fig.5.6. The various colours of strands in the
graph are used to indicate the different positions of triangles. The blue loop to be integrated
out corresponds to the triangle ABC. The purple strands in (a) for example are dual to the
triangles Ad f ⊂ A, Bde ⊂ B, Ce f ⊂ C and they run from the tetrahedra A f → Ad, Bd →
Be, Ce → C f . After performing the 3–3 Pachner move, the same triangles (still indicated
by the purple strands) are no longer shared by two tetrahedra within a given 4-simplex. They
become commonly shared by tetrahedra belonging to the three different 4-simplices: aDF ⊂
(D

⋂
F), bDE ⊂ (D

⋂
E), cEF ⊂ (E

⋂
F). The same happens to the black strands, whereas the

opposite happens for the red and light blue strands. In summary, on one hand, due to the 3–3
move from (a) to (b), the red and light blue strands, shared between different simplices in (a)
become unshared strands which belong to one simplex in (b). On the other hand, the unshared
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strands (the black and purple strands) in a become the commonly shared ones in (b). The dark
blue loop and the green loop correspond to faces which are dual to the internal triangles ABC
and DEF respectively.

A B

C EF

D

Ae Bf

Cd

aE

Ad

Af

Bd

Be

CeCf

bE

cE

bF

cD

cF

  aF

bDaD

(a) (b)

Figure 5.6: Cable diagram for the 3–3 move ABCde f → abcDEF.

To compare the partition function/amplitudes between the configurations (a) and (b), we
need to integrate out the shared loop on both sides. We can gauge fix two out of three pairs of
the constrained propagators around the loop by a choice of a maximal tree in a way that leaves
the amplitude invariant. We then need to apply only once the constrained loop identity which
we obtained in the previous section to complete the 3–3 Pachner move. In order to do so, it
is important to introduce some notation for the spinors. Let us describe the parametrization of
(a) = (ABCde f ). For each 4-simplex α ∈ {A, B,C} we need to introduce a collection of spinors
associated with each strand within that 4-simplex. Each strand carries a label which corresponds
to a pair of tetrahedra αβ sharing a face. Within A we have two types of tetrahedra: three external
ones Ad, Ae, A f and two internal ones AB, AC. The strands run either between two internal
tetrahedra or from one internal to one external tetrahedron. Accordingly, we label the external
strands by boundary spinors zαβγ where α ∈ {A, B,C}, β ∈ {d, e, f }, γ ∈ {A, B,C, d, e, f } for (a)
in Fig.5.6 , and α ∈ {D, E, F}, β ∈ {a, b, c}, , γ ∈ {a, b, c,D, E, F} for (b). αβ are the indices
labeling boundary tetrahedra, and zαβγ indicate boundary spinors. The boundary propagators are
then labeled as Pρ(z

αβ
γ ; wαβ

γ ).

Let us label the internal pairs of propagators by Pρ ◦ Pρ(vαα
′

γ ,wα′α
γ ), where α, α′ ∈ {A, B,C}

for (a) and α, α′ ∈ {D, E, F} for (b). We need to contract these spinors with the spinors wαβ
γ of the

external propagators. An example of this is shown in Fig. 5.7 with all the labels and orientations
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Figure 5.7: Zoomed in part of the cable diagram for the 3–3 move with some of the labels and
contractions of spinors explicitly written down.

written explicitly of a part of (a). The contractions are done according to the orientations of
strands, and for example we have |wAd

B 〉 = |vAB
d ]. In summary, the amplitude is constructed from

zαβγ and wαβ
γ for the external propagators and on wαα′

γ , vαα
′

γ′ for the internal ones. The amplitude
is obtained then after integration over the internal spinors after imposing the contractions, thus
becomes a function of zαβγ only.

We thus find that the amplitude for three 4-simplices combined as in Fig.5.6 can be written
as

A3(zαβγ ) =

∫ ∏
all

dµρ(v)dµρ(w)
∏
αβ

Pρ(zαβγ ; wαβ
γ ) ·

|v | |w
| v |3

1

|w3

1

GF 1 GF 2

f

|w |w31
1 1~ ~

|v1
1~ |v 31~ || |v3

2~ |v1
2~ ||

|w |w13
2 2~ ~

. (5.2)

The spinors of the three internal propagators which share a loop are labeled by v and w and each
of them is contracted with different boundary constrained propagators, with the gluing depending
on the orientation of the graph.

The crucial difference between amplitude (a) and (b) is that the non-trivial coefficient N(J, J′, A, B, ρ)
of Eq.(4.32) encodes the spin information of different strands. In (a), the coefficient N encodes
the spin information of the blue and red strands in one configuration, while in (b) it encodes the
spin of the black and purple strands. Unless the corresponding boundary spins are chosen to be
the same, the 3–3 move cannot be invariant.

It is thus very easy to see where the topological invariance of BF theory is broken. Let us
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come back to BF theory and look at the 3–3 move. The BF loop identity (4.15) does not have
any factor depending on spins and hence gives a trivial equality, as the diagrams in Fig. 5.8 are
combinatorially equivalent. Thus for BF theory, the partition function/amplitudes are invariant
under 3–3 move.

A B

C EF

D

Ae Bf

Cd

aE

Ad

Af

Bd

Be

CeCf

bE

cE

bF

cD

cF

aF

bDaD

(a) (b)

Figure 5.8: For 4-d BF theory, after integrating out the middle loops in the 3–3 move, the rest of
the strands are combinatorially equivalent.

5.2.2 4–2 move

The 4–2 move ABCDe f 7→ abcdEF is shown in Fig.5.9. In (a), four 4-simplices A, B,C,D are
sharing 6 tetrahedra. After removing four triangles (or four loops in the dual cable graph) and
changing the combinatorial structure, the four 4-simplices are rearranged in two 4-simplices E, F
glued by one tetrahedron. The corresponding cable diagram of the four 4-simplices is shown in
Fig.5.10.

We can perform gauge fixing of this graph by choosing vertex C as the root of the maximal
tree in such a way that we can gauge fix 3 couples of propagators BC, AC,CD. This allows us
to apply the constrained loop identities Eq.(4.32) to three of the four loops. More specifically,
we can apply the constrained loop identity to the propagators (AB, BC,CA) to drop the blue
loop, then apply it to the propagators (AC,CD,DA) to integrate the green loop and propagators
(BC,CD,DB) to remove the big yellow loop. This results in integrating out all couples of con-
strained propagators, and hence we are left with one last (red) loop, which is mixed with the
external strands, as can be seen in Fig.5.11.
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Figure 5.9: Triangulations for the 4–2 move.

Note, that we have applied the three loop identities, but the last loop is left without any extra
group averaging. Similar to the case of the loop identity, we have to add in a face weight for this
last loop. We will do so again by inserting a factor of τ′ on one of the strands of the left-over
loop (say the red strand for edge AD), so that we can use homogeneity map τ′2 j → (2 j + 1)η.

Similar as in the previous section, we will denote the spinors on the boundary as z, and
spinors in the bulk as w and v with indices labeling the propagator and the strand they belong
to. Each spinor carries three indices: zαβγ with indices α labeling the 4-simplex, αβ labelling the
tetrahedron they belong to, γ labelling which strands they represent. With assuming a specific
orientation of the graph as C → A,C → B,C → D, A → B,D → A,D → B 1, the amplitude in
terms of the exponentiated loop identity Eq.(4.37) is given then by

Aτ
4−2(zαβγ ) =

∫ ∏
all

dµρ(v)dµρ(w)

∏
αβ

Pρ(zαβγ ; wαβ
γ ) · exp

[∑
σi
τ̃σC[ṽCσ

i |w̃
σC
i 〉

]
× exp

[∑
µν

(τµνN

∑
j
α
µν
j [vµνj |w

νµ
j 〉 + τ

µν
M

∑
j<k
α
µν
j [wνµ

j |w
νµ
k 〉[v

µν
j |v

µν
k 〉)

]
.

(5.3)

For the external propagators α ∈ {A, B,C,D} and β ∈ {e, f } label the tetrahedron, while γ ∈
{A, B,C,D, e, f } labels the strands in each tetrahedron. For internal gauge fixed propagators, σ ∈
{A, B,D}, i ∈ {e, f }, and for the non-gauge fixed propagators, µν ∈ {AB, AD, BD}, j, k ∈ {e, f , r},
where r indicates the red strand of the left-over loop. We define αµνj as

α
µν
j = 1 + δ

µν
ADδ

r
j
(
τ′ − 1

)
(5.4)

for keeping track of the homogeneity factor for the face weight of the last loop.

1When one reverses the orientation of one propagator, the corresponding [v|w〉 → [w|v〉 = −[v|w〉
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Figure 5.10: Cable diagram for the 4–2 move with gauge fixing along BC, AC,CD.

The equation (5.3) gives a compact and explicit expression for the amplitude associated with
the 4–2. It is obtained by using the exponentiated loop identity Eq.(4.37), which then can be
transformed using the homogeneity map to obtain the full expression after performing all of the
contractions of spinors and all the Gaussian integrals. The homogeneity maps we need to apply
to this expression to get the full result were defined in Eq. (4.30) for the τ̃, in Eq.(4.34) for τN and
τM and the homogeneity map for τ′ is τ′2 j → (2 j + 1)η. The calculation can be straightforwardly
done, but the resulting expression itself is a complicated, one with lots of mixed strands that is
difficult to manipulate. The integrals also contain potential divergences that have to be taken care
of. We will delay the discussion of the resulting expression and the significance of the mixing
terms until the next section, as we first encounter a similar behavior for the 5–1 Pachner move as
well.

5.2.3 5–1 move

We now calculate the 5–1 Pachner move. The 5–1 move corresponds to a change of a config-
uration of five 4-simplices sharing an internal vertex into a single 4-simplex by removing the
common vertex, see Fig. 5.12.

The cable diagram for this move can be seen in Fig. 5.13. We have a total of 10 loops and 10
pairs of constrained propagators inside the bulk of the graph. Even though there is an increase
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Figure 5.11: Performing the calculation we get a configuration of two 4-simplices with a nonlocal
gluing.

in complexity, compared to the 4–2 move, the calculation will go over in nearly the same way.
We start by choosing a maximal tree in the diagram, which allows us to gauge fix 4 of the pairs
of propagators. A careful choice of this tree corresponds to a root at one of the 4-simplices and
allows us to apply loop identities to 6 of the loops, leaving us with 4, as can be seen in Fig. 5.14.

