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Abstract 

The persistence and widespread occurrence of emerging contaminants (ECs) such as 

perchlorate (ClO4
-), pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl 

substances in the environment has received increasing attention due to the adverse effects 

on human health and aquatic ecosystems they may cause. Conventional wastewater 

treatment plants (WWTPs) collect household sewage which contains various types of 

ECs. Emerging contaminants are consequently released to the environment due to 

incomplete removal of the ECs in the WWTPs. These ECs have been widely found in 

treated wastewater, surface water, groundwater, and even drinking water at 

concentrations ranging from ng L-1 to µg L-1. This thesis describes laboratory 

experiments for evaluating the effectiveness of passive treatment systems and 

photocatalytic technologies for removing these ECs from water. In addition, a field 

investigation is described for tracking wastewater downstream of WWTPs using potential 

tracers in a receiving river.  

Laboratory column experiments were performed to evaluate the effectiveness of 

reactive media zero-valent iron (ZVI), organic carbon (OC, wood chips), and a mixture of 

(ZVI + OC) for simultaneous removal of NO3
-, SO4

2-, and ClO4
- from contaminated water 

associated with mining and blasting sites. Input NO3
- (~10.8 mg L-1 NO3-N) was 

effectively removed through NO3
- reduction to NH4

+ in Column ZVI, through 

denitrification in Column OC, and through the combination of NO3
- reduction by ZVI 

and denitrification by OC in Column (ZVI + OC). Input SO4
2- (~24.5 mg L-1) was 

partially removed (up to 71%) in Column OC through biologically mediated SO4
2- 



vi 
 

reduction coupled to OC oxidation. Biological degradation of ClO4
- (input concentration: 

~860 μg L-1) to Cl- was observed in the columns containing OC, but not ZVI. Removals 

of NO3
-, SO4

2-, and ClO4
- within three treatment columns was enhanced as a result of a 

decrease in flow rate from 0.5 to 0.1 pore volume (PV) d-1. Addition of ZVI to OC 

reduced the inhibition of ClO4
- removal by NO3

- (NO3-N > 2 mg L-1), but sulfate did not 

inhibit ClO4
- removal in any treatment column.   

 Environmentally relevant EC contamination is frequently derived from WWTP 

discharge. Two-year water sampling was conducted to identify potential tracers to track 

wastewater downstream from two WWTPs over a 31 km stretch of the Grand River in 

southwestern Ontario, Canada. The results indicate that elevated concentrations of Cl-, 

NH3-N, NO2
-, and ECs including the artificial sweetener acesulfame-K (ACE-K), and 

pharmaceuticals carbamazepine (CBZ), caffeine (CAF), sulfamethoxazole (SMX), 

ibuprofen (IBU), gemfibrozil (GEM), and naproxen (NAP) were observed near the two 

WWTPs, and their concentrations decreased over distance downstream. A Spearman 

Rank correlation analysis shows strong correlation among ACE-K, CBZ, GEM, NAP, 

and Cl-, suggesting the potential use of these contaminants as co-tracers to track 

wastewater in the study area. However, Cl- was less reliable due to other sources of 

contamination such as road salt applications in winter.   

Laboratory batch experiments were conducted to evaluate the ultraviolet light 

(UV) photocatalytic treatment of artificial sweetener ACE-K and pharmaceuticals CBZ, 

CAF, SMX, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymetham- 

phetamine (MDMA), IBU, GEM, and NAP using two types of catalyst, magnetically 

separable TiO2 (MST) recoverable nanoparticles (γ-Fe2O3@SiO2@TiO2 colloidal 
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nanospheres) and graphene oxide supported TiO2 (GO TiO2) recoverable nanoparticles 

(GO/TiO2/CSA nanocomposites) compared to  commercial P25 TiO2. The synthesized 

GO TiO2
 exhibited comparable or greater photocatalytic ability compared to P25 TiO2 in 

terms of intrinsic reaction rate constants for removal of ACE-K (> 99% removed from 10 

μg L-1) and eight pharmaceuticals (> 92% removed from 1 μg L-1) from water. 

Photocatalytic ability of MST nanoparticles was lower compared to GO and P25 TiO2 

nanoparticles. The non-recoverable P25 nanoparticles have been reported to have adverse 

impact on human health and ecological systems when released to the environment after 

use. The GO TiO2 nanoparticles could potentially be used as a substitute for P25 

nanoparticles in water treatment due to its competitive photocatalytic ability and high 

magnetic recovery.  

Laboratory column experiments were conducted to evaluate the removal of 

pharmaceuticals, artificial sweeteners, and perfluoroalkyl substances using ZVI, biochar 

(BC), and a mixture of (ZVI + BC). The results show that input pharmaceuticals CBZ, 

CAF, SMX, MDA, MDMA, IBU, GEM, and NAP at ~9 µg L-1 were almost completely 

removed (> 97%) in Columns ZVI, BC, and (ZVI + BC). About 80 ̶ 99% of input 

artificial sweetener sucralose (SCL) (~110 µg L-1) was removed in three treatment 

columns. However, artificial sweeteners ACE-K and saccharin (SAC) were partially 

removed; cyclamate (CYC) was not removed in any column. About 60 ̶ 99% of input 

perfluorooctane sulfonic acid (PFOS) (24.0 ̶ 89.6 µg L-1) was removed in Columns BC 

and (ZVI + BC); less of input PFOS was removed in Column ZVI compared to the 

columns containing BC. Partial removal of input perfluorooctanoic acid (PFOA) (~45 µg 

L-1) was observed in Columns BC and (ZVI + BC), but less in Column ZVI. The removal 
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rates of target contaminants within three treatment columns were not enhanced after 

column flow rates were decreased from 0.3 to 0.1 PV d-1, except for ACE-K. 

Laboratory batch experiments were conducted to investigate the removal 

mechanisms of PFOA and PFOS by ZVI and a mixture of (ZVI + BC). The results show 

~20% and ~60% of input PFOA (~20,000 µg L-1) were removed by ZVI and (ZVI + BC); 

~90% and ~94% of input PFOS (~20,000 µg L-1) were removed by ZVI and (ZVI + BC). 

However, only ~17% of input short chain perfluoroalkyl carboxylic acid (PFCA) 

perfluoroheptanoic acid (PFHpA, C7-PFCA) (26 µg L-1) was removed by ZVI alone and 

(ZVI + BC); the input PFCA perfluorohexanoic acid (PFHxA, C6-PFCA) (0.8 µg L-1) 

was not removed by ZVI and (ZVI + BC). Similarly, the input short chain perfluoroalkyl 

sulfonic acids (PFSAs) including 330 µg L-1 of perfluoroheptane sulfonic acid (PFHpS, 

C7-PFSA), 13 µg L-1 of perfluorohexane sulfonic acid (PFHxS, C6-PFSA), and 6 µg L-1 

perfluorobutane sulfonic acid (PFBS, C4-PFSA) were less effectively removed by ZVI 

and (ZVI + BC) compared to PFOS. About 57 ̶ 70% of input PFHpS, 30 ̶ 40% of input 

PFHxS, and 20% of input PFBS were removed by ZVI alone and (ZVI + BC). The 

removal efficiency of short chain PFCAs and PFSAs by ZVI and (ZVI + BC) decreased 

with a decrease in chain length. Sorption and reductive defluorination likely contributed 

to the removal of PFOA and PFOS by ZVI and (ZVI + BC). Fluoride (F-) is the indicative 

by-product of defluorination of PFOA and PFOS; increasing concentrations of F- were 

observed in the supernatants of (PFOA + ZVI) and (PFOS + ZVI) samples. The 

defluorination efficiencies of PFOA and PFOS were back-calculated based on the 

observed F- concentrations. About 10% of input PFOA and 5% of input PFOS (~20,000 

µg L-1) were partially defluorinated (2F defluorinated from 15F of PFOA and 17F of 
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PFOS) by ZVI alone, but not by the mixture of (ZVI + BC). The defluorination efficiency 

of PFOA and PFOS by (ZVI + BC) were likely underestimated due to sorption of F- by 

the reactive media.  

This study demonstrates that ZVI, wood chips, and biochar are promising and 

cost-effective reactive media which can potentially be used in permeable reactive barriers 

or flow-through reactors for effective removal (> 97%) of perchlorate and 

pharmaceuticals (CBZ, CAF, SMX, MDA, MDMA, IBU, GEM, and NAP); for moderate 

removal of artificial sweeteners ACE-K and SCL and perfluoroalkyl substance PFOS; for 

some removal of artificial sweetener SAC and perfluoroalkyl substance PFOA; and for 

no removal of artificial sweetener CYC from contaminated water under ambient 

environmental conditions.  
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1.1 Background 

1.1.1 Occurrences and Environmental Fate of Emerging Contaminants 

Water pollution, and the associated ecosystem and public health effects is a major 

environmental problem (Schwarzenbach et al., 2006). Conventional contaminants, such 

as organic contaminants (VOCs, PCBs, TCE, etc.) and inorganic contaminants (heavy 

metals, arsenic, nitrate, etc.), have drawn great attention of public and environmental 

researchers due to their high ecotoxicity. The corresponding remedial technologies for 

these contaminants also have been extensively studied and developed. However, there are 

inadequate studies about the occurrence, fate and treatment of emerging contaminants in 

aquatic systems.       

The United States Geological Survey (USGS) defines emerging contaminants as 

“any synthetic or naturally occurring chemical or any microorganism that is not 

commonly monitored in the environment but has the potential to enter the environment 

and cause known or suspected adverse ecological and (or) human health effects”. A 

contaminant could also be “emerging” due to a lack of published health standards or an 

evolving standard, or the discovery of a new source, a new pathway to humans, or the 

development of a new detection method or technology, even though the contaminant 

likely has been in existence in the environment for a long time (Daughton, 2005; 

Murnyak et al., 2011). Emerging contaminants encompass a diverse group of compounds 

and include nanomaterials, perfluorinated compounds (PFCs), pharmaceuticals and 

personal care products (PPCPs), steroids and hormones, surfactants, drinking water 

disinfection byproducts (DBPs), sunscreens/UV filters, brominated flame retardants 

(polybrominated diphenyl ethers), benzotriazoles, naphthenic acids, antimony, siloxanes, 
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musks, algal toxins, perchlorate, dioxane, pesticide transformation products and 

microorganisms, veterinary products as well as food additives such as artificial 

sweeteners (ASs) (acesulfame-K and sucralose) (Lapworth et al., 2012; Richardson & 

Ternes, 2011).  

Emerging contaminants are commonly derived from municipal, agricultural, and 

industrial wastewater sources. Wastewater treatment plant (WWTP) effluents are the 

primary contributions to many environmentally-relevant emerging contaminants due to 

the persistence of the parent compound or their intermediate byproducts, many of which 

cannot be removed using conventional treatment approaches. Terrestrial run-off (from 

roofs, pavements, roads and agricultural land) and atmospheric deposition account for 

secondary sources of emerging contaminants (Farré et al., 2008). Once released into the 

environment, emerging contaminants are likely to be transported and become widely 

distributed in aquatic systems, especially in surface water and groundwater. Therefore, 

extensive studies are currently underway that focus on technologies for removing these 

contaminants from environmental waters through advanced oxidation, photolysis, 

adsorption, microbial degradation and other processes (Andreozzi et al., 2004; Kim & 

Tanaka, 2009; Kim et al., 2009b; Onesios & Bouwer, 2012).  

1.1.2 Occurrence, Fate and Treatment Technologies of Emerging 

Contaminant, Perchlorate 

Perchlorate anion (ClO4
-) consists of four tetrahedral oxygen atoms around a central 

chlorine atom. Perchlorate is found both naturally and anthropogenically. The naturally 

occurring perchlorate is mainly associated with extreme arid environments, such as the 

Chilean nitrate deposits in the Atacama Desert (Srinivasan & Sorial, 2009; Urbansky et 
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al., 2001). Perchlorate also can occur naturally in nitrate fertilizers and be produced 

naturally by atmospheric deposition (Rajagopalan et al., 2006; Srinivasan & Viraraghavan, 

2009). The main anthropogenic source of perchlorate is the manufacture of perchlorate 

containing salts, such as ammonium perchlorate, potassium perchlorate, and sodium 

perchlorate. The perchlorate salts are strong oxidizers (redox potential = +1.38 V) based 

on the central chlorine atom in its highest oxidation state (+7);  they are widely used in 

rocket propellants, military munitions, blasting agents, fireworks, explosives, and some 

consumer products (Urbansky, 2002).  

The major source of perchlorate contamination has been attributed to the 

manufacture or use of perchlorate salts in military activities, rocket propellant, fireworks, 

blasting agents, and military munitions (Bailey et al., 2013; Gullick et al., 2001; Smith et 

al., 2015; Tikkanen, 2006; Wilkin et al., 2007). Perchlorate is highly soluble, mobile, 

stable in water and adsorbs poorly to soil (Xu et al., 2003b), which results in its 

widespread occurrence and persistence in the environment. Perchlorate is widely detected 

in surface water (Wilkin et al., 2007), raw and treated drinking water (Gullick et al., 2001; 

Kim et al., 2009a), groundwater (Izbicki et al., 2015), bottled water (Iannece et al., 2013) 

at concentrations ranging from 5 ng L-1 to 200 µg L-1, and in human breast milk and baby 

formulas at 1.49 ̶ 33.3 μg kg-1 (Her et al., 2010). Perchlorate has been reported to inhibit 

the iodide uptake in animals and humans and causes decreased thyroid hormone 

production, resulting in mental retardation and hearing and speech degradation 

(Vandenberg et al., 2012; Wolff, 1998). The EPA established a chronic oral reference dose 

(RfD) of 0.0007 mg kg-1 d-1) for perchlorate (US EPA, 2005). Thyroid hormone is very 

important for growth, development, and metabolism in the human body, especially for 
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pregnant women and fetuses (Melse-Boonstra & Jaiswal, 2010; Mendez et al., 2010). 

Due to it toxicity, perchlorate has been listed by the US EPA in the drinking water 

contaminant candidate list (US EPA, 2006). The California Department of Health 

Services has established the action level of perchlorate at 6 µg L-1 in drinking water 

(California Department of Health Services (CDHS), 2004). The EPA established an 

Interim Lifetime Drinking Water Health Advisory of perchlorate at 15 µg L-1 (US EPA, 

2009b; US EPA, 2012). Health Canada suggested a guidance value of 6 µg L-1 for 

perchlorate in drinking water  (Health Canada, 2005).  

 The treatment technologies for perchlorate include physical separation 

(adsorption, membrane filtration, ion exchange), chemical and electrochemical reduction, 

and biological or biochemical reduction (Sijimol et al., 2015). Granular activated carbon 

(GAC) sorption and anion exchange are the most common methods for removing 

perchlorate from water. It has been reported that the sorption of perchlorate by GAC are 

through specific chemical interactions between perchlorate and surface functional groups 

and electrostatic forces (Mahmudov & Huang, 2010). The virgin GAC is not a very 

effective adsorbent for removing perchlorate; however, the GAC after appropriate surface 

modification such as ammonia-tailoring (Chen et al., 2005) and pre-adsorption of cationic 

surfactants (Lin et al., 2013) shows competitive removals of perchlorate compared to ion 

exchange and biological treatment. Ion-exchange is the most effective and commonly 

used method from removing perchlorate from drinking water; however, the high cost, 

disposal of the spent resins and brine makes this technology less feasible and 

economically sustainable (Srinivasan & Sorial, 2009; Ye et al., 2012). Chemical reduction 

is a destructive method in which perchlorate is completely reduced to non-toxic Cl-. The 
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high activation energy (120 kJ mol-1) kinetically limits the rate of perchlorate reduction 

(Yang et al., 2016); however, the applications of metallic catalysts (Hurley & Shapley, 

2007; Zhang et al., 2011) and catalytic electrodes (Rusanova et al., 2006) greatly enhance 

perchlorate reductive kinetics during the catalytic and electrochemical reduction. The 

deactivation and fouling of catalysts and electrode by natural water constituents and the 

high cost and toxicity of the catalysts and electrodes challenge the application of these 

technologies (Yang et al., 2016).  

Biological reduction of perchlorate to environmentally innocuous Cl- is identified 

as one of the most effective and cost-efficient technology and has shown promise for 

large scale applications (Srinivasan & Sorial, 2009). Perchlorate reducing 

microorganisms are ubiquitous in the environment; they can use different types of organic 

and inorganic substrates as electron donors (Okeke & Frankenberger Jr., 2005; Xu et al., 

2003b). Effective biological reduction of perchlorate from 5 ̶ 8 mg L-1 to < 0.5 mg L-1 has 

been reported using elemental sulfur (Sahu et al., 2009). A full-scale in-situ biological 

permeable reactive barrier (PRB) containing a mixture of gravel (70%), mushroom 

compost (20%), and soybean oil-soaked woodchips (10%) was used to biologically 

degrade perchlorate in ground water at the Naval Weapons Industrial Reserve Plant 

McGregor in 2002. Perchlorate was removed from an average input concentration of 

13,000 µg L-1 to an undetectable level upon exiting the PRB (US EPA website: 

https://clu-in.org/products/newsltrs/tnandt/view.cfm?issue=0204.cfm#2). A full-scale 

fluidized bed reactor (FBR) system containing GAC (fluidization media), ethanol (an 

electron donor), and inorganic N and P (nutrients for supporting microbial growth) was 

used to treat perchlorate from influent concentration of 6 ̶ 8 mg L-1 to below practical 
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quantitation limits (0.004 mg L-1) at a water flow of 4,000 gal min-1 for more than 8 

months in California (Hatzinger et al., 2000).  

1.1.3 Occurrence, Fate, and Treatment Technologies of Emerging 

Contaminants, Pharmaceutical Compounds 

Pharmaceuticals and personal care products (PPCPs) represent one of the largest and 

most important groups of emerging contaminants. It is reported that nearly 3000 different 

substances commonly are used as pharmaceutical ingredients, including painkillers, 

antibiotics, antidiabetics, betablockers, contraceptives, lipid regulators, antidepressants 

and impotence drugs (Richardson & Ternes, 2011). The structures and uses of target 

pharmaceuticals evaluated in this thesis are shown in Table 1.1.  

Table 1.1 Selected properties for target pharmaceuticals. 

Compound (CAS#) Structure pKa Log Kow 
Therapeutic 

uses 

Carbamazepine (CBZ) 
(298-46-4) 

N

O NH2  

-0.49 a 2.25 
Anti-

depressant, 
antiepileptic 

Caffeine (CAF) 
(58-08-2) N

N

CH3

O

CH3

O

N

N
CH3

10.4 b -0.07 Stimulant 

Sulfamethoxazole (SMX) 
(723-46-6) 

NH2

S

O O

NH

N
O

CH3

1.7, 
5.6 

0.89 Antibiotic 

3,4-methylenedioxy-
amphetamine 

(MDA) (4764-17-4) O

O

CH3

NH2

 
9.7 1.64 

Psychedelic 
drug 

3,4-methylenedioxy- 
methamphetamine 

(MDMA) (42542-10-9) O

O

CH3

NH
CH3

 
9.9 2.28 Ecstasy 
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Ibuprofen (IBU) 
(15687-27-1) 

CH3

CH3

O

CH3

OH

 
4.5 3.5 

Anti-
inflammatory 

drug 

Gemfibrozil (GEM) 
(25812-30-0) 

O

CH3

CH3

CH3CH3

OH

O

4.8 4.3 
Lipid 

regulator 

Naproxen (NAP) 
(22204-53-1) 

O
CH3 O

CH3

OH 4.2 2.8 
Anti-

inflammatory 
drug 

a From Schaffer et al. (2012). b From Martínez-Hernández et al. (2014). 

 

Pharmaceutical compounds, such as ibuprofen, naproxen, carbamazepine, caffeine, 

and gemfibrozil, are widely detected in aquatic systems and treated wastewater effluents 

(Kolpin et al., 2002; Martín et al., 2011; Rahman et al., 2010; Ternes, 1998). 

Environmentally-relevant contamination of surface water (Kolpin et al., 2002; Ternes, 

1998) and groundwater (Carrara et al., 2008; Heberer, 2002; Hirsch et al., 1999) is mainly 

associated with sewage effluents. After ingestion and subsequent excretion, human 

pharmaceuticals end up in wastewater treatment plants (WWTPs) in the form of the non-

metabolized parent compounds or metabolites (Farré et al., 2008). Due to the inefficiency 

of conventional WWTPs and some advanced technologies for removing these compounds 

from wastewaters, pharmaceuticals can enter aquatic systems, and thus become widely 

distributed in surface water, groundwater and even in drinking water (Grover et al., 2011; 

Jones et al., 2005; Kleywegt et al., 2011; Metcalfe et al., 2003a; Stackelberg et al., 2007). 

Besides human pharmaceuticals, veterinary drugs used for livestock, poultry, and fish 

farming to treat and prevent diseases account for another important source of 

pharmaceutical contamination to the environment, as liquid manure is used as a fertilizer 
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in agricultural fields from which pharmaceuticals are transported to surface waters and 

groundwater with run-off and infiltration (Farré et al., 2008).        

 The presence of pharmaceuticals in aquatic systems has received growing 

attention because of their frequent detection in environmental waters and the 

ecotoxicological effects that they may cause. Pharmaceuticals are usually found at low 

concentrations of ng L-1 to µg L-1 in the environment, which are unlikely to induce acute 

effects; however, continuous low-dose exposure to these compounds, especially at 

sensitive life stages, may cause chronic effects or even lethal effects on sensitive 

organisms (Caliman & Gavrilescu, 2009; Fent et al., 2006; Oaks et al., 2004). A number 

of pharmaceuticals have been reported to have adverse impacts on reproduction and 

development of biota in the environment: carbamazepine (CBZ) (2.0 ̶ 20 mg L-1), an  

antiepileptic drug, can induce enzymatic and oxidative stress in common carp (Cyprinus 

carpio) (Li et al., 2010b; Malarvizhi et al., 2012); gemfibrozil (GEM), a lipid regulator, 

bioconcentrates and reduces testosterone in goldfish (Carassius auratus), leading to 

potential endocrine disruption at concentration ranging from 1.5 µg L-1 to 10 mg L-1     

(Mimeault et al., 2005); naproxen (NAP), a non-steroidal anti-inflammatory drug 

(NSAID), noticeably inhibits the growth rate of some plankton species at acute toxicity 

concentration (LC50) of 56 ̶ 78 mg L-1 (El-Bassat et al., 2012). Gillis et al. (2017) report 

the decreasing population and species of freshwater mussel downstream a wastewater 

treatment plant affected by various emerging contaminants. The environmental 

concentrations of most pharmaceuticals are generally below the lowest observed effect 

concentrations (LOECs), with the exception of some pharmaceuticals, such as salicylic 

acid, diclofenac, propranolol, clofibric acid, carbamazepine, and fluoxetine. The chronic 
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toxic LOECs of these compounds are close to environmental levels. Besides the 

ecotoxicology of the pharmaceuticals, another important concern for pharmaceuticals is 

the creation of “Super Bugs”, the development of bacterial resistance due to widespread 

distribution of antibiotics (Richardson & Ternes, 2011).  

 Treatment technologies for removing pharmaceuticals from water include 

physical adsorption, biological degradation, chemical advanced oxidation, and combined 

chemical and biological methods (Wang & Wang, 2016). The sorbents used in physical 

adsorption for removing pharmaceutical compounds include activated carbon (AC), 

graphene and graphene oxide, and carbon nanotubes. Ek et al. (2014) demonstrate 

effective removal (90 ̶ 98%) of seven pharmaceutical residues from sewage treatment 

plant effluents using AC filtration as an additional polishing technique. Yang and Tang 

(2016) report variable removals of pharmaceuticals acetaminophen (43%), caffeine (84%), 

cephalexin (81%), and sulfamethoxazole (34%) using  graphene. Jung et al. (2015c) 

summarize the high potential adsorption capacities of various types of carbon nanotubes 

in removal of different endocrine-disrupting compounds and pharmaceutical compounds 

and their removal mechanisms. Biological degradation is an important removal 

mechanism of pharmaceuticals in the environment involving various microorganism 

communities; however, the removal efficiency varies greatly for different 

pharmaceuticals  (Wang & Wang, 2016).  Joss et al. (2005) report > 90% of ibuprofen, 

but < 10% of carbamazepine are removed in biological WWTP.  

Advanced oxidation processes (AOPs) are considered very effective technologies 

for degradation of toxic and recalcitrant organic contaminants in water, which include 

ozonation (Tay & Madehi, 2015), UV/H2O2 (Kim et al., 2009b), UV/O3 (Kim et al., 
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2009c), UV photolysis and photocatalysis using TiO2 (Calisto et al., 2011; Rosal et al., 

2008), Fenton and Fenton-like oxidation (Ganzenko et al., 2015; Segura et al., 2014), 

gamma radiation (Liu & Wang, 2013), sonolysis (Naddeo et al., 2015), and 

electrochemical oxidation (Moreira et al., 2016). Biological technologies cannot 

completely degrade some recalcitrant pharmaceuticals due to their persistence and 

toxicity to microorganisms. The AOPs often require high operating costs and the 

intermediate products of some organic compounds are perhaps more toxic and 

recalcitrant to oxidation. However, the combined AOPs and biological methods can first 

degrade the persistent large molecule contaminants to biodegradable small molecule 

intermediates during AOPs, and then the intermediates can be degraded during biological 

treatment (Wang & Wang, 2016). Keen et al. (2012) report carbamazepine as one of the 

most recalcitrant pharmaceuticals, but its UV/H2O2 oxidation byproducts can be 

completely mineralized by a mixed bacterial inoculum. In addition, the AOPs can also be 

used as a polishing post-treatment process to enhance the overall removal efficiency of 

bio-recalcitrant pharmaceuticals (Ghatak, 2014; José et al., 2010). Other treatment 

technologies, such as soil aquifer treatment (Onesios & Bouwer, 2012) and constructed 

wetland (Verlicchi & Zambello, 2014) have also been investigated for removing 

pharmaceuticals from water.    

1.1.4 Occurrence, Fate, and Treatment Technologies of Emerging 

Contaminants, Artificial Sweeteners 

Artificial sweeteners, such as acesulfame-K (potassium), cyclamate, saccharin, sucralose 

and aspartame, have been used worldwide for decades as food and drink additives. The 

highly intense sweetness of these artificial sweeteners can greatly reduce sugar intake by 
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using them in food manufacturing. Moreover, artificial sweeteners can help to reduce the 

risk of tooth decay as they are not metabolized like sugar, and do not provide significant 

energy following ingestion making them suitable for diabetics and dietetics (Kroger et al., 

2006). The target artificial sweeteners evaluated in this study are listed in Table 1.2. 

Table 1.2 Selected properties for target artificial sweeteners. 
Compound 

(CAS#) 
Structure pKa Log Kow Uses/Trade names 

Acesulfame-K 
(ACE-K) 

(55589-62-3) 

N
S

O

O

O O

K

CH3

+

 

2.0 -1.33 
200 times sweeter than 
sugar/Sunett and Sweet 

One 

Cyclamate 
(CYC) 

(45951-45-9) NH

S

O O

O
-

 

1.7 -2.63 
30–50 times sweeter 

than sugar/Sweet'N Low 
and Sugar Twin 

Saccharin 
(SAC) 

(81-07-2) 
NH

S

O

OO  

2.0 0.91 Benzoic sulfilimine 

Sucralose 
(SCL) 

(56038-13-2) 

O

O O

OH

Cl

OH

OH

OH

OH

Cl

Cl 11.8 -1.00 
600 times sweet as 

sugar/Splenda, Sukrana, 
SucraPlus, Candys, 
Cukren and Nevella 

 

Artificial sweeteners pass through human bodies with little metabolic breakdown 

after ingestion and are excreted via urine and feces, and therefore end up in wastewater 

virtually unchanged (Buerge et al., 2009). Studies also indicate that some of these 

artificial sweeteners reach receiving surface waters and groundwater due to incomplete 

removal in WWTPs. The prevalence and widespread occurrence of artificial sweeteners 

in the aquatic environment has recently been reported (Buerge et al., 2009; Buerge et al., 

2011; Lubick, 2008; Scheurer et al., 2009; Scheurer et al., 2010; Scheurer et al., 2011). 

An investigation on the occurrence of four artificial sweeteners at eight urban sites in 
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Canada showed that acesulfame-K, the most prevalent artificial sweetener, was detected 

in all eight investigated sites, including groundwater and surface water, at high 

concentrations of several µg L-1, and tend to be a good tracer of wastewater; saccharin, 

sucralose, and cyclamate were also detected at some investigated sites (Van Stempvoort 

et al., 2011).  

Acesulfame-K is quite persistent in surface waters and groundwater. In Switzerland, 

it was detected at concentrations of 12 ̶ 46 µg L-1 in untreated and treated water from 

WWTPs, in most investigated surface water samples and 65% of groundwater samples. It 

was detected in tap water samples at concentrations up to 2.6 µg L-1. Sucralose was also 

found to be quite persistent in wastewater with no degradation observed during a 7 h 

residence time in a WWTP. In contrast, cyclamate and saccharin were readily 

biodegraded with removals of 99% and 90% from untreated wastewater, respectively 

(Buerge et al., 2009). In Germany, acesulfame-K was also the predominant artificial 

sweetener in surface waters with concentrations exceeding 2 µg L-1 (Scheurer et al., 

2009), and was the only artificial sweetener detected at concentrations up to several 

hundred ng L-1 in finished drinking water after treatment with granular activated carbon 

(GAC) filters (Scheurer et al., 2010). Similarly, little sucralose was removed in sewage 

treatment plants (STPs). However, more than 94% of saccharin and cyclamate were 

eliminated in STPs (Scheurer et al., 2009). Aspartame and saccharin are likely 

biodegraded easily in the sewage treatment system (Ferrer & Thurman, 2010).  

Artificial sweeteners acesulfame-K and sucralose have been used as tracers to track 

the contamination of environmental waters by domestic wastewater, because they are 

primarily present in wastewater and recalcitrant to natural attenuation processes such as 
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biological degradation (Buerge et al., 2009; Van Stempvoort et al., 2011). Sucralose has 

been used as indicator compound for anthropogenic influence on finished drinking water 

as well as the presence of other recalcitrant contaminants in finished drinking water 

(Mawhinney et al., 2011). The ecotoxicity of artificial sweeteners is controversial and a 

cause for concern, because the long-term health effects resulting from chronic exposure 

to low levels of these compounds are still to a great extent unknown (Kroger et al., 2006). 

Sang et al. (2014a) report that the photo-induced transformation by-products of 

acesulfame-K are >500 times more toxic than the parent compound and may impact 

aquatic ecosystems. In addition, the accumulation of artificial sweeteners in drinking 

water due to incomplete removal of these artificial sweeteners in WWTPs and drinking 

water treatment plants (DWTPs) is a quality concern especially in water shortage and 

reuse areas (Mawhinney et al., 2011).  

Therefore, remedial technologies for removing artificial sweeteners from water 

supplies are consequently being developed. Besides WWTPs and biological degradation, 

many technologies have been studied for removing artificial sweeteners from water, such 

as physical adsorption using AC and chemical oxidation (Sharma et al., 2012). Scheurer 

et al. (2010) and Mailler et al. (2014) report effective removal of saccharin and sucralose 

using GAC filtration, but poor removals for acesulfame-K and cyclamate. Recently, 

advanced oxidation processes have been extensively investigated for removing artificial 

sweeteners from water, and include photochemical and electrochemical oxidation (Lin et 

al., 2016; Perkola et al., 2016), UV/H2O2 photo-oxidation (Keen & Linden, 2013), 

ozonation (Scheurer et al., 2012), ferrate (VI) and radicals based oxidation (Lin et al., 

2016; Sharma et al., 2012). Sharma et al. (2014) provide a review on the advanced 
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oxidation processes (AOPs) for removing sucralose from water using ozonation, ·OH 

radical, UV/H2O2, and ferrate.  The highly strong oxidizing agent hydroxyl radicals (•OH) 

generated during these AOPs effectively degrade sucralose in water. Toth et al. (2012) 

demonstrate effective degradation of five artificial sweeteners acesulfame-K, aspartame, 

rebaudioside, saccharin, and sucralose by ·OH and SO4·
- radicals. In addition, other 

technologies have been studied for removing artificial sweeteners from water, such as soil 

aquifer treatment (Scheurer et al., 2009; Scheurer et al., 2011), conventional multi-barrier 

treatment (including bank filtration, artificial recharge, flocculation, ozonation, activated 

carbon filtration, and disinfection) (Scheurer et al., 2010), and constructed wetlands 

(Vymazal & Dvořáková Březinová, 2016). 

1.1.5 Occurrence, Fate, and Treatment Technologies of Emerging 

Contaminants, Perfluoroalkyl Substances 

Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are a recent class of Persistent 

Organic Pollutants that have an aliphatic carbon backbone in which hydrogen atoms are 

partially (poly-) or completely (per-) replaced by fluorine (F) (Rahman et al., 2014). Due 

to the unique structure of C-F bond, PFASs present high surface activity, and high 

thermal and chemical stability. Therefore, they have been widely used in numerous 

industrial and consumer products such as firefighting foams, food packing, waterproof 

breathable fabrics, non-stick cookware, semiconductors, and photographic films. The 

perfluoroalkyl acids (PFAAs) are one class of PFASs which have received the most 

attention to date. The two important sub-classes of PFAAs are perfluoroalkyl carboxylic 

acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs). The most commonly used and 

frequently detected PFCAs and PFSAs are perfluorooctanoic acid (PFOA) and 
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perfluorooctane sulfonic acid (PFOS), respectively. Both PFOA and PFOS have eight C 

atoms in their structure; PFOA consists of a hydrophobic perfluorinated carbon (C7F15 ̶) 

tail and a hydrophilic carboxylic (̶ COOH) ionic head, PFOS consists of a hydrophobic 

perfluorinated carbon (C8F17 ̶ )  tail and a hydrophilic sulfonic (̶ SO3H) ionic head (Table 

1.3). The target PFCAs and PFSAs in this study are summarized in Table 1.3. As the C 

chain length increases, the water solubility and vapour pressure of PFCAs and PFSAs 

decrease; however, the soil organic carbon-water partitioning coefficient (log Koc) and 

acid dissociation constant (pKa) increase with increasing carbon chain length (Rahman et 

al., 2014; Rayne & Forest, 2009).  

Table 1.3 Selected properties for target perfluoroalkyl carboxylic acids (PFCAs) and 
perfluoroalkyl sulfonic acids (PFSAs). 

 Compound (CAS#) Acronym
Molecular 
Formula 

Structure 

   
P

F
C

A
s 

Perfluorooctanoic acid 
(335-67-1) 

PFOA C8HF15O2 
 

Perfluoroheptanoic acid 
(375-85-9) 

PFHpA C7HF13O2 
 

Perfluorohexanoic acid 
(307-24-4) 

PFHxA C6HF11O2 
 

Perfluoropentanoic acid 
(2706-90-3) 

PFPeA C5HF9O2 
 

Perfluorobutanoic acid 
(375-22-4) 

PFBA C4HF7O2 
 

 P
F

S
A

s 

Perfluorooctane sulfonate acid 
(2795-39-3) 

PFOS C8HF17O3S 
 

Perfluoroheptane sulfonic acid 
(375-92-8) 

PFHpS C7HF15O3S 
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Perfluorohexane sulfonic acid 
(355-46-4) 

PFHxS C6HF13O3S 

Perfluorobutane sulfonic acid 
(375-73-5) 

PFBS C4HF9O3S 
 

 

The high stability of PFASs results in their environmental persistence and 

widespread occurrences. The PFASs are detected in numerous worldwide jurisdictions in 

wastewater (D'Eon et al., 2009; Rayne & Forest, 2009), surface water (Müller et al., 2011; 

Scott et al., 2009), groundwater (Lin et al., 2015b; Schaider et al., 2014), drinking water 

(Pan et al., 2016; Post et al., 2013) at reported concentrations that range from pg L-1 to μg 

L−1 levels and in soils at reported concentrations that range from 29 to 14,300 pg g-1 

(Rankin et al., 2016), and even human serum and milk at reported concentrations ranging 

from 0.07 to 27 µg L-1 (Von Ehrenstein et al., 2009). PFASs can have adverse effects on 

human reproductive and development systems (Goudarzi et al., 2016; Lopez-Espinosa et 

al., 2011). PFOA is reported to be associated with human kidney and testicular cancer 

near a PFAS chemical manufacturing plant (Barry et al., 2013). In addition, PFASs are 

endocrine disrupters; the longer chain PFASs (> C8) are bioaccumulative in wild life and 

humans, the shorter chains are less bioaccumulative (Conder et al., 2008; Martin et al., 

2003). US EPA recommends drinking water advisory levels for PFOA and PFOS of 400 

and 200 ng L-1 (US EPA, 2009a).  

Treatment technologies for removing PFASs from water have been extensively 

investigated, and include advanced oxidation (electrochemical oxidation, photolysis, and 

photocatalysis) (Cho, 2011; Liu et al., 2015c), advanced reduction (by nanoscale ZVI, 

iodide, dithionite) (Arvaniti et al., 2015; Park et al., 2011; Vellanki et al., 2013), sorption 
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(by activated carbon, resins and other sorbents) (Deng et al., 2012; Zhang et al., 2016), 

and microbial treatment (Liu & Liu, 2016; Ochoa-Herrera et al., 2016). During advanced 

oxidation processes, strong oxidizing and non-selective radicals (·OH, SO4·
-, and O2·

-) are 

generated to attack and cleave the contaminant. However, F is the most electronegative 

element; C-F bond is one of the strongest bonds, and the bond becomes stronger with an 

increased number of C-F. This unique saturated C-F structure makes PFASs resistant to 

oxidation, even using O3 and ·OH (Rahman et al., 2014).  

The extreme laboratory conditions such as high temperature, low pH, and high 

pressure greatly enhance the oxidative degradation of PFASs. Zhang et al. (2015) report 

the removal (24 ̶ 52%) of eleven PFASs using an electrochemical oxidation reactor within 

30 min. Yin et al. (2016) report effective degradation (90%) and defluorination (24%) of 

PFOA (initial concentration: 20 µM) using activated persulfate oxidation at pH of 2.0 and 

a temperature of 50 oC. Ochiai et al. (2011) report efficient decomposition of PFCAs in 

aqueous suspensions using a TiO2 photocatalyst.  

During the advanced reduction of PFASs, the highly reactive, non-selective 

reducing hydrated electrons are the main nucleophiles attributed to the reductive 

defluorination of PFASs. Song et al. (2013) demonstrate reductive defluorination of 

PFOA (88.5%) after 24 h by hydrated electrons generated from a sulfite-mediated UV 

photochemical system. Park et al. (2011) report reductive degradation of six PFASs, 

PFCAs, and PFSAs using hydrated electrons generated from photolysis of iodide at 254 

nm. Sorption of PFASs by different sorbents and environmental matrices occur mainly 

through hydrophobic interaction and electrostatic forces (Merino et al., 2016). Effective 

sorption of PFOA, PFOS, and PFHpA has been reported using granular activated carbon 
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(GAC) (Zhang et al., 2016). Due to the high stability of C-F bond, the microbial 

degradation of PFASs is only likely for polyfluoroalkyl substances (containing C-H), but 

less likely for perfluoroalkyl substances (containing C-F) (Liu & Mejia Avendaño, 2013; 

Merino et al., 2016). Liu and Liu (2016) observe the microbial transformation of 

polyfluoroalkyl phosphate esters (PAPs) into PFCAs in activated sludge and soil.  

1.1.6 Why Use Zero-valent Iron, Biochar, Magnetically Recoverable 

Nano-TiO2 Nanoparticles, and Passive Treatment Systems?  

Permeable reactive barriers (PRBs), efficient , cost-effective, long-term stable passive 

treatment technologies, have been extensively used to remediate contaminated 

groundwater and soil (Blowes et al., 2000). Zero valent iron (ZVI) is a strong reducing 

agent extensively used in permeable reactive barriers (PRBs) to remove a large number of 

inorganic contaminants, including As, Cd, Cr, Cu, Hg, U, V, NO3, and SO4 (Blowes et al., 

2000; Blowes et al., 1997; Robertson et al., 2000), and organic contaminants, such as 

halogenated compounds (TCE, DCE, PCE), nitroaromatics, dyes, and phenolic 

compounds from contaminated wastewater, groundwater and soil (Bell et al., 2003; 

Cundy et al., 2008; Gillham & O'Hannesin, 1994; Jeen et al., 2006; Orth & Gillham, 

1996; Scherer et al., 2000). ZVI is abundant in the environment and easy to access. As a 

remediation tool, ZVI can act as a reductant, sorbent, and coagulant to treat a wide range 

of contaminants (Crawford et al., 1993; Matheson & Tratnyek, 1994; Odziemkowski & 

Simpraga, 2004). The high reductive capacity, environmental sustainability, and non-

toxic iron by-products after treatment make ZVI a promising technology for treating a 

range of pollutants in wastewater and groundwater (Sun et al., 2016).      
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Biochar is a carbon rich material produced from the pyrolysis of biomass, such as 

wood, manure or leaves under low oxygen conditions (Lehmann & Joseph, 2009). Its 

high porosity, low density, large surface area and cation exchange capacity, and cost-

effectiveness make biochar practical and effective for stabilizing organic and inorganic 

contaminants in soils (Beesley et al., 2011), and removing various contaminants, such as 

organic compounds, heavy metals from water (Chen et al., 2011a; Xu et al., 2012). 

Inyang and Dickenson (2015) report a review of the use of biochar for removal of a wide 

range of organic contaminants include volatile organic compounds (VOCs), natural 

organic matter (NOM), disinfection by-products (DBPs), perfluoroalkyl acids (PFAAs), 

pesticides, pharmaceutical and personal care products (PPCPs) as well as the associated 

removal mechanisms. Ahmad et al. (2012) report equivalent or stronger sorption capacity 

of BC compared to AC for removing TCE from water. In addition, it has been reported 

that the estimated break-even price for biochar is $246/ton, but $1500/ton for activated 

carbon (Lehmann & Joseph, 2009). Biochar can be a potential substitute sorbent to AC 

due to its competitive or enhanced sorption efficiency and lower production costs 

compared to AC.   

Ultraviolet light (UV) photodegradation catalyzed by nanoTiO2 particles has been 

studied as an effective advanced oxidation process for removing a wide range of 

emerging contaminants from water such as pharmaceuticals (Choina et al., 2010), 

artificial sweeteners (Calza et al., 2013), perchlorate (Ye et al., 2013), and perfluoroalkyl 

substances (Cho, 2011). TiO2 is the most widely studied heterogeneous photocatalyst due 

to its cost effectiveness, inert nature and photo-stability (Gaya & Abdullah, 2008). 

However, nano-TiO2 particles themselves are also emerging contaminants which can 
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cause adverse toxic effects to various aquatic organisms and even humans (Hund-Rinke 

& Simon, 2006; Sharifi et al., 2012); they tend to enter the environment after use if they 

are not properly recovered. Magnetically recoverable nano-TiO2 particles can be a 

substitute for commercial nano-TiO2 particles used in photocatalytic treatment to 

minimize the risk of releasing nano-TiO2 into the environment (Makovec et al., 2011). 

Linley et al. (2014) demonstrate enhanced removal of pharmaceuticals carbamazepine 

and caffeine using a recyclable graphene oxide-supported TiO2 photocatalyst compared to 

commercial P25 TiO2. Similarly, comparable catalytic activity of synthesized magnetic 

TiO2 to P25 TiO2 nanoparticles has been reported in the removal of acetaminophen and 

four PPCPs (Álvarez et al., 2010).  

Passive treatment systems were proposed and used to remove metals and 

neutralize pH of acid mine drainage (Blowes et al., 1995; Blowes et al., 1991; Kleinmann 

& Hedin, 1993). Passive treatment systems are different from active systems (such as 

water treatment plants) which commonly use power and hazardous chemicals (such as 

hydrated lime and ammonia). Successful passive treatment systems can achieve 

competitive treatment results compared to active treatment systems, but are often less 

expensive than active treatment systems because of lower use of resources and 

maintenance. Active treatment systems require continuous inputs of resources and 

maintenance (Ford, 2003). Passive treatment systems include wetlands, bioreactors, and 

permeable reactive barriers (Benner et al., 1997; Blowes et al., 1995; Blowes et al., 1994; 

Johnson & Hallberg, 2005).  
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1.2 Research Hypotheses and Objectives 

1.2.1 Research Hypotheses 

Five main research hypotheses are proposed in this thesis; each hypothesis corresponds to 

the research study from Chapters 2 to 6: 

Hypothesis One (for Chapter 2): 

Passive treatment systems containing ZVI and wood chips are an effective approach for 

simultaneously removing nitrate, sulfate, and perchlorate from water under dynamic flow 

conditions.  

 Nitrate is removed by zero-valent iron through reduction and removed by wood 

chips (organic carbon, OC) through denitrification.  

 Sulfate and perchlorate are removed by OC through biological reduction of sulfate 

to sulfide and of perchlorate to chloride.   

Hypothesis Two (for Chapter 3): 

Effluents from WWTPs are the primary sources of the emerging contaminants (ECs) in 

the study area. The ECs are correlated with each other and can be used as potential co-

tracers of municipal wastewater in a receiving river. 

Hypothesis Three (for Chapter 4): 

UV photocatalysis using laboratory-synthesized magnetically recoverable TiO2 and 

commercial P25 TiO2 nanoparticles are effective for removing artificial sweetener 

acesulfame-K and pharmaceuticals from water.  
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 Target ECs are removed to varying extents during UV photocatalysis due to their 

different chemical structures (functional groups).  

 Magnetically recoverable TiO2 can be removed from water through magnetic 

separation.  

Hypothesis Four (for Chapter 5): 

Passive treatment systems containing ZVI, biochar, and a mixture of ZVI and biochar are 

an effective approach for simultaneously removing pharmaceuticals, artificial sweeteners, 

and perfluoroalkyl substances from water under dynamic flow conditions. 

 Target ECs are removed to differing degrees and removal mechanisms are likely 

related to their different physiochemical properties (pKa and log Kow) and 

chemical structures (functional groups).  

 Target ECs with redox sensitive and halogen functional groups are removed by 

ZVI through reduction and dehalogenation.  

 Target ECs are more effectively removed by the combination of ZVI and biochar 

(through both reduction and sorption) than by ZVI alone or biochar alone.   

Hypothesis Five (for Chapter 6): 

Removal of perfluoroalkyl substances PFOA and PFOS by ZVI is through reductive 

defluorination. The hydrophobicity of C-F bonds in PFOA and PFOS might result in 

efficient removal of PFOA and PFOS by biochar through hydrophobic interaction.   
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1.2.2 Research Objectives 

The primary objectives of this research are to evaluate the effectiveness of passive 

treatment systems using ZVI and organic carbon (wood chips and biochar) and UV 

photocatalytic treatment technology for removing emerging contaminants, perchlorate, 

pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances (PFASs) 

from water. In addition, the use of artificial sweeteners and pharmaceutical compounds as 

co-tracers of municipal wastewater was investigated in a receiving river. The target 

pharmaceutical compounds include carbamazepine (CBZ), caffeine (CAF), 

sulfamethoxazole (SMX), 3,4-methylenedioxyamphetamine (MDA), 3,4-

methylenedioxymethamphetamine (MDMA), ibuprofen (IBU), gemfibrozil (GEM), and 

naproxen (NAP). The target artificial sweeteners include acesulfame-K (ACE-K), 

cyclamate (CYC), saccharin (SAC), and sucralose (SCL). The target PFASs include 

PFCAs perfluorooctanoic acid (PFOA, C8-PFCA), perfluoroheptanoic acid (PFHpA, C7-

PFCA), perfluorohexanoic acid (PFHxA, C6-PFCA) and PFSAs perfluorooctane sulfonic 

acid (PFOS, C8-PFSA), perfluoroheptane sulfonic acid (PFHpS, C7-PFSA), 

perfluorohexane sulfonic acid (PFHxS, C6-PFSA), and perfluorobutane sulfonic acid 

(PFBS, C4-PFSA). These emerging contaminants were selected because of their 

widespread occurrence and persistence in the environment and limited information is 

available regarding their treatability. These compounds were also selected to represent 

different types of emerging contaminants due to their varying physiochemical properties 

such as pKa, log Kow, and type of functional groups. Specific research objectives are as 

follows:  
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● Evaluate the effectiveness of a passive treatment system composed of ZVI and 

wood chips for removing perchlorate, nitrate, and sulfate under dynamic flow 

conditions.  

● Track the emerging contaminants artificial sweetener acesulfame-K and a suite of 

pharmaceutical compounds downstream from two WWTPs and assess the 

potential use of these compounds as co-tracers of municipal wastewater in a 

receiving river.  

● Evaluate the effectiveness of UV photocatalytic treatment using recoverable TiO2 

nanoparticles for removing artificial sweetener acesulfame-K and a suite of 

pharmaceutical compounds from water compared to commercial P25 TiO2 

nanoparticles.  

● Evaluate the effectiveness of a passive treatment system composed of ZVI and 

biochar for removing pharmaceutical compounds, artificial sweeteners, and 

perfluoroalkyl substances from water under dynamic flow conditions.  

● Investigate the removal mechanisms of perfluoroalkyl substances PFOA and 

PFOS by reactive media ZVI and BC.  

1.3 Thesis Organization 

This thesis is composed of seven chapters. Chapter 1 presents an overall research 

introduction and objectives. Chapters 2, 3, 4, 5 and 6 are five main research papers for 

publication in international peer-reviewed journals that are related to the objectives 

outlined in the previous section. Chapter 2 describes four column experiments conducted 
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to evaluate the effectiveness of ZVI, organic C (OC), and a mixture of (ZVI + OC) for 

removing perchlorate, nitrate, and sulfate from water. Chapter 3 investigates the transport 

of emerging contaminants artificial sweetener acesulfame-K and pharmaceutical 

compounds downstream from two WWTPs effluents and assesses the potential use of 

these compounds as co-tracers of municipal wastewater in a receiving river. Chapter 4 

describes a series of laboratory batch experiments conducted to evaluate the UV 

photocatalytic treatment using recoverable TiO2 nanoparticles (MST and GO TiO2 

nanoparticles) for removing artificial sweetener acesulfame-K and pharmaceutical 

compounds from water compared to commercial P25 TiO2 nanoparticles. Chapter 5 

describes four column experiments conducted to evaluate the potential of ZVI, biochar 

(BC), and a mixture of (ZVI + OC) for simultaneous removal of pharmaceutical 

compounds, artificial sweeteners, and perfluoroalkyl substances from water. Chapter 6 

describes a series of batch experiments conducted to investigate the removal mechanisms 

of perfluoroalkyl substances PFOA and PFOS by ZVI and BC. Chapter 7 summarizes the 

main findings and scientific contributions of the above five research papers and gives 

recommendations for future work. Supplementary information related to Chapter 2, 3, 4, 

5 and 6 are included in the Appendices A, B, C, D, E.    
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Chapter 2: Treatment of Dissolved 

Perchlorate, Nitrate, and Sulfate Using 

Zero-Valent Iron and Organic Carbon 
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2.1 Executive Summary 

Waters containing ClO4
- and dissolved NO3

-, derived from detonated explosives and solid 

propellants, often also contain elevated concentrations of other dissolved constituents, 

including SO4
2-. Four column experiments, containing mixtures of silica sand, zero-valent 

Fe (ZVI) and organic C (OC) were conducted to evaluate the potential for simultaneous 

removal of NO3
-, SO4

2- and ClO4
-. Initially, the flow rate was maintained at 0.5 pore 

volume (PV) d-1, and then decreased to 0.1 PV d-1 after 100 PV of flow. Nitrate 

concentrations decreased from 10.8 mg L-1 (NO3-N) to trace levels through NO3
- 

reduction to NH4
+ using ZVI alone, and through denitrification using OC. Observations 

from the mixture of ZVI and OC suggest a combination of nitrate reduction and 

denitrification. Up to 71% of input SO4
2- (24.5 ± 3.5 mg L-1) was removed in the column 

containing OC and more than 99.7% of the input perchlorate (857 ± 63 μg L-1) was 

removed by the OC- and (ZVI + OC)-containing columns as the flow rate was maintained 

at 0.1 PV d-1. Nitrate and ClO4
- removal followed first-order and zero-order rates, 

respectively. Nitrate > 2 mg L-1 NO3-N inhibited ClO4
- removal in the OC-containing 

column but not in the (ZVI + OC)-containing column. Sulfate did not inhibit ClO4
-

degradation within any of the columns.  
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2.2 Introduction 

Perchlorate (ClO4
‐) is a common contaminant in groundwater and surface water. 

