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Abstract

Cardiovascular disease is the leading cause of mortality, resulting in 17.3 million deaths
per year globally. Although cardiovascular disease accounts for approximately 30% of
deaths in the United States, many deleterious events can be mitigated or prevented if
detected and treated early. Indeed, early intervention and healthier behaviour adoption
can reduce the relative risk of first heart attacks by up to 80% compared to those who do not
adopt new healthy behaviours. Cardiovascular monitoring is a vital component of disease
detection, mitigation, and treatment. The cardiovascular system is an incredibly dynamic
system that constantly adapts to internal and external stimuli. Monitoring cardiovascular
function and response is vital for disease detection and monitoring.

Biophotonic technologies provide unique solutions for cardiovascular assessment and
monitoring in naturalistic and clinical settings. These technologies leverage the properties
of light as it enters and interacts with the tissue, providing safe and rapid sensing that can
be performed in many different environments. Light entering into human tissue undergoes
a complex series of absorption and scattering events according to both the illumination
and tissue properties. The field of quantitative biomedical optics seeks to quantify physi-
ological processes by analysing the remitted light characteristics relative to the controlled
illumination source.

Drawing inspiration from contact-based biophotonic sensing technologies such as pulse
oximetry and near infrared spectroscopy, we explored the feasibility of widefield hemody-
namic assessment using computational biophotonic imaging. Specifically, we investigated
the hypothesis that computational biophotonic imaging can assess spatial and temporal
properties of pulsatile blood flow across large tissue regions.

This thesis presents the design, development, and evaluation of a novel photoplethys-
mographic imaging system for assessing spatial and temporal hemodynamics in major
pulsatile vasculature through the sensing and processing of subtle light intensity fluctua-
tions arising from local changes in blood volume. This system co-integrates methods from
biomedical optics, electronic control, and biomedical image and signal processing to enable
non-contact widefield hemodynamic assessment over large tissue regions. A biophotonic
optical model was developed to quantitatively assess transient blood volume changes in
a manner that does not require a priori information about the tissue’s absorption and
scattering characteristics. A novel automatic blood pulse waveform extraction method was
developed to encourage passive monitoring. This spectral-spatial pixel fusion method uses
physiological hemodynamic priors to guide a probabilistic framework for learning pixel
weights across the scene. Pixels are combined according to their signal weight, resulting
in a single waveform.
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Widefield hemodynamic imaging was assessed in three biomedical applications using
the aforementioned developed system. First, spatial vascular distribution was investigated
across a sample with highly varying demographics for assessing common pulsatile vascu-
lar pathways. Second, non-contact biophotonic assessment of the jugular venous pulse
waveform was assessed, demonstrating clinically important information about cardiac con-
tractility function in a manner which is currently assessed through invasive catheteriza-
tion. Lastly, non-contact biophotonic assessment of cardiac arrhythmia was demonstrated,
leveraging the system’s ability to extract strong hemodynamic signals for assessing sub-
tle fluctuations in the waveform. This research demonstrates that this novel approach
for computational biophotonic hemodynamic imaging offers new cardiovascular monitor-
ing and assessment techniques, which can enable new scientific discoveries and clinical
detection related to cardiovascular function.
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Chapter 1

Introduction

1.1 Problem Statement

Cardiovascular disease is the leading cause of mortality, resulting in 17.3 million deaths per
year globally, and approximately 30% of all deaths in the United States [1]. Cardiovascular
monitoring is essential to assessing and maintaining or enhancing quality of life through
proactive and acute care. Many cardiovascular diseases can be largely mitigated through
early intervention. For example, a large scale case-control study concluded that adopting
healthier behaviours could lead to up to 80% lower relative risk of myocardial infarction [2].
A fundamental problem is that cardiovascular disease onset may go undetected for extended
lengths of time, rendering early intervention difficult. In North America’s primarily acute
healthcare model, diagnosis and treatment are often investigated as a result of self-identified
physical symptoms such as shortness of breath or lack of energy [3, 4]. However, at this
point the disease had been manifesting prior to the expression of a physical symptom. It
is therefore critically important to develop and use cardiovascular monitoring technologies
for early detection of cardiovascular changes to help manage patient prognosis.

There are a number of existing technologies used clinically for assessing cardiovascu-
lar status. Electrocardiography (ECG) assesses the heart’s electrical function by adhering
electrodes to the skin surface and detecting subtle electrical changes from cardiac depo-
larization and repolarization. Though it provides critical information for assessing cardiac
electrical function, is not suitable for assessing vascular hemodynamics. Many subsur-
face cardiovascular imaging systems rely on a combination of ionizing radiation (computed
tomographic angiography, x-ray angiography), contrast agent injection through vascular
catheterization (computed tomographic angiography, x-ray angiography, magnetic reso-
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nance angiography), or time-consuming and expensive tests (magnetic resonance angiog-
raphy, computed tomographic angiography), making it difficult for proactive or repeated
monitoring. Ultrasound imaging systems are unique systems capable of assessing vascular
flow within an axial two-dimensional field of view, but are commonly prescribed for specific
large arterial or venous assessment, and cannot easily assess large tissue hemodynamics
and perfusion, which is an important marker for tissue health [5]. There is therefore a
need for bedside cardiovascular monitoring technologies that are able to provide widefield
cardiovascular assessment without the use of ionizing radiation or contrast agents.

Photoplethysmography (PPG) is a non-invasive biophotonic device that has been used
clinically since at least the 1930s for monitoring cardiovascular activity [6, 7, 8]. These
devices have been used to assess cardiovascular factors such as blood oxygen saturation,
heart rate, autonomic function, and peripheral vascular disease [7]. In a typical setup,
contact PPG devices are fastened to the skin at peripheral sites, most commonly the
finger, ear lobe, or toe [7]. Standard devices are comprised of either a single or multiple
light-emitting diodes (LED) and a photodetector, and monitor cardiovascular activity by
evaluating the change in light intensity due to fluctuations in blood volume. However,
contact PPG devices are unable to provide systemic cardiovascular function due to their
single-point detection design.

In light of this fundamental limitation, non-contact photoplethysmographic imaging
(PPGI) systems have been proposed. PPGI systems are non-contact biophotonic cardio-
vascular monitoring systems that may provide touchless, non-invasive cardiovascular mon-
itoring. Although existing designs differ, they are primarily comprised of the same primary
components as contact PPG: a light source (LED) and a light detector (camera). Such sys-
tems rely either on active [9,10,11,12,13,14] or ambient tissue illumination [15,16,17,18,19].
Both active and ambient PPGI systems are sensitive to temporal changes in uncontrolled
ambient illumination. The severity of this effect on the system’s ability to extract the
subtle blood pulse signal is apparent with studies employing data collection in dark room
settings [9, 11, 12, 14]. Normalizing ambient illumination changes using software has been
proposed [19]; however, this technique relies on a spectral estimation of the ambient illu-
mination, which may fail in difficult lighting conditions.

Long-distance (supermeter) monitoring is unrealistic with contact PPG devices, since
they are either attached via a cable to a monitor, must store the data on the device, or must
transmit the data wirelessly, resulting in the need for a specialized network infrastructure.
Still, one device can only monitor one anatomical location. In contrast, PPGI systems
may acquire long-distance widefield measurements of large tissue regions that fit within
the camera’s field of view. However, long-distance monitoring becomes challenging with
existing systems. Many existing PPGI systems operate in reflectance mode, where the
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camera and illumination are positioned on the same side of the tissue under investigation.
In addition to the weakened reflectance signal by the highly scattering nature of skin [20,21],
reflectance PPGI systems using divergent light sources are sensitive to a strong illumination
intensity decrease. These factors render long-distance monitoring a challenging problem.

1.2 Challenges and Objectives

PPGI systems present a set of unique challenges due to their non-contact nature, thus
decoupling the monitoring system from the individual. Furthermore, the diffuse nature of
light-tissue interaction necessitates informed system design decisions for evaluating vascular
hemodynamics (this will be discussed more in Chapter 2). Specific challenges are discussed
below.

• The first challenge relates to the design and development of a computational bio-
photonic imaging system for assessing pulsatile blood flow. Such a system must
co-integrate the fields of biomedical optics with biomedical image and signal process-
ing into a self-contained system capable of widefield tissue imaging.

• Although heart rate extraction from videos has been demonstrated, little effort has
investigated whether widefield biophotonic imaging is able to localize both spatial and
temporal characteristics of pulsatile blood flow for cardiovascular function assessment
in different tissue regions. A primary challenge is therefore to study whether the
spatial and temporal characteristics of major arterial and venous blood flow can be
localized using a biophotonic imaging system.

• Clinically-relevant biomedical applications of biophotonic imaging systems have been
largely unexplored. These are critically important for evaluating the system’s clinical
and preclinical viability. As a first step, experimental systematic PPGI evaluation
must show clinically relevant information in a non-contact widefield manner.

Non-contact widefield hemodynamic imaging may have large biomedical implications
for cardiovascular assessment and monitoring. The utility of such a system requires spa-
tiotemporal cardiovascular monitoring beyond high-level physiological descriptors (e.g.,
heart rate). To this end, the following primary objectives are addressed throughout this
thesis:
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• The primary objective is to propose a new PPGI system capable of assessing spa-
tiotemporal pulsatile blood flow. A successful system is one that can be used to
enable new ways of assessing blood flow over large tissue regions.

• The second objective is the development of a biomedical image processing algorithm
for automatically extracting a hemodynamic signal from a set of frames acquired
using the aforementioned imaging system.

• The third objective is to study biomedically relevant applications for widefield tis-
sue perfusion assessment which cannot be performed using existing contact-based
probes. In particular, the use of such a non-contact imaging system was evaluated
for assessing spatial blood flow distributions, the jugular venous pulse waveform to
elucidate cardiac function, and non-contact assessment of irregular cardiac function.

1.3 Contributions

The primary contributions of this thesis are as follows:

• A novel photoplethysmographic imaging (PPGI) system, coded hemodynamic imaging
(CHI) that is capable of assessing spatial and temporal vascular pulsatility character-
istics over large tissue regions. This system co-integrates optical, electrical, hardware
and software subsystems to assess vascular pulsatility. Deep penetrating near infrared
light probes the tissue vasculature. A computational biophotonic model and signal
processing pipeline extract local hemodynamic information resulting from dynamic
tissue optical property changes.

• A novel spectral-spatial pixel fusion method for automatically extracting a blood pulse
waveform signal from a set of hemodynamic frames. The waveform extraction method
is posed as a Bayesian least squares optimization problem for assessing an optimal set
of pixel weights based on physiologically motivated signal characteristics. Pixels are
then weighted according to their computed pulsatility probability metric, resulting
in an aggregate blood pulse waveform. The resulting framework is theoretically
invariant to anatomical location and spectral composition.

• Spatial probabilistic pulsatility analysis framework for assessing common pulsatile
pathways in target demographics. Experimental evaluation using a 24 participant
sample of varying demographics resulted in a pulsatility distribution map for the
head and neck, providing insight for enhancing future PPGI systems.
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• Non-contact biophotonic assessment of the jugular venous pulse waveform (JVP) us-
ing CHI. Non-invasive methods for assessing JVP are clinically relevant for detecting
right atrial cardiac dysfunction, since JVP analysis is currently performed by invasive
right atrium catheterization. This study showed that biophotonic technologies are
able to assess the JVP using deep penetrating near infrared light.

• Non-contact biophotonic assessment of cardiac arrhythmia using CHI. Cardiac ar-
rhythmias (cardiac electrical abnormalities) commonly go undetected for a period of
time, though early detection and intervention can drastically improve the individ-
ual’s prognosis. This study demonstrated that non-intrusive PPGI assessment can
be used to detect a cardiac arrhythmia in a naturalistic setting.

1.4 Thesis Structure

The remainder of the thesis is organized as follows. Chapter 2 provides requisite back-
ground material for motivating and understanding the research direction and contribution.
Chapter 3 discusses the proposed biophotonic system, coded hemodynamic imaging (CHI),
for assessing spatiotemporal hemodynamics. Chapter 4 provides a physiologically moti-
vated mathematical framework for automatically extracting a blood pulse waveform from
a series of frames acquired using CHI. Chapter 5 presents biomedical application studies,
including aggregate spatial pulsatility analysis, biophotonic jugular venous pulse waveform
assessed, and non-contact arrhythmia detection. Chapter 6 concludes the thesis with a
summary of contributions and proposes future work.
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Chapter 2

Background

This chapter provides requisite background material for motivating this thesis’ contribu-
tions. In particular, requisite physiology, tissue optics, and motivating vascular assessment
theory are presented. Chapter 2.1 provides a brief explanation of the physiology of pul-
satile blood flow. Chapter 2.2 provides relevant tissue optics phenomena related to optical
vascular assessment. Chapter 2.3 provides a description of photoplethysmography, the op-
tical detection of pulsatile arterial flow in contact-based sensors. Chapter 2.4 provides an
overview on the state of photoplethysmographic imaging, including a brief history of the
nascent imaging modality and the general state of research.

2.1 Pulsatile Blood Flow: A Physiology Primer

To understand the nature of the blood pulse waveform (see Figure 2.1), we must first
analyse the cardiac cycle before blood is ejected into the arterial tree. Blood enters the
heart from the vena cava into the right atrium in a deoxygenated state, since this blood had

Figure 2.1: Example of an arterial blood pulse waveform. Peaks occur during systole, and
valleys occur during diastole.
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undergone gas exchange at tissues with oxygen demand. During the first heart contraction,
the blood is ejected from the right atrium into the right ventricle, and then toward the
lungs through the pulmonary vein. Inspired oxygen undergoes diffuse transfer to the blood
(hemoglobin) through the thin capillary walls as it slowly passes across the alveoli in the
lungs. This oxygenated blood (>95% oxygen saturation normally) returns to the left
atrium, and the next heart contraction transfers blood from the left atrium into the left
ventricle, and vigorously ejects a volume of blood (“stroke volume”) through the aorta.
The blood is dispersed throughout the body via the arterial tree, largely maintaining its
oxygenated state due primarily to the thick arterial walls and wide lumen. Starting at
the aorta, arteries bifurcate, splitting in a fork-like fashion, to deliver oxygenated blood
throughout the body. At each bifurcation, the cross sectional area of the artery is reduced.
Vessels at peripheral sites generally have small diameters relative to the major arteries
(e.g., carotid artery, brachial artery, femoral artery). Arterioles are small arteries that still
exhibit pulsatility. That is, the elastic walls of the arterioles expand to accommodate the
increase in intramural pressure. Capillaries are thin-walled vessels that can allow a single
red blood cell to flow through, allowing oxygen perfusion and waste removal, and primarily
do not exhibit pulsatility. Venules connect capillaries to the vein network, delivering the
deoxygenated blood back to the heart through the venous system.

Since arteries and arterioles exhibit pulsatile motion, these vessels will expand to ac-
commodate the incoming blood from the vigorous heart contraction. As they expand and
fill with oxygenated blood, the relative blood volume of the tissue increases. The peak
point is termed “systole”, relating to the maximum intramural pressure. Once the pres-
sure wave travels through, the arterial walls relax, and the blood volume decreases. This
is termed “diastole”, relating to the time at which intramural pressure is at a minimum.
The second smaller peak in a single pulse, the “dicrotic wave” (see Figure 2.1), forms from
reflected waves at peripheral sites and transient pressure fluctuations from aortic valve
closure in major arteries near the heart. It has been shown that this wave changes with
age [22], and is an indicator of arterial stiffness and hypertension [23]. This becomes an
important factor for designing a system that is robust to age, and may act as a diagnostic
tool for arterial health.

The functional differences of oxygenated and deoxygenated blood are relevant to spec-
tral composition. The primary oxygen carrying molecules in blood are the heme groups
found in red blood cells. Each cell contains hundreds of thousands of molecules called
hemoglobin, and each hemoglobin molecule is able to bind up to four oxygen molecules.
Thus, the oxygenated state of blood refers to the average oxygenated state of the hemoglobin
molecules present in a volume of blood. These are often referred to as oxyhemoglobin and
deoxyhemoglobin. It is these two states of hemoglobin that determine the perceived colour
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Figure 2.2: Spectral absorption properties of the three primary skin chromophores using
published extinction coefficients [24, 25]. (a) Normalized log extinction coefficient curves
for melanin, oxyhemoglobin, and deoxyhemoglobin. (b) Effect of increased oxyhemoglobin
on absorption. This shows that local increases in oxyhemoglobin resulting from a blood
pulse waveform will increase the absorption at certain wavelengths. This must be balanced
with photon penetration depth, which is not incorporated in this simplified model.

of blood according to their absorption spectra (see Figure 2.2). That is, they are the pri-
mary light absorbing medium in blood. For example, both appear red due to the relatively
high blue (≈ 475 nm) and green (≈ 510 nm) absorption, but deoxyhemoglobin appears
darker than oxyhemoglobin due to its higher absorption in the red spectrum (≈ 650 nm).

2.2 Tissue Optics

Light transport in tissue is largely governed by two inherent properties: absorption and
scattering [26]. Absorption is functionally a reduction in light intensity at certain wave-
lengths due to constituent chromophores. Scattering is the change in light direction due
to the tissues components’ gradients and discontinuities in optical refractive index. Both
of these characteristics are functions of wavelength (see, for example, Figure 2.2 for the
spectral extinction coefficients of dominant tissue chromophores). Since the tissue type un-
der consideration is skin, the discussion presented here will be constrained to tissue optics
within skin.
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Figure 2.3: Simplified graphical depiction of photon migration in tissue. Three example
photon paths are shown here. Light entering into the tissue (large arrow) undergoes a
series of scattering and absorption events, before either getting emitted at the surface
(closed diamonds) or absorbed (open diamond). Photon attenuation is largely influenced
by scattering-induced path length. In a configuration where a source and detector are
separated by a certain distance, the mean photon path from a source to a detector through
tissue generally follows a shape often referred to as a “photon banana” [26] (gray curve).
The goal in hemodynamic imaging is to detect diffusely scattered and reflected photons
that have undergone hemoglobin-induced absorption events.

2.2.1 Light Transport in Skin

When a tissue is illuminated, the photons undergo a series of absorption and scattering
events according to the tissue’s properties. When a photon encounters a scattering particle,
its path is redirected. Eventually, some photons migrate back to the surface after a series
of scattering and perhaps absorption events. These photons are emitted and detected
by biophotonic technologies. Light transport through tissue is a complex process, often
modeled as a series of random walks. Due to the predominantly forward scattering nature
of tissue, tissue photon migration by a point source illuminant to a point detector is often
described as having a “photon banana” shape [26]. Specifically, the light field in tissue
based on single-point illuminant and point-based sensing exhibits an arc-like shape. The
shape of the light field (and thus depth of penetration) depends on several factors, such
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Figure 2.4: Photon migration in tissue and sensing for different source and detector con-
figurations. The dark gray area represents the continuous wave sensitivity region.

as illumination wavelength, source-detector separation, and tissue composition. Figure 2.3
provides a graphical depiction of this photon migration process. The goal in hemodynamic
imaging is to detect remitted photons that have undergone hemoglobin-induced spectral
absorption, and quantify the relative changes across a tissue region.