We can write the amplitude for the 5–1 move using the exponentiated loop identity Eq.(4.37)
as in the case of the 4–2 move. We will again have to add the face weights for the last four loops
by adding factors of τ′. The expression for the full Pachner move then would be obtained by
applying the homogeneity map to the resulting power series. We keep to the notation of inside
spinors being w and v labeled by the strands and propagators they belonged to. With assuming
the orientation of the graph as E → A, E → B, E → C, E → D, the amplitude in terms of
boundary spinors z is formally given then as

Aτ
5−1(zα f

γ ) =

∫ ∏
all

dµρ(v)dµρ(w)

∏
α

Pρ(zα f
γ ; wα f

γ ) · exp
[∑

β
τ̃Eσ[ṽEσ|w̃σE〉

]
× exp

[∑
µν

(τµνN

∑
i
β
µν
i [vµνi |w

νµ
i 〉 + τ

µν
M

∑
i< j
β
µν
i [wνµ

i |w
νµ
j 〉[v

µν
i |v

µν
j 〉)

]
,

(5.5)

where the the indices run over the following ranges: σ ∈ {A, B,C,D}, µν ∈ {AB, AC, AD,
BD, BC,CD}, i, j ∈ { f , b, r, y, g}, where b, r, y, g indicates the blue (ABD), red (BCD), yellow
(ACD), green (ABC) strands of the left-over loops respectively, and f indicates the black strands
which compose the simplex F after the move. The external propagators Pρ(z

α f
γ ; wα f

γ ) are defined
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Figure 5.12: Triangulations for the 5–1 Pachner move.

the same way as in previous sections, namely α ∈ {A, B,C,D, E} labels the simplices in which
the boundary tetrahedra belong to, and γ labels the strands in each tetrahedra. The coefficients
β
µν
i that keep track of homogeneity of the face weights are defined this time as

β
µν
i = 1 + δ

µν
ADδ

y
i

(
τ′y − 1

)
+ δ

µν
ACδ

g
i

(
τ′g − 1

)
+ δ

µν
ABδ

b
i
(
τ′b − 1

)
+ δ

µν
BCδ

r
i
(
τ′r − 1

)
. (5.6)

The formal expression of 5–1 is of similar structure as the 4–2 move, with the difference being
the range of the indices due to bigger number of loops and propagators. The expression (5.5) is
relatively compact for such a complicated calculation and it contains all the information neces-
sary to evaluate the amplitude after the Gaussian integrations are performed. In order to do so
we just need to specify is the homogeneity map

H5−1[Aτ
5−1] = A5−1. (5.7)

The 5–1 homogeneity map H5−1 is given by the composition of :

τ
µνJ
N τ

µνJ′

M →
∑

K

(−1)J′−K(J+J′−K)!J′!
K!(J′−K)!

(J+2J′−2K+1)ητK
µν

(
τ̃Eµτ̃Eντµν

(1 + ρ2)3

)J+2J′−2K

τJ
µν →

Fρ(J)2

(1 + ρ2)2J(J + 1)!
, τ̃J

Eσ →
Fρ(J/2)2

(1 + ρ2)J , τ
′2 j
i → (2 j + 1)η,

(5.8)

with Fρ(J) previously defined as the hypergeometric function Fρ(J) = 2F1(−J − 1,−J; 2; ρ4).
The same map can be used to find the full expression for the 4–2 Pachner move as well. The
Gaussian integrals for the last four loops can be performed explicitly. Using the results from
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Figure 5.13: Cable diagram for the 5–1 move. The loops inside are colored.

[121], we can write this as an inverse of a determinant of a large matrix. We leave these integrals
undone however to make the trucation procedure in the next section more clear.

Let us now try to understand our result. In BF theory the 5–1 Pachner move would lead
to 4 decoupled loops, each giving a factor of a SU(2) delta function evaluated at identity. This
would correspond to setting all the τMs to 0 and all the other τs to 1 in our expression. For the
constrained propagator, as in the previous case of the 4-2 move, the loops inside are coupled to
each other and to the strands of the boundary spinors. This means that as expected the spin foam
model we consider is not invariant under both the 4–2 and 5–1 Pachner moves. It is natural to
conjecture here, that this would be the case for the other spin foam models as well.

The new feature of the model is the mixing between internal loops and external edges that
creates a coupling between all the different strands not present in the original form of the vertex
amplitude. Let us try to study this mixing in some more detail. By splitting the 6-valent vertices
in the loops, as in Fig. 5.15, it is obvious that we can try to interpret these coupled loops as an
insertion of an operator[112].

The connections between loops and the boundary spinors correspond to gauge invariant op-
erators inserted inside the 4-simplex amplitude. It is well known that such operators can be
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Figure 5.14: Gauge-fixing 4 strands allows to apply loop identities 6 times, leaving the 4 colored
loops.

expressed as a sum of grasping operators.

In the holomorphic context these operators are due to the insertions of the SU(N) operators
[112], from which all geometrical operators are made. The insertion of Wilson loops and the
action of SU(N) operators are two sides of the same coin [69] – they are constructed from the
same type of gauge-invariant observables, which in our language are the products [z|w〉 and
〈z|w〉. The operators we get for the 4–2 and 5–1 moves can be thus thought as an exponentiated
combination of SU(N) grasping operators and Wilson loops. Iteration of 5-1 moves leads to a
new kind of loop expansion, reminiscent of higher order diagrams in perturbative quantum field
theory. It might be interesting to flesh out more this correspondence and understand if this series
converges to some interesting object. We leave this question for future work since this requires to
first disentangle the divergent part from the part that purely acts as grasping and leads to mixing
of strands. We will now try a different approach to understanding these operators.

Now let us perform the truncation that we have introduced in the last chapter. Truncating
the loop identities in the 5–1 move allows us to perform the Gaussian integrals easily. After
truncation, the amplitude in Eq. (5.5) becomes
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Figure 5.15: Performing the calculation we get a 4-simplex with an insertion of a nonlocal oper-
ator.

A5−1
τ truncated(zα f

γ ) =

∫ ∏
all

dµρ(v,w)
∏
α

Pρ(zα f
γ ; wα f

γ ) · e
∑
σ τ̃Eσ[ṽEσ |w̃Eσ〉+

∑
µκi τ

µν
N β

µν
i [vµνi |w

νµ
i 〉

=

∫ ∏
left over

dµρ(v,w)
∏
α

Pρ(zα f
γ ; wα f

γ ) · e
∑
σ τ̃Eσ[ṽEσ |w̃Eσ〉+

∑
µν τ

µν
N [vµνf |w

νµ
f 〉A5−1

τ truncated(0),
(5.9)

where recall that indices run overσ ∈ {A, B,C,D}, µν ∈ {AB, AC, AD, BD, BC,CD}, i ∈ { f , b, r, y, g},
α, γ ∈ {A, B,C,D, E}. We have also defined the amplitude with boundary spins set to zero,
A5−1

τ truncated(0) to be given by

A5−1
τ truncated(0)=

1(
1+

τAC
N τAD

N τCD
N τ′y

(1+ρ2)3

)2(
1+

τAB
N τAD

N τBD
N τ′b

(1+ρ2)3

)2(
1+

τAB
N τAC

N τBC
N τ′g

(1+ρ2)3

)2(
1+

τBC
N τBD

N τCD
N τ′r

(1+ρ2)3

)2 .
where, similarly as in the 4–2 move, the six loops that we have integrated out were labeled by
the set {AB, AC, AD, BC, BD,CD} and the left over four loops are labeled by {y, g, b, r}.

It is imperative now to notice that this does not trivially factorize, as we still have to apply the
homogeneity map to obtain the final expression. The map defined in Eq. (5.8) tells us that the
τNs are actually functions of the τ̃s from the partially gauge-fixed propagators. The homogeneity
map for the truncated 5–1 Pachner move is H5−1[A5−1

τ truncated] = A5−1
truncated and is given by

H5−1 : τµνJ
N →Fρ(J)2(J+1)η−1

(
τ̃Eµτ̃Eν

(1 + ρ2)5

)J
, τ̃J

Eσ →
Fρ(J/2)2

(1 + ρ2)J , τ
′2 j
i → (2 j + 1)η. (5.10)
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Comparing this to the 4–2 move expression, we see that clearly we have 4 loops, that are
not connected by any strands, but which are nonetheless coupled by sharing the τs, and hence
functions of spin and ρ. We can now expand this in a power series for the fours spins jy, jg, jb, jr

and reintroduce the factors of the hypergeometric functions and face weights by using the homo-
geneity map from Eq. (5.8). Letting a, b, c ∈ {y, g, b, r} we can write the full expression for the
degree of divergence as

D5−1 =
∑

jy, jp, jb, jr

∏
a(2 ja+1)η+1

(1+ρ2)24
∑

a2 ja

∏
a<b

Fρ(2 ja+2 jb)2(2 ja+2 jb + 1)η−1

 ∏
a<b<c

Fρ(2 ja+2 jb+2 jc)2

, (5.11)

where, recall, we have previously defined Fρ(J) = 2F1(−J − 1,−J; 2; ρ4) for simplification. We
will provide a through analysis of the degree of divergence in Chapter 7

In summary, this is the first time that Pachner moves have been calculated explicitly in a
simplicity-constrained Spin Foam model of 4–dimensional Quantum Gravity. We found that 4d
gravity Spin Foam models are not invariant under 3–3 move unless very specific and symmetric
boundary configurations are chosen. This is expected of a model for 4 dimensional gravity. A
naive expectation, at least at the level of the classical action, is that the model should be invariant
under the 4–2 and 5–1 Pachner moves. We found however this to be not the case for the exact
evaluation. For both the 4–2 and 5–1 moves, there is an insertion of a non-local combination of
SU(N) grasping operators in the final coarse grained simplices, with a mixing of strands leading
to non-geometrical and non-local configuration.

From the viewpoint of real-space renormalization group however, such non-local operators
are expected to appear in each step of coarse graining, and have to be truncated to local ones in a
controlled manner. Our proposed truncation scheme removes the mixing of strands in the coarse-
grained simplices, thus allowing them to remain geometrical, and hence making the 5–1 Pachner
move structure preserving. After the truncation, the 4–2 and 5–1 Pachner moves are invariant
up to a weight depending on the boundary spins. We should not expect an exact invariance,
until a properly gauge-fixed model at a fixed point of renormalization flow corresponding to
the continuum limit is found. However, the vertex translation symmetry, which is the residual
diffeomorphisms, is not presented in the model yet.
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Chapter 6

Bulk amplitude

In this section, we will study the bulk amplitude - the evaluation of the partition function on a fully
contracted 2-complex, or the evaluation on a connected 2-complex with zero boundary spins.
This quantity is of interest because it isolates the degrees of freedom in the model which could
lead to divergence. In spin foam amplitudes, the divergence comes from unbounded summations
of spins, hence any finite boundary data is irrelevant for evaluating the degrees of divergence.

First we will perform some numerical analysis of how different diagrammatic structures in-
fluence the bulk amplitude Abulk to obtain some intuition. The basic approach is isolating the
factors from loops and edges, then varying those factors on each spin channel ofAbulk. However,
we will find that the degree to which the coupling of loops influences the value of the ampli-
tude depends on the diagrammatic structure, hence this leads us to a more efficient and general
method to studyAbulk.

In the previous section 4.1 we have defined a certain set ΩΓ of 2-complexes, which contain
optimal spanning trees. Here we will first derive a formula of the truncated bulk amplitude for
such type of graphs in this section. The formula will allow us to simply write down the truncated
bulk amplitude by reading out the combinatorial properties of the graph. We then generalize the
result to the arbitrarily connected 2-complex. The results we obtain in this section will pave our
way towards evaluating the divergence for arbitrary amplitude.

72



6.1 Preliminary analysis

Effect of coupling loops

Evaluating amplitudes for large triangulations essentially comes to integrating loops in the cable
diagrams. Loops correspond to internal common faces in the triangulation that are shared by a
few tetrahedra in the simplicial decomposition. At the same time, once a tetrahedron has more
than one common faces with others, it is graphically represented as loops coupled with each
other through a common edge in the cable diagram.

With a fixed number of loops in a cable diagram, in general the coupling structures would
increase the amplitude compared with the isolated structures, and this effect can be simply char-
acterized by the following inequality of hypergeometrical functions:

Fρ(J1 + J2) ≥ Fρ(J1) · Fρ(J2) (6.1)

in which we recall that

Fρ(J) := 2F1(−J − 1,−J; 2; ρ4) =

J∑
J′=0

(
J
J′

)(
J + 1

J′

)
ρ4J′

(J′ + 1)

It becomes an equality only when ρ = 0, which corresponds to the BF theory .