Approximately 90% of perchlorate salts are manufactured as NH4ClO4, which is widely 

used in large volumes of solid propellants for rockets, missiles, explosives, and 

pyrotechnics. A variety of non-military sources, such as the use and manufacture of road 

flares, HClO4 and HClO3, fireworks displays, and blasting agents used in mining and 

construction, can also cause widespread, low concentration ClO4
‐ contamination in water. 

In addition to these anthropogenic sources, naturally-occurring ClO4
‐ generated via 

atmospheric processes and contained in NO3 fertilizers and some natural minerals also 

contributes low levels of ClO4
‐ in some parts of the world (Ward, 2008). 

Perchlorate is highly soluble, mobile, and recalcitrant in the environment. It is 

potentially toxic to various forms of life, with low concentrations inhibiting iodide uptake 

in human thyroid and animal thyroid glands (Leung et al., 2010). Due to these health 

impacts, the US EPA adopted the National Research Council (NRC) recommended 

reference dose of 0.0007 mg kg‐1 per day for perchlorate as an interim health limit in 

2005, which translates to a drinking water equivalent level (DWEL) of 24.5 µg L‐1. 

Physical-chemical treatment technologies, such as ion exchange, C adsorption, and 

advanced oxidation are effective for treating a range of contaminants, but are less cost-

efficient and effective for removing ClO4
‐ from water (Srinivasan & Sorial, 2009). Ion-

exchange, a widely accepted water treatment technology, can effectively remove ClO4
‐ 

from water; however, the highly saline (7–12%) brine generated during the ion-exchange 

process requires costly management before disposal (Okeke et al., 2002). Microbial 
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reduction of perchlorate is an area of intense interest because this strategy is relatively 

cost effective, environmentally compatible, and has shown promise for large scale 

applications (Gal et al., 2008; Okeke & Frankenberger Jr., 2005). The hazardous ClO4
‐ is 

converted into two innocuous compounds—Cl‐ and O2—catalyzed by at least two 

separate enzymes (Xu et al., 2003a).  

Perchlorate and nitrate are often found as co-contaminants in water, as a large 

number of propellants, blasting agents, and explosives contain perchlorate as well as 

nitrogen-containing compounds. Moreover, NO3–containing compounds, such as KNO3 

and NaNO3, are widely used in agriculture and ClO4
‐–containing pyrotechnics. High 

concentrations of SO4
2‐, derived from S2‐ oxidation at some mining sites, also require 

management. Because ClO4
‐– and NO3–containing blasting agents and explosives are 

used at mine sites, water containing co-mingled ClO4
‐, NO3

‐, and SO4
2‐ can develop 

(Bailey et al., 2013; Ward, 2008). Bioremediation of ClO4
‐– and NO3

‐–contaminated 

water has been widely studied using various electron donors, such as H2 or ethyl acetate 

gases (Evans & Trute, 2006), edible oil (Borden, 2007; Hunter, 2002), compost and 

mulch mixtures (Wang et al., 2013), and wood particle media (Robertson et al., 2007). 

The purpose of this study was to identify an effective, economical, and feasible 

technology to remediate ClO4
‐–, NO3

‐–, and SO4
2‐–contaminated waters associated with 

mining and blasting sites. A series of column experiments was conducted using mixtures 

of zero-valent Fe (ZVI) and wood chips (OC) as reactive media to remove co-mingled 

ClO4
‐, NO3

‐, and SO4
2‐ in simulated groundwater.  
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2.3 Material and Methods 

2.3.1 Column Design and Experimental Setup 

Four acrylic columns were used, each 30 cm in length with an internal diameter of 5 cm. 

Influent ports were located at the base of each column, and effluent ports were located at 

the top of each column for discharge of the effluent solution and for sample collection. In 

addition, 13 equally spaced sampling ports were installed at approximately 2.1-cm 

intervals along the length of the columns. Both the bottom and top layers of the four 

columns were packed with a 1.0 cm thick layer of silica sand as a non-reactive material to 

separate the reactive mixture from the influent and effluent end ports.    

Column 1 was packed with 100% silica sand (SS) as a control. Column packings 

were composed of 50% (v/v) granular ZVI with the balance as SS (Column 2), 50% (v/v) 

wood chips (OC) with the balance as SS (Column 3), and a mixture of 10%  (v/v) ZVI 

and 40% (v/v) OC adjusted with 50% (v/v) SS (Column 4). The granular ZVI (0.17–1.41 

mm) was obtained from Connelly-GPM, Inc. (Chicago, USA). The silica sand (0.6–0.8 

mm) was obtained from the Silica Company (Ottawa, USA). The wood chips (~1–9.5 

mm, deciduous hardwood) were obtained from a lumber producer in Waterloo, ON. 

Before initiating the experiments, all four columns were placed in an anaerobic glove box 

(COY, Ltd., Grass Lake, USA) that contained 5% H2 and 95% N2. The columns were 

flushed with CO2 (g), which is more soluble in water than N2 and O2, for 24 h to displace 

atmospheric gases from the void pore space of the column packing and enhance 

saturation of the packing material. The columns were then wet with simulated 

groundwater, composed of CaCO3 saturated water, over a 48-h period. 

A conservative tracer test was performed to determine the flow and transport 



32 
 

characteristics of each column. The computer code CXTFIT 2.0 (Toride et al., 1995), a 

series of analytical solutions to the one-dimensional advection-dispersion equation with 

non-linear, least-squares parameter optimization, was used to determine the average 

linear velocities and dispersion coefficients from the column effluent concentration data. 

The flow rates of the column experiments were approximately 0.5 pore volumes (PV) d-1 

during the conservative tracer test.    

The input solution was prepared by adding NO3
‐, SO4

2‐, and ClO4
‐ to the CaCO3 

saturated water as Na salts to obtain concentrations of 10.8 ± 0.3 mg L‐1 NO3-N, 24.5 ± 

3.5 mg L‐1 SO4
2‐, and 857 ± 63 µg L‐1 ClO4

‐. The ratios of concentrations were based on 

measurements of effluent from test-scale waste-rock piles (Bailey et al., 2013). The 

purpose of using CaCO3 saturated water as the input solution is to simulate the presence 

of HCO3
‐ and CO3

2‐, which are common in natural surface water and groundwater. Before 

introducing the input solution, Columns 3 (OC) and 4 (ZVI + OC) were saturated with a 

solution containing 5% (v/v) sodium lactate for 3 d to promote the growth of 

microorganisms (Lindsay et al., 2011). The input solution initially was displaced through 

the four columns from the bottom to the top at a flow rate of 0.5 PV d‐1 during the first 

stage of the experiment. During the second stage of the experiment, the flow rates were 

decreased to 0.1 PV d‐1 (after 99 PV in Column 2, 112 PV in Column 3, and 110 PV in 

Column 4) to evaluate the effect of residence time on contaminant removal. The selected 

flow rates resulted in a range of average groundwater velocities that are typical of 

shallow aquifers. Three profiles were collected along the columns during the course of 

the experiments: after 95.4, 115, and 129 PV of flow passed through Column 2 (ZVI); 

after 108, 132, and 151 PV of flow through Column 3 (OC); and after 106, 128, and 144 



33 
 

PV of flow through Column 4 (ZVI + OC). During the experiment, there were no obvious 

signs of clogging or changes in hydraulic conductivity. 

2.3.2 Sample Collection and Analytical Methods 

Water samples were collected using 30-mL glass syringes attached directly to the ports 

along the length of the columns and to the effluent ports so that the syringes were filled at 

the same rate as the input solution being introduced to the columns. Except where noted, 

all samples were passed through 0.45-µm cellulose acetate filters prior to measurement. 

The pH, Eh, and alkalinity were determined immediately after sampling. All other 

samples were kept chilled (< 4°C) until analysis within 1 mo of collection.  

Values of pH and Eh were measured on unfiltered samples in sealed cells to 

minimize O2 exposure. The pH measurements were made using a Ross combination glass 

electrode (Orion 815600) calibrated using standard pH 4.0 and 7.0 buffers and then 

checked against a pH 10.0 buffer. The Eh measurements were made using a Pt-billeted 

Ag/AgCl combination electrode (Orion 9678BNWP). The performance of the electrode 

was checked using Zobell’s (Nordstrom, 1977) and Light’s (Light, 1972) solutions before 

and after each measurement. Measurements were corrected to the standard H2 electrode 

(SHE). Alkalinity was determined using a Hach digital titrator with bromcresol 

green/methyl red indicator and 0.08 mol L-1 H2SO4.  

The concentrations of major anions (Br‐, NO3
‐, NO2

‐, Cl‐ and SO4
2‐) were determined 

by ion chromatography (IC; DX600, Dionex, Sunnyvale, USA). Ammonia (NH3-N) 

concentrations were determined using a Hach spectrophotometer DR/8400 following the 

salicylate method (APHA, 2005a). Dissolved H2S was determined using the methylene 

blue spectrophotometric method (Lindsay & Baedecker, 1988).  
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Filtered 20-mL samples were collected separately in 30-mL polyethylene bottles for 

ClO4
‐ analysis. A headspace was maintained in these sample bottles to minimize the 

possibility of anaerobic conditions developing during storage. Perchlorate was analyzed 

following the method described by Snyder et al. (2005) with the addition of equal 

aliquots of isotopically enriched sodium perchlorate (NaCl18O4, Cambridge Isotope 

Laboratories, Andover, USA) to all the samples and calibration standards as an internal 

standard (IS). All water samples were prepared by elution through one OnGuard-II Ba 

cartridge and one OnGuard-II H cartridge (Dionex, Sunnyvale, USA) in series to remove 

SO4
2‐ and CO3

2‐, respectively. Perchlorate was analyzed by high performance liquid 

chromatography (Agilent 1100, Agilent Technologies) followed by electrospray tandem 

mass spectrometry (4000 Q TRAP, Applied Biosystems) and detected by negative 

electrospray ionization mass spectrometry using multiple reaction monitoring detection. 

The instrument and practical detection limits were 0.02 and 0.05 μg L‐1, respectively. 

Quality assurance/quality control results showed that relative method recovery over the 

entire standard curve (0.5 ̶ 100 μg L‐1) fell into the range of 98 to 110%, and the relative 

internal standard recovery for unknown samples was 71 to 118%.     

2.4 Results and Discussion  

2.4.1 Conservative Tracer Test and Control Column Results 

The transport model CXTFIT 2.0 was used to determine the velocity and dispersion 

coefficient for each column during the first stage of the experiments. The fitted velocities 

estimated by CXTFIT using the Br‐ breakthrough curve data ranged from 40.3 to 54.3 m 

yr‐1 for the four columns. These values were in agreement with the average linear 

velocities calculated from porosity and flow volume measurements, which ranged from 
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49.1 to 59.6 m yr‐1, with the exception of Column 2 (ZVI). The dispersion coefficients 

ranged from 0.1 to 1.2 m2 yr‐1 for the four columns (Table 2.1). Measurements made on 

the control column indicated that transport of ClO4
‐, NO3

‐ and SO4
2‐ was conservative 

(Figure 2.1)   

2.4.2 Geochemistry Conditions of Columns 

The three pH profiles within Columns 2-4 measured at different times almost overlapped, 

exhibiting similar values with distance (Figure 2.2). The influent water pH value was 8.3 

throughout the experiments. The average pH value within Column 2 (ZVI) was 9.7. The 

increase in pH was due to the reduction of water by ZVI. The average pH in Column 4 

(ZVI + OC) was slightly lower at 8.6. The pH of Column 3 (OC), which did not contain 

ZVI, was much lower at pH 7.4. Similarly, the average pH of the column effluent was 9.7 

in Column 2 and 7.2 in Column 3, remaining within 0.5 pH units throughout the entire 

experiment (Figure 2.3). The effluent pH of Column 4 increased quickly from below 7 to 

about 9.5 during the first 10 PVs and then decreased to about 8.6 for the remainder of the 

first stage of the experiment.  

The three alkalinity profiles for each of Columns 2, 3, and 4 indicated similar 

average values and changing trends, with slight increases as the input solution advanced 

through the columns (Figure 2.2). Total alkalinities with an average value of 96 mg L‐1 

(as CaCO3) were generated in Column 2 (ZVI) effluent; in the effluent of the columns 

containing OC, slightly higher alkalinity values of 119 mg L‐1 (as CaCO3) in Column 3 

(OC) and 113 mg L‐1 (as CaCO3) in Column 4 (ZVI + OC) were observed (Figure 2.3). 

The values of Eh in Columns 2, 3, and 4 ranged from moderately oxidizing to 
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moderately reducing conditions over the course of the experiments, with lower values 

observed during the second stage of the experiments when the flow rates were lower 

(Figure 2.2). Higher average Eh values of ~ 300 mV were observed within Column 3 (OC) 

relative to the values observed in the middle distances in Columns 2 (ZVI, -200 mV) and 

4 (ZVI + OC, -400 mV). Addition of the lactate solution to Columns 3 and 4 likely 

resulted in the relatively low Eh and high alkalinity values in the column effluent at the 

beginning of the first stage of the experiment compared to Column 2 (Figure 2.3). In the 

effluent of Columns 2 and 4 (Figure 2.3), the Eh values were relatively constant 

throughout the experiment. The Eh values in the effluent of Column 3 gradually increased 

from approximately 40 mV at the 35 PV to 460 mV at 110 PV in the first stage of the 

experiment, and then decreased to the average value of 200 mV in the second stage of the 

experiment. These decreases in Eh values were likely due to the decrease in flow rate 

from 0.5 PV d‐1 in the first stage of the experiment to 0.1 PV d‐1 in the second stage of the 

experiment.  

2.4.3 Removal of Nitrate, Sulfate, and Perchlorate in Columns      

Reduction of NO3
‐ by ZVI has been observed to proceed rapidly through NO2

‐ to NH4
+. 

The proposed pathway for the overall reaction is (Rahman & Agrawal, 1997):  

                   NO3
- + 4Fe0 + 10H+ → 4Fe2+ + NH4

+ + 3H2O                                   (2.1) 

Nitrate was almost completely removed in the column containing ZVI (Column 2) 

from the average input concentration of 10.8 mg L‐1 (NO3-N) to a trace concentration. 

Nitrite concentrations remained < 0.02 mg L‐1 (NO2-N) and the average NH4
+ 

concentration was 10.7 mg L‐1 (NH3–N) indicating that NH4
+ was the principal byproduct 

throughout the course of the experiment (Figure 2.1). The concentrations of total N (sum 
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of NO3-N, NO2-N, and NH3-N) in Column 2 (ZVI) effluent were consistent with the 

input NO3
− concentrations, indicating complete conversion of NO3

‐ to NH4
+.  

Bacterially mediated denitrification by OC such as wood waste as a C source is 

thermodynamically favored and leads to the stepwise reduction of NO3
‐ to form N2 gas: 

           NO3
−

aq) → NO2
−

 (aq) → NO(enzyme complex) → N2O(gas) → N2(gas)                        (2.2) 

The overall reaction can be expressed as (Appelo & Postma, 2005):   

            5CH2O + 4NO3
− → 2N2 + 5HCO3

− + H+ + 2H2O                                 (2.3) 

The removal of NO3
‐ in Column 3 containing OC was variable (Figure 2.1). In the first 

stage of the experiment (108 PV) at a flow rate of 0.5 PV d‐1, up to 2.6 mg L‐1 NO3-N 

remained in the effluent. In addition, up to 2.4 mg L‐1 NO2-N, an intermediate reaction 

product, was observed in the effluent in the first stage of the experiment. However, NO3
‐ 

was more completely removed in the second stage of the experiment when the flow rate 

decreased to 0.1 PV d‐1, from an average input concentration of 10.8 to < 0.02 mg L‐1 

(NO3-N) without measurable NO2
‐ observed. A trace of NH3 (average value 0.1 mg L‐1 

NH3-N) was observed in Column 3 effluent samples, perhaps due to the decomposition of 

OC. In the first stage of the experiment, the total N concentrations in the Column 3 (OC) 

effluent progressively rose from 0.1 to 5.2 mg L‐1. The increase in total N concentrations 

is predominantly due to an increase in the concentrations of NO3
‐ and NO2

‐, indicating 

that the increase in total N was due to incomplete denitrification, possibly due to a 

depletion of labile OC. In the second stage of the experiment the total N concentration 

decreased to as low as 0.7 mg L‐1 N, suggesting that the rate of OC consumption was 

sufficient to result in complete denitrification during this stage.  

The mixture of ZVI + OC in Column 4 resulted in extensive removal of NO3
‐, no 
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detectable release of NO2
‐, and the release of 9.5 mg L‐1 of NH3-N at the beginning of the 

experiment that gradually decreased to 6.6 mg L‐1 at 100 PV (Figure 2.1). This decreasing 

trend suggests that NO3
‐ reduction by ZVI predominated early in the experiment and that 

denitrification became established, resulting in partial conversion of NO3
‐ to N2(g). In 

stage 2 the average total N concentration was 5.5 mg L‐1, almost exclusively as NH4
+, 

indicating an increase in the extent of denitrification as the residence time increased, 

resulting in approximately equal removal by NO3
‐ reduction and denitrification. Less 

NH4
+ is observed when ZVI was used in conjunction with a microbial consortia to reduce 

NO3
‐ (Till et al., 1998).  

Effluent SO4
2‐ concentrations did not decrease in the columns containing ZVI 

(Column 2) or the mixture of ZVI + OC (Column 4) during the experiment (Figure 2.1). 

Sulfate was observed to break through Column 3 (OC) in the first stage of the experiment; 

however, effluent SO4
2‐ concentrations in Column 3 decreased from 24.7 mg L‐1 after 108 

PV in the first stage of the experiment to 7.1 mg L‐1 after 132 PV in the second stage of 

the experiment (when the flow rate slowed), with approximately 71% of the input SO4
2‐ 

(24.5 mg L‐1) removed. The effluent SO4
2‐ concentration then increased to 15.0 mg L‐1 

after 151 PV in the second stage of the experiment. This SO4
2‐ removal is attributed to the 

onset of biologically mediated SO4
2‐ reduction coupled to OC oxidation (Blowes et al., 

2000):  

                                  2CH2O + SO4
2- → 2HCO3

-+ H2S                                     (2.4) 

The decrease in the rate of SO4
2‐ removal over time was probably due to depletion of 

labile OC (C, N, and P source for microbial growth) over the long-term operation of the 

experiment. The inhibition of SO4
2‐ reduction observed in Column 4 (ZVI + OC) might 
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be attributed to the higher pH conditions developed in this column compared to Column 3 

(OC) (Figures 2.2 and 2.3). 

Although reduction of ClO4
‐ by ZVI is thermodynamically favored, with ∆G°= -

596.27 kcal mol‐1, ClO4
‐ was not removed by ZVI in Column 2 throughout the experiment; 

this is likely due to the high activation energy required for ClO4
‐ reduction (Yu et al., 

2006). The effluent ClO4
‐ concentration was 857 ± 63 μg L‐1, similar to the input 

concentration (Figure 2.1). The total effluent Cl concentrations (sum of ClO4
‐ and Cl in 

μmol L‐1) in Column 2 (ZVI) were much higher than the input ClO4
‐ concentrations, this 

difference may be due to the release of Cl initially present on the ZVI (Figure 2.4). The 

presence of Cl in the first pore volumes of flow likely represented residual from the ZVI 

manufacturing processes. 

The effluent concentrations of ClO4
‐ in Column 3 decreased from 547 μg L‐1 after 

108 PV in the first stage of the experiment to 28 μg L‐1 after 151 PV in the second stage 

of the experiment (Figure 2.1). Similarly, in the second stage of the experiment when the 

flow rate was lowered, OC combined with ZVI exhibited more uniform removal of ClO4
‐ 

in Column 4 than Column 3. The concentration of ClO4
‐ in the effluent of Column 4 

decreased from 679 μg L‐1 after 106 PV in the first stage of the experiment to 1.37 μg L‐1 

after 144 PV in the second stage of the experiment. Previous studies have suggested the 

pathway for biological degradation of ClO4
‐ (Rikken et al., 1996) as shown in Figure 2.5.  

 The first two reactions are catalyzed by (per)chlorate reductase. Chlorite 

dismutase catalyzes the disproportionation of ClO2
‐ into Cl‐ and O2 (Okeke & 

Frankenberger Jr., 2003). The OC probably provided sufficient C and N for microbial 

degradation of ClO4
‐ in Columns 3 (OC) and 4 (ZVI + OC); however, complete removal 
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of ClO4
‐ was not consistently observed until the second stage of the experiment (Figure 

2.1). Extensive removal of ClO4
‐ initially was observed in Column 3, but the rate of ClO4

‐ 

removal declined after 30 PVs. After the flow rate decreased, complete removal of ClO4
‐ 

was observed. Initially, little ClO4
‐ removal was observed in Column 4. More extensive 

removal was observed after 10 PVs, suggesting a period of acclimation was required 

before ClO4
‐ reduction was established. After 60 PVs, the rate of ClO4

‐ removal declined, 

suggesting depletion of labile OC. During stage 2 of the experiment, complete removal of 

ClO4
‐ was observed, suggesting that the rate of OC fermentation was sufficient to provide 

labile OC (C, N, and P source for microbial growth) for sustained biological ClO4
‐ 

reduction.  

Chloride, the final potential product of ClO4
‐ biological degradation, should be 

released at an amount equivalent to the moles of ClO4
‐ removed. In contrast to Column 2 

(ZVI), the concentrations of Cl in the first 2 PVs effluents of Columns 3 (OC) and 4 (ZVI 

+ OC) were below the detection limit (0.01 mg L‐1), likely due to the flushing and 

saturation of the columns prior to the experiment and the small fraction (10% v/v) of ZVI 

in Column 4 (ZVI + OC) compared to that of ZVI (50% v/v) in Column 2 (ZVI). The 

changes in Cl‐ concentrations in both Columns 3 (OC) and 4 (ZVI + OC) effluent were 

inversely correlated to ClO4
‐ concentrations. Very consistent concentrations of total 

effluent Cl (sum of ClO4
- and Cl‐ in μmol L‐1) relative to the input ClO4

‐ concentrations 

for these columns indicated that the expected mass of Cl was accounted for in both 

Columns 3 and 4 (Figure 2.4). 

2.4.4 Removal Rates of Nitrate and Perchlorate within Columns 

The two NO3
‐ and ClO4

‐ profiles collected for each of Columns 2, 3, and 4 in the second 
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stage of the experiment were similar (Figure 2.6). Therefore, only the profiles measured 

in the first stage of the experiment (95.4 PV for Column 2; 108 PV for Column 3, and 

106 PV for Column 4) and one of the profiles measured in the second stage of the 

experiment (115 PV for Column 2; 132 PV for Column 3; and 128 PV for Column 4) 

were used for calculation of removal rate parameters.  

Nitrate removal rates within Columns 2, 3, and 4 were consistent with a first-order 

rate model (Figure 2.7) as reported in other studies (Appelo & Postma, 2005; Tan et al., 

2004):  

                                                            C = C0 exp(-k1 t)                                                  (2.5) 

                                                          RN = k1 C                                                          (2.6) 

where C is the NO3
‐ concentration (mg L‐1), C0 is the initial NO3

‐ concentration (mg L‐1 or 

mmol L‐1), k1 is a first-order rate constant (d‐1), t is the residence time (d), and RN is the 

reaction rate (removal rate) of nitrate (mg L‐1 d‐1 or mmol L‐1 d‐1). The best-fit NO3
‐ 

degradation equation based on calculated residuals for each column (SigmaPlot, SPSS 

Inc.) was selected from the two first-order expressions derived from the two stages of the 

experiment.  

Nitrate removal by ZVI within Column 2 (ZVI) followed a first order removal model, 

with removal rates of RN,2 = 0.015C mmol L‐1 d‐1 in the first stage of the experiment and 

RN,2 = 0.011C mmol L‐1 d‐1 in the second stage of the experiment (Table 2.2; Figure 2.7); 

however, neither of these equations could adequately describe the degradation curves in 

both experimental stages. An average first-order removal rate of RN,2 = 0.013C mmol L‐1 

d‐1, which fell between the first and second stage data sets, is recommended to best 

describe the NO3
‐ removal within Column 2 (ZVI).  
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The denitrification rate within Column 3 (OC) can be described by: RN,3 = 0.010C 

mmol L‐1 d‐1 (Table 2.2; Figure 2.7). Both zero-order and first-order rate expressions have 

been observed to provide reasonable descriptions of the rate of denitrification (R2 > 0.86) 

(Tan et al., 2004). Similar findings were observed in this study: NO3
‐ removal by ZVI and 

OC in Column 4 in both first and second stages of the experiment were consistent with 

both the first-order and zero-order rate equations in terms of R2 (> 0.94) (Table 2.2 and 

Figure 2.7). However, to maintain consistency between the NO3
‐ removal rates for 

Column 4 (ZVI + OC) and those for Column 2 (ZVI) and Column 3 (OC), RN,4 = 0.025C 

mmol L‐1 d‐1 was used to describe the rates of NO3
‐ removal in Column 4 throughout the 

experiment. Given the same initial concentration, NO3
‐ was removed much more rapidly 

in Column 4 than in Columns 2 or 3 (Figure 2.6).   

Perchlorate removal in some bioreactors has been observed to follow first-order 

reaction rates with respect to ClO4
‐ concentration (Min et al., 2004). However, in this 

study, ClO4
‐ removal in Columns 3 (OC) and 4 (ZVI + OC) followed zero-order rate 

equations (Figure 2.8):  

                                                                  0C k t                                                     (2.7) 

where C is the ClO4
‐ concentration (µg L‐1 or µmol L‐1), t is the residence time (d), and k0 

is a zero-order rate constant for ClO4
‐ removal (µg L‐1 d‐1 or µmol L‐1 d‐1). The best fit 

equation for ClO4
‐ removal, based on least squares regression, was also obtained using a 

zero-order rate expression derived from the two stages of the experiment. The ClO4
‐ 

removal rate within Column 3 (OC) was RP,3 = 0.61 µmol L‐1 d‐1 for 0 < x < 2.9 d (derived 

from the distance between the column input and the sampling point) and NO3
‐ 

concentration > 2 mg L‐1 (NO3-N). The ClO4
‐ removal rates were RP,3 = 1.95 µmol L‐1 d‐1 
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in the first stage of the experiment and RP,3 = 1.84 µmol L‐1 d‐1 in the second stage of the 

experiment, where 2.9 < t < 6.7 d (for a NO3
‐ concentration < 2 mg L‐1 NO3–N). Neither 

of these removal rates adequately described the observations from both experimental 

stages. An average zeroth-order removal rate of RP,3 = 1.89 µmol L‐1 d‐1 was selected to 

describe the ClO4
‐ removal rate within Column 3 (OC) for 2.9 < t < 6.7 d and NO3

‐ < 2 

mg L‐1 NO3-N. The overall ClO4
‐ removal rate within Column 4 (ZVI + OC) was RP,4 = 

1.14 µmol L‐1 d‐1 (Table 2.2; Figures 2.6 and 2.8). The ClO4
‐ removal rate for the second 

stage of the Column 4 experiment was RP,4 = 0.94 µmol L‐1 d‐1 for 0 < t < 2.0 d and NO3
‐ 

concentration > 2 mg L‐1 NO3-N. A statistical comparison of the ClO4
‐ removal rates for 

Columns 3 (OC) and 4 (ZVI + OC) indicated that ClO4
‐ was removed more rapidly in 

Column 4 (ZVI + OC) than in Column 3 (OC) for NO3
‐ > 2 mg L‐1 (NO3-N) in the second 

stage of the experiment (Figures 2.6 and 2.8), but more rapidly in Column 3 for NO3
‐ < 2 

mg L‐1 NO3-N.  

2.4.5 Effect of Nitrate and Sulfate on Perchlorate Removal Rate 

The impact of NO3
‐ on ClO4

‐ reduction is important because NO3
‐ is a common co-

contaminant in ClO4
‐-contaminated water (Xu et al., 2003a). Most ClO4

‐ reducing bacteria 

(PRB) are also denitrifiers, and the simultaneous removal of NO3
‐ and ClO4

‐ from 

contaminated waters has been observed (Logan & LaPoint, 2002; Min et al., 2004). 

Likewise, the NO3
‐ and ClO4

‐ within Columns 3 (OC) and 4 (ZVI + OC) were removed 

simultaneously. However, the overall NO3
‐ removal within both Columns 3 and 4 

occurred at a more rapid rate than ClO4
‐ removal (Figure 2.6), which may have been due 

to competition for common electron donors (organic matter) between the two removal 

processes (Chung et al., 2010). The selection of electron acceptors by microorganisms is 
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competitive to maximize the energy yield in a redox reaction. Nitrate reduction was found 

more thermodynamically favored over ClO4
‐ reduction due to the lower electron transfer 

requirement for NO3
‐ reduction compared to that for ClO4

‐ reduction (Chung et al., 2010). 

The ClO4
‐ reducing bacteria in preference of O2 or NO3

‐ over ClO4
‐ was also reported 

(Roldan et al., 1994). Moreover, if the same enzyme in a microorganism was used for 

both NO3
‐ and ClO4

‐ reductions, NO3
‐ were likely to inhibit ClO4

‐ reduction and ClO4
‐ 

also likely to inhibit NO3
‐ reduction, depending on the initial concentrations of NO3

‐ and 

ClO4
‐ (Giblin & Frankenberger W.T, 2001). Complete NO3

‐ removal within Columns 3 

and 4 was observed prior to complete ClO4
‐ removal (Figure 2.6), which is similar to 

other studies (Min et al., 2004).  

 Nitrate has different effects on ClO4
‐ removal rates. Nitrate was found to inhibit 

the ClO4
‐ reduction rate in some studies (Brown et al., 2002; Xu et al., 2003a) but not 

others (Giblin et al., 2000). In this study, the inhibition of ClO4
‐ removal by NO3

‐ was 

observed within Column 3 (OC) but not Column 4 (ZVI + OC). The inhibiting effects of 

NO3
‐ on ClO4

‐ removal occurred at NO3
‐ concentrations > 2 mg L‐1 NO3-N within Column 

3 (OC) during the second stage of the experiment when flow rate was maintained at 0.1 

PV d‐1. Moreover, rapid ClO4
‐ degradation did not proceed until NO3

‐ concentrations were 

reduced to relatively low levels (normally < 2 mg L‐1 NO3-N), which is consistent with 

previous findings (Tan et al., 2004). However, the presence of NO3
‐ within Column 4 

(ZVI + OC) did not inhibit ClO4
‐ removal (Figure 2.6), which followed similar linear 

rates in the presence and absence of NO3
‐. These results suggest that adding ZVI to wood 

chips can potentially reduce the inhibition of NO3
‐ (> 2 mg L‐1 NO3-N) on ClO4

‐ removal 

when flow rate was maintained at 0.1 PV d‐1. The presence of SO4
2‐ did not inhibit ClO4

‐ 
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removal in Column 3 (OC) or 4 (ZVI + OC) (Figure 2.6), as is consistent with previous 

reports (Chung et al., 2010).  

2.5 Conclusions 

Reactive media containing OC or a mixture of ZVI + OC were found effective for 

removing NO3
‐ and ClO4

‐ from water. The removal of NO3
‐ and ClO4

‐ followed first-order 

and zero-order rates in these column experiments, respectively. Nitrate and ClO4
‐ were 

removed simultaneously within the columns; however, complete NO3
‐ removal occurred 

prior to complete ClO4
‐ removal. Addition of ZVI to wood chips reduced the inhibition of 

NO3
‐ (> 2 mg L‐1 NO3-N) on ClO4

‐ degradation when flow rate was maintained at 0.1 PV 

d‐1. Decreasing the flow rate from 0.5 to 0.1 PV d‐1 resulted in more complete removal of 

NO3
‐, SO4

2‐, and ClO4
‐. These results suggest that permeable reactive barriers and 

bioreactors containing OC or mixtures of OC and ZVI may be suitable for treating NO3
‐, 

ClO4
‐ and SO4

2‐ at mining and blasting sites.    
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Table 2.1 Physical characteristics of the columns used in this study, including a control 
and columns containing zero-valent Fe (ZVI), organic C (OC) or both. 

 Column 1 
Control 

Column 2 
 ZVI 

Column 3 
 OC 

Column 4 
ZVI + OC 

Bulk density (g cm-3) 1.73 2.27 1.34 1.59 
Porosity 0.35 0.40 0.45 0.41 

Pore volume (cm3) 219 248 273 246 
Average linear velocity (m yr-1) 59.6 51.7 50.8 49.1 

Fitted velocity (m yr-1) 54.3 40.3 49.1 46.4 
Dispersion coefficient (m2 yr-1) 0.07 1.16 0.94 0.46 

R2  0.999 0.989 0.995 0.997 
Residence time (d) 2.02 2.72 2.23 2.36 
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Table 2.2 Nitrate and ClO4
- removal rates calculated using least-squares regression during 

two experimental stages. 

Contaminant Column Stage† 

Removal rate‡, 
mmol L-1 d-1 

(NO3–N) 
µmol L-1 d-1 

(ClO4
‐) 

Recommended 
fit§ 

Half-
life, d 

R2 

NO3‐N 

2 
1 0.015×C   0.7 0.983 
2 0.011×C   1.0 0.999 

avg. 0.013×C  § 0.8 —¶ 

3 
1 0.010×C  § 1.1 0.993 
2  0.010×C   1.1 0.997 

4 
1 0.025×C   § 0.4 0.947 
2 0.017×C   0.7 0.985 

ClO4
‐ 

3 

1 1.41   3.1 0.890 
2  1.36  § 3.2 0.950 
1  1.21 (0–12.9cm)  3.6 0.833 
2 0.61 (0–12.9cm) § 7.0 0.999 
1  1.95 (12.9–30cm)  2.2 0.882 
2 1.84 (12.9–30cm)  2.3 0.991 

avg. 1.89 (12.9–30cm) § 2.3 — 

4 
1 0.93   4.6 0.945 
2  1.14  § 3.8 0.968 

† Removal rates were calculated for either Stage 1 or 2 of the experiment or the average 
of the stages, where indicated.   
‡ C is the input NO3‐N concentrations; the reported rates were calculated for the entire 
length of the columns, except where the column distance range is provided. The distance 
0–12.9 cm corresponds to NO3‐N concentrations > 2 mg L-1 and the distance 12.9–30 cm    
corresponds to NO3‐N concentrations < 2 mg L-1. 
§ Recommended rates that provide the best fits for both stages of the experiments.   
¶ Not applicable. 
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Figure 2.1 Concentrations of NO2-N, NH3-N, NO3-N, SO4
2-, and ClO4

- as a function of 
pore volumes in effluent from columns containing zero-valent Fe (ZVI), organic C (OC), 
or both; the dashed lines indicate a change in flow rate in each column, dividing the 
experiment into two stages. 
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Figure 2.2 Values of pH, Eh, and concentrations of alkalinity as a function of distance 
along flow direction within the columns containing zero-valent Fe (ZVI), organic C (OC), 
or both. Blue circle symbols represent data collected during the first stage of the 
experiment, while orange square and green triangle symbols represent data collected 
during the second stage of the experiments, given in terms of pore volumes (PV). 
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Figure 2.3 Values of pH, Eh, and concentrations of alkalinity as a function of pore 
volumes in effluent from columns containing zero-valent Fe (ZVI), organic C (OC), or 
both; the dashed lines indicate a change in flow rate in each column, dividing the 
experiment into two stages. 
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Figure 2.4 Concentrations of Cl-, ClO4
-, and total Cl- (sum of Cl- and ClO4

-) as a function 
of pore volumes in effluent from columns containing zero-valent Fe (ZVI), organic C 
(OC), or both; the dashed lines indicate a change in flow rate in each column, dividing 
the experiment into two stages.  
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Figure 2.5 Suggested pathway for biological degradation of ClO4
- (Rikken et al., 1996). 
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Figure 2.6 Concentrations of NO3-N, NH3-N, NO2-N, SO4
2-, H2S, ClO4

-, and Cl-
 as a 

function of distance along flow direction within the columns containing zero-valent Fe 
(ZVI), organic C (OC), or both. Blue circle symbols represent data collected during the 
first stage of the experiment, while orange square and green triangle symbols represent 
data collected during the second stage of the experiments, given in terms of pore volumes 
(PV). 
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Figure 2.7 Regression fits of NO3-N removal as a function of residence time in columns 
containing zero-valent Fe (ZVI), organic C (OC), or both. 
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Figure 2.8 Regression fits of ClO4
- removal as a function of residence time in columns 

containing organic C (OC) and both zero-valent Fe (ZVI) and OC. 
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Chapter 3: Artificial Sweeteners and 

Pharmaceuticals as Co-tracers of Municipal 

Wastewater in a Receiving River 
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3.1 Executive Summary 

Wastewater treatment plant (WWTP) effluents are important sources of emerging 

contaminants at environmentally-relevant concentrations. In this study, water samples 

were collected from a river downstream of two WWTPs to identify practical tracers for 

tracking wastewater. The results of the study indicate elevated concentrations of Cl-, 

nutrients (NH3-N and NO2
-), the artificial sweetener acesulfame-K (ACE-K), and the 

pharmaceuticals carbamazepine (CBZ), caffeine (CAF), sulfamethoxazole (SMX), 

ibuprofen (IBU), gemfibrozil (GEM), and naproxen (NAP) in the river close to the 

WWTPs that decreased with distance downstream. A correlation analysis using the 

Spearman Rank method showed that ACE-K, CBZ, GEM, NAP, and Cl- were strongly 

correlated with each other over a 31 km stretch of the river in the study area. The strong 

correlations of these target compounds indicate that the artificial sweetener ACE-K and 

the pharmaceuticals CBZ, GEM, and NAP can potentially be used as co-tracers to track 

wastewater. 
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3.2 Introduction 

Domestic sewage is collected and treated in wastewater treatment plants (WWTPs) 

where contaminant removal occurs through a series of physical, chemical, and 

biological processes. However, due to the persistence of some emerging 

contaminants (ECs) and their metabolites, they cannot be completely removed in 

WWTPs and become widely distributed in environmental waters (Bueno et al., 

2012). Emerging contaminants and their metabolites accumulated in the aquatic 

environment may cause adverse effects on aquatic ecosystems, such as interference 

with reproduction and development systems of biota in the environment and 

development of bacterial resistance (Fent et al., 2006; Morley, 2009; Santos et al., 

2010). It is important to track the transport, and monitor the widespread 

occurrence, of ECs in the aquatic environment using proper tracers. 

 Chemical tracers for wastewater contamination should be conservative and 

present in most wastewaters, and ideally be derived only from wastewater. In 

addition, the concentrations of tracers should be well above analytical detection 

limits and not vary greatly over time (Kasprzyk-Hordern et al., 2009; Van 

Stempvoort et al., 2013). Chloride and nutrients have been used as conventional 

tracers of wastewater contamination; however, other anthropogenic sources, such 

as road salts and fertilizer, can contribute to loadings in surface and ground waters 

thus making these constituents potentially less reliable as tracers.  

 Artificial sweeteners such as acesulfame-K (ACE-K) and sucralose are 

particularly widespread and persistent in surface water and groundwater, and 

therefore have been suggested as ideal tracers of domestic wastewater in the 
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environment (Buerge et al., 2009; Lubick, 2009; Scheurer et al., 2009). In addition, 

some pharmaceuticals, such as carbamazepine (CBZ) and caffeine (CAF), have 

been proposed as indicators of wastewater contamination in the environment 

(Andreozzi et al., 2002; Clara et al., 2004; Kurissery et al., 2012). However, CBZ 

and naproxen (NAP) can adsorb to sediment (Chefetz et al., 2008; Durán-álvarez et 

al., 2012) and CAF tends to biodegrade (Buerge et al., 2003). These natural 

attenuation processes make these pharmaceuticals less ideal as wastewater tracers. 

Therefore, the use of multiple tracers would greatly increase the confidence of 

identifying wastewater in aquatic environments (Van Stempvoort et al., 2013; 

Williams et al., 2013). The purpose of this study is to evaluate the potential use of 

ECs as co-tracers to track wastewater in receiving water bodies.  

 In this study, samples of river water were collected and analyzed for several 

potential tracers to track wastewater from two WWTPs in the Grand River 

watershed. The Grand River is the largest watershed in southwestern Ontario, 

Canada, flowing 300 km through a number of municipalities before discharging to 

Lake Erie. The persistence of several target compounds—ACE-K, CBZ, CAF, 

NAP, sulfamethoxazole (SMX), 3,4-methylenedioxyamphetamine (MDA), 3,4-

methylenedioxymethamphetamine (MDMA), ibuprofen (IBU), and gemfibrozil 

(GEM)—was compared to conventional wastewater parameters to determine the 

potential use of these compounds as tracers.  
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3.3 Materials and Methods 

3.3.1 Water Sampling and Field Analyses 

Samples of river water were collected at 10 locations over a distance of 32.1 km 

along the Grand River near the cities of Waterloo and Kitchener (southwestern 

Ontario, Canada) in August 2012 and July 2013. Winter samples were collected in 

December 2014; sampling results are updated in Appendix B (Table B.1 and 

Figures B.1-B.3). The 10 sampling locations are labeled GR 1 to GR 10 (Figure 

3.1). GR 8 and GR 1 are upstream of GR 2 (the location of the first WWTP; 

WWTP-1), then GR 3, 9, 10, 4, 5, 6, 7 are located sequentially downstream. GR 5 

is located at the intake of a Water Treatment Plant-1 (WTP-1) where Grand River 

water is treated to provide a drinking water supply, and GR 6 is located 0.1 km 

downstream of the effluent of WWTP-2. The average discharge of the Grand River 

measured at a gauge station near GR 6 (Grand River near DOON, station number 

02GA048) (Environment Canada, 2013) was 9.8 m3 s-1 for the sampling dates in 

2012 (August 9 ̶ 10) and 56.7 m3 s-1 for the sampling dates in 2013 (July 8 ̶ 9, 

during a rain event).  

All river water samples were collected in a consistent manner 5 m away from the 

river bank on the side of the river into which WWTP-1 and WWTP-2 effluents are 

discharged. Additional samples were collected directly from the effluent discharge pipe 

from the wastewater treatment plant (WWTP-1), and from the water treatment plant 

(WTP-1) influent reservoir. Duplicate samples were collected at the two WWTPs.  These 

locations were selected to provide samples most representative of the WWTP-1 effluent 

and of the intake of WTP-1. Samples were obtained using Teflon tubing (6.5 m in length) 
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connected to a peristaltic pump (MasterFlex, Cole-Parmer Instrument Company, CA). All 

samples, except those for pH, Eh, and electrical conductivity (EC) measurements, were 

filtered through 0.45 µm Thermopor membrane filters to determine alkalinity and 

concentrations of Cl-, SO4
2-, NO3

-, NO2
-, NH3-N, PO4-P, and the target pharmaceuticals 

and artificial sweetener. Determination of pH, Eh, alkalinity, and EC was performed on 

site immediately after sample collection. The sampling program included: collection of  2 

L river water in two 1 L amber glass bottles for pharmaceutical and ACE-K analysis; 30 

mL river water in a 35 mL polypropylene bottle for NH3-N and PO4-P analysis; and 10 

mL river water in a 15 mL polypropylene bottle for anion analysis. The samples for NH3-

N, PO4-P, pharmaceuticals, and artificial sweetener were acidified on site with H2SO4 to 

pH < 2 while samples for anions (Cl-, SO4
2-, NO3

-, NO2
-) were not. All samples were 

stored at 4 °C and analyzed within one month of collection, except for pharmaceuticals 

and ACE-K samples which were analyzed within three days after collection. 

3.3.2 Analysis of Water Samples 

3.3.2.1 Primary Wastewater Parameters 

Values of pH were determined using a pH electrode (Ross combination, Orion 

815600) calibrated with standard pH 7.0 and pH 10.0 buffers prior to each 

measurement, and checked with a pH 7.0 buffer after each measurement. Values of 

Eh were determined using an Eh electrode (Pt-billeted Ag/AgCl combination, 

Orion 9678BNWP) checked using Zobell’s (Nordstrom, 1977) solution before and 

after each measurement. Electrical conductivity was measured using an Orion 

013005MD conductivity cell. The performance of the electrical conductivity cell 

was checked with a 0.01M KCI solution prior to each measurement. Alkalinity 
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values were determined using standardized H2SO4 and a Hach digital titrator 

following Titration Method 2320 B (APHA, 1992). 

 Anion (Cl-, SO4
2-, NO3

-, NO2
-) concentrations were determined by ion 

chromatography (Dionex ICS-5000+, Mississauga, CA). Ammonia (NH3-N) and 

ortho-phosphate (PO4-P) concentrations were determined using a Hach 

spectrophotometer DR/8400 following the salicylate method (4500-NH3)(APHA, 

2005a) and ascorbic acid method (4500-P: E) (APHA, 2005b), respectively.  

3.3.2.2 Trace Wastewater Parameters 

ACE-K and the eight pharmaceutical compounds were analyzed using solid-phase 

extraction and high-performance liquid chromatography (HPLC) followed by 

tandem mass spectrometry using previously published methods (Scheurer et al., 

2009; Stafiej et al., 2007; Vanderford & Snyder, 2006), with slight modifications 

such as inclusion of isotope dilution techniques for each study compound and 

optimization of instrument operating conditions. Native compounds were supplied 

by Sigma-Aldrich (Oakville, Canada) with the exception of ACE-K obtained from 

Toronto Research Chemicals Inc. (Toronto, Canada). Isotope-labeled standards, 

including ACE-K-d4 and SMX-d4 (Toronto Research Chemicals Inc., Toronto, 

Canada), MDA-d5 and MDMA-d5 (Cerilliant Inc., Texas, USA), and CBZ-d10, 

CAF-d3, IBU-d3, GEM-d6, and [13C]-NAP (Cambridge Isotope Laboratory Inc., 

Cambridge, USA) were obtained as dry powders. Standard stock solutions of 

~1000 µg L-1 were prepared by dissolving each compound in methanol. Working 

standard solutions containing all analytes were prepared by serial dilution in 

methanol:water 50:50 vol:vol. HPLC-grade ammonium acetate  and formic acid 
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were obtained from Sigma-Aldrich (Oakville, Canada). Ultrapure (Type 1) water 

was generated using a MilliQ A10 water system (18.2 MΩ.cm @ 25 oC).  

 Prior to analysis, 600 mL aliquots of aqueous samples were spiked with a 

consistent amount of internal standard mixture. These samples were passed 

through solid-phase extraction (SPE) cartridges (Oasis HLB 6 mL glass cartridges; 

Waters Corp., Mississauga, Canada) pre-conditioned with 3 × 2 mL methanol and 

then equilibrated with 3 × 2 mL ultrapure water. After loading the 600 mL 

samples, the cartridges were washed using 3 × 2 mL 5 vol. % methanol then eluted 

with 3 × 2 mL methanol. The eluate was collected in an amber glass vial and 

stored at 4 °C until analysis.  

 The extracts were analyzed using an Agilent 1100 HPLC (Agilent 

Technologies, Mississauga, Canada) followed by electrospray tandem mass 

spectrometry (MS/MS; 4000 Q TRAP, Applied Biosystems, Foster City, USA). 

Caffeine, SMX, CBZ, MDA, and MDMA were analyzed in electrospray ionization 

positive (ESI+) mode, while IBU, GEM, NAP, and ACE-K were analyzed in ESI 

negative (ESI-) mode. The gradient and mobile phases were changed from 

previous methods based on the HPLC analytical columns and mass spectrometer 

(MS) requirements. The compound and source-dependent parameters of the MS 

were modified to obtain an optimum signal response. The mobile phases for 

analysis in ESI+ mode consisted of 0.1% formic acid and 5 mM ammonium 

acetate in water (phase A) and 99.9% MeOH with 0.1% formic acid (phase B). A 

gradient elution started at 10% B for 3 min, increased to 90% B in 10 min, and 

then held at 90% B min for 10 min. The flow rate was 1000 µL min-1 and the 
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injection volume was 15 µL. The mobile phases for analysis in ESI- mode 

consisted of 6.9 mM acetic acid in 300 mL acetonitrile and 700 mL water (phase 

A) and 100% acetonitrile (phase B). A gradient elution started at 12% B, then 

increased linearly to 40% in 10 min and held at 40% for 10 min. The injection 

volume was 10 µL and the flow rate was 1000 µL min-1. For ACE-K analyzed in 

ESI- mode, the mobile phases consisted of 20 mM ammonium acetate in water 

(phase A) and 20 mM ammonium acetate in methanol (phase B). The gradient 

elution started at 2% B, then increased linearly to 75% in 8 min and held at 75% 

for 8 min. The injection volume was 10 µL and the flow rate was 1000 µL min-1. 

 A mixed standard containing ACE-K, CBZ, CAF, SMX, IBU, NAP, and GEM 

was used for method calibration. The same amount of isotope-labeled compounds 

was added to the calibration standards, method standards, and unknown samples. 

The recovery of the isotope-labeled compounds was used to correct the response of 

the instrument to each compound. Nine-point calibration curves from 5 to 10,000 

ng L-1 were established by analysis of standard mixtures prepared in 50% 

methanol: 50% water. Tap water samples spiked with the analyte mixtures and 

internal standards and extracted following the same procedure as the unknown 

samples were used to evaluate the addition of the SPE step to the method. The 

limits of detection (LOD) and quantification (LOQ) were calculated at three and 10 

times the signal-to-noise values, respectively. The method detection limits (MDL) 

were determined by extracting 14 deionized water samples fortified with labeled 

analytes at concentrations three to five times the LOD, depending on the expected 

MDL and internal standard at the same concentration level used in the method. The 
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MDL was calculated by multiplying the standard deviation of the replicate 

measurements by the Student’s t value for n-1 degrees of freedom. The MDLs 

determined were 41.9 ng L-1 for ACE-K, 99 ng L-1 for CAF, 10.4 ng L-1 for SMX, 

17.1 ng L-1 for CBZ, 38.8 ng L-1 for MDA, 3.9 ng L-1 for MDMA, 29.6 ng L-1 for 

IBU, 3.1 ng L-1 for GEM, and 9.7 ng L-1 for NAP. The LOQs determined were 

four to 230 times lower than MDL values. 

 Methanol:water samples (continuous calibration verification samples) were 

analyzed at initial instrument calibration and after every 10 unknown samples. 

Quality assurance/quality control results showed that the concentrations of all 

target compounds in the calibration standard blanks and method standard blanks 

were consistently below detection limits. The absolute analyte and internal 

standard recovery for continuous calibration verification samples ranged from 84 

to 116%. Relative method recovery for ACE-K ranged from 94 to 118% across the 

standard curve from 0.1 to 100 µg L-1. The relative internal standard recovery of 

ACE-K for unknown samples ranged from 71 to 95%. Relative method recovery 

for CAF, SMX, CBZ, MDA, and MDMA ranged from 84 to 120% across the 

standard curve (0.01 ̶ 10 µg L-1 for SMX and MDMA, 0.05 ̶ 10 µg L-1 for CBZ and 

MDA, 1 ̶ 10 µg L-1 for CAF). Relative internal standard recovery of CAF, SMX, 

CBZ, MDA, and MDMA for unknown samples ranged from 70 to 109%; CBZ had 

the best absolute internal standard recovery (84 ̶ 97%) for unknown samples. 

Relative method recovery for IBU, GEM, and NAP ranged from 91 to 110% 

across the standard curve (0.02 ̶ 10 µg L-1); the corresponding relative internal 
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standard recovery for unknown samples was 94 ̶ 119%. The recovery of 

duplicated, spiked, and repeated samples was 75 ̶ 121%.  

3.4 Results and Discussion 

3.4.1 Grand River Sampling Results 

The average pH of the river water samples was ~7.9 during the 2012 and 2013 

sampling events, with lower values of 7.6 ̶ 7.8 observed near the effluent of 

WWTP-1. Eh varied over the sampling distance of the river in 2012, with lower 

values observed near the effluents of both WWTP-1 and WWTP-2; however, 

values were relatively constant (~350 mV) in 2013 likely due to the larger 

discharge of the river at the time of sampling. The highest alkalinity and electrical 

conductivity values over the sampling distance in both 2012 and 2013 were 

observed near the effluent of WWTP-1, and higher values were observed in 2013 

(alkalinity, ~330 as CaCO3 mg L-1; EC, ~870 µS cm-1) than in 2012 (Figure 3.2).  

 Chloride (Cl-) reached its highest concentration of ~150 mg L-1 near the effluent 

of WWTP-1 in both 2012 and 2013, and reached a second peak concentration (~87 

mg L-1) near the effluent of WWTP-2 in 2012. Elevated concentrations of SO4
2- 

and PO4-P were observed near the effluents of both WWTPs in 2012, but the 

concentrations of SO4
2- and PO4-P were less variable in 2013 compared to 2012 

likely due to the much larger river discharge in 2013. Incomplete removal of 

nitrogen (nitrification and denitrification) by WWTP-1 likely resulted in the 

generally low observed concentrations of NO3
- and higher concentrations of NO2

- 

and NH3-N in the effluent. Concentrations of NO3
- decreased from a background 

concentration of ~15 to 8.5 mg L-1 at the effluent of WWTP-1, where the highest 
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concentrations of NO2
- (4.6 mg L-1) and NH3-N (3.0 mg L-1) were observed in July 

2013 (Figure 3.2). In addition, small increases in the concentrations of NO2
- and 

NH3-N were observed near the effluent of WWTP-2. Elevated concentrations of 

NH3-N near WWTPs have also been observed in other studies (Sonthiphand et al., 

2013).   

