
Abstract
The choice of an appropriate material model with parameters derived 
from testing and proper modeling of stress-strain response during 
cyclic loading are the critical steps for accurate fatigue-life prediction 
of complex automotive subsystems. Most materials used in an 
automotive substructure, like a chassis system, exhibit combined 
hardening behavior and it is essential to capture this behavior in the 
CAE model in order to accurately predict the fatigue life. This study 
illustrates, with examples, the strain-controlled testing of material 
coupons, and the calculations of material parameters from test data 
for the combined hardening material model used in the Abaqus 
solver. Stress-strain response curves and fatigue results from other 
simpler material models like the isotropic hardening model and the 
linear material model with Neuber correction are also discussed in 
light of the respective fatigue theories. A prediction of number of 
cycles for crack initiation of an automotive chassis system under a 
braking load cycle are compared to the results of physical tests in 
order to understand the merits and limitations of each model.

Introduction
The modeling of the inelastic behavior of materials is a crucial part of 
any fatigue simulation. Material properties determined from 
monotonic tensile tests are often used in design. For an isotropic 
hardening response, discrete monotonic stress and strain data points 
can be entered directly within the input deck of the Abaqus solver to 
define the plastic portion of the material curve. However, in service, 
most automotive systems experience cyclic loading, and experiments 
have shown that the cyclic plastic characteristics of metallic materials 
are different from their monotonic tensile characteristics [1]. The 
cyclic plastic behavior of metals is very complex in comparison and 
the cyclic data cannot be directly input into an FE solver like Abaqus. 
This study illustrates a method to calculate the cyclic material 
parameters for the Abaqus solver.

Figure 1 shows the rear chassis system used in a front-wheel drive 
passenger car. The subframe and the arms of the chassis system are 
made from various grades of steel, while the knuckle is made of cast 
aluminum. The amount of time and effort required to generate the 
cyclic properties for all the components is significantly higher 
compared to the monotonic tensile properties. In order to understand 
the benefits of generating the cyclic properties at a much higher cost, 
the fatigue test results of the suspension system under braking load 
cycle is compared with simulation results for material models 
generated from both monotonic and cyclic tests.

Figure 1. The rear-chassis system for a front-wheel drive passenger car.

Material Characterization
The various materials that are used in the chassis system shown in 
Figure 1 were tested to characterize its monotonic and cyclic 
properties. The geometry of the specimen used for the 
characterization is shown in Figure 2 (dimensions in mm). All 
specimens were machined from sheets of 1.6 mm thickness.
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Figure 2. Geometry of the specimen used for material characterization. (All 
dimensions shown are in mm).

Cyclic Testing and Properties
The cyclic tests were performed as per ASTM E606 standard [2] 
using the MTS 810 system with a load capacity of 50 kN. For each 
material tested, constant amplitude fatigue tests were conducted at 
different strain amplitudes ranging from ±0.11% to ±1.3%. 
Completely reversed strain conditions (R-ratio=-1) were used for all 
tests. Tests with higher strain amplitude were conducted under the 
MTS 810 system’s strain-controlled mode at a frequency range 
applied at 1 Hz - 3.5 Hz until failure was achieved. The loads were 
applied using a sine wave form. Some tests with long life and runouts 
were switched to load-controlled mode after stabilizing (reaching 
∼50,000 cycles) using a frequency of 20 Hz. Failure criteria were 
considered to be a 50% drop of load in strain-controlled tests and 
final rupture in load-controlled tests.

Mid-life hysteresis loop data from the fatigue tests were used to 
determine the stable cyclic properties. Figure 3 shows the mid-life 
hysteresis loop of the material used in the lower arm of the 
suspension system at various strain amplitudes.

Figure 3. Mid-life hysteresis loop at various strain ranges.

The strain amplitudes and stress ranges of the mid-life loops from 
Figure 3 are shown in Table 1. From the strain and stress amplitudes, 
the cyclic stress-strain characteristics of the material are calculated 
according to the Ramberg-Osgood Eq. (1) [1].

(1)

Where εa is the strain amplitude, εe is the elastic strain, εp is the 
plastic strain, σa is the stress amplitude, E is the Young’s modulus, K’ 
is the cyclic strength coefficient and n’ is the cyclic hardening 
exponent. Values of K’ and n’ can then be obtained from a least 

squares fit of true stress amplitude and true plastic strain amplitude 
data in log-log scale as shown in Figure 4, where K’ is the intercept 
of the curve and n’ is the slope. Figure 5 shows the calculated values 
of K’, n’ and the fit of the curve versus the test data from Table 1.