More precisely, the cases we are comparing here correspond to Fig.6.1 1. Supposing two
partially gauge fixed loops are not coupled, after applying the homogeneity map, the amplitude
contributed toAbulk by the partial gauge fixed propagators A, B on each loop respectively can be
factorized for each spin channel:

τ̃
2 j f1
A τ̃

2 j f2
B →

Fρ( j f1)
2Fρ( j f2)

2

(1 + ρ2)2 j f1 +2 j f2
(6.2)

For the case in the top graph of Fig. 6.1, we have j f1 = j f2 = j f , which is what happens in
the Fig. 5.10 of 4–2 move. However, if the two loops are coupled by a common tetrahedron A,
when we apply the homogeneity map to get the amplitude, the coupling effect results in:

τ̃
2 j f1 +2 j f2
A →

Fρ( j f1 + j f2)
2

(1 + ρ2)2 j f1 +2 j f2
(6.3)

1 An example would be the tetrahedra AC, BC, CD in Fig.5.10 of the 4-2 move.
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Figure 6.1: Loops coupling effect. (The cables which connect to boundary with zero spins are
omitted. )

which leads to a larger contribution to the amplitude compared with the isolated loops, due to
Eq.(6.1). If other structures in the cable diagram are the same after setting boundary spins to
zero:

Ãcoupled =
∑
{ j f }

...Fρ( j f1 + j f2)
2... ≥ Ãseparated =

∑
{ j f }

...Fρ( j f1)
2Fρ( j f2)

2... (6.4)

where the dots indicate the same expression on both sides. Under the condition that we fix
the number of loops and number of tetrahedra per loop, the coupling structures increase the
amplitude compared with the isolated structures.

Varying numbers of tetrahedra

As we have learned in section 5.2, in a partially gauge fixed loop, each edge (a pair of gauge-fixed
propagators) has the following contribution for each spin J channel in the loop:

Cedge(J) =
Fρ(J/2)2

(1 + ρ2)2J , (6.5)

Note that (1+ρ2) has power of 2J, in which one J comes from the pair of gauge-fixed propagators,
while the other J comes from the spinor integration of contracting with the other propagator in
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the loop. Eventually, when we expand the bulk amplitude in terms of spin channels, we have

Abulk =
∑
{ j f }

...Cedge( j f )... (6.6)

If Cedge( j) ≤ 1 for any spin, then purely adding an edge into the cable diagram would decrease
the total amplitude. The following plots Fig.[6.2,6.3] show that it is indeed the case:

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

CtetraHJ, ΡL

Figure 6.2: Blue, red and yellow line correspond to J = 5, 15, 25 respectively, as examples. In
the whole range of ρ, Cedge ≤ 1.

Thus with total number of loops fixed in the whole cable diagram, adding tetrahedra to loops
(but not causing loop coupling) would decrease A(0). The bigger ρ is, the stronger the effect
would be. In BF theory, i.e. ρ = 0, varying the number of tetrahedra around loops does not
change the amplitude.

Varing number of loops

First let us have a brief discussion of the simple case – isolated loops. When a loop is com-
pletely isolated with other loops, i,e, the strands in the constrained propagators around the loop
are all connected to the boundary, then this loop itself contributes nothing to the bulk ampli-
tude Abulk. We can easily see this from the coefficient function N(0, 0, 0, 0, ρ) = 1 in the loop
identity Eq.(4.32). Adding more isolated loops in the cable diagrams does not increase the bulk
amplitude. The diagram of 3–3 Pachner Move belongs to this case.
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Figure 6.3: The logarithmic plot of Ctetra(J, ρ). Blue, red, yellow, green line correspond to ρ =

1/5, 2/5, 3/5, 4/5 respectively. Ctetra(J, ρ) monotonously decrease with both spin and ρ.

However, when we try to analyze coupled loops, we cannot just look at their number in iso-
lation, because the result will depend on the diagrammatic structure of their coupling. Hence we
need a more efficient and general approach to study this question. This leads us to the approach
in the next subsection.

6.2 Simple cases

Now we will derive a formula for the truncated bulk amplitude of the 2-complexes in ΩΓ. The
graphs in ΩΓ are convenient to consider, because they possess optimal spanning trees such that
all the corresponding fundamental cycles are faces of the 2-complex (loops formed by strands
in the cable diagram notation). The strategy to evaluate the amplitude of such a graph is as
follows: first we gauge fix the propagators (4.4) along a chosen optimal tree TΓ(ET ). We denote
the corresponding set of fundamental cycles as CT . These cycles are loops formed by single
strands in the cable diagram notation. After gauge fixing, there are two types of propagators: the
gauge-fixed propagators on the branches ET of the tree and the original propagators on the edges
of the tree’s complement E \ET . The bijection between CT and E \ET is justified by the fact that
there is a unique original propagator per fundamental cycle, and on the other hand any original
propagator belongs to a fundamental cycle. We can apply truncated loop identity Eq.(4.38) on
elements of CT . The truncated loop identity annihilates all the fundamental cycles, as well as
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|V | −1 number of gauge fixed propagators and |E| − |V |+ 1 number of original propagators on the
loops. At this stage there are |F| − |CT | loops remaining with non-local functions coupling them
through the homogeneity map (4.38). Let us refer to these loops as residual loops L.

Integrating out all the spinors in the residual loops and then applying homogeneity maps give
us the truncated bulk amplitude. Without loss of generality, we use Tα to track the homogeneity
of each original propagator α after applying the loop identity, use l to label the residual loops,
and use nl to denote the number of propagators in each of these residual loops. The structure
of the exponentiated bulk amplitudeAτ

bulk is a product of |F| − |CT | spinor Gaussian integrations
corresponding to the residual loops:

Aτ
bulk =

|F|−|CT |∏
l=1

∫
dµρ(zl) exp

[
τ′l ·

∏nl
α=1 Tα

(1 + ρ2)nl−1 〈zl|zl〉

]

=

|F|−|CT |∏
l=1

∑
jl∈ZZ/2

(2 jl + 1)
(
τ′l ·

∏nl
α=1 Tα

(1 + ρ2)nl

)2 jl

,

(6.7)

in which τ′l keeps track of the face weight. The equality from the first to second line comes from
series expansion of the integration result. Applying the homogeneity maps (4.38), (4.39) and
τ′l

J
→ (Jl + 1)η toAτ

bulk leads to the desired truncated bulk amplitudeAbulk.

In each term of the series expansion, Tα is raised to a power of spins
∑

l∈Φα
2 jl, which is a

summation of spins from the residual loops coupled with the original propagator α. In other
words, Φα is the set of residual loops L = F \ CT which contain α ∈ E \ ET as an edge. Hence
the set Φα associated with the original propagator α is defined as:

Φα ≡ { l ∈ L | α ⊂ l }. (6.8)

The homogeneity map corresponding to the Tα comes from (4.38) and (4.39). It is given by

T J
α →

(J + 1)η−1Fρ(J)2

(1 + ρ2)J(3+ñα)

(∏ñα

i
τ̃i

)J
, in which J =

∑
l∈Φα

2 jl, (6.9)

in which τ̃ tracks the homogeneity of gauge-fixed propagators. Let us use index k to label the
gauge-fixed propagators. In Eq.(6.7), each τ̃k is raised up to a power of spins

∑
l∈Θk

2 jl. The set of
summation contains spins from the residual loops which are connected with propagator k ∈ ET

through a fundamental cycle ck ∈ CT (k ⊂ ck). Therefore we can define the set Θk associated
with the gauge-fixed propagator k as:

Θk ≡ { f ∈ L | ∃ ck, f ∩ ck , ∅}. (6.10)
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The homogeneity map corresponding to the gauge-fixed propagator k in (6.7) can be summarised
as:

τ̃J
k →

Fρ(J/2)2

(1 + ρ2)J , in which J =
∑
l∈Θk

2 jl. (6.11)

Before we write down the final result, let us however pause for a moment to introduce sim-
plified diagrams notation to make the structure simpler and more transparent. The simplified
diagrams are reduced from the full cable diagrams by removing fundamental cycles, and only
keep the combinatorial data we need for the final expression. They are very useful for us to write
down the evaluation ofAbulk in a compact way.
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BD
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D

Af
Ae
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BD

CD

AC

BC De

AB

A

D
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Df
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Figure 6.4: We take 4–2 Pachner move as a simple example of showing how to reduce the cable
diagram to the simplified diagram. Figures from left to right are the dual 2-complex, the cable
diagram, and the simplified diagram respectively. With an optimal tree CB ∪ CA ∪ CD, the
fundamental cycles are precisely the green, blue, yellow loops. Each gauge-fixed propagator
is represented as a blue node in the simplified diagram, connected with two shared nodes on
the residual loop ABD due to two loop identities. Thus evaluating the bulk amplitude for 4–
2 Pachner move reduces to a single loop integration with non-local spin couplings, which are
represented by the dashed lines.

In a simplified diagram, the residual loops L are represented by circles and propagators are
represented by nodes. The gauge-fixed ones, which are on the branches ET of the chosen span-
ning tree, have index k and are denoted by the nodes outside of the circles. The original propa-
gators, which are on the edges of the spanning tree’s complement E \ ET , have index α and are
denoted by the nodes on the circles in the simplified diagram. We then use dashed lines (as in
Fig.4.5) connecting nodes to represent the non-local coupling among propagators resulting from
the loop identities, as we have discussed in the last section. Each dashed lines can be specified
by a pair of indices αk. We show two examples of reducing the cable diagram to the simplified
diagram in Fig.6.4 and Fig.6.5 . When we have |F| − |CT | ≥ 1, there is more than one residual

78



loop. In this case a few circles might share a same node, which corresponds to loops coupled at
the same propagator, as in Fig.6.5.

In the language of the simplified diagrams, the set Φα contains the residual loops intersecting
at node α. Θk contains the residual loops which have connection through dashed lines αk with
node k. Hence the definition of Θk (6.10) can be written equivalently as:

Θk ≡ { f ∈ L |∃α, αk ∩ f , ∅ }. (6.12)

With all the above preparation, we can finally summarize the result of the truncated bulk
amplitude in a very compact form:

Abulk =
∑
{ jl∈ZZ/2}

∏
l

(2 jl + 1)η+1

(1 + ρ2)2 jlNl
·

|CT |∏
α=1

F2
ρ (

∑
l∈Φα

2 jl) · (
∑
l∈Φα

2 jl + 1)η−1

 · |V |−1∏
k=1

F2
ρ (

∑
l∈Θk

2 jl)

 , (6.13)

in which there are |F| − |CT | free summations of spins from the residual loops. The power of
(1+ρ2)2 jlNl can be counted by the number of propagators nl in each residual loop, and the number
of gauge fixed propagators ñβ in the fundamental cycle associated with the original propagator β:

Nl ≡ 4nl + 2
nl∑
β=1

ñβ, (6.14)

Actually from the simplified diagram we can immediately read out the number Nl. This is be-
cause nl counts the number of nodes on the residual loop l and the summation

∑nl
β=1 ñβ counts the

total number of dashed lines directly connected with the residual loop l.

The convenience of Eq.(6.13) is such that given any 2-complex which belongs to the set ΩΓ,
one can immediately write down the truncated bulk amplitude by simply counting the combina-
torics in its simplified diagram without any calculation. Let us look at a concrete example.

The left figure in Fig.6.5 shows the cable diagram of two fully contracted 4-simplices, i.e. a
super melon. In this case, |V | = 2, |E| = 5, |F| = 10. The optimal tree of the graph only contains
one branch, which can be any of the five propagators. By gauge fixing edge E and removing the
fundamental cycles through loop identities, we arrive at the corresponding simplified diagram,
the right figure in Fig.6.5. In this case there are 4 fundamental cycles. After applying 4 truncated
loop identities, there are |F| − |CT | = 6 loops left that originally shared 4 propagators, which
correspond to the shared nodes A, B,C,D among loops in the simplified diagram. Each loop
identity gives rise to a non-local correlation between the gauge-fixed propagator and the residual
loops and they are represented by the blue dashed lines.
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A B C D

Figure 6.5: Left figure: the cable diagram of a super melon (fully contracted two 4-simplices);
right figure: the simplified diagram. Optimal tree of this diagram only contains one branch
and there are |CT | = 4 fundamental cycles corresponding to an optimal tree. We choose E
as the branch to be gauge fixed. After applying the corresponding 4 loop identities there are
|F| − |CT | = 6 residual loops. In the simplified diagram, the 6 residual loops coupled among
the 4 shared nodes correspond to 4 original propagators. The 4 blue dashed lines represent the
non-local correlation produced by 4 loop identities.