 The concentrations of ACE-K and the target pharmaceuticals were observed to 

follow a similar trend over the sampling distance, with the highest concentrations 

observed near the effluent of WWTP-1 in both 2012 and 2013; this is consistent 

with other studies of pharmaceutical compounds in southwestern Ontario rivers 

(Spoelstra et al., 2013). The concentrations of the target compounds downstream of 

WWTP-1 deceased gradually with distance and, when discharge from WWTP-2 

entered the river, a secondary concentration peak of target compounds was noted, 

especially in 2012 (Figure 3.3). The concentrations of target compounds 10 km 

downstream of WWTP-1 were at least one order of magnitude lower than those 

observed at the effluent of WWTP-1, likely as a result of dilution and dispersion 

and other natural attenuation processes such as biodegradation and photolysis 

(Carrara et al., 2008; Fono et al., 2006).  

 Concentrations of ACE-K (~6500 ng L-1 in 2012 and ~4000 ng L-1 in 2013) 

were consistent with those observed at the effluent of WWTP-1 in 2007 ̶ 2009 

(Spoelstra et al., 2013). ACE-K is particularly conservative and recalcitrant, and 

has been proposed as an ideal marker for wastewater in the environment (Buerge et 

al., 2009; Robertson et al., 2013). Furthermore, observed ACE-K concentrations 

were well above the MDL (~40 ng L-1), and were one or two orders of magnitude 
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higher in concentration than other target pharmaceuticals (Figure 3.3). Its 

conservative behavior and high detectable concentrations suggest that ACE-K may 

be a suitable tracer of wastewater in river systems.  

 Concentrations of CAF at the effluent of WWTP-1 in 2012 were ~3300 ng L-1, 

which is one order of magnitude larger than observed in 2013 (~280 ng L-1). 

Caffeine is extensively ingested in food, beverage, and drugs, and has been 

reported as a stable compound under variable environmental conditions. Caffeine 

has been widely used as an anthropogenic indicator of domestic wastewater 

contamination (Buerge et al., 2003; Kurissery et al., 2012; Seiler et al., 1999). 

Metcalfe et al. (2003b) report that CAF is detectable in most sewage treatment 

plants and surface waters in Lake Ontario and Lake Erie in Canada. Buerge et al. 

(2003) observe CAF concentrations of up to 9.5 µg L-1 in WWTP effluents in 

Switzerland, and up to 250 ng L-1 in downstream lakes and rivers.  

  Illicit amphetamine compounds, including MDA and MDMA, are used as 

recreational and empathogenic drugs. The concentrations of MDA and MDMA in 

the study area over the entire sampling distance were below the MDLs in both 

2012 and 2013. However, these compounds have been widely detected in 

wastewaters at ng L-1 levels, with MDMA observed to exhibit relatively higher 

detectable concentrations and frequencies than MDA (Lai et al., 2013; Nefau et al., 

2013; Van Nuijs et al., 2011). In addition, Metcalfe et al. (2010a) report MDMA at 

concentrations up to 35 ng L-1, but MDA at concentrations below the detection 

limit in treated and untreated wastewaters from three Canadian cities.  
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 Sulfamethoxazole (SMX), a sulfonamide antibiotic, has been widely used in 

human and veterinary medicine. The highest concentration of SMX (~37 ng L-1) 

was observed near WWTP-1 in 2012 with a somewhat lower concentration (~20 

ng L-1) observed in 2013. Sulfamethoxazole has been frequently detected in 

environmental water samples (Karthikeyan & Meyer, 2006; Miao et al., 2004; 

Milić et al., 2013; Watts et al., 1983). Yargeau et al. (2007) report up to 578 ng L-1 

of SMX downstream of a WWTP in the Yamaska River, Quebec, Canada.  

 Carbamazepine (CBZ), an antiepileptic drug, was observed near WWTP-1 in the 

Grand River at a concentration of ~146 ng L-1; this is similar to concentrations 

observed in another Canadian river (Yargeau et al., 2007). Carbamazepine has 

been found to be recalcitrant in conventional and biological WWTPs (Clara et al., 

2005; Joss et al., 2005) and is widespread in the environment. Miao et al. (2005) 

report the ubiquitous and persistent nature of CBZ and its five metabolites through 

different stages of treatment in a Canadian WWTP.   

 Ibuprofen (IBU) and naproxen (NAP) are two common non-steroidal anti-

inflammatory drugs, and gemfibrozil (GEM) is widely used as a lipid regulator. 

The highest concentrations of IBU (160 ng L-1), GEM (29 ng L-1), and NAP (506 

ng L-1) were observed near the effluent of WWTP-1 in 2012; lower concentrations 

were observed in 2013. Widespread distribution of IBU, GEM, and NAP in 

wastewater and downstream river water at ng L-1 concentrations has been reported 

since 1998 and attributed to their variable removal (IBU, > 90%; NAP, ~80%; 

GEM, ~55%) by conventional WWTPs (Huang et al., 2011; Lishman et al., 2006; 
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Ternes, 1998). IBU, GEM, and NAP have also been observed to persist in a 

subsurface receiving aquifer (Carrara et al., 2008).  

 Concentrations of ACE-K and most of the target pharmaceuticals were lower in 

2013 than in 2012. Secondary concentration peaks of ACE-K, SMX, CBZ, IBU, 

GEM, and NAP observed near the effluent of WWTP-2 in 2012 were also not as 

apparent in 2013. This is likely due to either the larger discharge when sampling 

was conducted in 2013 vs. 2012 and/or implementation of a new ultraviolet (UV) 

facility at WWTP-2 in 2013 that enhanced effluent disinfection but also likely 

removed some target contaminants through UV photolysis (Coiffard et al., 1999; 

De la Cruz et al., 2012; Gagnon et al., 2008; Ngouyap Mouamfon et al., 2010).  

3.4.2 Mechanisms Affecting the Transport of the Target Compounds 

Natural attenuation processes account for a significant decrease in concentrations 

of wastewater-derived contaminants in surface water bodies (Fono et al., 2006) and 

groundwater (Carrara et al., 2008). During transport from WWTPs to downstream 

areas, the concentrations of the seven target compounds considered in this study 

can be affected by physical processes, primarily dilution and dispersion. Other 

chemical and biological natural attenuation processes, such as sorption, hydrolysis, 

biotransformation, and photolysis (Schwarzenbach et al., 2002) also may affect the 

transport of target compounds, but likely have a limited influence due to the 

relatively short travel time of target compounds in the study area. However, it 

remains important to determine the relative influence of these processes on 

contaminant transport in the Grand River and other rivers.  
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 ACE-K has been reported to undergo photo-degradation in aqueous systems, 

following first-order rates of removal (Coiffard et al., 1999). Benotti and 

Brownawell (2009) report that CAF is biodegradable in estuarine and coastal 

waters, with an average half-life of 5.4 days. The antibiotic SMX has been reported 

to undergo biotransformation (Larcher & Yargeau, 2012) and direct photolysis 

(Periša et al., 2013) in aqueous systems. In addition, direct photolysis is an 

important process for removing SMX from surface water (Lam & Mabury, 2005). 

CBZ is reported to be resistant to biodegradation but may undergo indirect photo-

degradation (Matamoros et al., 2009) and adsorption reactions (Williams & 

Adamsen, 2006). The indirect photo-degradation rate of CBZ is limited (t1/2 = 8 ̶ 39 

h), however, and strongly dependent on the dissolved organic carbon (DOC) 

concentration in solution (Matamoros et al., 2009).  

 Removal of NAP through natural attenuation processes is more variable. 

Approximately 40% of NAP present in surface water during daylight hours has 

been reported to be removed through photolysis (t1/2 = 1.7 h), with the remainder 

most likely removed via sorption (Lin et al., 2006). Strong sorption of NAP to soils 

also has been observed (Lin & Gan, 2011). Biotransformation reactions can be an 

important attenuating process for IBU and GEM in river water, with half lives of 

5.4 h and 2.7 h respectively (Fono et al., 2006; Lin et al., 2006). IBU and GEM 

exhibit relatively longer photodegradation half-lives of ~15 h (Lin & Reinhard, 

2005).      
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3.4.3 Acesulfame-K and Pharmaceuticals as Co-tracers in the Grand 

River 

The concentrations of the target compounds exhibited similar changes over the 

sampling distance, with a primary peak in concentrations observed at the effluent 

of WWTP-1 and a secondary peak near WWTP-2 (Figure 3.3). Correlation 

analysis using Spearman Rank correlation coefficients (ρ) of the target compounds 

and Cl- indicated that ACE-K and CBZ were very strongly correlated with Cl- over 

the sampling distance downstream of WWTP-1, with ρ values ranging from 0.95 

to 1.00 in both 2012 and 2013; GEM and NAP were strongly correlated with ACE-

K, CBZ, and Cl- with ρ values ranging from 0.69 to 0.89 in both 2012 and 2013; 

and CAF, SMX, and IBU were moderately correlated with ACE-K, CBZ, and Cl- 

(Tables 3.1 and 3.2, Figure 3.4). Concentrations of MDA and MDMA were below 

the MDLs in both 2012 and 2013, therefore no correlations could be determined. 

Similarly, the Spearman Rank correlation for SMX in 2012 was not calculated due 

to the low concentrations (< MDL) observed.  

 The artificial sweetener ACE-K and pharmaceuticals CBZ, IBU, GEM, and 

NAP exhibited strong correlations over the sampling distance downstream of 

WWTP-1 in 2013, but weaker correlations in 2012. The pharmaceuticals CAF and 

SMX exhibited moderate correlations with other target compounds (Tables 3.1 and 

3.2). This analysis indicates that ACE-K, CBZ, GEM, and NAP can potentially be 

used as co-tracers of the wastewater over the sampling distance considered. The 

very strong correlation between ACE-K, CBZ and Cl-, however, suggests that Cl- 

may also be used as a waste-water indicator. However, previous studies have 
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indicated that Cl- may be affected by other sources, including road salt application 

(Cooke, 2006). Alkalinity and electrical conductivity were weakly or moderately 

correlated with target contaminants in 2012, and moderately or strongly correlated 

with target contaminants in 2013. Due to this inconsistency, alkalinity and 

electrical conductivity are not considered to be effective co-tracers of wastewater.     

3.5 Conclusions 

This study indicates that the decline in concentrations of bulk wastewater 

constituents, ACE-K, and a suite of pharmaceutical compounds downstream from 

two WWTPs is due to dilution and, for some compounds, other attenuation 

mechanisms. Of the compounds studied, the artificial sweetener ACE-K and three 

pharmaceutical compounds (CBZ, GEM, and NAP) had the greatest persistence. 

These compounds dissipated at the same rate as the conservative anion Cl-, 

indicating that declines in concentration were primarily controlled by dilution 

alone. The use of multiple tracers, such as artificial sweeteners combined with 

pharmaceutical compounds, would greatly increase confidence when tracking 

wastewater in aquatic environments throughout the year.  
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Table 3.1 Spearman rank correlation coefficients (ρ)† of the target compounds and Cl- 
over the sampling distance in the Grand River in August 2012. 

 
 CAF CBZ IBU GEM NAP Cl- 

ACE 0.36 0.98 0.45 0.69 0.69 0.98 
CAF  0.40 0.93 0.64 0.64 0.40 
CBZ   0.52 0.71 0.71 1.00 
IBU    0.79 0.79 0.52 

GEM     1.00 0.71 
NAP      0.71 

Note: † Positive values were interpreted as follows: 0.8-1.0 = very strong; 0.6-0.8 = 
strong; 0.4-0.6 = moderate; 0.2-0.4 = weak; 0.0-0.2 = weak or no relationship.  
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Table 3.2 Spearman rank correlation coefficients (ρ)† of the target compounds and Cl- 
over the sampling distance in the Grand River in July 2013. 

 CAF SMX CBZ IBU GEM NAP Cl- 
ACE 0.71 0.59 0.90 0.71 0.89 0.74 0.98 
CAF  0.84 0.62 0.71 0.85 0.64 0.62 
SMX   0.54 0.64 0.73 0.59 0.56 
CBZ    0.90 0.92 0.93 0.95 
IBU     0.92 0.98 0.76 
GEM      0.92 0.89 
NAP       0.81 

Note: † Positive values were interpreted as follows: 0.8-1.0 = very strong; 0.6-0.8 = 
strong; 0.4-0.6 = moderate; 0.2-0.4 = weak; 0.0-0.2 = weak or no relationship. 
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Figure 3.1 Sampling locations along the Grand River, southwestern Ontario, Canada. 
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Figure 3.2 Concentrations of pH, Eh, alkalinity, electrical conductivity (EC), Cl-, NO3

-, 
NO2

-, NH3-N, SO4
2-, and PO4-P as a function of sampling distance. 
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Figure 3.3 Concentrations of acesulfame-K (ACE-K), caffeine (CAF), sulfamethoxazole 
(SMX), carbamazepine (CBZ), ibuprofen (IBU), gemfibrozil (GEM), and naproxen (NAP) 
as a function of sampling distance. The method detection limits of ACE-K and CAF were 
too low to appear in the figure. 
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Figure 3.4 Concentrations of acesulfame-K (ACE-K), caffeine (CAF), sulfamethoxazole 
(SMX), carbamazepine (CBZ), ibuprofen (IBU), gemfibrozil (GEM), and naproxen (NAP) 
as a function of Cl- concentration. The method detection limits of ACE-K and CAF were 
too low to appear in the figure. 
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Chapter 4: Ultraviolet Light 

Photo(catalytic) Treatment of Acesulfame-K 

and Pharmaceuticals Using Magnetically 

Recoverable TiO2 Nanoparticles 
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4.1 Executive Summary 

Ultraviolet light (UV) photocatalysis by TiO2 nanoparticles is an effective process for 

removing contaminants from drinking water and wastewater; however, non-recoverable 

TiO2 nanoparticles also may become contaminants when released to the environment. In 

this study, two types of catalysts—magnetically separable TiO2 (MST) recoverable 

nanoparticles (γ-Fe2O3/SiO2/TiO2 colloidal nanospheres) and graphene oxide-supported 

TiO2 (GO TiO2) recoverable nanoparticles (GO/TiO2/CSA nanocomposites)—were 

evaluated for their effectiveness relative to commercial P25 TiO2 for photocatalysis of an 

artificial sweetener and a suite of pharmaceutical compounds at environmental 

concentrations. The results show that over 99% of the artificial sweetener (acesulfame-K) 

and over 92% of the pharmaceuticals (sulfamethoxazole, 3,4-

methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, ibuprofen, 

gemfibrozil, naproxen, caffeine and carbamazepine were removed within 60 min of UV 

(wavelength: 254 nm) photocatalysis using both P25 and GO TiO2 nanoparticles. The UV 

photocatalysis of target contaminants followed a pseudo-first-order rate. The synthesized 

GO TiO2 exhibited comparable or greater catalytic ability in assisting photocatalytic 

treatment of the target compounds by factors of up to 4.1 when comparing their intrinsic 

reaction rate constants. The MST particles were less effective in photocatalysis of 

contaminants compared to P25 and GO TiO2 particles. The greater catalytic ability and 

high magnetic recovery makes the GO TiO2 nanoparticles a potential alternative for 

commercial P25 nanoparticles used in water treatment. 
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4.2 Introduction 

Emerging contaminants, including food additives such as artificial sweeteners, 

pharmaceuticals and personal care products, nanomaterials, steroids and hormones, 

surfactants, and microorganisms have been found to be widely distributed in the 

environment. Artificial sweeteners, including acesulfame-K (potassium), cyclamate, 

saccharin, sucralose, and aspartame, have been used worldwide for decades in 

considerable quantities as sugar substitutes in foods, diet beverages, pharmaceuticals, and 

some personal care products (Kroger et al., 2006). Artificial sweeteners pass through the 

digestive system with little metabolic breakdown and are excreted, therefore ending up in 

wastewater virtually unchanged. Acesulfame-K and sucralose are particularly widespread 

and persistent in the aquatic environment, making them ideal markers for tracing 

pollution from domestic wastewater into natural waters, particularly groundwater (Buerge 

et al., 2009; Scheurer et al., 2009). Pharmaceutical compounds also pass through the 

digestive system and are widely detected in the environment (Kolpin et al., 2002; Ternes, 

1998).  

Sewage effluents are considered to be the major source of pharmaceutical compounds 

in surface water (Bendz et al., 2005; Focazio et al., 2008), groundwater (Barnes et al., 

2008; Carrara et al., 2008), and drinking water (Jones et al., 2005; Kleywegt et al., 2011) 

where they may cause toxicological effects (Fent et al., 2006) and, in the case of 

antibiotics, bacterial resistance (Richardson & Ternes, 2011). Adverse impacts of 

pharmaceuticals on ecosystem health have been generally acknowledged; however, 

ingestion of pharmaceuticals in drinking-water (ng L-1) is not considered to result in 

appreciable adverse risks to human health (the WHO information sheet: Pharmaceuticals 
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in drinking-water). The concentrations of pharmaceuticals detected in drinking-water are 

typically several orders of magnitude lower than minimum therapeutic doses. The issue 

of health impacts of artificial sweeteners on humans is still controversial (Safe, 2000; 

Sharpe & Irvine, 2004; Sumpter, 2005). 

Remedial technologies for removing artificial sweeteners from water supplies, 

including soil aquifer treatment (Scheurer et al., 2009) and chemical oxidation (Sharma et 

al., 2012), have recently been evaluated. Due to the ecotoxicity of pharmaceutical 

compounds, more extensive studies have been performed on the elimination of these 

compounds from environmental waters, including advanced oxidation, such as 

photo(catalytic) degradation using ultraviolet light (UV) and TiO2 (Achilleos et al., 2010), 

UV/H2O2 (Rosario-Ortiz et al., 2010), (catalytic)ozonation (Beltrán et al., 2009), 

ultrasonic irradiation (Naddeo et al., 2009), and gamma irradiation (Zheng et al., 2011). 

Other methods studied include adsorption by activated carbon (Grover et al., 2011), 

biological activated carbon filtration (Reungoat et al., 2012), and constructed wetlands 

(Conkle et al., 2008). 

Photocatalysis by means of illuminated TiO2 is a promising technology for the 

degradation and removal of a wide range of emerging contaminants (Doll & Frimmel, 

2005; Sturini et al., 2012). As a catalyst, TiO2 can theoretically be reused indefinitely for 

continuous water purification. The high surface area afforded by nanostructuring 

enhances the catalytic efficiency (Ismail & Bahnemann, 2011; Xiang et al., 2012); 

however, fine TiO2 nanoparticles are impractical to deploy in water treatment 

applications due to the difficulty of their recovery from the treated water after the 

photocatalytic decontamination process and the concern that residual TiO2 nanocrystals 
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may be released to the environment (Chong et al., 2010; Malato et al., 2009). The 

presence of nano-TiO2 particles can have adverse toxic effects on various organisms in 

environmental waters and soils (Klaine et al., 2008) and humans (Hsiao & Huang, 2011); 

however, the use of magnetically recoverable TiO2 nanoparticles in water treatment 

would minimize the risk of releasing nano-TiO2 into the environment.   

Magnetic separation technology is widely used in industry, and is being explored for 

water treatment (Ambashta & Sillanpää, 2010; Yavuz et al., 2009). Extensive studies are 

being performed on the synthesis of different types of magnetically recoverable 

nanoparticles. The photocatalytic ability of these synthesized nanoparticles was usually 

tested in the decolouration of common model organic compounds, such as methylene 

blue dyes (Harraz et al., 2014), phenol (Feng et al., 2014; Mu et al., 2010), and formic 

acid (Makovec et al., 2011) under UV light. However, it is more impactful and attractive 

to test the synthesized recoverable nanoparticles in photodegradation of environmentally 

relevant contaminants, such as emerging contaminants under UV light. Álvarez et al. 

(2010) reported comparable ability of TiO2/SiO2/Fe3O4 nanoparticles in photodegradation 

of five pharmaceutical and personal care products (PPCPs) compared to Degussa P25 

TiO2. Linley et al. (2014) reported the enhanced photocatalytic ability of recyclable 

graphene oxide-supported TiO2 nanoparticles in photodegradation of the pharmaceutical 

compounds caffeine and carbamazepine.  

The photocatalytic ability of two types of laboratory-synthesized catalysts in 

removing emerging contaminants under UV light was evaluated through a series of batch 

experiments. The two types of laboratory-synthesized magnetically recoverable 

catalysts— magnetically separable TiO2 (MST particles, γ-Fe2O3/SiO2/TiO2 colloidal 
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nanospheres and reduced graphene oxide-supported TiO2 nanoparticles (GO TiO2 

particles, GO/TiO2/CSA (Controlled SPION, Superparamagnetic Iron Oxide Nanoparticle, 

Aggregates) nanocomposites)—were compared with respect to photocatalytic efficiency 

relative to commercial P25 TiO2 nanoparticles. Target pollutants for photocatalytic 

treatment included acesulfame-potassium (ACE-K) and eight pharmaceutical compounds: 

sulfamethoxazole (SMX), 3,4-methylenedioxyamphetamine (MDA), 3,4-

methylenedioxymethamphetamine (MDMA), ibuprofen (IBU), gemfibrozil (GEM), 

naproxen (NAP), caffeine (CAF), and carbamazepine (CBZ). These compounds were 

selected because they are frequently detected in the environment due to their recalcitrance 

or they are emerging compounds with little available data on potential treatability. The 

concentrations of target contaminants were set at environmental levels (10 µg L-1 of 

ACE-K and 1 µg L-1 of pharmaceuticals) according to their reported occurrences in 

natural waters (Lapworth et al., 2012; Liu et al., 2014b; Metcalfe et al., 2010b; Yargeau 

et al., 2007).   

4.3 Material and Methods 

4.3.1 Nanoparticle Synthesis 

Mesoporous, superparamagnetic, core-shell γ-Fe2O3/SiO2/TiO2 colloidal nanospheres 

(MST particles) were prepared using a stepwise synthesis method (Leshuk et al., 2013). 

The inner core maghemite spheres were prepared using a one-pot hydrothermal reaction 

(Cheng et al., 2010; Wang et al., 2012). These were then coated with silica following a 

modified Stöber process (Stöber et al., 1968) to preserve the photocatalytic activity of the 

TiO2 by minimizing electrical contact with the inner core iron oxide (Watson et al., 2005). 

An outer titania coating was added using a sol-gel reaction employing titanium (IV) 
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butoxide as a precursor and hydroxypropyl cellulose as a surfactant (Lee et al., 2007; 

Linley et al., 2013). The resulting particles were hydrothermally treated in a 

polytetrafluoroethylene (PTFE)-lined stainless steel pressure vessel (Parr, Moline, IL, 

USA) at 100 °C for 2 h, followed by drying and calcination at 500 °C for 2 h.  

The GO/TiO2/CSA (1:12.5 GO/TiO2, 1:1 TiO2/CSAs as weight ratio) 

nanocomposites used in this study were prepared following a modular synthesis process 

allowing for tuning the ratio of GO and TiO2 loading on GO to achieve efficient 

photocatalytic ability and magnetic separability (Linley et al., 2014). The synthesized 

magnetic CSA (Controlled SPION Aggregates) cores were first coated with a silicon 

dioxide shell to form silica-coated CASs (SiO2/CSAs). The SiO2/CSAs and P25 

underwent amine functionalization to be positively charged, and then were mixed with 

GO in solution and electrostatically attached to the surface of GO sheets. The composites 

were hydrothermally treated to reduce GO and bind the SiO2/CSAs and P25 to the 

reduced GO. P25 TiO2 Aeroxide powder was obtained from Acros Organics (New Jersey, 

US). 

4.3.2 Characterization of Particles 

The size and surface morphology of the catalyst particles were analyzed with 

transmission electron microscopy (TEM, Philips CM-10, 60 keV). The hydrodynamic 

diameters of the particles suspended in deionized water were measured with dynamic 

light scattering (DLS, Brookhaven 90Plus Particle Size Analyzer, MSD number-weighted 

mean diameter). The crystallinity of the powdered samples was analyzed through X-ray 

diffraction (XRD, Bruker D8 Focus, 1.542 Å Cu Kα radiation). The surface area of the 

particles (pre-dried at 300 °C in N2) was calculated from the Brunauer-Emmett-Teller 
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(BET) equation with data from N2 adsorption isotherms obtained at 77 K (Micrometrics 

Gemini VII 2390 Surface Area Analyzer).  

4.3.3 Batch Experimental Procedures 

A concentrated stock solution was prepared by adding the target compounds in aqueous 

solutions containing a trace amount (< 0.01%) of methanol, resulting in about 1000 µg L-

1 ACE-K (Toronto Research Chemicals Inc., Toronto, Canada) and 100 µg L-1 of the 

pharmaceuticals SMX, IBU, GEM, NAP, CAF, and CBZ (Sigma-Aldrich, Oakville, 

Canada), and MDA and MDMA (Cerilliant Inc., Texas, USA). A second, more dilute 

stock solution was prepared by adding 10 mL of the concentrated stock solution to 490 

mL Nanopure water to obtain approximately 20 µg L-1 ACE-K and 2 µg L-1 of the 

pharmaceuticals.  

 The reaction solutions for the UV photolytic treatment (no catalysts) and control 

samples were prepared by adding 25 mL of the second stock solution and 25 mL 

Nanopure water into reaction bottles, yielding approximately 10 µg L-1 ACE-K and 1 µg 

L-1 of the pharmaceuticals. The reaction solutions for UV photocatalytic treatment and 

dark adsorption test samples were prepared by mixing 25 mL of the second stock solution, 

24 mL Nanopure water, and 1 mL of 5 g L-1 photocatalyst suspended solutions into 

reaction bottles with the catalysts at concentrations of 0.1 g L-1. The concentrations of 

ACE-K and pharmaceuticals in the reaction solutions for the photo(catalytic) treatment 

experiments, control samples, and dark adsorption samples were about 10 and 1 µg L-1. 

The reaction bottles used for the photo(catalytic) treatment experiments were transparent, 

clear glass bottles (9 cm in height, 7 cm inner diameter). Reaction bottles for the control 
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and dark adsorption test samples were wrapped with aluminum foil and placed in the dark 

during the experiments.   

 For the UV treatment experiments, reaction bottles with solutions were placed in a 

UV reactor (UVP CL-1000 Ultravoilet Crosslinker at 254 nm wavelength, energy: x100 

µJ/cm2; UV intensity: 66.7 W/m2 = 6.7 mW/cm2 or 24,012 mj/cm2) (UVP, Upland, CA, 

USA) and sampled at 0, 10, 30, and 60 min. During the 60 min UV irradiation, three 

control and three dark adsorption test samples were collected at 0, 30, and 60 min 

intervals. All samples were mixed manually every 10 min to avoid aggregation of the 

photocatalysts during UV irradiation, and then centrifuged at 10,000 rpm for 30 min to 

remove the catalysts from solution. The supernatants were transferred to amber glass 

bottles, acidified with H2SO4 to pH < 2, and stored at 4 °C until analysis. The 

experiments were performed at room temperature (23 °C) and the initial pH of the 

solutions was around 6.3. 

4.3.4 Analytical Procedures 

The target compounds were separated from the aqueous phase using solid-phase 

extraction (SPE). Prior to the extraction step, 10 mL samples were spiked with a mixture 

of isotope-labeled internal standards containing ACE-K-d4 and SMX-d4 (Toronto 

Research Chemicals Inc., Toronto, Canada), MDA-d5 and MDMA-d5 (Cerilliant Inc., 

Texas, USA), GEM-d6, IBU-d3, CAF-d3 and CBZ-d10 (CDN isotopes Inc., Quebec, 

Canada), and [13C]-NAP (Cambridge Isotope Laboratory Inc., Cambridge, USA). The 

concentration of ACE-K-d4 and isotope labeled pharmaceuticals were 10 and 1 µg L-1 in 

10 mL samples. SPE was performed using Oasis HLB 3 mL glass cartridges (Waters 

Corp., Mississauga, Canada). The cartridges were conditioned with 2 × 1 mL of HPLC 
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grade methanol and then equilibrated with 2 × 1 mL Nanopure water. After loading with 

10 mL samples, the cartridges were washed using 2 × 1 mL 5 vol. % methanol, and then 

eluted with 2 × 1 mL methanol. The eluate was collected in an amber glass vial and 

stored at 4 °C until analysis.   

 The extracts were analyzed using an Agilent 1100 (Palo Alto, CA) high 

performance liquid chromatography system (HPLC) and detected by an API triple 

quadrupole tandem mass spectrometer with a turbo electrospray ion source (ESI) (4000 Q 

Trap; Applied Biosystems, Concord, Canada). The pharmaceuticals SMX, MDA, MDMA, 

CAF, and CBZ were analyzed in electrospray ionization positive (ESI+) mode, while 

ACE-K, IBU, GEM, and NAP were analyzed in electrospray ionization negative (ESI-) 

mode. A mixture of standards containing each of the non-labeled target compounds was 

used for instrument calibration and the response corrected by comparison to the recovery 

of the isotope-labeled internal standards. 

Analytical procedures were modified slightly from published methods to optimize for 

separation and detector response (Stafiej et al., 2007; Vanderford et al., 2003). For 

pharmaceuticals analyzed in ESI+ mode, the mobile phase consisted of 0.1% formic acid 

and 5 mM ammonium acetate in Nanopure water (phase A) and 100% MeOH with 0.1% 

formic acid (phase B). The chromatographic separation used a gradient elution that 

started at 10 % B for 3 min, increased to 90% B over 10 min, and then held at 90% B min 

for 10 min. The flow rate was 1000 µL min-1 and the injection volume was 15 µL. For 

pharmaceuticals analyzed in ESI- mode, the mobile phase consisted of 6.9 mM acetic 

acid in 300 mL acetonitrile and 700 mL water (phase A) and 100% acetonitrile (phase B). 

A binary gradient was used: B increased linearly from 12% to 40% over 10 min and held 
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at 40% for 10 min. The injection volume was 10 µL and the flow rate was 1000 µL min-1. 

For ACE-K analyzed in ESI- mode, the mobile phase consisted of 20 mM ammonium 

acetate in water (phase A) and 20 mM ammonium acetate in methanol (phase B). The 

gradient used for ACE-K was as follows: B increased linearly from 2% to 75% over 8 

min and held at 75% for 8 min. The injection volume was 10 µL and the flow rate was 

1000 µL min-1. The relative internal standard (IS) recovery of ACE-K was between 72% 

and 118%. The absolute IS recovery of pharmaceuticals was between 85% and 118%. 

The method detection limits (MDLs) were 60 ng L-1 for ACE-K, 10 ng L-1 for SMX, 30 

ng L-1 for MDA, 5 ng L-1 for MDMA, 30 ng L-1 for IBU, 5 ng L-1 for GEM, 20 ng L-1 for 

NAP, 100 ng L-1 for CAF, and 20 ng L-1 for CBZ. 

4.3.5 Magnetic Separation 

Magnetic separation tests to evaluate the MST particles recovery were performed by 

placing a glass vial containing 20 mL of MST nanoparticles suspended in solution on a 

permanent magnet for 15 min. Prior to magnetic separation, 2 mL of MST suspended 

solution was collected from the glass vial as a control. After 15 min magnetic separation, 

15 mL of supernatant were extracted using a syringe and 15 mL of Nanopure water were 

added back to the glass vial. The MST solution was then re-suspended for further 

sampling as another control. Samples were acidified with HNO3 to pH < 2 and stored at 

4 °C for Fe and Ti analysis. The concentrations of total Fe and Ti, including dissolved 

and fine particulate fractions, were determined by inductively coupled plasma optical 

emission spectrometry (ICP-OES, iCAP 6000 Series, Thermo Scientific, Mississauga, 

Canada).  
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4.4 Results and Discussion 

4.4.1 Particle Characterization 

The synthesized MST particles were spherical and relatively monodispersed, with 

minimal interparticle aggregation (Figure 4.1). The MST particles were ~640 nm in 

diameter, with a ~50 nm thick nanocrystalline TiO2 outer shell (measured by TEM). The 

observable rough surface texture of the MST particles results from the mesoporosity of 

the TiO2 coating, indicating controllable uniform MST particles were successfully 

prepared as intended. The MST particles (in a powder form or dispersed in water) were 

strongly attracted towards a permanent magnet placed nearby. The TEM of 

GO/TiO2/CSA nanoparticles were reported previously (Linley et al., 2014) (Figure C.1; 

Appendix C).   

The hydrodynamic diameters of the MST particles in aqueous suspension, measured 

by DLS, were similar to diameters obtained using TEM (Table 4.1), indicating minimal 

aggregation of the particles in deionized (DI) water. This result was indicative of 

superparamagnetic behavior, as extensive solution phase aggregation would be observed 

if the particles possessed permanent magnetic moments. The colloidal stability of the 

synthesized particles differed from P25, a benchmark photocatalyst, which is well known 

to form extensive micron-scale aggregates in aqueous suspension (Table 4.1) that 

partially diminish the advantages of using nanocrystals. Aggregation is undesirable, 

because it reduces the accessible catalytic surface area available for reaction. The mean 

diameter of silica coated CSAs used for synthesizing GO TiO2 particles is ~477 nm 

(Linley et al., 2014), which is relatively smaller than the MST particles. 
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XRD results indicate the TiO2 in MST particles was present as well-crystallized 

anatase, which is one of the most photocatalytically active phases of TiO2 (Figure 4.2). 

As expected, the MST sample also exhibited peaks corresponding to maghemite in its 

pattern, indicating that the iron oxide core did not transform to another iron oxide phase 

during synthesis; this is also consistent with the strong magnetic response. P25 is well 

known to consist of mixed anatase- and rutile-phase TiO2 (Figure 4.2), with a primary 

nanocrystal size of ~20 nm (Table 4.1). The TiO2 crystal sizes of the MST samples were 

notably smaller than P25 and much smaller than the composite spheres as a whole. The 

XRD analysis shows the presence of anatase, rutile, and magnetite in GO TiO2 particles 

(Figure C.2), indicating both P25 and magnetite are preserved through hydrothermal 

treatment (Linley et al., 2014). 

The specific surface area of the MST particles was double that of P25 (Table 4.1), 

likely due to the finer crystallite sizes in the synthesized MST samples as compared to 

P25. In addition, the hydrothermal processing employed during MST synthesis allows for 

the formation of a disordered mesoporous TiO2 shell, comprised of small interaggregated 

nanocrystallites, and resulting in very high specific surface areas despite the relatively 

large dimensions of the composite spheres as a whole.  

4.4.2 Control and Dark Adsorption Samples 

The concentrations of ACE-K and pharmaceuticals in the control samples remained 

constant or decreased slightly relative to initial concentrations of 11000 ng L-1 for ACE-K 

and 1200 ng L-1 for pharmaceuticals. A small fraction of initial ACE-K (< 3%), SMX (< 

4%), MDA (< 5%), MDMA (< 9%), IBU (< 5%), GEM (< 4%), NAP (< 10%), CAF (< 
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7%), and CBZ (< 10%) were lost in the control samples during 60 min of dark storage 

(Figures 4.3 and 4.4).    

During 60 min dark adsorption, a portion of the target compounds was lost compared 

to the control samples. Less than 3.8% of input ACE-K, < 7.5% of input SMX, < 9.8% of 

input IBU, < 11.1% of input GEM, < 11.1% of input NAP, < 8.9% of input CAF, and < 

11.4% of input CBZ were lost in the input solution with P25 and MST nanoparticles 

(Figure C.3). The differences in concentration of target compounds between the control 

and dark adsorption samples were likely due to the adsorption of contaminants onto the 

nanoparticles. Greater loss associated with the MST nanoparticles compared to P25 was 

likely due to their larger surface area (Table 4.1). Adsorption of a pharmaceutical 

(ibuprofen) on photocatalyst TiO2 nanoparticles (< 5%) has been reported for pH > 5 

solutions (Tungudomwongsa et al., 2006). The adsorption of target contaminants on GO 

TiO2 particles was not tested in this study; however, GO TiO2 particle exhibit enhanced 

adsorption of methylene blue compared to P25 (Linley et al., 2014).   

4.4.3 UV Photo(catalytic) Treatment Results and Rate Calculations 

The artificial sweetener ACE-K and pharmaceutical SMX were almost completely 

removed during a 60 min UV irradiation alone and during photocatalysis using P25, MST, 

and GO TiO2 nanoparticles. Pharmaceuticals MDA, MDMA, IBU, GEM, NAP, CAF, 

and CBZ were either not removed or partially removed during 60 min UV irradiation 

alone; however, more rapid and complete removals of these compounds were observed 

during photocatalysis using P25 and GO TiO2 particles. The MST particles were less 

effective in photocatalysis of the contaminants compared to P25 and GO TiO2.  
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Common degradation pathways for drugs during direct UV photolysis include 

decarboxylation, isomerization, aromatization, dehalogenation, cyclization, elimination, 

dimerization, and polymerization (Min, 2012). Heterogeneous photocatalysis by TiO2 is 

initiated by the excitation of the semiconductor (TiO2) by UV irradiation to generate a 

positive hole-electron pair. Hydroxyl radicals are generated through a series of oxidation 

and reduction reactions on the surface of TiO2. These hydroxyl radicals are highly 

reactive, non-selective, and very efficient oxidizers of adsorbed pollutants (Khetan & 

Collins, 2007).  

Langmuir-Hinshelwood (L-H) kinetics is the most common kinetic expression used 

to represent the rate of heterogeneous photocatalysis of organic compounds by 

illuminated TiO2 particles. L-H kinetic model can be described as -dC/dt = kKC/(1+KC), 

where dC/dt is the rate of degradation; k is the apparent reaction rate constant; K is the 

adsorption coefficient of the substance to be degraded; and C is the concentration of the 

substance. The L-H model is surface-area dependent; the reaction rate is proportional to 

the fraction of surface covered by the organic compounds. The L-H kinetic model is valid 

for the four possible situations: (i) reaction occurs between the adsorbed radicals and 

organic compounds; (ii) reaction occurs between the radicals in water and adsorbed 

organic compounds; (iii) reaction occurs between the radicals on the surface and organic 

compounds in water; and (iv) reaction occurs with both radicals and organic compounds 

in water (Chong et al., 2010; Konstantinou & Albanis, 2004).  

When the extent of adsorption and/or substance concentration is low (i.e., KC<<1), 

the L-H equation can be simplified to a pseudo-first-order kinetic equation: -dc/dt = kC or 

Ct = C0 e
-kt, where k is the pseudo-first-order rate constant (Dimitrakopoulou et al., 2012; 
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Doll & Frimmel, 2004). In this study, the concentrations of target contaminant 

concentrations were very low (at environmental levels) and their adsorption onto the 

photocatalysts was relatively weak. Therefore, a simplified pseudo-first-order kinetic 

approach was used to represent the photocatalytic removal of ACE-K, SMX, MDA, 

MDMA, IBU, GEM, NAP, CAF and CBZ. The first-order rate constant (k) of each 

contaminant was calculated by SigmaPlot (SPSS Inc.) based on least squares regression 

(R2 > 0.989 for all contaminants). To explore the intrinsic photoreactivity of the catalysts, 

k was normalized to the mass and specific surface area of TiO2. The mass normalized rate 

constant (kM) was calculated following kM = k/ρ and the surface area normalized rate 

constant (kSA, intrinsic rate constant) was calculated as kSA = k/(ρAS), where kM is the mass 

normalized rate constant (L g-1 min-1), k is the first order rate constant (min-1), ρ is the 

mass concentration (g L-1), and AS is the surface area of the particle (m2 g-1). The 

calculated values of k, kM, and kSA for each contaminant during the photo(catalytic) 

treatment are provided in Tables 4.2 and 4.3. The target contaminants were divided into 

four groups based on the extent of their removability during 60 min photo- and 

photocatalytic treatment.  

4.4.3.1 Group 1: Easily Photo- and Photocatalytically Degradable Compounds ACE 

and SMX 

Containing the same functional group sulfonamide, artificial sweetener ACE-K and 

pharmaceutical SMX were almost completely removed under both UV alone and UV 

with catalysts (Figure 4.3).    

The concentration of ACE-K decreased from approximately 11000 ng L-1 to < MDL 

(60 ng L-1) during 60 min UV irradiation without catalysts, representing a removal > 
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99.7%. Relatively faster and complete removals of ACE-K were observed during UV 

photolysis than UV photocatalysis (Figure 4.3 and Table 4.2), likely due to the shielding 

effect of the catalysts with respect to the UV penetrating light. The removal rate constant 

(k, 2.3 × 10-1 min-1) of ACE-K under UV photolysis was similar to the rate constants (pH 

independent between 5 and10) reported by Scheurer et al. (2014), but was one order of 

magnitude larger than a previously reported rate constant (pH dependent at 3, 9 and 12) 

which was likely due to the higher UV intensity used in this study (Coiffard et al., 1999). 

The concentrations of ACE-K decreased from 11000 ng L-1 to 146 ng L-1 after a 60 min 

photocatalysis using P25 nanoparticles (98.7% removed), decreased to 65 ng L-1 (99.4% 

removal) using MST nanoparticles, and decreased to < MDL (60 ng L-1) (> 99.7% 

removal) using GO TiO2 nanoparticles.  

The pharmaceutical SMX was almost completely removed, falling from initial 

concentrations of 1200 ng L-1 to < MDL (< 10 ng L-1) during a 60 min UV 

photo(catalytic) treatment (up to 99.9% removal). However, SMX was removed much 

more rapidly during the first 10 min of UV photolysis without catalyst (Figure 4.3 and 

Table 4.2). The rate constant (k) of UV photolysis of SMX in Table 4.2 was three times 

to one order of magnitude larger than previously reported (Fukahori et al., 2012; 

Ngouyap Mouamfon et al., 2011). The greater rate constant observed was likely due to 

the higher UV intensity used in this study. The synthesized GO TiO2 nanoparticles 

exhibited a greater ability in the photocatalysis of SMX than P25 by a factor of 1.6 and 

MST nanoparticles by a factor of 6.1 in terms of the intrinsic rate constant (kSA) (Table 

4.2). The slightly larger k value observed during P25 catalyzed photocatalysis than UV 

photolysis is consistent with other studies (Prieto-Rodriguez et al., 2012). Fukahori et al. 
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(2012) report that the reaction rate constants of photocatalysis of SMX using TiO2 

nanoparticles decrease with increasing pH (pH: 6.5 ̶ 9.0) due to the repulsive force 

between TiO2 particles and anionic SMX. 

The photo(catalytic) degradations of ACE-K and SMX were reported to follow 

various pathways (Gan et al., 2014; Hu et al., 2007; Li et al., 2016; Ngouyap Mouamfon 

et al., 2011; Scheurer et al., 2014); however, similar degradation pathways involving ring 

breakage or hydroxyl radicals cleavage on sulfonamide bond likely occur during 

photo(catalytic) degradation (Abellán et al., 2007; Sang et al., 2014b). The presence of 

sulfonamide likely accounted for the easy degradation of ACE and SMX during UV 

photolysis and photocatalysis.  

4.4.3.2 Group 2: Easily Photocatalytically Degradable Compounds MDA and 

MDMA 

As methylenedioxyphenyl compounds, MDA and MDMA followed similar removal 

trends during the course of a 60 min UV photolysis and photocatalysis using P25, MST 

and GO TiO2 nanoparticles.  

The concentrations of MDA and MDMA decreased slightly from input 

concentrations of 1280 and 1322 ng L-1 to 1058 and 1052 ng L-1, respectively, after a 60 

min UV irradiation; this represents removal of 18% of the MDA and 20% of the MDMA. 

However, up to 99.9% of input MDA and MDMA were removed (from approximately 

1200 ng L-1 to undetectable concentrations) within the first 10 min of the photocatalysis 

by P25, MST, and GO TiO2 nanoparticles (Figure 4.3), with k values three orders of 

magnitude larger than for UV photolysis (Table 4.2). The intrinsic rate constant (kSA) of 
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photocatalysis of MDA and MDMA using GO TiO2 were 1.1 ̶ 1.4 times larger than that 

using P25 particle, indicating exceeding catalytic ability of GO TiO2 compared to P25 

(Table 4.2). The MST particles were less efficient in photocatalysis of MDA and MDMA 

compared to commercial P25 and GO TiO2 particles.  

UV photolysis of MDA and MDMA has not been studied previously. The 

photocatalysis of MDA and MDMA assisted by TiO2 were likely to follow similar 

degradation pathway through hydroxyl radical cleavage of methylenedioxy group with 

catechol and formate as metabolites (Kumagai et al., 1991). This similar photocatalytic 

degradation pathway likely accounted for the similar photo(catalytic) characteristic of 

MDA and MDMA.    

4.4.3.3 Group 3: Moderately Photo- and Photocatalytically Degradable Compounds 

IBU, GEM, and NAP 

Pharmaceuticals IBU, GEM, and NAP were not effectively removed during UV 

photolysis with removals of up to 65%. Faster (observed k) and almost complete 

removals (> 98%) of these compounds were observed during photocatalysis using P25. 

Extensive removal of NAP by P25-assisted photocatalysis relative to photolysis has been 

reported during 180 min of UV irradiation (Méndez-Arriaga et al., 2008b). During 

photocatalysis using GO TiO2, concentrations of IBU and NAP decreased from ~1200 ng 

L-1 to up to 96 ng L-1
 and undetectable concentrations with removals of 99% and 92%, 

respectively. The nanoparticle GO TiO2 exhibited comparable ability in photocatalysis of 

IBU and NAP with relatively smaller intrinsic rate constants (kSA) observed (Table 4.3). 

The first order rate constant k of photocatalysis of IBU and NAP were one or two orders 

of magnitude larger than previous study (Méndez-Arriaga et al., 2008a). The 
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concentration of GEM decreased from 1100 ng L-1 to undetectable concentrations during 

the photocatalysis using P25 and GO TiO2. The intrinsic rate constant (kSA= 8.3 × 10-2 L 

m-2 min-1) during photocatalysis of GEM using GO TiO2 was larger than that (kSA= 6.3 × 

10-2 L m-2 min-1) using P25, indicating advanced photocatalytic ability of GO TiO2 in 

removing GEM compared to P25 by a factor of 1.3. The complete mineralization of GEM 

were observed during photodegradation using commercial P25 with a first-order rate 

constant of 1.5 x10-5 s-1, which is two orders of magnitude lower than the rate constant 

observed in this study (Yurdakal et al., 2007). 

The MST particles were less effective in photocatalysis of IBU, GEM, and NAP with 

kSA values one order of magnitude small than that using P25 and GO TiO2 particles 

(Figure 4.4 and Table 4.3). P25 and GO nanoparticles contain both anatase and rutile 

forms of TiO2, whereas MST nanoparticles contain anatase alone. The enhanced 

photocatalytic ability of P25 and GO TiO2 particles compared to MST particles is likely 

due to a synergy effect of electron transfer in the mixed anatase and rutile phases in P25 

and GO TiO2 nanoparticles. When anatase and rutile are in direct interfacial contact, the 

electron transfer from rutile to anatase stabilizes the charge separation and prevents rapid 

recombination. This electron transfer is enhanced by the small size of rutile crystallites, 

making the rutile/anatase interface a hot spot for photocatalysis (Hurum et al., 2003; 

Scanlon et al., 2013).  

The pharmaceuticals IBU, GEM, and NAP have aromatic and carboxyl groups in 

their structures. One pathway of the photo(catalytic) degradation of IBU and NAP likely 

follow decarboxylation in common (Boscá et al., 2001; Méndez-Arriaga et al., 2008a; 

Méndez-Arriaga et al., 2008b; Yan & Song, 2014), but not for GEM. The photocatalysis 



101 
 

of GEM by TiO2 likely occur through the breakage of ethereal bond besides the aromatic 

group (Yurdakal et al., 2007). The aromatic group in the structure of IBU, GEM, and 

NAP likely make them less vulnerable to UV photolysis and photocatalysis by the 

anatase-phase TiO2 in MST particles. 

4.4.3.4 Group 4: Recalcitrant Photo- and Photocatalytically Degradable Compounds 

CAF and CBZ 

Caffeine and CBZ are the most recalcitrant compounds during photo(catalytic) treatment 

in this study, and cannot be removed during UV photolysis, which is consistent with 

previous study (Jelic et al., 2013); however, rapid and complete removals of CAF and 

CBZ were observed during photocatalysis using GO TiO2 and P25 particles (Linley et al., 

2014). The GO TiO2 particles exhibited greater ability in photocatalysis of CAF and CBZ 

by a factor of 4.1 and 2.7 in terms of intrinsic rate constants (kSA) (Table 4.3). The first 

order rate constant k for photocatalysis of CAF and CBZ using P25 and GO TiO2 

particles were ~3 ̶ 9 times larger than published value using P25 and other synthesized 

TiO2 particles (Barndõk et al., 2013; Jelic et al., 2013; Marques et al., 2013). The MST 

particles were less photocatalyticly effective compared to P25 and GO TiO2 particles in 

photocatalysis of CAF and CBZ. Results showed of ~12% of input CAF and ~27% of 

input CBZ were removed during photocatalysis using MST particles, with kSA values 

~two orders of magnitude smaller than that using P25 and GO TiO2 particles (Figure 4.4 

and Table 4.3). The relatively stable multi-rings structure in CAF and CBZ likely make 

them more recalcitrant to UV photolysis and photocatalysis, resulting in slower removal 

rates for CAF and CBZ compared to other target contaminants (Tables 4.2 and 4.3). . The 

photocatalytic degradation of CAF is likely initiated through hydroxylation of the C4=C8 
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double bond and demethylation (Dalmázio et al., 2005). Doll and Frimmel (2005) and 

Jelic et al. (2013) report the multi-step and interconnected pathways of photocatalytic 

degradation of CBZ with nine intermediates identified.    

4.4.4 Magnetic Separation Results 

The initial concentrations of Fe and Ti in the MST suspended solution for the control 

sample were 2.80 and 6.72 mg L-1 before magnetic separation. The concentrations of Fe 

and Ti in the MST suspended solution decreased slightly to 2.76 and 6.62 mg L-1 after 

placing the control sample on a permanent magnet for 15 min and replacing the 

supernatant with the same volume of water. This slight decrease in Fe and Ti 

concentrations shows that more than 98.5% of MST nanoparticles were magnetically 

recovered through a 15 min magnetic separation process.  

Magnetic separation efficiency of GO TiO2 particles was previously evaluated by 

exposing the GO TiO2 particle solution to a permanent magnet and reported by the UV-

vis adsorption as a function of time. Results showed that more than 90% of the GO TiO2 

particles were separated from solution in 75 s (Linley et al., 2014). 

The UV photocatalytic treatment results show that the GO TiO2 nanoparticles are 

comparable as commercial P25 TiO2 in inducing photocatalysis of IBU and NAP within 

60 min UV irradiation; more efficient in catalyzing the photodegradation of MDA, 

MDMA, GEM, CAF and CBZ in terms of intrinsic rate constants (Tables 4.2 and 4.3). 