Table 1. True stress amplitudes and true plastic strain amplitudes.

Figure 4. Least squares fit of true stress amplitude and true plastic strain 
amplitude in log-log scale.

Figure 5. Plot showing the fit of the Ramberg-Osgood equation vs. test data.

Material Model for Abaqus Solver with Cyclic Data
Once the K’ and n’ values are obtained, the steady state cyclic 
stress-strain curve response of the materials at any strain range could 
be predicted using Masing’s hypothesis, which states that the 
stabilized hysteresis loop may be obtained by doubling the cyclic 
stress-strain curve as shown in Eq. (2 )[3].

(2)

The material response, as predicted by the cyclic hardening model 
cannot be explicitly input into Abaqus. To achieve a material 
response approaching the theoretical cyclic response, Abaqus uses a 
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combined hardening model. This is an analytical response that defines 
the state of stress as a function of the back-stress tensor, α. Eq. (3) 
and (4) [4] show this tensor defined as a function of the plastic strain 
and the three constants C, σ0 and γ.

(3)

(4)

These three constants must be defined by the user to target the cyclic 
material response. However, a more accurate method is to input the 
discrete stress and plastic strain data points of the upper hysteresis 
curve directly into the Abaqus input deck. Eq.(5) [4] shows that each 
data pair  must be specified with the strain axis shifted to .

(5)

Where  is the plastic strain corresponding to the cyclic yield point 
of the upper hysteresis loop, the stabilized hysteresis loop calculated 
using Eq.(2) for a strain amplitude of +/- 0.25% and the 
corresponding  pair used for the Abaqus solver are shown in 
Figure 6.

Figure 6. Stabilized hysteresis loop and the corresponding stress-strain pair 
used for the Abaqus solver.

Then, Abaqus can perform a curve fit analysis from these points to 
determine the combined hardening constants and output them to a .
dat file. Figure 7 shows the C, σ0 and γ parameters as calculated by 
the Abaqus solver for the data pair from Figure 6.

Figure 7. Combined hardening model parameters generated from Abaqus.

It is important to use the stabilized hysteresis loop at a strain range 
anticipated in the analysis to calculate the cyclic hardening 
parameters because the constants determined at a given strain range 
do not necessarily predict the hardening behavior at all strain ranges.

Monotonic Testing and Properties
The monotonic tension tests were conducted using test procedures as 
specified by the ASTM Standard E8-96a [5]. The tests were 
conducted using the INSTRON 8874 system at a displacement rate of 
10-2 mm.sec-1. Figure 8 shows the monotonic stress-strain data
obtained from the material used for the lower arm.

Figure 8. True stress -strain plot from monotonic test.

Material Model for Abaqus Solver with Monotonic Data
The default plasticity hardening model in Abaqus is the isotropic 
hardening model, and is calculated with the monotonic stress-strain 
data (Figure 8). Unlike the combined hardening model with cyclic 
data, for the isotropic hardening model, discrete monotonic stress and 
strain data points defining the plastic region can be entered directly 
into the input deck of the Abaqus solver. The isotopic hardening 
model generated for the Abaqus solver from the stress-strain curve 
given in Figure 8 is shown in Figure 9.
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Figure 9. Isotropic hardening model used in the Abaqus solver.

Comparison of Material Data and Hardening 
Model
Comparison of the data obtained from monotonic and cyclic tests for 
the lower arm material is shown in Figure 10. It shows that the 
material undergoes softening under cyclic load, and the cyclic yield 
of the material is much smaller than the monotonic yield. Since cyclic 
yielding occurs earlier than monotonic yielding, the plastic strain 
response predicted using cyclic data will be much higher than the 
data from monotonic tests.

Figure 10. Comparison of the monotonic test data and cyclic test data.

Figure 11. Comparison of the isotropic hardening response and cyclic 
hardening response.

The comparison of the isotropic hardening response (monotonic test 
data) and the cyclic hardening response (cyclic test data) is shown in 
Figure 11. For the isotropic hardening response, the linear portion of 
the cyclic stress-strain curve (L2) is twice the length of the linear 
monotonic unloading response (L1). While for the cyclic hardening 
model, the linear portion of the cyclic stress-strain curve (L2), is twice 
the length of the linear monotonic loading response (L1), resulting in 
a smaller (L2) value compared to that obtained with the isotropic 
hardening model. Therefore, the cyclic hardening model takes into 
account the Bauschinger effect [6] while the isotropic hardening 
model does not. As seen in the above comparison, for a given stress 
range, Δσ, the strain range resulting from this loading, Δε, is 
measurably different depending on which hardening model is used.