Now we can just read out the truncated bulk amplitude from the simplified diagram: for each
residual loop, there are two nodes on it, i.e. nl = 2 and two dashed lines directly connected with
the loop, i.e.

∑nl
β=1 ñβ = 2. Thus from Eq.(6.14), we have Nl = 12 for all the l. There are 6

independent summations of spins corresponding to the 6 residual loops l:

Amelon =
∑

{ jAB, jAC .... jCD}

∏
l

(2 jl + 1)η+1

(1 + ρ2)24 jl
· F2

ρ (
∑
l∈ΘE

2 jl) ·
∏
α

F2
ρ (

∑
l∈Φα

2 jl) · (
∑
l∈Φα

2 jl + 1)η−1

 (6.15)

where α ∈ {A, B,C,D}, the set ΘE = {AB, BC, AC, AD, BD,CD},

ΦA = {AB, AC, AD},ΦB = {AB, BC, BD},ΦC = {BC,CD, AC},ΦD = {CD, BD, AD}. (6.16)

With this we can see the power of the simplified diagrams for 2-complexes in ΩΓ – the expres-
sion for the truncated amplitude depends only on the combinatorics of these diagrams. In the
next section we will generalize the expression (6.13) for the amplitude to arbitrary connected
2-complexes, not only those with optimal spanning trees.
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6.3 The general structure

We have just shown that for a certain class of 2-complexes in ΩΓ, the truncated bulk amplitude
can be read out through the combinatorics of their simplified diagrams. The convenience comes
from the graph structure of elements of ΩΓ – the existence of the optimal spanning tree. However,
what if we do not choose the optimal spanning tree to fix the gauge? Are the truncated degrees
of freedom tree-dependent or not? Would the truncated bulk amplitude still be characterized
by formula (6.13)? Moreover, in general for a graph that probably does not contain an optimal
spanning tree, can we still express the truncated bulk amplitude in a simple form?

If we choose a non-optimal tree, there exists at least one fundamental cycle which is not
a loop formed by a single strand, but a union of multiple loops coupled together in the cable
diagram. In this case, we cannot directly apply loop identity to such a fundamental cycle even
though it only contains one non-gauge-fixed propagator. We need to generalize the loop identity
in section 4.5 to embrace such situations.

A A

B B

C CD D

E E

Figure 6.6: With a choice of spanning tree AB ∪ BC ∪ CD ∪ DE, one of its fundamental cycle
ABCDE nests two loops ABE ∪ BCDE. We cannot directly apply loop identity for either ABE
or ABCDE. To integrate out all the loops in the cable diagram, they have to be annihilated in a
specific order.

Let us consider an example in Fig.6.6. In this case, if we choose a spanning tree as AB∪BC∪
CD∪DE, adding an edge AE would create a fundamental cycle ABCDE, but it is not a face of the
2-complex. The cycle ABCDE nests two loops ABE ∪ BCDE in the cable diagram. To integrate
out all the loops in the cable diagram in this case, the loops need to be annihilated in specific
order: First we apply loop identity to BCDE because it contains only one original propagator
BE. The truncation scheme neglects the mixing strands on edge BE, thus after the truncation we
are able to apply loop identity again to ABE. In this way, we are evaluating a nesting of loop
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identities. The truncation for ABE is performed after the truncation of loop BCDE, thus nesting
of loop identities leads to truncation within truncation.

The homogeneity map of the nesting loop identity can be generalized from Eq.(4.38). In our
example, for the loop ABE in Fig.6.6, its exponentiated form is

Lτ = exp
3∑

i=1

(
τ̃AB[z̃AB

i |w̃
AB
i 〉 + TBE[zBE

i |w
BE
i 〉 + TAE[zAE

i |w
AE
i 〉

)
. (6.17)

This expression is of the same general structure as the loop identity (4.37) – it is a product of
trivial propagators with different weights. The difference resides in the homogeneity map:

T J
AE →

J!(J + 1)η

(1 + ρ2)3J
(τ̃ABτAETBE)J (6.18)

in which the nested loop and the propagators are tracked by

T J
BE →

J!(J + 1)η

(1 + ρ2)4J
(τ̃BC τ̃CDτ̃DEτBE)J ,

τJ
α →

Fρ(J)2

(1 + ρ2)2J(1 + J)!
, τ̃J

i →
Fρ(J/2)2

(1 + ρ2)J ,

(6.19)

where the indices α ∈ {AE, BE} and i ∈ {AB, BC,CD,DE}. Compared with the loop identity
(4.38) we have discussed in Section 4.5, the only difference here for the loop ABE is that the
homogeneity map for the spinors on edge BE is keeping track of a whole loop identity from loop
BCDE. When we calculate nesting of loops, we need to apply loop identities in a specific order,
and replace the homogeneity map of a gauge-fixed propagator in the second loop ABE to the
map which tracks the truncated loop identity in the first loop BCDE .

Since the generalization to the nesting of loop identities is straightforward, we can now eval-
uate the bulk amplitude without an optimal tree. In a general graph, after gauge fixing along
a spanning tree, there are |E| − (|V | − 1) original propagators to be integrated. This number is
still equal to |CT |, which is the same as in the case of the class of graphs ΩΓ. The only dif-
ference is that we need to consider nesting of loop identities, and annihilate loops in a specific
tree-dependent order. After all the |CT | original propagators are annihilated through generalized
loop identities, we have |F| − |CT | residual loops that have no group integrations to be performed
anymore. Performing gaussian integrals of spinors in those loops leads to |F| − |CT | number of
independent summations of spins.

At this stage, the result can be expanded in a power series. If we use e to label edges, each
book-keeping parameter τe is raised to the power of a summation of a few independent spins
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from the residual loops:
∑

l∈Θ̃e
2 jl. After applying the homogeneity map to obtain the final result,

the number of propagators |E| in a graph corresponds to the number of squared hypergeometric
functions F2

ρ(
∑

l∈Θ̃e
2 jl) in the amplitude. The set Θ̃e is tree-dependent, and its elements can be

straightforwardly obtained through the procedure outlined above. Note that the spin jl of one
residual loop appears in multiple propagators’ F2

ρ. This encodes the non-local feature of the
result.

Similarly as in Eq.(6.13), in the general case we can also find out the power of (1 + ρ2)
explicitly, as it comes from two aspects: The first is (1 + ρ2)J as part of the normalization in
each propagator (Eq.(6.19) and Eq.(4.38)). The second is that when we integrate a spinor along
a loop, each gaussian integral gives rise to (1 + ρ2)−1 in the exponential:∫

C2
dµρ(z)e〈x|z〉+〈z|y〉 =

∑
J

〈x|y〉J

J!(1 + ρ2)J (6.20)

After some algebra, one can check that the coefficient Nl in the power of (1 + ρ2)−2 jlNl equals to
twice of the number of 2 jl appearing in the product of Fρ(

∑
l∈Θ̃e

2 jl).

Thus finally, a general structure of the truncated bulk amplitude for an arbitrary connected
2-complex emerges and we summarize it as following:

Abulk =
∑
{ jl}∈Z/2

∏
e

F2
ρ (

∑
l∈Θ̃e

2 jl)︸            ︷︷            ︸
#=|E|

·
∏

f

[(1 + ρ2)−2 jlNl · (2 jl + 1)η+1︸       ︷︷       ︸
A:#=|F|−|CT |

] ·
∏
α

(
∑

l∈Φ̃α

2 jl + 1)η−1︸                 ︷︷                 ︸
B:#=|CT |

(6.21)

• There are |F| − |CT | free summations of spins.

• The number of F2
ρ (

∑
l∈Θ̃e

2 jl) is the number of propagators, i.e. #F2
ρ = |E|. The set Θ̃e

labels faces in the 2-complex and the details of the set Θ̃e are tree-dependent.

• The coefficient Nl in the power of (1 + ρ2)−2 jlNl keeps track of the occurrence of each
residual loop in the above sets Θ̃e. In other words, it tracks the number of times 2 jl appears
in the product of Fρ and #|2 jl| = Nl/2.

• The number of (2 jl + 1)η+1 in the product equals to |F| − |CT |.

• The number of terms in the form of (
∑

l∈Φ̃α
2 jl + 1)η−1 equals to |CT |. Φ̃α is another set

which labels the faces in the 2-complex. The details of the set Φ̃α are tree-dependent.

Now we can come back to the questions at the beginning of this section. With different
choice of gauge-fixing trees, the values of truncated bulk amplitude are different, which shows as
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different content in both of the sets Θ̃e and Φ̃α in Eq.(6.21). This is due to the truncation scheme.
In the loop identity, the mixing terms get truncated and those degrees of freedom depend on the
chosen tree. With nesting of loop identities as we have just discussed (for example Fig.6.6), the
truncation within truncation usually leads to worse approximation than the truncation associated
with an optimal spanning tree. In Appendix D, using the diagram of 5–1 Pachner move as an
example, we evaluate the truncated bulk amplitude with different gauge fixing trees and compare
the difference.

We also recall that the truncation scheme is a better approximation for large spins. Hence
if the bulk amplitude is convergent, i.e. the most dominant degrees of freedom are given by
small spin channel, the truncation is a worse approximation compared to the case when the bulk
amplitude is divergent, i.e. large spin channels dominate the amplitude. Even though it is tree
dependent, the truncated bulk amplitude of different graphs can be summarized with a same
structure Eq.(6.21). In the next section, we will derive a formula for the degrees of divergence
based on this result Eq.(6.21). We will see that the tree-dependent information (the details of the
sets Φ̃α and Θ̃m) only contribute as finite factors in the large spin limit, and the most dominant
degrees of freedom can be captured by a simple expression in terms of graph properties.
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Chapter 7

Degree of divergence

7.1 The degree of divergence for arbitrary connected 2-complex

In this section, we will show that the degree of divergence can be expressed only in terms of
corresponding graph properties. We will summarize the main result first, and then derive it in the
later text.

For a connected 2-complex which is dual to a simplicial decomposition of 4-d manifold, the
bulk degree of divergence is given by:

D(Γ) = Λ(η+2)|F|−3|CT |−3|E|, when |F| − |CT | > 0, (7.1)

where Λ is a large spin cut-off. This expression can be rewritten, if we plug in the quantity of
|CT | by Eq.(4.1), as

D(Γ) = Λ(η+2)|F|−6|E|+3|V |−3, when |F| − |E| + |V | − 1 > 0, (7.2)
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where CT is the number of fundamental cycles of an arbitrary chosen spanning tree in the graph,
|F| is the number of faces in the 2-complex, |V | is the number of vertices and |E| is the number of
edges in the bulk.

In section 6 we have seen that to get the bulk amplitude, we need to sum over independent
spins in the |L| = |F| − |CT | residual loops. When Λ → ∞ , integration is a good approximation
of the summation:

Abulk(Λ) ≡
Λ/2∑

j1∈Z/2

...

Λ/2∑
j|L|∈Z/2

f (2 j1, 2 j2, ...2 j|L|)

≈

∫ Λ

ε·Λ

f ( j1, j2, ..., j|L|) d j1...d j|L|

= Λ|F|−|CT |

∫ 1

ε

f (ΛJ1,ΛJ2, ...,ΛJ|L|) dJ1...dJ|L|,

(7.3)

where we use an arbitrary small constant ε > 0 as small spin cut-off. When the amplitude is finite,
small spin regime dominates the amplitude. However, as we are seeking for the divergences,
truncating small spin regime is irrelevant to the result, but it will help us to avoid some poles
which come from 1/Jn in the asymptotic series expansion.