However, MST nanoparticles seem much less effective compared to P25 and GO TiO2 

particles, likely due the absence of rutile-phase TiO2. The commercial P25 TiO2 (80% 

anatase and 20% rutile) is more photocatalytically efficient than laboratory synthesized 



103 
 

MST nanoparticles (pure form anatase); this is attributed to the morphology of crystallites, 

efficient photogenerated charge carrier separation due to the junction between its anatase 

and rutile phases, and increasing photocatalytic quantum yield by limiting recombination 

(Kaniou et al., 2005). In addition, the activation energy with smaller band-gap enhanced 

the use of visible light by rutile phase TiO2. The rutile phase TiO2 has been reported to 

exhibit advanced catalytic ability in photodegradation of phenol compared to anatase 

phase TiO2 (Andersson et al., 2002). The enhanced photocatalytic ability of GO TiO2 

relatively to P25 is likely attributed to improved adsorption by the π-π stacking 

interaction, extended light absorption range, efficient charge separation and transportation 

of GO TiO2 compared to P25 (Zhang et al., 2010). GO has a large π-π bonding network 

acting as a sorbent for contaminants with a similar aromatic structure (i.e. compounds 

such as SMX, MDA, MDMA, IBU, GEM, NAP, and CBZ) through π-π interaction. GO 

as an electron sink accepts photogenerated electrons from TiO2, slowing down electron-

hole recombination and improving the quantum efficiency and activity of the catalyst (Du 

et al., 2011). In addition, P25 nanoparticles tend to aggregate, which likely reduces the 

accessible surface area involved in photocatalytic treatment. By attaching the TiO2 

nanoparticles to GO, aggregation is restricted and TiO2 surface area remains accessible 

throughout treatment. Therefore, application of recoverable GO TiO2 photocatalysts in 

the water treatment industry is expected to provide environmental benefits over the use of 

non-recoverable particles due to its efficient photocatalytic ability and high recovery (> 

90%).  
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4.5 Conclusions 

The laboratory synthesized recoverable magnetic graphene oxide supported TiO2 (GO 

TiO2) nanoparticles exhibit catalytic ability comparable or greater to commercial P25 

TiO2 by an average factor of 1.8 when comparing their intrinsic reaction rate constants 

during UV photocatalytic treatment of target contaminants at environmental levels. Up to 

99% of the artificial sweetener acesulfame-K (~10 µg L-1) and pharmaceuticals (~1 µg L-

1) sulfamethoxazole (SMX), 3,4-methylenedioxyamphetamine (MDA), 3,4-

methylenedioxymethamphetamine (MDMA), ibuprofen (IBU), gemfibrozil (GEM), 

naproxen (NAP), caffeine (CAF) and carbamazepine (CBZ) were removed during 60 min 

UV photocatalysis with 0.1 g L-1 of P25 and GO TiO2 nanoparticles. The synthesized 

pure anatase phased MST (γ-Fe2O3@SiO2@TiO2 colloidal nanospheres) nanoparticles 

were less photocatalytically efficient compared to the P25 and GO TiO2 nanoparticles. 

Due to its high photocatalytic efficiency and recovery, the GO TiO2 nanoparticles could 

serve as an alternative to commercial P25 in the water treatment industry in terms of 

environmental benefits. The results reported herein contribute to existing literature by 

presenting results of UV photocatalytic treatment of emerging contaminants (ACE-K, 

SMX, MDA, MDMA, IBU, GEM, NAP, CAF, and CBZ) using magnetically recoverable 

GO TiO2 nanoparticles.  
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Table 4.1 Nanocrystal size, BET surface area, and hydrodynamic (DLS) diameter of the 
particle samples used in this study.  

Sample 

Crystal 
Size 

 (nm)[a] 

BET Surface Area 

(m2 g-1) 

DLS Mean 
Diameter (nm) 

DLS Polydispersity 
Index 

P25 27[c]  57.4[c]  >3000[b] n/a 

MST 8.5 115.4 592.2 0.023 

Note: Similar data in this table for GO TiO2 nanoparticles are not available. 

[a] As calculated from the anatase (101) peak using the Scherrer formula. 

[b] Aggregate sizes were above the operating range of the instrument. 

[c] Reference: (Suttiponparnit et al., 2011) 
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Table 4.2 Selected properties of acesulfame-K (ACE-K), sulfamethoxazole (SMX), 3,4-methylenedioxyamphetamine (MDA), and 
3,4-methylenedioxymethamphetamine (MDMA), first order rate constants (k), correlation coefficient (R2), mass normalized rate 

constants (kM), and surface-area normalized rate constants (kSA) during (photo)catalytic treatment. 

 
Compound (CAS#),  use, pKa, logKow, 

and structure 
UV/ 

Catalyst 

Catalyst 
concentration[a], 

g L-1 
R2 k, min-1 

kM,      
L g-1 
min-1 

kSA
[b],     

L m-2 
min-1 
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Acesulfame-potassium (ACE-K) 
(55589-62-3), artificial sweetener, 

pKa=2.0, log Kow= -1.3 

N
S

O

O

O O

K

CH3

+

 

UV — 0.999 2.3E-01 — — 

P25 0.1 0.999 1.8E-01 1.8 3.1E-02 

MST 0.1 0.999 1.1E-01 1.1 9.7E-03 

GO TiO2 0.05 0.999 1.6E-01 3.2 7.0E-02 

Sulfamethoxazole (SMX)              
(723-46-6), antibiotic, pKa1=1.7, 

pKa2=5.6, log Kow=0.9 

NH2

S

O O

NH

N
O

CH3

 

UV — 1.000 3.1E-01 — — 

P25 0.1 0.999 4.5E-01 4.5 7.9E-02 

MST 0.1 0.999 2.5E-01 2.5 2.1E-02 

GO TiO2 0.05 0.999 2.9E-01 6.0 1.3E-01 

 

  



107 
 

Table 4.2 Continued.  
G
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3,4-methylenedioxyamphetamine 
(MDA) (4764-17-4), psychedelic and 

entactogenic drug, pKa= 9.7,          
log Kow=1.6 

O

O

CH3

NH2

 

UV — 0.499 4.0E-03 — — 

P25 0.1 0.999 5.3E-01 5.3 9.2E-02 

MST 0.1 1.000 4.9E-01 4.9 4.3E-02 

GO TiO2 0.05 0.999 2.9E-01 6.0 1.3E-01 

3,4-methylenedioxymethamphetamine 
(MDMA) (42542-10-9), ecstasy, 

pKa=9.9, log Kow=2.3 

O

O

CH3

NH
CH3

 

UV — 0.892 3.0E-03 — — 

P25 0.1 1.000 6.8E-01 6.8 1.2E-01 

MST 0.1 1.000 4.5E-01 4.5 3.9E-02 

GO TiO2 0.05 0.999 3.0E-01 6.1 1.3E-01 

[a] The catalyst concentration of GO TiO2 was normalized as TiO2 concentration in solution based on the weight ratio of TiO2 in GO 
TiO2 (1:12.5 GO/TiO2, 1:1 TiO2/CSAs). The catalyst concentration of MST TiO2 was not normalized to TiO2 mass concentration. 

[b] The surface area of GO TiO2 used for calculating kSA was assumed to be 80% of TiO2 surface area. The TiO2 particles are 
associated on the GO sheet; the area of the TiO2 in contact with the GO sheet is not exposed to the solution.  
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Table 4.3 Selected properties of ibuprofen (IBU), gemfibrozil (GEM), naproxen (NAP), caffeine (CAF), and carbamazepine (CBZ), 
first order rate constants (k), correlation coefficient (R2), mass normalized rate constants (kM), and surface-area normalized rate 

constants (kSA) during (photo)catalytic treatment. 

 
Compound (CAS#),  use, pKa, 

logKow, and structure 
UV/Catalyst

Catalyst 
concentration[a], 

g L-1 
R2 k, min-1 

kM,      
L g-1 
min-1 

kSA
[b],     

L m-2 
min-1 

G
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 3

 

M
od

er
at

el
y 

ph
ot

o-
 a

nd
 p

ho
to

ca
ta

ly
ti

ca
ll

y 
de

gr
ad

ab
le

 
co

m
po

un
ds

  

Ibuprofen (IBU) (15687-27-1),  
nonsteroidal anti-inflammatory drug, 

pKa=4.5, log Kow=3.5 

CH3

CH3

O

CH3

OH

 

UV — 0.899 6.0E-03 — — 

P25 0.1 0.998 1.7E-01 1.7 2.9E-02 

MST 0.1 0.999 1.5E-02 1.5E-01 1.3E-03 

GO TiO2 0.05 0.994 5.2E-02 1.1 2.4E-02 

Gemfibrozil (GEM) (25812-30-0), 
lipid regulator, pKa=4.8, log Kow=4.3 

O

CH3

CH3

CH3CH3

OH

O

 

UV — 0.943 1.0E-02 — — 

P25 0.1 1.000 3.6E-01 3.6 6.3E-02 

MST 0.1 0.985 1.4E-02 1.4E-01 1.2E-03 

GO TiO2 0.05 1.000 1.8E-01 3.8 8.3E-02 

Naproxen (NAP) (22204-53-1), 
nonsteroidal anti-inflammatory drug, 

pKa=4.2, log Kow=2.8

O
CH3 O

CH3

OH

 

UV — 0.992 1.8E-02 — — 

P25 0.1 0.999 3.9E-01 3.9 6.8E-02 

MST 0.1 0.992 9.3E-02 9.3E-01 8.1E-03 

GO TiO2 0.05 0.999 1.4E-01 3.0 6.5E-02 
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Table 4.3 Continued.  
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Caffeine (CAF) (58-08-2),stimulant, 
pKa=10.4, log Kow= ‐0.1 

N

N

CH3

O

CH3

O

N

N
CH3  

UV — 0.348 1.0E-03 — — 

P25 0.1 0.992 8.9E-02 8.9E-01 1.6E-02 

MST 0.1 0.836 2.0E-03 2.0E-02 1.7E-04 

GO TiO2 0.05 0.999 1.4E-01[c] 2.9 6.3E-02 

Carbamazepine (CBZ) (298-46-4),  
anti-depressant, antiepileptic,     
pKa=-0.49[d], log Kow=2.3 

N

O NH2  

UV — — — — — 

P25 0.1 0.999 5.4E-02 5.4E-01 9.4E-03 

MST 0.1 0.954 5.0E-03 5.0E-02 4.3E-04 

GO TiO2 0.05 0.997 5.5E-02 [c] 1.1 2.5E-02 

[a] The catalyst concentration of GO TiO2 was normalized as TiO2 concentration in solution based on the weight ratio of TiO2 in GO 
TiO2. The catalyst concentration of MST TiO2 was not normalized to TiO2 mass concentration. 

[b] The surface area of GO TiO2 used for calculating kSA was assumed to be 80% of TiO2 surface area. The TiO2 particles are 
associated on the GO sheet; the area of the TiO2 in contact with the GO sheet is not exposed to the solution.  

[c] Reference: Linley et al. (2014).   

[d] Reference: Schaffer et al. (2012).
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Figure 4.1 TEM images of MST particles. 
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Figure 4.2 XRD patterns of the MST particles and P25 as indicated. Peaks labelled with A match 
anatase phase TiO2 (JCPDS No. 21-1272), R matches rutile phase TiO2 (JCPDS No.21-1276), 
and those labeled with M match maghemite (γ-Fe2O3) iron oxide (JCPDS No. 89-3850). 
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Figure 4.3 Concentrations of acesulfame-K (ACE-K), sulfamethoxazole (SMX), 3,4-
methylenedioxyamphetamine (MDA), and 3,4-methylenedioxymethamphetamine (MDMA) as a 
function of reaction time during UV photo(catalytic) treatment. Group 1: Easily photo- and 
photocatalytically degradable compounds ACE and SMX. Group 2: Easily photocatalytically 
degradable compounds MDA and MDMA. 
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Figure 4.4 Concentrations of ibuprofen (IBU), gemfibrozil (GEM), naproxen (NAP), caffeine 
(CAF), and carbamazepine (CBZ) as a function of reaction time during UV photo(catalytic) 
treatment. Group 3: Moderately photo- and photocatalytically degradable compounds IBU, GEM, 
and NAP. Group 4: Recalcitrant photo- and photocatalytically degradable compounds CAF and 
CBZ. The data of UV photolysis and photocatalysis of CAF and CBZ using P25 and GO TiO2 
nanoparticles were reproduced with permission from Linley et al. (2014). 
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Chapter 5: Removal of Pharmaceutical 

Compounds, Artificial Sweeteners, and 

Perfluoroalkyl Substances from Water Using 

Zero-valent Iron and Biochar 
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5.1 Executive Summary 

Emerging contaminants such as pharmaceutical compounds, artificial sweeteners, and 

perfluoroalkyl substances (PFASs) are widely detected and persistent in environmental waters 

such as surface water, groundwater, and drinking water. Advanced oxidation processes are 

among the most effective and heavily studied methods for removing emerging contaminants 

from water; however, high energy consumption (such as ultraviolet light and ozone) greatly 

increases the operating costs and limits its large scale application. In this study, a passive 

treatment system consisting of four columns packed with mixtures of silica sand, zero-valent iron 

(ZVI), biochar (BC), and a mixture of (ZVI + BC) were evaluated for simultaneous removal of 

pharmaceuticals, artificial sweeteners, and PFASs from water. The experiment was divided into 

two stages; the flow rate was maintained at 0.3 pore volume (PV) d-1 in the first stage of the 

experiment, and then decreased to 0.1 PV d-1 in the second stage of the experiment. Almost 

complete removal (> 97%) of the pharmaceutical compounds carbamazepine (CBZ), caffeine 

(CAF), sulfamethoxazole (SMX), 3,4-methylenedioxyamphetamine (MDA), 3,4-

methylenedioxymethamphetamine (MDMA), ibuprofen (IBU), gemfibrozil (GEM) and naproxen 

(NAP) from an influent of ~9 µg L-1 to trace concentrations (< 0.25 µg L-1) was observed in 

Columns ZVI, BC, and (ZVI + BC) over the complete duration of the experiment. The removal 

of pharmaceuticals within the treatment columns followed the first-order rate model (R2 > 0.93). 

The artificial sweeteners acesulfame-K (ACE-K) and saccharin (SAC) (~110 µg L-1) were 

partially removed in the treatment columns. Removal of cyclamate (CYC) was not observed in 

any of the columns. However, more than 76% of input sucralose (SCL) (~110 µg L-1) was 

removed in three treatment columns. Input perfluorooctanoic acid (PFOA) (~45 µg L-1) was 

partially removed in the columns containing BC, but not in Column ZVI. Between 10% and 80% 
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of input perfluorooctane sulfonic acid (PFOS) (24.0 ̶ 89.6 µg L-1) was removed in Column ZVI; 

greater removals (57 ̶ 99%) of PFOS were observed in Columns BC and (ZVI + BC) compared 

to Column ZVI. The removal of the artificial sweeteners, PFOA, and PFOS followed the first-

order or zero-order rate models or followed the first-order rate in the early stage of the 

experiment followed by zero-order rate in the late stage of the experiment. The removal rates of 

target contaminants decreased over time. The decrease in flow rate did not lead to noticeable 

improvements in the removals of the target compounds, except for ACE-K.  
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5.2 Introduction 

Pharmaceuticals and artificial sweeteners are heavily consumed in our daily life. These 

compounds pass through human bodies and finally end up in wastewater treatment plants 

(WWTPs) in the forms of their unchanged parent or degradation products. However, at many 

locations, conventional WWTPs cannot efficiently remove these emerging contaminants from 

water (Joss et al., 2005; Metcalfe et al., 2003a; Scheurer et al., 2009), resulting in the ubiquitous 

occurrences of pharmaceuticals (such as carbamazepine, caffeine, sulfamethoxazole, 3,4-

methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA), 

ibuprofen, gemfibrozil, and naproxen) and artificial sweeteners (such as acesulfame-K, 

cyclamate, sucralose, and saccharin) in the environment (Carrara et al., 2008; González et al., 

2012; Liu et al., 2014b; Rodil et al., 2012).  

Pharmaceutical carbamazepine (CBZ) is an antiepileptic drug with a carboxamide 

functional group attached to a benzo[b][1]benzazepine structure. The persistent behaviors of 

CBZ (removal < 10%) and diclofenac (removal of 21–40%) in WWTPs have been reported by 

Zhang et al. (2008). Caffeine (CAF) is a psychoactive substance widely consumed in beverages 

and drugs; CAF has two carbonyl ( ̶ C=O ̶) functional groups and three methyl side chains 

attached to a purine structure. Sulfamethoxazole (SMX) is a sulfonamide class antibacterial drug 

widely used for treating bacterial infections in humans and domesticated animals; SMX contains 

an amino (NH2 ̶) and oxazole groups attached to the benzenesulfonamide. Bueno et al. (2012) 

report the occurrences and persistence of CBZ (160 ̶ 270 ng L-1), CAF (8 ̶ 59 µg L-1), SMX (0.5 ̶ 

1.3 µg L-1), ibuprofen (IBU) (5 ̶ 14 µg L-1), and gemfibrozil (GEM) (up to 1 µg L-1) in WWTPs 

with removals 50 ̶ 80%, except for CBZ (no removal with effluent concentration higher than 
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influent). MDA and MDMA are illicit psychedelic recreational drugs; they contain the same 

methylenedioxy (-O-CH2-O-) group attached to the aromatic ring of amphetamine (for MDA) 

and methamphetamine (for MDMA) molecules. MDA and MDMA are widely detected in 

untreated and treated wastewater, surface water and groundwater with observed concentrations 

up to 600 ng L-1 (Jurado et al., 2012; Metcalfe et al., 2010a; Pal et al., 2013) and reported 

persistent at different stages of treatment within municipal wastewater treatment plants (Nefau et 

al., 2013). Pharmaceuticals IBU and NAP are  nonsteroidal anti-inflammatory drugs (NSAID), 

which are used as pain killers. IBU contains an isobutylphenyl group attached to a propanoic 

acid; NAP contains a methoxynaphthalene structure attached to a propanoic acid. GEM is a lipid 

regulating drug which contains a dimethylphenoxy attached to a 2,2-dimethylpentanoic acid. 

Metcalfe et al. (2003a) report the occurrences of neutral drug CBZ (1.9 ̶ 2.3 µg L-1) and acidic 

drugs IBU (24.6 ̶ 75.8 µg L-1), NAP (33.9 ̶ 611 µg L-1), and GEM (1.3 ̶ 2.1 µg L-1) in influent and 

effluent samples collected in 14 Canadian sewage treatment plants (STP) with no removal for 

CBZ and removals of 51% for IBU, 94% for NAP, and 38% for GEM. The widespread 

occurrences of pharmaceuticals IBU and NAP in surface water, treated wastewater and drinking 

water  have also been reported previously (Boyd et al., 2003).   

Acesulfame-K (ACE-K) is an artificial sweetener, which is a potassium salt of 6-methyl-

1,2,3-oxathiazine-4(3H)-one 2,2-dioxide. Artificial sweetener cyclamate (CYC) is a sulfamic 

acid (NH2SO3H) with cyclohexane structure attached to the N atom. The artificial sweetener 

saccharin (SAC) is 300–400 times as sweet as sucrose or table sugar with an O-benzoic 

sulfimide structure. Artificial sweetener sucralose (SCL) has a disaccharide structure where three 

hydroxyl groups are replaced by chlorine. Due to the persistence of some pharmaceuticals and 

artificial sweeteners, they have been used to track anthropogenic contamination in aquatic 
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environments. Buerge et al. (2009) report the artificial sweeteners ACE-K and SCL are not 

routinely removed in WWTPs with activated sludge processes; however, SAC and CYC are 

biodegradable (Lange et al., 2012). Emerging contaminants such as artificial sweetener ACE-K, 

pharmaceuticals CAF, CBZ and IBU, and insect repellent DEET have been reported to be useful 

tracers of wastewater in surface water and groundwater (James et al., 2016; Liu et al., 2014b; 

Sorensen et al., 2015; Van Stempvoort et al., 2013). Mawhinney et al. (2011) use the artificial 

sweetener SCL as an indicator for the presence of other recalcitrant compounds in finished 

drinking water. ACE-K is also used as a population marker to assist identifying sources of 

perfluoroalkyl acids in surface waters (Müller et al., 2011). 

Perfluoroalkyl substances (PFASs) are aliphatic hydrocarbons consisting of a 

hydrophobic perfluoroalkyl carbon group (H atoms have been completely replaced by F atoms) 

attached to a hydrophilic ionic acid (such as carboxylic acid and sulfonic acid). They are 

primarily used as surfactants in industrial, military, and consumer products such as polymer 

additives, surface treatment agents and fire retardants because of their high thermal and chemical 

stability (Ahrens, 2011). High water solubility, hydrophobicity/hydrophilicity, and low volatility 

make PFASs ubiquitous contaminants in water, wildlife, and humans (Ahrens & Bundschuh, 

2014; Houde et al., 2011). These compounds are extremely persistent and resistant to physical, 

chemical, and biological degradation and have been reported to be transported globally (Paul et 

al., 2009; Rahman et al., 2014). Perfluorooctanoic acid (PFOA, C7F15COOH) and 

perfluorooctane sulfonic acid (PFOS, C8F17SO3
-) are the most studied PFASs because of their 

frequent detection and high observed concentrations (Ahrens, 2011; Schaider et al., 2014). These 

contaminants have been widely found in wastewater, surface water, groundwater, and drinking 

water (Ahrens, 2011; Ahrens & Bundschuh, 2014; Schaider et al., 2014). 
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Pharmaceutical compounds and PFASs have been reported to be reproductive and 

development toxicants, and endocrine disruptors; moreover, PFASs are bioaccumulative and 

even possible carcinogens (Ding & Peijnenburg, 2013; Sanchez et al., 2011; Santos et al., 2010). 

Because the municipal water and wastewater treatment systems cannot efficiently remove 

pharmaceuticals such as CBZ, CAF, and IBU,  artificial sweeteners such as ACE-K and SCL, 

and especially PFASs such as PFOA and PFOS from water (except for reverse osmosis and 

nanofiltration), different technologies such as advanced oxidation, microbial treatment, and 

granular activated carbon (GAC) adsorption have been extensively studied for removing these 

contaminants from water (Ahmed et al., 2016; Bo et al., 2015; Merino et al., 2016; Sotelo et al., 

2014).  

Advanced oxidation technologies such as UV photo-and photocatalytic degradation and 

UV/H2O2, ozonation have shown to effectively degrade many pharmaceuticals and artificial 

sweeteners (Sharma et al., 2014; Tong et al., 2012). The degradation or decomposition of PFASs 

is more challenging than other emerging contaminants, due to the highly stable saturated C-F 

bond. Efficient decomposition of PFOS has been reported using zero-valent iron (ZVI) in 

subcritical water (> 205 oC, high pressure at 23.3 MPa)  (Hori et al., 2006). Lee et al. (2009) 

demonstrate that 99.3% of PFOA (254 µM) can be decomposed with 74% defluorination 

efficiency using microwave-induced persulfate. Effective removals of perfluoroalkyl acids 

(PFAAs) is observed using nanofiltration (>93%) and GAC (>80%) (Appleman et al., 2013). 

However, these treatment methods either require strong oxidizing radicals (•OH and SO4•-) under 

extreme conditions such as low pH, high temperature and pressure or need to be frequently 

changed or renewed, which makes the treatment costly (Merino et al., 2016). In addition, the 

strong oxidants (such as persulfate and hydrogen peroxide) used in in-situ chemical oxidation 
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have been reported to be greatly decomposed by naturally occurring minerals [such as Fe(III)- 

and Mn(IV)-containing oxides] in groundwater and aquifer materials (Liu et al., 2014a), which 

also makes the advanced oxidation processes less effective in field applications.  

ZVI is a strong reductant (reduction potential of -0.44 V) and has the potential to degrade 

environmental contaminants, such as nitro-organic compounds and chlorinated hydrocarbons 

(Devlin et al., 1998; Gillham & O'Hannesin, 1994; Matheson & Tratnyek, 1994; Orth & Gillham, 

1996). In addition, some iron corrosion products formed on the surface of ZVI such as green rust 

and magnetite have been proposed as effective reductants for treating many contaminants 

(Agrawal et al., 2002; Elsner et al., 2004). Compared to granular ZVI, nanoscale ZVI has larger 

specific surface area and higher surface reactivity which results in more rapid and extensive 

removals of contaminants. Nanoscale and granular ZVI based advanced oxidation processes are 

widely studied for removing contaminants from water. Bautitz et al. (2012) report degradation 

(96%) and mineralization (60%) of pharmaceutical diazepam (~25 mg L-1) after 60 min in an 

enhanced Fenton (ZVI/EDTA/O2) system. Granular ZVI has also been used as a persulfate 

(S2O8
2-) activator to facilitate chemical oxidation of pharmaceutical SMX (Liu et al., 2016b). 

Limited studies have been reported on the use of ZVI alone as a reducing agent for removing 

pharmaceuticals and PFASs from water. König et al. (2016) demonstrate reductive 

biotransformation of the pharmaceutical CBZ using ZVI sponge material with 20% removal. 

Reductive degradation (38 ̶ 96% removed) of four PFASs (PFOA, PFNA, PFDA, and PFOS) has 

been reported using Mg-aminoclay coated nanoscale ZVI under low pH (pH = 3) conditions 

(Arvaniti et al., 2015).  

Biochar (BC) is a porous carbon-residue derived from waste organic materials pyrolyzed 

under limited oxygen or anaerobic conditions. BC has a large surface area and high porosity, and 
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contains various functional groups such as carboxylic, aliphatic, and phenolic groups, which 

provide exchange sites for adsorption of cations, heavy metals, and anions. In addition, the high 

carbon content makes biochar an effective sorbent for nonpolar organic compounds in 

wastewater treatment (Scherer et al., 2000). Biochar is widely used in immobilization of organic 

contaminants (Kim et al., 2016; Oleszczuk et al., 2012) and heavy metals (Liu et al., 2016a; Xu 

et al., 2012) from contaminated water and soil. Effective sorption of pharmaceuticals CBZ, SMX, 

IBU, and NAP by biochar has been reported (Jung et al., 2015a; Rajapaksha et al., 2015; 

Williams et al., 2015).  

ZVI and BC are non-toxic and cost-effective reactive materials and easy to obtain. The 

purpose of this study is to evaluate the potential of low-cost reactive materials for the 

simultaneous removal of three classes of emerging contaminants under dynamic flow conditions. 

Four column experiments were conducted to evaluate the removal of pharmaceuticals (~10 µg L-

1), artificial sweeteners (~100 µg L-1), and perfluoroalkyl substances (20 ̶  100 µg L-1) from 

simulated groundwater using ZVI, BC and a mixture of ZVI and BC. The target contaminants 

and their concentrations were selected and chosen according to their occurrences and 

concentrations found in wastewaters derived from domestic and municipal sources. Simulated 

groundwater (~100 mg L-1 CaCO3 saturated water) was used as the matrix for the influent 

solution to represent concentrations of dissolved Ca2+, HCO3
-, and CO3

2-, which are present in 

natural surface water and groundwater. 
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5.3 Material and Methods 

5.3.1 Column Design and Experimental Setup 

Four acrylic columns were used, each 30 cm in length and 5 cm internal diameter.  Influent and 

effluent ports were attached to the bottom and top of each column for introducing influent and 

discharging effluent solutions. Thirteen sampling ports were installed along the length of each 

column at 2.1 cm intervals. Column Control was packed with 100% silica sand (SS). Column 

ZVI was packed with 50% (v/v) granular ZVI and 50% (v/v) SS.  Column BC was packed with 

50% (v/v) BC and 50% (v/v) SS. Column (ZVI + BC) was packed with 10% (v/v) granular ZVI , 

40% (v/v) BC, and 50% (v/v) SS. A 1 cm-thick layer of 100% SS was packed on the top and 

bottom ends of the columns to separate the column packing from the influent and effluent ports. 

The physical characteristics of the columns are provided in Table 5.1. The SS (0.6–0.8 mm) was 

obtained from the Silica Company (Ottawa, IL, US). The granular ZVI (0.25–1.19 mm) was 

obtained from Connelly-GPM, and was washed using 1.2 M HCl acid, followed by ultrapure 

H2O (Type 1, 18.2 MΩ cm @ 25 oC, generated from a MilliQ A10 water system) before use. The 

BC (oak hard wood; 0.5–2.36 mm) was obtained from Cowboy Charcoal Co., Brentwood, TN, 

USA. The carbon content of the BC is 99.9% and contains hydroxyl, aliphatic, quinone, sulfate, 

and carbonate functional groups (Liu et al., 2015b). After packing, the columns were wrapped 

with aluminum foil to minimize exposure to light. The columns were purged with CO2 (g) for 24 

hr to displace atmospheric gases in the void pore spaces of the column packing, except for the 

Column ZVI. The CO2 (g) is more soluble in water than N2 and O2, which enhances the saturation 

of the packing materials. The Column ZVI was not purged with CO2 (g) to avoid the formation of 

carbonate precipitates which can cause a decrease in reactivity of the iron (Jeen et al., 2006). The 



124 
 

columns were placed in an anaerobic glove box (COY Ltd.) that contained 5% H2 and 95% N2 

and were saturated with ultrapure H2O before introducing influent solution.   

 A concentrated stock solution was prepared that contained 10 mg L-1 of pharmaceutical 

compounds carbamazepine (CBZ), caffeine (CAF), sulfamethoxazole (SMX), 3,4-

methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), 

ibuprofen (IBU), gemfibrozil (GEM), and naproxen (NAP), 100 mg L-1 of artificial sweeteners 

acesulfame-K (ACE-K), cyclamate (CYC), saccharin (SAC), and sucralose (SCL), and 50 – 100 

mg L-1 of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in ultrapure 

water. About 9% (v/v) of methanol (HPLC grade, Sigma-Aldrich) was used in the concentrated 

stock solution to dissolve the dry powders in the aqueous solution. The influent solution was 

prepared by adding 4 mL of the concentrated stock solution to 4 L Ar-purged simulated 

groundwater (CaCO3 saturated water), resulting in < 0.01% methanol. The final influent solution 

contained approximately 10 µg L-1 of pharmaceuticals CBZ, CAF, SMX, MDA, MDMA, IBU, 

GEM, and NAP, 100 µg L-1 of artificial sweeteners ACE-K, CYC, SAC, and SCL, and 50 µg L-1 

of PFOA and 20 µg L-1 PFOS for the first 21 pore volumes (PV) of flow. After 21 PV of flow 

through the columns, the concentration of PFOS in the influent solution was increased to 50 – 

100 µg L-1 to match the influent PFOA concentration; the concentrations of the other target 

contaminants remained the same.  

 The experiments were divided into two stages. The influent solution was pumped through 

the columns from the bottom to the top at 0.3 pore volume (PV) d-1 during the first stage of the 

experiment, and pumped at a rate of 0.1 PV d-1 after 50 PV of flow during the second stage of the 

experiment to evaluate the effect of residence time on contaminant removals. The flow rate was 

set at 0.3 or 0.1 PV d-1 to be representative of average groundwater velocities reported at 
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subsurface-wastewater disposal sites (Benner et al., 1997; Carrara et al., 2008; Robertson et al., 

2000). Profile samples were collected during the experiments at four times (1, 13, 25, 53 PV of 

flow) along the length of the columns.  

5.3.2 Sample Collection and Analytical Methods 

Water samples were collected from the effluent and profile ports using 125 mL amber glass 

bottles except those for PFOA and PFOS analysis, which were collected using 30 mL 

polypropylene bottles. Samples for pH and Eh analysis were not filtered; alkalinity samples were 

filtered through 0.45-µm cellulose acetate membranes (Pall Corp., Canada) before measurement. 

Pharmaceutical samples were filtered through 0.45-µm nylon membranes (Pall Corp., Canada) 

and collected in 25 mL amber glass vials. Artificial sweetener samples were filtered through 0.2-

µm PVDF membranes (Chromatographic Specialties Inc., Canada) and collected in 8 mL 

polyethylene (HDPE) bottles. Samples for PFOA and PFOS analysis were filtered through 0.45-

µm polypropylene membranes (Pall Corp., Canada) and collected in 15 mL HDPE bottles before 

36 PV of flow through the columns, but not filtered afterwards. The measurements of pH, Eh and 

alkalinity were performed immediately after sampling; all other samples were stored at 4 oC until 

analysis within one month of collection.  

 The pH values were measured using a Ross combination glass electrode (Orion 815600) 

calibrated using standard pH 7, 4, and 10 buffers before use and checked against pH 7 and 10 

buffers between samples. The Eh values were measured using a Pt-billeted Ag-AgCl 

combination electrode (Orion 9678BNWP). The performance of the Eh probe was checked 

against A and B solutions (redox/ORP electrode user guide, Thermo Scientific, Canada) between 

samples. The alkalinity measurements were performed using a Hach digital titrator with 

bromocresol green/methyl red indicator and 0.08 mol L-1 H2SO4.   
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 The analysis of target compounds involved isotope dilution  of each compound to track 

the analyte recovery, instrument variability and matrix suppression during sample analysis. The 

native analyte compounds of CBZ, CAF, SMX, IBU, GEM, NAP, CYC, and SAC for calibration 

standards and input stock solution were obtained from Sigma-Aldrich (Oakville, Canada). The 

isotope labeled standards CBZ-d10, CAF-d3, IBU-d3, GEM-d6, and [13C]-NAP were obtained 

from Cambridge Isotope Laboratory Inc. (Cambridge, USA); the isotope labeled standards SMX-

d4, CYC-d11, and SAC-13C6 were obtained from Toronto Research Chemicals Inc. (Toronto, 

Canada). The native analytes ACE-K and SCL and isotope labeled ACE-K-d4 and SCL-d6 

standards were obtained from Toronto Research Chemicals Inc. (Toronto, Canada). The native 

analytes MDA and MDMA and isotope labeled MDA-d5 and MDMA-d5 were obtained from 

Cerilliant Inc. (Texas, USA). The native analytes PFOA and PFOS and their isotope labeled 

standards [13C]-PFOA and [13C]-PFOS for preparation of calibration standards were obtained 

from Wellington Laboratories Inc. (Guelph, Canada). The analytes PFOA and PFOS dry powder 

for preparation of the input stock solution were obtained from Sigma-Aldrich, Canada. 

 Prior to analysis, 1 mL aliquots of artificial sweetener samples, 10 mL aliquots of 

pharmaceutical samples, and 20 mL aliquots of diluted PFOA and PFOS samples were spiked 

with consistent amounts of internal standards (IS). The IS spiked pharmaceutical and PFOA and 

PFOS samples were passed through solid-phase extraction (SPE) cartridges (Oasis HLB 3 cc 

glass cartridges; Waters Corp., Mississauga, Canada) preconditioned with 2 x 1 mL methanol 

and then washed with 2 x 1 mL ultrapure H2O. For pharmaceutical SPE, the cartridges were 

loaded with 10 mL pharmaceutical sample, washed with 2 x 1 mL 5% (v/v) methanol, vacuum 

dried, and eluted with 2 x 1 mL methanol. The pharmaceutical extracts were collected in 7 mL 

amber glass vials. For PFOA and PFOS SPE, the cartridges were loaded with 20 mL PFOA and 
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PFOS sample, washed with 2 x 1 mL ultrapure H2O, vacuum dried, and eluted with 2 x 1 mL 

methanol.  The PFOA and PFOS extracts were collected in 5 mL polypropylene centrifuge tubes 

(Eppendorf Ltd., Canada). The extracts were kept chilled at 4 oC before analysis.  

 Pharmaceutical compound extracts were analyzed by high performance liquid 

chromatography (Agilent 1100, Agilent Technologies) followed by electrospray tandem mass 

spectrometry (4000 Q TRAP, Applied Biosystems, Foster City, USA) using  previously 

described methods (Stafiej et al., 2007; Vanderford & Snyder, 2006) with some modifications to 

optimize for instrument operating conditions. Caffeine, SMX, CBZ, MDA, and MDMA were 

analyzed in electrospray ionization positive (ESI+) mode, while IBU, GEM, and NAP were 

analyzed in ESI negative (ESI-) mode. The mobile phase composition and gradient setup 

followed previously described procedures (Liu et al., 2014b). Seven to eleven point calibration 

curves (MDMA: 0.005 ̶ 10 µg L-1, CAF and SMX: 0.01 ̶ 10 µg L-1, CBZ and MDA: 0.1 ̶ 10 µg L-

1, IBU, GEM and NAP: 0.05 ̶ 10 µg L-1) were used to quantify pharmaceutical concentrations 

with pharmaceutical IS mixture added to yield a concentration of 1 µg L-1. Tap water samples 

spiked with analyte and IS following the same procedures as unknown samples (quality control, 

QC samples) were used to evaluate the impact of the SPE step on the analytical method. 

Fortified samples were prepared which consisted of the unknown samples spiked with a known 

amount of analyte and IS. One duplicate and one fortified sample were prepared between every 

ten unknown pharmaceutical samples to check the accuracy of the SPE procedures. The 

accuracies of pharmaceutical calibration, calibration verification (CV), and continuous 

calibration verification (CCV) samples were in the range of 85 ̶ 120% with IS recoveries of 84 ̶ 

11%. The accuracies of the duplicate and fortified unknown pharmaceutical samples were 83 ̶ 

119%. The absolute IS recoveries of pharmaceutical quality control and unknown samples, 
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including duplicate and fortified samples, were in the range of 71 ̶ 124%. The method detection 

limits (MDLs) of pharmaceutical compounds were 20 ng L-1 for CBZ, 100 ng L-1 for CAF, 10 ng 

L-1 for SMX, 30 ng L-1 for MDA, 5 ng L-1 for MDMA, 30 ng L-1 for IBU, 5 ng L-1 for GEM and 

20 ng L-1 for NAP.   

 The artificial sweetener samples were analyzed by ion chromatography (Dionex ICS-

5000, Thermo Scientific, Sunnyvale, USA) followed by tandem mass spectrometry (6460 QQQ, 

Agilent Technologies, Mississauga, Canada) in ESI- mode using a previously described method 

(Van Stempvoort et al., 2011). Nine point calibration curves (0.05 ̶ 200 µg L-1) with the IS 

concentration of 1 µg L-1 of ACE-d4, 5 µg L-1 of CYC-d11 and SAC-13C6, and 100 µg L-1 of 

SCL-d6 were used for AS quantitation. The quality control samples and duplicate and fortified 

unknown samples were prepared followed the same procedure as for the calibration samples. The 

accuracies of the AS calibration, CV, and CCV samples were 82 ̶ 114%. The accuracies for 

duplicate and fortified unknown AS samples were 80 ̶ 119%. The absolute IS recoveries for CCV 

and unknown AS samples were in the range of 71 ̶ 121%. The MDL of ACE, CYC, SAC, and 

SCL were 0.1 µg L-1.  

 The PFOA and PFOS extracts were analyzed by high performance liquid 

chromatography (1290 HPLC, Agilent Technologies, Mississauga, Canada) followed by tandem 

mass spectrometry (6460 QQQ, Agilent Technologies, Mississauga, Canada) in ESI- mode using 

EPA Method 537 (Shoemaker, 2013) with recommended modifications (Application Note, 

Agilent Technology; Yamashita et al., 2004). The analytes were separated using an Agilent 

Zorbax Eclipse C18 4.6 × 150 mm, 5 μm i.d. (Agilent, Mississauga, Canada) at 55 oC. The 

mobile phase consisted of 2 mM ammonium acetate (HPLC grade, Sigma-Aldrich, Oakville, 
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Canada) in water (phase A) and 2 mM ammonium acetate in methanol (phase B). A gradient 

elution started at 6% B for 1 min, increased linearly to 95% within 7 min  and held at 95% for 8 

min, then decreased to 6% at 16.01 min and held at 6% until 20 min. The flow rate was 0.6 mL 

min-1 and the injection volume was 20 µL. Eight point calibration standards (0.1 ̶ 20 µg L-1) with 

1 µg L-1 of [13C]-PFOA and 2 µg L-1 of [13C]-PFOS were prepared in 96 : 4% (v/v) methanol : 

water for PFOA and PFOS quantitation. The accuracies of calibration, CV, and CCV sample 

were between 80% and 119%. One duplicate sample with two different dilution factors was 

prepared for every ten unknown PFOA and PFOS samples, yielding accuracies of 85 ̶ 126%. One 

third of the unknown PFOA and PFOS samples were analyzed in duplicate or triplicate to assess 

the instrument variability. Tap water samples (QC samples) spiked with analyte and IS were 

used to track the precision of the SPE procedures. The absolute IS recoveries of the CV, CCV, 

QC, and unknown samples were 73 ̶ 126%. The MDL of PFOA and PFOS were 45 and 110 ng 

L-1.  

5.4 Results and Discussion  

5.4.1 Column Geochemistry 

The four pH profiles measured at different times within the columns were highly consistent, 

exhibiting similar values with distance along the columns, except for those obtained within 

Column ZVI (Figure 5.1). The average pH values within Columns Control and BC effluents 

were about 8.3 during the first stage of the experiment, which was consistent with the influent 

pH values. During the second stage of the experiment, the pH values of the Column Control 

effluent gradually increased to 8.6 at 63 PV, while the pH values of the Column BC effluent 

gradually decreased to 6.9 at 68 PV (Figure 5.2).  The pH values of the Column ZVI effluent 
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gradually increased from 7.8 at 5 PV to 9.4 at 25 PV until the end of the first stage of the 

experiment (50 PV); this increase in pH is attributed to the reduction of water by ZVI (݁ܨ଴ ൅

	ଶܱܪ2 ↔ ଶା݁ܨ ൅ ିܪ2ܱ	 ൅  ଶሺ௚ሻ) (Wilson, 1923); however, the pH of the Column ZVI effluentܪ

then started to decrease to 8.6 at 63 PV in the second stage of the experiments as the flow rate 

was decreased from 0.3 to 0.1 PV d-1 (Figure 5.2). This changing trend in pH for the Column 

ZVI effluent was consistent with the profile results (Figure 5.1). The average pH within Column 

(ZVI + BC) and in its effluents was constant at 8.7 through the entire experiment despite the 

decrease in flow rate.  

 The four Eh profiles within the columns exhibited similar values of < ‐400 mV, 

indicating strong reducing conditions in these columns over the course of the experiment. The 

average Eh values within Columns Control, ZVI, BC, and (ZVI + BC) were about ‐410, ‐450, ‐

395 and -440 mV (Figure 5.1).  The Eh of the Column Control effluent was consistent with the 

influent Eh (~ -410 mV).  The lowest Eh values of ‐500 mV were observed within Column ZVI 

and in its effluent at around 25 PV likely due to the production of H2 associated with ZVI 

corrosion (Wilson, 1923). The Eh values within Column BC and in the effluents were similar to 

the influent Eh during the first stage of the experiment; however, the Eh values increased from -

384 mV at 53 PV to -338 mV at 69 PV during the second stage of the experiment. The Eh values 

of Column (ZVI + BC) were relatively constant at ‐440 mV throughout the entire experiment 

(Figures 5.1 and 5.2).     

  The four alkalinity profiles within each column indicated similar changing trends,  with 

constant concentrations observed in the influent within Columns Control and BC and decreasing 

values with distance along the flow direction within Columns ZVI and (ZVI + BC) (Figure 5.1). 
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The concentrations of alkalinity in Columns Control and BC effluents were consistent with the 

influent alkalinity (51 ̶ 94 mg L-1 as CaCO3) during the experiment. The average alkalinity 

concentration in Column ZVI effluent increased from 14 mg L-1 (as CaCO3) before 18 PV to 39 

mg L-1 (as CaCO3) at 47 PV during the first stage of the experiment, and then decreased slightly 

to 27 mg L-1 (as CaCO3) at 63 PV in the second stage of the experiment. The concentrations of 

alkalinity in Column (ZVI + BC) effluent were slightly lower than that of Column BC, but 

higher than that of Column ZVI likely as a result of the mixed composition of the two reactive 

media (Figure 5.2).  

5.4.2 Removal of Pharmaceutical Compounds in Columns  

5.4.2.1 Removal of Pharmaceutical Compounds from Column Effluent  

Pharmaceutical compounds CBZ, CAF, MDA, MDMA, IBU, GEM, and NAP were not 

removed in the Column Control with consistent concentrations between their effluent and 

influent, except for sulfamethoxazole (SMX). SMX was not removed in the Column Control in 

the early stage of the experiment; however, increasing removal of SMX in the Column Control 

was observed in the late stage of the experiment. In general, all eight pharmaceuticals were 

removed in the three treatment columns with removals ranging from 97 ̶ 99% (Figures 5.3 and 

5.4).   

The concentrations of SMX in the Column Control effluent were consistent with the 

influent concentration before 14 PV; however, a gradual decrease from 8.6 µg L-1 at 14 PV to 2.8 

µg L-1 at 47 PV was observed in the first stage of the experiment. The decrease in flow rate from 

0.3 PV d-1 in the first stage of the experiment to 0.1 PV d-1 in the second stage of the experiment 

led to enhanced removal of SMX in the Column Control; the concentration of SMX then 
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decreased to ~0.3 µg L-1 in the second stage of the experiment (Figure 5.4). As an antibiotic, 

SMX has been reported to inhibit bacterial growth at concentrations in the range of 1.3 ̶ 253 µg 

L-1 (Underwood et al., 2011). However, the removal of SMX in Column Control was likely due 

to biodegradation and sorption of SMX to the biofilms as a result of microbial growth during the 

extended operating period. Removal of SMX in sand and soil matrix systems has been reported 

previously (Bertelkamp et al., 2014; Martínez-Hernández et al., 2016; Wunder et al., 2011).  

The concentrations of pharmaceutical compounds in the Columns ZVI, BC and (ZVI + 

BC) effluents decreased from the average input concentration of ~9 µg L-1 to the concentrations 

< 0.25 µg L-1 throughout the experiment, indicating almost complete removals (> 97%) of the 

eight target pharmaceuticals (Figures 5.3 and 5.4). The decrease in flow rate did not affect the 

removals of pharmaceutical compounds in the Columns ZVI, BC and (ZVI + BC). 

5.4.2.2 Potential Removal Mechanisms of Pharmaceutical Compounds by ZVI and BC  

Removal of contaminants using ZVI has been reported involving direct and indirect 

reduction of contaminants by ZVI and iron oxides, or adsorption or coprecipitation of 

contaminants on corrosion products  (Blowes et al., 1997; Crawford et al., 1993; Lee & 

Batchelor, 2002; Matheson & Tratnyek, 1994; Odziemkowski & Simpraga, 2004). The corrosion 

of Fe0 in natural waters (pH 4 ̶ 9) produces hydrated iron oxide films on the metal surface 

(Wilson, 1923). The OH groups (H donors and acceptors) of iron hydroxide can interact with NH, 

NH2, and OH groups (H donors and acceptors) of target pharmaceuticals through H bonding 

which likely enhanced the removal of pharmaceuticals by ZVI. In this study, common products 

of Fe0 corrosion and precipitation in dissolved calcium carbonate water (simulated groundwater) 

are iron hydroxy carbonate [Fe2(OH)2CO3] and aragonite (CaCO3), which likely are negatively 

charged in the pH range of this study (pH 7.9 ̶ 9.5) (Guilbaud et al., 2013); the electrostatic 
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interaction between negatively charged ZVI and positively charged pharmaceuticals can also 

contribute to the removal of pharmaceuticals by ZVI.  

Removal of organic contaminants by BC is attributed to the strong sorption affinity 

between organic contaminants and BC, which likely involves hydrophobic interaction, π  ̶  π 

electron donor-acceptor (EDA) interaction, π  ̶  π electron coupling interaction between the 

graphite moieties of BC and π electron of contaminants, electrostatic interaction, and H-bonding 

(Inyang & Dickenson, 2015; Wang et al., 2016). The BC used in this study (pyrolyzed under 

high temperature ~700 oC ) is likely a π-donor due to a high content of graphitic carbon content 

(99.9%) (Liu et al., 2015b), which likely interact with electron withdrawing functional groups of 

target pharmaceuticals through π  ̶  π EDA interaction. The  ̶ OH functional groups on BC (Liu et 

al., 2015b) can serve as both H donors and acceptors which can interact with electronegative N 

and O bearing functional groups (H acceptors) through H bonding. The BC was likely negatively 

charged under pH 7.0 ̶ 9.5 (Mukherjee et al., 2011); positively charged pharmaceuticals can be 

adsorbed on negatively charged BC through electrostatic interaction. The potential removal 

mechanisms of target pharmaceuticals by ZVI and BC are summarized in Table 5.2.  

The hydrophobic interaction between target pharmaceuticals and BC can be affected by 

the pH of the treatment system and pKa and log Kow (Kow: octanol-water partition coefficient) of 

the pharmaceuticals. Log Kow is used to express the hydrophobicity of a compound. A compound 

is considered to be hydrophilic when its log Kow < 1, moderately hydrophobic (transphilic) when 

its 1 < log Kow < 3, and hydrophobic when its log Kow > 3 (Verliefde et al., 2008). The 

pharmaceuticals CBZ, MDA, MDMA, IBU, GEM, and NAP are moderately hydrophobic in 

their neutral forms (log Kow > 1). However, dissociation of these compounds (except for CBZ, a 

neutral compound) at pH=8.3 (average investigated pH) results in a decrease in hydrophobicity 
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compared to the neutral form. Log Dow (pH dependent log Kow) is used to express the relationship 

among log Kow, pH, and pKa, and was calculated using the following expression (Schwarzenbach 

et al., 2003).  

ைௐܭ	݃݋ܮ	ୀ	ைௐܦ	݃݋ܮ														 െ 	݃݋ܮ ଵ

ଵାଵ଴೛ಹష೛಼ೌ
											For	organic	acids                  Equation 5.1  

ைௐܭ	݃݋ܮ	ୀ	ைௐܦ	݃݋ܮ െ 	݃݋ܮ ଵ

ଵାଵ଴೛಼ೌష೛ಹ
											For	organic	bases																					Equation 5.2 

The calculated log Dow values of target pharmaceuticals (Table 5.2) indicate that all the target 

pharmaceuticals (except for CBZ, moderately hydrophobic with log Dow =2.25) were hydrophilic 

in this study; hydrophobic interaction between these hydrophilic pharmaceuticals and 

hydrophobic BC is expected to be limited.  

The eight target pharmaceuticals were divided into three groups (neutral pharmaceuticals, 

basic pharmaceuticals, and acidic pharmaceuticals) according to their acidic (deprotonated) / 

basic (protonated) character of functional groups in the investigated pH range (pH: 7.0 ̶ 9.5):  

5.4.2.2.1 Neutral Pharmaceutical CBZ 

CBZ is a basic compound due to the presence of –NH2 functional group in its structure. 

CBZ was primarily in its neutral form in the investigated pH range due to its low pKa value (pKa 

< pH, Figure 5.5). Shirazi et al. (2013) argue that reductive degradation of CBZ by ZVI and 

nanoscale ZVI is unlikely; however, König et al. (2016) report that CBZ can be reduced by ZVI 

through reductive catalytic hydrogenation (H2 was produced during anaerobic corrosion of ZVI 

by H2O) with nine hydrogenation products identified. In addition, the H bonding between  ̶ NH2 

(H donor and acceptor) and O (H acceptor) of =O functional groups in CBZ and  ̶ OH groups (H 

donor and acceptor) on the surface of ZVI likely contributes to the sorption of CBZ by ZVI.   
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Sorption of CBZ by BC likely occurs through hydrophobic interactions (between 

moderately hydrophobic CBZ, log Dow=2.25 and hydrophobic BC) (Inyang & Dickenson, 2015), 

π-π interaction (between the aromatic rings of CBZ and the graphene aromatic structure of BC), 

and H bonding (between  ̶ NH2 and =O in CBZ and  ̶ OH on BC). Effective stabilization of CBZ 

in contaminated soil and water has been reported using BC (Jung et al., 2013; Williams et al., 

2015). 

5.4.2.2.2 Basic (Cationic) Pharmaceuticals CAF, MDA, and MDMA 

CAF, MDA, and MDMA are basic compounds because the N bearing functional groups 

in these compounds are protonated in the investigated pH range and in their cationic forms (pH < 

pKa) (Table 5.2 and Figure 5.5). Electrostatic interactions between positively charged CAF, 

MDA, and MDMA and negatively charged ZVI and BC likely contribute to the removals of 

these compounds from water. In addition, the N, –NH–, –NH2, =O, and –O– functional groups 

(H donor or acceptor) in CAF, MDA, and MDMA likely interacted with  ̶ OH groups (H donor 

or acceptor) on the surfaces of ZVI and BC through H bonding (Table 5.2).  

Limited studies have reported the removal of CAF, MDA, and MDMA from water using 

ZVI and BC. Effective decolorization (92.6%) and total organic carbon removal (60.2%) of dark 

brown colored coffee effluent has been reported using ZVI, its core (ZVI)-shell structure (ion 

oxides and hydroxides) provides electrons for reducing coffee and sites for sorption and 

chemical complex formation (Tomizawa et al., 2016). Effective removal of MDMA (~30 ng L-1) 

to undetectable levels is achieved using a ZVI modified Fenton reaction (ZVI/H2O2/H2SO4) and 

ferrate (VI) (Mackuľak et al., 2016).  
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The sorption of CAF, MDA, and MDMA by BC was likely through π  ̶ π EDA interaction, 

electrostatic interaction, H bonding, and π  ̶  π stacking interaction (except for CAF). The π  ̶  π 

EDA interaction likely formed between the electron withdrawing N, –NH–, –NH2, =O, and –O– 

functional groups in CAF, MDA, and MDMA and the π-electron rich BC. The aromatic structure 

in MDA and MDMA also likely interacted with the graphene aromatic structure of BC through 

π  ̶  π stacking interaction (Table 5.2). Effective mitigation of CAF uptake in plants has been 

reported using a wood biochar (Hurtado et al., 2016). Sotelo et al. (2014) report the competitive 

adsorption of CAF and diclofenac by GAC with the sorption capacity of 190.9 mg g-1 for CAF 

and 233.9 mg g-1 for diclofenac; the relatively lower sorption capacity of CAF compared to 

diclofenac is  likely due to the relatively high water solubility, low molecular weight and low Kow 

value of CAF.  