In an imaging setup, a point source illuminant is insufficient for monitoring large tissue
regions. Instead, broad source illuminants (e.g., LEDs) are used to illuminate the tissue
region of interest. The remitted light therefore is a result of a collection of photon banana
paths. Figure 2.4 shows a simplified view of the mean paths traveled by detected photons
in tissue based on different sensing configurations. A point source illuminant would provide
insufficient remitted light across the whole tissue for widefield imaging (Figure 2.4b). In a
widefield illumination configuration, an infinite number of source-detector pairings result
in high-resolution tissue imaging capabilities (Figure 2.4c).

An important quantity for describing tissue optics is the absorption coefficient. The
absorption coefficient, µa [mm−1], describes the probability of photon absorption per unit
length [26]. This value is governed by the tissue’s light absorbing chromophores and other
absorbing media:

µa =
∑
i

ln(10)εici (2.1)

where εi and ci are the molar extinction coefficient and concentration for the light absorbing
component i (e.g., oxyhemoglobin, deoxyhemoglobin, melanin, water, lipid, etc.). It is
important to note that absorption is a spectral characteristic. That is, molar extinction
coefficient is highly dependent on wavelength (see Figure 2.2). However, for notational
convenience, we will adopt µa to refer to µa(λ). One can also consider the absorption
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Figure 2.5: Simplified temporal illumination attenuation model in tissues containing pul-
satile arteries. The majority of the light attenuation is due to static tissue absorbers such
as melanin, capillary beds, and venous blood. The primary contributors to the temporal
dynamics are the hemodynamic arterial pulsations. These signals are subtle, and require
explicit system design for clean signal extraction.

mean free path of a photon traveling through homogeneous tissue:

mfpa =
1

µa
[mm] (2.2)

This is particularly relevant to hemodynamic imaging. Figure 2.5 shows the different
layers of absorption in tissue consisting of a pulsating artery. A common assumption
made when considering bulk tissue properties is that absorption is not temporally varying
(µa(t) = µa0). However, though much of the light attenuation is due to the static absorbing
media (surrounding tissue, capillary bed, venous blood, non-pulsatile arterial blood), the
local changes in blood volume result in absorption fluctuations. In a reflectance geometry,
this change in absorption is probably due to both mechanical deformation of the vascular
bed as well as a transient increase in photon path length through oxyhemoglobin due to
the distended artery [8, 27]. Thus, µa = µa(t), and the increased path length results in a
large number of absorption events according to the mean free path.

11



2.2.2 Skin Chromophores

Skin is a highly diffuse media where its spectral optical properties in the visible-near
infrared range is highly nonlinear [28]. Skin tissue models primarily contain up of three
absorbing and scattering constituents: melanin, oxyhemoglobin, and deoxyhemoglobin.
The combination of these constituents results in a tissue’s bulk absorbing and scattering
characteristics.

Melanin

Melanin is a primary tissue chromophore in the visible regime, and is responsible for pro-
ducing perceived skin tone, arising from its highly absorbing nature in the visible regime.
The degree of absorption is dependent on melanin concentration, melanosome volume frac-
tion, and epidermal thickness. These properties vary between individuals and also between
anatomical locations. Typical melanosome volume fraction ranges from 1–3% for weakly
pigmented skin, 11–16% for tanned Caucasian skin, and 18–43% for darkly pigmented
skin [29]. Epidermal thickness in the face, which is of particular interest to hemodynamic
imaging, varies between 30–63 µm [30]. Melanin exhibits very high absorption in the blue
and green spectra, with a non-linear decrease that is approximately inverse-exponential (see
Figure 2.2). Epidermal optics hold no hemodynamic value, and thus may be considered as
sources of noise for this application. It is therefore desirable to image in the near infrared
spectrum, where melanin absorption is relatively low. Additionally, skin exhibits weaker
scattering at these higher wavelengths, enabling deeper penetration depth. In particular,
experimental data are fit well by an inverse power law [28]:

µ′s = a

(
λ

500 [nm]

)−b
(2.3)

where, in skin, b ≈ 1.4 [28].

Hemoglobin

There are two primary forms of light-absorbing hemoglobin: oxyhemoglobin (HbO2) and
deoxyhemoglobin (Hb). As previously discussed, HbO2 are hemoglobin molecules with up
to four bound oxygen molecules. The two molecules produce distinct absorption spectra, as
seen in Figure 2.2. Of particular note are the absorption magnitude differences in the red
and infrared spectra (600–1000 nm), with a particularly important “isosbestic” point at
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Figure 2.6: Biophotonic effect of a local change in blood volume. (a) During diastole, the
blood vessel is relaxed and the photonic absorption due to hemoglobin is at a minimum. (b)
During systole, the local increase in blood volume results in a larger path length through
the oxyhemoglobin medium, resulting in an overall decrease in remitted photons compared
to diastole.

805 nm where the two curves cross over. Below this point (600–805 nm), Hb is the primary
absorber, where HbO2 exhibits a local minimum at 685 nm, and melanin still exhibits
relatively strong absorption properties. Above the isosbestic point (805–1000 nm), HbO2

is the dominant absorber, and melanin’s absorbing properties have reduced considerably(
εmel,820

εmel,615
= 0.37

)
[25]. This range is therefore particularly well-suited for assessing arterial

pulsatility.

2.2.3 Tissue Optics Relevant to Hemodynamics

Optical tissue properties in the range of approximately 650–1100 nm is often referred to as
the “optical window” for tissue investigation. In this “diffusive” spectral range, scattering
dominates absorption by an order of magnitude, where generally µ′s/µa ≈ 102 [31]. The
combination of increased penetration depth (due to reduced bulk tissue absorption and
scattering) and differential absorption curves provide powerful biophotonic investigative
properties. Of similar importance, optical sensing in this spectral range is also feasible in
practice, with many current CCD and CMOS sensors exhibiting good quantum efficiency
into the near infrared regime.
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In the context of hemodynamic imaging, two biophotonic characteristics are desired:
deep tissue penetration and hemoglobin absorption. Bulk tissue penetration can be opti-
mized based on the spectral selection, as discussed above. Blood pulse waveforms arise from
relative changes in observed light intensity due to differential optical absorption resulting
from local differential blood volume changes. When considering arterial pulsations, high
oxyhemoglobin absorption is desirable to produce an intensity signal that highly correlates
to the changes in blood volume.

2.3 Photoplethysmography

Photoplethysmography (PPG) devices are widely used cardiovascular biophotonic devices
for assessing the arterial pulse waveform. PPG devices are commonly operated in trans-
mittance geometry on thin anatomical locations (e.g., finger, ear lobe) [7]. Most PPG
devices are comprised of one or more LEDs, and a photodiode. LEDs are popular light
sources for scientific use due to their narrow spectral bandwidth and low cost. Photodiodes
convert incident light into an analog electrical signal. These components are positioned to
sit against the anatomy, thus blocking out ambient light.

The blood pulse waveform is fundamentally a signal describing local blood volume
changes. The standard way to compute this signal is by using the Beer-Lambert law of
light attenuation. The transmitted illumination ϕT is computed as:

ϕT = ϕ0e
−µal (2.4)

where ϕ0 is the incident illumination and l is the photon path length. In transmittance
geometry, where light penetrates the tissue entirely, local arterial distensions expand the
surrounding tissue to accommodate the transient blood volume increase, thus effectively
increasing the photon path length through oxyhemoglobin [8]. The temporal dynamics can
therefore be expressed as:

ϕT (t) = ϕ0e
−µal(t) (2.5)

Thus, a change in blood volume results in a change of l(t), whose dynamics are deter-
mined by measuring ϕT (t). In practice, since the device is a fixed system, the incident
illumination strength can be electronically stabilized. Thus, the only required measure-
ment for visualization blood pulses is ϕT (t). By powering a constant illumination ϕ0 via
the LED, the photodiode measures the signal ϕT (t). From this measurement, absorbance
is computed as:

aPPG(t) = − logϕT (t) (2.6)
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PPG has several significant drawbacks relevant to both long-term monitoring and mon-
itoring in natural settings. PPG devices are privy to motion artefacts [7]. Since the LED
and photodiode are in direct contact with the anatomical surface, slight movements could
cause LED reorientation or ambient light leakage, leading to skewed data. There is little
contextual information available for movement artefact correction, so it remains a difficult
problem. The location of contact of PPG devices is limited to the design of the device.
Transmittance devices can only operate where light can transmit through the entire tissue,
limiting its scope to areas such as ear lobes, fingertips, and toes [7]. Care must be taken
when affixing reflectance PPG devices, as movement, ambient light, and relative position-
ing to the tissue can cause skewed results. Finally, spring-loaded PPG devices may become
uncomfortable over long periods of time, and the pressure could lead to reduced peripheral
blood flow.

2.4 Photoplethysmographic Imaging

Photoplethysmographic imaging (PPGI) systems are widefield biophotonic hemodynamic
imaging systems that address the aforementioned drawbacks of contact-based sensors, and
provide unique advantages over single-point contact sensors. By co-integrating optical
design, electronic control, computational biophotonic models, and image and signal pro-
cessing methods, PPGI systems are able to assess hemodynamic pulsatility across large
tissue regions. Modeling pixels as “virtual sensors”, each virtual sensor response can be
evaluated to determine spatiotemporal pulsatility characteristics.

PPGI is a nascent concept, with one of the first PPGI devices reported in 2002 by
Hulsbusch and Blazek [32]. The system consisted of a thermally cooled charge-coupled
device (CCD) with high near infrared (NIR) sensitivity positioned 20 cm from the skin,
with an LED array (the wavelength was not specified). The novelty was described as being
able to evaluate PPG-like signals in wounds, where a contact device would not be feasible.
However, the camera was an expensive and bulky one, hinting at device feasibility issues.
The next major reported advancement came in 2005 by Wieringa et al. [9]. The device
consisted of a monochrome complementary metal-oxide-semiconductor (CMOS) camera
positioned 72 cm from the skin and 300 LEDs at three different wavelengths in the red and
NIR electromagnetic spectra (660 nm, 810 nm, 940 nm). Three independent videos were
obtained, one for each wavelength. Results were promising, but hampered by poor camera
SNR at longer wavelengths and motion artefacts due to independently acquired videos.

In 2007, Humphreys et al. expanded on this design [10]. Illumination and acquisition
were performed automatically via software triggers at a distance of 30 cm from the skin.
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The imaging device was able to capture distinct PPG-like signals, however the LED array
required high power to overcome the low camera sensitivity in the NIR spectrum (7.9%
and 15% at 760 nm and 850 nm respectively).

Though the number of papers published in PPGI literature has been growing, there
have been three primary gaps in the literature: (1) lack of spatiotemporal pulsatility
analysis; (2) lack of physiologically-motivated hemodynamic image processing extraction
methods; (3) lack of biomedical applications. These challenges are discussed further in the
subsequent sections, and are the primary motivating challenges for this thesis.

2.4.1 Spatiotemporal Pulsatility Analysis

A primary advantage of PPGI systems over contact-based sensors is widefield tissue mon-
itoring. Modeling each pixel as a “virtual sensor”, a 1 megapixel camera can effectively
capture signals from 1 million virtual sensors across a tissue region, enabling new insights
into cardiovascular health and spatial perfusion. For example, pulse transit time between
central and distal arterial locations can provide a proxy metric that correlates to systemic
blood pressure [33, 34, 35], and perfusion inhomogeneities can provide insight into tissue
health and healing [5,36,37]. Widefield imaging analysis can provide preclinical and clinical
insight that supports early abnormality detection for proactive and preventive healthcare
intervention. However, this type of biomedical analysis has not been extensively explored in
PPGI literature. Many studies have focused on extracting aggregate statistics (e.g., heart
rate, heart rate variability) or a single blood pulse waveform from the scene [38]. This
type of analysis assumes no variance in the pulsatile signals across the tissue region, and
therefore may miss crucial perfusion information. Spatial pulsatility assessment has great
potential to provide novel physiological insight into tissue perfusion and hemodynamic
variability.

Furthermore, many existing studies perform signal analysis in the frequency domain
via Fourier decomposition. This type of analysis assumes the hemodynamic signal is a pe-
riodic one, when in fact this is not the case. Although assuming the blood pulse waveform
is a periodic signal at the heart rate frequency is a good first order approximation of a
normal blood pulse waveform, this type of analysis is insensitive to heart rate variability
and various cardiac diseases. For example, cardiac arrhythmias such as premature atrial
and ventricular contractions, atrial fibrillation, and heart block result in temporal vari-
ances in the hemodynamic signal [39], which would be improperly modeled in a frequency
decomposition framework. Though cardiac disease detection is an important application
of PPGI systems, its ability to detect disease states has not been thoroughly investigated.
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2.4.2 Hemodynamic Signal Extraction

An active area of research seeks to develop methods for automatically extracting a hemo-
dynamic signal from a set of frames for automatic cardiac abnormality detection (e.g.,
cardiac arrhythmia). The fundamental challenges in this problem arise from the hetero-
geneous mixture of pixels in a scene, of which only a subset may undergo hemodynamic
pulsatility. For example, a frame may include background pixels (e.g., furniture, equip-
ment, etc.) and non-pulsatile anatomical regions (e.g., weakly vascularized areas, hair,
etc.). The problem then becomes a spatial distribution problem, where a spatial distribu-
tion must be estimated for assessing only relevant pixels.

The first reported methods performed bulk spatial averaging to assess heart rate [15,16,
17, 18, 19, 40]. These methods implicitly assume that the strength of pulsatility exhibited
by the relevant pixels will dominate the other “noisy” pixels. For example, the region
of interest identified by facial tracking algorithms can be used to identify the head and
subsequently bulk averaged [16, 40], which has been effective for evaluating heart rate
during exercise-induced motion [14]. However, this bulk averaging is suboptimal since
irrelevant pixels introduce spurious components into the final signal. To address this,
other methods have proposed extracting average pixel intensity across specific (relative)
spatial regions [41, 42, 43]. In these methods, homogeneous tissue regions were selected,
avoiding areas such as the eyes and nose. These are often found relative to the region of
interest identified by a facial tracking algorithm, which limit its applicability beyond facial
assessment.

Another set of methods have focused on selecting or weighting pixel values based on
their perceived signal strength [43, 44, 45, 46, 47]. These methods compute signal strength
weights for each pixel signal based on a formulated goodness metric, which are used in a
weighted-sum fashion to extract the blood pulse waveform. These methods have shown
significant improvement over naive averaging approaches, however these methods rely on
fundamental assumptions about illumination spectral composition, estimated heart rate,
and anatomical location. There is therefore a need for signal fusion methods that are void
of assumptions about illumination, heart rate, and anatomical location for use in various
PPGI systems. In fact, there have been very few studies that have analyzed anatomical
areas other than the face and hands. This may be due to ease of data collection, as many
data sets are captured in normal environments. However, a broader spatial field of view
may provide additional cardiovascular insights, such as pulse transit characteristics.
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2.4.3 Ambient Monitoring

Many studies employ the use of ambient illumination (e.g., sunlight, office lighting, etc.)
as the illumination source. This setup has unique problems as the lighting conditions are
completely uncontrolled. For example, if the scene is illuminated with daylight, changes in
cloud cover and sun exposure will affect the reflectance signal [17]. Movement also becomes
a problem since it cannot be assumed that the light source is coming from directly behind
the camera, leading to lighting variations within the scene. In a natural setting, there may
also be other individuals that occlude light sources in their walking path.

Though a number of studies have demonstrated non-contact heart rate estimation using
ambient light [15,16,17,18,19,43,48], it is unclear whether these methods can be extended
beyond the study’s setup and applied broadly for any ambient light source. For example,
there are a vast collection of illumination types which exhibit highly varying spectral
emission curves. A light that may appear white to the human eye may in fact be composed
of only a few dominant wavelengths. Thus, certain ambient illuminants may be insufficient
for penetrating the vasculature.

Ambient illumination PPGI studies have generally made use of the RGB camera chan-
nels for pulsatility detection in three ways. Some studies have modeled each colour channel
as having different light-tissue interaction properties [19, 45, 46]. For example, blue light
has very shallow penetration in skin, and can therefore be used to model environmen-
tal noise (e.g., illumination fluctuation or skin movement) [12]. Other studies have taken
a purely signal processing approach, without much biomedical optics motivation. Many
methods have used signal decomposition methods, such as independent component analysis
(ICA) [16,38,40,41]. These methods were modeled with the assumption that the observed
signals (e.g., colour channels) are comprised of a combination of underlying structured sig-
nals (e.g., hemodynamic pulsatility, movement, camera noise, etc.). The goal is therefore
to extract the structured hemodynamic signal from the noisy pixel signals. However, gen-
erally these methods require large sampling times for robust signal extraction, and clinical
applications have been lacking.

2.4.4 Summary

This chapter presented the requisite physiology, tissue optics, and literature background
for the remainder of the thesis. Methods presented throughout the thesis will be motivated
by these primary physiological hemodynamic mechanisms. Building on these background
materials, Chapter 3 will present the design of a hemodynamic imaging system for eval-
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uating spatial and temporal hemodynamic pulsatility. Data collected using this imaging
system will be used throughout the remainder of this thesis.
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Chapter 3

Coded Hemodynamic Imaging: A
Biophotonic System for
Spatiotemporal Hemodynamic
Pulsatility Assessment

3.1 Introduction

This chapter presents a novel photoplethysmographic imaging system, coded hemodynamic
imaging (CHI), for spatiotemporal hemodynamic pulsatile blood flow assessment. This bio-
photonic system was designed to use tissue-penetrating optics for assessing hemodynamic
pulsatility across a large tissue region. A primary challenge of non-contact widefield moni-
toring systems is ambient illumination corruption. Optical models are developed assuming
specific light-tissue interaction properties, which is infeasible for uncontrolled ambient il-
lumination (hence “coded” imaging).

This chapter is organized as follows. Chapter 3.2 presents an optical model for extract-
ing spatiotemporal hemodynamic signals. Chapter 3.3 discusses the selected illumination
spectrum based on theoretical tissue optical properties. Chapter 3.4 presents an image
and signal processing framework for extracting clean pulsatile waveforms from noisy mea-
surement conditions. Chapter 3.5 presents signal assessment metric used throughout this
thesis. Chapter 3.6 presents the design and development of the physical instrumentation
for collecting hemodynamic imaging data using the theoretical model to guide the design.
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3.2 Optical Model

We used a modified temporal Beer-Lambert light attenuation model to characterize light-
tissue interaction dynamics. This model is suitable for meso/macroscopic, real-time detec-
tion and analysis. The presented model does not require assumptions about detailed tissue
optical properties, and thus is theoretically robust to different tissue compositions.