It is easy to see that only when

|L| = |F| − |CT | > 0, i.e.|F| − |E| + |V | − 1 > 0 (7.4)

there are free summations in Eq.(6.21), thus it is possible for an amplitude to diverge. In some
cases, for example of the diagram in 3–3 Pachner move [105], all the loops can be annihilated by
the loop identity, thus there is no divergence associated with the diagram.

To derive (7.1) let us look at the case ρ = 1 first. In this case, our hypergeometric function is
merely a rational function of factorials. In Appendix C, we have shown that it has asymptotics:

2F1(−J − 1,−J; 2; 1) =
(2J + 2)!

(J + 2)! (J + 1)!
∼

4J+1e
√
π J3/2

, as J → ∞. (7.5)

Note that this asymptotic formula is a good approximation even for small spins. We rewrite the
bulk amplitude (6.21) in the form of Eq.(7.3) and then plug in the asymptotics (7.5). For large
spins, the asymptotic behavior of the bulk amplitude is given by

Abulk(Λ) ∼Λ|F|−|CT | Λ(|F|−|CT |) (η+1)︸          ︷︷          ︸
A

Λ|CT |(η−1)︸   ︷︷   ︸
B

(
4Λ

∑
l Nl e2

π λ3

)|E| ∏
l

2−2ΛNl×

×

∫ 1

ε

∏
m

(∑
a∈Θ̃m

Ja

)−3 ∏
l

Jη+1
l

∏
α

(∑
b∈Φα

Jb

)η−1
dJ1...dJ|L|.

(7.6)
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The integration in the second line is merely a finite number. The underbraced parts A and
B result from the corresponding parts in Eq.(6.21). Because the value of Nl equals to twice of
the number of 2 jl appearing in the product of hypergeometrical functions, we can see that the
term of 4

∑
jlNl which comes from the product of the asymptotics (7.5) exactly cancels the factor∏

l(1 + ρ2)−2 jlNl |ρ=1 in Eq.(6.21). Removing all the trivial constants from the above equation, we
immediately arrive at

Abulk(Λ) ∼ Λ2|F|−η|F|−3|CT |−3|E|, (7.7)

which is exactly the result in Eq.(7.1).

For 0 < ρ < 1, we have shown in Appendix C that the hypergeometric function has the
asymptotic expansion of

2F1(−J − 1,−J; 2; ρ4) ∼
e( 3

2 +J)ζρ ·
(
1 − ρ4

) 3
2 +J

2
√
π ρ3 · J3/2

, for 0 < ρ < 1 as J → ∞, (7.8)

where ζρ ≡ cosh−1
[
(1 + ρ4)/(1 − ρ4)

]
. Manifestly, this looks like a complicated function of ρ,

but we importantly find that there is a tremendous simplification

eζρJ (1 − ρ4)J(1 + ρ2)−2J = 1. (7.9)

Thus similar to the case ρ = 1, the term of
∏

l e jlNlζρ (1− ρ4) jlNl which comes from the numerator
of the product of the asymptotics (7.8) cancels the factor

∏
l(1 +ρ2)−2 jlNl in Eq.(6.21) in the large

spin limit. With this cancellation, when we rewrite Eq.(6.21) in the form of Eq.(7.8), we get
exactly the same expression (7.6) for the bulk amplitude in the large spin limit. Hence we have
just proved that for 0 < ρ ≤ 1, the degree of divergence is characterized by (7.1) and (7.2). Let
us collect a few simple examples of the degree of divergence in a table:

(a) (b) (c) (d)

Figure 7.1: A few simple examples we are considering in the following table.
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|V | |E| |F| Degree of divergence
5–1 move (a) 5 10 10 Λ10η−28

4–2 move (b) 4 6 4 Λ4η−19

Elementary melon (c) 2 4 6 Λ6η−9

Fully contracted melon (d) 2 5 10 Λ10η−7

When η = 3, the 5–1 Pachner move has exactly Λ2 divergence, which is the expected degree
of divergence if the model has diffeomorphism invariance [94, 96]. It is important to note that
for this value of η, the 4–2 move is finite. In fact, it does not become divergent until η > 19/4.

This spin foam model was expected to be less divergent compared with EPRL/FK, due to the
difference of imposing the constraint on the propagator rather than the boundary spin network
resulting in a more constrained model. This is justified by the case of the elementary melon:
the self-energy diagram starts to be divergent when η > 1.5, which is less divergent compared
to previous results in both Riemannian and Lorenzian EPRL/FK model [75, 76]. However, in
the range of parameter η when the melons are finite, the 5–1 Pachner Move is also finite, which
makes the restoration of diffeomorphism symmetry an obstacle.

7.2 Degree of divergence in terms of topological quantities

To gain some physical insight into the result we have obtained, it is useful to rewrite the degree
of divergence in terms of topological and combinatorial quantities. To simplify the discussion,
we consider the case of compact 4-d manifolds, which are dual to fully contracted 2-complexes.

If we use Ni to represent the number of i-dimensional simplices in the triangulation, the
d-dimensional Euler characteristic χ is defined as

χ =

d∑
i=0

(−1)iNi. (7.10)

In the 4-d simplical compact manifold, the link of every 2k-simplex (k = 1, 2) is an odd dimen-
sional sphere [92]. Recall that in d dimensions S d has Euler characteristic 1 + (−1)d, hence

4∑
i=2k−1

(−1)i

(
i + 1

2k − 1

)
Ni = 0, k = 1, 2. (7.11)

Recall that the number of 4-simplices in the manifold is the number of vertices in the dual 2-
complex N4 = |V |, the number of tetrahedra is the number of edges N3 = |E|, and the number
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of triangles is the number of faces N2 = |F|. Eq.(7.11) gives us the following two independent
relations:

2|E| = 5|V |, (7.12a)
2N1 + 4|E| = 3|F| + 5|V |. (7.12b)

Using Eq.(7.10) and Eq.(7.12) we can rewrite the degree of divergence (7.1) in terms of the
Euler characteristic χ:

In terms of χ, |F| and |N0| : D(Γ) = Λ(η−4)|F|+3(4N0−4χ−1). (7.13)

Unlike for 2-manifolds, in 4 dimensions we know that Euler characteristic is not enough to
specify the topology. There is however another integer characterizing the topology: the degree
of a graph Γ [86, 87, 88, 89, 90], which respects the formula

2
(d − 1)!

ωd(Γ) =
d(d − 1)

4
|V | + d − |F|. (7.14)

The meaning of this quantity is related with a class of subgraphs: the jackets. A jacket of a cable
diagram Γ is a subgraph which contains all the vertices V and edges E of Γ, but only a subset of
faces. The degree ωd(Γ) of a graph is the sum of the genera of its jackets 1. Hence the degree
ωd(Γ) ≥ 0, while the equality is saturated with Γ dual to a sphere S d. The reciprocal statement
holds only when d = 2 [87]. For reviews and discussion of this quantity see [86, 87, 88, 89, 90].
For a 4-d simplicial manifold, the degree of the skeleton of the dual 2-complex Γ and its number
of vertices and faces are related by

ω4(Γ)/3 = 3|V | − |F| + 4. (7.15)

Thus in 4-d, from equations (7.10), (7.11) and (7.15), it follows that the degree of the graph and
the Euler characteristic are related by

ω4(Γ)/3 = 3χ − 3N0 + |F|/2 + 4. (7.16)

When we fix both the degree ω4d(Γ) and the Euler characteristic χ of a graph, knowing one of
the variables |V |, |F| and N0 will fix the other two.

The degree of divergence formula (7.1) can be rewritten in terms of the degree of the graph
ω4(Γ):

in terms of ω4d(Γ), |F| : D(Γ) = Λ(η−2)|F|−4ω4d(Γ)/3+13, (7.17)
1The genus of a graph is the minimal integer n such that the graph can be embedded in a surface of genus n.
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in terms of ω4d(Γ), |V | : D(Γ) = Λ3(η−2)|V |−(2+η)ω4d(Γ)/3+4η+5. (7.18)

If we fix the degree ω4d(Γ) and vary |V |, |F|, then η = 2 marks a transition of behaviors. With
η > 2, D(Γ) monotonically increases with |V | and the opposite happens when η < 2. At η = 2,
the degree of divergence purely depends on ω4d(Γ):

D(Γ)|η=2 = Λ−4ω4d(Γ)/3+13. (7.19)

From Eq.(7.15) and also from the fact that the degree of a graph is the sum of the genera of
its jackets, we know that ω4d(Γ)/3 is a non-negative integer. If we fix the number of vertices
|V | in the graph, when η < −2, D(Γ) monotonically increases with ω4d(Γ). However, the model
is completely convergent with such face weight, which will not give the expected degree of
divergence for 5–1 move. In the region η > −2, D(Γ) monotonically decreases with ω4d(Γ)
and reaches its maximum with ω4d(Γ) = 0. This means that if one uniformly sums over all
the possible graphs, the dominant contributions to the partition function are the graphs which
are dual to the simplicial manifolds with spherical topology and at the same time with degree
ω4d(Γ) = 0. In [87] it was shown that this type of graphs with ω4d(Γ) = 0 are melonic. It
is a class of graphs with maximal |F| at fixed |V |, and their elementary subgraph is composed
by a couple of simplices glued along all but one of their faces (see Fig.7.1 c). They are the
leading order contribution in the large N limit of colored tensor models [87], and have been long
suspected to be the most divergent configuration in spin foams [75, 76].

7.3 Physical implications

First let us compare our result with the colored tensor models, in which the dominant graphs and
continuum limit have been studied in depth. We will briefly review their results first. In the case
of the independent identically distributed model and the Boulatov Ooguri model ([87], [90]), the
amplitudes associated with a graph Γ are given by

Ai.i.d.(Γ) = (λλ̄)|V |/2Nd− 2
(d−1)!ω(Γ), AB.O.(Γ) = (λλ̄)|V |/2Nd−1− 2(d−2)

d! ω(Γ), (7.20)

where N is a large parameter indicating the tensor size, λ and λ̄ are coupling constants. Note that
in these models the coupling constant has been rescaled by a power of N, so that the amplitude
is not increasingly divergent or suppressed by higher number of vertices, and the amplitude of a
graph depends solely on its degree [90]. For both of the i.i.d and BO models, it has been shown
that the leading order contribution of the 1/N expansion [86, 87, 88, 90, 89, 91] is governed by
melonic graphs (ω(Γ) = 0) [87]. It was further shown in [91] that the melonic dominance leads
to branched polymers phase in the continuum limit.
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In terms of the dominant graphs, the spin foam model we are studying has the same behavior
with the colored tensor models when the face weight η = 2, as the degree of divergence (7.19)
solely depends on a negative power of ω4(Γ). If one sums over all the diagrams with equal weight
as in the colored tensor model, then we predict that the spin foam model has a branched polymers
phase in the continuum limit at η = 2.

When the face weight η , 2 however, the degree of divergence has a non-trivial dependence
on |V |. When −2 < η < 2, the amplitude is increasingly suppressed with higher number of
vertices |V |, which indicates that the most divergent diagram is a single super melon. When
η > 2, the amplitude is increasingly divergent with higher number of vertices |V |, which indicates
that the coupling constant should be rescaled through renormalization. This region is of physical
interest because it contains the range of parameter in which the 5–1 move is divergent while 4–
2 is convergent. However, since the dominant diagrams are melonic and they are geometrically
degenerate, one might worry that the model is peaked on the configurations which do not describe
smooth 4d geometry, if there is no restriction on the set of allowed diagrams.