5.4.2.2.3 Acidic (Anionic) Pharmaceuticals SMX, IBU, GEM, and NAP 

SMX is a zwitterion (with two pKas: 1.7 and 5.6) which contains both acidic ( ̶ NH ̶ ) and 

basic ( ̶ NH2) functional groups. Due to the presence of two strong electron withdrawing groups 

(heterocyclic ring and sulfonamide), the sulfonamide  ̶ NH ̶  group deprotonates at pH > 5.6. The 

aromatic amine –NH2 group protonates at pH < 1.7. SMX exists predominantly as an anionic 

species (negatively charged) at pH > 5.6, uncharged species (neutral) at pH between 1.7 and 5.6, 

and cationic species (positively charged) at pH < 1.7. IBU, GEM, and NAP are acidic 

compounds because carboxylic groups in IBU, GEM, and NAP are deprotonated at pH > their 

pKas (4.2 ̶ 4.5) (Figure 5.5). Therefore, SMX, IBU, GEM, and NAP were present as anionic 

(negatively charged) species in the pH range of this study (Table 5.2).  
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Removal of SMX, IBU, GEM, and NAP using ZVI alone has not been previously 

reported; however, rapid degradation of SMX has been reported within 0.5 h using a ZVI ̶ 

activated persulfate ̶ assisted mechanochemical method (a chemical oxidation process induced by 

mechanical forces, which accelerates the reaction due to enhanced mass transfer) (Liu et al., 

2016b). The reductive degradation of aqueous IBU (10 mg L-1) by ZVI nanoparticles alone has 

been reported by Machado et al. (2013) with removals of 54 ̶ 66% observed. Similar to this study, 

the degradation rates of IBU by ZVI greatly decrease with increased reaction time likely due to 

the passivation (oxidation) of the ZVI nanoparticles surface which limits the electron transfer 

from the core of the ZVI particles to its surface (Li et al., 2006). Effective removal of IBU by 

advanced oxidation processes using ZVI as a catalyst or activator has been reported by Ziylan 

and Ince (2015) and Rodriguez et al. (2016). In addition, the H bonding between  ̶ NH2,  ̶ NH ̶ , 

and N in heterocyclic ring of SMX, COOH group (H donor or acceptor) of IBU, GEM, and NAP 

and  ̶ OH groups (H donor or acceptor) on the ZVI surface also likely contributed to the removal 

of SMX, IBU, GEM, and NAP by ZVI.  

The sorption of SMX, IBU, GEM, and NAP by BC has been reported through mainly 

hydrophobic interactions (log Kow of these compounds ranged from 0.89 ̶ 4.3) and π  ̶  π EDA 

interaction (Jung et al., 2015a; Jung et al., 2013; Zheng et al., 2013). However, hydrophobic 

interactions between SMX, IBU, GEM, NAP and BC were likely limited due to the dissociation 

(deprotonation) of these compounds under the investigated pH. The dissociation of these 

compounds resulted in much lower hydrophobicity (lower log Dow values) (Table 5.2) compared 

to their neutral species. The π  ̶  π EDA interaction likely formed between electron withdrawing 

sulfonamide and heterocyclic ring groups in SMX, carboxyl groups in IBU, GEM, and NAP (π 

electron acceptors) and the π-electron rich BC (π electron donors). The π ̶ π stacking interaction 
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between the aromatic rings in SMX, IBU, GEM, and NAP molecule and graphene aromatic 

structure of BC likely enhanced the sorption of SMX, IBU, GEM, and NAP by BC.  In addition, 

H bonding and π-H bonding between the N, NH, or NH2 functional groups in SMX, =O and  ̶ 

OH in carboxyl groups of  IBU, GEM, NAP (H electron donor or acceptors) and  ̶ OH (H 

electron donor or acceptors), and aromatic π structure of BC also likely contributed to sorption of 

these compounds by BC.  

Effective sorption of SMX (0 ̶ 80 mg L-1) has been reported using BC (produced at 300 ̶ 

600 oC) with a sorption capacity of 1.9 ̶ 4.9 mg g-1 at pH=5. The competitive adsorption of IBU 

by BC has been observed in the presence of other adsorption competitors diclofenac and NAP, 

which causes a lower binding energy (Jung et al., 2015a). Jung et al. (2015b) demonstrate that 

about 97.7% of input NAP (10 μM) can be removed by 50 mg L-1 BC from an aqueous solution 

(pH 6.5). Powder activated carbon (PAC) is a similar carbonaceous sorbent to biochar; limited 

removals of IBU < 21%, NAP and GEM < 50% from the input concentration of 50 ̶ 80 ng L-1 by 

PAC were reported during a simulated drinking water treatment process following a 

conventional (coagulation plus chlorination) treatment system (Westerhoff et al., 2005). 

However, Margot et al. (2013) report more effective removals of NAP (78 ̶ 95% removed from 

input concentration of 0.5 ̶ 0.7 µg L-1) and IBU (38 ̶ 83% removed from input concentration of 

1.6 ̶ 6.6 µg L-1) from raw wastewater by PAC (10 ̶ 20 mg L-1).  

5.4.2.3 Removal Rates of Pharmaceutical Compounds within Columns 

The removal of pharmaceutical compounds within Columns ZVI, BC and (ZVI + BC) followed a 

first-order rate model (Figures 5.6 and 5.7) with R2 > 0.93. The removal rates were calculated 

using least-squares regression by dividing the data into two experimental stages. The removal 
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rates, first order removal rate constants (kobs, d
-1), mass normalized rate constants (kM, L g-1 d-1), 

and surface area normalized rate constants (kSA, L m-2 d-1) of target pharmaceuticals are 

summarized in Appendix D (Tables D.1 ̶ D.8). KM and KSA were calculated following the 

expressions (Johnson et al., 1996): 

                                                    KM = Kobs/ρm                                                            Equation 5.3  

                                                    KSA = Kobs/ρa = KM/as                                              Equation 5.4  

Where ρm is the mass concentrations of reactive media (g L-1 of solution); ρa is the surface area 

concentrations of reactive media (m2 L-1 of solution); and as is the specific surface area of 

reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) used in the 

experiments are 9.5, 64.5, and 33.6 m2 g-1 (Jamieson-Hanes, 2012; Liu, 2016).  

Overall, the pharmaceuticals were removed more rapidly in Columns ZVI and (ZVI + BC) 

than Column BC. The removal rates of pharmaceuticals within the treatment columns decreased 

by 67  ̶  99% over the experimental period. Decreases in the removal rates of pharmaceuticals by 

ZVI may be related to a declining reactivity of ZVI due to accumulation of secondary 

precipitates on the ZVI surfaces, such has been described for treatment of trichloroethylene (TCE) 

by ZVI (Jeen et al., 2006; Jeen et al., 2007). Decreasing removals of pharmaceuticals by BC may 

be due to in-filling of pores and decreasing sorption sites over time. The removal rates of 

pharmaceuticals within Columns ZVI and (ZVI+BC) followed the order: SMX > MDMA > 

MDA > CAF > CBZ > GEM > NAP > IBU (SMX > cationic compounds > neutral compound > 

anionic compounds or N functional group bearing compounds > carboxylic functional group 

bearing compounds). The removal rates of pharmaceuticals within Column BC followed the 

order: MDMA > MDA > CAF > CBZ > NAP > GEM > SMX > IBU (cationic compounds > 
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neutral compound > anionic compounds) (Appendix D, Tables D.1 ̶ D.8).  Overall, removal rates 

of cationic pharmaceuticals (positively charged) were greater than neutral and anionic 

pharmaceuticals within each treatment column independent of the hydrophobicity (log Dow), 

number of aromatic rings and number of H acceptors and donors of the compounds. CBZ is the 

most hydrophobic (high log Dow value) pharmaceutical in this study, but its removal rate was 

lower than for the cationic pharmaceuticals (MDMA, MDA, and CAF). Electrostatic interactions 

were likely more important than other removal mechanisms such as hydrophobic interactions 

(log Dow), π  ̶  π EDA and stacking interactions, and H bonding in removal of target 

pharmaceuticals.  

5.4.3 Removal of Artificial Sweeteners in Columns  

5.4.3.1 Removal of Artificial Sweeteners from Column Effluent  

Artificial sweeteners acesulfame-K (ACE-K), cyclamate (CYC), saccharin (SAC) and sucralose 

(SCL) (input concentration: 90 ̶ 120 µg L-1) were not removed in Column Control. ACE-K and 

SAC were partially removed by the three treatment columns. Artificial sweetener CYC was not 

removed in any treatment column throughout the experiment. More than 76% of input SCL was 

removed in the three treatment columns (Figure 5.8).  

A small fraction of input ACE-K (~100 µg L-1) was removed in Columns ZVI and (ZVI 

+ BC). The effluent ACE-K concentration was maintained at ~75 µg L-1 (~27% removed) in 

Column ZVI and ~85 µg L-1 (~14% removed) in Column (ZVI + BC) in the first stage of the 

experiment. The removals of ACE-K in Columns ZVI and (ZVI + BC) were enhanced by the 

decrease in flow rate from 0.3 to 0.1 PV d-1. The concentrations of ACE in the effluents of 

Columns ZVI and (ZVI + BC) decreased to ~40 and ~75 µg L-1. The removals increased to 61% 
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and 31% as the experiment proceeded to the second stage. No removal of ACE-K was observed 

in Column BC (Figure 5.8). Similarly, poor removal (~10%) of ACE-K is reported using PAC 

filtration (Mailler et al., 2015; Scheurer et al., 2010). CYC was not removed in this study (Figure 

5.8). Similarly, poor removal of CYC is observed using GAC; CYC is minimally retarded in a 

GAC filter with 80% breakthrough after 3 d (Scheurer et al., 2010). 

Partial removal of SAC was observed in the columns containing BC, but not Column ZVI. 

The removal of SAC in Column BC was slightly enhanced with the decrease in flow rate; 

however, the removal of SAC in Column (ZVI + BC) was not affected by the decreasing flow 

rate. The concentration of SAC in the Column BC effluent gradually increased from 1.1 µg L-1 at 

6 PV to 85.5 µg L-1 at 56 PV in the first stage of the experiment, then slightly decreased to 70.3 

µg L-1 at 65 PV in the second stage of the experiment when the flow rate was decreased. The 

concentration of SAC in the Column (ZVI + BC) effluent increased from 7.3 µg L-1 at 6 PV to 

87.3 µg L-1 at 38 PV in the first stage of the experiment, and consistent effluent concentrations of 

SAC were maintained during the remainder of the first stage of the experiment and the second 

stage of the experiment (Figure 5.8).  

More than 88%, 85%, and 76% of input SCL (~110 µg L-1) were removed in Column 

ZVI, Column BC, and Column (ZVI + BC). The concentrations of SCL in Column ZVI effluent 

increased from 2.6 µg L-1 at 11 PV to 9.3 µg L-1 at 50 PV in the first stage of the experiment, and 

then increased to 13.1 µg L-1 at 58 PV in the second stage of the experiment. The removal of 

SCL in Column ZVI was not affected by the decrease in flow rate from 0.3 to 0.1 PV d-1; 

however, the removal of SCL in Columns BC and (ZVI + BC) was slightly enhanced with the 

decreasing flow rate. The concentration of SCL in the effluents of Columns BC and (ZVI + BC) 

increased from 7.4 and 0.9 µg L-1 at 10 PV to 17.2 and 28.4 µg L-1 at 53 PV in the first stage of 
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the experiment, then slightly decreased to 12.8 and 24.3 µg L-1 at 63 PV in the second stage of 

the experiment (Figure 5.8).  

5.4.3.2 Potential Removal Mechanisms of Artificial Sweeteners by ZVI and BC  

Four artificial sweeteners were divided into two groups (acidic and neutral artificial sweeteners) 

according to their acidic (deprotonated) / basic (protonated) character of functional groups in the 

investigated pH range (pH: 7.0 ̶ 9.5). The potential removal mechanisms of artificial sweeteners 

by ZVI and BC are summarized in Table 5.3.   

5.4.3.2.1 Anionic Artificial Sweeteners ACE-K, CYC, and SAC  

ACE-K, CYC, and SAC were anionic (negatively charged) in the investigated pH range 

(7.0 ̶ 9.5) due to dissociation of these compounds at pH > pKas (pKas of ACE-K, CYC, and SAC: 

1.7 ̶ 2.0, Table 5.3 and Figure 5.5). The removal of ACE-K by ZVI has not been previously 

reported. The removal of ACE-K (30 ̶ 60%) by ZVI was likely due to reduction by ZVI and H 

bonding between =O and N bearing groups (H acceptors) of ACE-K and  ̶ OH groups (H donors) 

on the surface of ZVI.  

The sorption of SAC by BC was likely through π  ̶  π stacking interaction between the 

aromatic ring in SAC and graphene aromatic structure of BC. ACE-K, CYC, and SAC are 

hydrophilic compounds due to their very low negative log Dow values (calculated following 

Equation 5.1 and listed in Table 5.3); hydrophobic interactions between these artificial 

sweeteners and BC were likely limited. The π  ̶  π EDA interaction between electron withdrawing 

sulfonamide and carbonyl functional groups (π electron acceptors) in SAC and the π-electron 

rich BC (π electron donors) also likely contributed to the sorption of SAC by BC (Inyang & 
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Dickenson, 2015). In addition, the H bonding between the =O and N bearing groups (H acceptors) 

in SAC molecule and the ̶ OH (H donors) of BC could also contribute to sorption of SAC by BC. 

Similarly, Seo et al. (2016) report that the H bonding between the –NH2 group (H donor) on 

modified sorbent and =O (H acceptor) in SAC molecule contributes to the adsorption removal of 

SAC by urea modified metal-organic frameworks. As a similar carbonaceous sorbent to BC, 

GAC has been used to removed SAC from contaminated water with similar removals (47 ̶ 90%) 

compared to BC (Mailler et al., 2015; Scheurer et al., 2010).  

5.4.3.2.2 Neutral Artificial Sweeteners SCL  

Artificial sweetener SCL mainly exists in its neutral form at pH (7.0 ̶ 9.5) < its pKa (11.8) 

(Figure 5.5) in this study (Lange et al., 2012). The removal of SCL by ZVI was likely through 

the dechlorination of the chlorine atom in SCL molecule (Table 5.3) by ZVI. Reductive 

dehalogenation is a surface reaction involving three potential pathways: (1) direct electron 

transfer from Fe0 surface; (2) reduction by Fe2+ produced from Fe0 corrosion; and (3) reduction 

by H2 formed by H2O corrosion (Matheson & Tratnyek, 1994).  In addition, the H bonding 

between  ̶ OH groups (H donors and acceptors) of SCL and  ̶ OH groups (H donors and acceptors) 

on the surface of ZVI also likely contributed to removal of SCL by ZVI.   

The sorption of SCL by BC was likely through H bonding. Sucralose contains hydroxyl 

groups ( ̶ OH, H donor or acceptor) which might be attracted to the quinone groups (  ̶ CO  ̶  ,  H 

acceptor)  and hydroxyl groups (̶ OH, H donor and acceptor) in  BC through H bonding. Similar 

to ACE-K, CYC, and SAC, hydrophobic interaction between SCL and BC was likely limited due 

to its low log Dow (calculated following Equation 5.1 and listed in Table 5.3). In addition, the 

electrostatic interaction between neutral SCL and negatively charged BC (Mukherjee et al., 2011) 
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was likely limited. Compared to the removal of SCL (85 ̶ 99%) by BC in this study, greater 

removal (> 99%) of SCL by AC has been demonstrated by Minten et al. (2011); in addition, SCL 

is removed more efficiently by AC filtration than ozonation, advanced oxidation, and membrane 

bioreactors. 

5.4.3.3 Removal Rates of Artificial Sweeteners within Columns 

The removal rates of artificial sweeteners were calculated using least-squares regression for the 

two experimental stages. The removal of artificial sweeteners followed the first-order or zero-

order rate models or followed the first-order rate in the early stage of the experiment followed by 

zero-order rate in the late stage of the experiment (Figure 5.9). The first-order and zero-order 

removal rates, removal rate constants (kobs, d
-1 for first-order; µmol or µg contaminant L-1 d-1 for 

zero-order), mass normalized rate constants (kM, L g-1 d-1 for first-order; µmol or µg contaminant 

d-1 g -1 for zero-order), and surface area normalized rate constants (kSA, L m-2 d-1 for first-order; 

µmol or µg contaminant d-1 m-2 for zero-order) were calculated using Equations 5.3 and 5.4 and 

listed in Appendix D (Tables D.9 ̶ D.12).  

ACE-K was removed more rapidly within Column ZVI (first-order model) than Column 

(ZVI + BC) (zero-order removal model) (Figure 5.9 and Table D.9). The average removal rate of 

ACE by ZVI in this study was much greater than observed by direct photolysis of ACE-K at pH 

of 4 in deionized water with a rate constant of 0.036 d-1 (Gan et al., 2014). The half-life of ACE-

K within Column (ZVI + BC) during the first stage of the experiment was similar to the half-life 

(9 d) observed in surface water during summer (Gan et al., 2014).  

Removal rate of SAC within three treatment columns followed the order: Column BC > 

Column (ZVI + BC) > Column ZVI (Figure 5.9 and Table D.11). Removal rate of SCL within 



145 
 

three treatment columns followed:  Column ZVI > Column (ZVI + BC) > Column BC (before 

13PV) and followed: Column BC = Column (ZVI + BC) > Column ZVI (after 13PV) (Figure 5.9 

and Table D.12). This decrease in the removal rates of SCL by ZVI through dechlorination 

(discussed in section 5.4.3.2) is likely due to the declining reactivity of ZVI resulting from the 

formation of secondary precipitates on the ZVI surfaces. The input solution used in this study 

contained CaCO3 which likely accelerated the formation of secondary precipitates resulting in 

further declining reactivity of ZVI. Similar decreasing removal rates of TCE by ZVI through 

dechlorination has been reported (Jeen et al., 2006; Jeen et al., 2007). The removal rates of ACE-

K, SAC and SCL within treatment columns were lower than the rates observed using advanced 

oxidation technologies (Sharma et al., 2014; Toth et al., 2012).  

Overall, adding ZVI to BC did not enhance the removals of artificial sweeteners ACE-K, 

CYC, SAC, and SCL in Column (ZVI + BC); artificial sweeteners are less effectively removed 

in Column (ZVI + BC) than either Column ZVI or Column BC. The removal rate of four 

artificial sweeteners followed: SCL > ACE-K > SAC > CYC (no removal) within Column ZVI 

and SCL > SAC > ACE-K and CYC (no removals) within the column containing BC.  

5.4.4 Removal of PFOA and PFOS in Columns  

5.4.4.1 Removal of PFOA and PFOS from Column Effluent 

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were persistent and 

not removed in the Column Control. More than 89% of input PFOA (~45 µg L-1) was removed 

in Columns ZVI, BC and (ZVI + BC) at the early first stage of the experiment (< 10 PV), the 

removal efficiency of PFOA in three treatment columns greatly decreased during the remainder 

of the experiment. About 49 ̶ 98% of input PFOS (24.0 ̶ 89.6 µg L-1) was removed in the 



146 
 

columns containing BC over the experimental period, less was removed in Column ZVI (Figure 

5.10).   

The concentration of PFOA in the Column ZVI effluent was < 0.5 µg L-1 before 10 PV 

with removal of 99%; then rapidly jumped to 28.1 µg L-1 at 11 PV and continued to increase to 

51.4 µg L-1 (which was 10   ̶ 25 % higher than the input PFOA) at 18 PV until the end of the first 

stage of the experiment, the concentration of PFOA gradually decreased to the influent PFOA 

level during the second stage of the experiment. Partial removal of PFOA was observed in 

Column BC. The concentration of PFOA in the Column BC effluent was < 5 µg L-1 before 10 

PV with removal of > 89%, and then gradually increased to 39.3 µg L-1 at the end of the first 

stage of the experiment with removal of 13%. The removal of PFOA in Column BC was 

enhanced as a result of a decrease in flow rate. The concentration of PFOA in the effluent of 

Column BC slightly decreased from 39.3 at 53 PV to 34.3 µg L-1 at 65 PV at the beginning of the 

second stage of the experiment when the flow rate was first lowered; however, PFOA then 

rapidly broke through Column BC with the concentration of 50.7 µg L-1 at 69 PV at the end of 

the second stage of the experiment (Figure 5.10).  

Limited removal of PFOA was observed in Column (ZVI + BC). More than 97% of input 

PFOA was removed in Column (ZVI + BC) from the average input concentration of 44.6 µg L-1 

to 1.58 µg L-1 within the first 6 PV in the first stage of the experiment; however, the 

concentration of PFOA in the Column (ZVI + BC) effluent rapidly increased to 44.7 µg L-1 after 

25 PV and continued to increase until concentrations reached 55.4 µg L-1 at 55 PV in the first 

stage of the experiment. Like in Column BC, the removal of PFOA in Column (ZVI + BC) was 

slightly enhanced when the flow rate was decreased. The concentration of PFOA in the effluent 
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of Column (ZVI + BC) slightly decreased from 55.4 µg L-1 to the average influent PFOA value 

(45 µg L-1) during the second stage of the experiment (Figure 5.10).  

More than 81% of input PFOS (24.0 ̶ 82.6 µg L-1) was removed in Column ZVI before 37 

PV during the first stage of the experiment; however, as the average input PFOS concentration 

increased from 47.5 µg L-1 at 34 PV to 82.9 µg L-1 at 50 PV, the concentration of PFOS in 

Column ZVI effluent rapidly increased from 2.23 µg L-1 to 51.2 µg L-1 with removals of 25 ̶ 46% 

during the first stage of the experiment. The concentration of PFOS in Column ZVI effluent 

followed the same changing trend with the influent PFOS with relatively smaller removals of 11 ̶ 

49% during the second stage of the experiment (Figure 5.10).   

More than 82% of input PFOS (varied from 24.0 to 89.6 µg L-1) was removed in Column 

BC throughout the experiment with the effluent concentrations < 8.6 µg L-1 and removal of up to 

99%, except for 13 ̶ 21 PV with removals of 63 ̶ 94%. Relatively less removal of PFOS was 

observed in Column (ZVI + BC) compared to Column BC. Similarly, low concentrations of 

PFOS (< 6.07 µg L-1) were observed in the Column (ZVI + BC) effluent before 41 PV with 

removal > 88%, except for 15 ̶ 22 PV with the smaller removals of 57 ̶ 95%. As the average input 

PFOS concentration increased from 49.0 to 84.7 µg L-1 at ~40 PV, the effluent PFOS 

concentration in Column (ZVI + BC) then increased from 6.07 µg L-1 at 41 PV to 19.2 µg L-1 at 

45 PV and maintained consistent at ~20 µg L-1 with the relatively smaller removals of 56 ̶ 79% 

(Figure 5.10). Overall, PFOA (up to 89%) and PFOS (up to 99%) were removed more effectively 

by high carbon content (99%) BC in this study compared to a previously reported study; 

Kupryianchyk et al. (2016) report little or no removal of PFOA and PFOS from top 20 cm soils 
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of a fire fighting training sites contaminated with PFASs attributed to the low C content (19 ̶ 

53%) biochars.   

5.4.4.2 Potential Removal Mechanisms of PFOA and PFOS by ZVI and BC 

PFOA and PFOS are acidic compounds which deprotonate and exist primarily in their anionic 

forms (negatively charged) at the investigated pH range (pH: 7.0 ̶ 9.5 > pKas; Table 5.4 and 

Figure 5.5). Removal of PFOA and PFOS by ZVI during the early stage (before 18 PV) of the 

experiment was likely due to electrostatic interactions, and H bonding and ion-dipole interactions; 

however, electrostatic interactions were likely limited after 18 PV through Column ZVI. The pH 

of pore water in Column ZVI ranged from 7.1 to 8.2 before 18 PV (Figure 5.2); the oxides and 

hydroxides were likely positively charged at pH < 8.3 (Parks, 1965), which may have promoted 

sorption of negatively charged PFOA and PFOS through electrostatic interactions. Similarly, the 

sorption of PFOA and PFOS by ZVI oxidation products (iron oxides and hydroxides) in a low 

pH (3.0 ̶ 6.0) aqueous solution has been reported through electrostatic interactions (Gao & 

Chorover, 2012). However, the pH of pore water in Column ZVI > 8.3 after 18 PV (Figure 5.2) 

resulted in negatively charged iron hydroxides, leading to a reduction in electrostatic interactions 

between negatively charged PFOA, PFOS, and the iron hydroxide surface. This pH induced 

decrease of electrostatic interaction possibly resulted in the desorption of PFOA from ZVI, 

accounting for the higher concentration of PFOA (10 ̶ 25 %) in the Column ZVI effluent 

compared to the influent PFOA (18  ̶ 50 PV) (Figure 5.10).  

 The H bonding between PFOA/PFOS and ZVI were likely formed between the   ̶ OH 

groups (H donors) on iron hydroxide surfaces and the carboxylic ( ̶ COO-, 2O as 2H acceptors) 

and sulfonic ( ̶ SO3
-, 3O as 3H acceptors) groups of PFOA and PFOS. The H bonding between 
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PFOS (3H acceptors) and ZVI was likely greater than between PFOA (2H acceptors) and ZVI; 

this may account for the greater removal of PFOS by ZVI than PFOA. The anionic PFOA and 

PFOS molecules can also develop ion-dipole interactions with the polar  ̶ OH functional groups 

(dipole) on the ZVI surface (Punyapalakul et al., 2013). In addition, the formation of Fe-

carboxylate complexes from the ferric Fe hydroxide on the surface of ZVI and the carboxylic 

group in PFOA may also contribute to sorption of PFOA by ZVI  (Gao & Chorover, 2012).  

Fluoride, the indicative by-product of defluorination, was not observed in the treated 

effluent of any column in this study likely due to either lack of defluorination reactions, 

analytical limitations, or the removal of F- by the reactive media. The sorption of F- by iron 

hydroxide (Sujana et al., 2009) and biochars (Guan et al., 2015) has been reported previously. In 

addition, Ca2+ in the simulated groundwater used in this study may have reacted with F- to form 

CaF2 precipitates which can also remove F- from the column effluent and pore water. Therefore, 

reductive defluorination of PFOA and PFOS by ZVI cannot be confirmed in this study.  

However, the reductive defluorination of PFOA and PFOS is demonstrated by Arvaniti et al. 

(2015) using Mg-aminoclay modified nanoscale ZVI. Effective reductive defluorination of 

PFOA has been reported using photo-generated hydrated electrons (a powerful reductant, Eo = ̶ 

2.9 V) to initiate the cleavage of α-position C-F bond (Park et al., 2009; Song et al., 2013).  

Removal of PFOA and PFOS by BC was likely through hydrophobic interactions 

between the hydrophobic perfluoroalkyl tail and hydrophobic surface of BC (Du et al., 2014), 

which is consistent with high log Dow values in Table 5.4. In addition, H bonding, ion-dipole 

interactions may also contribute to the removal of PFOA and PFOS by BC. Greater removals of 

PFOS by BC compared to PFOA are attributed to the stronger hydrophobic interaction between 

PFOS and BC. Both PFOA and PFOS have the same carbon chain length (C8); however, PFOS 
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contains two additional C-F bonds compared to PFOA, which leads to stronger hydrophobicity 

of PFOS than PFOA (Higgins & Luthy, 2006). Similarly, H bonding between the  ̶ OH groups (H 

donors) in BC and the  ̶ SO3
- group (3H acceptors) in PFOS was likely greater than the H 

bonding between the  ̶ OH groups in BC and the  ̶COO- group (2H acceptors) in PFOA. This 

stronger H bonding between BC and PFOS may have contributed to the stronger sorption of 

PFOS by BC compared to PFOA (Gao & Chorover, 2012). A relatively weak ion-dipole 

interaction between the  ̶ OH dipole groups in BC and anionic PFOA and PFOS molecules can 

also contribute to the sorption of PFOA and PFOS to BC (Du et al., 2014; Karoyo & Wilson, 

2013). In addition, the Ca2+ present in simulated groundwater in this study has been reported to 

enhance the sorption of PFOA and PFOS to adsorbents due to the formation of a cation bridge 

between Ca2+ and negatively charged carboxyl and sulfonate groups (Wang & Shih, 2011). The 

electrostatic interaction between negatively charged PFOA and PFOS and negatively charged 

ZVI and BC (discussed in section 5.4.2.2) was likely limited at pH of 7 ̶ 9.5 in this study.  

 5.4.4.3 Removal Rates of PFOA and PFOS within Columns  

The removal rates of PFOA and PFOS were calculated using least-squares regression for the two 

experimental stages. The removal of PFOA and PFOS followed the first-order or zero-order rate 

models or followed the first-order rate in the early stage of the experiment followed by zero-

order rate in the late stage of the experiment (Figure 5.11). The removal rates, removal rate 

constants (kobs), mass normalized rate constants (kM), and surface area normalized rate constants 

(kSA) were calculated following Equations 5.3 and 5.4 and listed in Appendix D (Tables D.13 ̶ 

D.14).  
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The removal rate of PFOA followed: Column BC > Column (ZVI + BC) > Column ZVI 

(Figure 5.11 and Table D.13). The removal rate of PFOS: Column (ZVI + BC) > Column BC > 

Column ZVI during the first stage of the experiment and Column BC > Column (ZVI + BC) > 

Column ZVI during the second stage of the experiment (Figure 5.11 and Table D.14). Overall, 

PFOA and PFOS were removed more rapidly within the columns containing BC than Column 

ZVI.  

The decreasing removal rates of PFOA and PFOS by BC were likely due to the 

competitive sorption between PFASs and other organic contaminants pharmaceuticals and 

artificial sweeteners, which has been reported previously (Yu et al., 2012). In addition, Du et al. 

(2014) demonstrate that the adsorbed negatively charged PFAS molecules on the sorbents 

produce a repulsive force to prevent further adsorption of negatively charged PFASs. This 

repulsive interaction on the surface of BC also likely decreased the sorption efficiency of PFOA 

and PFOS by BC over time. The removal rates of PFOA and PFOS by ZVI and BC were slower 

than rates reported using the iron containing material hematite (Gao & Chorover, 2012) and 

carbonaceous sorbent GAC (Zhang et al., 2016).  

5.5 Conclusions 

Simultaneous removal of emerging contaminants pharmaceutical compounds (CBZ, CAF, 

MDA, MDMA, SMX, IBU, GEM, and NAP with removals > 97%), artificial sweeteners (ACE-

K, SAC, and SCL with partial removals), and perfluoroalkyl substances (PFOA and PFOS with 

partial removals) was observed in a passive treatment system (four columns) containing reactive 

media zero-valent iron (ZVI), biochar (BC), and a mixture of (ZVI + BC). No obvious signs of 

clogging or decrease in flow rates were observed over the course of the experiment. Eight 
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pharmaceuticals were more rapidly and completely removed in the columns containing ZVI than 

Column BC. In general, removal rates of pharmaceuticals within three treatment columns 

followed: SMX (in Column ZVI but not in the columns containing BC) > cationic (positively 

charged) compounds (MDMA, MDA, and CAF) > neutral compound (CBZ) > anionic 

(negatively charged) compounds (NAP, GEM, and IBU). The removal rates of artificial 

sweeteners within treatment columns followed: SCL > ACE-K and SAC > CYC (no removal). 

Unlike pharmaceuticals, greater and relatively more rapid removals of PFOA and PFOS were 

observed in the columns containing BC than Column ZVI; PFOS was more effectively removed 

than PFOA. Overall, target pharmaceuticals, artificial sweeteners (except for CYC with no 

removal), and perfluoroalkyl substances were more considerably removed using the combination 

of (ZVI + BC) than either ZVI alone or BC alone. These results suggest that the reactive mixture 

(ZVI + BC) has the potential to be an effective combination for use in large-scale field 

applications such as in-situ reactors and permeable reactive barriers (PRBs) for remediation of 

emerging contaminants. These materials are relatively low cost and when combined show 

considerable reactivity for ubiquitous trace organic emerging contaminants present in wastewater. 

However, more extensive study is required when the reactive mixture is applied to remove 

emerging contaminants from different wastewater streams; as the complex matrix of the 

wastewater such as DOC content and ionic strength may influence the removal efficiency 
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Table 5.1 Physical characteristics of the columns used in this study, including a control and 
columns containing zero-valent Fe (ZVI), organic C (BC), and both. 

 
Column 1   
Control 

Column 2  
ZVI 

Column 3 
BC 

Column 4  
(ZVI + BC) 

Bulk density, g cm-3 1.77 2.39 1.18 1.46 
Porosity 0.39 0.32 0.59 0.40 

Pore volume, cm3 230 207 372 276 
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Table 5.2 Selected properties of target pharmaceuticals and potential interaction (removal mechanisms) between target 
pharmaceutical compounds and reactive media. N: Neutral; (+): Positive charged; ( ̶): Negative charged.  

Contaminant Reactive Media 
Potential interaction between 

contaminant and reactive 
media 

CAS#, therapeutic use, pKa, 
log Kow, log Dow, character 

(charge), and structure 

Reactive functional 
group 

Column/ 
Reactive media 

Reactive functional group 
or agent 

Carbamazepine 
(CBZ) (298-46-4), 
Anti-depressant, 

pKa= -0.49a,  
log Kow=2.25, 
log Dow=2.25,  

Base (N),  

N

O NH2  

C=C bonds Column 2/ 
ZVI 

H2 Catalytic hydrogenation1 

̶ NH2,  ̶ C=O ̶ OH on surface of ZVI H bonding 

Aromatic structure Column 3/ 
BC 

Graphene aromatic 
structure 

Hydrophobic interaction2 

π-π interaction 

̶ NH2,  ̶ C=O ̶ OH H bonding 

C=C bonds, 
aromatic structure, 

̶ NH2,  ̶ C=O 

Column 4/ 
(ZVI +BC) 

H2 and 
graphene aromatic 

structure 

Catalytic hydrogenation1 , 
hydrophobic interaction2, π-π 

interaction, H bonding 
      

Caffeine   
(CAF) (58-08-2), 

Stimulant, 
pKa=10.4b, 

log Kow= -0.07, 
log Dow= -2.17,  

Base (+), 

N

N

CH3

O

CH3

O

N

N
CH3  

 

Not reported 
Column 2/ 

ZVI 

Core ZVI-shell structure 
(iron oxides and 

hydroxides) 

Reduction and adsorption3 

N, =O Electrostatic interaction 

+ charged ̶  charged H bonding 

N, =O Column 3/ 
BC 

̶ OH, graphene aromatic 
structure 

H bonding, 
π-π EDA interaction 

+ charged ̶  charged Electrostatic interaction 

N, =O 
Column 4/ 
(ZVI +BC) 

Core ZVI-shell structure 
(iron oxides and 

hydroxides),  ̶ OH 

Reduction and adsorption3, 
π-π EDA interaction, H 
bonding, electrostatic 

interaction 



155 
 

Table 5.2 Continued. 

Contaminant Reactive Media 
Potential interaction between 

contaminant and reactive media 
CAS#, therapeutic use, pKa, 
log Kow, log Dow, character 

(charge), and structure 

Reactive functional 
group 

Column/ 
Reactive media 

Reactive functional 
group or agent 

3,4-methylenedioxy- 
amphetamine  

(MDA) (4764-17-4), 
Psychedelic and 

entactogenic drug, 
pKa= 9.7,              

log Kow=1.64, 
log Dow= 0.22,  

Base (+), 

O

O

CH3

NH2

 

̶ NH2, O Column 2/ 
ZVI 

̶ OH on surface of 
ZVI 

Electrostatic interaction  

+ charged  ̶  charged  H bonding 

Aromatic structure 

Column 3/ 
BC 

Graphene aromatic 
structure 

π-π stacking 

̶ NH2, O 
̶ OH, graphene 

aromatic structure 
π-π EDA interaction, π-H bonding, 

H bonding, 

+ charged  ̶  charged  Electrostatic interaction 

̶ NH ̶ , O, aromatic 
structure 

Column 4/ 
(ZVI +BC) 

̶ OH, graphene 
aromatic structure 

Electrostatic interaction, π-π 
stacking, π-π EDA interaction, π-H 

bonding, H bonding 

       

3,4-methylenedioxy- 
methamphetamine  

(MDMA) (42542-10-9), 
Ecstasy,   
pKa=9.9,  

log Kow=2.28,  
log Dow=0.67,  

Base (+), 

O

O

CH3

NH
CH3

 

̶ NH ̶ , O Column 2/ 
ZVI 

̶ OH on surface of 
ZVI 

Electrostatic interaction  

+ charged  ̶  charged  H bonding 

Aromatic structure 

Column 3/ 
BC 

Graphene aromatic 
structure 

π-π stacking  

̶̶ NH ̶ , O 
̶ OH, graphene 

aromatic structure
H bonding, π-π EDA interaction, π-

H bonding 

+ charged ̶  charged  Electrostatic interaction 

̶ NH ̶ , O, aromatic 
structure 

Column 4/ 
(ZVI +BC) 

̶ OH, graphene 
aromatic structure 

Electrostatic interaction, π-π 
stacking, π-π EDA interaction, π-H 

bonding, H bonding 
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Table 5.2 Continued. 

Contaminant Reactive Media 
Potential interaction between 

contaminant and reactive 
media 

CAS#, therapeutic use, pKa, 
log Kow, log Dow, character 

(charge), and structure 
Reactive functional group 

Column/ 
Reactive  media 

Reactive functional 
group or agent 

Sulfamethoxazole 
(SMX) (723-46-6), 

Antibiotic,  
pKa1=1.7, pKa2=5.6b,  

log Kow=0.89,  
log Dow= -1.81,  

Acid ( ̶ ), 

NH2

S

O O

NH

N
O

CH3

 

̶ NH2, sulfonamide group,  
N-heterocyclic ring 

Column 2/ 
ZVI 

̶ OH on surface of 
ZVI 

H bonding 

Aromatic structure 
Column 3/ 

BC 

Graphene aromatic 
structure 

π-π stacking  

̶ NH2, sulfonamide group,  
N-heterocyclic ring 

̶ OH, graphene 
aromatic structure 

H bonding, 
π-π EDA interaction4, 

π-H bonding 
̶ NH2, sulfonamide group,  

N-heterocyclic ring, 
aromatic structure 

Column 4/ 
(ZVI +BC) 

̶ OH, graphene 
aromatic structure 

H bonding, π-π stacking, π-π 
EDA interaction, π-H 

bonding 
     

Ibuprofen 
(IBU) (15687-27-1), 

Anti-inflammatory drug,  
pKa=4.5,  

log Kow=3.5,  
log Dow= -0.3,  

Acid ( ̶ ), 

CH3

CH3

O

CH3

OH

 
 

̶ COOH 
Column 2/ 

ZVI 

̶ OH on surface of 
ZVI 

H bonding 

Not reported ZVI Reduction5 

Aromatic structure 
Column 3/ 

BC 

Graphene aromatic 
structure 

π-π stacking 

̶ COOH 
̶ OH, graphene 

aromatic structure 
H bonding, π-π EDA 

interaction6, π-H bonding 

Aromatic structure,  
 ̶ ̶ COOH 

Column 4/ 
(ZVI +BC) 

̶ OH, graphene 
aromatic structure 

Reduction, H bonding, π-π 
stacking, π-π EDA 

interaction, π-H bonding 
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Table 5.2 Continued. 

Contaminant Reactive Media 

Potential interaction between 
contaminant and reactive media 

CAS#, therapeutic use, pKa, 
log Kow, log Dow, character 

(charge), and structure 

Reactive functional 
group 

Column/ 
Reactive media 

Reactive functional 
group or agent 

Gemfibrozil 
(GEM) (25812-30-0), 

Lipid regulator, 
pKa=4.8,  

log Kow=4.3,  
log Dow= 0.8,  

Acid ( ̶ ), 
O

CH3

CH3

CH3CH3

OH

O

 

̶ COOH 
Column 2/ 

ZVI 
̶ OH on surface of ZVI H bonding 

Xylene aromatic 
structure Column 3/ 

BC 

Graphene aromatic 
structure 

π-π stacking  

̶ COOH 
̶ OH, graphene aromatic 

structure 
H bonding, π-π EDA interaction, 

π-H bonding 

̶ COOH, xylene 
aromatic structure 

Column 4/ 
(ZVI +BC) 

̶ OH, graphene aromatic 
structure 

H bonding, π-π stacking, π-π 
EDA interaction, π-H bonding 

     
Naproxen 

(NAP) (22204-53-1), 
 Anti-inflammatory drug, 

pKa=4.2,  
log Kow=2.8,  

log Dow= -1.3,  
Acid ( ̶ ), 

O
CH3 O

CH3

OH

 
 

̶ COOH 
Column 2/ 

ZVI 
̶ OH on surface of ZVI H bonding 

Naphthalene 
aromatic structure 

Column 3/ 
BC 

Graphene aromatic 
structure 

π-π stacking 

̶ COOH 
̶ OH, graphene aromatic 

structure 

H bonding, π-π EDA interaction 
and high Van der Waals forces7, 

π-H bonding 

Naphthalene 
aromatic structure,  

 ̶ ̶ COOH 

Column 4/ 
(ZVI +BC) 

̶ OH, graphene aromatic 
structure 

H bonding, π-π stacking, π-π 
EDA interaction, π-H bonding 

References: a From Schaffer et al. (2012). b From Martínez-Hernández et al. (2014).1. König et al. (2016); 2. Inyang and Dickenson 
(2015); 3. Tomizawa et al. (2016); 4. Zheng et al. (2013); 5. Machado et al. (2013); 6. (Jung et al. (2013)); 7. Jung et al. (2015a). 
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Table 5.3  Selected properties of target artificial sweeteners and potential interaction (removal mechanisms) between target artificial 

sweeteners and reactive media. N: Neutral; (+): Positive charged; ( ̶): Negative charged. 

Contaminant Reactive Media 
Potential interaction 

between contaminant and 
reactive media 

CAS#, pKa, log Kow, log Dow, 
character (charge), and structure 

Reactive 
functional 

group 

Column/ 
Reactive media 

Reactive functional group 
or agent 

Acesulfame-K 
(ACE-K) (55589-62-3), 

pKa=2.0, 
log Kow= -1.33, 
log Dow= -1.33, 

Base ( ̶ ), 

N
S

O

O

O O

K

CH3

+

 
 

 =O, N 
Column 2/ 

ZVI 
̶ OH on surface of ZVI 

H bonding 
Reduction by ZVI 

̶ ̶ ̶ ̶ 
Column 3/ 

BC 
̶ ̶ ̶ ̶ Not removed 

̶ C=O 
Column 4/ 
(ZVI +BC) 

̶ OH H bonding 

     
Cyclamate 

(CYC) (45951-45-9), 
pKa=1.7, 

log Kow= -2.63,  
log Dow= -2.63, 

Acid ( ̶ ), 

NH

S

O O

O
-

 
 

̶ ̶ ̶ ̶ 
Column 2/ 

ZVI 
̶ ̶ ̶ ̶ Not removed 

̶ ̶ ̶ ̶ 
Column 3/ 

BC 
̶ ̶ ̶ ̶ Not removed 

̶ ̶ ̶ ̶ 
Column 4/ 
(ZVI +BC) 

̶ ̶ ̶ ̶ Not removed 
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Table 5.3 Continued. 

Contaminant Reactive Media 
Potential interaction 

between contaminant and 
reactive media 

CAS#, pKa, log Kow, log 
Dow, character (charge), 

and structure 

Reactive functional 
group 

Column/ 
Reactive media

Reactive functional group 
or agent 

Saccharin  
(SAC) (81-07-2), 

pKa=1.3, 
log Kow=0.91,  

log Dow= -5.39, 
Acid ( ̶ ), 

NH

S

O

OO  

̶ ̶ ̶ ̶ 
Column 2/ 

ZVI 
̶ ̶ ̶ ̶ Not removed 

Aromatic structure,  
sulfonamide group,  

C=O group 

Column 3/ 
BC 

Graphene aromatic structure 
π-π stacking, 

π-π EDA interaction  

Aromatic structure,  
sulfonamide group,  

C=O group  

Column 4/ 
(ZVI +BC) 

Graphene aromatic structure 
π-π stacking, 

π-π EDA interaction 

     
Sucralose 

(SCL) (56038-13-2) 
pKa=11.8, 

log Kow= -1.0,  
log Dow= -1.0, 

Acid (N), 

O

O O

OH

Cl

OH

OH

OH

OH

Cl

Cl

 

̶ Cl Column 2/ 
ZVI 

ZVI Dechlorination 

̶ OH  ̶ OH on surface of ZVI  H bonding 

̶ OH 
Column 3/ 

BC 
̶ OH H bonding 

̶ Cl,  ̶ OH 
Column 4/ 
(ZVI +BC) 

ZVI,   ̶ OH Dechlorination, H bonding 
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Table 5.4 Selected properties of target perfluoroalkyl substances and potential interaction (removal mechanisms) between target 

perfluoroalkyl substances and reactive media. N: Neutral; (+): Positive charged; ( ̶): Negative charged. 

Contaminant Reactive Media 
Potential interaction between 

contaminant and reactive 
media 

CAS#, pKa, log Kow, 
character (charge), and 

structure 

Reactive 
functional group 

Column/ 
Reactive media 

Reactive functional 
group or agent 

Perfluorooctanoic acid 
(PFOA) (335-67-1), 

pKa=0.5, 
log Kow=5.11a, 
log Dow=1.58a, 

Acid ( ̶ ), 

 

̶ COOH 
Column 2/ 

ZVI 
̶ OH on surface of ZVI 

H bonding, ion-dipole 
interaction 

CF3(CF2)6 ̶ Column 3/ 
BC 

Hydrophobicity Hydrophobic interaction 

̶ COOH 
̶ OH, graphene aromatic 

structure 
H bonding, ion ̶ dipole 

interaction 

̶ COOH, 
CF3(CF2)6 ̶ 

Column 4/ 
(ZVI +BC) 

̶̶ OH, hydrophobicity, 
graphene aromatic structure 

H bonding, hydrophobic 
interaction, ion ̶ dipole 

interaction 
     

Perfluorooctane sulfonic 
acid 

(PFOS) (2795-39-3), 
pKa= -2.3, 

log Kow=5.41a, 
log Dow=3.05a, 

Acid ( ̶ ), 

 

̶ SOOH 
Column 2/ 

ZVI 
̶ OH on surface of ZVI 

H bonding, ion-dipole 
interaction 

CF3(CF2)7 ̶ Column 3/ 
BC 

Hydrophobicity Hydrophobic interaction 

̶ SOOH 
OH, graphene aromatic 

structure 
H bonding, ion ̶ dipole 

interaction 

̶ SOOH, 
CF3(CF2)7 ̶ 

Column 4/ 
(ZVI +BC) 

̶ OH, hydrophobicity, 
graphene aromatic structure 

H bonding, hydrophobic 
interaction, ion ̶ dipole 

interaction 
a Obtained from Chemicalize.org by ChemAxon (http://www.chemicalize.org) 
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Figure 5.1 Values of pH, Eh, and concentrations of alkalinity as a function of distance along 
flow direction within control column and columns containing zero-valent Fe (ZVI), biochar (BC), 
and both.  Blue circle, orange square, and green triangle symbols represent data collected during 
the first stage of the experiment (flow rate = 0.3 PV/d), while grey diamond symbols represent 
data collected during the second stage of the experiment (flow rate = 0.1 PV/d), given in terms of 
pore volumes (PV).  
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Figure 5.2 Values of pH, Eh, and concentrations of alkalinity as a function of pore volumes (PV) 
in effluent from control column and columns containing zero-valent Fe (ZVI), biochar (BC), and 
both; dash lines indicate a decrease in flow rate in each column, dividing the experiment into two 
stages.  
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Figure 5.3 Concentrations of neutral pharmaceutical carbamazepine (CBZ) and basic 
pharmaceuticals caffeine (CAF), 3,4-methylenedioxyamphetamine (MDA), and 3,4-
methylenedioxymethamphetamine (MDMA) as a function of pore volumes (PV) in effluent from 
control column and columns containing zero-valent Fe (ZVI), biochar (BC), and both; dash lines 
indicate a decrease in flow rate in each column, dividing the experiment into two stages. 
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Figure 5.4 Concentrations of acidic pharmaceuticals sulfamethoxazole (SMX), ibuprofen (IBU), 
gemfibrozil (GEM), and naproxen (NAP) as a function of pore volumes (PV) in effluent from 
control column and columns containing zero-valent Fe (ZVI), biochar (BC), and both; dash lines 
indicate a decrease in flow rate in each column, dividing the experiment into two stages. 
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Figure 5.5 pKa values of target contaminants plotted on the pH scale. The pH range in Column 
ZVI is between 7.5 ̶ 9.5; the pH range in Column BC is between 7.0 ̶ 8.3; the pH range in 
Column (ZVI + BC) is between 7.9 ̶ 8.9. 
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Figure 5.6 Concentrations of neutral pharmaceutical carbamazepine (CBZ) and basic 
pharmaceuticals caffeine (CAF), 3,4-methylenedioxyamphetamine (MDA), and 3,4-
methylenedioxymethamphetamine (MDMA) as a function of distance along flow direction 
within control column and columns containing zero-valent Fe (ZVI), biochar (BC), and both.  
Blue circle, orange square, and green triangle symbols represent data collected during the first 
stage of the experiment (flow rate = 0.3 PV/d), while grey diamond symbols represent data 
collected during the second stage of the experiment (flow rate = 0.1 PV/d), given in terms of 
pore volumes (PV).  
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Figure 5.7 Concentrations of acidic pharmaceuticals sulfamethoxazole (SMX), ibuprofen (IBU), 
gemfibrozil (GEM), and naproxen (NAP) as a function of distance along flow direction within 
control column and columns containing zero-valent Fe (ZVI), biochar (BC), and both.  Blue 
circle, orange square, and green triangle symbols represent data collected during the first stage of 
the experiment (flow rate = 0.3 PV/d), while grey diamond symbols represent data collected 
during the second stage of the experiment (flow rate = 0.1 PV/d), given in terms of pore volumes 
(PV). 
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Figure 5.8 Concentrations of acefulfame-K (ACE-K), cyclamate (CYC), saccharine (SAC), and 
sucralose (SCL) as a function of pore volumes (PV) in effluent from control column and 
columns containing zero-valent Fe (ZVI), biochar (BC), and both; dash lines indicate a decrease 
in flow rate in each column, dividing the experiment into two stages. 
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Figure 5.9 Concentrations of acefulfame-K (ACE-K), cyclamate (CYC), saccharine (SAC), and 
sucralose (SCL) as a function of distance along flow direction within control column and 
columns containing zero-valent Fe (ZVI), biochar (BC), and both.  Blue circle, orange square, 
and green triangle symbols represent data collected during the first stage of the experiment (flow 
rate = 0.3 PV/d), while grey diamond symbols represent data collected during the second stage of 
the experiment (flow rate = 0.1 PV/d), given in terms of pore volumes (PV). 
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Figure 5.10 Concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid 
(PFOS) as a function of pore volumes (PV) in effluent from control column and columns 
containing zero-valent Fe (ZVI), biochar (BC), and both; dash lines indicate a decrease in flow 
rate in each column, dividing the experiment into two stages. 
 