Fundamentally, the Beer-Lambert model relates light output based on the attenuation
of light input by the medium’s light-absorbing capacity. Light undergoes absorption events
according to the chromophores’ molar extinction coefficients, concentration, and photon
path length. This model follows an inverse exponential decay [26]:

ϕ(λ) = ϕ0e
−µa(λ)l (3.1)

where ϕ(λ) is the radiated illumination at wavelength λ from the tissue surface, ϕ0 is
the incident illumination on the tissue surface, ε [mm]−1(mol/L)−1] is the tabulated molar
extinction coefficient, c [mol/L] is the chromophore concentration, and l [cm] is the photon
path length through the chromophore concentration. The absorption coefficient, µa =
ln 10εc, is often used to differentiate the effects of chromophore absorption and photon
migration. Henceforth, the wavelength term λ will be omitted for notational convenience,
but will be specifically addressed later.

This model is insufficient for highly scattering media such as skin [28], since it attributes
light attenuation solely to absorption. Thus, a constant loss factor G is often added to
model loss due to scatter [26,49]:

ϕ = ϕ0e
−εcl = ϕ0e

−(µal+G) (3.2)

This is a unitless measure that describes the ratio of illumination output to input. When
imaging human tissue, this general model must be adapted to the constituent chromophores
(a molecule’s atomic group that is responsible for spectral absorption). The major chro-
mophores in the visible-near infrared region are oxyhemoglobin, deoxyhemoglobin, and
melanin [28]. Thus, photon attenuation results from the combination of the individual
chromophores:

ϕ = ϕ0 exp
(
− (µa,HbO2lHbO2︸ ︷︷ ︸

oxyhemoglobin

+ µa,HblHb︸ ︷︷ ︸
deoxyhemoglobin

+µa,mellmel︸ ︷︷ ︸
melanin

+ G︸︷︷︸
scatter loss

)
)

(3.3)

Conceptually, the blood pulse waveform signal is a temporal signal describing the tem-
poral fluctuations resulting from transit local changes in blood volume. We are therefore
primarily concerned with the temporal relationship of light intensity:

ϕ(t) = ϕ0 exp
(
− (µa,HbO2lHbO2(t) + µa,HblHb + µa,mellmel) +G)

)
(3.4)
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Notice that the only component in this model that changes with time is the photon path
length through oxyhemoglobin. When the blood volume ejected from cardiac contraction
arrives at a certain localized region, the tissue expands from arterial expansion, resulting
increased path length of oxygenated hemoglobin [8]. The contributions of deoxyhemoglobin
from the veins and tissue, melanin, and scatter loss are temporally invariant, and are
therefore independent of time. This is illustrated in Figure 2.5. When considering temporal
hemodynamics, these factors cancel out to yield an oxyhemoglobin-dominated signal:

ϕ(t)

ϕ(t+ ∆t)
=

exp
(
− (µa,HbO2lHbO2(t) + µa,HblHb + µa,mellmel +G)

exp
(
− (µa,HbO2lHbO2(t+ ∆t) + µa,HblHb + µa,mellmel +G)

(3.5)

ϕ(t)

ϕ(t+ ∆t)
= exp

(
− (µa,HbO2lHbO2(t) + µa,HblHb + µa,mellmel +G) (3.6)

+ (µa,HbO2lHbO2(t+ ∆t) + µa,HblHb + µa,mellmel +G)
)

(3.7)

ϕ(t)

ϕ(t+ ∆t)
= exp

(
− µa,HbO2(lHbO2(t)− lHbO2(t+ ∆t))

)
(3.8)

The blood pulse waveform signal is in fact the temporal changes in absorbance, which can
be computed from this relationship to quantify the blood pulse waveform signal:

a(t) = − log

(
ϕ(t)

ϕ0

)
(3.9)

Thus, during imaging, by measuring the radiant output ϕ(t), the blood pulse waveform can
be extracted by computing the absorbance, which has been shown to model the change in
path length through oxyhemoglobin. Local hemodynamics can be quantified and analysed
from this blood pulse waveform. As we’ll see later, this method will be used on a region-
by-region basis, effectively quantifying a spatial distribution of blood pulse waveforms
a(x, y, t).

3.3 Illumination Selection

Illumination spectrum selection plays an important role in photon migration and thus
imaging signal. For the purpose of this thesis, the discussion will be constrained to wave-
lengths to which silicon-based sensors are sensitive (typically 400–1000 nm). In the context
of hemodynamic imaging, the optimal light-tissue interaction processes would be invari-
ant to epidermis, would be strongly absorbed by oxyhemoglobin, and would exhibit deep
penetration depth.
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Epidermis contains a primary skin chromophore, melanin, which is responsible for per-
ceived skin tone. It is highly absorbing in the blue spectrum, and has a dramatic non-linear
decrease in absorbing strength with larger wavelengths. For example, melanin’s extinction
coefficient exhibits an 89% reduction at 820 nm compared to 407 nm [25]. Figure 2.2 shows
the extinction coefficient of the primary chromophores found in skin, including melanin.
Note how melanin’s absorption properties decrease with larger wavelengths. Therefore, red
and infrared wavelengths are preferred for reduced melanin absorption.

Strong hemoglobin absorption is important for extracting a reliable hemodynamic sig-
nal. Transient local changes in blood volume arising from vessel expansion are small. In
the best case, major arteries often expand on the order of micrometres or low-millimetres.
Hemodynamic changes are even further reduced in smaller arteries and arterioles [50].
However, this absorption strength must also be balanced with penetration depth and pho-
ton path length. Figure 2.2b demonstrates this trade-off. For example, green light at
550 nm undergoes high hemoglobin absorption, however the order of magnitude is too
strong for adequate penetration into deep vasculature. In the case where µa ≈ 0.5 mm−1,
or equivalently a 2 mm mean free path, which is too small for multi-millimetre or cen-
timetre penetration. Thus, near infrared wavelengths beyond the 805 nm isosbestic point
(i.e., spectral cross-over) may be preferable, since they exhibit relatively strong oxyhe-
moglobin absorption with mean free paths in the centimetre range, and deeper penetration
depth. This range exhibits desirable scattering-absorption properties, in which the ratio
µ′s/µa > 30 in the range of 800–1000 nm [31], where µ′s [mm]−1 is the reduced scattering
coefficient describing the inverse mean free scatter path.

In practice, this spectral selection can be implemented in a number of different ways.
Broadband illumination sources (e.g., tungsten-halogen bulb) can be used in conjunction
with suitable optical filters for selecting desired spectral ranges. This offers the benefit of
selecting different spectra using a single illumination source. However, these methods are
generally power inefficient, since a large portion of the broadband source is being filtered
out, and broadband incandescent sources lose a large amount of energy to heat. Another
solution is the use of lasers. Lasers are coherent light sources that emit photons in a
very narrow spectral band. However, depending on the type of laser, they may be cost
prohibitive, bulky, and may pose issues with eye safety. Furthermore, the random speckle
nature of laser projection may cause problems when extracting subtle blood pulse waveform
signals. A solution to these problems is the use of light emitting diodes (LEDs). LEDs are
incoherent light sources that emit relatively narrow spectral bandwidth, typically full-width
half-max of 10 nm. Recent advances in LED technology have demonstrated improvements
in radiant power, stability, and cost efficiency. Optical filters may be used to further narrow
the spectral range of the emitted light. Their projection beam can be easily formed using
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optical components. Their small size makes them particularly useful for an embedded
portable imaging system.

3.4 Signal Processing

3.4.1 Problem Formulation

The signal captured using the given optical model may be affected by various sources of
noise. This section presents a signal processing pipeline for extracting a stable pulsatile
PPGI signal. First, a denoising step was developed to reduce the noise based on camera
and process characteristics. Second, a detrending step is proposed, which removes trends
in intensity due to external factors such as movement.

The subsequent signal processing methods are performed at each extracted hemody-
namic signal zl. This signal is the absorbance signal extracted using the optical model
presented in Chapter 3.2. This signal can be modeled as a discretization of the temporal
light intensity fluctuations:

zl =
∞∑

k=−∞

al(t)δ(t− kT ) (3.10)

where al(t) is the continuous absorbance signal at tissue location l, T is the sampling
period, and δ(n) is the Dirac delta function:

δ(n) =

{
1 if n = 0,

0 if n 6= 0
(3.11)

Henceforth, the location descriptor l will be omitted for notational convenience. Thus, z
should be interpreted as zl (i.e., the signal extracted at tissue location l).

In the subsequent sections, signals are analyzed in both the temporal and frequency
domains, and thus the frequency domain formulation is presented here. Given an arbitrary
signal z, the zero-DC frequency domain representation was computed using the Fourier
transform:

Zf =
N−1∑
n=0

z∗n · e−2πifn/N (3.12)

where z∗(t) = z(t) − 1
T

∫ T
0
z(t)dt is the zero-DC signal. Here, Zf are the complex-valued

Fourier transform frequency coefficients for the temporal signal z∗. In order to compute
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spectral properties, the normalized zero-DC spectral power distribution was computed:

Γf (z) =
|Zf |2∑
k |Zk|2

∈ [0, 1] (3.13)

This normalized spectral power (i.e.,
∑

f Γf (z) = 1) was used to model the relative AC
pulsatile amplitude in the unit-less blood pulse waveforms.

3.4.2 Denoising

The subtle blood pulse waveform may be corrupted by measurement noise (e.g., camera
sensor noise), of which the magnitude can often dominate the small hemodynamically-
induced light fluctuations. However, the true noise-free blood pulse waveform signal is often
quasi-periodic, resulting in a small set of dominant frequency components. Figure 3.1 shows
illustrative motivation of a typical power spectral density of a clean blood pulse waveform
acquired from the finger. The spectral energy is compact, and is primarily composed
of two harmonic frequencies. This demonstrates the quasi-periodic nature of the blood
pulse waveform, and can be used as prior physiological information for designing a filtering
system.

Leveraging this physiological knowledge, a frequency domain filtering method seems
particularly well-suited for this application. Specifically, let Γf (z) be the zero-DC spectral
power distribution of signal z at tissue location l from Equation 3.13. This signal is modeled
as an additive noise model, consisting of the blood pulse waveform signal and noise:

z = zh + zn (3.14)

where zh and zn are the hemodynamic and noise signal, respectively. This noise model
is further decomposed into two types of observed noise: measurement noise, and process
noise:

z = zh︸︷︷︸
pulse signal

+ (zm + zp)︸ ︷︷ ︸
noise

(3.15)

where zm and zp are the measurement and process noise, respectively. Of course, zh is un-
known, and must be estimated from the measured z signal. For this problem, measurement
and process noise models are proposed below.

25



Measurement Noise Model

As discussed above, hemodynamic waveforms are quasi-periodic signals, consisting of a
small set of frequencies which are primarily focussed around second and third harmonics
of the fundamental heart rate frequency. Thus, measurement noise was modeled as sig-
nal mixtures whose frequency components were outside of the set of physiologically valid
signals. A frequency bandpass filtering method can be effectively employed to isolate the
blood pulse waveform from the measurement noise. The denoised signal, in frequency
domain, was computed as:

Γ∗f (z) = Γf (z)h(f) (3.16)

where

h(f) =

{
1, if f > f0 and f < (κ+ 1)f1

0, otherwise
(3.17)

where f0 is the lowest physiologically valid frequency, f1 is the fundamental frequency rep-
resenting heart rate, and κ is the fundamental frequency harmonic coefficient. A common
choice is κ = 1, signifying one primary harmonic. f0 and f1 are chosen to represent extreme
bradycardia (30 bpm) and tachycardia (200 bpm). The processed hemodynamic signal can
then be reconstructed through an inverse Fourier transform:

ẑh+p =
1

N

N−1∑
f=0

Γ∗f (z) · e2πifn/N (3.18)

where ẑh+p = z − zm = zh + zp is the signal still corrupted with process noise zp.

It should be noted that low frequency signal components may contain physiological
information (e.g., respiratory information, blood pressure variations, Mayer waves, etc.).
However, in this model, we seek to quantify the fundamental spatiotemporal hemody-
namics, and thus treat these systemic contributions as “noise”. Future work can seek to
quantify these low frequency variations as separate signals rather than noise.

Process Noise Model

Fluctuations in lighting and measurement or process noise should be corrected using the
measurement noise model. However, these corrections assume constant incident illumina-
tion, which is an invalid assumption during movement. The goal of this detrending step is
to remove slow oscillations in the signal, yielding a stable hemodynamic signal. Movements
were assumed to be relatively smooth over time (e.g., breathing, swaying). A detrending
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algorithm was used on the denoised absorbance signal, in which the model assumes a
smoothness prior [51]. In particular, the observed signal is modeled as a composition of a
corrupted true signal:

zh+p = zh + zp (3.19)

where zh is the “true” hemodynamic signal and zp is a temporal trend. Given that zh+p is
measured, zh can be solved by estimating zp assuming a linear model, subtracting it from
zh+p. Specifically, the trend was modeled using a linear model:

zp = Hθ + e (3.20)

where H is the observation matrix, θ is the model parameters, and e is model error. The
columns of H are the basis functions that are fit to the data. To avoid basis function bias,
H was constructed as a set of Kronecker delta functions which are later regularized using
a smoothing prior:

Hij = δti,tj (3.21)

where δi,j is the Kronecker delta function:

δi,j =

{
1 if i = j,

0 if i 6= j
(3.22)

The optimal θ was found using a regularized least squares formulation with a smooth-
ness prior:

θ̂ = arg min
θ

||Hθ − zh+p||2︸ ︷︷ ︸
fit

+η ||D(Hθ)||2︸ ︷︷ ︸
smoothness

 (3.23)

where D is a smoothness matrix and η is a regularization weighting parameter. We used
the discrete approximation matrix of the second derivative for matrix D to model the signal
smoothness. This is solved by taking the derivative with respect to the tuning parameters
and setting it to 0:

1

2

∂

∂θ

(
||Hθ − zh+p||2 + η||D(Hθ)||2

)
= 0 (3.24)

(H)T (Hθ − zh+p) + η(DH)T (D(Hθ)) = 0 (3.25)

Factoring and rearranging yields:

θ̂ = (HTH + η2HTDTDH)−1HT zh+p (3.26)
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Figure 3.1: Quasi-periodic nature of a typical blood pulse waveform signal measured from
the finger. The periodicity and dicrotic characteristics of the waveform result in predomi-
nantly harmonic frequencies in the power spectral density.

Figure 3.2: Example of the process noise removal process. A nonlinear trend was estimated
in the original signal and subsequently removed, resulting in a stable signal.

The trend component of the signal can thus be reconstructed by substituting into Equa-
tion 3.20:

ẑp = Hθ̂ (3.27)

Solving for zh in Equation 3.19 yields our final hemodynamic signal estimate:

zh = zh+p − ẑp = (I − (HTH + η2HTDTDH)−1HT )zh+p (3.28)

Figure 3.2 shows the recovery of a stable signal from a signal corrupted by movement
using this detrending method. The trend is invariant to localized absorbance fluctuations
from changes in blood volume, which makes up the true signal. It follows the general trend
of the curve, and subtracts it from the measured signal, yielding a stable signal.
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3.5 Spatial Pulsatility Analysis

Once the waveforms have been extracted, signal fidelity metrics must be used to assess the
presence (and strength) of pulsatility at each location. Some locations may not exhibit
pulsatility (e.g., hair, non-pulsatile tissue).

3.5.1 Supervised Signal Strength Metrics

Spectral signal-to-noise ratio (SNR) was used to quantify the frequency domain signal
strength. The spectral magnitude of a reference signal (e.g., finger PPG) is regarded as
the ground-truth frequency compositions. Due to the quasi-periodic nature of the blood
pulse waveform, these waveforms often consist of a small set of frequencies with harmonics.
Mathematically:

SNR(ẑ, z) = 10 log10

( ∑
f (Γf (z))2∑

f (Γf (z)− Γf (ẑ))2

)
(3.29)

where f represents frequency index.

Pearson’s linear correlation coefficient was used to quantify the temporal domain signal
strength. Mathematically, given two signals z and ẑ (e.g., true and estimated blood pulse
waveform signals), the correlation coefficient was computed as:

r(ẑ, z) =
σẑ,z
σẑσz

∈ [−1, 1] (3.30)

where σẑ,z is the covariance:

σẑ,z =
1

N − 1

N∑
i=1

(ẑi − ¯̂z)(zi − z̄) (3.31)

and σx, σy are the standard deviations of the respective signals:

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (3.32)

Note that although this formulation is analogous to the correlation coefficient used in
regression, its underlying meaning here is different. Given two signals, r computes the
matching strength of the two signals ignoring bias (offset) and dynamic range, which is
particularly suitable for unitless absorbance measurements.
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In some cases, the extracted and ground-truth signal may exhibit relative timing dif-
ferences. For example, pulses will arrive at the next (extraction site) sooner than at the
finger (ground-truth measurement site). In these situations, the success metric must ac-
count for relative temporal differences. The strength was computed using the maximum
cross-correlation between the extracted signal ẑ and the ground-truth signal z from the
finger photoplethysmography cuff:

rx(ẑ, z) = max
∆t

{
σztẑt+∆t

σztσẑt+∆t

}
(3.33)

where σztẑt+∆t
is the covariance between the true and (shifted) extracted signal, and

σzt , σẑt+∆t
are the standard deviations of the true and (shifted) extracted signal respec-

tively.

3.5.2 Unsupervised Signal Strength Metrics

Ideally, signal strength should be a function of the SNR of the estimated temporal signal,
since this provides information about the signal fidelity. However, SNR computation re-
quires knowing the true signal, which is unknown in some environments. A proxy metric for
estimating SNR should thus be computed using prior knowledge of blood pulse waveform
characteristics.