To address this concern, let us have a look at 3-d gravity first. The degree of divergence for
Ponzano-Regge model (3-d S U(2) BF theory) is captured by

DS U(2)BF(Γ) = Λ3|F|−3|E|+3|V |−3. (7.21)

The face weight in the model is chosen to be (2 j + 1), because it is the only choice which
preserves topological invariance. There are different ways of deriving (7.21). In the approach
presented in [105] and this paper, we can see that (7.21) arises from the following simple deriva-
tion: each residual loop contributes to the degree of divergence a factor of δS U(2)(1) ∼ Λ3, and in
a connected diagram the number of residual loops is given by |L| = |F| − |CT | = |F| − |E|+ |V | − 1.

When we discretize 3-d gravity, the residual action of the diffeomorphism group acts at the
vertices of the triangulation of a 3-d manifold as vertex translation symmetry. The 4–1 Pachner
move has exactly degree of divergence Λ3, which corresponds to the translation symmetry of
placing the free vertex anywhere in the triangulation. A proper Faddeev-Popov gauge fixing
procedure divides the amplitude by this divergence [93], thus leaving the model invariant under
4–1 move.

|V | |E| |F| Degree of divergence
4–1 Pachner move 4 6 4 Λ3

A fully contracted melon 2 4 6 Λ9

Now let us rewrite the degree of divergence in terms of topological invariants and the graph
degree ω3d. For the simplicial decomposition of 3-d compact manifold, the Euler characteristic
is

χ = N0 − |F| + |E| − |V | (7.22)
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and the degree of the graph is given by

2ω3d(Γ) = 3|V | − 2|F| + 6. (7.23)

Together with the relation 2|E| = 4|V | for a fully contracted 2-complex, we find that the degree
of divergence can be equivalently expressed as

DS U(2)BF(Γ) = Λ3N0−3χ−3 = Λ3|V |/2−3ω3d(Γ)+6 (7.24)

From expression in terms of N0 and χ, we can see that the divergence is concentrated on the
number of free vertices N0 in the triangulation. From the expression in terms of the degree, we
can see that without properly gauge fixing the vertex translation symmetry, the most divergent
graphs also have degree ω3d(Γ) = 0 and hence are melonic.

As we have discussed in Chapter 2.3, in 3D the gauge fixing procedure introduced in [93]
fixes the spins along a maximum tree of bones in the triangulation to be zero. In the approach
presented this paper, this maximum tree along the bones in the triangulation precisely corre-
sponds to the residual loops in the simplified diagrams. Setting the spins in those residual loops
to zero simply removes all the divergence. Thus the gauge fixing procedure ensures that all the
graphs have finite amplitude. Without properly gauge fixing the diffeomorphism symmetry and
removing the divergence, one should not rush into the conclusion that the Ponzano-Regge model
is peaked on melonic graphs.

The continuum limit of 3-d gravity is fully described by the discrete model, which allows
us to identify the gauge symmetry and leaves the model finite. However, the question is very
non-trivial in 4-d, since the diffeomorphism symmetry is only expected to be recovered in the
continuum limit through renormalization. Nevertheless, considering that the discretized 4-d clas-
sical Regge action indeed has the vertex translation symmetry, in the quantum model we might
be able to identify some residual gauge symmetry with non-compact gauge orbits, which could
be the origin of the divergence in the 5–1 Pachner Move. As we have just shown, with face
weight η = 3 the model has the expected degree of divergence if the diffeomorphism symmetry
is recovered. Hence the future research should clarify whether the model indeed contains some
residual gauge symmetry which results in the divergence. One would hope that properly iden-
tifying and fixing this residual gauge symmetry might completely remove the divergence and
change the behavior of melonic dominance, as is the case in 3-d. However, here is the non-trivial
part: the vertex translation symmetry is not present in the model yet, and it is only expected to
be recovered through renormalization. However, without the proper gauge fixing, the divergence
of the model leads to non-geometrical dominant phase of the partition function. Lack of precise
residual gauge symmetry and the melonic-dominant phase are two sides of the same coin. Hence
it is meaningful to investigate a model which could possibly take diffeomorphisms as a more
fundamental role, rather than recovering gauge symmetry through renormalization.
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The implications of the result in this paper are different for the two distinct approaches to-
wards continuum limit: summing over all the possible diagrams [27, 124, 125], or refining the
partition function on a fixed lattice (a la Dittrich [102, 103, 62]).

For the summation approach, the melonic dominance might be resolved by gauge fixing, as
we have just discussed. Another way is by putting a restriction on the space of diagrams which
are to be summed over, and discarding the geometrically degenerate cases. Such an approach will
result in a different model than the current group field theories. It also requires finding a complete
classification of 2-complexes which are dual to non-degenerate geometries and is an interesting
mathematical question by itself. A related question is whether the fully contracted diagrams (in
the context of group field theory) can be interpreted similarly as in quantum field theory, where
the sum of all the vacuum bubbles is a normalization factor for the physical correlation functions.

For the refining approach, there is no concern of the melonic dominance and one can focus
on possible phase transitions which have already been indicated by the distinct behaviors of
the model in different ranges of η. There indeed exists value of η such that 5–1 move has Λ2

divergence while 4–2 move is finite. This is a promising sign of recovering diffeomorphism
symmetry in the continuum limit.
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Chapter 8

Conclusion and discussion

Let us now collect the results and see what we have learnt. We have introduced a new way of
imposing holomorphic simplicity constraints in the Riemannian holomorphic Spin Foam model.
Instead of constraining the boundary spin network function, as is usually done, we imposed
the simplicity constraints on BF projectors. It turned out to have the same asymptotics as the
seminal EPRL-FK model [126, 127, 63]. This model allows for more general graphs than the
usual models built from vertex amplitudes, and dramatically simplified computation when we
evaluate amplitudes.

Some new techniques have been developed for evaluating amplitudes, including the homo-
geneity map, loop identity and its truncation. Applying those techniques, we have analytically
computed 4D Pachner moves for the first time in a simplicity-constrained Spin Foam model of
4–dimensional Quantum Gravity. For both the 4–2 and 5–1 moves, there is an insertion of a
non-local operators in the final coarse grained simplices, with a mixing of strands leading to
non-geometrical and non-local configuration. This means that the model does not have vertex
translation symmetry as an expected residual of diffeomorphisms.
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From the viewpoint of real-space renormalization group however, such non-local operators
are expected to appear in each step of coarse graining, and have to be truncated to local ones in a
controlled manner. Indeed, we have found that there exists a very natural and simple truncation
scenario to restrict the dynamics in the geometrical form. It removes the mixing of strands in the
coarse-grained simplices, thus allowing the result to remain geometrical, and hence making the
coarse graining Pachner moves structure preserving.

We then push the result to be more general – evaluating arbitrary amplitudes. First, for a
certain class of graphs with optimal spanning trees, we derived a simple expression to capture
the dominant degrees of freedom in the partition function. Using it, one can simply read out the
evaluation of truncated bulk amplitude through combinatorial properties of a graph.

We then generalized the result to arbitrary graphs and studied their structure. With the gauge
fixing choice along a generic choice of spanning trees, we need to evaluate nesting of loop identi-
ties which leads to truncation within truncation. However, with the choice of an optimal spanning
tree, the error of truncation is minimized. We then showed that even though the truncated de-
grees of freedom depend on the choice of gauge-fixing tree, the dominant degrees of freedom are
tree-independent and can be captured by a simple expression.

Using the asymptotic expansion of the hypergeometrical functions, we extracted a simple
formula for the exact degree of divergence for arbitrary 2-complexes, in which the variables are
the number of vertices |V |, number of faces |F| and the number of edges |E|. The dependence
on Barbero-Immirzi parameter has dropped out in the asymptotic analysis. The only parameter
in the degree of divergence formula is the power of the face weight η. When the face weight is
(2 j + 1)3, i.e. η = 3, the 5–1 Pachner move has Λ2 divergence, which is the expected degree of
divergence if diffeomorphism symmetry is recovered.

To gain some physical insight, we expressed the degree of divergence formula in terms of
Euler chracteristic χ and the degree of graph ω(Γ). We found that for the face weight η > −2,
the most divergent graphs are the ones that have spherical topology and degree ω4d(Γ) = 0. It
has been shown in [87] that this type of graphs are melonic, which is a class of graphs with
maximal number of faces at fixed number of vertices. When the face weight η = 2, the degree
of divergence (7.19) solely depends on a negative power of ω4d(Γ). If one sums over all the
diagrams with equal weight as in the colored tensor models, then we predict that the spin foam
model has a branched polymers phase in the continuum limit at η = 2. When η < 2, the amplitude
is increasingly suppressed with higher number of vertices |V |, which indicates that the most
divergent diagram is a single super melon (η > −2). In the region of parameter of physical interest
(the 5–1 move is divergent while 4–2 is convergent), the amplitude is increasingly divergent with
higher number of vertices |V |. We might need to introduce a new coupling constant for the vertex,
and it should be rescaled through renormalization. If we do not put restriction on the allowed
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diagrams, one might be concerned that the model is peaked on geometrically degenerate melonic
configurations.

Figure 8.1: Indication of different phases in terms of the power of face weight η.

Whether the continuum limit of Spin Foams should be defined via refining on a fixed 2-
complex, or through summation over foams, has been debated in the field for a long time. If one
takes the point of view that the continuum limit of Spin Foams should be defined through refining
the partition function on a fixed lattice [102, 103, 62], then the melonic diagrams are excluded
by definition and one can focus on possible phase transitions which are already indicated by the
distinct behaviors of the model in different ranges of η. If one takes the point of view that the
continuum limit of the model should be defined through summing over all possible diagrams
corresponding to the same boundary (such as in group field theory and colored tensor models),
then the melonic dominance is more worrisome. One way to resolve it is by restricting the space
of diagrams which are to be summed over, and exclude the geometrically degenerate cases.
Hence future research should address a complete classification of 2-complexes which are dual
to non-degenerate 4D geometries. Another idea is that the fully contracted diagrams can be
interpreted similarly as in quantum field theory, where the sum of all the vacuum bubbles is a
normalization factor for the physical correlation functions.

Another way to understand the melonic dominance comes from the important lesson in 3D
quantum gravity. In Ponzano-Regge model, one can identify a vertex translation symmetry,
which is a residue of diffeomorphism symmetry resulting from discretization. Without a proper
Faddeev-Popov procedure, we have checked that the most divergent diagrams in the model are
also melonic. We expect that in 4D, the residual gauge symmetry with non-compact gauge orbits
could be the origin of the divergence in the 5–1 move. One might expect that properly identifying
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and fixing this residual gauge symmetry might completely remove the divergence and change the
behavior of melonic dominance. However, here is the non-trivial part: as the model does not yet
have exact residual gauge symmetry, one cannot perform the gauge fixing procedure. Hence
it is meaningful to investigate a model which could possibly take diffeomorphisms as a more
fundamental role, rather than recovering gauge symmetry through renormalization.

Future Outlook

First, it will be an important step to generalize the techniques and results in this thesis to a Spin
Foam model with Lorentzian signature. This is not straightforward since there is no holomorphic
representation for SL(2,C), hence we cannot write a Spin Foam model with a Gaussian measure
in Lorentizan case. However, some techniques can be carried over: there has been new devel-
opment of decomposing the amplitudes in gauge group SL(2,C) into SU(2) intertwiners at the
vertices and integrals over boosts at the edges [132]. The Riemannian case we have studied was
a nice test ground, and we expect that the generic behavior of non-local coupling under coarse
graining, together with the broken vertex translation symmetry for flat solutions will carry over
to the Lorentzian case. One hope is that imposing causal structure in the Lorentzian signature
might change the non-geometrical dominant behavior, result in a different phase with Rieman-
nian case. For example, it has been shown in 4D Dynamical Triangulations that the Euclidean
model suffers from only having a crumpled phase and branched polymer phase [133]. How-
ever, the inclusion of causal structure in the Lorentzian model extended the phase diagram by a
genuinely four-dimensional de Sitter phase.