 

 

 

 

 

 

 

 

 

  

P
F

O
A

, 
g 

L-1

0
20
40
60
80

Influent
Effluent

Pore volume

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Column 2: ZVI Column 3: BC Column 4: ZVI + BC

0 20 40 60 80

P
F

O
S

, 
g 

L-1

0

40

80

120

Column 1: Control

Indicate a change in flow rate from 0.3 to 0.1PV d-1



171 
 

 

Figure 5.11 Concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid 
(PFOS) as a function of distance along flow direction within control column and columns 
containing zero-valent Fe (ZVI), biochar (BC), and both. Blue circle, orange square, and green 
triangle symbols represent data collected during the first stage of the experiment (flow rate = 0.3 
PV/d), while grey diamond symbols represent data collected during the second stage of the 
experiment (flow rate = 0.1 PV/d), given in terms of pore volumes (PV). 
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Chapter 6: Removal of Perfluoroalkyl 

Carboxylic and Sulfonic Acids from Water 

Using Zero-valent Iron and Biochar 
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6.1 Executive Summary 

Perfluoroalkyl substances (PFASs), a class of Persistent Organic Pollutants, have received a 

great deal of attention due to their widespread occurrences and persistence in the environment 

and their potential toxicity to animals and humans. Effective decomposition of PFASs usually 

involves advanced oxidation or reduction processes under extremely acidic pH conditions, high 

temperature and pressure (except for activated carbon adsorption and nanofiltration), which 

makes these technologies costly and less feasible for full-scale applications. In this study, a series 

of laboratory batch experiments was conducted to evaluate the effectiveness of zero-valent iron 

(ZVI) alone and a mixture of ZVI and biochar (ZVI + BC) for removal of perfluoroalkyl 

carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) from water under ambient 

environmental conditions. The target PFCAs include perfluorooctanoic acid (PFOA, C8-PFCA), 

perfluoroheptanoic acid (PFHpA, C7-PFCA), and perfluorohexanoic acid (PFHxA, C6-PFCA); 

the target PFSAs include perfluorooctane sulfonic acid (PFOS, C8-PFSA), perfluoroheptane 

sulfonic acid (PFHpS, C7-PFSA), perfluorohexane sulfonic acid (PFHxS, C6-PFSA), and 

perfluorobutane sulfonic acid (PFBS, C4-PFSA). The results show that PFCAs were less 

effectively removed than PFSAs when utilizing ZVI and (ZVI + BC). About 20% and 60% of 

input PFOA (~18,550 µg L-1) was removed by ZVI alone and the mixture of (ZVI + BC). Lower 

removal of short chain PFCAs was observed using ZVI alone and (ZVI + BC) compared to 

PFOA. The ZVI alone and (ZVI + BC) exhibited similar removal (~17%) of input PFHpA (26 

µg L-1); however, PFHxA was not removed by ZVI alone or (ZVI + BC). About 90% and 94% 

of input PFOS (~18,580 µg L-1) was removed by ZVI and (ZVI + BC). Similarly, the removal of 

short chain PFSAs by reactive media was lower than PFOS. About 57% and 70% of input 

PFHpS (330 µg L-1) were removed by ZVI and (ZVI + BC); ~30% and 40% of input PFHxS (13 



174 
 

µg L-1) were removed by ZVI and (ZVI + BC); ~20% of input PFBS (~ 6 µg L-1) by ZVI or (ZVI 

+ BC). The removal efficiencies of PFCAs and PFSAs by ZVI and (ZVI + BC) decreased with 

decreasing chain length. The removal of PFCAs and PFSAs by ZVI may be due to a combination 

of reductive defluorination and sorption; the removal of PFCAs and PFSAs by BC was likely 

due to hydrophobic sorption. About 5 ̶ 10 % of input PFOA and PFOS were partially 

defluorinated by ZVI alone as indicated by F- release, however, the defluorination efficiency of 

PFCAs and PFSAs by (ZVI + BC) may be underestimated due to sorption of F- by the reactive 

media.       
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6.2 Introduction 

Perfluoroalkyl substances (PFASs) such as perfluoroalkyl carboxylic acids (PFCAs) and 

perfluoroalkyl sulfonic acids (PFSAs) are anthropogenic organic compounds that consist of a 

hydrophobic perfluorinated carbon (C-F) tail and a hydrophilic ionic head (carboxylic or sulfonic 

acid) (Rahman et al., 2014). Due to the presence of the strong C-F bond in their structure, these 

compounds exhibit high thermal and chemical stability. As a result, they have been widely used 

in a range of applications, such as polymer additives, fire retardants, pesticides, and surfactants 

(Kotthoff et al., 2015; Wang et al., 2014). The high stability of PFASs makes these compounds 

resistant to environmental degradation processes (Kissa, 2001), which results in their ubiquitous 

occurrence and persistence in the aquatic environment.  

PFASs have been globally detected in surface water (Liu et al., 2015a; Myers et al., 

2012), groundwater (Lin et al., 2015b; Schaider et al., 2014), and drinking water (Quiñones & 

Snyder, 2009; Yim et al., 2009) in the ng L-1 to µg L-1 range; these compounds have also been 

detected in Antarctic snow (Wang et al., 2015), animals (Furdui et al., 2008), and human bodies 

(Von Ehrenstein et al., 2009; Wang et al., 2011). Many studies demonstrate that PFASs have 

adverse impacts on humans and wildlife; they are bioaccumulative and possibly carcinogenic 

(Goudarzi et al., 2016; Suja et al., 2009). Consequently, perfluorooctane sulfonic acid (PFOS) 

has been included in the Annex B of the Stockholm Convention on Persistent Organic Pollutants, 

resulting in global restrictions on production (United Nations Environment Programme, 2009), 

In addition, the U.S. Environmental Protection Agency (U.S. EPA) has proposed a drinking 

water health advisory for PFOA (400 ng L-1) and PFOS (200 ng L-1) (US EPA, 2009a).   
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Emerging contaminants consumed by human beings are collected in the wastewater 

treatment plants (WWTPs); municipal wastewater and industrial discharges are considered to be 

the major point source release of PFAS to surface water bodies; non-point-sources of PFAS 

including agricultural run-off and atmospheric transport also contribute to PFAS contamination 

(Fujii et al., 2007). Giesy and Kannan (2001) report the widespread distribution of 

perfluorooctane sulfonate (PFOS) associated with the industrial production and application of 

PFASs. Conventional WWTPs typically do not effectively remove PFASs from water (Arvaniti 

& Stasinakis, 2015), unless activated carbon (AC) sorption, nanofiltration, or reverse osmosis are 

utilized (Fujii et al., 2007; Rayne & Forest, 2009). Due to the wide global distribution and 

toxicity of PFASs, a variety of treatment methods have been studied for removing these 

compounds from water.   

Advanced oxidation processes (using strong oxidizing radicals such as ·OH, O2·
-, and 

SO4·
-) have been extensively studied to degrade PFASs (Hori et al., 2005; Ochiai et al., 2011); 

however, low rates of PFASs degradation are typically observed under ambient temperature and 

environmental pH conditions due to the presence of the strong C-F bond and the electronegative 

fluorine atom in the structure. A combination of strong oxidizing radicals and extreme treatment 

conditions (such as low pH, high temperature, vacuum ultraviolet, and microwave) is more likely 

to lead to greater removal efficiency of PFASs. Yin et al. (2016) report 90% of input 

perfluorooctanoic acid (PFOA) (~20 µM) was degraded by activated persulfate (~2 mM) at a pH 

of 2.0, a reaction temperature of 50 oC, and reaction time of 100 h. Hori et al. (2008) report 

defluorination (78%) of 374 μM PFOA was achieved using 50 mM persulfate with 80 oC 

reaction temperature and 6 h reaction time.  Moriwaki et al. (2005) demonstrate the degradation 

of PFOS and PFOA under ultrasonic irradiation with half-life times for PFOS of 43 min and for 
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PFOA of 22 min under an argon atmosphere. Similarly, reductive removal of PFASs using 

nanoscale zero-valent iron (ZVI) or highly reactive reducing radicals such as aqueous electrons,  

H·, and SO3·
- also require extreme reaction conditions such as high pressure, ultraviolet, 

microwave, or ultrasound to facilitate treatment (Hori et al., 2006; Park et al., 2011; Song et al., 

2013). These harsh reaction conditions (such as low pH, high temperature) and high energy 

consumption of the advanced oxidative and reductive treatment hamper their large-scale 

application to municipal water treatment plants and WWTPs.  

Compared to the destructive oxidative and reductive methods, removal of PFASs by 

adsorption using activated carbon (AC) and filtration technologies such as nanofiltration and 

reverse osmosis are less energy demanding. However, the AC and membranes used for 

adsorption and filtration need to be frequently renewed or changed, which makes these 

technologies costly and less feasible for large-scale application. Zero-valent iron (ZVI) is a 

relatively inexpensive, abundant, and environmentally friendly reductant. ZVI has been 

successfully used in in-situ permeable reactive barriers (PRBs) for removing a wide range of 

environmental organic contaminants, including halogenated organic compounds, chlorinated 

methanes, and nitroaromatics (Jeen et al., 2013; Johnson et al., 1996; Lavine et al., 2001; 

Matheson & Tratnyek, 1994) and inorganic contaminants (such as As, Cd, Cr, Ni, Zn, V, NO3, 

PO4, SO4,  and ClO4
-.) (Blowes et al., 2000; Cantrell et al., 1995; Jamieson-Hanes et al., 2014; 

Liu et al., 2014c; Shrimpton et al., 2015) from wastewater and groundwater. Biochar (BC) is a 

stable carbon-rich product synthesized through pyrolysis/carbonization of plant- and animal-

based biomass under low oxygen (O2) and at relatively low temperature (< 700°C) condition 

(Lehmann & Joseph, 2009). Due to the relative low cost, abundance, and comparable sorption 

ability to AC, BC has been used as a potential alternative sorbent for AC for removal or 
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immobilization of a wide range of organic contaminants such as pharmaceutical compounds and 

polycyclic aromatic hydrocarbons (PAHs) (Oleszczuk et al., 2012; Rajapaksha et al., 2015) and 

inorganic contaminants such as heavy metals Hg, Cr, Cu, Ni, and Zn (Liu et al., 2016a; 

Uchimiya et al., 2010) from contaminated soil and wastewater. The combination of ZVI and BC 

is a promising reactive media for environmental soil and water remediation, which integrates 

both the strong reduction of ZVI and sorption capacity of BC. Enhanced removals of organic 

contaminants such as tetracycline, methyl orange, and methylene blue and inorganic 

contaminants such as Pb(II), Cr(VI), As(V), and phosphate (P) from contaminated water have 

been reported using biochar-supported ZVI (Han et al., 2015; Peng et al., 2014; Zhou et al., 

2014).  

In this study, a series of batch experiments was conducted to evaluate the effectiveness of 

the reactive media ZVI alone and a mixture of (ZVI + BC) for removal of three perfluoroalkyl 

carboxylic acids (PFCAs) and four perfluoroalkyl sulfonic acids (PFSAs) from water under 

environmental pH conditions and ambient temperature. The target PFCAs included 

perfluorooctanoic acid (PFOA, C8-PFCA), perfluoroheptanoic acid (PFHpA, C7-PFCA) and 

perfluorohexanoic acid (PFHxA, C6-PFCA). The target PFSAs included perfluorooctane 

sulfonic acid (PFOS, C8-PFSA), perfluoroheptane sulfonic acid (PFHpS, C7-PFSA), 

perfluorohexane sulfonic acid (PFHxS, C6-PFSA), and perfluorobutane sulfonic acid (PFBS, 

C4-PFSA).  

Fluoride (F-) is an indicative byproduct of defluorination of PFOA and PFOS. 

Defluorination of PFOS by ZVI has been observed in subcritical water in laboratory batch 

experiments with the production of F- and CHF3 gas (Hori et al., 2006). In column experiments 

using zero valent iron (Chapter 5), release of F- associated with defluorination of PFOA and 
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PFOS was not observed, likely due to either lack of defluorination reactions, analytical 

limitations, or other factors. Concentrations of F- in the column effluent and pore waters were 

below the analytical detection limit (0.02 mg L-1). Simulated groundwater (CaCO3 saturated H2O, 

pH=8.3) was used as an input solution matrix in the column experiment to represent the 

ubiquitous occurrence of HCO3
- and CO3

2- in natural waters. An alternative reason for lack of F- 

detection, is the potential removal of  F- through precipitation with Ca2+ (present in simulated 

groundwater) to form CaF2. In this study, batch experiments were conducted to evaluate 

potential defluorination of PFOA and PFOS by zero-valent iron (ZVI) under reducing conditions. 

In these experiments, NaHCO3 was used as an input solution matrix, and not CaCO3 (as was 

used in column experiments in Chapter 5) to minimize the removal of F- generated through 

defluorination reactions through formation of CaF2 precipitation. The concentrations of PFOA 

and PFOS in the input NaHCO3 solution were set at 20 mg L-1 by assuming only one F atom 

defluorinated from 20 mg L-1 of PFOA or PFOS; the anticipated concentration of F- 

defluorinated from 20 mg L-1 of PFOA or PFOS would be ~1 mg L-1, which is well above the 

analytical detection limit of F- (0.02 mg L-1) for quantification. In addition, a series of batch 

experiments (F- sorption test) was conducted to evaluate the sorption of F- (at ~1 mg L-1, the 

anticipated concentration of F- defluorinated from 20 mg L-1 of PFOA or PFOS) by reactive 

media ZVI alone and the mixture of (ZVI + BC).  
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6.3 Materials and Methods  

6.3.1 Batch Experiments for Removal of Perfluoroalkyl Carboxylic Acids 

(PFCAs) and Perfluoroalkyl Sulfonic Acids (PFSAs) Using ZVI and Mixture 

of ZVI and BC 

6.3.1.1 Batch Experimental Setup 

Granular Fe0 (ZVI, 0.25–1.19 mm) was obtained from Connelly-GPM, and was washed five 

times using 1L of 1.2 M reagent-grade HCl acid (Fisher Scientific, Canada ) to remove the iron 

rust and impurities, followed by ten times rinse using 1L of ultrapure H2O (MilliQ A10, 18.2 

MΩ cm @ 25 oC,  Etobicoke, Canada). Hard-wood (oak) based biochar (BC, 0.5–2.36 mm) was 

obtained from Cowboy Charcoal Co., Brentwood, TN, USA. Dry perfluorooctanoic acid (PFOA) 

powder (96% purity) and perfluorooctane sulfonic acid potassium salt (PFOS) powder (98% 

purity) were obtained from Sigma-Aldrich, Canada. The input solution matrix consisted of a 0.8 

mM NaHCO3 in Ar(g) purged ultrapure H2O with pH of 8.54 

The individual PFOA and PFOS stock solutions containing 10,000 mg L-1 of PFOA and 

10,000 mg L-1 of PFOS were prepared by dissolving 0.100 g PFOA and 0.100 g PFOS dry 

powder in 10 mL methanol (HPLC grade, Sigma-Aldrich, Canada). Individual PFOA and PFOS 

input solutions contained 20 mg L-1 PFOA and 20 mg L-1 PFOS, which were prepared by spiking 

1 L of Ar(g) purged 0.8 mM NaHCO3 solution with 2 mL of 10,000 mg L-1 of PFOA and PFOS 

stock solution. Blank samples including Blank NaHCO3, Blank ZVI, and Blank (ZVI + BC), 

were used to track the background concentrations of PFOA and PFOS in the NaHCO3 solution 

(input solution matrix), and on the reactive media of ZVI and (ZVI + BC). Blank NaHCO3 

sample consisted of 35 mL 0.8 mM NaHCO3 solution. Blank ZVI and Blank (ZVI + BC) 
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samples were prepared by adding 35 g ZVI alone or a mixture of 7 g ZVI and 3.5 g BC to 35 mL 

of 0.8 mM NaHCO3 solution. The volume ratio of 3.5 g BC to 7g ZVI was approximately 4, 

which was similar to the volume ratio of BC to ZVI used in the column experiment (Chapter 5). 

Control samples were used to determine the concentration losses of input PFOA and PFOS 

during the reaction period due to sorption to containers or photolysis. Control PFOA and Control 

PFOS were 35 mL of input PFOA and 35 mL of input PFOS solution. Treatment samples were 

used to determine the removals of PFOA and PFOS by reactive media ZVI alone and the mixture 

of (ZVI + BC) during the reaction period. Treatment PFOA + ZVI and Treatment PFOA + 

(ZVI+BC) samples were prepared by adding 35 g ZVI or a mixture of 7 g ZVI and 3.5 g BC to 

35 mL of PFOA input solutions. Treatment samples PFOS + ZVI and PFOS + (ZVI+BC) were 

prepared by adding 35 g ZVI or a mixture of 7 g ZVI and 3.5 g BC to 35 mL of PFOS input 

solutions (Table 6.1). Sampling times were set at Days 0, 20, 40, 60, 90, and 120. Duplicate 

batch samples were prepared at Days 40, 90, and 120. All batch mixtures were prepared in 50 

mL polypropylene centrifuge tubes with screw caps (Eppendorf, Canada). All batch mixtures 

were manually shaken every other day in an anaerobic glove box (COY Ltd.) that contained 3.5% 

H2 and 96.5% N2. The batch mixtures were taken out of the glove box for centrifugation (6000 

rpm for 15 min) and placed back in the glove box to collect samples of the supernatant and 

reactive media.  

6.3.1.2 Collection of Supernatant Samples  

Supernatant samples were collected using a needle attached to 24 mL plastic syringe. 

Supernatant samples for pH and Eh analyses were not filtered; samples for alkalinity analyses 

were filtered through 0.45-µm cellulose acetate membranes before measurement. Supernatant 

PFOA and PFOS samples were not filtered and collected in polyethylene bottles. Supernatant 
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anion samples were filtered through 0.45-µm cellulose acetate filters and collected in 

polyethylene bottles. The measurement of pH, Eh, and alkalinity were determined immediately 

after sampling, other samples were stored at 4 oC and analyzed within one week of collection.  

6.3.1.3 Aqueous Samples Extracted from Reactive Media   

Perfluoroalkyl substances (PFASs) were extracted from the reactive media (ZVI and mixture of 

ZVI and BC) following a previously described method (Arvaniti et al., 2014) with slight 

modifications to determine the amount of PFOA and PFOS adsorbed by ZVI and BC. The 

method reported by Arvaniti et al. (2014) was validated based on absolute analyte (target PFASs) 

recoveries that ranged from 78% to 115% and satisfactory precision (RSD < 15%) (N=6). An 

aliquot of 0.4 g of ZVI and the mixture of ZVI and BC (wet solid samples) from the Treatments 

PFOA + ZVI, PFOA + (ZVI + BC), PFOS + ZVI, PFOS + (ZVI + BC), Blank ZVI, and Blank 

(ZVI + BC) were transferred to 50 mL Eppendorf tubes. Liquid-solid extraction (LSE) was 

performed by adding 7.5 mL 1% (v/v) acetic acid and 1.5 mL methanol to the sample tubes. The 

samples were vortexed for 1 min, followed by 15 min sonication, and then centrifuged at 3500 

rpm for 15 min. The supernatants were transferred to 50 mL polypropylene centrifuge tubes with 

screw caps (Eppendorf, Canada). The LSE process was repeated another two successive times 

for each sample by only adding 7.5 mL 1% acetic acid followed by the same vortex, sonication, 

and centrifugation steps. The supernatants from the three LSE steps were collected together in 50 

mL polypropylene centrifuge tubes and stored at 4 oC for PFAS analysis. Water content of each 

LSE sample was determined to calculate the dry mass of the reactive media used in the LSE 

process.  
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6.3.2 Batch Experiments for Evaluating Sorption of F- by Reactive Media  

The F- sorption test was performed to evaluate the sorption of F- by ZVI alone and the mixture of 

ZVI and BC (Table 6.1). The F- stock solution containing 500 mg L-1 F- was prepared by mixing 

0.553 g sodium fluoride (NaF) dry powder (> 99%) (Anachemia, Canada) in 500 mL ultrapure 

H2O. The F- input solution containing 1 mg L-1 F- in 0.8 mM NaHCO3
 solution was prepared by 

spiking 499 mL of 0.8 mM NaHCO3 solution with 1 mL of 500 mg L-1 F- stock solution. Blank 

samples including Blank NaHCO3, Blank ZVI, and Blank (ZVI + BC) were used to track the 

background concentrations of F- in the NaHCO3 solution (input solution matrix), and on the 

reactive media of ZVI and (ZVI + BC). Blanks NaHCO3, ZVI, and (ZVI + BC) samples were 

prepared the same way as in section 6.3.1.1. Control F- samples contained 35 mL of 1 mg L-1 F- 

input solution in 50 mL polypropylene centrifuge tubes, which was used to track the loss of F- 

due to sorption to containers during the reaction period. Sorption test samples were used to 

determine the sorption of F- by ZVI alone and the mixture of (ZVI + BC). Sorption test samples 

F- + ZVI and F- + (ZVI + BC) were prepared by adding 35 g ZVI alone and the mixture of 7 g 

ZVI and 3.5 g BC to 35 mL of F- input solution in 50 mL polypropylene centrifuge tubes (Table 

6.1). All the batch samples were kept in the anaerobic glove box and manually shaken every 

other day. Samples were taken out of the glove box and centrifuged at 6000 rpm for 15 min, and 

placed back into the glove box for sampling at Days 0, 20, 40, 60, 90, and 120. Samples for F- 

analysis were filtered through 0.45-µm cellulose acetate filters and collected in 8 mL 

polyethylene bottles stored at 4 oC until analysis within one month of collection.  

6.3.3 Analysis of Water Samples and Solid-Phase Extracts 

6.3.3.1 Measurements of pH, Eh, and Alkalinity of Supernatant Samples  
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Measurements of pH were conducted using an Orion Ross combination electrode (model 815600) 

calibrated with standard buffer solutions of pH 7, 4, and 10, and checked against pH 7 and 10 

buffer solutions between samples. The redox potentials (corrected to the standard hydrogen 

electrode and reported as Eh values) were measured using a Pt-billeted Ag-AgCl combination 

electrode (Orion 9678BNWP), checked against A and B solutions (redox/ORP electrode user 

guide, Thermo Scientific, Canada) before measurement. Measurements of alkalinity were 

performed using a HACH digital titrator and bromocresol green/methyl red indicator and with 

0.08 mol L-1 H2SO4. 

6.3.3.2 Analysis of Fluoride in Supernatant Samples 

The concentrations of F- were determined by a Dionex ICS-5000 ion chromatography (IC) 

system (Thermo Scientific, Sunnyvale, CA, USA). The F- was separated by an IonPac AS11-HC 

(2 x 250 mm) column (Thermo Scientific) using a potassium hydroxide (KOH) gradient. The 

EGC III KOH eluent generator cartridge (Dionex) was used to generate the KOH gradient. The 

KOH gradient elution initially started at 10 mM, increased to 22 mM in 12 min and increased to 

40 mM in 8 min, held at 40 mM for 8 min, then decreased to 22 mM at 28.1 min and decreased 

to 10 mM in 5 min, and then held at 10 mM for 5 min. The flow rate was 0.25 mL min-1 and the 

injection volume was 10 µL. The system operating pressure was 139 ̶ 142 bars. The retention 

time of F- was around 14.0 min. The electrolytically regenerated suppressor ERS 500 (Dionex, 

Canada) with the applied current of 40 mA and the carbonate removal device CRD 200 (2 mm) 

(Dionex, Canada) were used in the system. A seven point calibration curve (0.01-2.0 mg L-1) was 

used to quantify F- concentrations. The method detection limit (MDL) for F- was 0.02 mg L-1. To 

ensure the identification of F- peak (not acetate peak which is eluted right after F-), the 

supernatant samples of Treatment PFOA + ZVI and Treatment PFOS + ZVI at Days 90 and 120 
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were fortified with either a known amount of F- or acetate or both F- and acetate. The 

concentrations of spiked F- and acetate in supernatant samples were 0.1 mg L-1 (F-) and 1 mg L-1 

(acetate). The recoveries of spiked F- and acetate were between 73% and 101%. The spiking 

strategy and IC chromatograms are provided in Appendix E (Table E.1 and Figures E.1 ̶ E.4). 

6.3.3.3 Analysis of PFOA and PFOS 

The diluted samples (20 mL) for PFOA and PFOS analysis were spiked with 400 µL internal 

standards (IS) mixture which contained 10 µg L-1 [13C]-PFOA and 20 µg L-1 [13C]-PFOS 

(Wellington Laboratories Inc., Guelph, Canada). The IS spiked PFOA and PFOS samples (20 

mL) were passed through solid-phase extraction (SPE) cartridges (Oasis HLB 3 cc glass 

cartridges; Waters Corp., Mississauga, Canada). The cartridges were preconditioned with 2 x 1 

mL methanol (HPLC grade), washed with 2 x 1 mL ultrapure H2O, then loaded with 20 mL IS 

spiked PFOA and PFOS samples, washed with 2 x 1 mL ultrapure H2O, vacuum dried for 1 min, 

finally eluted with 2 x 1 mL methanol (HPLC grade). The 2 mL PFOA and PFOS methanol 

extracts were collected in 5 mL polypropylene centrifuge tubes (Eppendorf, Canada) and kept at 

room temperature until analysis. 

The concentrations of PFOA and PFOS in methanol extracts were determined by high 

performance liquid chromatography (1290 HPLC, Agilent Technologies, Mississauga, Canada) 

followed by tandem mass spectrometry (6460 QQQ, Agilent Technologies, Mississauga, Canada) 

in ESI- mode using EPA Method 537 (Shoemaker, 2013) with recommended modifications 

(Yamashita et al., 2004) to enhance the instrument performance. The PFOA and PFOS were 

separated using a Zorbax Eclipse C18 column (4.6 × 150 mm, 5 μm i.d.) (Agilent, Mississauga, 

Canada) at 55 oC. The mobile phase A contained 2 mM ammonium acetate (HPLC grade, 
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Sigma-Aldrich, Oakville, Canada) in water; the mobile phase B contained 2 mM ammonium 

acetate in methanol. The mobile phase elution gradient, instrument operating conditions, and 

preparations of the calibration curves were the same as described in section 5.3.2. The accuracy 

of a sample was calculated as the ratio of the measured PFOA and PFOS concentrations to the 

expected PFOA and PFOS concentrations. The accuracy of PFOA and PFOS calibration, 

determined by calibration verification (CV) and continuous calibration verification (CCV) 

samples was between 85% and 113%. Tap water samples and unknown samples were spiked 

with PFOA and PFOS analyte and IS to track the accuracy of SPE procedures. The accuracy of 

PFOA and PFOS for spiked tap water and unknown samples were between 87% and 114%.  The 

absolute IS recoveries of PFOA and PFOS for the CV, CCV, tap water samples, and unknown 

samples (including PFOA and PFOS supernatant samples and aqueous PFOA samples extracted 

from the reactive media) were between 74 ̶ 118%. The IS recoveries of PFOS for the aqueous 

samples extracted from the reactive media were likely affected by acetic acid used in LSE 

process, and the relative IS recoveries were between 81% and 115%. The method detection 

limits (MDLs) of PFOA and PFOS were 45 and 110 ng L-1. 

6.3.3.4 Analysis of Short Chain Perfluoroalkyl Carboxylic Acids (PFCAs) and 

Perfluoroalkyl Sulfonic Acids (PFSAs) 

The short chain perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids 

(PFSAs) samples (20 mL) were spiked with 400 µL of 20 µg L-1 [1,2-13C2]-PFHxA and [18O]-

PFHxS (Wellington Laboratories Inc., Canada) internal standard (IS) mixture to yield 2 µg L-1 of 

ISs in 20 mL samples. The IS spiked 20 mL diluted samples were then prepared following the 

same solid phase extraction (SPE) procedures with the ones for PFOA and PFOS (section 

6.3.3.3). The short chain PFCAs and PFSAs extracts were analyzed by high performance liquid 



187 
 

chromatography (1290 HPLC, Agilent Technologies, Mississauga, Canada) followed by tandem 

mass spectrometry (6460 QQQ, Agilent Technologies, Mississauga, Canada) in ESI- mode 

following the method of Houtz and Sedlak (2012) with slight modifications to optimize the 

instrument performance. The analytes were separated using Poroshell 120 EC-C18, 3 x 5 mm, 

2.7 µm i.d. (Agilent, Mississauga, Canada) at 55 oC. The mobile phases were the same as used 

for PFOA and PFOS analysis. A gradient elution started at 40 % B for 1.5 min, increased linearly 

to 100 % B within 6 min  and held at 100% for 3 min, then decreased to 40 % B at 9.5 min and 

held at 40 % until 13.5 min. The flow rate was 0.5 mL min-1 and the injection volume was 2 µL. 

The calibration standards prepared in 96 : 4% (v/v) methanol/water were serially diluted from the 

analyte standard stock (1000 µg L-1) of short chain PFCAs including perfluoroheptanoic acid 

(PFHpA), perfluorohexanoic acid (PFHxA), perfluropentanoic acid (PFPeA) and the short chain 

PFSAs including perfluoroheptane sulfonic acid (PFHpS), perfluorohexane sulfonic acid 

(PFHxS), perfluorobutane sulfonic acid (PFBS) (Wellington Laboratories Inc., Canada) (Table 

6.2). Seven to nine points calibration curves (PFBS: 0.1 ̶ 30 µg L-1; PFBA and PFHxA: 0.2 ̶ 30 

µg L-1
; PFHpA, PFPeA, PFHpS, and PFHxS: 0.5 ̶ 30 µg L-1) were used for PFCAs and PFSAs 

quantitation with 2 µg L-1 of [1,2-13C2]-PFHxA and [18O]-PFHxS (Wellington Laboratories Inc., 

Canada). The accuracy of calibration, CV, and CCV samples was between 89 ̶ 120%. Tap water 

samples and unknown samples spiked with analyte and IS was used to track the precision of SPE 

procedures. The absolute IS recoveries of the CV, CCV, tap water samples, and unknown 

samples were 82 ̶ 125%. The instrument limits of quantification (LOQ) were calculated at 10 

times the signal-to-noise value. The LOQ of PFBS and PFHxS was 0.2 µg L-1; the LOQ of 

PFHpS, PFHxA, and PFHpA were 0.5 µg L-1; the LOQ of PFBA and PFPeA were 1 µg L-1 and 2 

µg L-1.  
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6.4 Results and Discussion 

6.4.1 Removal of Perfluoroalkyl Carboxylic Acids (PFCAs) and 

Perfluoroalkyl Sulfonic Acids (PFSAs) Using ZVI and Mixture of ZVI and BC 

6.4.1.1 Geochemistry of Supernatant Samples 

The pH values of the Treatment PFOA/PFOS + (ZVI + BC) supernatant samples were constant 

at ~8.5, which were consistent with that of the control samples. However, relatively higher pH 

values of ~10.5 (except for Day 0) were observed for the supernatant samples of Treatment 

PFOA/PFOS + ZVI, likely due to the corrosion of ZVI in H2O. The Eh values of the treatment 

supernatant samples were consistent with the control samples, which increased slightly from ‐

368 mV at Day 0 to -230 mV at Day 40 and maintained at -230 to -293 mV, indicating strong 

reducing conditions in the treatment and control samples during the 120 days of reaction time. 

The alkalinity of Control PFOA/PFOS and Treatment PFOA/PFOS supernatant samples 

exhibited a slightly increasing trend from Day 0 to Day 90, followed by a slight decrease at Day 

120, with concentrations ranging from 12 to 38 mg L-1 as CaCO3
 during the entire batch 

experiment (Figure 6.1).  

6.4.1.2 Removal of Perfluoroalkyl Carboxylic Acids (PFCAs) and Perfluoroalkyl Sulfonic 

Acids (PFSAs) Using ZVI and Mixture of ZVI and BC in Supernatant Samples 

The concentrations of perfluoroalkyl carboxylic acids (PFCAs) including PFOA (C8-PFCA), 

PFHpA (C7-PFCA), PFHxA (C6-PFCA), PFPeA (C5-PFCA), and PFBA (C4-PFCA) and 

perfluoroalkyl sulfonic acids (PFSAs) including PFOS (C8-PFSA), PFHpS (C7-PFSA), PFHxS 

(C6-PFSA), and PFBS (C4-PFSA) in the Blank NaHCO3, Blank ZVI, and Blank (ZVI + BC) 

samples were below the MDLs or LOQs, indicating there was no background contaminations of 
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these compounds in the input solution or on the reactive media. The input concentrations of 

PFOA in the Control PFOA samples and PFOS in the Control PFOS samples were about 18,500 

µg L-1 (Figure 6.2). Three to four orders of magnitude lower concentrations of short chain 

PFCAs including PFHpA (C7-PFCA) at ~26 µg L-1 and PFHxA (C6-PFCA) at ~0.8 µg L-1 were 

detected in the Control PFOA samples compared to input PFOA; the concentrations of PFPeA 

(C5-PFCA) and PFBA (C4-PFCA) were below the LOQ (Figure 6.3). Similarly, two to four 

orders of magnitude lower concentrations of short chain PFSAs including PFHpS (C7-PFSA) at 

~330 µg L-1, PFHxS (C6-PFSA) at ~13 µg L-1, and PFBS (C4-PFSA) at ~6 µg L-1 were detected 

in the Control PFOS samples compared to input PFOS (Figure 6.4). The detections of short 

chains PFCAs in the Control PFOA samples and PFSAs in the Control PFOS samples were 

likely due to the impurity of PFOA (96%) and PFOS (98%) dry stock (see section 6.3.1.1).   

The concentrations of PFOA, PFOS, and short chain PFCAs and PFSAs in the Control 

samples were constant over the reaction time (Figures 6.2 ̶ 6.4), indicating the sorption of these 

compounds to the sample containers or the photolysis of these compounds under natural light 

was limited. The concentration of PFOA in the Treatment PFOA + ZVI supernatant samples 

decreased from input concentration of 18,550 µg L-1 to 14,240 µg L-1 at Day 20 and were 

maintained at ~14,500 µg L-1 until Day 120, representing ~20% of input PFOA removed by ZVI 

alone. However, the mixture of (ZVI + BC) exhibited a greater removal of PFOA (~60%) than 

ZVI alone; the concentration of PFOA in the Treatment PFOA + (ZVI + BC) supernatant 

samples decreased from 20,000 µg L-1 at Day 0 to 6,041 µg L-1 at Day 20, but then gradually 

increased to 8,560 µg L-1 at Day 120 (Figure 6.2). Compared to PFOA, lower removals of the 

short chain PFCAs were observed by ZVI and (ZVI + BC). The concentration of PFHpA (C7-

PFCA) decreased from the input concentration of 26 µg L-1 at Day 0 to 24.4 µg L-1 in the 



190 
 

Treatment PFOA + ZVI supernatant sample and 18.4 µg L-1 in the Treatment PFOA + (ZVI + 

BC) supernatant sample at Day 20, and then remained at ~22.0 µg L-1 during the rest of the 

experiment with an average PFHpA removal of 17%. The concentrations of PFHxA (C6-PFCA) 

in the Treatment PFOA + ZVI and PFOA + (ZVI + BC) supernatant samples were consistent 

with the control samples from Day 0 to Day 120 indicating no removals of PFHxA throughout 

the batch experiment (Figure 6.3).  

The input PFOS (~18,580 µg L-1) was effectively removed by ZVI and (ZVI + BC). The 

concentration of PFOS rapidly decreased from 18,580 µg L-1 at Day 0 to 4,120 µg L-1 in the 

Treatment PFOS + ZVI supernatant sample and 1,780 µg L-1 in the Treatment PFOS + (ZVI + 

BC) supernatant sample at Day 20, then continued to decrease until Day 120 with removals of 90% 

and 94% (Figure 6.2). Lower removals of short chain PFSAs were observed using ZVI and (ZVI 

+ BC) compared to PFOS. Greater removals of PFHpS (C7-PFSA) and PFHxS (C6-PFSA) were 

observed using (ZVI + BC) than ZVI alone. The concentration of PFHpS in the Treatment PFOS 

+ ZVI supernatant sample decreased from input concentration of 330 µg L-1 at Day 0 to 225 µg 

L-1 at Day 20, and then continued to decrease to 142 µg L-1 at Day 120 with removal of 57%. 

The concentration of PFHpS in the Treatment PFOS + (ZVI + BC) supernatant sample decreased 

from 330 µg L-1 at Day 0 to 91.6 µg L-1 at Day 20 and remained at 95 µg L-1 until Day 120 with 

removal of 70%. Similarly, the concentrations of input PFHxS (~13 µg L-1) in the Treatment 

PFOS + ZVI and PFOS + (ZVI + BC) supernatant samples gradually decreased over reaction 

time with removals of 30% and 40% at Day 120. Only ~20% of input PFBS (C4-PFSA) (~ 6 µg 

L-1) was removed by ZVI and (ZVI + BC) during 120 d reaction time (Figure 6.4).  
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6.4.1.3 Production of F- in Supernatant Samples  

Fluoride (F-) is the indicative by-product of defluorination of PFOA and PFOS; its concentration 

in the Blank NaHCO3, Blank ZVI, and Blank (ZVI + BC) supernatant samples and aqueous 

samples extracted from the reactive media remained below the MDL (0.02 mg L-1) in this study. 

However, increasing concentrations of F- were observed in the Treatment PFOA/PFOS + ZVI 

supernatant samples; the concentration of F- gradually increased from undetectable level at Day 0 

to 0.14 mg L-1 in the Treatment PFOA + ZVI supernatant samples and 0.06 mg L-1 in treatment 

PFOS + ZVI supernatant samples at Day 120 (Figure 6.5). Similarly, the reductive defluorination 

of PFOA and PFOS using Mg-aminoclay coated nanoscale ZVI led to production of F- but no 

detection of organic byproducts, with a higher removal efficiency for PFOS (95% at 20 oC) than 

for PFOA (40% at 20 oC) (Arvaniti et al., 2015). The measured F- concentrations in the 

Treatment PFOA/PFOS + ZVI supernatant samples were stoichiometrically back-calculated to 

determine the concentrations of defluorinated PFOA and PFOS; results showed that 

approximately 8% of input PFOA and 4% of input PFOS were partially defluorinated by ZVI 

(2F defluorinated from 15F of 8% input PFOA and 17F of 4% input PFOS). These defluorination 

efficiencies were not corrected for the adsorption F- by reactive media (discussed in section 

6.4.2). The concentrations of F- in the Treatment PFOA/PFOS + (ZVI + BC) supernatant samples 

were below the method detection limit, likely due to the sorption of F- to BC.   

6.4.2 Sorption of F- by Reactive Media ZVI and Mixture of ZVI and BC 

The concentration of F- provides a direct measurement of the extent of PFAS defluorination; 

however, the sorption of F- by the reactive media ZVI and BC will result in a lower back-

calculated defluorination efficiency of PFAS. The concentration of F- in the input solution for F- 

sorption test was set at 1 mg L-1 to represent only one F atom defluorinated from 20 mg L-1 of the 
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input PFOA or PFOS during the treatment using ZVI and (ZVI +BC). The results of the F- 

sorption test showed that ~20% and ~75% of the input F- (1 mg L-1) were adsorbed by ZVI and 

(ZVI + BC) over 120 d  (Figure 6.6). The F- ions produced from defluorination of PFOA, PFOS, 

and short chain PFCAs and PFSAs were possibly partially or completely adsorbed to the reactive 

media ZVI and (ZVI + BC). The defluorination efficiency of PFOA and PFOS by ZVI and (ZVI 

+ BC) were likely under estimated due to the sorption of F- by reactive media.  

  Jeen et al. (2007) demonstrate that iron hydroxy carbonate [Fe2(OH)2CO3 or Fe2+
2-

xFe3+
x(OH)2+xCO3] was the major iron corrosion product formed on the surface of ZVI when the 

ZVI were exposed in the CaCO3 solution (pH=8.2-8.3) under reducing conditions. Similarly, the 

iron hydroxy carbonate (chukanovite) is observed as a secondary mineral precipitate in several 

granular ZVI PRBs (Lee & Wilkin, 2010). In this study, the corrosion of Fe0 in the input 

NaHCO3 solution (similar to CaCO3 solution pH=8.3) likely resulted in the same corrosion 

product iron hydroxyl carbonate on ZVI surface, which may have led to sorption of F- by ZVI. 

The sorption of F- on iron hydroxide has been reported by Sujana et al. (2009), and the removal 

of F- (20 mg L-1) from aqueous solution using Fe hydroxides followed first-order kinetics with a 

sorption capacity of  77 mg g-1, which is much higher than sorption capacity of ZVI for F- (2.0 E-

4 mg g-1) in this study. In addition, Guan et al. (2015) report effective sorption of F- using a pine 

tree sawdust biochar.  

6.4.3 Correction of Defluorination Efficiency  

The defluorination efficiencies of PFOA and PFOS were likely underestimated due to the 

sorption of F- by reactive media; ~20% of input F- was adsorbed by ZVI and ~80% of input F- 

was in the supernatant (discussed in section 6.4.2). The defluorination efficiencies of PFOA and 

PFOS by ZVI were corrected (divided by 80%) to account for the amount of F- adsorbed by ZVI. 
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Corrected results showed that approximately 10% of input PFOA and 5% of input PFOS were 

partially defluorinated by ZVI (2F defluorinated from 15F of 10% input PFOA and 2F 

defluorinated from 17F of 5% input PFOS). The defluorination efficiencies of PFOA and PFOS 

by (ZVI + BC) cannot be  confirmed and corrected because the concentrations of F- in the 

supernatant samples of PFOA/PFOS + (ZVI+BC) were below the detection limit (0.02 mgL-1) 

due to sorption of F- by (ZVI + BC).  

6.4.4 Possible Removal Mechanisms of PFCAs and PFSAs by ZVI and BC 

6.4.4.1 Possible Removal Mechanisms of PFCAs and PFSAs by ZVI 

The removal mechanisms of PFCAs and PFSAs by ZVI was likely through reductive 

defluorination and H bonding. The potential reductive defluorination pathway for PFOA (for 

instance) is shown in Figure 6.7 (reproduced from Song et al., 2013). The defluorination of 

PFOA (C6F13CF2COOH) is initiated by the cleavage of α-position C-F bond by electron transfer 

from ZVI, leading to the formation of increasing concentrations of C6F13CFHCOOH (m/z=395), 

C6F13CH2COOH (m/z=377), and F- as degradation products. The generated C6F13CH2COOH is 

further decomposed to C6F13COOH through UV radical splitting of α-position CH2- and 

recombination; this defluorination reaction repeats to further decrease the chain length (Song et 

al., 2013). However, splitting of α-position CH2- (chain decreasing) from PFOA and PFOS with 

formation of short chain PFCAs and PFSAS likely was limited in this study, because the 

concentrations of potential α-position CH2- splitting products such as C7-PFCA (PFHpA, 

C6F13COOH) and C6-PFCA (PFHxA, C5F11COOH)] remained constant throughout the 

experiment.  
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The greater defluorination efficiency of PFOA compared to PFOS (section 6.4.1.3 and 

Figure 6.5) is likely due to stronger C-F bonds in PFOS than PFOA. Both PFOA 

[CF3(CF2)6COOH] and PFOS [CF3(CF2)7SO3H] have 8C in their structure; however, PFOS 

contains one more CF2 moiety compared to PFOA resulting in a stronger C-F bond in PFOS. In 

addition, the sulfonic group in PFOS is more electronegative than the carboxylic groups in 

PFOA, which also contributes to the stronger C-F in PFOS than PFOA.    

 Formation of gaseous phase byproducts during reductive defluorination of PFOA and 

PFOS by ZVI was not monitored in this study. However, it should be noted that the formation of 

gas byproducts such as CO2 and CHF3 during decomposition of PFOA and PFOS is usually 

accompanied by an effective defluorination (complete defluorination efficiency > 50%). Hori et 

al. (2004) and Hori et al. (2007) report the production of CO2 gas coupled with a high 

defluorination efficiency (~95% completely defluorinated) during advanced photochemical 

decomposition of PFOA. Similarly, a trace amount (0.7%) of volatile unstable degradation 

products CHF3 was detected during advanced reductive decomposition of PFOS using ZVI in 

subcritical water with a complete defluorination efficiency of ~50% (Hori et al., 2006). Given the 

relatively low defluorination efficiency of PFOA and PFOS (5 ̶ 10% was partially defluorinated 

or 0.5 ̶ 1% was completely defluorinated) in this study compared to previously reported studies, 

substantial formation of these gas phase byproducts was unlikely.   

Besides reductive defluorination, the target PFCAs and PFSAs were also likely removed 

by ZVI through H bonding. The corrosion of ZVI in H2O likely results in a complex mixture of 

amorphous and crystalline iron oxyhydroxides (Fe3O4, Fe2O3, FeOOH, Fe(OH)2, Fe(OH)3, etc.) 

coated on the ZVI surface (Mukesh & Panday, 2001; Sun et al., 2016; Wilson, 1923). The 

hydroxyl ( ̶ OH) groups (H donors) on the surface of ZVI likely interact with the electronegative 
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O atoms (H acceptors) in the functional carboxylic and sulfonic heads of PFASs through H 

bonding. Many researchers indicate that the H bonding formed between the O atoms in 

carboxylic and sulfonic heads of PFAS and H donor functional groups on the sorbents play an 

important role for PFASs sorption (Gao & Chorover, 2012; Karoyo & Wilson, 2013; Xiao et al., 

2012).     

The electrostatic interaction between PFOA and PFOS and iron oxides (hydroxides) on 

the surface of ZVI was likely limited in this study. The low pKa values of PFASs (-0.2 for PFOA 

and -3.3 for PFOS) (Deng et al., 2012) indicate that these PFASs will predominantly exist in 

their dissociated, negatively charged anionic forms at environmentally relevant pH condition (or 

in this study pH: 8.3 ̶ 10.0). The iron hydroxy carbonate as the primary iron corrosion product 

formed on the surface of ZVI (formation discussed in section 6.4.2) was more likely neutral or 

negatively charged in this study (pH: 8.3 ̶ 10.5) (Guilbaud et al., 2013; Kosmulski, 2009; Parks, 

1965). The electrostatic interaction between negatively charged PFASs and neutral or negatively 

charged iron oxides was likely not predominant in this study. However, electrostatic interaction 

has been proposed to be an important sorption mechanism for PFASs. Gao and Chorover (2012) 

report that PFOA and PFOS can be adsorbed by iron oxide (hematite) through electrostatic 

interaction as well as the formation of inner-sphere Fe-carboxylate complexes (for PFOA) by 

ligand exchange and outer-sphere complexes and hydrogen-bonds (for PFOS) at the mineral 

surfaces. In addition, the relatively weak ion-dipole interaction between the polar hydroxyl group 

on iron hydroxides and the anionic PFOA/PFOS may also contribute to the sorption of 

PFOA/PFOS by iron corrosion products (Punyapalakul et al., 2013). Lin et al. (2015a) observe 

the removal of PFCAs and PFOS by iron hydroxides generated by electrocoagulation likely as a 
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result of electrostatic interactions, hydrogen bonding, ion and/or ligand exchange, and possibly 

hydrophobic effects.    

6.4.4.2 Potential Removal Mechanisms of PFCAs and PFSAs by BC 

The removal of target PFCAs and PFSAs by BC was likely due to hydrophobic 

interaction between the C-F chains and hydrophobic sites on BC. In addition, H bonding and ion-

dipole interaction may also contribute to the sorption of PFCAs and PFSAs by BC (Du et al., 

2014). The hydrophobic sorption of PFOS by maize straw- and willow- derived biochars has 

been reported previously (Chen et al., 2011b). Overall, PFOS and short chain PFSAs were more 

effectively removed by (ZVI + BC) compared to the same C chain length of PFOA and short 

chain PFCAs, which is attributed to the greater hydrophobicity of PFSAs than PFCAs. With the 

same number of C in their structure, PFSA such as PFOS contain two more C-F bond than the 

corresponding PFCA such as PFOA, contributing to stronger hydrophobicity and enhanced 

sorption (Merino et al., 2016; Zhou et al., 2010). Moreover, the addition of each extra CF2 

moiety to PFCAs and PFSAs structure results in stronger hydrophobicity and increased sorption 

(Merino et al., 2016), which explains the greater removals of PFOA and PFOS by BC compared 

to the short chain PFCAs (such as PFHpA and PFHxA) and PFSAs (such as PFHpS, PFHxS, and 

PFBS). Higgins and Luthy (2006) demonstrate a stronger sorption potential of long chain PFASs 

to sediment compared to the short chain counterparts. In addition, the stronger sorption (0.71–

0.76 log units higher) of PFSAs to suspended sediment particulate matter compared to the PFCA 

analogs has been reported by Ahrens et al. (2010).   

The H bonding formed between the hydroxyl ( ̶ OH) groups (H donors) on BC (Liu et al., 

2015b) and the electronegative O atoms (H acceptors) in carboxylic (2O, 2H acceptors) and 
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sulfonic (3O, 3H acceptors) groups of PFCAs and PFSAs may also contribute to the sorption of 

target PFASs to BC. The H bonding between PFOS and BC was likely stronger than between 

PFOA and BC, possibly due to the presence of one more H acceptor in PFOS than PFOA. This 

greater H bonding between PFOS and BC may also contribute to greater removal of PFOS by 

BC compared to PFOA. Similar to the possible ion-dipole interaction between ZVI and 

PFOA/PFOS, a relatively weak ion-dipole interaction between the polar hydroxyl group on BC 

and the anionic PFOA/PFOS may also contribute to the sorption of PFOA/PFOS by BC 

(Punyapalakul et al., 2013). 

Electrostatic interactions between negatively charged PFASs and BC were likely limited. 

The biochar used in this study is oak wood biochar pyrolyzed at 700 oC which likely had a net 

negative surface charge under most pH conditions (2 ̶ 14) (Mukherjee et al., 2011). The 

negatively charged BC likely repulsed the negatively charged PFASs. 

6.4.5 Mass Balance of PFOA (PFCAs) and PFOS (PFSAs) in Treatment 

Samples 

Mass balance of PFOA and PFOS during the treatment using ZVI alone and (ZVI + BC) 

was calculated and illustrated in Figure 6.8. Between 5% and 10% of input PFOA/PFOS was 

removed through reductive defluorination (partially) by ZVI, between 10% and 40% of input 

PFOA/PFOS was removed through sorption by ZVI or (ZVI + BC), and between 2% and 85% of 

input PFOA/PFOS was removed through unknown mechanisms.   

Because the concentrations of PFOA and PFOS in the supernatant samples and aqueous 

samples extracted from the reactive media were two to five orders of magnitude higher than the 

concentrations of short chain PFCAs and PFSAs, the concentrations of short chain PFCAs 
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(PFHpA and PFHxA) and short chains of PFSAs (PFHpS, PFHxS, and PFBS) are negligible 

compared to PFOA and PFOS. The change in mass balance of PFOA and PFOS as a function of 

reaction time in Figure 6.8 also represents the mass balance of total PFCAs (sum of PFOA, 

PFHpA, and PFHxA) and total PFSAs (sum of PFOS, PFHpS, PFHxS, and PFBS) over the 

reaction time. The percentage of PFOA/PFOS in supernatant samples represents the remaining 

(not removed) PFOA/PFOS. The percentage of adsorbed PFOA/PFOS was the percentage of 

extractable PFOA/PFOS on reactive media. The sum of adsorbed PFOA/PFOS on reactive media, 

partially defluorinated PFOA/PFOS, and unknown PFOA/PFOS represents the total removed 

PFOA/PFOS from input solution.  

Mass balance results showed that ~20% of input PFOA (PFCAs) was removed by ZVI 

alone (Figure 6.8). Partial defluorination, sorption and unknown accounted for ~10%, ~10%, and 

~2% of PFOA removal by ZVI. PFOA was more effectively removed by (ZVI + BC) compared 

to ZVI alone, with an average removal of ~60%, which consisted of ~24% of sorption and ~36% 

of unknown. About 90% and 94% of input PFOS (PFSAs) was removed using ZVI and (ZVI + 

BC). Partial defluorination, sorption and unknown accounted for ~5%, ~40%, and ~45% of 

PFOS removal (~90%) by ZVI; sorption and unknown accounted for ~8% and ~86% of PFOS 

(PFSAs) removal (~94%) by (ZVI + BC) (Figure 6.8).  

Addition of BC to ZVI increased the removals of PFOA (PFCAs) and PFOS (PFSAs) 

compared to ZVI alone. The sorption percentage (24%) of PFOA (PFCAs) by (ZVI + BC) was 

relatively greater than that (10%) by ZVI alone. However, a smaller percentage of PFOS (PFSAs) 

(8%) was adsorbed by (ZVI + BC) than that (40%) by ZVI alone likely due to the stronger 

hydrophobic interaction between BC and PFOS (PFSAs) compared to PFOA which might not be 

extracted from the solid phase.   
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The unknown percentage of PFOA/PFOS in the mass balance calculation varied greatly 

from ~2% to ~85% and may include the following portions: (1) uncounted defluorinated 

PFOA/PFOS due to the sorption of F- by the reactive media; (2) non-extractable PFOA/PFOS; 

and (3) other intermediate degradation products which were not monitored in this study. The 

defluorination efficiencies (5 ̶ 10%) of PFOA/PFOS by ZVI was corrected to account for the 

sorption of F- by ZVI; however, defluorination of PFOA/PFOS by (ZVI + BC) cannot be 

confirmed due to the sorption F- by (ZVI + BC) resulting in undetectable F-. This unaccounted 

defluorinated PFOA/PFOS by (ZVI + BC) likely contributed to the large unknown percentage of 

PFOA/PFOS in Treatment PFOA/PFOS + (ZVI+BC) samples. The non-extractable PFOA/PFOS 

refers to the adsorbed PFOA and PFOS which was possibly stabilized in ZVI and BC through 

strong hydrophobic interaction and(or) covalent bonding and cannot be extracted through the 

aqueous extraction process. This non-extractable PFOA/PFOS also likely increased the mass 

percentage of the unknown portion. In addition, other unknown intermediate PFOA/PFOS 

degradation products which were not analyzed in this study may also contribute to the unknown 

PFOA/PFOS mass percentage. Such unknown intermediate degradation products might include 

C6F13CFHCOOH (m/z=395), C6F13CH2COOH (m/z=377) (discussed in section 6.4.4.1 and 

shown in Figure 6.7), and similar PFOS degradation products such as C7F15CFHSO3H and 

C7F15CH2SO3H.  