The primary physiological characteristic that was considered was the spectral distribu-
tion of strong hemodynamic signals. As was observed in Chapter 3.4, strong hemodynamic
signals are comprised of a small set of frequencies, consisting primarily of the fundamental
heart rate frequency and its harmonics. Thus, it can be hypothesized that non-pulsatile
or weak signals are comprised of a larger set of frequencies. The signal strength metric
should therefore quantify the compactness of the spectral distribution. Spectral entropy is
well-suited for this problem. More generally speaking, entropy is a measure of randomness,
or unpredictability. Systems that are characterized by large amount of randomness have
high entropy. Entropy of a discrete probability distribution p is computed as:

H(p) = −
N−1∑
k=0

pk · log pk (3.34)

where p is a probability distribution with N bins. Since this problem considers the set
of signal frequencies, the normalized power spectral distribution can be modeled as the
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distribution under investigation, giving rise to spectral entropy. Then, given an extracted
signal z, normalized spectral entropy (H∗) was computed as:

H∗(ẑ) =
−
∑N−1

k=0 Γk(ẑ) · log Γk(ẑ))

logN
∈ [0, 1] (3.35)

where Γ(ẑ) is the normalized spectral power for signal ẑ according to Equation (3.13).
Values closer to 0 signify a more compact power spectral distribution, and are thus con-
sidered stronger signals. The logN normalization is derived by considering the theoretical
maximum entropy value for a signal of length N , which arises from the uniform spectral
distribution of a completely random signal of length N :

Hmax(p) = −
N−1∑
k=0

1

N
· log

(
1

N

)
(3.36)

= − log

(
1

N

)
(3.37)

= − log
(
N−1

)
(3.38)

= logN (3.39)

3.6 Physical System

Based on the theoretical design presented above, a custom imaging system was designed
and developed for collecting biophotonic hemodynamic data.

3.6.1 Design Rationale

The system was designed to maximize its portability and ability to evaluate various optical
components easily. Figure 3.3 shows the system with all integrated components. It was
designed with a solid chassis, incorporating a 1/4”-20 screw mount in the base for tripod
mounting. Its modular design was divided into two primary components: the primary
housing and the front optical housing unit. The front optical unit allowed up to eight
individual illumination 1” optical components which were in the same plane as the camera
lens (middle). This co-planar surface enabled parallel illumination projection, and the dif-
ferent illumination ports increased flexibility of illumination angle relative to the anatomy
under consideration. The primary housing unit comprised the camera and mounting areas
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Figure 3.3: 3D design and physical coded hemodynamic imaging system. The system
houses the required optical components, electronic circuit boards, camera, and illumination
system in a portable unit.

for electronic synchronization circuits. These units were attached using four corner rods,
inspired by optical cage systems. The chassis was 3D printed using ABS plastic, which
exhibited a good trade-off between durability and weight.

3.6.2 Instrumentation

A monochromatic camera with NIR sensitivity (Point Grey GS3-U3-41C6NIR) was selected
to enable NIR illumination and sensing for increased depth of penetration. To capture
deep tissue penetration using NIR wavelengths, and to minimize the effects of visible
environmental illumination, an 800–1000 nm optical bandpass filter was mounted in front
of the camera lens. Two illumination sources could be selected: high-powered light emitting
diodes (LEDs) or incandescent broadband light sources, such as a tungsten-halogen light
source. A 16 mm lens was used at a distance of 1.5 m, providing 0.5 mm/pix spatial
resolution across a 1 m × 1 m field of view.

A high-powered NIR LED (850 nm center wavelength, 720 mW optical power) was
chosen for deep tissue penetration. Figure 3.4 shows the LED relative spectral power
curve, demonstrating the peak wavelength of 850 nm and spectral bandwidth of 18 nm.
Light at this wavelength is situated on the oxyhemoglobin absorption side of the isosbestic
point (see Figure 2.2), which was important since arterial pulsations are the transfer of
oxygenated hemoglobin to target tissue beds. The LED radiant output was held stable
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Figure 3.4: Relative spectral power of the high-power LED used in this thesis. The LED
exhibited a peak wavelength of 850 nm with a full-width half maximum of 18 nm. From [52].

using a constant current driver (LM3414, Texas Instruments). Figure 3.5 demonstrates
a stable LED output over time, yielding a variation of σ = 0.07 pixel intensity over 8-
bit frames. LEDs allowed for relatively narrow spectral emission in a small form factor,
whereas tungsten-halogen sources enabled very wide area illumination. In both cases,
uniform spatial illumination coding was important for large area tissue monitoring. This
“spatial code” was achieved through custom microlens array optics for the LEDs, and a 16”
glass fabric diffuser for the tungsten-halogen source. In the scope of this thesis, data were
collected at 60 fps with 16 ms exposure time. This frame rate provides sufficient sampling
density across physiologically realistic heart rates, including bradycardia and tachycardia.
For example, at the 60 fps sampling rate, heart rates of 40 bpm (bradycardia) and 150 bpm
(tachycardia) would result in 85 and 18 sampled data points along the pulse respectively.
Additionally, a typical 150 ms systolic climb results in 9 sampled data points, which is
sufficient for reconstructing the waveform.

During experiments, the ground-truth blood pulse waveform was recorded using a finger
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Figure 3.5: Plot demonstrating LED stability over time. Using a constant current driver,
the LED radiant output is held stable (σ = 0.07 pix), thus providing stable incident
illumination.
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Figure 3.6: Camera quantum efficiency curve, showing strong near-infrared sensitivity,
which enables deeper tissue penetration than visible light cameras. From [53].

photoplethysmography sensor. The output of this sensor was transmitted to the computer
synchronously with the video data, enabling time-synchronized analysis of observed pul-
satility.

3.7 Summary

This chapter presented the theoretical and practical elements for developing a novel wide-
field computational biophotonic imaging system for spatiotemporal blood pulsatility anal-
ysis. The system design is theoretically grounded in a temporal Beer-Lambert light atten-
uation optical model for assessing local pulsatility across the camera’s field of view. The
system operates in the near infrared spectrum, which exhibits deeper tissue penetration
than visible wavelengths, and has desirable hemoglobin absorption properties in addition
to weak melanin absorption. A biomedical signal processing pipeline removes measurement
and process noise, resulting in a stable robust blood pulse waveform signal. Supervised
and unsupervised signal strength metrics were formulated, which will be used throughout
the thesis for evaluating signal strength. Finally, the instrumentation used in practice was
presented, which was used to collect the data presented in Chapter 4 and Chapter 5.
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Chapter 4

Automatic Blood Pulse Waveform
Extraction

4.1 Introduction

Automatic hemodynamic signal extraction is important for enabling cardiovascular assess-
ment similar to that of photoplethysmography, which is widely used and adopted clini-
cally [7]. The imaging system presented in Chapter 3 produces a set of frames where each
pixel acts as a virtual hemodynamic sensor. However, these widefield frames consist of
heterogeneous mixture of pixels (e.g., skin, hair, background, clothing, etc.). Locations
on the body that contain pulsatile flow are not readily apparent. Identifying pixels repre-
senting the skin does not guarantee pulsatile blood flow, as some areas may be minimally
vascularized, or may not contain pulsatile vessels. In fact, the pulsatile nature of the blood
pulse waveform is not fully understood [27,54]. Thus, automatic signal extraction methods
require careful design for obtaining clean signals.

Existing methods for automatic signal extraction broadly rely on a combination of spa-
tial and spectral information. The RGB components in cameras with Bayer filters have
been leveraged to identify the blood pulse waveform using independent component anal-
ysis [16, 41], Beer-Lambert modeling [19], and skin composition modeling [46]. However,
these methods rely on measuring multispectral reflectance values such as RGB, which may
not be appropriate in low-light settings such as sleep monitoring. Furthermore, the tissue
penetration depth of incident illumination is wavelength- and tissue-dependent [20]. To
solve this problem, some methods rely only on a single wavelength (or colour channel) to
extract the signal through spatial analysis [13, 14, 43]. Regardless of the spectrum chosen,
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existing methods average the pixel intensities over chosen areas, such as the facial bound-
ing box [14, 16, 19], predefined facial areas [41, 55], and facial segmentation [43]. Methods
relying on facial tracking may fail due to varying lighting conditions, different face-camera
perspectives, or from various facial features. Some studies have recognized the importance
of extending PPGI beyond heart rate analysis by analyzing heart rate variability as an indi-
cator for cardiac function [16,41,55,56], however these studies use pre-defined areas based
on facial landmarks for extracting the blood pulse waveform, which may not generalize
well to new systems or environmental settings (e.g., other anatomies, non-colour imaging
systems, etc.). Some studies have focused on automatic region of interest (ROI) selection
which identifies skin pixels for analysis for more robust signal extraction [16, 57, 58, 59].
However these methods rely on RGB colour information for computing ICA [16], chro-
maticity derivatives [57], and chrominance-based skin model [58, 59]. Furthermore, each
pixel in the ROI are weighted the same, which may be inconsistent with the underly-
ing physiology. Motivated by the increased performance from automatic region selection,
there is a need for pulsatility identification that can be applied in settings where colour
information is not available, such as low light settings (e.g., sleep studies).

Here, we present a spectral-spatial fusion method for extracting a blood pulse waveform
from a set of frames from an arbitrary scene. Our goal was to extract signals that exhib-
ited both spectral and temporal fidelity, to enable both spectral and temporal analysis.
Using physiologically derived a priori spectral and spatial information related to blood
pulse waveforms, our method learns which regions contain the strongest pulsatility based
on their physiological relevance rather than their anatomical location, which enables signal
extraction across different body types. Results across a 24-participant study show that the
proposed method generated signals that exhibited significantly stronger temporal correla-
tion and spectral entropy compared to existing methods. The framework was presented
as a general framework that can be used to augment existing or new PPGI systems for
assessing pulsatility in arbitrary anatomical locations.

4.2 Spectral-Spatial Fusion Model

The goal of the spectral-spatial fusion model was to extract a clean temporal blood pulse
waveform signal from a scene. By emphasizing temporal fidelity, not only can summary
metrics such as heart rate be computed, but important temporal fluctuations such as car-
diac arrhythmias can be assessed. The scene is assumed to contain an unknown mixture
of relevant regions (i.e., skin areas which exhibit pulsatility), and irrelevant regions (e.g.,
background, clothing, non-pulsatile skin regions, etc.). Given this mixture of regions (in-
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Figure 4.1: Processing pipeline of the proposed spectral-spatial signal extraction method.
Acquired frames were converted from reflectance to absorbance and detrended. Spectral-
spatial probabilistic prior maps were computed and used to model the posterior distribu-
tion representing the pulsatility model. Bayesian least-squares optimization was used to
generate the blood pulse waveform signal.

put), the system must discover a temporal PPGI signal (output). Figure 4.1 provides a
graphical overview of the system. Details are provided below.

4.2.1 Problem Formulation

Let z be the (unknown) true blood pulse waveform. Let X = {xi | 1 ≤ i ≤ n} be a set of
absorbance signals, where:

xi =
∞∑

k=−∞

ai(t)δ(t− kT ) (4.1)

where ai(t) is the absorption signal extracted from region l, δ is the Dirac delta function
from Equation 3.17, and T is the sampling period. Here, following the Beer-Lambert law,
absorbance xi(t) was calculated according to the signal processing framework presented in
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Chapter 3.4. Given the set of measurements X, which is a mixture of signals from a scene
that are both relevant (e.g., skin) and irrelevant (e.g., background, clothing, hair), the goal
is to estimate the “true” blood pulse signal using an intelligently weighted subset of regions
that contain pulsatility. This inverse problem can be formulated as a Bayesian problem,
where prior physiology knowledge can be injected into the model to educate assumptions
about the state (specific priors will be discussed in the following section). Mathematically,
it can be solved using the Bayesian least squares formulation [60]:

ẑ = arg min
ẑ

{
E
[
(ẑ − z)T (ẑ − z) | X

]}
(4.2)

= arg min
ẑ

∫
(ẑ − z)T (ẑ − z)p(z|X)dz (4.3)

where p(z|X) is the posterior distribution of state signal z given the measurements X. The
optimal solution is found by setting ∂/∂ẑ = 0:

∂

∂ẑ

∫
(ẑ − z)T (ẑ − z)p(z|X)dz = 0 (4.4)

Simplifying:

2

∫
(ẑ − z)p(z|X)dz = 0 (4.5)∫

ẑp(z|X)dz −
∫
zp(z|X)dz = 0 (4.6)

ẑ =

∫
zp(z|X)dz (4.7)

Thus, to solve this equation, the unknown posterior distribution p(z|X) must be modeled.
This distribution represents the probability that a state signal z represents the true blood
pulse waveform given the observed temporal signals X. The posterior distribution can be
modeled as a novel probabilistic pulsatility model, which we approximated using a discrete
weighted histogram of the observed states [61]:

p̂(z|X) =

∑|X|
i=1Wiδ(|z − xi|)

Y
(4.8)

where Y is a normalization term such that
∑

k p̂(zk|X) = 1. The problem then becomes
computing the probabilistic prior Wi for each observed signal xi to determine how well
it represents the true blood pulse waveform. The following subsections propose a solu-
tion using a spectral-spatial model motivated by blood pulse waveform characteristics and
vascular physiology.
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4.2.2 Probabilistic Pulsatility Model

Ideally, p(z|X) should be a function of the SNR of the estimated temporal signal, since this
provides information about the signal fidelity. However, SNR requires knowing the true
signal, which is unknown at the time of acquisition. A proxy metric for estimating SNR
should thus be computed using prior knowledge of blood pulse waveform characteristics.
A spectral-spatial model is proposed based on the following two observations, which can
be leveraged as prior information in the Bayesian framework presented above:

• Spectral: Clean blood pulse waveforms are quasi-periodic, and are primarily com-
posed of a weighted sum of a small set of sinusoidal signals (see Chapter 3.4).

• Spatial: Non-homogeneous skin areas exhibit high variability due to anatomical
non-uniformity (e.g., boundary, skin fold, hair).

For motivation, refer back to Figure 3.1, which shows a typical power spectral density of
a clean blood pulse waveform. The spectral energy is compact, and is primarily composed
of two harmonic frequencies. This indicates the quasi-periodic nature of the blood pulse
waveform, and provides rationale for the spectral model.

In order to compute spectral properties, the normalized 0-DC spectral power distribu-
tion for spatial region i was computed using Equation 3.16, denoted Γ∗f (zi). The normalized
spectral power (i.e.,

∫
Γ∗f (zi)df = 1) was used to model the relative AC pulsatile amplitude

in the unit-less blood pulse waveforms.

The quasi-periodic blood pulse waveform is dominated by the fundamental frequency
corresponding to the heart rate and the first harmonic (see Fig. 3.1). To quantify this
property, the spectral power exhibited by the fundamental frequency and first harmonic
was computed:

hi =

∫ f∗+∆f

f∗−∆f

Γ∗f (zi)df +

∫ 2f∗+∆f

2f∗−∆f

Γ∗f (zi)df (4.9)

where f ∗ = arg maxf Γi(f), and ∆f is the spectral window’s half-width. We used ∆f =
0.2 Hz. hi was set to 0 for signals whose fundamental frequency was outside of the physi-
ologically realistic heart rate range. The final “harmonic prior” was computed as:

wharm
i = exp

(
−(1− hi)2

αh

)
(4.10)

where αh is a tuning parameter. An inverse exponential was used to emphasize small values
of (1− hi) (i.e., strong harmonic contributions).
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To quantify noise exhibited by the quasi-periodic waveform, the maximum spectral
power response outside of the fundamental heart rate range was found:

qi = max
f

{∫ f+∆f

f−∆f

Γ∗f (zi)df | f 6⊂ {f ∗, 2f ∗}
}

(4.11)

The final “noise prior” was computed as:

wnoise
i = exp

(
−q2

i

αq

)
(4.12)

where αq is a tuning parameter. An inverse exponential model was used to emphasize
small values of qi (i.e., low noise).

Local anatomical variations may corrupt any pulsatile signals exhibited by underlying
vessels (e.g., hair, skin fold, shadow ridge), or may not contain a pulsatile components at
all (e.g., clothing, naris, eyelid). In order to estimate the anatomical uniformity at a given
location, the image gradient was computed. In particular, given an image scene Λ whose
individual regions are xi, the “spatial prior” was computed as:

wspat
i = exp

(
−∇Λ2

αl

)
(4.13)

where ∇Λ is the gradient of image Λ. An inverse exponential model was used to emphasize
small values of ∇Λ (i.e., homogenous areas).

The individual priors for region i were combined to form the final region spectral-spatial
probabilistic prior:

Wi = min

{∏
k

wik | Ni

}
(4.14)

where wi = {wharm
i , wnoise

i , wspat
i }, and Ni is the neighborhood around region i. Here, a

regional first order statistic constraint was imposed on the priors in order to further enforce
spatial cohesion. Substituting this into Eq. (4.8) produces the estimate of the posterior
distribution p̂(z|X).

4.3 Experimental Results

4.3.1 Data Collection

Demographic information (age, height, weight, body fat %) was obtained at the beginning
of the study. Table 4.1 provides a summary of the sample demographics measured using
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Table 4.1: Sample demographics
Demographic Sample Representation
n (male/female) 24 (13/11)
age (years) 9 – 60 (28.7± 12.4)∗

mass (kg) 39.0 – 107.0 (72.0± 18.8)∗

height (cm) 135 – 193 (167.1± 13.1)∗

body fat (%) 10.5 – 42.3 (21.0± 7.9)∗

muscle (%) 31.0 – 53.9 (40.4± 5.3)∗

BMI (kg·m−2) 16.4 – 35.1 (25.5± 5.2)∗
∗µ± σ

bioelectrical impedance analysis. Data were collected across 24 participants of varying age
(9–60 years, (µ±σ) = 28.7±12.4) and body compositions (fat% 21.0±7.9, muscle% 40.4±
5.3, BMI 25.5±5.2 kg·m−2). Participants assumed a supine position throughout the study,
eliminating large motion variations. Data were collected using the hemodynamic imaging
system presented in Chapter 3 at a distance of 1.5 m. The frames were downsampled such
that each pixel represented 3 × 3 mm (6 × 6 pix) individual tissue regions. The ground
truth PPG waveform was synchronously recorded using a photoplethysmography finger
cuff [62].

We compared our method, henceforth called FusionPPG, with DistancePPG [43] and
“FaceMeanPPG”, where the face is tracked and the signal is extracted through framewise
spatial averaging. This method is commonly used in similar studies [14,16,41]. Many pulse
extraction methods rely on processing individual colour channels [16, 19, 41, 45], and were
therefore infeasible for this study (and infeasible in low-light settings, such as sleep stud-
ies). For our implementation of FaceMeanPPG, we spatially averaged the area identified
by Viola-Jones face tracker [16]. Though DistancePPG was evaluated using a green LED
in its original form [43], the methods generalize to any single-channel imaging system, and
thus could be used in this NIR monochrome setup. In its original implementation, Dis-
tancePPG requires estimating the true heart rate based on an averaging approach similar
to FaceMeanPPG [43]. To generate optimal results of the comparison algorithm, Dis-
tancePPG was provided with the ground-truth heart rate (rather than their estimation
method, which was found to fail in some cases). Since the participants exhibited mini-
mal movement, the frames were inherently temporally co-aligned, and thus tracking was
disabled for FaceMeanPPG and DistancePPG.