The analysis of dominant contribution to the partition function actually signals an ambiguous
part at the fundamental construction of the Spin Foam framework. Originally, the partition func-
tion of a given boundary state was defined as a weighted sum of Z(Γ): Z(∂M) :=

∑
Γ w(Γ)Z(Γ)

and the weight w(Γ) was suggested as a symmetry factor of the diagram. As this intuitive but
naive summation would lead to melonic dominant phase, it is important to figure out what are the
fundamental rules to determine the measure w(Γ) of the graph space in the Spin Foam framework.
This is also a crucial element for the study of renormalization in the summation approach.

Most importantly, there is the paradoxical situation we are facing: the residual gauge sym-
metry is not present in the model yet, and it is only expected to be recovered through renor-
malization. However, without properly gauge fixing, the divergence of the model leads to non-
geometrical dominant phase of the partition function. Lack of precise residual gauge symmetry
and the melonic-dominant phase are two sides of the same coin. It is worth rethinking the in-
sights from canonical loop quantum gravity, and construct a path integral formalism that takes
diffeomorphism invariance as a defining characteristic, rather than hoping to recover the gauge
symmetry through renormalization.
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Appendix A

A.1 Gaussian integration

In this appendix we compile a list of useful Gaussian spinor integrals. Consider first a standard
Gaussian integral over the complex line C∫

C

d2α

π2 e−|α|
2+x̄α+yᾱ = ex̄y. (A.1)

This easily generalizes to a Gaussian integration over spinors on C2 with the Bargmann measure
dµ(z) = π−2e−〈z|z〉d4z giving us the integral that allows us to contract strands on cable graphs∫

C2
dµ(z)e〈x|z〉+〈z|y〉 = e〈x|y〉. (A.2)

It is interesting to note that this contraction also works with anti-holomorphic spinors |z], since
[x|y] = 〈y|x〉. We have thus ∫

C2
dµ(z)e〈x|z]+[z|y〉 = e〈x|y〉. (A.3)

As with usual Gaussian integrations, we can calculate Gaussian spinor integrals of arbitrary
polynomials. The special case worth mentioning is of course how delta function acts on holo-
morphic functions ∫

C2
dµ(z) f (z)e〈z|w〉 = f (w). (A.4)

Let us now consider the integrals that are crucial to the computations in the thesis – integrals with
a matrix A. First consider the more familiar case of integrals over vectors of n complex numbers∫

Cn

n∏
i=1

d2αi

π2 e−
∑

i, j ᾱi.Ai jα j =
1

det(A)
(A.5)
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This again trivially extends to the integrals over spinors. The expression useful for our thesis is∫
C2n

n∏
i=1

dµ(zi)e
∑

i, j〈zi |Ai j |z j〉 =
1

det(1 − A)
. (A.6)

Recall that for the constrained model we had to change the measure of integration over spinors
to dµρ(z) = (1 + ρ2)2π−2e−(1+ρ2)〈z|z〉d4z. It is easy to check that this is normalized properly as∫

C2

(1 + ρ2)2d4z
π2 e−(1+ρ2)〈z|z〉 = 1. (A.7)

This change of measure leads to very simple changes to the above integrals. In particular, for a
contraction we have ∫

C2
dµρ(z)e〈x|z〉+〈z|y〉 = e(1+ρ2)−1〈x|y〉. (A.8)

Hence for every contraction of spinors we pick up a factor of 1/(1 + ρ2). Thus for a loop on
which we have three spinors we get the factor of (1 + ρ2)−3 – this appears all the time in loop
identity and Pachner moves calculations.

A.2 Mapping SU(2) to spinors

Lemma A.2.1. Let f ∈ L2(S U(2)) be homogeneous of degree 2J, i.e. f (λg) = λ2J f (g). Given a
spinor by |z〉 define g(z) = (|0〉〈0| + |0][0|)g(z) = |0〉〈z| + |0][z| where |0〉 = (1, 0)t. Then∫

C2
dµ(z) f (g(z)) = Γ(J + 2)

∫
SU(2)

dg f (g). (A.9)

Proof. We can relate the inner product (3.1) to the standard L2(SU(2)) inner product by parametriz-
ing the spinor as

|z〉 =

(
r cos θeiφ

r sin θeiψ

)
, (A.10)

where r ∈ (0,∞), θ ∈ [0, π/2), φ ∈ [0, 2π), ψ ∈ [0, 2π). The Lebesgue measure in these
coordinates is d4z = r3 sin θ cos θdr dφ dθ dψ. Now using the homogeneity property f (g(z)) =

r2J f (̃g(z)) we have∫
C2

dµ(z) f (g(z)) =

∫ ∞

0
dr r3+2 je−r2

∫ π/2

0
dθ sin θ cos θ

∫ 2π

0
dφ

∫ 2π

0
dψ f (̃g(z)), (A.11)
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where g̃(z) ∈ SU(2). Performing the intgral over r we get∫
dr r3+2Je−r2

=
1
2

Γ(J + 2) (A.12)

and so ∫
C2

dµ(z) f (g(z)) = Γ(J + 2)
∫

SU(2)
dg f (g), (A.13)

where dg is the normalized Haar measure on SU(2). In our case J is an integer so Γ(J + 2) =

(J + 1)!. �

A.3 Group averaging the SU(2) projector

In this appendix we recall the calculation in [121] which shows that we can perform the integra-
tion over g explicitly for the BF projector (3.13), which we prove in the following theorem.

Theorem A.3.1. The projector (3.13) can be expressed as a power series in the holomorphic
spinor invariants as

P(zi; wi) =
∑
[k]

1
(J + 1)!

∏
i< j

([zi|z j〉[wi|w j〉)ki j

ki j!
. (A.14)

where the sum is over sets of n(n − 1)/2 non-negative integers ki j with 1 ≤ i < j ≤ n.

Proof. Expanding (3.13) in a power series∫
SU(2)

dge[zi |g|wi〉 =
∑

ji

∫
dg

∏
i

[zi|g|wi〉
2 ji

(2 ji)!
, (A.15)

we see that each term in the sum is homogeneous of degree 2J =
∑

i(2 ji). This fact allows us
to use Lemma A.2.1 detailed in Appendix A.2 which says that we can replace the integral over
SU(2) with a Gaussian integral paying a factor of 1/(J + 1)! as in

(J + 1)!
∫

dg
∏

i

[zi|g|wi〉
2 ji

(2 ji)!
=

∫
dµ(α)

∏
i

([zi|0〉〈α|wi〉 + [zi|0][α|wi〉)2 ji

(2 ji)!
. (A.16)

Now resum over ji to get∑
ji

(J + 1)!
∫

dg
∏

i

[zi|g|wi〉
2 ji

(2 ji)!
=

∫
dµ(α)e

∑
i([zi |0〉〈α|wi〉+[zi |0][α|wi〉) = e

∑
i, j[zi |0][0|z j〉[wi |w j〉, (A.17)
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where we’ve performed the Gaussian integration in the second equality. Using the antisymmetry
[wi|w j〉 = −[w j|wi〉 and recognizing the identity 1 = |0〉〈0| + |0][0| in∑

i, j

[zi|0][0|z j〉[wi|w j〉 =
∑
i< j

[zi (|0〉〈0| + |0][0|) |z j〉[wi|w j〉 =
∑
i< j

[z j|zi〉[wi|w j〉. (A.18)

Finally we have∑
ji

(J + 1)!
∫

dg
∏

i

[zi|g|wi〉
2 ji

(2 ji)!
= e

∑
i< j[z j |zi〉[wi |w j〉 =

∑
[k]

∏
i< j

([zi|z j〉[wi|w j〉)ki j

ki j!
(A.19)

and since J =
∑

i< j ki j is just the total homogeneity of each term we can move the (J + 1)! to the
RHS and complete the proof. �

A.4 Proof of Lemma (4.4.1)

Proof. For a 2× 2 matrix 2 det M = Tr(M)2 −Tr(M2). If one consider M = 1−
∑

i Ci|Ai〉[Bi|, we
have

Tr(M2) = 2 − 2
∑

i

Ci[Bi|Ai〉 +
∑

i, j

CiC j[Bi|A j〉[B j|Ai〉

and
Tr(M)2 = 4 − 4

∑
i

Ci[Bi|Ai〉 +
∑

i, j

CiC j[Bi|Ai〉[B j|A j〉,

therefore

2 det(M) = 2 − 2
∑

i

Ci[Bi|Ai〉 +
∑

i, j

CiC j

(
[Bi|Ai〉[B j|A j〉 − [Bi|A j〉[B j|Ai〉

)
and using [Ai|Bi〉[B j|A j〉 − [Ai|B j〉[Bi|A j〉 = [Ai|A j〉[B j|Bi〉 gives the result. �
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Appendix B

Explicit calculation of the constrained loop
identity

In this appendix we explicitly show how to calculate the constrained loop identity (4.32). Let us
consider the loop composed of two pairs of partially gauge-fixed propagators 1ρ◦1ρ and one pair
of propagators Pρ ◦ Pρ. To calculate this loop, let us use the homogenized propagators 1τ̃ ◦ 1τ̃
and Gτ ◦Gτ instead and at the end of the calculation use the homogeneity maps (4.30) and (4.31),
which we recall are given by

1τ̃ ◦ 1τ̃ = eτ̃
∑

i[z̃i |w̃i〉 with τ̃J →
Fρ(J/2)2

(1 + ρ2)J for 1τ̃ ◦ 1τ̃ → 1ρ ◦ 1ρ

for a pair of gauge-fixed propagators and by

Gτ ◦Gτ = eτ
∑

i< j[zi |z j〉[wi |w j〉 with τJ →
Fρ(J)2

(1 + ρ2)2J(J + 1)!
for Gτ ◦Gτ → Pρ ◦ Pρ.

for the pair of propagators Pρ. We will also insert a face weight by tracking the homogeneity of
spin in the loop by a factor of τ′. The contractions of the spinors around the loop are as follows:
|w4〉 = |w̃2

4], |z̃2
4〉 = |z̃1

4] and |w̃1
4〉 = |z4]. The cable diagram with all the labels is shown in Fig. B.1.
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   |z1
1~ |z  3

1~ || |z3
2~ |z1

2~ ||

|w |w13
2 2~ ~|z4| |w4

|z4
2~ |

|w4
2~

|z4
1~ |

|w4
1~

|w4 |w4
2~ |=
|=

=
|z4

2~ |z4
1~

|w4
1~ ||z4

Figure B.1: Cable diagram with all the labels for the constrained loop identity.

We can thus finally calculate the loop identity:∫
dµρ(z4,w4, z̃1

4)G2
τ(z1, . . . , τ

′z4; w1, . . . , ˇ̃w2
4)12

τ̃1
(z̃1

1, . . . , z̃
1
4; w̃1

1, . . . , ž4)12
τ̃2

(z̃2
1, . . . , ˇ̃z

1
4; w̃2

1, . . . , w̃
2
4)

=
eτ

∑
i< j<4[zi |z j〉[wi |w j〉+

∑
i<4 τ̃1[z̃1

i |w̃
1
i 〉+τ̃2[z̃2

i |w̃
2
i 〉

1 − ττ̃1τ̃2τ′

(1+ρ2)3

∑
i<4[zi|wi〉 +

(
ττ̃1τ̃2τ′

(1+ρ2)3

)2 ∑
i< j<4[zi|z j〉[wi|w j〉

= exp

τ ∑
i< j<4

[zi|z j〉[wi|w j〉 +
∑
i<4

τ̃1[z̃1
i |w̃

1
i 〉 + τ̃2[z̃2

i |w̃
2
i 〉

×
×

∑
N,M

(N + M)!
N!M!