The differences in the material data and the hardening model can 
lead to significant discrepancies in stress-strain predictions when 
the isotropic hardening model from monotonic data is used for 
fatigue applications.

The Linear Material Model with Neuber 
Correction
The Neuber correction method is a commonly used approach in many 
fatigue applications [7]. In this method, a linear elastic material 
response analysis is done using an FE solution. Then, an estimate for 
the plastic true stress-strain state from the linear analysis runs in the 
fatigue solver using the Neuber formula (6) [6].

(6)

Figure 12. A Graphical representation of the Neuber method.

Where σ, ε is the true stress and strain, while S and e are the elastic 
stress and strain, respectively. The Neuber method assumes that the 
product of stress and strain before and after redistribution is constant 
and is equal to the product of elastic stress and elastic strain. Figure 
12 shows the application of the Neuber hyperbola graphically.

CAE Analysis and Test Results
The CAE analysis of the chassis system shown in Figure 1 was 
conducted with the braking load cycle using the isotropic model, 
cyclic hardening model and the Neuber correction method. Stress-
strain responses of the chassis system were calculated using Abaqus 
while life (cycles to failure) from stress-strain output from the 
Abaqus solver were determined using nCode FE-FATIGUE. For the 
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fatigue calculation with nCode, the critical plane method was used to 
combine the stress and strain, while Morrow’s method was utilized 
for mean stress correction [8].

FE model

Figure 13. Loads and boundary conditions for the CAE model.

The rear suspension system shown in Figure 1 was used to study 
various material models. FE meshes for all sheet metal components 
were generated using shell elements and the knuckle/brake caliper 
was idealized using higher order tetra elements. The bushing 
components were created using hex elements and the rubber 
components of the bushings were modeled using the Neo-Hooke 
material model with a c10 parameter based on the hardness of the 
rubber [7]. The fixities of subframe mounting locations and the 
damper/trailing arm bolting locations were used as boundary 
conditions. The braking load time history was measured from the test 
track and the peak values in both fore and aft directions were applied 
as constant amplitude loads at the contact patch of the tire along the 
longitudinal axis of the vehicle as shown in Figure 13.

Results from the CAE Analysis and Test
Bench testing of the chassis system with the same load and fixity 
conditions as used in the simulation was conducted to evaluate the 
correlation with CAE analysis. The test results revealed a crack on 
the trailing arm as shown in Figure 14.

Figure 14. Test results showing the crack on the trailing arm.

Figure 15. CAE results with various material models relative to test results.

The simulation results with all three material models also showed 
minimum life where the crack was detected on the trailing arm during 
the physical test. Figure 15 shows the minimum life of the trailing 
arm relative to the physical test results (cycles to crack initiation from 
CAE/cycles to crack initiation from the test).

Table 2 shows a summary of all the results. The cycles to failure 
presented are normalized with respect to the test results. (i.e., cycles 
to failure from test=1)

Table 2. Summary of results.

Summary of Results
Results show that the combined hardening model generated from 
cyclic test data gave good correlation as compared to the test results, 
while the correlation from the isotropic model is very poor. Figure 10 
and 11 show the isotropic model severely underestimates the strain 
response of the system due to the difference in the material data and 
hardening model itself. The study demonstrates that although it is 
much easier to generate the monotonic test data as compared to the 
cyclic data, using monotonic data in fatigue applications would lead 
to significant errors in strain response simulation and hence fatigue 
life predictions.

Results also show that the linear material model with Neuber 
plasticity correction gave reasonable correlation. It is noted here that 
this method is intended to be used for cases with low levels of 
plasticity resulting from a stress concentration. Judging by the cycles 
to failure information, it is implied that the system studied here 
experienced only low levels of plastic deformation. There could be 
other severe load cases where general yielding occurs in many areas 
and the linear model will not be able to capture load redistribution 

Downloaded from SAE International by University of Waterloo, Friday, July 14, 2017



within components due to the onset of plastic deformation. It is not 
recommended to use the Neuber method for fatigue life prediction in 
such situations [10].
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