6.5 Conclusions  

Approximately 60% and 94% of input PFOA and PFOS (average input concentration: 18,600 µg 

L-1) were removed by the combination of the reactive media (ZVI + BC). Less input PFOA (20%) 

and PFOS (90%) were removed using ZVI alone compared to (ZVI + BC). The short chain 

PFCAs (PFHpA) and PFSAs (PFHpS, PFHxS, and PFBS) were less removed (17 ̶ 70%) by 
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reactive media ZVI and (ZVI + BC) compared to PFOA and PFOS. The removals of short chain 

PFCAs and PFSAs by ZVI and (ZVI + BC) decreased with the decreasing chain length. 

Removals of PFOA (PFCAs) and PFOS (PFSAs) by ZVI and BC were likely through reductive 

defluorination and sorption. Fluoride, as the indicative product of defluorination of PFCAs and 

PFSAs, was used to back calculate the defluorination efficiencies of PFCAs and PFSAs; results 

showed that 10% of PFOA (PFCAs) and 5% of PFOS (PFSAs) were partially defluorinated by 

ZVI alone. The defluorination of PFOA (PFCAs) and PFOS (PFSAs) by (ZVI + BC) was likely 

underestimated due to sorption of F- by the reactive media. The combination of ZVI and BC may 

be cost-effective for potential use in passive treatment systems and in-situ reactors for removing 

emerging contaminants PFASs from water under ambient environmental conditions.  
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Table 6.1 Batch experimental setup. 

Test Series 
Mass of 
ZVI, g 

Mass of 
BC, g 

Input 
concentration 

Removal of 
PFOA and 

PFOS 
using ZVI 

and BC 

Blank 
NaHCO3 solution ̶ ̶

̶ ZVI 35 ̶
ZVI + BC 7 3.5 

Control 
PFOA ̶ ̶

20 mg L-1 

PFOA/PFOS 

PFOS ̶ ̶

Treatment 

PFOA + ZVI 35 ̶ 
PFOA + (ZVI + BC) 7 3.5 
PFOS + ZVI 35 ̶ 
PFOS + (ZVI + BC) 7 3.5 

F- 
adsorption 

Control  F- ̶ ̶ 
1 mg L-1 F- 

adsorption 
F- + ZVI 35 ̶ 
F- + (ZVI + BC) 7 3.5 

Note: input solution matrix for both PFOA/PFOS removal test and F- adsorption test was 35 mL 
of 0.8 mM NaHCO3 in Ar(g) purged H2O. “ ̶ ” represents not applicable.  
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Table 6.2 Selected properties for target perfluoroalkyl carboxylic acids (PFCAs) and 
perfluoroalkyl sulfonic acids (PFSAs). 

 Compound (CAS#) Acronym Molecular Formula Structure 

P
er

fl
uo

ro
al

ky
l c

ar
bo

xy
li

c 
ac

id
s 

(P
F

C
A

s)
 

Perfluorooctanoic acid 

(335-67-1) 
PFOA C8HF15O2 

 

Perfluoroheptanoic acid 

(375-85-9) 
PFHpA C7HF13O2 

 

Perfluorohexanoic acid 

(307-24-4) 
PFHxA C6HF11O2 

 

Perfluoro-n-pentanoic acid 

(2706-90-3) 
PFPeA C5HF9O2 

 

Perfluorobutanoic acid 

(375-22-4) 
PFBA C4HF7O2 

 

P
er

fl
uo

ro
al

ky
l s

ul
fo

ni
c 

ac
id

s 
(P

F
S

A
s)

 

Perfluorooctane sulfonate 
acid 

(2795-39-3) 

PFOS C8HF17O3S 

 

Perfluoroheptane sulfonic 
acid 

(375-92-8) 

PFHpS C7HF15O3S 

 

Perfluorohexane sulfonic 
acid 

(355-46-4 

PFHxS C6HF13O3S 

 

Perfluorobutane sulfonic 
acid 

(375-73-5) 

PFBS C4HF9O3S 
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Figure 6.1 Values of pH, Eh, and concentrations of alkalinity as a function of reaction time in the 
supernatant samples of batch experiment for removal of PFOA and PFOS using zero-valent Fe 
(ZVI) alone and a 1:4 (v/v) mixture of ZVI and biochar (ZVI + BC).  
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Figure 6.2 Concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid 
(PFOS) as a function of reaction time in the supernatant samples of batch experiment for 
removal of PFOA and PFOS using zero-valent Fe (ZVI) alone and a 1:4 (v/v) mixture of ZVI 
and biochar (ZVI + BC). Duplicate samples were prepared at Days 40, 90, and 120 where were 
indicated with error bars. The method detection limits (MDLs) of PFOA and PFOS were 45 and 
110 ng L-1, which were too low to appear in the figure. 
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Figure 6.3 Concentrations of perfluoroheptanoic acid (PFHpA, C7-PFCA) and 
perfluorohexanoic acid (PFHxA, C6-PFCA) as a function of reaction time in the supernatant 
samples of batch experiment for removal of PFOA and PFOS using zero-valent Fe (ZVI) alone 
and a 1:4 (v/v) mixture of ZVI and biochar (ZVI + BC). Duplicate samples were prepared at 
Days 40, 90, and 120 where were indicated with error bars. The instrument limits of 
quantification (LOQ) of PFHpA and PFHxA were 0.5 µg L-1. The LOQ of PFHpA was too low 
to appear in the figure. 
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Figure 6.4 Concentrations of perfluoroheptane sulfonic acid (PFHpS, C7-PFSA), 
perfluorohexane sulfonic acid (PFHxS, C6-PFSA), and perfluorobutane sulfonic acid (PFBS, 
C4-PFSA) as a function of reaction time in the supernatant samples of batch experiment for 
removal of PFOA and PFOS using zero-valent Fe (ZVI) alone and a 1:4 (v/v) mixture of ZVI 
and biochar (ZVI + BC). Duplicate samples were prepared at Days 40, 90, and 120 where were 
indicated with error bars. The instrument limit of quantification (LOQ) of PFHpS was 0.5 µg L-1; 
the LOQ of PFHxS and PFBS was 0.2 µg L-1. The LOQ of PFHpS, PFHxS, and PFBS were too 
low to appear in the figure. 
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Figure 6.5 Concentrations of F- as a function of reaction time in the supernatant samples of batch 
experiment for removal of PFOA and PFOS using zero-valent Fe (ZVI) alone and a 1:4 (v/v) 
mixture of ZVI and biochar (ZVI + BC). The concentrations of F- in the supernatant samples 
PFOA/PFOS + (ZVI +BC) were below the method detection limits. Duplicate samples were 
prepared at Days 40, 90, and 120 where were indicated with error bars.   
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Figure 6.6 Percentage of F- remaining in the supernatant samples of F- sorption test as a function 
of reaction time.  
   

Reaction time, d

0 20 40 60 80 10
0

12
0

C
/C

0
 o

f F
- , 

%

0

25

50

75

100
1 mg L-1 F- + ZVI 1 mg L-1 F- + (ZVI + BC)

0 20 40 60 80 10
0

12
0



 

Figure 6
2003). T
transfer f

 

6.7 Proposed
he defluorin
from ZVI.  

d defluorinati
nation of PF

 

ion mechani
OA was init

209 

isms of PFO
tiated by the

OA by ZVI (R
e cleavage o

Reproduced 
of α-position

from Song e
n C–F bond 

 

et al., 
by e- 



210 
 

 

Figure 6.8 Mass balances for PFOA and PFOS in batch experiments as a function of reaction 
time. Because the concentrations of PFOA and PFOS were two to four orders of magnitude 
higher than that of the short chain PFCAs and PFSAs in both supernatant samples and aqueous 
samples extracted from reactive media, this figure also represents the mass balances of total 
perfluoroalkyl carboxylic acids (PFCAs, including PFOA, PFHpA, and PFHxA) and total 
perfluoroalkyl sulfonic acids (PFSAs, including PFOS, PFHpS, PFHxS, and PFBS) in the batch 
experiments as a function of reaction time. Partial defluorination percentages were 
stoicmetrically back-calculated based on the observed F- concentrations in the supernatant, 
assuming 2F defluorinated from 15F atoms of PFOA and 2F defluorinated from17F atoms of 
PFOS. 
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Chapter 7: Conclusions  
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7.1 Summary of Findings and Comparison of Contaminant Removals Using 

Photocatalytic and Passive Treatment Systems 

7.1.1 Summary of Findings 

Laboratory column and batch experiments were conducted to evaluate the effectiveness of 

passive treatment systems that contain zero-valent iron (ZVI), organic carbon (OC), and biochar 

(BC) for removal of NO3
-, SO4

2- and emerging contaminants perchlorate, pharmaceuticals, 

artificial sweeteners, and perfluoroalkyl substances from simulated groundwater. Laboratory 

batch experiments were conducted to evaluate the effectiveness of ultraviolet light (UV) 

photocatalytic treatment using magnetically recoverable TiO2 nanoparticles for removing 

artificial sweetener acesulfame-K and pharmaceuticals from water. In addition, a field 

investigation was conducted to evaluate the use of potential multiple tracers including an 

artificial sweetener and several pharmaceuticals to track wastewater derived from two 

wastewater treatment plants (WWTPs) in a receiving river.  

Water contaminated by co-mingled ClO4
-, NO3

-, and SO4
2- are associated with sulfide-

bearing mine sites when ClO4
- and NO3

- containing blasting agents are used in the ore extraction 

process. Four column experiments containing ZVI, wood chips (OC), and a mixture of (ZVI + 

OC) were conducted to remove ClO4
-, NO3

-, and SO4
2- from water (described in Chapter 2). 

Complete removals of NO3
- were achieved in all treatment columns ZVI, OC, and the mixture of 

(ZVI + OC). However, the by-product NH4
+ was produced during NO3

- reduction by ZVI alone 

(Equation 2.1). The bacterial mediated denitrification of NO3
- by OC was observed and is 

consistent with thermodynamic predictions for the conversion to the environmentally innocuous 

N2 gas (Equation 2.3). The extensive removal of NO3
- in Column (ZVI + OC) likely involved 

both NO3
- reduction by ZVI and denitrification by OC, following a first-order rate, with a much 



213 
 

more rapid NO3
- removal rate compared to the other two treatment columns. The removal of 

SO4
2- was only observed in Column OC (pH=7.4) through the onset of biologically mediated 

SO4
2- reduction coupled to OC oxidation (Equation 2.4); the higher pH (8.6) in Column (ZVI + 

OC) likely inhibited biological sulfate reduction. Effective removal of ClO4
- was only observed 

in the columns containing OC through biological degradation of ClO4
- to Cl- following the 

zeroth-order rate; however, ClO4
- was not removed in Column ZVI. As the potential end product 

of ClO4
- biological degradation, Cl- was observed at the concentrations equivalent to the 

concentration of ClO4
- removed in the effluents of Columns OC and (ZVI + OC). Complete 

removal of ClO4
- occurred after the complete removal of NO3

- due to the inhibition of NO3
- (> 2 

mg L-1 NO3-N) on ClO4
- removal. However, augmentation of OC by a small fraction of ZVI 

reduced the inhibition of NO3
- (> 2 mg L-1 NO3-N) on ClO4

- removal. The more complete 

removals of ClO4
-, NO3

- and SO4
2- were attributed to the decrease in flow rate from 0.5 to 0.1 

pore volume (PV) d-1 in Columns OC and (ZVI + OC).  

Chloride, nutrients, and some of the emerging contaminants such as artificial sweetener 

acesulfame-K (ACE-K) and pharmaceuticals carbamazepine (CBZ) and caffeine (CAF) are 

proposed as tracers of municipal wastewater in the aquatic environment. However, the 

anthropogenic sources of contamination such as road salts, fertilizer, and the natural attenuation 

processes make these tracers less reliable and ideal to track wastewater. Use of multiple tracers 

will greatly increase the confidence of tracking wastewater in the environment. A two-year study 

was conducted along a river downstream of two WWTPs to identify potential tracers to track the 

wastewater (described in Chapter 3). The results indicate that elevated concentrations of artificial 

sweetener ACE-K and pharmaceuticals CBZ, CAF, sulfamethoxazole (SMX), ibuprofen (IBU), 

gemfibrozil (GEM), and naproxen (NAP) were observed near the WWTP 1 as a result of human 
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excretion in the study area of the receiving river. The artificial sweetener ACE-K combined with 

pharmaceuticals CBZ, GEM, and NAP were strongly correlated and can be used as potential co-

tracers to track the wastewater.  

TiO2 nanoparticles are effective photocatalysts used in UV photocatalytic treatment of 

emerging contaminants. However, the non-recoverable TiO2 nanoparticles themselves are 

emerging contaminants which could cause adverse impacts on human and ecosystem health after 

entering the environment. The use of recoverable photocatalysts rather than the non-recoverable 

ones can mitigate the release of these nanoparticles to the environment. In Chapter 4, the 

photocatalytic ability of two magnetically recoverable TiO2 nanoparticles (MST: magnetically 

separable TiO2 nanoparticles; GO TiO2: graphene oxide supported TiO2 nanoparticles) were 

evaluated compared to the commercial non-recoverable P25 TiO2 nanoparticles in UV 

photocatalysis of an artificial sweetener ACE-K and a suite of pharmaceutical compounds (CBZ, 

CAF, SMX, MDA, MDMA, IBU, GEM, and NAP). The results show the GO TiO2 nanoparticles 

exhibited competitive or greater catalytic ability compared to P25 TiO2 nanoparticles in assisting 

photocatalytic treatment of target contaminants (> 99% removal of ACE-K and > 92% removal 

of pharmaceuticals); however, the MST nanoparticles were less effective in inducing 

photocatalysis of the contaminants than P25 and GO TiO2 nanoparticles. The UV photocatalytic 

treatment of target contaminants followed a pseudo-first-order rate. The recoverable GO TiO2 

nanoparticles could be a potential substitute for commercial P25 TiO2 nanoparticles in the water 

treatment industry due to their high magnetic recovery (> 90%) and photocatalytic efficiency. 

Four column experiments consisting of ZVI, biochar (BC), and a mixture of (ZVI + BC) 

were conducted for simultaneous removal of pharmaceutical compounds, artificial sweeteners, 

and perfluoroalkyl substances from water (described in Chapter 5). More than 97% of input 
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pharmaceuticals (~9 μg L-1) CBZ, CAF, SMX, MDA, MDMA, IBU, GEM, and NAP were 

removed in three treatment Columns ZVI, BC, and (ZVI + BC), and the removals of 

pharmaceuticals followed the first-order rate. Artificial sweetener sucralose (SUC) at input 

concentration of ~110 μg L-1 were removed in three treatment columns with removals > 76%. 

Poor removals of artificial sweetener ACE-K were observed in Column ZVI (27% removed) and 

Column (ZVI + BC) (14% removed) when the flow rate was maintained at 0.3 PV d-1; however, 

the removals of ACE-K increased to 60% in Column ZVI and 30% in Column (ZVI + BC) when 

the flow rate was decreased to 0.1 PV d-1. ACE-K was not removed in Column BC. Artificial 

sweetener saccharin (SAC) was not removed in Column ZVI; removals of SAC in the columns 

containing BC decreased over time. Artificial sweetener cyclamate (CYC) was not removed in 

any column in this study. Partial removals of input perfluorooctanoic acid (PFOA) (~45 μg L-1) 

were observed in Column BC and Column (ZVI + BC) with decreasing removal efficiencies. 

Removals of input PFOA in Column ZVI was only observed during the early stage of the 

experiment. About 60 ̶ 99% of input perfluorooctane sulfonic acid (PFOS) (24 ̶ 90 μg L-1) was 

removed in Columns BC and (ZVI + BC) throughout the experimental period. More than 80% of 

input PFOS was removed in Column ZVI during the first 37 PV of the experiment with possible 

conversion of PFOS to PFOA from 18 to 50 PV. The removal rates of target contaminants 

decreased over time; the removals of target contaminants were not enhanced by the decrease in 

flow rate, except for ACE-K.  

A series of batch experiments were conducted to assist in the interpretation of the date 

derived from the column experiments (Chapter 5) to investigate the removal mechanisms of 

PFOA and PFOS by ZVI and BC (described in Chapter 6). The results show about 20 and 60% 

of the input PFOA (~18,550 µg L-1) was removed by ZVI and the mixture of (ZVI + BC) after 
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120 d. Greater removals of input PFOS (~18,580 µg L-1) were observed by ZVI (90% removed) 

and (ZVI + BC) (94% removed) compared to PFOA. The removals of PFOA and PFOS by ZVI 

were likely due to sorption of PFOA and PFOS to iron oxides and hydroxides through H bonding 

and possibly reductive defluorination (10% of PFOA and 5% of PFOS were partially 

defluorinated). The removals of PFOA and PFOS by BC were likely due to hydrophobic sorption. 

Trace concentrations of short chain perfluoroalkyl carboxylic acids (PFCAs) including 

perfluoroheptanoic acid (PFHpA, C7-PFCA) and perfluorohexanoic acid (PFHxA, C6-PFCA) 

were detected in the PFOA input solution; however, only 17% of input PFHpA (26 µg L-1) was 

removed by ZVI and (ZVI + BC),  input PFHxA (0.8 µg L-1) were not removed. Similarly, trace 

concentrations of short chain perfluoroalkyl sulfonic acids (PFSAs) including 330 µg L-1 of 

perfluoroheptane sulfonic acid (PFHpS, C7-PFSA), 13 µg L-1 of perfluorohexane sulfonic acid 

(PFHxS, C6-PFSA) and 6 µg L-1 perfluorobutane sulfonic acid (PFBS, C4-PFSA) were detected 

in the PFOS input solution. Up to 70%, 40%, and 20% of input PFHpS, PFHxS, and PFBS were 

removed by the reactive media; the removal efficiency decreased with a decreasing PFSAs chain 

length. Fluoride (F-) as the indicative by-product of defluorination of PFOA and PFOS was 

adsorbed by ZVI (~20% from 1mg L-1) and (ZVI + BC) (~75% from 1mg L-1). The 

defluorination of PFOA and PFOS by ZVI and (ZVI + BC) may have been under estimated due 

to the sorption of F- by ZVI and BC.  

The results of these studies indicate that passive treatment systems such as permeable 

reactive barriers or in-situ bioreactors containing ZVI and OC (wood chips and biochar) may be 

promising and cost-effective technologies for considerable removal of NO3
-, SO4

2-, and emerging 

contaminants ClO4
-, pharmaceuticals (CBZ, CAF, SMX, MDA, MDMA, IBU, GEM, and NAP), 

artificial sweeteners (ACE-K, SUC, and SAC), and perfluoroalkyl substances (PFOA, PFOS, and 
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short chain PFSAs) from simulated groundwater under ambient environmental conditions. The 

magnetically recoverable GO TiO2 nanoparticles could be a potential substitute for the 

commercial non-recoverable P25 TiO2 nanoparticles used in water treatment applications due to 

its competitive or greater photcatalytic ability and environmental benefit (high magnetic 

recovery) compared to P25. Artificial sweetener ACE-K and pharmaceuticals CBZ, GEM, and 

NAP can be used as co-tracers to track wastewater.  

7.1.2 Comparison of Contaminant Removals Using Photocatalytic and Passive 

Treatment Systems 

Effective removals (>92%) of target contaminants ACE-K and eight pharmaceuticals were 

observed using both oxidative treatment (photocatalytic study in Chapter 4) and passive 

treatment (Column study in Chapter 5, except for ACE-K with 30 ̶ 60% removals); however, the 

removal efficiencies, rates, and mechanisms varied greatly. The average surface area normalized 

rate constants KSA (L m-2 d-1), average removal efficiencies, and potential removal mechanisms 

of ACE-K and eight pharmaceuticals using photocatalytic and passive treatment systems are 

compared and summarized in Table 7.1.  

 The removal of target contaminants by UV photocatalysis was attributed to the oxidation 

of these contaminants by hydroxyl radical ·OH under UV irradiation. The removal of target 

contaminants by passive treatment systems containing ZVI and BC was likely through reduction 

(by ZVI), electrostatic interactions, hydrophobic interactions, π ̶ π stacking and(or) EDA 

interactions, and H bonding between contaminants and reactive media under reducing conditions. 

Effective removal of target contaminants was observed using both photocatalytic treatment 

(>92%) and passive treatment (>97%, except for ACE-K). Removal of ACE-K and eight 
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pharmaceuticals by photocatalytic and passive treatment systems (removal of ACE-K within 

Column ZVI) followed the first-order reaction model; however, the removal rates (or rate 

constants KSA) of ACE-K and eight pharmaceuticals using photocatalytic treatment were 

approximately 5 ̶ 7 orders of magnitude greater than that using the passive treatment systems 

(Table 7.1).  

Overall, photocatalytic treatment is more effective than the passive treatment system for 

removing ACE-K and pharmaceuticals with higher removal efficiencies and much more rapid 

removal rates. However, passive treatment systems require less energy (under ambient 

environmental conditions) and use of relatively inexpensive reactive media compared to 

photocatalytic treatment system which has high energy consumption (UV irradiation) and use of 

expensive photocatalysts (Table 7.2). Many factors should be considered when selecting a 

treatment method, such as the requirement of remediation rates and efficiencies and funding 

available for the remediation. The remediation strategy can vary greatly as the situation dictates.  

7.2 Scientific Contributions 

Research presented in this thesis contributed information related to removal of emerging 

contaminants ClO4
-, pharmaceuticals (CBZ, CAF, SMX, MDA, MDMA, IBU, GEM, and NAP), 

artificial sweeteners (ACE-K, SUC, SAC, and CYC), and perfluoroalkyl substances (PFOA, 

short chain PFCAs, PFOS, and short chain PFSAs) from aqueous solution using UV 

photocatalytic treatment and passive treatment systems, and use of emerging contaminants as co-

tracers to track wastewater. New scientific contributions resulting from this thesis include: 

 Demonstrating that simultaneous removal of NO3
-, SO4

2-, and ClO4
- from water can be 

achieved using a passive treatment system consisting of the mixture of ZVI and OC.     
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 Demonstrating that complete biological degradation of ClO4
- to Cl- can be achieved using 

OC under reducing conditions.  

 Illustrating that addition of ZVI to OC can reduce the inhibition of NO3
- (> 2 mg L-1 NO3-

N) on ClO4
- removal.  

 Investigating the correlation between the conventional tracer Cl- and the emerging 

contaminants as they dissipated downstream from the WWTPs in a receiving river.  

 Illustrating the artificial sweetener ACE-K and pharmaceuticals CBZ, NAP, and GEM 

can be used as co-tracers to track wastewater. 

 Demonstrating that the recoverable GO TiO2 nanoparticles could be an alternative  for 

commercial P25 TiO2 nanoparticles in inducing photocatalytic treatment of emerging 

contaminants ACE-K and a suite of pharmaceuticals (CBZ, CAF, SMX, MDA, MDMA, 

IBU, GEM, and NAP) due to its photocatalytic efficiency and environmental benefit 

(high recovery). 

 Demonstrating that simultaneous removal of pharmaceuticals (CBZ, CAF, SMX, MDA, 

MDMA, IBU, GEM, and NAP), artificial sweeteners (ACE-K, SUC, and SAC), and 

perfluoroalkyl substances (PFOA and PFOS) from water can be achieved using a passive 

treatment system consisting of the mixture of (ZVI + BC). 

 Illustrating the removals of PFOA and PFOS by ZVI and BC were likely through 

sorption and possibly reductive defluorination.  
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 Demonstrating that the removal efficiencies of PFCAs and PFSAs by ZVI and BC 

decreased with the decreasing chain length.   

7.3 Recommendations 

Passive treatment systems consisting of the reactive mixture of (ZVI + OC) or (ZVI + BC) are 

potentially a cost-effective and efficient technology for simultaneous removal of NO3
-, SO4

2- and 

emerging contaminants ClO4
-, pharmaceutical compounds, artificial sweeteners, and 

perfluoroalkyl substances from water. In addition to the target emerging contaminants, the 

reactive media ZVI and OC have also been demonstrated to be effective for removals of different 

types of the inorganic and organic contaminants (described in Chapter 1). Due to their high 

removal efficiencies of different types of contaminants, cost-effectiveness, and low maintenance, 

these reactive mixture can be widely used to enhance the performance of various onsite 

wastewater and water treatment systems, such as in septic treatment systems (Figures 7.1 and 

7.2), permeable reactive barriers (Figure 7.3), tile drainage treatment systems (Figure 7.4), soil 

aquifer treatment systems (Figure 7.5), river bank filtration systems (Figure 7.6), and polishing 

cells for WWTPs effluent (Figure 7.7).    

On-site wastewater treatment and disposal systems are widely used in North America and 

elsewhere in the world to treat wastewater derived from homes or businesses in rural areas that 

are not served by community public sewers, often leading to release of partially treated 

wastewater back into the receiving environment. Septic tank/soil absorption systems are the most 

common used on-site wastewater treatment units in North America (website: 

nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9101NLXN.TXT). In septic tanks, most of the 

settleable solids are separated from wastewater to allow for digestion of organic matter. The 
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clarified wastewater is then fed to the soil absorption system to further filter and treat the effluent 

before it enters the groundwater zone.  However, emerging contaminants in wastewater often are 

not effectively removed by soil adsorption process (Carrara et al., 2008; Onesios & Bouwer, 

2012; Patterson et al., 2011; Robertson et al., 2013; Scheurer et al., 2009) which likely results in 

the broader distribution of emerging contaminants to the environment (described in Chapter 1). 

The augmentation of soil adsorption systems with reactive mixtures (ZVI + OC) or (ZVI + BC) 

can potentially improve water quality by reducing the flux of emerging contaminants entering 

groundwater. A horizontal layer containing the reactive media can be installed beneath the drain 

field to enhance the performance of soil absorption systems (Figure 7.1). A passive flow-through 

reactor packed with the reactive media can be installed after the primary wastewater treatment 

unit to remove the emerging contaminants before discharging to soil (Figure 7.2). A vertical 

permeable reactive barrier containing reactive media can be installed downgradient of the septic 

drainage tile to remove emerging contaminants from the wastewater before it discharges to 

receiving surface waters (Figure 7.3).    

The reactive mixture can also be utilized in subsurface tile drainage systems to remove 

contaminants derived from agricultural lands. Tile drainage systems are designed to collect 

excess water from the soil zone to lower the water table and increase crop yields. However, the 

application of fertilizer (containing NO3
- and ClO4

- described in Chapter 2), pesticides such as 

atrazine, liquid manure (containing veterinary drugs and nutrients), and municipal biosolids 

(containing human pharmaceuticals, artificial sweeteners, and nutrients) to farm lands causes the 

release of these contaminants to soil and soil water. As a result of the tile systems, soluble 

contaminants will end up in the drainage system. An in-line reactor containing ZVI, OC, and BC 
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mixtures can be installed in the effluent drainage pipe to remove the contaminants collected from 

the farm lands before they enter receiving waters (Figure 7.4).  

Another potential application of the passive treatment systems is in the managed aquifer 

recharge (MAR) process where reactive media can be used to improve the quality of the 

recovered water.  In a soil aquifer treatment system, the pre-treated wastewater is introduced to a 

recharge basin (infiltration basin); the contaminants in the wastewater can be partially removed 

through different natural processes (such as physical, chemical and biological processes) as the 

wastewater moves through soil and aquifer. The treated wastewater will be stored in the aquifer 

for future use. In this case, a horizontal layer containing reactive media can be placed at the base 

of the recharge basin to enhance the removal of emerging contaminants from the wastewater 

before it enters groundwater (Figure 7.5). In a river bank filtration system, a vertical permeable 

reactive barrier packed with the reactive mixture can be installed between the river and the 

production well to enhance the removal of emerging contaminants from the recovery river water 

before end uses (Figure 7.6). In addition, when emerging contaminants cannot be removed in 

WWTPs (described in Chapter 1); a flow-through reactor packed with the reactive mixture or 

facilitated with UV photocatalytic treatment using recoverable GO TiO2 nanoparticles can be 

installed to polish treated water before discharge (Figure 7.7).  

Passive treatment systems consisting of (ZVI + OC) or (ZVI + BC) could be an 

economical and practical technology for augmentation of the current and future on-site 

wastewater treatment and disposal systems, tile drainage systems, and managed aquifer recharge 

systems, and WWTPs for enhanced removal of the emerging contaminants. The application of 

these passive treatment technologies can reduce the amount of NO3
-, SO4

2- and emerging 

contaminants ClO4
-, pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl 
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substances entering the natural waters through wastewater disposal and water reuse, providing 

environmental benefits in heavily populated and water shortage (reuse) areas.  

In this study, there were no obvious signs of system clogging or decrease in hydraulic 

conductivity when 50% (v/v) of silica sand was used as supporting material in the experiments. 

When passive treatment systems are used in field applications, mixing of the reactive mixture 

with sand or gravel (e.g., 50%, v/v) is recommended to maintain the hydraulics of the system. 

Furthermore, addition of a small fraction (e.g., 10%, v/v) of ZVI to wood chips or biochar (e.g., 

40%, v/v) is recommended based on findings from this study. Higher ZVI amendment rates not 

only increase the remedy cost (because ZVI is more expensive compared to wood chips and 

biochar), but may also increase the pH values of the wastewater which will potentially inhibit the 

microbial degradation of the contaminants (such as biological degradation of SO4
2-, described in 

Chapter 2). The flow rates used in the column experiments were set at 0.1, 0.3, or 0.5 PV d-1 

(linear velocities: 3, 9, or 15 cm d-1), which is in the range of typical groundwater velocities. 

However, when passive treatment systems are used in field applications, an increase in flow rate 

may lead to decreases in removal efficiencies. In addition, the concurrence of other organic 

constituents such as organic carbon and inorganic components in the wastewater may also affect 

the performance of passive treatment systems. Similarly, the presence of dissolved organic 

carbon (DOC) and inorganic constitutes in the wastewater will also likely affect the performance 

of active treatment systems, such as UV photocatalytic treatment and WWTPs. The effect of 

changes in flow rates and constituents of influent wastewater on the treatment performance 

should be considered when passive treatment systems are applied to the field applications.  
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7.4 Future Research 

Samples of Grand River water were only collected once in the summers of 2012 and 2013, and in 

the winter of 2014 (Appendix B; Chapter 3). These three sampling events only reflect the 

distribution of the target emerging contaminants in the Grand River during the sampling days in 

2012, 2013, and 2014, and do not represent the entire year. More frequent sampling such as 

sampling on daily or monthly basis should be considered in future studies to enhance the 

understanding of variability in the Grand River. In addition, alternative sampling device such as 

the passive polar organic chemical integrative samplers (Li et al., 2010a) should be considered to 

collect time-integrated samples and determine time-weighted average concentrations of 

emerging contaminants from water in future studies.  

The removal mechanisms of artificial sweetener ACE-K and pharmaceuticals by UV 

photo- and photocatalytic treatment were not investigated in this thesis, but can be considered 

when planning future experiments. In addition, the application of recoverable GO TiO2 

nanoparticles to water treatment industry requires additional information, including optimizing 

UV photocatalytic reactor design to maximize both the removal of the target contaminants and 

recovery of the GO TiO2 nanoparticles, and to evaluate the influence of water chemistry changes 

on the removal efficiency of contaminants and reaction kinetics. The UV intensity of the UVP 

CL-1000 Ultraviolet Crosslinker reactor used in this study was 66.7 W m-2 and the UV 

irradiation time was 1 h (3600 s), which gave the target contaminants a UV dose of 24 J cm-2. 

The UV dose used in this study was much higher than the typical UV dose applied for 

disinfection systems in water treatment plants (e.g., Trojan UV bulbs with UV intensity of ~33 

mW cm-2 and UV dose of 40 mJ cm-2). The removal efficiency of the target contaminants under 

typical UV disinfection dose would likely be reduced. Future batch experiments can be 



225 
 

performed to evaluate the effectiveness of common UV bulbs in facilitating the photocatalysis of 

the target contaminants using recoverable GO TiO2 nanoparticles.     

Passive treatment systems containing (ZVI + OC) or (ZVI + BC) have shown promising 

removals of NO3
-, SO4

2- and emerging contaminants ClO4
-, pharmaceutical compounds, artificial 

sweeteners, and perfluoroalkyl substances from the water under reducing anaerobic conditions. 

The removal efficiency of the target contaminants might be different when the passive treatment 

system is applied to the mildy anoxic or oxic wastewater treatment conditions. In addition, 

simulated groundwater (CaCO3 saturated solution) was used as input solution matrix (Chapter 1 

and Chapter 5); the velocity of the column experiments was set at 3 ̶ 15 cm d-1 to represent 

typical average groundwater velocities in shallow aquifers. Future laboratory experiments should 

be conducted to evaluate the removal of target contaminants by reactive mixtures under mildly 

anoxic or oxic conditions, at higher flow rates, and with spiked wastewater as an input matrix to 

simulate potential field conditions. The ZVI is more expensive than wood chips and biochar; the 

cost of the passive treatment system could be reduced by decreasing the amount of ZVI used. 

Lower amendment rates of ZVI to OC and BC such as (5%, v/v) could be evaluated to determine 

whether similar removals of the target contaminants can be achieved using less ZVI.  

Removal of PFOA and PFOS by ZVI and BC was likely through sorption in this study 

(described in Chapters 5 and 6); however, the sorption mechanism was not confirmed. 

Application of Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) 

spectroscopy could be considered in future research to determine the functionalities on the 

surface of ZVI (ion oxides and hydroxides) and BC. The results of ATR-FTIR might assist in the 

explanation of the sorption mechanism of PFCAs and PFSAs by ZVI (ion oxides and hydroxides) 

and BC. In addition, the defluorination efficiency of PFOA and PFOS was not confirmed in the 



226 
 

PFAS column study and was likely underestimated in the PFAS batch study due to the potential 

sorption of F- by the reactive media. Extraction of F- from the reactive media should be 

considered in future studies to confirm the defluorination of PFOA and PFOS.  
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Table 7.1 Comparison of average surface area normalized rate constants (KSA, L m-2 d-1), average removal efficiencies, and potential 
removal mechanisms of target contaminants during UV photocatalytic treatment using GO TiO2 nanoparticles (Chapter 4) and passive 
treatment using ZVI and BC (Chapter 5).  

Contaminant 

UV Photocatalytic Treatment 

 

Passive Treatment 

Average 
KSA 

Removal 
efficiency

Potential removal 
mechanisms 

Average 
KSA 

Removal 
efficiency 

Potential removal 
mechanisms 

Acesulfame-K 
(ACE-K) 

N
S

O

O

O O

K

CH3

+

 

5.3E+01 99% 
Ring breakage and ·OH 

radical cleavage of S-N in 
sulfonamide group1, 2 

 3.3E-06a 
30-60% in 
Column 

ZVI 

Reduction by ZVI, 

H bonding 

Carbamazepine 
(CBZ) 

N

O NH2  

1.7E+01 97% 

Multi-step and 
interconnected pathway 
involving ·OH radical 

cleavage of C=C bonds3, 4 

 1.1E-04 99% 

Catalytic 
hydrogenation17, 

hydrophobic 
interaction18, π-π 

interaction, H bonding 

Caffeine (CAF)   

N

N

CH3

O

CH3

O

N

N
CH3  

3.8E+01 99% 
Hydroxylation of C4=C8 

double bond and 
demethylation5, 6 

 1.3E-04 99% 

Reduction and 
adsorption19, 

π-π EDA interaction, H 
bonding, electrostatic 

interaction 

3,4-methylenedioxy- 
amphetamine (MDA)  

O

O

CH3

NH2

 

1.3E+02 99% 
·OH radical cleavage of 
methylenedioxy group7 

 6.0E-04 99% 

Electrostatic interaction, 
π-π stacking, π-π EDA 

interaction, π-H bonding, 
H bonding 
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Table 7.1 Continued. 

3,4-methylenedioxy- 
methamphetamine  

(MDMA) 

O

O

CH3

NH
CH3

 

1.4E+02 98% 
·OH radical cleavage of 
methylenedioxy group7 

 1.6E-03 99% 

Electrostatic interaction, 
π-π stacking, π-π EDA 

interaction, π-H bonding, 
H bonding 

Sulfamethoxazole 
(SMX) 

NH2

S

O O

NH

N
O

CH3

 

1.1E+02 99% 

·OH radical cleavage of S-N 
in sulfonamide group, ·OH 

radical addition to open 
carbon position of isoxazole 

ring and aromatic ring8, 9 

 6.5E-03 >97% 
π-π stacking, π-π EDA 

interaction20, π-H 
bonding, H bonding 

Ibuprofen (IBU) 

CH3

CH3

O

CH3

OH

 

2.6E+01 92% 
Decarboxylation, ·OH 
radicals addition to the 

alkane Cs10, 11 
 3.8E-05 >97% 

Reduction21, H bonding, 
π-π stacking, π-π EDA 

interaction22, π-H bonding

Gemfibrozil (GEM) 
O

CH3

CH3

CH3CH3

OH

O

 

7.1E+01 99% 
·OH radicals addition to 

benzene ring and breakage of 
ethereal bond 12, 13  

 9.2E-05 99% 
π-π stacking, π-π EDA 

interaction, π-H bonding, 
H bonding 

Naproxen (NAP)  

O
CH3 O

CH3

OH

 

6.8E+01 99% 
Decarboxylation, 
demethylation, 

photoionization14, 15, 16 
 7.1E-05 99% 

π-π stacking, π-π EDA 
interaction23, π-H 

bonding, H bonding 

References: 1. Scheurer et al. (2014); 2. Li et al. (2016); 3. Jelic et al. (2013); 4. Doll and Frimmel (2005); 5.  Dalmázio et al. (2005); 
6. Chuang et al. (2011); 7. Kumagai et al. (1991); 8. Hu et al. (2007); 9. Abellán et al. (2007); 10. Méndez-Arriaga et al. (2008a); 11. 
Jacobs et al. (2011). 12. Razavi et al. (2009); 13. Yurdakal et al. (2007); 14. Méndez-Arriaga et al. (2008b); 15. Boscá et al. (2001); 16. 
Moore and Chappuis (1988). 17. König et al. (2016); 18. Inyang and Dickenson (2015); 19. Tomizawa et al. (2016); 20. Zheng et al. 
(2013); 21. Machado et al. (2013); 22. Jung et al. (2013); 23. Jung et al. (2015a). 

a The average first order removal rate constant of ACE-K within Column ZVI. 
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Table 7.2 Comparison of removal efficiency and removal rate (surface area normalized rate 
constant, KSA, L  m-2 d-1), treatment conditions, energy consumption, and required 
catalysts/reactive media during photocatalytic and passive treatment systems for removing ACE-
K and eight pharmaceuticals. 

 Photocatalytic Treatment Passive Treatment 

Removal efficiency High: 92 ̶ 99% 
Moderate to high:  

30 ̶ 60% for ACE-K 
97 ̶ 99% for pharmaceuticals  

Removal rate (KSA)   
Rapid  

(E+1 – E+2) 
Slow  

(E-3 – E-6) 

Treatment conditions UV irradiation conditions Ambient T, reducing conditions  

Energy consumption High Low 

Use of reactive 
media/catalysts 

Use of high-cost 
photocatalysts 

Use of relatively low-cost reactive 
media 
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Figure 7.1 Schematic cross-section showing application of reactive mixture of zero-valent iron 
(ZVI) and organic carbon (OC) as a horizontal reactive layer underneath the septic drain tiles. 
The reactive layer is expected to remove NO3

-, SO4
2- and emerging contaminants from  

wastewater before it reaches groundwater.   
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Figure 7.2 Schematic cross-section showing application of reactive mixture of zero-valent iron 
(ZVI) and organic carbon (OC) in a reactor attached to the effluent pipe derived from the 
primary treatment unit of the facility. The reactor is expected to remove NO3

-, SO4
2- and 

emerging contaminants in the sewage wastewater after primary treatment. 
 

  



 

Figure 7
(ZVI) an
mixture i
before it 

 

7.3 Schemati
nd organic c
in the PRB i
discharges t

ic cross-sect
carbon (OC)
is expected 
to surface wa

 

tion showing
) in a vertic
to remove N
ater.   

232 

g application
cal permeab
NO3

-, SO4
2- a

 

n of reactive
ble reactive 
and emergin

e mixture of
barrier (PR

ng contamina

f zero-valent
RB). The rea
ants in the p

 

t iron 
active 
plume 



 

Figure 7
valent iro
from wat
 

7.4 Schemat
on (ZVI) an
ter collected 

tic areal map
nd organic c

from the tile
 

p showing i
carbon (OC) 
e drainage sy

233 

in-line react
to remove 

ystem before

tor containin
NO3

-, SO4
2-

e it discharg

ng reactive 
- and emergi

ges to receivi

 

mixture of 
ing contami
ing water bo

zero-
inants 
ody.     



 

 

Figure 7
(ZVI) an
soil aqui
contamin
 

7.5 Schemati
nd organic ca
ifer treatmen
nants in the w

ic cross-sect
arbon (OC) 
nt. The rea
wastewater b

 

tion showing
in a horizon

active layer 
before it infi

234 

g application
ntal reactive 

is expected
ltrates to gro

n of reactive
layer undern

d to remove
oundwater.  

e mixture of
neath the re
e NO3

-, SO4

f zero-valent
charge basin
4

2- and eme

 

t iron 
n of a 
erging 



 

Figure 7
(ZVI) an
and the p
PRB is e
before en
 

7.6 Schemati
nd organic ca
production w
expected to r
nd uses.    

ic cross-sect
arbon (OC) i
well in a riv
remove NO3

 

tion showing
in a permeab
ver bank filt
3

-, SO4
2- and

235 

g application
ble reactive b
tration proce

d emerging c

n of reactive
barrier (PRB
ess. The rea
contaminant

e mixture of
B) installed b
active mixtu
ts in the reco

f zero-valent
between the 

ure packed i
overy river w

 

t iron 
river 

in the 
water 



 

Figure 7
and orga
nanopart
(WWTP)
removed 

 

7.7 Schemati
anic carbon
icles in a po
). The emerg
in the reacto

ic diagram sh
n (OC) or 
olishing cell 
ging contam
or before ent

 

howing appl
UV photo

(reactor) att
minants which

tering the re

236 

lication of re
ocatalytic tr
ached to the
h cannot be 
ceiving river

eactive mixt
reatment us
e effluent of 

removed in
r.     

ture of zero-v
sing recove
a wastewate

n WWTPs ar

valent iron (
erable GO 
er treatment 
re expected 

(ZVI) 
TiO2 
plant 
to be 



237 
 

References 

Abellán, M.N., Bayarri, B., Giménez, J., Costa, J., 2007. Photocatalytic degradation of 
sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. , B. 74(3-4), 233-241. 
Achilleos, A., Hapeshi, E., Xekoukoulotakis, N.P., Mantzavinos, D., Fatta-Kassinos, D., 2010. 
UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by TiO2. Sep. Sci. 
Technol. 45(11), 1564-1570. 
Agrawal, A., Ferguson, W.J., Gardner, B.O., Christ, J.A., Bandstra, J.Z., Tratnyek, P.G., 2002. 
Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-
valent iron. Environ. Sci. Technol. 36(20), 4326-4333. 
Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.-K., Yang, J.E., Ok, Y.S., 2012. Effects of 
pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE 
adsorption in water. Bioresour. Technol. 118, 536-544. 
Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Thomaidis, N.S., Xu, J., 2016. Progress in the 
biological and chemical treatment technologies for emerging contaminant removal from 
wastewater: A critical review. J. Hazard. Mater. 323, Part A, 274–298. 
Ahrens, L., 2011. Polyfluoroalkyl compounds in the aquatic environment: A review of their 
occurrence and fate. J. Environ. Monit. 13(1), 20-31. 
Ahrens, L., Bundschuh, M., 2014. Fate and effects of poly- and perfluoroalkyl substances in the 
aquatic environment: A review. Environ. Toxicol. Chem. 33(9), 1921-1929. 
Ahrens, L., Taniyasu, S., Yeung, L.W.Y., Yamashita, N., Lam, P.K.S., Ebinghaus, R., 2010. 
Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment 
from Tokyo Bay, Japan. Chemosphere. 79(3), 266-272. 
Álvarez, P.M., Jaramillo, J., López-Piñero, F., Plucinski, P.K., 2010. Preparation and 
characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of 
emerging pollutants in water. Appl. Catal. , B. 100(1-2), 338-345. 
Ambashta, R.D., Sillanpää, M., 2010. Water purification using magnetic assistance: A review. J. 
Hazard. Mater. 180(1-3), 38-49. 
Andersson, M., Österlund, L., Ljungström, S., Palmqvist, A., 2002. Preparation of nanosize 
anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for 
photocatalytic wet oxidation of phenol. J. Phys. Chem. B. 106(41), 10674-10679. 
Andreozzi, R., Campanella, L., Fraysse, B., Garric, J., Gonnella, A., Lo Giudice, R., Marotta, R., 
Pinto, G., Pollio, A., 2004. Effects of advanced oxidation processes (AOPs) on the toxicity of a 
mixture of pharmaceuticals. Water Sci. Technol. 50(5), 23-28. 
Andreozzi, R., Marotta, R., Pinto, G., Pollio, A., 2002. Carbamazepine in water: Persistence in 
the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Res. 
36(11), 2869-2877. 
APHA. 1992. in: Method 2320 B: alkalinity, American Public Health Association. Washington, 
D.C. 
APHA. 2005a. Method 4500-NH3. in: Method 4500-NH3, American Public Health Association. 
Washington, D.C. 
APHA. 2005b. Method 4500-P:E. in: Method 4500-P:E, American Public Health Association. 
Washington, D.C. 
Appelo, C.A.J., Postma, D., 2005. Geochemistry, Groundwater and Pollution. AA Balkema, 



238 
 

Rotterdam. 
Appleman, T.D., Dickenson, E.R.V., Bellona, C., Higgins, C.P., 2013. Nanofiltration and 
granular activated carbon treatment of perfluoroalkyl acids. J. Hazard. Mater. 260, 740-746. 
Application Note, Agilent Technology. www.agilent.com/chem. 
Arvaniti, O.S., Asimakopoulos, A.G., Dasenaki, M.E., Ventouri, E.I., Stasinakis, A.S., Thomaidis, 
N.S., 2014. Simultaneous determination of eighteen perfluorinated compounds in dissolved and 
particulate phases of wastewater, and in sewage sludge by liquid chromatography-tandem mass 
spectrometry.  Anal. Methods. 6(5), 1341-1349. 
Arvaniti, O.S., Hwang, Y., Andersen, H.R., Stasinakis, A.S., Thomaidis, N.S., Aloupi, M., 2015. 
Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated 
nanoscale zero valent iron. Chem. Eng. J. 262, 133-139. 
Arvaniti, O.S., Stasinakis, A.S., 2015. Review on the occurrence, fate and removal of 
perfluorinated compounds during wastewater treatment. Sci. Total Environ. 524-525, 81-92. 
Bailey, B.L., Smith, L.J.D., Blowes, D.W., Ptacek, C.J., Smith, L., Sego, D.C., 2013. The Diavik 
Waste Rock Project: Persistence of contaminants from blasting agents in waste rock effluent. 
Appl. Geochem. 36, 256-270. 
Barndõk, H., Peláez, M., Han, C., Platten Iii, W.E., Campo, P., Hermosilla, D., Blanco, A., 
Dionysiou, D.D., 2013. Photocatalytic degradation of contaminants of concern with composite 
NF-TiO2 films under visible and solar light. Environ. Sci. Pollut. R. 20(6), 3582-3591. 
Barnes, K.K., Kolpin, D.W., Furlong, E.T., Zaugg, S.D., Meyer, M.T., Barber, L.B., 2008. A 
national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the 
United States - I) Groundwater. Sci. Total Environ. 402(2-3), 192-200. 
Barry, V., Winquist, A., Steenland, K., 2013. Perfluorooctanoic acid (PFOA) exposures and 
incident cancers among adults living near a chemical plant. Environ. Health Perspect. 121(11-12), 
1313-1318. 
Bautitz, I.R., Velosa, A.C., Nogueira, R.F.P., 2012. Zero valent iron mediated degradation of the 
pharmaceutical diazepam. Chemosphere. 88(6), 688-692. 
Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J.L., Harris, E., Robinson, B., Sizmur, T., 2011. 
A review of biochars' potential role in the remediation, revegetation and restoration of 
contaminated soils. Environ. Pollut. 159(12), 3269-3282. 
Bell, L.S., Devlin, J.F., Gillham, R.W., Binning, P.J., 2003. A sequential zero valent iron and 
aerobic biodegradation treatment system for nitrobenzene. J. Contam. Hydrol. 66(3-4), 201-217. 
Beltrán, F.J., Aguinaco, A., García-Araya, J.F., 2009. Mechanism and kinetics of 
sulfamethoxazole photocatalytic ozonation in water. Water Res. 43(5), 1359-1369. 
Bendz, D., Paxéus, N.A., Ginn, T.R., Loge, F.J., 2005. Occurrence and fate of pharmaceutically 
active compounds in the environment, a case study: Höje River in Sweden. J. Hazard. Mater. 
122(3), 195-204. 
Benner, S.G., Blowes, D.W., Ptacek, C.J., 1997. A full-scale porous reactive wall for prevention 
of acid mine drainage. Ground Water Monit. R. 17(4), 99-107. 
Benotti, M.J., Brownawell, B.J., 2009. Microbial degradation of pharmaceuticals in estuarine and 
coastal seawater. Environ. Pollut. 157(3), 994-1002. 
Bertelkamp, C., Reungoat, J., Cornelissen, E.R., Singhal, N., Reynisson, J., Cabo, A.J., van der 
Hoek, J.P., Verliefde, A.R.D., 2014. Sorption and biodegradation of organic micropollutants 
during river bank filtration: A laboratory column study. Water Res. 52, 231-241. 
Blowes, D.W., Ptacek, C.J., Benner, S.G., McRae, C.W.T., Bennett, T.A., Puls, R.W., 2000. 
Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 45(1-



239 
 

2), 123-137. 
Blowes, D.W., Ptacek, C.J., Cherry, J.A., Gillham, R.W., Robertson, W.D. 1995. Passive 
remediation of groundwater using in situ treatment curtains. Geotech. Sp.46/2. pp. 1588-1607. 
Blowes, D.W., Ptacek, C.J., Jambor, J.L., 1997. In-situ remediation of Cr(VI)-contaminated 
groundwater using permeable reactive walls: Laboratory studies. Environ. Sci. Technol. 31(12), 
3348-3357. 
Blowes, D.W., Reardon, E.J., Jambor, J.L., Cherry, J.A., 1991. The formation and potential 
importance of cemented layers in inactive sulfide mine tailings. Geochim. Cosmochim. Acta. 
55(4), 965-978. 
Blowes, D.W., Robertson, W.D., Ptacek, C.J., Merkley, C., 1994. Removal of agricultural nitrate 
from tile-drainage effluent water using in-line bioreactors. J. Contam. Hydrol. 15(3), 207-221. 
Bo, L., Shengen, Z., Chang, C.C., Zhanfeng, D., Hongxiang, L., 2015. Emerging pollutants-Part 
II: Treatment. Water Environ. Res. 87(10), 1873-1900. 
Borden, R.C., 2007. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an 
emulsified oil barrier. J. Contam. Hydrol. 94(1-2), 13-33. 
Boscá, F., Marín, M.L., Miranda, M.A., 2001. Photoreactivity of the nonsteroidal anti-
inflammatory 2-arylpropionic acids with photosensitizing side effects. Photochem. Photobiol. 
74(5), 637-655. 
Boyd, G.R., Reemtsma, H., Grimm, D.A., Mitra, S., 2003. Pharmaceuticals and personal care 
products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci. 
Total Environ. 311(1-3), 135-149. 
Brown, J.C., Snoeyink, V.L., Kirisits, M.J., 2002. Abiotic and biotic perchlorate removal in an 
activated carbon filter. Am Water Works Assoc. 94(2), 70-79. 
Bueno, M.J.M., Gomez, M.J., Herrera, S., Hernando, M.D., Agüera, A., Fernández-Alba, A.R., 
2012. Occurrence and persistence of organic emerging contaminants and priority pollutants in 
five sewage treatment plants of Spain: Two years pilot survey monitoring. Environ. Pollut. 164, 
267-273. 
Buerge, I.J., Buser, H.R., Kahle, M., Müller, M.D., Poiger, T., 2009. Ubiquitous occurrence of 
the artificial sweetener acesulfame in the aquatic environment: An ideal chemical marker of 
domestic wastewater in groundwater. Environ. Sci. Technol. 43(12), 4381-4385. 
Buerge, I.J., Keller, M., Buser, H.R., Müller, M.D., Poiger, T., 2011. Saccharin and other 
artificial sweeteners in soils: Estimated inputs from agriculture and households, degradation, and 
leaching to groundwater. Environ. Sci. Technol. 45(2), 615-621. 
Buerge, I.J., Poiger, T., Müller, M.D., Buser, H.R., 2003. Caffeine, an anthropogenic marker for 
wastewater contamination of surface waters. Environ. Sci. Technol. 37(4), 691-700. 
California Department of Health Services (CDHS), 2004. Perchlorate in california drinking water. 
Caliman, F.A., Gavrilescu, M., 2009. Pharmaceuticals, personal care products and endocrine 
disrupting agents in the environment - A review. Clean - Soil, Air, Water. 37(4-5), 277-303. 
Calisto, V., Domingues, M.R.M., Esteves, V.I., 2011. Photodegradation of psychiatric 
pharmaceuticals in aquatic environments - Kinetics and photodegradation products. Water Res. 
45(18), 6097-6106. 
Calza, P., Sakkas, V.A., Medana, C., Vlachou, A.D., Dal Bello, F., Albanis, T.A., 2013. 
Chemometric assessment and investigation of mechanism involved in photo-Fenton and TiO2 
photocatalytic degradation of the artificial sweetener sucralose in aqueous media. Appl. Catal. , 
B. 129, 71-79. 
Cantrell, K.J., Kaplan, D.I., Wietsma, T.W., 1995. Zero-valent iron for the in situ remediation of 



240 
 

selected metals in groundwater. J. Hazard. Mater. 42(2), 201-212. 
Carrara, C., Ptacek, C.J., Robertson, W.D., Blowes, D.W., Moncur, M.C., Sverko, E., Backus, S., 
2008. Fate of pharmaceutical and trace organic compounds in three septic system plumes, 
Ontario, Canada. Environ. Sci. Technol. 42(8), 2805-2811. 
Chefetz, B., Mualem, T., Ben-Ari, J., 2008. Sorption and mobility of pharmaceutical compounds 
in soil irrigated with reclaimed wastewater. Chemosphere. 73(8), 1335-1343. 
Chen, B., Chen, Z., Lv, S., 2011a. A novel magnetic biochar efficiently sorbs organic pollutants 
and phosphate. Bioresour. Technol. 102(2), 716-723. 
Chen, W., Cannon, F.S., Rangel-Mendez, J.R., 2005. Ammonia-tailoring of GAC to enhance 
perchlorate removal. II: Perchlorate adsorption. Carbon. 43(3), 581-590. 
Chen, X., Xia, X., Wang, X., Qiao, J., Chen, H., 2011b. A comparative study on sorption of 
perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere. 83(10), 
1313-1319. 
Cheng, W., Tang, K., Qi, Y., Sheng, J., Liu, Z., 2010. One-step synthesis of superparamagnetic 
monodisperse porous Fe3O4 hollow and core-shell spheres. J. Mater. Chem. 20(9), 1799-1805. 
Cho, I.H., 2011. Degradation and reduction of acute toxicity of environmentally persistent 
perfluorooctanoic acid (PFOA) using VUV photolysis and TiO2 photocatalysis in acidic and 
basic aqueous solutions. Toxicol. Environ. Chem. 93(5), 925-940. 
Choina, J., Duwensee, H., Flechsig, G.U., Kosslick, H., Morawski, A.W., Tuan, V.A., Schulz, A., 
2010. Removal of hazardous pharmaceutical from water by photocatalytic treatment. Cent. Eur. J. 
Chem. 8(6), 1288-1297. 
Chong, M.N., Jin, B., Chow, C.W.K., Saint, C., 2010. Recent developments in photocatalytic 
water treatment technology: A review. Water Res. 44(10), 2997-3027. 
Chuang, L.C., Luo, C.H., Huang, S.W., Wu, Y.C., Huang, Y.C., 2011. Photocatalytic degradation 
mechanism and kinetics of caffeine in aqueous suspension of nano-TiO2. Adv. Mat. Res. 214, 97-
102. 
Chung, J., Shin, S., Oh, J., 2010. Influence of nitrate, sulfate and operational parameters on the 
bioreduction of perchlorate using an up-flow packed bed reactor at high salinity. Environ. 
Technol. 31(6), 693-704. 
Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., Kroiss, H., 2005. Removal of 
selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane 
bioreactor and conventional wastewater treatment plants. Water Res. 39(19), 4797-4807. 
Clara, M., Strenn, B., Kreuzinger, N., 2004. Carbamazepine as a possible anthropogenic marker 
in the aquatic environment: Investigations on the behaviour of carbamazepine in wastewater 
treatment and during groundwater infiltration. Water Res. 38(4), 947-954. 
Coiffard, C.A.C., Coiffard, L.J.M., De Roeck-Holtzhauer, Y.M.R., 1999. Photodegradation 
kinetics of acesulfame-K solutions under UV light: Effect of pH. Eur. Food Res. Technol. 208(1), 
6-9. 
Conder, J.M., Hoke, R.A., De Wolf, W., Russell, M.H., Buck, R.C., 2008. Are PFCAs 
bioaccumulative? A critical review and comparison with regulatory criteria and persistent 
lipophilic compounds. Environ. Sci. Technol. 42(4), 995-1003. 
Conkle, J.L., White, J.R., Metcalfe, C.D., 2008. Reduction of pharmaceutically active 
compounds by a lagoon wetland wastewater treatment system in Southeast Louisiana. 
Chemosphere. 73(11), 1741-1748. 
Cooke, S., 2006. Water quality in the Grand River: a summary of current conditions (2000–2004) 
and long term trends. Grand River Conservation Authority, Cambridge, Ontario. 