(
ττ̃1τ̃2τ

′

(1 + ρ2)3

)N+2M ∑
i<4

[zi|wi〉

N −∑
i< j<4

[zi|z j〉[wi|w j〉


M

.

The factor of 1/(1 + ρ2)3 arises from the three spinor integrations. Compared to the toy loop,
the result is thus an exchange of ττ′

1+ρ2 →
ττ̃1τ̃2τ

′

(1+ρ2)3 and the addition of the trivial propagation of the
gauge-fixed strands. Before we can use the homogeneity maps we have to expand the exponen-
tials in a power series. Doing this we arrive at∑

A,B,C,M,N

(−1)M(N + M)!
A!B!C!M!N!

(
ττ̃1τ̃2τ

′

(1 + ρ2)3

)N+2M

τ̃A
1 τ̃

B
2τ

C×

×

∑
i<4

[z̃1
i |w̃

1
i 〉

A ∑
i<4

[z̃2
i |w̃

2
i 〉

B ∑
i<4

[zi|wi〉

N ∑
i< j<4

[zi|z j〉[wi|w j〉


M+C

.
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Relabeling N → J and M + C → J′ and using the above homogeneity maps for τ, τ̃1, τ̃2 and
τ′2 j → (2 j + 1)η, we recover the result for the constrained loop identity (4.32).
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Appendix C

The asymptotics of certain types of the
hypergeometrical functions and the
modified Bessel functions

The hypergeometric function has asymptotic formula [134] :

2F1(a + λ, b − λ; c;
1
2
−

1
2

u) =

2(a+b−1)/2
√
ζ sinh ζ (λ +

a
2
−

b
2

)1−c (u + 1)(c−a−b−1)/2

(u − 1)c/2 ×

×[Ic−1

(
ζ(λ +

a
2
−

b
2

)
)

(1 + O(λ−2))+

+
Ic−2 (ζ(λ + a/2 − b/2))

2λ + a − b
((c −

1
2

) (c −
3
2

)(
1
ζ
− coth ζ)+

+
1
2

(2c − a − b − 1)(a + b − 1) tanh
ζ

2
+ O(λ−2))],

for |arg (u − 1)| < π, λ→ ∞

(C.1)

where ζ ≡ cosh−1 u.

Together with Pfaff transformation:

2F1(a, b; c; u) = (1 − u)−b · 2F1(b, c − a; c;
u

u − 1
) (C.2)
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we can get that for 0 < ρ < 1,

2F1(−J − 1, − J; 2; ρ4) =

(1 − ρ4)J+3/2

4
√

2 ρ5 ζ1/2 (3 + 2J)2
[I1

(
(
3
2

+ J)ζ
)
· (8ζ ρ2 (3 + 2J) + O(J−2))−

− 3I0

(
(
3
2

+ J)ζ
)
· (ζ (1 + ρ4) − 2ρ2 + O(J−2))], J → ∞

(C.3)

where

ζ ≡ cosh−1
(
1 + ρ4

1 − ρ4

)
(C.4)

The asymptotic expansion of hypergeometric function involves the modified Bessel function of
the first kind[134] :

Iν(ω) =

∞∑
k=0

( 1
2ω)2k+ν

k! Γ(ν + k + 1)
, ω ∈ C (C.5)

which is one of the two linearly independent solutions of the modified Bessel’s Equation. Iν(ω)
enjoys the asymptotic expansion:

Iν(ω) =
eω
√

2πω

(
1 −

4ν2 − 1
8ω

+ O(ω−2)
)
, for |arg ω| <

π

2
, |ω| → ∞ (C.6)

Thus Eq.(C.3) together with Eq.(C.6), we get

2F1(−J − 1,−J; 2; ρ4) =

e( 3
2 +J)ζ (1 − ρ4)

3
2 +J

16
√

2π(3 + 2J)7/2ζ2ρ5
· [6ρ2 − 3ζ

(
1 + ρ4

)
−

− 4ζ2(3 + 2J)
(
3 + 3ρ4 − 24ρ2 − 16 Jρ2

)
+ O(J−2)].

(C.7)

We will see from the following plot that the expansion above is an excellent approximation
to the hypergeometrical function even at small spins

After removing some constant terms due to J being large, and simplifying the expression, we
finally arrive at

2F1(−J − 1,−J; 2; ρ4) ∼
e( 3

2 +J)ζ ·
(
1 − ρ4

) 3
2 +J

2
√
π ρ3 · J3/2

, for 0 < ρ < 1 as J → ∞, (C.8)
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Figure C.1: The left graph shows a comparison between 2F1(−J − 1,−J; 2; ρ4) (in blue line) and
its expansion Eq.(C.7) (in red line) with small spins and ρ = 1/2. The right graph shows the error
of using the expansion Eq.(C.7) to approximate the hypergeometrical function when ρ = 1/2.

where ζ ≡ cosh−1
[
(1 + ρ4)/(1 − ρ4)

]
. As we will see in Fig.C.2, the asymptotic expression is

only a bad approximation with very small spins,

For ρ = 1, the asymptotics are much simpler, due to the fact that 2F1(−J − 1,−J; 2; 1) has
very simple factorial expression:

2F1(−J − 1,−J; 2; 1) =
(2J + 2)!

(J + 2)! (J + 1)!
. (C.9)

With Stirling’s approximation of factorials

n! ∼
√

2πn
(n
e

)n
as n→ ∞ (C.10)

we have

2F1(−J − 1,−J; 2; 1) ∼
4J+1e
√
π · J3/2

, as J → ∞. (C.11)
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Figure C.2: The left graph shows a comparison between 2F1(−J − 1,−J; 2; ρ4) (in blue line) and
its asymptotic expression Eq. (C.8) (in red line) with small spins and ρ = 1/2. The right graph
shows the error of using the asymptotic expression Eq. (C.8) to approximate the hypergeometri-
cal function.
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Appendix D

The truncated bulk amplitude of the 5–1
move with different gauge fixing trees

In this appendix, we will use 5–1 Pachner move as an example to illustrate that using different
choice of gauge fixing trees to compute truncated bulk amplitude gives rise to different result.
Both of the results have the same structure as in Eq.(6.21), the differences lie in the sets1 Φ, Θ

and the Nl which essentially keep track of the number of elements in the sets.

A class of optimal spanning trees in the 5-1 cable diagram is taking any of the five vertices
as root, and the four edges connected to this vertex as branches. For example, in Fig.D.1, the
spanning tree is AE ∪ BE ∪ CE ∪ DE. There are |CT | = |E| − |V | + 1 = 6 fundamental cycles.
All of them are single-strand loops and contain one original propagator per loop. Applying six
corresponding truncated loop identities, we graphically arrive at the simplified diagram. Thus
we can read out the truncated bulk amplitude

Abulk =
∑
{ jl∈ZZ/2}

∏
l

(2 jl + 1)η+1

(1 + ρ2)2 jlNl
·

|CT |∏
α=1

F2
ρ (

∑
l∈Φα

2 jl) · (
∑
l∈Φα

2 jl + 1)η−1

 · |V |−1∏
k=1

F2
ρ (

∑
l∈Θk

2 jl)

 (D.1)

where Nl ≡ 4n f + 2
∑nl
α=1 ñα = 4 × 3 + 2 × 6 = 24

ΦAB = {ABD, ABC},ΦAD = {ABD, ACD},ΦAC = {ABC, ACD},
ΦBD = {ABD, ABC},ΦBC = {ABC, BCD},ΦCD = {BCD, ACD}

(D.2)

1Formally, these have to be multisets because a single element can appear multiple times.
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Figure D.1: The cable diagram of 5–1 Pachner move and simplified diagram. The optimal tree
contains four branches and there are |CT | = 6 fundamental cycles. The four gauge-fixed propa-
gators are represented as 4 blue dots in the simplified diagram. After applying the corresponding
6 truncated loop identities there are |F| − |CT | = 4 residual loops. Each loop identity creates
2 non-local connections (the dashed lines in the simplified diagram) with the 6 shared points,
which correspond to 6 original propagators.

ΘAE = {ABD, ABC, ACD}, ΘBE = {ABD, ABC, BCD}
ΘCE = {ABC, BCD, ACD}, ΘDE = {ABD, BCD, ACD}

(D.3)

Now let us redo the calculation with another spanning tree: AB ∪ AE ∪ DE ∪ CD. This is
not an optimal tree, i.e. some fundamental cycles are not single loops formed by strands. For
example: adding the branch BC into the spanning tree creates a cycle ABCDE ∈ CT , however,
ABCDE < F. It is the same for the edges AC, BD: both of their cycles ABDE, ACDE < F.

This type of gauge fixing structure leads to nesting of loop identities. For example, we can
apply truncated loop identity to loop ADE. Without any mixing of strands due to the truncation,
we can apply truncated loop identity again to loop ACD. The truncation within truncation leads
to a worse approximation compared with the optimal tree above. The final result of truncated bulk
amplitude has the same structure as Eq.(D.1), but the summation of spins in the hypergeometrical
functions are different.
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ΦAC = {ABC, AEC}, ΦAD = {ABC, AEC, ABD},
ΦBC = {BCD, ABC}, ΦBD = {ABD, BCD},
ΦBE = {BCD, BCD, ABC, ABD}, ΦCE = {BCD, ABC, AEC}

(D.4)

ΘAB = {BCD, ABC, ABD}, ΘAE = {BCD, ABC, AEC, ABD}
ΘCD = {BCD, ABC, AEC, }, ΘDE = {BCD, ABC, AEC, ABD}

(D.5)

We can count the occurence of each residual loop in the above sets. We find that NBCD = NABC =

36, NAEC = NABD = 24. One can numerically check that the value of truncated amplitude with a
choice of arbitrary spanning tree is smaller than the value corresponding to the optimal tree. This
is due to the fact that the nesting of loop identities makes the truncation a worse approximation.
As we have shown in Section 7.2, when the amplitude is divergent this difference disappears.
The degree of divergence is a tree-independent quantity.

123


	List of Tables
	List of Figures
	Introduction
	The challenge of finding quantum gravity 
	A brief history of Spin Foams 
	The aspirations of this research
	Plan of the thesis

	Spin Foams and diffeomorphisms
	Regge Calculus
	Basics of Spin Foams
	From BF theory to Gravity
	BF partition function and diagrammatics
	Towards 4D quantum gravity – linearized simplicity constraints

	Diffeomorphisms
	Gauge symmetry in the lattice gauge theory
	Diffeomorphisms in 3D classical and quantum gravity
	Diffeomorphisms and divergence
	The challenge: diffeomorphisms in 4D quantum gravity


	Holomorphic Spin Foam Model
	The holomorphic representation
	Holomorphic simplicity constraints
	Imposing constraints
	The partition function
	Asymptotics
	The dihedral angle
	The asymptotics of DL model
	The asymptotics of constrained propagator model


	Techniques of Evaluating arbitrary amplitude
	Graph structure
	Partial gauge fixing
	The homogeneity map
	Loop Identity
	3D case
	4D case

	Truncation

	Computing Pachner Moves
	Pachner moves in 3D topological theory
	Pachner moves in 4D quantum gravity
	3–3 move
	4–2 move
	5–1 move


	Bulk amplitude
	Preliminary analysis
	Simple cases
	The general structure

	Degree of divergence
	The degree of divergence for arbitrary connected 2-complex
	Degree of divergence in terms of topological quantities
	Physical implications

	Conclusion and discussion
	Bibliography
	Appendices
	Spinor techniques
	Gaussian integration 
	Mapping SU(2) to spinors 
	Group averaging the SU(2) projector
	Proof of Lemma (4.4.1)

	Explicit calculation of the constrained loop identity
	The asymptotics of certain types of the hypergeometrical functions and the modified Bessel functions
	The truncated bulk amplitude of the 5–1 move with different gauge fixing trees