In order to evaluate and compare signal fidelity between methods, normalized spectral
entropy (H(ẑ), Equation 3.34)) and Pearson’s linear correlation coefficient (r(ẑ, y), Equa-
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tion 3.30) were computed for each extracted signal (see Chapter 3.5). To account for pulse
time differences between the neck/head and finger, the maximum forward-sliding cross-
correlation value within a short temporal window was used according to Equation 3.33.
Using these two signal metrics, two-sample t-test (MATLAB R2016b, Mathworks) was
used to test the null hypothesis that the signals extracted from FusionPPG and the
comparison methods come from samples with equal means.

The heart rate of a blood pulse waveform signal was computed in the temporal domain
using an autocorrelation scheme for increased temporal resolution [63]. Specifically, each
waveform was resampled at 200 Hz using cubic spline interpolation, and autocorrelation
peaks were detected and used to estimate heart rate:

ĤR = 60
Fs
∆t

(4.15)

where Fs is the sampling rate, and ∆t is the time shift yielding peak autocorrelation
response. Hyperparameter optimization was performed to find optimal tuning parameters
{αh, αq, αl} using a grid search method with the following performance metric:∑

k∈η Ẑk

1−
∑

k∈η Ẑk
(4.16)

where Ẑk is the kth Fourier coefficient of the estimated signal ẑ, and η is the set of coefficients
pertaining to the fundamental frequency and first harmonic of the ẑ. An exponential grid
search was performed over the space α ∈ [10−2, 10], which when substituted into the weight
term exp(−x2/α) effectively changes the width of the inverse exponential, representing the
space of hyperparameters from strong weight bias (small width) to weak weight bias (large
width). When choosing the optimal hyperparameters, signals exhibiting physiologically
unrealistic heart rates were excluded.

One participant’s data were removed due to erroneous ground-truth waveform readings.
The study was approved by a University of Waterloo Research Ethics committee and
performed in accordance with the Declaration of Helsinki.

4.3.2 Data Analysis

Figure 4.2 shows the signals extracted using the proposed fusion method compared to the
ground-truth finger waveform. The waveforms exhibited high temporal fidelity, and were
highly correlated to the ground-truth waveforms. Some participants exhibited temporally
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offset signals relative to the ground-truth PPG since the measured area (head) is closer
to the source (heart) than the PPG (finger). Furthermore, vascular resistance may be
affected by vasodilatory responses to ambient conditions such as temperature [64], thus
affecting the pulse arrival time. The foot of each blood pulse waveform can be observed,
signifying the precise time of the start of ventricular contraction. Signal extraction failed
on one participant due to high fat content (42.3%, Figure 4.2 row 9 column 2).

FusionPPG outperformed both comparison methods on the sample dataset. Figure 4.3
compares the box plot of the proposed and comparison methods using correlation (higher
is better) and normalized spectral entropy (lower is better). FusionPPG attained statis-
tically significantly higher correlation to the ground-truth waveform than FaceMeanPPG
(p < 0.001) and DistancePPG (p < 0.001), signifying signals with higher temporal fidelity.
FusionPPG also attained statistically significantly lower normalized spectral entropy than
FaceMeanPPG (p < 0.001) and DistancePPG (p < 0.001), signifying more compact fre-
quency components, consistent with the quasi-periodic nature of a true blood pulse wave-
form. DistancePPG attained higher correlation and lower entropy than FaceMeanPPG,
consistent with previous findings [43].

FusionPPG was able to precisely estimate heart rate from the extracted waveforms.
Figure 4.4 shows the correlation and Bland-Altman plots showing FusionPPG’s ability to
extract precise and accurate heart rate. The predicted heart rates were highly correlated
to the ground-truth heart rate (r2 = 0.9952), and were in tight agreement, with low mean
error (µ = −1.0 bpm) and low variance (σ = 0.70 bpm). The data were well represented
within two standard deviations from the mean. The outlier was omitted from this analysis
due to failed signal extraction.

Figure 4.5 compares the extracted waveforms from four participants using the three
methods to the ground-truth waveform. The strongest waveforms (i.e., highest correla-
tion) from DistancePPG, FaceMeanPPG, and FusionPPG were shown. An important
characteristic is the foot of the waveform, which signifies the pulse arrival time. This foot
was observed in each case, whereas it was not easily discernible in either DistancePPG or
FaceMeanPPG due to the effects of averaging, resulting perhaps in a strong fundamental
frequency which can predict heart rate, but is affected by spurious irrelevant frequencies
that corrupt the waveform shape.

Figure 4.5(d) shows a participant that experienced a cardiac arrhythmia. An irregu-
lar cardiac contraction was observed at t = 6 s, resulting in a delayed contraction. Such
cases cannot be easily observed using standard heart rate analysis in the frequency do-
main. However, the irregular heartbeat and delayed follow-up contraction was observed
in FusionPPG’s waveform, whereas it was not readily apparent in FaceMeanPPG or Dis-
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Figure 4.2: Signals extracted from all 23 participants using the proposed FusionPPG
method (black), plotted against to the ground-truth FingerPPG waveform (gray, dotted).
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Figure 4.3: Box plot comparison of the correlation (a) and normalized spectral entropy (b)
between the signals extracted using the proposed (FusionPPG) and the two comparison
(FaceMeanPPG, DistancePPG) methods. FusionPPG exhibited significantly higher corre-
lation and significantly lower spectral entropy (i.e., higher spectral compactness) compared
to FaceMeanPPG and DistancePPG. (∗∗∗statistically significant difference, p < 0.001)
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Figure 4.4: Correlation and Bland-Altman plots of the predicted heart rates using the
extracted blood pulse waveform signal. The predicted heart rates were highly correlated to
the ground-truth heart rate (r2 = 0.9952), and were in tight agreement (µ = −1.0 bpm, σ =
0.70 bpm). The outlier was omitted due to failed signal extraction.

tancePPG. This demonstrates the important of temporal signal fidelity to assess irregular
cardiac events that deviate from typical waveforms.

4.4 Discussion

In this study, the most pulsatile areas were often found in the neck region. Figure 4.6
shows a typical computed pulsatility distribution overlaid onto the original frame, showing
strong pulsing in the neck. The neck contains important vascular pathways, including the
carotid arteries, which are major vessels that are closely connected to the heart and are
close to the surface compared to other major arteries in the body. Pulsatile information
in the face is more subdued, since the small arteries and arterioles are found further down
the vascular tree. Thus, many existing methods that extract signals from the face may be
at a disadvantage, and miss the rich information present in the neck.

The extraction method failed on the participant who had the highest fat % of the
sample. Skin folds and thick tissue layers contributed to the inability to extract a signal
with any of the three methods evaluated in this study. Many existing studies do not
provide participant body composition, which is an important parameter when assessing
signal strength. In the future, a more comprehensive dataset may elucidate stratified
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Figure 4.5: Extracted waveforms from the proposed and comparison methods across four
participants. The selected waveforms were those that exhibited the strongest correlation
from DistancePPG (a), FaceMeanPPG (b), FusionPPG (c), and a participant with ar-
rhythmia (d). FusionPPG was able to extract strong waveforms across all participants,
enabling the visual assessment of a cardiac arrhythmia (at t = 6 s).
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Figure 4.6: Typical pulsatility distribution based on spectral-spatial fusion. An original
frame (a) is used to compute and overlay the probabilistic pulsatility distribution (b). The
strongest pulsing was often observed in the neck region, contributing strongly to the blood
pulse waveform extraction.

correlation information based on demographic information such as age, gender and body
composition. Furthermore, simulated flow phantoms may be developed with synthetic
pulsatile arteries to elucidate the signal mechanisms in a controlled setting.

Traditional heart rate variability is assessed through the RR peak intervals using an
electrocardiogram. However, similar timing differences can be observed and quantified
using the blood pulse waveform. An important part of this waveform is the blood pulse
foot, which is the minimum point just prior to inflection due to the oncoming blood pulse.
The blood pulse is ejected from the heart due to left ventricular contraction, which is
directly controlled by the electrical signals governing the heart mechanics. The timing
difference between the ECG’s R peak and the PPG’s foot is the pulse transit time. Thus,
timing differences between the blood pulse feet indicate timing differences in the heart [65].
An important characteristic that is not often discussed in PPGI studies is its ability to
extract and assess abnormal waveforms (e.g., arrhythmia). In order to be useful as a
health monitoring system, a PPGI system must not directly or indirectly assume normal
waveforms. This was apparent in the arrhythmia case (Figure 4.5(d)), where FusionPPG’s
waveform was able to temporally convey an abnormal cardiac event. During validation,
emphasis should be placed on detected abnormal as well as normal waveforms.

Many existing methods, including DistancePPG and FaceMeanPPG, require tracking
and/or segmenting the individual’s face. However, it may be beneficial to assess pulsatility
in areas other than the face (e.g., arm, hand, leg, foot). These methods will fail at this
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task since no face will be detected. In contrast, FusionPPG does not make any a priori
assumptions about anatomical locations, and may therefore be used to assess pulsatility
at other anatomical locations in future work.

Colour-based methods exist for automated region selection [57, 58, 59], which show
increased accuracy when selecting image regions in an informed manner. The proposed
method provides several advantages over these colour-based methods. First, FusionPPG
does not rely on multispectral colour data acquisition, which may be problematic in low-
light environment, imaging in high melanin density tissues [43], and imaging systems that
use near infrared illumination sources for increased photon depth of penetration (e.g.,
for deep arterial analysis) [66]. Second, FusionPPG does not assume a cohesive region
of interest. By treating each location as quasi-independent, anatomically irrelevant areas
(e.g., hair, shadows) are excluded. Third, FusionPPG does not require skin tone calibration
or prediction. Near infrared light is particularly suitable for analysis of various skin tones
due to the decreased melanin absorption at these wavelengths [28]. Though visible light
exhibits higher absorption in the visible than near infrared spectrum, one must also consider
the effect of scatter and reduced absorption on photon attenuation. Primarily forward
scattering photons that do not become attenuated before emitting from the tissue enable
deeper tissue analysis [28] where major arteries reside. Though the fundamental nature
of the PPG signal is still unknown [7, 27], deeper probing and physiological prior models
increase the probability of hemodynamic-induced signal fluctuations rather than motion.

4.5 Summary

In this chapter, we presented a probabilistic framework for automatically extracting a blood
pulse waveform signal from a series of frames. This probabilistic framework incorporated
physiological priors for assessing signal fidelity on a pixel-by-pixel basis. This type of
method is important for cardiovascular assessment and cross-compatibility with traditional
single-point photoplethysmography sensors, and will be used in subsequent sections for
assessing cardiovascular information such as cardiac arrhythmias.
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Chapter 5

Applications

Chapter 3 and Chapter 4 presented novel methods for hemodynamic imaging and auto-
matic blood pulse waveform extraction. These methods were designed to provide widefield
hemodynamic assessment for cardiovascular monitoring. This chapter investigates hemo-
dynamic imaging for three biomedical applications. Chapter 5.1 investigates spatial pul-
satility across a participant sample with highly varying demographics to develop a spatial
pulsatility model. Chapter 5.2 investigates the use of hemodynamic imaging for assessing
the jugular venous pulse waveform, an important biomarker for cardiac function. Chap-
ter 5.3 investigates the use of hemodynamic imaging for non-contact arrhythmia detection
using time-frequency domain processing for identifying temporal anomalies in the blood
pulse waveform signal.

5.1 Spatial Pulsatility Analysis

5.1.1 Introduction

Existing contact-based PPG systems are limited to single-location monitoring (e.g., finger),
and are unable to provide widefield tissue perfusion assessment. PPGI systems allow
for whole area monitoring, however, many existing systems use spatial pixel intensity
averaging across large tissue regions to estimate cardiovascular perfusion, such as averaging
over the facial bounding box [14, 16, 17] and hardcoded anatomical regions such as the
forehead and cheeks [18, 41, 42]. One study attained increased accuracy by incorporating
spatial pulsatility priors [43]; however, the method relies on a real-time estimate of the
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true physiological state based on aforementioned coarse averaging techniques to achieve
accurate prediction.

Here, we developed a continuous probabilistic pulsatility model for importance-weighted
blood pulse waveform extraction. The continuous model can be used by PPGI systems of
any resolution through appropriate sampling to extract robust blood pulse waveforms. The
model was developed using a data-driven approach over a 23 participant sample with highly
varying characteristics (11/13 female/male, age 9–60 years, body fat 10.5–42.3%, muscle
31.0–53.9%, BMI 16.4–35.1 kg·m−2). Using blood pulse waveform spatial correlation priors,
an importance weighting scheme was developed which assigned locations with consistently
strong pulsatility a higher weight. Samples were aligned and aggregated in a common
Cartesian space, and the continuous probabilistic pulsatility model was computed using
a kernel density estimation approach. This method was compared against whole-area
uniform spatial averaging approach used by existing studies [14, 16, 17]. Results showed
that signals extracted using the pulsatility model were statistically significantly stronger in
temporal (correlation, p < 0.01) and spectral (SNR, p < 0.01) characteristics than uniform
averaging, and heart rates were in tight agreement with ground-truth measurements (r2 =
0.9619, error µ = 0.52 bpm, σ = 1.7 bpm). Model visualization elucidated important
arterial pathways, including the neck, malar regions, glabella regions, lips and nose.

5.1.2 Methods: Probabilistic Pulsatility Model

The goal was to compute a continuous probabilistic spatial pulsatility model for use as a
priori information in PPGI systems. By computing a continuous model, it can be used
by datasets different resolutions through appropriate discrete spatial sampling. Figure 5.1
depicts the processing pipeline to generate this pulsatility model. This study was approved
by a Research Ethics Committee at the University of Waterloo and performed in accordance
with the Declaration of Helsinki. Informed consent was obtained from all participants prior
to data collection.

Different spatial locations exhibit varying amounts of observed pulsatility. For exam-
ple, a skin location directly above a superficial artery will exhibit high pulsatility due to
transient changes in local tissue optical properties from the arterial pulse [7, 27], whereas
occluding hair will inhibit the observed pulsatility. Let p(x, y) be the probabilistic pul-
satility model such that p(x, y) quantifies the probability of observing arterial pulsatility
at location (x, y). Using a physiologically-motivated data-driven approach, p(x, y) can be
computed by determining the locations that consistently exhibited pulsatility across a di-
verse sample of participants (see Table 4.1). Such a model can be used as an a priori
model for new data when extracting cardiovascular properties.

52



F
ig

u
re

5.
1:

P
ro

ce
ss

in
g

p
ip

el
in

e
to

d
er

iv
e

th
e

co
n
ti

n
u
ou

s
p
ro

b
ab

il
is

ti
c

p
u
ls

at
il
it

y
m

o
d
el

.
V

id
eo

s
of

23
p
ar

ti
ci

-
p
an

ts
w

er
e

re
co

rd
ed

u
si

n
g

co
d
ed

h
em

o
d
y
n
am

ic
im

ag
in

g
sy

n
ch

ro
n
ou

sl
y

w
it

h
th

e
gr

ou
n
d
-t

ru
th

w
av

ef
or

m
(1

).
C

or
re

la
ti

on
p
ri

or
s

w
er

e
co

m
p
u
te

d
b
y

co
m

p
ar

in
g

p
ix

el
w

is
e

te
m

p
or

al
si

gn
al

s
ag

ai
n
st

th
e

gr
ou

n
d
-t

ru
th

si
gn

al
u
si

n
g

P
ea

rs
on

’s
li
n
ea

r
co

rr
el

at
io

n
co

effi
ci

en
t

(ρ
)

(2
).

T
h
e

co
rr

el
at

io
n

p
ri

or
m

ap
s

w
er

e
al

ig
n
ed

re
la

ti
ve

to
a

te
m

p
la

te
an

d
p
ro

je
ct

ed
in

to
a

2-
D

C
ar

te
si

an
sp

ac
e,

an
d

sp
at

ia
ll
y

ag
gr

eg
at

ed
(3

).
A

2-
D

ke
rn

el
d
en

si
ty

es
ti

m
at

io
n

m
et

h
o
d

w
as

u
se

d
in

th
is

sp
ac

e
(4

)
to

ge
n
er

at
e

th
e

d
at

a-
d
ri

ve
n

co
n
ti

n
u
ou

s
p
ro

b
ab

il
is

ti
c

p
u
ls

at
il
it

y
m

o
d
el

(5
).

53



Correlation priors

Given a series of frames, denoised absorbance frames a(x, y, t) were computed using the
framework presented in Chapter 3. A transformation T was sought to map the set of
absorbance frames a(x, y, t) to a pulsatility strength map C(x, y) describing pixelwise pul-
satile components:

C(x, y) = T (a(x, y, t)) (5.1)

Rather than estimating the pulsatility based on heuristic information, which is participant-
independent and may introduce uncontrolled sources of noise, this model can be augmented
by incorporating prior information directly into the transformation:

C(x, y) = T (a(x, y, t) | z) (5.2)

where z is the ground-truth blood pulse waveform. This was measured synchronously
with the frames, and Pearson’s linear correlation coefficient was computed between the
ground-truth signal and each pixel’s temporal signal:

T (a(x, y, t) | z) =
σaz
σaσz

(5.3)

where σaz is the covariance between the pixel and ground-truth signals, σa, σz are the
standard deviations of the pixel and ground-truth signal respectively. This computation
is scale- and offset-independent, suitable for capturing the ratio nature of the blood pulse
waveform.

Importance-weighted kernel density estimation

A physiologically-derived importance-weighted scheme was developed to quantify the spa-
tial pulsatility strength. An anatomical location that exhibited strong pulsatility con-
tributed a larger weight than those that contained weak or no pulsing. This system allows
for continuous kernel-based probabilistic pulsatility density estimation later. The impor-
tance map for participant i was computed as:

Vi(x, y) = max{Ci(x, y), 0} (5.4)

To infer pulsatility patterns across the whole sample, the primary anatomical loca-
tions must be co-aligned. The camera was systematically and consistently setup for all
participants, however, differences in anatomy, minor rotation (relative to the camera) and
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translation (relative to the frame region) were observed. To correct for these relative
distortions, the problem was posed as a coordinate mapping problem, where each partic-
ipant’s weight data Vi(x, y) were projected into the co-aligned pulsatility space V (x′, y′).
Mathematically: [

x′

y′

]
= Hi

([
x
y

])
(5.5)

where Hi is a coordinate mapping function that maps (x, y) from participant space Vi to
(x′, y′) in the co-aligned space V . Note that this transformation projects points directly
into a Cartesian space. There is no need for interpolation, which may otherwise cause
local inaccuracies. Implementation details of Hi are discussed later (Section 5.1.3). This
aggregate co-aligned pulsatility space, V (x′, y′), was populated with weighted points from
each participant:

V (xk, yk) = mediani{Vi(xik, yik)} (5.6)

where (xik, yik) are the coordinates in the participant space that project to (xk, yk) in the
aggregate space according to the mapping function Hi.

A resolution-agnostic model can be computed by estimating a continuous probability
density function, and sampling this density function according to the given system’s reso-
lution. A modified Parzen-Rosenblatt kernel density estimation method [67, 68] was used
to estimate the continuous pulsatility probability density function:

p(x, y) =
1

|V |

n∑
k=1

V (xk, yk)

w2
Φ

(
v − vk
w

)
(5.7)

where n is the total number of points, w is the spatial window width, v = (x, y), Φ is the
window kernel, and |V | is a normalization term such that

∫
x

∫
y
p(x, y)dydx = 0. The kernel

was scaled according to the datum’s pulsatility weight V (xk, yk). Using the 2-D Gaussian
kernel:

Φ(u) =
1

2π
exp

(
−u

Tu

2

)
(5.8)

the final probabilistic pulsatility model formulation becomes:

p(x, y) =
1

|V |

n∑
k=1

V (xk, yk)

(w
√

2π)2
exp

(
−1

2

||v − vk||
w2

)
(5.9)

where w is modeled as the spatial standard deviation. This pulsatility model can be used
by systems of any resolution through appropriate discrete sampling:

Ω(x, y) =
∞∑

n=−∞

∞∑
m=−∞

δ(x− nτx, y −mτy)p(x, y) (5.10)
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Figure 5.2: Extracting a blood pulse waveform using the probabilistic pulsatility model.
The continuous model was discretely sampled to match the resolution of the target frames,
and transformed to align the match the anatomical characteristics of the participant. Pix-
elwise weighted averaging results in a robust blood pulse waveform.

where δ is the 2-D Dirac delta function and τx, τy are the resolution periods in the coordinate
space of p(x, y). A physiologically derived blood pulse waveform can be extracted using
the discretely sampled pulsatility map:

z(t) =
∑
x

∑
y

ai(x, y, t)Ω(x, y) (5.11)

Figure 5.2 shows a graphical depiction of this process.

5.1.3 Implementation Details

The model was built using 10 s segments for each participant. To reduce minute inter-
participant spatial pulsatility differences, each frame was downsampled such that each pixel
represented a 3 mm × 3 mm area. We empirically found that w = 3 mm worked well for
Equation (5.9).
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The mapping function Hi was implemented as a linear projective transformation [69]:x′y′
1

 =

h11 h12 h13

h21 h32 h33

h31 h32 h33


︸ ︷︷ ︸

Hi

xy
1

 (5.12)

To solve matrix Hi, a least-squares optimization was applied to fit fiducial markers selected
on a set of frames to those same anatomical points on a template participant frame (eyes,
nose, lips, chin, top and side of head, and suprasternal notch; see Figure 5.1). Specifically,
the matrix Hi was solved via a least squares solution of the following linear system of
equations: 

x′ = h11x+ h12y + h13

y′ = h21x+ h22y + h23

1 = h31x+ h32y + h33

(5.13)

5.1.4 Results

The imaging system presented in Chapter 3 was used to acquire a series of near infrared
frames. Data were collected across 24 participants (age (µ±σ) = 28.7±12.4; see Table 4.1).
The participants were instructed to remain supine for the duration of the study. The camera
was positioned overhead at 1.5 m from the participant’s head. The camera angle and field of
view remained fixed across participants. Participants wore a finger photoplethysmography
cuff, providing a ground-truth blood pulse waveform signal synchronously with the video
frames.

Setup

The signals extracted using the proposed probabilistic pulsatility model were compared
against those extracted using the FaceMean method used in existing PPGI studies [14,16,
17, 42]. Briefly, the pixels within the facial region found using the Viola-Jones face detec-
tion method [70] were spatially averaged for each frame and concatenated, yielding a 1-D
temporal signal. A leave-one-out cross-validation scheme was implemented for extracting
individual participant signals. That is, participant i was processed using the pulsatility
density learned with the data from participants P \ pi, where P is the set of all partici-
pants and \ is the set difference operator. The signals were temporally filtered using the
physiologically derived bandpass filter from Equation 3.16, with f0 = 30 bpm and κ = 9.
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Temporal signal fidelity was evaluated by computing the maximum cross-correlation
between the extracted signal ẑ and the ground-truth signal z from the finger photoplethys-
mography cuff according to Equation 3.33. Cross-correlation was used to account for
pulsatility timing differences between the finger and face (∆t ≥ 0). Spectral signal fidelity
was evaluated by computing the spectral signal-to-noise ratio (SNR) of the extracted signal
using Equation 3.29. The Wilcoxon signed rank test [71] was used to statistically com-
pare the non-normally distributed pairwise difference between signals extracted using the
proposed and FaceMean methods, testing the null hypothesis that the pairwise difference
comes from a distribution with zero median (MATLAB R2016b, Mathworks). Heart rate
was estimated by the maximum frequency response of a modified spectral power density
to reduce frequency discretization error:

HRi = arg max
fk

∑
k

Z(fk) + Z(fk+1) (5.14)

Data Analysis

Visualizing the final probabilistic pulsatility model elucidated common arterial pathways.
Figure 5.3 shows the (sampled) density across all participants, as well as split by gender.
The faces appeared structurally similar to a typical human face, indicating accurate sam-
ple alignment based on anatomical anchor points. The forehead, eyebrows, eyes, nose,
nostrils, lips, chin and neck were all visually distinguishable. Characteristic differences ex-
isted between the female and male probabilistic faces, however the primary anatomy was
consistent, leading to a cohesive combined pulsatility map. Facial hair in the male data
was observed as reduced pulsatility probability in those areas due to occlusion.

The strongest observed arterial pathway traveled across both sides of the neck. Its
anatomical location was consistent with the common carotid artery, which is the primary
arterial pathway to the brain and face. The common carotid artery bifurcates into the
external (facial) and internal (cerebral) carotid arteries at the top of the neck. A flow
trajectory across the jawline was observed in the female pulsatility map (Figure 5.3(b)),
which may indicate continued blood flow through the external carotid artery. This phe-
nomenon was not present in the male data (Figure 5.3(c)), due to facial hair occlusion in
some participants. Areas around mouth and chin exhibited reduced pulsatility compared
to the female data due to facial hair occlusion. Common areas with high pulsing probabil-
ity across all participants in both genders included the carotid artery pathways, the lips,
malar regions, nose, and glabella regions. Pulsing was additionally observed in females
along the jaw line.
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Figure 5.3: Discretely sampled probabilistic pulsatility model across all participants (a),
as well as split by gender (b,c). The effect of facial hair on reduced observed pulsatility is
apparent around the mouth and chin of the male distribution (c). Both genders exhibited
strong pulsatility in anatomically relevant locations, such as the neck (carotid artery) and
cheeks (facial arteries).

Blood pulse waveform signals extracted using the probabilistic pulsatility model in a
leave-one-out cross-validation scheme exhibited stronger temporal and spectral character-
istics when compared to those extracted with the FaceMean method. Figure 5.4 shows
the distributions of temporal correlation and SNR results across the participant sample.
Combined, these measures provide signal fidelity information in both the time and fre-
quency domain. Pairwise comparison of the signals extracted using the proposed and
FaceMean methods showed that the proposed method yielded statistically significant cor-
relation (W = 39, p < 0.01) and SNR (W = 31, p < 0.01) compared to FaceMean signals.
Figure 5.5 shows the pairwise differences in correlation and SNR for each of the 23 partic-
ipants. Temporal and spectral fidelity improvements were observed in a large number of
participants. These results indicate that the probabilistic pulsatility model identified areas
of strong pulsatility

Many PPGI studies investigate heart rate extraction algorithms for remote monitoring.
To validate the proposed system’s ability to extract heart rate, correlation and agreement to
the ground-truth heart rate was investigated. Figure 5.6 shows the Bland-Altman plot [72]
for this heart rate comparison. The proposed system not only attained high correlation to
the true heart rate (r2 = 0.9619), but it also achieved strong and tight agreement (error
µ = 0.52 bpm, σ = 1.7 bpm). This is consistent with the strong signal fidelity results in
Figure 5.4, which enable strong inferential properties of summary statistics such as heart
rate.
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Figure 5.4: Comparison of signal fidelity using the proposed probabilistic pulsatility model
versus spatial averaging. Signals extracted using the pulsatility model exhibited statisti-
cally significantly higher pairwise correlation to the ground-truth waveform (W = 39, p <
0.01) and spectral SNR (W = 31, p < 0.01). (∗∗Wilcoxon signed rank test, p < 0.01)
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Figure 5.5: Pairwise comparison of correlation and SNR between signals extracted using
the proposed pulsatility model (gray) and FaceMean (black). Improvements were observed
across most participants when using the probabilistic pulsatility model for extracting blood
pulse waveform signals.

Figure 5.6: Heart rate estimation using the pulsatility density function attained strong
correlation to the true heart rate (r2 = 0.9619) and high degree of agreement (error µ =
0.52 bpm, σ = 1.69 bpm). Marker size indicates the number of points at that coordinate.
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5.1.5 Discussion

The results demonstrated that using a spatial probabilistic pulsatility model can enhance
blood pulse waveform extraction in photoplethysmographic imaging data. The data-driven
pulsatility model, which was constructed using data from a 23 participant sample with
widely varying demographics, provides a priori anatomical guidance based on consistently
observed pulsatile regions.

The data-driven model is built using training data containing spatial pulsatility in-
formation. Thus, the new “test” data must sufficiently match the training data’s spatial
perspective for proper alignment. Though advanced warping models can adjust for some
inconsistencies, large deviations in rotation and perspective relative to the training data
may produce erroneous alignment. In particular, different imaging and illumination per-
spectives may change the light-tissue interaction geometry (e.g., shadows), leading to varied
photon migration path. To address this challenge, the model was designed such that its
methodology is agnostic to the type of data with which it is trained. Thus, independent
training data sets can be used to build custom pulsatility models suitable for the study’s
specific test environment. For example, some systems may find that training based on
rotated viewpoints or a certain class of demographic (e.g., gender or age) may yield in-
creased results for their specific test environment. Additionally, this model can be trained
on anatomical locations other than the head, enabling whole-body cardiovascular monitor-
ing. The model use can be extended to detect abnormal perfusion patterns that may be
early markers for disorders such as peripheral vascular disease or arteriosclerosis.

The model was designed as a continuous model so that it can be sampled by systems of
any resolution. To be used, all that is required is a coordinate mapping function H (from
Equation (5.5)) for spatial alignment to the template model. In offline systems, this can be
accomplished by manual or semi-automatic spatial alignment methods [73]. In real-time
systems, automatic alignment is required, and can be accomplished using methods such
as automatic face fitting [74]. In low-motion scenarios (e.g., sleeping studies, controlled
experiments), a single alignment operation may be sufficient. In scenarios with increased
motion, one strategy could be to calibrate the first frame to the template, and align all
subsequent frames to the calibrated source frame, as it would have more similarities to
frames within the same video than the model template.

5.1.6 Conclusion

A continuous probabilistic pulsatility model was developed that describes anatomical lo-
cations that consistently exhibited arterial pulsing across a 23 participant sample. This
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model can be used as a priori information to enhance signal extraction in photoplethysmo-
graphic imaging systems. Since the model is a continuous model, it can be used by systems
of any resolution via appropriate spatial sampling. Results showed that signals extracted
using the pulsatility model exhibited statistically significant higher correlation and SNR
versus unguided whole-area uniform averaging. Discretely sampled maps identified areas
of consistently strong pulsing across the training data in the head, specifically the neck,
malar regions, glabella regions, lips and nose.

5.2 Jugular Venous Pulse Waveform

5.2.1 Introduction

Cardiovascular disease is the leading cause of mortality, resulting in 17.3 million deaths per
year globally, and a third of all deaths in the United States [1]. Cardiovascular monitoring
is essential to assessing and maintaining or enhancing quality of life through preventive
and acute care. The jugular venous pulse (JVP) waveform is a powerful diagnostic tool for
assessing cardiac function. The jugular vein is a major venous extension of the heart’s right
atrium, so changes in atrial pressure are reflected in the jugular waveform. Distortions
in the JVP provide insight into cardiac function without direct assessment of the heart
itself, such as resistance diseases (e.g., pulmonary hypertension, tricuspid stenosis [21,
39]), mechanical diseases (e.g., tricuspid regurgitation [39]), electrical diseases (e.g., atrial
fibrillation, heart block, atrioventricular dissociation [39]), abnormal external forces (e.g.,
tamponade, constrictive pericarditis [39,75]), and heart failure [76].

A primary problem with assessing JVP lies in the current standard method of measure-
ment: invasive catheterisation. Catheterisation requires surgically inserting a central line
into the jugular vein, superior vena cava, or right atrium. This is an invasive procedure
requiring surgical expertise. Therefore, although the JVP can provide important clini-
cal insights, JVP examination is not routine and is only performed when there is probable
cause for monitoring. Additionally, since catheter monitoring is limited to measuring a sin-
gle location, spatial flow perfusion characteristics cannot be assessed, which may encode
important clinical information [77, 78]. Ultrasound has recently been proposed to mea-
sure the JVP through Doppler velocity imaging [79, 80]. However, these methods require
constant stable probe skin contact, expensive ultrasound equipment, trained ultrasound
technicians, and is only able to provide axial hemodynamic information.

PPGI provides a potentially unique solution to this problem, however, existing PPGI
systems have been limited to extracting high-level vital signs, such as heart rate [10, 14,
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16,19,44] and respiratory rate [14,40]. The few studies that have reported spatiotemporal
perfusion have been limited to perfusion through the hand in constrained environments [13,
81]. Analysing the spatiotemporal trajectory patterns in the neck can provide insight into
whether PPGI can be used to detect the JVP. Given the clinical promise of non-invasive
JVP assessment, we are motivated to investigate the feasibility of biophotonic observation
of the jugular pulse in the neck, as well as information about its spatial perfusion patterns.

In this exploratory study, we investigated the feasibility of non-contact biophotonic
JVP monitoring by assessing the spatiotemporal pulsing patterns in the neck in 24 partici-
pants. Strong pulsatile flow was successfully observed, consistent with ground truth finger
photoplethysmography measurements. Two different types of pulsatile flow were observed
in all participants: one that corroborated with the ground truth arterial pulse, and one
that exhibited strong inverted pulsing characteristics. The hypothesis was that the two
pulsatile flows were major arterial and venous blood flow waveforms. To test this hypoth-
esis, the spatial properties of the pulsing were compared to the carotid artery and jugular
vein track found through ultrasound, and the waveforms were compared to the JVP. Major
venous flow was observed in all participants. Here, we demonstrated for the first time, to
our knowledge, that the JVP could be assessed with a PPGI system. Furthermore, the
jugular pulse waveform was observed at many different locations along the venous track,
providing indication of the pulse trajectory.

5.2.2 Methods: Signal Analysis Framework

Study protocol

Data were collected across 24 participants (age (µ± σ) = 28.7± 12.4; see Table 4.1). Fig-
ure 5.7 graphically shows the setup of the study. The participants were asked to assume
a supine position for the duration of the study. To avoid visual occlusion of the neck,
the ground truth blood pulse waveform was collected using a finger photoplethysmogra-
phy (PPG) cuff simultaneously with the video data. An ultrasound technician placed an
11 MHz ultrasound probe (Vivid i, General Electric Healthcare, Horten, Norway) on the
neck after video imaging. Upon locating the vessel anatomy, the pressure exerted on the
probe was released until the probe broke contact with the skin, and then reapplied gently
to the gel interface in the same location to allow undisturbed vessel diameter analysis.
Ultrasound videos were collected at 12 fps. B-mode cross-sectional videos were acquired
to confirm the location of the jugular vein relative to the carotid artery, and confirm vessel
pulsatility characteristics frame-by-frame. The jugular vein was identified by pressing the
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Figure 5.7: Study setup. Participants were supine for the duration of the study. The bio-
photonic imaging system was positioned above and slightly to the right of the participant,
at a distance of 1.5 m. The participant wore a finger cuff which provided the ground truth
arterial waveform for the analysis.

probe into the skin and observing which of the two vessels collapsed through the cross-
sectional view. Longitudinal Doppler measurements were acquired of the jugular vein to
validate pulsatile jugular flow. The carotid and jugular paths were marked after video col-
lection to anatomically map the observed pulse’s location. Informed consent was obtained
from all participants, and by those participants whose photos were used in this paper. The
study was approved by a University of Waterloo Research Ethics committee and performed
in accordance with the Declaration of Helsinki.

Data Collection

The imaging system presented in Chapter 3 was used to collect a series of near infrared
frames for increased photon penetration (to reach vasculature) and low melanin absorption
(skin tone insensitivity) [28]. The illumination was secured at a fixed distance using a light
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Figure 5.8: Data processing pipeline. Each frame was analysed in 0.25× 0.25 mm regions.
Each region’s temporal fluctuations were converted to absorbance using the framework
presented in Chapter 3. Pearson’s linear correlation coefficient was computed for each
waveform using the ground truth PPG waveform, yielding a spatial correlation map show-
ing locations exhibiting strong forward and inverted pulsing. Best viewed in colour.

stand to ensure stable skin irradiance, and it was uniformly projected using a 16” glass
fabric front diffuser. Both the illumination source and imaging system were situated 1.5 m
above the participant. Pixel distances were pre-calibrated using a resolution target at the
known fixed imaging distance. In one case, the participant’s neck was not visible from
overhead, so a bedside view was used.

Figure 5.8 shows the signal processing pipeline for the study. Each frame was blockwise
averaged using 5× 5 mm regions. The temporal fluctuations of region i yielded a reflected
illumination signal xi(t):

xi(t) =
1

|Ri|
∑
vj∈Ri

vj(t) (5.15)

where Ri is the 5 × 5 mm pixel region surrounding pixel i, and vj(t) is the jth pixel
value at time t. Denoised absorbance frame signals were computed using the system
presented in Chapter 3, yielding absorbance signals ai(t). Using the finger PPG signal
as the ground truth arterial blood pulse waveform, Pearson’s linear correlation coefficient
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was computed between each region’s temporal absorbance signal ai(t) and the PPG signal
z(t) to determine the signal strength and directionality, yielding r(z, ai) ∈ [−1, 1] (see
Equation 3.30). Note that this is temporal correlation, not scatter data correlation, where
r > 0.5 indicates strong pulsing consistent with the PPG arterial pulsing signal, and
r < −0.5 indicates strong pulsing that is inversely proportional to the PPG signal. For
visualisation purposes, the colour maps were smoothed using a Gaussian kernel (σ =
2.5 mm) to show cohesive flow pathways.

In some cases (e.g., cold fingers), the carotid arterial waveform’s shape differed sub-
stantially from the finger PPG waveform. In these cases, the waveform that exhibited
the strongest spectral signal-to-noise ratio (SNR) with respect to the PPG waveform was
used instead. SNR was calculated in the frequency domain across all regions according to
Equation 3.29. The template waveform was then chosen as follows:

z = ai∗ , (5.16)

i∗ = arg max
i
{SNR(Z,Ai)} (5.17)

5.2.3 Results

Detection of pulsatile flow

To test the base hypothesis that the imaging system was able to consistently detect lo-
calised pulsatility in vascularised locations, each 5×5 mm region was analysed for pulsatile
blood flow. The strongest 2.5 cm2 tissue area of positively and negatively correlated pul-
satile regions were identified, totalling 5 cm2 tissue area. Figure 5.9 shows the correlation
distribution of the strongest 5 cm2 total tissue, across all participants. Pulsatile flow was
consistently observed across all participants. The distribution is strongly bimodal, indi-
cating both strong arterial (r = 0.85± 0.08) and inverted (r = −0.73± 0.17) pulse signals
relative to the ground truth PPG. That is, some signals exhibited strong positive corre-
lation to the PPG waveform, whereas other signals exhibited strong negative correlation
to the PPG waveform. Strong signals (|r| > 0.5) were found in most participants. The
weakest signals were found in participants with high body fat content and age-related skin
inelasticity. This may be problematic in participants with higher body fat, which are preva-
lent in those affected by cardiovascular disease. Thus, in future work, different positions
beyond resting supine can be explored to mitigate the spectral effect of adipose tissue. For
example, lengthening of the neck by looking up or to the side, and tilted posture may be
effective at reducing localized adipose tissue effect.

67



Figure 5.9: Histogram of the strongest signal correlation values relative to ground truth
arterial waveform across all participants (n = 24). The distribution is strongly bimodal,
indicating one group of signals that are highly correlated with the arterial waveform, and
another group that is strongly negatively correlated with the arterial waveform.

Characteristics commonly found in major arterial waveforms were observed in the pos-
itively correlated waveforms, including a sharp increase in absorbance toward a systolic
peak, followed by a dicrotic notch, then a diastolic minimum. The “inverted” waveforms
exhibited different characteristics, specifically a gradual rise, followed by a steep drop in
absorbance, and often a small fluctuation following the drop. These arterial rises and
inverted drops were temporally in sync. Figure 5.10 shows a typical example of the two
types of pulses observed in a participant. The two pulses were strongly correlated through
an inverse relationship (r = 0.96), and each exhibited strong spatially cohesive patterns.
Figure 5.11 shows the inverted pulse signal acquired for all participants. The hypothesis
was that the system was detecting both arterial and venous blood pulses. The following
subsections tested this hypothesis.

Primary anatomical locations of strong pulsing

Figure 5.12 shows selected frames from a video of the flow profiles. Each frame in the
original video capture was overlaid with a colour map indicating pulsatile flow. Signals
that exhibited strong positive correlation (see Equation 3.30) were coded in red, and those
with negative correlation were coded in blue. The opacity strength was computed as
r2(z, ai), where r is the correlation. The overlay was processed with a Gaussian smoothing
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Figure 5.10: Comparison of scale-normalized arterial and inverted pulse waveforms in a
typical example. (a) The participant exhibited strong arterial pulsations, characterised
by a sharp rise to systole and a dicrotic notch, as well as strong inverted pulsations,
characterised by a phase-offset gradual rise and sharp drop. (b) The arterial and inverted
waveforms are strongly linked through an inverse relationship (r = 0.96). Best viewed in
colour.
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Figure 5.11: Jugular venous pulse signal acquired for each participant (n=24). The jugular
venous pulse (black line) acquired using the non-contact coded hemodynamic imaging sys-
tem is compared to the ground-truth arterial waveform (dotted gray). The two waveforms
are strongly inversely proportional, some more strongly than others due to factors such as
fat content and age-related skin inelasticity.
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kernel for visualization purposes.

The two types of flow were easily identified visually due to the phase offset nature of
their peaks. Specifically, the arterial track filled with blood simultaneously as the ground
truth arterial waveform reached systole. When the arterial waveform reached diastole, the
inverted pulse reached its peak. The two tracks exhibited consistent alternating pulsing
patterns.

Figure 5.13 shows the locations on the neck where the five strongest positive and in-
verted pulsations occurred for each participant. Following data collection, the carotid and
jugular tracks were marked with the guidance of ultrasound. Comparing the marked lo-
cations with the major pulsing locations, the arterial pulse locations followed the carotid
track. Inverted pulsatile flow was consistently situated on the distal side of the carotid
artery. This was consistent with cross-sectional ultrasound imaging, which located the
jugular vein on the distal side of the common carotid artery in all participants.

During data analysis, Doppler ultrasound confirmed that the jugular vein was pulsatile
in all 24 participants, and cross-sectional ultrasound analysis visually confirmed the phase
offset nature of the carotid and jugular pulsing.

Correlation to jugular venous pulse waveform

The inverted blood pulse waveform shape was consistent with the jugular venous pulse
(JVP) waveform [82]. Figure 5.14 shows the time-aligned Wiggers diagram section with
the labeled JVP and a typical inverted pulse observed during trials. Visually, the JVP
and inverted pulse waveforms show strong intercorrelation. The JVP waveform is biphasic
and is characterised by: an increase in pressure pre-systole due to right atrial contraction
(a); an increase in pressure due to ventricle contraction (c); a decrease in pressure during
systole due to atrial relaxation following tricuspid valve closure (x ); an increase in pressure
in late systole due to right atrial filling from venous return (v); and a decrease in pressure
during diastole due to right ventricular filling from the opening of the tricuspid valve (y).
The inverted pulsing results were consistent with the JVP waveform: gradual increase
in blood volume pre-systole (a); an increase in pressure during ventricular systole (c); a
sharp decrease in blood volume was observed slightly prior to the carotid upstroke (x );
and a small transient rise in blood volume during late systole (v,y). Since the JVP is
governed by differential pressures generated by heart mechanics, observing the venous
pulsation patterns can provide insight into not only vascular function, but aspects of heart
function as well, without catheterisation. Figure 5.15 shows a single pulse waveform for
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Figure 5.12: Three frames from a typical segment showing the timing of the blood volume
pulse in the neck. (a) Upon ventricular ejection, the pulse travels through the carotid
arterial track (red), reaching systole; there is no inverted pulsatile flow. (b) During the
arterial descent towards diastole, the pulse continues to travel through the carotid track,
and the start of the inverted pulse can be observed (blue). (c) No carotid pulse is observed
during diastole, and the inverted pulse experiences its maximum absorbance. Best viewed
in colour.
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Figure 5.13: Locations exhibiting the strongest pulsing across all participants (n = 24)
relative to the position of the carotid artery and jugular vein. Locations were determined
by finding and marking the carotid and jugular track using ultrasound following video
data capture. The pulsing locations were normalized and drawn relative to the individual’s
marked anatomy. The data are presented for the right side only (marked with ‘o’), which
is used clinically as the most direct conduit to the heart. The arterial pulse points were
consistent with the anatomical location of the carotid artery (a), and the inverted waveform
pulse points were consistent with the distal location of the jugular vein (b). Best viewed
in colour.
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each participant. The c, x, v and y waves were consistently observed across all participants,
and the subtle pre-systolic a wave was observed in 13 participants.

5.2.4 Discussion

These trials support the hypothesis that the PPGI system was able to observe the spa-
tial trajectory of both major arterial and venous blood pulse waveforms in the neck. The
amplitude changes of the two signals exhibited different differential properties. In partic-
ular, the arterial signal was characterised by a sharp rise during systole followed by a fall
during late systole and diastole, whereas the venous signal was characterised by a gradual
rise during atrial filling followed by a sharp drop during atrial and ventricular contrac-
tion. These findings are consistent with expected transient local blood volume absorption
fluctuations [7], supporting the hypothesis that the data is indeed revealing light-tissue
mechanisms rather than a ballistocardiographic mechanisms.

The strong negative correlation between the arterial and venous blood pulse waveforms
can be attributed to the differential pressure profiles resulting from normal cardiac cycles.
The observed results are consistent with the Wiggers diagram. In particular, cardiac
contraction ejects blood through the arterial track, and ends with aortic closure. During
arterial systole, atrial relaxation causes a decrease in cardiac pressure, resulting in increased
venous return into the right atrium, which reduces the volume in the neck veins. Atrial
filling pressure gradually increases simultaneously with late systole, resulting in decreased
venous return (increased jugular venous volume). This inverted amplitude and phase-
offset vessel wall motion was visually confirmed using B-mode ultrasound, where cross-
sectional videos showed phase-offset vessel wall expansion and contraction between the
carotid artery and jugular vein (see Figure 5.16). Doppler ultrasound was also used to
confirm the pulsatile nature of the jugular vein in the participants consistent with the JVP
waveform.

Due to the close proximity of the major neck vessels to the heart, the venous blood pulse
waveform can be used to assess heart function. Leveraging the strong correlation between
the venous blood pulse waveform and JVP, PPGI can be used to assess heart function that
is reflected in the venous waveform in a non-contact manner. Since the jugular vein is a
major venous extension of the right atrium, abnormalities in the waveform can indicate
heart function problems. For example, the increased pressure from atrial contraction due
to tricuspid stenosis produces a larger a wave [39,84]; a lack of atrial contraction/relaxation
from atrial fibrillation inhibits the a wave and x wave [39]; and blood flow back through
the atrium due to tricuspid regurgitation results in a fused c-v wave [39]. The c, x, v

74



Figure 5.14: Comparison of a typical “inverted” pulse to the jugular venous pulse waveform
in the Wiggers diagram (adapted from [83]). The inverted pulse was consistent with the
JVP waveform. The JVP waveform is biphasic whose waveform inflections are governed by
differential cardiac pressures (see text). The variability between individual pulses is likely
due to the effect of respiration on the intrathoracic pressure.

75



F
ig

u
re

5.
15

:
E

x
am

p
le

of
a

si
n
gl

e
p
u
ls

e
ex

tr
ac

te
d

fr
om

ea
ch

p
ar

ti
ci

p
an

t.
T

h
e

ch
ar

ac
te

ri
st

ic
J
V

P
w

av
es

w
er

e
m

an
u
al

ly
id

en
ti

fi
ed

in
ea

ch
w

av
ef

or
m

an
d

an
n
ot

at
ed

fo
r

cl
ar

it
y.

F
ou

r
of

th
e

m
a
jo

r
J
V

P
w

av
es

(c
,

x
,

v
,

y
w

av
es

)
w

er
e

ob
se

rv
ed

in
al

l
p
ar

ti
ci

p
an

ts
.

T
h
e

su
b
tl

e
p
re

-s
y
st

ol
ic

a
w

av
e

w
as

ob
se

rv
ed

in
13

/2
4

p
ar

ti
ci

p
an

ts
.

76



Figure 5.16: Inverse relationship between the carotid artery and jugular vein as seen with
B-mode ultrasound in a typical participant. The jugular vein (below V) and carotid artery
(below A) are located below the skin surface (top) with vessel diameters marked in millime-
tres. Between systole (a) and diastole (b), the carotid relaxes (10% diameter reduction),
and the jugular expands (12% diameter expansion).
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and y waves were consistently observed in all participants, however the a wave was only
observed in a subset of participants (13/24). The pre-systolic a wave is a subtle signal
exhibited by the backflow of venous blood from right atrial contraction. The imaging
sensor properties (bit depth, pixel noise magnitude, and frame rate) may have contributed
to an undetected a wave in individuals with lower central venous blood volume or weaker
right atrial contraction. Future work must systematically evaluate the effect of imaging
sensor properties on JVP extraction to elucidate this relationship.

Due to a gap in current clinical monitoring technology, potential clinical information
encoded in the spatial flow profile is largely unknown. For example, flow velocity and
jugular column height can be assessed using the proposed hemodynamic imaging system,
which may be important indicators of heart function and central venous pressure [77, 78].
Clinical studies leveraging the presented work may elucidate the effect of spatial flow
profile analysis on heart failure diagnosis and prevention. Future work will investigate the
relationship between pulsatile signal characteristics and demographic groups.

5.2.5 Conclusion

This study is the first PPGI study to demonstrate the ability to observe the JVP. Currently,
the system is limited to at-rest monitoring with minimal motion, but image processing func-
tionality can be incorporated in future work, including motion compensation sensing [14].
Building on these findings, future work must focus on clinical validation against catheter
or ultrasound JVP. A rigorous comparison against current JVP monitoring technology is
essential for clinical viability of such a technology to help doctors monitor cardiac dysfunc-
tion for rapid visual patient assessment in non-surgical settings. These early findings show
promise for shifting from catheter insertion techniques for measuring the JVP waveform
toward a non-contact, non-invasive biophotonic imaging solution.

5.3 Arrhythmia Detection

5.3.1 Introduction

Cardiac arrhythmias are irregular heart contractility patterns due to abnormalities of the
heart’s electrical system. Though the prolonged effects of arrhythmias may result in
severe tissue damage, arrhythmias commonly go undetected due in part to the lack of
non-intrusive continuous cardiovascular monitoring technologies in natural environments.

78



Though PPGI shows promise for remote cardiovascular screening, many existing process-
ing methods rely on frequency domain processing [38], which assumes stationary (i.e.,
statistically temporally invariant) data. This is an incorrect assumption for waveforms
containing cardiac arrhythmia, which are non-stationary due to the transient temporal
cardiac anomalies. Here, we propose a non-stationary processing method to investigate
the feasibility of arrhythmia detection using CHI. Using a wavelet transform formulation,
time-frequency representations are computed and results from a participant experiencing
cardiac arrhythmia are compared against results from a control baseline.

5.3.2 Methods: Time-Frequency Processing

Time-Frequency Representation

The continuous wavelet transform was used to compute the time-frequency representation
of the non-stationary signal. Wavelets are temporally localized wave-like functions that
are useful in signal processing for time-frequency analysis [85, 86]. The wavelet transform
depends on a chosen “mother wavelet”, which it slides and scales to compute temporally
localized strength matches with the underlying signal. A Morlet wavelet was chosen since
its structure emphasizes a strong systolic peak and a dicrotic notch. Its rapid temporal
decay models the fall from systole to diastole well. Figure 5.17 shows the physical depiction
of a Morlet wavelet. The wavelet function was computed as the product of a sinusoidal
wave and a temporal Gaussian envelope:

ψ0(t) = exp

(
−t

2

2

)
cos(5t) (5.18)

To compute the time-frequency representation of a signal, the wavelet was scaled and
shifted according to:

ψ
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Using this analytic signal, the continuous wavelet transform was used to compute the
time-frequency representation of the waveform signal:

X(a, b) =
1√
a

∫ ∞
−∞

ẑ(t)ψ

(
t− b
a

)
dt (5.20)
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Figure 5.17: Morlet wavelet used in hemodynamic time-frequency processing. This wavelet
emphasizes strong systolic peak and a dicrotic notch, with a rapid temporal decay consis-
tent with blood pulse waveform physiology.
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for scale a and temporal translation b. In this initial investigation, this time-frequency
representation was used to analyze the effect and presence of temporally transient cardiac
arrhythmias.

Figure 5.18 shows an example hemodynamic waveform with its wavelet decomposition
using the Morlet wavelet. The wavelet energy is strong and compact around a fundamental
frequency which is consistent with the observed heart rate (78 bpm, or 1.3 Hz). A secondary
energy band is observed at a harmonic frequency, which is as a result of the dicrotic notch.

Blood Pulse Waveform Extraction

Figure 5.19 shows an overview of the proposed method. Absorbance frames were computed
from a set of near infrared frames according to the framework presented in Chapter 3.
A blood pulse waveform must be extracted from the series of frames to determine the
presence of cardiac arrhythmias. The spectral-spatial pixel fusion method from Chapter 4.2
was used to extract this waveform. Briefly, this method uses a Bayesian least squares
formulation to estimate the probabilistically optimal blood pulse waveform signal. The
posterior distribution is modeled using spectral and spectral physiological prior models.
Specifically, given a set of absorbance frames, the “true” waveform was estimated using a
Bayesian least squares formulation:

ẑ =

∫
z
∑|X|

i=1Wiδ(|z − xi|)
Yz

dz (5.21)

where z is a candidate waveform, X is a set of measurements, Yz is a normalization term,
δ is the Dirac delta function, and:

Wi = min

{∏
k

wik | Ni

}
(5.22)

where wik are the set of k spectral-spatial weights for the signal extracted from tissue
location i, and Ni is the pixel neighborhood around tissue location i.

5.3.3 Results

Data were collected at a distance of 1.5 m from the participant using the imaging system
presented in Chapter 3. To reduce measurement noise, each distinct 3×3 mm region was
blockwise averaged. Data were acquired from two participants: one experiencing cardiac
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Figure 5.18: Example hemodynamic waveform wavelet decomposition using the Morlet
wavelet. The wavelet energy is highly concentrated around a fundamental heart rate and
its harmonic, which is consistent with the observed heart rate (78 bpm, or 1.3 Hz) and the
dicrotic notch.
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arrhythmias, and one control participant with no arrhythmias. Participants assumed a
supine position throughout the study. The study was approved by a University of Water-
loo Research Ethics committee and was performed in accordance with the Declaration of
Helsinki.

Figure 5.20 shows the results obtained from a control participant and a participant
experiencing cardiac arrhythmia. Arrhythmia events were observed at approximately 3 s,
10.5 s, 16 s, and 24 s, highlighted in red. The estimated blood pulse waveforms extracted
using the spectral-spatial fusion model exhibited strong temporal characteristics, yielding
easily identifiable individual pulses. This is crucial for temporal analysis beyond conven-
tional heart rate monitoring. Though the signals are temporally robust, automatically
identifying the time of arrhythmia events is non-trivial in the time domain (Figure 5.20b,
top). Conversely, applying traditional frequency domain analysis yields accurate heart rate
prediction in both cases, but does not provide information relevant to arrhythmia detection
(Figure 5.20b, bottom). Indeed, the power spectral density plot for the arrhythmia data
contains spurious frequencies, however it remains unclear how this can be used to identify
abnormal cardiac contractions.

The time-frequency representation yielded relevant information for detecting arrhyth-
mia events. In the control case (Figure 5.20(a)), a high energy frequency band was observed
across the entire signal duration consistent with the 1.2 Hz spectral peak, identifying the
fundamental heart rate. Further low-frequency breathing-induced heart rate oscillations
were observed. In the arrhythmia case (Figure 5.20(b)), all four arrhythmia events were ob-
served in the time-frequency representation by a marked drop in wavelet strength at those
temporal locations. In contrast to the control case, the signal at these times lacked wavelet
energy, yet the wavelet response was strong between arrhythmia events. Thus, arrhythmias
were successfully identified as transient temporal windows exhibiting low wavelet energy
surrounded by strong cohesive temporal-spectral energy.

5.3.4 Conclusion

Arrhythmia events were identified in a non-contact manner using coded hemodynamic
imaging. Using time-frequency domain analysis, temporal anomalies in wavelet strength
localized the time at which arrhythmia events occurred. In comparison, the control wave-
form exhibited strong cohesive time-frequency representation across the duration of the sig-
nal. These results support the hypothesis that non-contact photoplethysmographic imaging
systems may be used to detect cardiac arrhythmias in a non-intrusive manner.

83



Figure 5.19: Arrhythmia detection method overview. Near infrared images were collected
and transformed into absorbance images. The blood pulse waveform was automatically
extracted using a spatial-spectral pixel fusion approach (see Chapter 4.2). The continu-
ous wavelet transform was computed to generate a time-frequency representation of the
waveform for arrhythmia analysis.
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Figure 5.20: Extracted blood pulse waveform (top) and the computed wavelet (middle)
and Fourier (bottom) decompositions from a control participant (a) and a participant
experiencing cardiac arrhythmias (b). The arrhythmia events are highlighted in red for
clarity. (a) In the control case, wavelet analysis exhibited a cohesive high energy band
over the entire duration, consistent with the 1.2 Hz heart rate identified in the power spec-
tral density. (b) Wavelet analysis identified each arrhythmia event as transient temporal
windows exhibiting low wavelet energy between bands of high temporal-spectral energy.
These isolated temporal events could not be identified with traditional Fourier analysis.
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5.4 Summary

In summary, these studies show that computational biophotonic imaging systems are able
to assess widefield hemodynamic pulsatility, supported by three primary biomedical appli-
cations. First, widefield imaging was conducted on a sample of participants with diverse
demographics, and was able to identify primary vascular pathways through the head, as
well as qualitatively demonstrating gender vascular differences. Second, widefield imag-
ing was conducted in a supine study, and it was shown that non-contact hemodynamic
imaging revealed the jugular venous pulse waveform (JVP), which shows promise as a
cardiology tool. Third, non-contact imaging was able to assess cardiac arrhythmias by
automatically extracting the signal and identifying time-frequency abnormalities. These
studies together demonstrate the feasibility of hemodynamic imaging as a cardiovascular
assessment technology.
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Chapter 6

Conclusion

Motivated by the need for new cardiovascular monitoring tools to assess spatiotemporal
blood flow, this thesis has explored the development and biomedical evaluation of compu-
tational biophotonic imaging to assess major arterial and venous flow.

6.1 Summary of Contributions

6.1.1 Coded Hemodynamic Imaging System

Chapter 3 presented a novel computational biophotonic imaging system for assessing wide-
field hemodynamic blood flow. Hemodynamic pulsatility was assessed across a macroscopic
tissue region by analysing the temporal illumination fluctuations resulting from transient
changes in blood volume. This system was a co-integration of biomedical optics, electronic
control, hardware design, and biomedical image and signal processing. A modified tem-
poral Beer-Lambert light attenuation model was proposed to quantify changes in remitted
illumination to the underlying physiological mechanisms. This light model is theoreti-
cally invariant to different tissue compositions. Light entering into the tissue undergoes a
random walk according to a series of scattering and absorption events. Light which was
partially absorbed by blood (or, more specifically, hemoglobin) and which is remitted at
the tissue’s surface contains information about the blood volume through the photon’s
path. Near infrared illumination was chosen to increase the probability of sufficient pho-
ton penetration into hemodynamic vasculature. The illuminant’s spectral signature plays
an important role in photon migration and penetration depth, which involves a complex
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balance of tissue layer composition, chromophore concentration, and chromophore spectral
response curves. Near infrared illumination is relatively insensitive to melanin concentra-
tions, and is sufficiently absorbed by oxyhemoglobin and deoxyhemoglobin to provide a
strong remitted signal while not experiencing complete attenuation in the tissue.

A custom electronic control system was developed to provide precise hardware-level
timing synchronization between the illumination source and detector (camera). The ac-
quired frames were processed to yield denoised absorbance signals for each pixel, effectively
yielding up to Np virtual sensors, where Np is the number of pixels in the field of view.
Absorbance frames were computed using the modified temporal Beer-Lambert model to
provide signals that are directly correlated to blood volume changes. These signals were
then processed to remove measurement and process noise from the signals. A frequency
domain processing method was developed based on physiological blood pulse waveform
priors and empirical measurement statistics to reduce the measurement noise. A temporal
detrending method was used to remove non-hemodynamic components of the signal, yield-
ing a stable blood pulse waveform. An integrative chassis was built to house all of these
components together, enabling portable hemodynamic imaging.

6.1.2 Automatic Blood Pulse Waveform Extraction

Chapter 4 presented a novel probabilistic method for automatically extracting a blood
pulse waveform from a series of frames acquired by the hemodynamic imaging system.
Automatic signal extraction is important in many environments with minimal human in-
tervention. For example, a hemodynamic imaging system can be used in a whole room
setting to passively monitor many individuals simultaneously (e.g., emergency room, re-
tirement home, etc.). It can also be used to augment spatial perfusion information, and
provide a familiar signal output for clinicians. Indeed, many existing imaging studies have
focussed on extracting heart rate from a series of frames, which requires a robust signal
extraction method. The presented method presents a probabilistic framework for fusing
individual pixel (or virtual sensor) signals according to the computed probability that the
signal is a representative blood pulse waveform signal. This pixel-wise probability is com-
puted using physiological priors, including spectral characteristics of typical blood pulse
waveforms, and spatial characteristics of tissue homogeneity. Quantitative prior computa-
tions were used in a Bayesian least squares optimization problem using a discrete weighted
histogram of the observed signal states. This effectively assigns “importance” weights to
each signal. The extracted signal is thus a smart weighted fusion of observed signal states.
In contrast to many existing techniques, this method is invariant to the anatomical re-
gion of interest being imaged, as it does not require anatomical location priors (e.g., face
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tracking). The extracted signals from 23 participants yielded strong results, with clearly
identifiable temporal characteristics in the extracted signals (e.g., systolic peak, dicrotic
notch, diastolic foot).

6.1.3 Spatial Probabilistic Pulsatility Analysis

Three novel biomedical applications were investigated using the presented hemodynamic
imaging system. Chapter 5.1 presented a novel investigation into the assessment of spa-
tial pulsatile pathways for constructing a probabilistic pulsatility model. This model may
be used for analysis purposes for evaluating pulsatility distributions, as well as an alter-
native empirically-driven method to automatic signal extraction. The continuous spatial
probabilistic pulsatility model was developed using correlation priors based on finger pho-
toplethysmography to determine locations with strong pulsatility. Each imaging data set
was projected into a co-aligned space for anatomy location consistency, which was sam-
pled for consistent pulsatility strength using an ordered statistics evaluation metric. This
discrete distribution was sampled using a kernel density estimation method for computing
a resolution-agnostic continuous pulsatility model, which can be used by imaging system
of various resolutions. The final probabilistic model elucidated common pulsatile vascu-
lar pathways. There were subtle qualitative differences different between gender groups.
This probabilistic map was used in a leave-one-out cross-validation scheme for blood pulse
waveform extraction, and showed statistically significant improvement in correlation and
SNR compared to widely used coarse averaging approaches.

6.1.4 Jugular Venous Pulse Waveform Assessment

Chapter 5.2 presented a novel investigation into non-contact biophotonic assessment of
the jugular venous pulse waveform. This waveform has major clinical implications for
diagnosing various forms of heart disease, since the pulsatility of the jugular vein is largely
governed by differential atrial pressures. Current clinical practice for assessing the jugular
venous pulse waveform is through invasive jugular catheterization. This study investigated
the use of hemodynamic imaging for assessing the jugular vein’s pulsatility in a non-contact
manner. Pulsatile waveforms were identified that were strongly negatively correlated with
the arterial blood pulse waveform collected at the finger. Ultrasound imaging confirmed
the location of the inverted pulsing as consistent with the location of the jugular vein.
Comparing the extracted jugular venous pulse wave to the standard Wiggers diagram
showed consistent biphasic waveform inflections. These results showed promise for non-
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contact biophotonic assessment of jugular venous pulse waveform for non-invasive heart
disease assessment.

6.1.5 Arrhythmia Assessment

Chapter 5.3 presented a novel investigation into non-contact cardiac arrhythmia detec-
tion. Many cardiac arrhythmias are localized in time (e.g., missed heartbeat, double heart
beat, erratic heart rhythm, etc.), and thus require strong hemodynamic signals for proper
detection. Arrhythmias commonly go undetected for prolonged durations, and thus non-
contact passive assessment of cardiac arrhythmias was investigated. Blood pulse wave-
form signals were extracted using the automatic signal extraction method from Chapter 4,
and were processed using time-frequency processing method. Using a physiologically mo-
tivated mother wavelet, continuous wavelet decomposition was performed to assess the
time-frequency characteristics of the signal. In this case study, the waveform from the
arrhythmia participant exhibited transient temporal windows exhibiting low wavelet en-
ergy during arrhythmia events, compared to the control case which exhibited consistently
strong compact wavelet energy across the duration of the recording. These results show
promise for non-contact arrhythmia detection and monitoring, which may be useful for
early detection for intervention and monitoring.

6.2 Future Work

This thesis presented the development of a novel computational biophotonic hemodynamic
imaging system that demonstrated promising early-stage results for cardiovascular assess-
ment and monitoring. The work presented in this thesis may provide a foundation for
future biomedical engineering research to investigate cardiovascular function under various
environmental settings. Ultimately, this type of imaging modality provides new ways to as-
sess cardiovascular function that have been infeasible with contact-based sensors, and can
therefore be used to investigate fundamental physiology as well as biomedical applications.

Computational biophotonic improvements can enable new forms of widefield tissue as-
sessment. Specifically, extending the imaging system’s ability to quantitatively assess tissue
properties may provide additional important insight into tissue health and cardiovascular
function. For example, incorporating multispectral illumination at wavelengths around the
805 nm oxy/deoxyhemoglobin isosbestic point can differentiate absorption from the two
forms of hemoglobin, thus enabling pulse oxygen saturation estimation. This can be used

90



to detect insufficiency in blood oxygen saturation for detecting cardiopulmonary abnor-
malities. Furthermore, exploring spatially coded illumination for differential photon path
length migration may provide interesting information about the tissue’s optical proper-
ties. It is well known that the source-detector separation in spatially resolved spectroscopy
contact probes provides different depth sensing. Investigating the implications of this phe-
nomenon using widefield illumination and sensing would provide interesting discoveries
about vascular depth.

Though the focus of this thesis has been on large tissue assessment in a resting position,
the imaging system’s field of view can be arbitrarily increased. Conducting whole-body
imaging can provide pulse transit timing information between primary and distal sites,
providing information about arterial stiffness and systemic blood pressure. Using motion
compensation techniques, imaging can be performed during dynamic movements, providing
cardiovascular assessment in situations where contact-based sensors are privy to motion
artefacts. Clinical evaluations of hemodynamic imaging are currently largely lacking [54].
Clinically-focussed investigations are crucial for studying the use of such a new technology
to understand its potential impact in human health. Thus, clinically-focussed biomedical
engineering research must be conducted to determine the feasibility of assessing cardio-
vascular function of different types, such as further jugular venous pulse waveform and
cardiac arrhythmia studies in affected populations, tissue flap viability, and burn wound
analysis. This imaging modality may provide new quantitative insights into cardiovascular
and tissue health.

Hemodynamic imaging may provide new ways of assessing cardiovascular response to
dynamic changes in state that are otherwise difficult or impossible to monitor with existing
contact-based sensors. For example, cardiovascular compensation to postural transition
can provide insight into cerebral perfusion, which is an important biomarker for falls in
older adults. Analyzing temporal heart rate and waveform trends may provide insight into
cerebral perfusion sufficiency.

Finally, as the scope of this thesis was focussed on cardiovascular monitoring in con-
trolled settings, further developments will be necessary if the system is used to monitor
participants in an uncontrolled environment. Controlled experimental settings are helpful
in constraining the number of dynamic variations that affect the processing, but sometimes
are infeasible. For example, it may be advantageous to integrate automatic arrhythmia
detection in naturalistic living environments, where the monitoring is an ambient passive
process; or monitoring during sleep may be preferred for assessing night time cardiovascular
activity. In these cases, movement and tracking become primary challenges. Indeed, normal
front-facing motion has been studied in PPGI literature, with strong motion compensation
results demonstrated from multi-camera systems [87] and feature-based tracking [46, 47].
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Future extensions of these methods may not only provide motion-robust measurements,
but may also be used to inform the underlying algorithm when there is too much move-
ment for a signal to be reliably extracted, thus avoiding false positive predictions (e.g.,
arrhythmias). Future work may explore the use of such models for motion-robust sens-
ing in scenarios such as naturalistic settings, multi-individual monitoring, and exercise
monitoring.
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Department of Systems Design Engineering 
University of Waterloo 

PARTICIPANTS NEEDED FOR 
RESEARCH IN NON-CONTACT HEART RATE 

MONITORING 

  

We are looking for volunteers to take part in a study on Measuring heart rate 
in natural settings using a video camera. 

As a participant in this study, you would be asked to perform several simple 
motions while lying on a bed, and while being recorded by a video camera. 

Your participation would involve a single 60 minute session. 

For more information about this study, or to volunteer for this study,  
please contact: 

 
Robert Amelard 

PhD Candidate, Department of Systems Design Engineering 
Research Associate, Schlegel-UW Research Institute for Aging 

ramelard@uwaterloo.ca   
519-888-4567 Ext. 35342 

 

This study has been reviewed by, and received ethics clearance  
through a University of Waterloo Research Ethics Committee. 
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Information Letter 

 

Title of Project: Measuring heart rate in natural settings using a video camera 
 

Researchers and Contact Information: 
Alexander Wong1, PhD     519-888-4567 ext 31299 alexander.wong@uwaterloo.ca 
David Clausi1, PhD 519-888-4567 ext 32604 dclausi@uwaterloo.ca  
Robert Amelard1,2, MASc    519-888-4567 ext 35342 ramelard@uwaterloo.ca  
1Department of Systems Design Engineering, University of Waterloo, Waterloo ON N2L 3G1 
2Schlegel-UW Research Institute for Aging, Waterloo ON N2J 0E2 

The purpose of this study is to investigate the feasibility of non-contact heart rate monitoring in 
natural environments. The findings from this study will be important in providing evidence for 
non-intrusive continuous physiological monitoring during daily living. These findings have 
potential applications in disease and disability prevention. 
 

Participants will be asked to go lie down on a bed in a few different positions while being 
recorded by a video camera. Ultrasound will be used to find the location of the major blood 
vessels. No one outside of the research team will see these recordings. A finger cuff will be 
worn to monitor heart rate during the experiment (shown below). The study will require about 
one hour of your time. 
 
 
 
The collected data will be coded with participant numbers (not names) and will be kept in a 
locked area. Unidentifiable physiological data will be presented in publications, and if an 
individual participant’s data are presented in a figure, names or any identifying information will 
not be included. You may withdraw from the study at any time without penalty by verbally 
indicating this to the researcher. There are no known risks associated with participating in this 
study. There will be no remuneration for this study. 
 

I would like to assure you that this study has been reviewed and received ethics clearance 
through a University of Waterloo Research Ethics Committee. However, the final decision about 
participation is yours. Should you have any comments or concerns resulting from your 
involvement in this study, please contact Dr. Maureen Nummelin, the Director, Office of 
Research Ethics, at 1-519-888-4567, Ext. 36005 or maureen.nummelin@uwaterloo.ca.  

If you have any questions later or require additional information about the study, please feel free to 
contact any of the researchers at 519-888-4567 ext 35342. 
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Consent Form 

 
Title of Project: Measuring heart rate in natural settings using a video camera 
 

I have read the information presented in the information letter about the procedures and risks 
involved in this study. I acknowledge that I will be wearing a finger cuff to measure my heart 
rate:  
 
 
 
I have had the opportunity to ask any questions related to the study and have received 
satisfactory answers. I am aware that I may withdraw from the study without penalty at any 
time by making the researchers aware of this decision. If I have any further questions about 
participation in this study I know that I may contact Robert Amelard, MASc, by phone at 519-
888-4567 ext 35342, or by e-mail at ramelard@uwaterloo.ca or Alexander Wong, PhD, by 
phone at 519-888-4567 ext 31299, or by e-mail at alexander.wong@uwaterloo.ca. 
  

This project has been reviewed and received ethics clearance through a University of Waterloo 
Research Ethics Committee. I was informed that I may contact the Director, Maureen 
Nummelin, PhD, at 519-888-4567, ext. 36005, or by e-mail at 
maureen.nummelin@uwaterloo.ca with any comments or concerns about my participation in 
this study.  
 

With full knowledge I agree, on my own free will, to be a participant in the research project 
identified above. I am aware that by signing the consent form, I am not waiving my legal rights 
or releasing the investigator(s) or involved institution(s) from their legal and professional 
responsibilities. 
 

I agree to be video recorded for the purpose of analysis. I understand that no one outside of the 
research team will see these recordings. Please circle:        Yes    No 
 
 
____________________________  ____________________________ 
Participant (print name)   Participant (signature) 
 
 
____________________________  ____________________________ 
Witness (print name)    Witness (signature) 
 
 
____________________________   
Date at Waterloo, Ontario     
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Feedback Letter 

Dear 

I would like to thank you for your participation in this study. As a reminder, the purpose of this 

study is to investigate the feasibility of non-contact heart rate monitoring in natural 

environments. The data collected during this study will contribute to a better understanding of 

how accurately we can non-intrusively monitor heart rate in natural settings. 

Please remember that any data pertaining to you as an individual participant will be kept 

confidential.  Once all the data are collected and analyzed for this project, I plan on sharing this 

information with the research community through seminars, conferences, presentations, and 

journal articles.  If you are interested in receiving more information regarding the results of this 

study, or if you have any questions or concerns, please contact me at either the phone number or 

email address listed at the bottom of the page. If you would like a summary of the results, please 

let me know now by providing me with your email address. 

As with all University of Waterloo projects involving human participants, this project was 

reviewed by, and received ethics clearance through, the Office of Research Ethics at the 

University of Waterloo.  Should you have any comments or concerns resulting from your 

participation in this study, please contact Dr. Maureen Nummelin, the Director, Office of 

Research Ethics, at 1-519-888-4567, Ext. 36005 or maureen.nummelin@uwaterloo.ca. 

  

With appreciation, 

 

Robert Amelard 
PhD Candidate 

Department of Systems Design Engineering 

ramelard@uwaterloo.ca   

519-888-4567 Ext. 35342  
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