241 
 

Crawford, R.J., Harding, I.H., Mainwaring, D.E., 1993. Adsorption and coprecipitation of 
multiple heavy metal ions onto the hydrated oxides of iron and chromium. Langmuir. 9(11), 
3057-3062. 
Cundy, A.B., Hopkinson, L., Whitby, R.L.D., 2008. Use of iron-based technologies in 
contaminated land and groundwater remediation: A review. Sci. Total Environ. 400(1-3), 42-51. 
D'Eon, J.C., Crozier, P.W., Furdui, V.I., Reiner, E.J., Libelo, E.L., Mabury, S.A., 2009. 
Perfluorinated phosphonic acids in Canadian surface waters and wastewater treatment plant 
effluent: Discovery of a new class of perfluorinated acids. Environ. Toxicol. Chem. 28(10), 
2101-2107. 
Dalmázio, I., Santos, L.S., Lopes, R.P., Eberlin, M.N., Augusti, R., 2005. Advanced oxidation of 
caffeine in water: On-line and real-time monitoring by electrospray ionization mass spectrometry. 
Environ. Sci. Technol. 39(16), 5982-5988. 
Daughton, C.G., 2005. "Emerging" chemicals as pollutants in the environment: A 21st century 
perspective. Renewable Resour. J. 23(4), 6-23. 
De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., De Alencastro, L.F., Pulgarín, C., 2012. 
Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic 
wastewater effluent previously treated by activated sludge. Water Res. 46(6), 1947-1957. 
Deng, S., Zhang, Q., Nie, Y., Wei, H., Wang, B., Huang, J., Yu, G., Xing, B., 2012. Sorption 
mechanisms of perfluorinated compounds on carbon nanotubes. Environ. Pollut. 168, 138-144. 
Devlin, J.F., Klausen, J., Schwarzenbach, R.P., 1998. Kinetics of nitroaromatic reduction on 
granular iron in recirculating batch experiments. Environ. Sci. Technol. 32(13), 1941-1947. 
Dimitrakopoulou, D., Rethemiotaki, I., Frontistis, Z., Xekoukoulotakis, N.P., Venieri, D., 
Mantzavinos, D., 2012. Degradation, mineralization and antibiotic inactivation of amoxicillin by 
UV-A/TiO2 photocatalysis. J. Environ. Manage. 98(1), 168-174. 
Ding, G., Peijnenburg, W.J.G.M., 2013. Physicochemical properties and aquatic toxicity of poly- 
and perfluorinated compounds. Crit. Rev. Environ. Sci. Technol. 43(6), 598-678. 
Doll, T.E., Frimmel, F.H., 2004. Kinetic study of photocatalytic degradation of carbamazepine, 
clofibric acid, iomeprol and iopromide assisted by different TiO2 materials - Determination of 
intermediates and reaction pathways. Water Res. 38(4), 955-964. 
Doll, T.E., Frimmel, F.H., 2005. Removal of selected persistent organic pollutants by 
heterogeneous photocatalysis in water. Catal. Today. 101(3-4 SPEC. ISS.), 195-202. 
Du, J., Lai, X., Yang, N., Zhai, J., Kisailus, D., Su, F., Wang, D., Jiang, L., 2011. Hierarchically 
ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced 
charge recombination, and their enhanced photocatalytic activities. ACS Nano. 5(1), 590-596. 
Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., Yu, G., 2014. Adsorption behavior and 
mechanism of perfluorinated compounds on various adsorbents-A review. J. Hazard. Mater. 274, 
443-454. 
Durán-álvarez, J.C., Prado-Pano, B., Jiménez-Cisneros, B., 2012. Sorption and desorption of 
carbamazepine, naproxen and triclosan in a soil irrigated with raw wastewater: Estimation of the 
sorption parameters by considering the initial mass of the compounds in the soil. Chemosphere. 
88(1), 84-90. 
Ek, M., Baresel, C., Magnér, J., Bergstromሷ, R., Harding, M., 2014. Activated carbon for the 
removal of pharmaceutical residues from treated wastewater. Water Sci. Technol. 69(11), 2372-
2380. 
El-Bassat, R.A., Touliabah, H.E., Harisa, G.I., 2012. Toxicity of four pharmaceuticals from 
different classes to isolated plankton species. Afr. J. Aquat. Sci. 37(1), 71-80. 



242 
 

Elsner, M., Schwarzenbach, R.P., Haderlein, S.B., 2004. Reactivity of Fe(II)-bearing minerals 
toward reductive transformation of organic contaminants. Environ. Sci. Technol. 38(3), 799-807. 
Environment Canada, 2013. Hydrometric Data. Environment Canada, Water Survey of Canada. 
Evans, P.J., Trute, M.M., 2006. In situ bioremediation of nitrate and perchlorate in vadose zone 
soil for groundwater protection using gaseous electron donor injection technology. Water 
Environ. Res. 78(13), 2436-2446. 
Farré, M.l., Pérez, S., Kantiani, L., Barceló, D., 2008. Fate and toxicity of emerging pollutants, 
their metabolites and transformation products in the aquatic environment. TrAC - Trends Anal. 
Chem. 27(11), 991-1007. 
Feng, X., Guo, H., Patel, K., Zhou, H., Lou, X., 2014. High performance, recoverable Fe3O4-
ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chem. Eng. J. 244, 327-
334. 
Fent, K., Weston, A.A., Caminada, D., 2006. Ecotoxicology of human pharmaceuticals. Aquat. 
Toxicol. 76(2), 122-159. 
Ferrer, I., Thurman, E.M., 2010. Analysis of sucralose and other sweeteners in water and 
beverage samples by liquid chromatography/time-of-flight mass spectrometry. J. Chromatogr. A. 
1217(25), 4127-4134. 
Focazio, M.J., Kolpin, D.W., Barnes, K.K., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Barber, 
L.B., Thurman, M.E., 2008. A national reconnaissance for pharmaceuticals and other organic 
wastewater contaminants in the United States - II) Untreated drinking water sources. Sci. Total 
Environ. 402(2-3), 201-216. 
Fono, L.J., Kolodziej, E.P., Sedlak, D.L., 2006. Attenuation of wastewater-derived contaminants 
in an effluent-dominated river. Environ. Sci. Technol. 40(23), 7257-7262. 
Ford, K.L., 2003. Passive treatment systems for acid mine drainage. Bureau of Land 
Management, National Science and Technology Center, Technical Note 409. 
Fujii, S., Polprasert, C., Tanaka, S., Lien, N.P.H., Qiu, Y., 2007. New POPs in the water 
environment: Distribution, bioaccumulation and treatment of perfluorinated compounds - A 
review paper. J. Water Supply Res. T. - AQUA. 56(5), 313-326. 
Fukahori, S., Fujiwara, T., Ito, R., Funamizu, N., 2012. Photocatalytic decomposition of 
crotamiton over aqueous TiO2 suspensions: Determination of intermediates and the reaction 
pathway. Chemosphere. 89(3), 213-220. 
Furdui, V.I., Helm, P.A., Crozier, P.W., Lucaciu, C., Reiner, E.J., Marvin, C.H., Whittle, D.M., 
Mabury, S.A., Tomy, G.T., 2008. Temporal trends of perfluoroalkyl compounds with isomer 
analysis in lake trout from Lake Ontario (1979-2004). Environ. Sci. Technol. 42(13), 4739-4744. 
Gagnon, C., Lajeunesse, A., Cejka, P., Gagné, F., Hausler, R., 2008. Degradation of selected 
acidic and neutral pharmaceutical products in a primary-treated wastewater by disinfection 
processes. Ozone Sci. Eng. 30(5), 387-392. 
Gal, H., Ronen, Z., Weisbrod, N., Dahan, O., Nativ, R., 2008. Perchlorate biodegradation in 
contaminated soils and the deep unsaturated zone. Soil Biol. and Biochem. 40(7), 1751-1757. 
Gan, Z., Sun, H., Wang, R., Hu, H., Zhang, P., Ren, X., 2014. Transformation of acesulfame in 
water under natural sunlight: Joint effect of photolysis and biodegradation. Water Res. 64, 113-
122. 
Ganzenko, O., Oturan, N., Huguenot, D., Van Hullebusch, E.D., Esposito, G., Oturan, M.A., 
2015. Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process 
using BDD anode: Effects of operating parameters on removal efficiency. Sep.Purif, Technol. 
156, 987-995. 



243 
 

Gao, X., Chorover, J., 2012. Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic 
acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy.  Envir. Chem. 
9(2), 148-157. 
Gaya, U.I., Abdullah, A.H., 2008. Heterogeneous photocatalytic degradation of organic 
contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. 
Photochem. Photobiol. C: Photochem. Rev. 9(1), 1-12. 
Ghatak, H.R., 2014. Advanced oxidation processes for the treatment of biorecalcitrant organics 
in wastewater. Crit. Rev. Environ. Sci. Technol. 44(11), 1167-1219. 
Giblin, T., Frankenberger W.T, Jr., 2001. Perchlorate and nitrate reductase activity in the 
perchlorate-respiring bacterium perclace. Microbiol. Res. 156(4), 311-315. 
Giblin, T.L., Herman, D.C., Deshusses, M.A., Frankenberger Jr., W.T., 2000. Removal of 
perchlorate in ground water with a flow-through bioreactor. J. Environ. Qual. 29(2), 578-583. 
Giesy, J.P., Kannan, K., 2001. Global distribution of perfluorooctane sulfonate in wildlife. 
Environ. Sci. Technol. 35(7), 1339-1342. 
Gillham, R.W., O'Hannesin, S.F., 1994. Enhanced degradation of halogenated aliphatics by zero-
valent iron. Groundwater. 32(6), 958-967. 
Gillis, P.L., McInnis, R., Salerno, J., de Solla, S.R., Servos, M.R., Leonard, E.M., 2017. 
Freshwater mussels in an urban watershed: Impacts of anthropogenic inputs and habitat 
alterations on populations. Sci. Total Environ. 574, 671-679. 
González, S., López-Roldán, R., Cortina, J.L., 2012. Presence and biological effects of emerging 
contaminants in Llobregat River basin: A review. Environ. Pollut. 161, 83-92. 
Goudarzi, H., Nakajima, S., Ikeno, T., Sasaki, S., Kobayashi, S., Miyashita, C., Ito, S., Araki, A., 
Nakazawa, H., Kishi, R., 2016. Prenatal exposure to perfluorinated chemicals and 
neurodevelopment in early infancy: The Hokkaido study. Sci. Total Environ. 541, 1002-1010. 
Grover, D.P., Zhou, J.L., Frickers, P.E., Readman, J.W., 2011. Improved removal of estrogenic 
and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: 
Impact on receiving river water. J. Hazard. Mater. 185(2-3), 1005-1011. 
Guan, X., Zhou, J., Ma, N., Chen, X., Gao, J., Zhang, R., 2015. Studies on modified conditions 
of biochar and the mechanism for fluoride removal. Desalin. Water Treat. 55(2), 440-447. 
Guilbaud, R., White, M.L., Poulton, S.W., 2013. Surface charge and growth of sulphate and 
carbonate green rust in aqueous media. Geochim. Cosmochim. Acta. 108, 141-153. 
Gullick, R.W., Lechevallier, M.W., Barhorst, T.S., 2001. Occurrence of perchlorate in drinking 
water sources. J. Am. Water Works Ass. 93(1), 66-77. 
Han, L., Xue, S., Zhao, S., Yan, J., Qian, L., Chen, M., 2015. Biochar supported nanoscale iron 
particles for the efficient removal of methyl orange dye in aqueous solutions. PLoS ONE. 10(7). 
Harraz, F.A., Mohamed, R.M., Rashad, M.M., Wang, Y.C., Sigmund, W., 2014. Magnetic 
nanocomposite based on titania-silica/cobalt ferrite for photocatalytic degradation of methylene 
blue dye. Ceram. Int. 40(1 PART A), 375-384. 
Hatzinger, P.B., Greene, M.R., Frisch, S., Togna, A.P., Manning, J., Guarini, W.J. 2000. 
Biological Treatment of Perchlorate-contaminated Groundwater Using Fluidized Bed Reactors. 
2nd International Conference on Remediation of Chlorinated and Recalcitrant Compounds, May 
22 - 25, 2000, Monterey, California. 
Health Canada, 2005. Perchlorate and human health. Available online: http://www.hc-
sc.gc.ca/ewh-semt/water-eau/drink-potab/perchlorate_e.html. 
Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic 
environment: A review of recent research data. Toxicology Letters. 131(1-2), 5-17. 



244 
 

Her, N., Kim, J., Yoon, Y., 2010. Perchlorate in dairy milk and milk-based powdered infant 
formula in South Korea. Chemosphere. 81(6), 732-737. 
Higgins, C.P., Luthy, R.G., 2006. Sorption of perfluorinated surfactants on sediments. Environ. 
Sci. Technol. 40(23), 7251-7256. 
Hirsch, R., Ternes, T., Haberer, K., Kratz, K.L., 1999. Occurrence of antibiotics in the aquatic 
environment. Sci. Total Environ. 225(1-2), 109-118. 
Hori, H., Hayakawa, E., Einaga, H., Kutsuna, S., Koike, K., Ibusuki, T., Kiatagawa, H., Arakawa, 
R., 2004. Decomposition of environmentally persistent perfluorooctanoic acid in water by 
photochemical approaches. Environ. Sci. Technol. 38(22), 6118-6124. 
Hori, H., Nagaoka, Y., Murayama, M., Kutsuna, S., 2008. Efficient decomposition of 
perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environ. Sci. 
Technol. 42(19), 7438-7443. 
Hori, H., Nagaoka, Y., Yamamoto, A., Sano, T., Yamashita, N., Taniyasu, S., Kutsuna, S., Osaka, 
I., Arakawa, R., 2006. Efficient decomposition of environmentally persistent 
perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. 
Environ. Sci. Technol. 40(3), 1049-1054. 
Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S., Kiatagawa, H., 
Arakawa, R., 2005. Efficient decomposition of environmentally persistent perfluorocarboxylic 
acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 39(7), 2383-2388. 
Hori, H., Yamamoto, A., Koike, K., Kutsuna, S., Osaka, I., Arakawa, R., 2007. Photochemical 
decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water 
mediated by iron(II)/(III) redox reactions. Chemosphere. 68(3), 572-578. 
Houde, M., De Silva, A.O., Muir, D.C.G., Letcher, R.J., 2011. Monitoring of perfluorinated 
compounds in aquatic biota: An updated review. Environ. Sci. Technol. 45(19), 7962-7973. 
Houtz, E.F., Sedlak, D.L., 2012. Oxidative conversion as a means of detecting precursors to 
perfluoroalkyl acids in urban runoff. Environ. Sci. Technol. 46(17), 9342-9349. 
Hsiao, I.L., Huang, Y.J., 2011. Effects of various physicochemical characteristics on the 
toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci. Total Environ. 
409(7), 1219-1228. 
Hu, L., Flanders, P.M., Miller, P.L., Strathmann, T.J., 2007. Oxidation of sulfamethoxazole and 
related antimicrobial agents by TiO2 photocatalysis. Water Res. 41(12), 2612-2626. 
Huang, Q., Yu, Y., Tang, C., Zhang, K., Cui, J., Peng, X., 2011. Occurrence and behavior of non-
steroidal anti-inflammatory drugs and lipid regulators in wastewater and urban river water of the 
Pearl River Delta, South China. J. Environ. Monit. 13(4), 855-863. 
Hund-Rinke, K., Simon, M., 2006. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) 
on algae and daphnids. Environ. Sci. Pollut. R. 13(4), 225-232. 
Hunter, W.J., 2002. Bioremediation of chlorate or perchlorate contaminated water using 
permeable barriers containing vegetable oil. Curr. Microbiol. 45(4), 287-292. 
Hurley, K.D., Shapley, J.R., 2007. Efficient heterogeneous catalytic reduction of perchlorate in 
water. Environ. Sci. Technol. 41(6), 2044-2049. 
Hurtado, C., Cañameras, N., Domínguez, C., Price, G.W., Comas, J., Bayona, J.M., 2016. Effect 
of soil biochar concentration on the mitigation of emerging organic contaminant uptake in lettuce. 
J. Hazard. Mater. 323, Part A, 386–393. 
Hurum, D.C., Agrios, A.G., Gray, K.A., Rajh, T., Thurnauer, M.C., 2003. Explaining the 
enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B. 
107(19), 4545-4549. 



245 
 

Iannece, P., Motta, O., Tedesco, R., Carotenuto, M., Proto, A., 2013. Determination of 
perchlorate in bottled water from Italy. Water (Switzerland). 5(2), 767-779. 
Inyang, M., Dickenson, E., 2015. The potential role of biochar in the removal of organic and 
microbial contaminants from potable and reuse water: A review. Chemosphere. 134, 232-240. 
Ismail, A.A., Bahnemann, D.W., 2011. Mesoporous titania photocatalysts: Preparation, 
characterization and reaction mechanisms. J. Mater. Chem. 21(32), 11686-11707. 
Izbicki, J.A., Teague, N.F., Hatzinger, P.B., Böhlke, J.K., Sturchio, N.C., 2015. Groundwater 
movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA). 
Hydrogeol. J. 23(3), 467-491. 
Jacobs, L.E., Fimmen, R.L., Chin, Y.P., Mash, H.E., Weavers, L.K., 2011. Fulvic acid mediated 
photolysis of ibuprofen in water. Water Res. 45(15), 4449-4458. 
James, C.A., Miller-Schulze, J.P., Ultican, S., Gipe, A.D., Baker, J.E., 2016. Evaluating 
Contaminants of Emerging Concern as tracers of wastewater from septic systems. Water Res. 
101, 241-251. 
Jamieson-Hanes, J.H., 2012. Characterizing Chromium Isotope Fractionation During Reduction 
of Cr(VI): Batch and Column Experiments. (Master of Science). University of Waterloo, 
Waterloo, Ontario, Canada. 
Jamieson-Hanes, J.H., Lentz, A.M., Amos, R.T., Ptacek, C.J., Blowes, D.W., 2014. Examination 
of Cr(VI) treatment by zero-valent iron using in situ, real-time X-ray absorption spectroscopy 
and Cr isotope measurements. Geochim. Cosmochim. Acta. 142, 299-313. 
Jeen, S.W., Gillham, R.W., Blowes, D.W., 2006. Effects of carbonate precipitates on long-term 
performance of granular iron for reductive dechlorination of TCE. Environ. Sci. Technol. 40(20), 
6432-6437. 
Jeen, S.W., Jambor, J.L., Blowes, D.W., Gillhamt, R.W., 2007. Precipitates on granular iron in 
solutions containing calcium carbonate with trichloroethene and hexavalent chromium. Environ. 
Sci. Technol. 41(6), 1989-1994. 
Jeen, S.W., Yang, Y., Gui, L., Gillham, R.W., 2013. Treatment of trichloroethene and hexavalent 
chromium by granular iron in the presence of dissolved CaCO3. J. Contam. Hydrol. 144, 108-121. 
Jelic, A., Michael, I., Achilleos, A., Hapeshi, E., Lambropoulou, D., Perez, S., Petrovic, M., 
Fatta-Kassinos, D., Barcelo, D., 2013. Transformation products and reaction pathways of 
carbamazepine during photocatalytic and sonophotocatalytic treatment. J. Hazard. Mater. 263, 
177-186. 
Johnson, D.B., Hallberg, K.B., 2005. Acid mine drainage remediation options: A review. Sci. 
Total Environ. 338(1-2 SPEC. ISS.), 3-14. 
Johnson, T.L., Scherer, M.M., Tratnyek, P.G., 1996. Kinetics of halogenated organic compound 
degradation by iron metal. Environ. Sci. Technol. 30(8), 2634-2640. 
Jones, O.A., Lester, J.N., Voulvoulis, N., 2005. Pharmaceuticals: A threat to drinking water? 
Trends Biotechnol. 23(4), 163-167. 
José, H.J., Gebhardt, W., Moreira, R.F.P.M., Pinnekamp, J., Schröder, H.F., 2010. Advanced 
oxidation processes for the elimination of drugs resisting biological membrane treatment. Ozone 
Sci. Eng. 32(5), 305-312. 
Joss, A., Keller, E., Alder, A.C., Göbel, A., McArdell, C.S., Ternes, T., Siegrist, H., 2005. 
Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 
39(14), 3139-3152. 
Jung, C., Boateng, L.K., Flora, J.R.V., Oh, J., Braswell, M.C., Son, A., Yoon, Y., 2015a. 
Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: 



246 
 

Experimental and molecular modeling study. Chem. Eng. J. 264, 1-9. 
Jung, C., Oh, J., Yoon, Y., 2015b. Removal of acetaminophen and naproxen by combined 
coagulation and adsorption using biochar: Influence of combined sewer overflow components. 
Environ. Sci. Pollut. R. 22(13), 10058-10069. 
Jung, C., Park, J., Lim, K.H., Park, S., Heo, J., Her, N., Oh, J., Yun, S., Yoon, Y., 2013. 
Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated 
biochars. J. Hazard. Mater. 263, 702-710. 
Jung, C., Son, A., Her, N., Zoh, K.D., Cho, J., Yoon, Y., 2015c. Removal of endocrine disrupting 
compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A 
review. J. Ind. Eng. Chem. 27, 1-11. 
Jurado, A., Mastroianni, N., Vàzquez-Suñé, E., Carrera, J., Tubau, I., Pujades, E., Postigo, C., de 
Alda, M.L., Barceló, D., 2012. Drugs of abuse in urban groundwater. A case study: Barcelona. 
Sci. Total Environ. 424, 280-288. 
Kaniou, S., Pitarakis, K., Barlagianni, I., Poulios, I., 2005. Photocatalytic oxidation of 
sulfamethazine. Chemosphere. 60(3), 372-380. 
Karoyo, A.H., Wilson, L.D., 2013. Tunable macromolecular-based materials for the adsorption of 
perfluorooctanoic and octanoic acid anions. J. Colloid Interface Sci. 402, 196-203. 
Karthikeyan, K.G., Meyer, M.T., 2006. Occurrence of antibiotics in wastewater treatment 
facilities in Wisconsin, USA. Sci. Total Environ. 361(1-3), 196-207. 
Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J., 2009. Illicit drugs and pharmaceuticals in 
the environment - Forensic applications of environmental data, Part 2: Pharmaceuticals as 
chemical markers of faecal water contamination. Environ. Pollut. 157(6), 1778-1786. 
Keen, O.S., Baik, S., Linden, K.G., Aga, D.S., Love, N.G., 2012. Enhanced biodegradation of 
carbamazepine after UV/H2O2 advanced oxidation. Environ. Sci. Technol. 46(11), 6222-6227. 
Keen, O.S., Linden, K.G., 2013. Re-engineering an artificial sweetener: Transforming sucralose 
residuals in water via advanced oxidation. Environ. Sci. Technol. 47(13), 6799-6805. 
Khetan, S.K., Collins, T.J., 2007. Human pharmaceuticals in the aquatic environment: A 
challenge to green chemisty. Chem. Rev. 107(6), 2319-2364. 
Kim, E., Jung, C., Han, J., Her, N., Park, C.M., Jang, M., Son, A., Yoon, Y., 2016. Sorptive 
removal of selected emerging contaminants using biochar in aqueous solution. J. Ind. Eng. Chem. 
36, 364-371. 
Kim, H.K., Kim, J.H., Lee, B.C., Yu, S.J., Kim, H.J., 2009a. Occurrence of perchlorate in 
drinking water sources in Korea. Wa. Sci. Technol. 9, 133-139. 
Kim, I., Tanaka, H., 2009. Photodegradation characteristics of PPCPs in water with UV treatment. 
Environ. Int. 35(5), 793-802. 
Kim, I., Yamashita, N., Tanaka, H., 2009b. Performance of UV and UV/H2O2 processes for the 
removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. 
J. Hazard. Mater. 166(2-3), 1134-1140. 
Kim, I.H., Yamashita, N., Kato, Y., Tanaka, H., 2009c. Discussion on the application of 
UV/H2O2,O3 and O3/UV processes as technologies for sewage reuse considering the removal of 
pharmaceuticals and personal care products. Water Sci. Technol. 59, 945-955. 
Kissa, E., 2001. Fluorinated surfactants and repellents. CRC Press. 
Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., 
McLaughlin, M.J., Lead, J.R., 2008. Nanomaterials in the environment: Behavior, fate, 
bioavailability, and effects. Environ. Toxicol. Chem. 27(9), 1825-1851. 
Kleinmann, R.L.P., Hedin, R.S., 1993. Treat mine water using passive methods. Pollut. Eng. 



247 
 

25(13), 20-22. 
Kleywegt, S., Pileggi, V., Yang, P., Hao, C., Zhao, X., Rocks, C., Thach, S., Cheung, P., 
Whitehead, B., 2011. Pharmaceuticals, hormones and bisphenol A in untreated source and 
finished drinking water in Ontario, Canada - Occurrence and treatment efficiency. Sci. Total 
Environ. 409(8), 1481-1488. 
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, 
H.T., 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. 
streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 36(6), 1202-1211. 
König, A., Weidauer, C., Seiwert, B., Reemtsma, T., Unger, T., Jekel, M., 2016. Reductive 
transformation of carbamazepine by abiotic and biotic processes. Water Res. 101, 272-280. 
Konstantinou, I.K., Albanis, T.A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in 
aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. , B. 49(1), 1-14. 
Kosmulski, M., 2009. pH-dependent surface charging and points of zero charge. IV. Update and 
new approach. J. Colloid Interface Sci. 337(2), 439-448. 
Kotthoff, M., Müller, J., Jürling, H., Schlummer, M., Fiedler, D., 2015. Perfluoroalkyl and 
polyfluoroalkyl substances in consumer products. Environ. Sci. Pollut. R. 22(19), 14546-14559. 
Kroger, M., Meister, K., Kava, R., 2006. Low-calorie sweeteners and other sugar substitutes: A 
review of the safety issues. Compr. Rev. Food Sci. Food Saf. 5(2), 35-47. 
Kumagai, Y., Lin, L.Y., Schmitz, D.A., Cho, A.K., 1991. Hydroxyl radical mediated 
demethylenation of (methylenedioxy)phenyl compounds. Chem. Res. Toxicol. 4(3), 330-334. 
Kupryianchyk, D., Hale, S.E., Breedveld, G.D., Cornelissen, G., 2016. Treatment of sites 
contaminated with perfluorinated compounds using biochar amendment. Chemosphere. 142, 35-
40. 
Kurissery, S., Kanavillil, N., Verenitch, S., Mazumder, A., 2012. Caffeine as an anthropogenic 
marker of domestic waste: A study from Lake Simcoe watershed. Ecol. Indic. 23, 501-508. 
Lai, F.Y., Bruno, R., Leung, H.W., Thai, P.K., Ort, C., Carter, S., Thompson, K., Lam, P.K.S., 
Mueller, J.F., 2013. Estimating daily and diurnal variations of illicit drug use in Hong Kong: A 
pilot study of using wastewater analysis in an Asian metropolitan city. Forensic Sci. Int. 233(1-3), 
126-132. 
Lam, M.W., Mabury, S.A., 2005. Photodegradation of the pharmaceuticals atorvastatin, 
carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquat. Sci. 67(2), 177-188. 
Lange, F.T., Scheurer, M., Brauch, H.J., 2012. Artificial sweeteners-A recently recognized class 
of emerging environmental contaminants: A review. Anal. Bioanal. Chem. 403(9), 2503-2518. 
Lapworth, D.J., Baran, N., Stuart, M.E., Ward, R.S., 2012. Emerging organic contaminants in 
groundwater: A review of sources, fate and occurrence. Environ. Pollut. 163, 287-303. 
Larcher, S., Yargeau, V., 2012. Biodegradation of sulfamethoxazole: Current knowledge and 
perspectives. Appl. Microbiol. Biot. 96(2), 309-318. 
Lavine, B.K., Auslander, G., Ritter, J., 2001. Polarographic studies of zero valent iron as a 
reductant for remediation of nitroaromatics in the environment. Microchem. J. 70(2), 69-83. 
Lee, J.-W., Kong, S., Kim, W.-S., Kim, J., 2007. Preparation and characterization of SiO2/TiO2 
core-shell particles with controlled shell thickness. Mater. Chem. Phys. 106(1), 39-44. 
Lee, T.R., Wilkin, R.T., 2010. Iron hydroxy carbonate formation in zerovalent iron permeable 
reactive barriers: Characterization and evaluation of phase stability. J. Contam. Hydrol. 116(1-4), 
47-57. 
Lee, W., Batchelor, B., 2002. Abiotic reductive dechlorination of chlorinated ethylenes by iron-
bearing soil minerals. 2. Green rust. Environ. Sci. Technol. 36(24), 5348-5354. 



248 
 

Lee, Y.C., Lo, S.L., Chiueh, P.T., Chang, D.G., 2009. Efficient decomposition of 
perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Res. 
43(11), 2811-2816. 
Lehmann, J., Joseph, S., 2009. Biochar for Environmental Management: Science and Technology. 
Earthscan, London, UK. 
Leshuk, T., Everett, P., Krishnakumar, H., Wong, K., Linley, S., Gu, F., 2013. Mesoporous 
magnetically recyclable photocatalysts for water treatment. J. Nanosci. Nanotechnol. 13, 3127-
3132. 
Leung, A.M., Pearce, E.N., Braverman, L.E., 2010. Perchlorate, iodine and the thyroid. Best. 
Pract. Res. Cl. En. 24(1), 133-141. 
Li, A.J., Schmitz, O.J., Stephan, S., Lenzen, C., Yue, P.Y.K., Li, K., Li, H., Leung, K.S.Y., 2016. 
Photocatalytic transformation of acesulfame: Transformation products identification and 
embryotoxicity study. Water Res. 89, 68-75. 
Li, H., Helm, P.A., Metcalfe, C.D., 2010a. Sampling in the great lakes for pharmaceuticals, 
personal care products, and endocrine-disrupting substances using the passive polar organic 
chemical integrative sampler. Environ. Toxicol. Chem. 29(4), 751-762. 
Li, X.Q., Elliott, D.W., Zhang, W.X., 2006. Zero-valent iron nanoparticles for abatement of 
environmental pollutants: Materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 
31(4), 111-122. 
Li, Z.H., Li, P., Rodina, M., Randak, T., 2010b. Effect of human pharmaceutical carbamazepine 
on the quality parameters and oxidative stress in common carp (Cyprinus carpio L.) spermatozoa. 
Chemosphere. 80(5), 530-534. 
Light, T., 1972. Standard solution for redox potential measurements. Anal. Chem. 44(6), 1038-
1039. 
Lin, A.Y.C., Plumlee, M.H., Reinhard, M., 2006. Natural attenuation of pharmaceuticals and 
alkylphenol polyethoxylate metabolites during river transport: Photochemical and biological 
transformation. Environ. Toxicol. Chem. 25(6), 1458-1464. 
Lin, A.Y.C., Reinhard, M., 2005. Photodegradation of common environmental pharmaceuticals 
and estrogens in river water. Environ. Toxicol. Chem. 24(6), 1303-1309. 
Lin, H., Wang, Y., Niu, J., Yue, Z., Huang, Q., 2015a. Efficient sorption and removal of 
perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by 
electrocoagulation. Environ. Sci. Technol. 49(17), 10562-10569. 
Lin, H., Wu, J., Oturan, N., Zhang, H., Oturan, M.A., 2016. Degradation of artificial sweetener 
saccharin in aqueous medium by electrochemically generated hydroxyl radicals. Environ. Sci. 
Pollut. R. 23(5), 4442-4453. 
Lin, K., Gan, J., 2011. Sorption and degradation of wastewater-associated non-steroidal anti-
inflammatory drugs and antibiotics in soils. Chemosphere. 83(3), 240-246. 
Lin, S.Y., Chen, W.F., Cheng, M.T., Li, Q., 2013. Investigation of factors that affect cationic 
surfactant loading on activated carbon and perchlorate adsorption. Colloids Surf. A Physicochem. 
Eng. Asp. 434, 236-242. 
Lin, Y.C., Lai, W.W.P., Tung, H.H., Lin, A.Y.C., 2015b. Occurrence of pharmaceuticals, 
hormones, and perfluorinated compounds in groundwater in Taiwan. Environ. Monit. Assess. 
187(5). 
Lindsay, M.B.J., Wakeman, K.D., Rowe, O.F., Grail, B.M., Ptacek, C.J., Blowes, D.W., Johnson, 
D.B., 2011. Microbiology and geochemistry of mine tailings amended with organic carbon for 
passive treatment of pore water. Geomicrobiol. J. 28(3), 229-241. 



249 
 

Lindsay, S.S., Baedecker, M.J. 1988. Determination of aqueous sulfide in contaminated and 
natural water using the methylene blue method. in: Ground-water Contamination: Field Methods, 
(Ed.) Collins, A.G., Johnson, A. I., American Society for Testing and Materials. Philadephia, pp. 
349-357. 
Linley, S., Leshuk, T., Gu, F., 2013. Synthesis of magnetic rattle-type nanostructures for use in 
water treatment. ACS Appl. Mater. Interfaces. 5(7), 2540-2548. 
Linley, S., Liu, Y., Ptacek, C.J., Blowes, D.W., Gu, F.X., 2014. Recyclable graphene oxide-
supported titanium dioxide photocatalysts with tunable properties. ACS Appl. Mater. Interfaces. 
6(7), 4658-4668. 
Lishman, L., Smyth, S.A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., 
Beland, M., Seto, P., 2006. Occurrence and reductions of pharmaceuticals and personal care 
products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci. Total 
Environ. 367(2-3), 544-558. 
Liu, B., Zhang, H., Xie, L., Li, J., Wang, X., Zhao, L., Wang, Y., Yang, B., 2015a. Spatial 
distribution and partition of perfluoroalkyl acids (PFAAs) in rivers of the Pearl River Delta, 
southern China. Sci. Total Environ. 524-525, 1-7. 
Liu, C., Liu, J., 2016. Aerobic biotransformation of polyfluoroalkyl phosphate esters (PAPs) in 
soil. Environ. Pollut. 212, 230-237. 
Liu, H., Bruton, T.A., Doyle, F.M., Sedlak, D.L., 2014a. In situ chemical oxidation of 
contaminated groundwater by persulfate: Decomposition by Fe(III)- and Mn(IV)-containing 
oxides and aquifer materials. Environ. Sci. Technol. 48(17), 10330-10336. 
Liu, J., Mejia Avendaño, S., 2013. Microbial degradation of polyfluoroalkyl chemicals in the 
environment: A review. Environ. Int. 61, 98-114. 
Liu, P., 2016. Stabilization of Mercury in River Water and Sediment Using Biochars. (Doctor of 
Philosophy). University of Waterloo, Waterloo, Ontario, Canada. 
Liu, P., Ptacek, C.J., Blowes, D.W., Berti, W.R., Landis, R.C., 2015b. Aqueous leaching of 
organic acids and dissolved organic carbon from various biochars prepared at different 
temperatures. J. Environ. Qual. 44(2), 684-695. 
Liu, P., Ptacek, C.J., Blowes, D.W., Landis, R.C., 2016a. Mechanisms of mercury removal by 
biochars produced from different feedstocks determined using X-ray absorption spectroscopy. J. 
Hazard. Mater. 308, 233-242. 
Liu, X., Zhang, X., Shao, K., Lin, C., Li, C., Ge, F., Dong, Y., 2016b. Fe0-activated persulfate-
assisted mechanochemical destruction of expired compound sulfamethoxazole tablets. RSC 
Advances. 6(25), 20938-20948. 
Liu, Y., Chen, S., Quan, X., Yu, H., Zhao, H., Zhang, Y., 2015c. Efficient mineralization of 
perfluorooctanoate by electro-fenton with H2O2 electro-generated on hierarchically porous 
carbon. Environ. Sci. Technol. 49(22), 13528-13533. 
Liu, Y., Wang, J., 2013. Degradation of sulfamethazine by gamma irradiation in the presence of 
hydrogen peroxide. J. Hazard. Mater. 250-251, 99-105. 
Liu, Y.Y., Blowes, D.W., Groza, L., Sabourin, M.J., Ptacek, C.J., 2014b. Acesulfame-K and 
pharmaceuticals as co-tracers of municipal wastewater in a receiving river. Environ. Sci.: 
Processes Impacts. 16(12), 2789-2795. 
Liu, Y.Y., Ptacek, C.J., Blowes, D.W., 2014c. Treatment of dissolved perchlorate, nitrate, and 
sulfate using zero-valent iron and organic carbon. J. Environ. Qual. 43(3), 842-850. 
Logan, B.E., LaPoint, D., 2002. Treatment of perchlorate- and nitrate-contaminated groundwater 
in an autotrophic, gas phase, packed-bed bioreactor. Water Res. 36(14), 3647-3653. 



250 
 

Lopez-Espinosa, M.J., Fletcher, T., Armstrong, B., Genser, B., Dhatariya, K., Mondal, D., 
Ducatman, A., Leonardi, G., 2011. Association of perfluorooctanoic acid (PFOA) and 
perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical 
plant. Environ. Sci. Technol. 45(19), 8160-8166. 
Lubick, N., 2008. Artificial sweetener persists in the environment. Environ. Sci. Technol. 42(9), 
3125. 
Lubick, N., 2009. Artificial sweetener makes ideal tracer. Environ. Sci. Technol. 43(12), 4220. 
Machado, S., Stawiński, W., Slonina, P., Pinto, A.R., Grosso, J.P., Nouws, H.P.A., Albergaria, 
J.T., Delerue-Matos, C., 2013. Application of green zero-valent iron nanoparticles to the 
remediation of soils contaminated with ibuprofen. Sci. Total Environ. 461-462, 323-329. 
Mackuľak, T., Birošová, L., Bodík, I., Grabic, R., Takáčová, A., Smolinská, M., Hanusová, A., 
Híveš, J., Gál, M., 2016. Zerovalent iron and iron(VI): Effective means for the removal of 
psychoactive pharmaceuticals and illicit drugs from wastewaters. Sci. Total Environ. 539, 420-
426. 
Mahmudov, R., Huang, C.P., 2010. Perchlorate removal by activated carbon adsorption. 
Sep.Purif, Technol. 70(3), 329-337. 
Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olivé, C., Cartiser, N., Eudes, 
V., Bressy, A., Caupos, E., Moilleron, R., Chebbo, G., Rocher, V., 2014. Study of a large scale 
powdered activated carbon pilot: Removals of a wide range of emerging and priority 
micropollutants from wastewater treatment plant effluents. Water Res. 72, 315-330. 
Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olivé, C., Cartiser, N., Eudes, 
V., Bressy, A., Caupos, E., Moilleron, R., Chebbo, G., Rocher, V., 2015. Study of a large scale 
powdered activated carbon pilot: Removals of a wide range of emerging and priority 
micropollutants from wastewater treatment plant effluents. Water Res. 72, 315-330. 
Makovec, D., Sajko, M., Selišnik, A., Drofenik, M., 2011. Magnetically recoverable 
photocatalytic nanocomposite particles for water treatment. Mater. Chem. Phys. 129(1-2), 83-89. 
Malarvizhi, A., Kavitha, C., Saravanan, M., Ramesh, M., 2012. Carbamazepine (CBZ) induced 
enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. J. King Saud Univ. 
Sci. 24(2), 179-186. 
Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. 
Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. 
Catal. Today. 147(1), 1-59. 
Margot, J., Kienle, C., Magnet, A., Weil, M., Rossi, L., de Alencastro, L.F., Abegglen, C., 
Thonney, D., Chèvre, N., Schärer, M., Barry, D.A., 2013. Treatment of micropollutants in 
municipal wastewater: Ozone or powdered activated carbon? Sci. Total Environ. 461-462, 480-
498. 
Marques, R.R.N., Sampaio, M.J., Carrapiço, P.M., Silva, C.G., Morales-Torres, S., Dražić, G., 
Faria, J.L., Silva, A.M.T., 2013. Photocatalytic degradation of caffeine: Developing solutions for 
emerging pollutants. Catal. Today. 209, 108-115. 
Martín, J., Camacho-Muñoz, D., Santos, J.L., Aparicio, I., Alonso, E., 2011. Monitoring of 
pharmaceutically active compounds on the Guadalquivir River basin (Spain): Occurrence and 
risk assessment. J. Environ. Monit. 13(7), 2042-2049. 
Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C.G., 2003. Dietary accumulation of 
perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 
22(1), 189-195. 
Martínez-Hernández, V., Meffe, R., Herrera López, S., de Bustamante, I., 2016. The role of 



251 
 

sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, 
naproxen and sulfamethoxazole during soil contact: A kinetics study. Sci. Total Environ. 559, 
232-241. 
Martínez-Hernández, V., Meffe, R., Herrera, S., Arranz, E., de Bustamante, I., 2014. 
Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care 
products from reclaimed water onto/from a natural sediment. Sci. Total Environ. 472, 273-281. 
Matamoros, V., Duhec, A., Albaigés, J., Bayona, J.M., 2009. Photodegradation of carbamazepine, 
ibuprofen, ketoprofen and 17α-ethinylestradiol in fresh and seawater. Water Air Soil Pollut. 
196(1-4), 161-168. 
Matheson, L.J., Tratnyek, P.G., 1994. Reductive dehalogenation of chlorinated methanes by iron 
metal. Environ. Sci. Technol. 28(12), 2045-2053. 
Mawhinney, D.B., Young, R.B., Vanderford, B.J., Borch, T., Snyder, S.A., 2011. Artificial 
sweetener sucralose in U.S. drinking water systems. Environ. Sci. Technol. 45(20), 8716-8722. 
Melse-Boonstra, A., Jaiswal, N., 2010. Iodine deficiency in pregnancy, infancy and childhood 
and its consequences for brain development. Best. Pract. Res. Cl. En. 24(1), 29-38. 
Méndez-Arriaga, F., Esplugas, S., Giménez, J., 2008a. Photocatalytic degradation of non-
steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res. 42(3), 
585-594. 
Méndez-Arriaga, F., Gimenez, J., Esplugas, S., 2008b. Photolysis and TiO2 photocatalytic 
treatment of naproxen: Degradation, mineralization, intermediates and toxicity. J. Adv. Oxid. 
Technol. 11(3), 435-444. 
Mendez, W., Dederick, E., Cohen, J., 2010. Drinking water contribution to aggregate perchlorate 
intake of reproductive-age women in the United States estimated by dietary intake simulation 
and analysis of urinary excretion data. J. Expo. Sci. Environ. Epidemiol. 20(3), 288-297. 
Merino, N., Qu, Y., Deeb, R.A., Hawley, E.L., Hoffmann, M.R., Mahendra, S., 2016. 
Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water. 
Environ. Eng. Sci. 33(9), 615-649. 
Metcalfe, C., Tindale, K., Li, H., Rodayan, A., Yargeau, V., 2010a. Illicit drugs in Canadian 
municipal wastewater and estimates of community drug use. Environ. Pollut. 158(10), 3179-
3185. 
Metcalfe, C.D., Chu, S., Judt, C., Li, H., Oakes, K.D., Servos, M.R., Andrews, D.M., 2010b. 
Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an 
urban watershed. Environ. Toxicol. Chem. 29(1), 79-89. 
Metcalfe, C.D., Koenig, B.G., Bennie, D.T., Servos, M., Ternes, T.A., Hirsch, R., 2003a. 
Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. 
Environ. Toxicol. Chem. 22(12), 2872-2880. 
Metcalfe, C.D., Miao, X.S., Koenig, B.G., Struger, J., 2003b. Distribution of acidic and neutral 
drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ. 
Toxicol. Chem. 22(12), 2881-2889. 
Miao, X.S., Bishay, F., Chen, M., Metcalfe, C.D., 2004. Occurrence of antimicrobials in the final 
effluents of wastewater treatment plants in Canada. Environ. Sci. Technol. 38(13), 3533-3541. 
Miao, X.S., Yang, J.J., Metcalfe, C.D., 2005. Carbamazepine and its metabolites in wastewater 
and in biosolids in a municipal wastewater treatment plant. Environ. Sci. Technol. 39(19), 7469-
7475. 
Milić, N., Milanović, M., Letić, N.G., Sekulić, M.T., Radonić, J., Mihajlović, I., Miloradov, M.V., 
2013. Occurrence of antibiotics as emerging contaminant substances in aquatic environment. Int. 



252 
 

J. Environ. Heal. R. 23(4), 296-310. 
Mimeault, C., Woodhouse, A.J., Miao, X.S., Metcalfe, C.D., Moon, T.W., Trudeau, V.L., 2005. 
The human lipid regulator, gemfibrozil bioconcentrates and reduces testosterone in the goldfish, 
Carassius auratus. Aquat. Toxicol. 73(1), 44-54. 
Min, B., Evans, P.J., Chu, A.K., Logan, B.E., 2004. Perchlorate removal in sand and plastic 
media bioreactors. Water Res. 38(1), 47-60. 
Min, L., 2012. Organic Chemistry of Drug Degradation. The Royal Society of Chemistry, 
Cambridge, UK. 
Minten, J., Adolfsson-Erici, M., Björlenius, B., Alsberg, T., 2011. A method for the analysis of 
sucralose with electrospray LC/MS in recipient waters and in sewage effluent subjected to 
tertiary treatment technologies. Int. J. Environ. Anal. Chem. 91(4), 357-366. 
Moore, D.E., Chappuis, P.P., 1988. A comparative study of the photochemistry of the non-
steroidal anti-inflammatory drugs, naproxen, benoxaprofen and indomethacin. Photochem. 
Photobiol. 47(2), 173-180. 
Moreira, F.C., Soler, J., Alpendurada, M.F., Boaventura, R.A.R., Brillas, E., Vilar, V.J.P., 2016. 
Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and 
electrochemical advanced oxidation processes. Water Res. 105, 251-263. 
Moriwaki, H., Takagi, Y., Tanaka, M., Tsuruho, K., Okitsu, K., Maeda, Y., 2005. Sonochemical 
decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ. Sci. Technol. 
39(9), 3388-3392. 
Morley, N.J., 2009. Environmental risk and toxicology of human and veterinary waste 
pharmaceutical exposure to wild aquatic host-parasite relationships. Environ. Toxicol. Pharmacol. 
27(2), 161-175. 
Mu, R., Xu, Z., Li, L., Shao, Y., Wan, H., Zheng, S., 2010. On the photocatalytic properties of 
elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction. J. Hazard. Mater. 
176(1-3), 495-502. 
Mukesh, K., Panday, Y.D., 2001. Chemical corrosion in cast iron in soil-water medium. Environ. 
Technol. 22(2), 137-150. 
Mukherjee, A., Zimmerman, A.R., Harris, W., 2011. Surface chemistry variations among a series 
of laboratory-produced biochars. Geoderma. 163(3–4), 247-255. 
Müller, C.E., Gerecke, A.C., Alder, A.C., Scheringer, M., Hungerbühler, K., 2011. Identification 
of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener 
acesulfame. Environ. Pollut. 159(5), 1419-1426. 
Murnyak, G., Vandenberg, J., Yaroschak, P.J., Williams, L., Prabhakaran, K., Hinz, J., 2011. 
Emerging contaminants: Presentations at the 2009 Toxicology and Risk Assessment Conference. 
Toxicol. Appl. Pharmacol. 254(2), 167-169. 
Myers, A.L., Crozier, P.W., Helm, P.A., Brimacombe, C., Furdui, V.I., Reiner, E.J., Burniston, D., 
Marvin, C.H., 2012. Fate, distribution, and contrasting temporal trends of perfluoroalkyl 
substances (PFASs) in Lake Ontario, Canada. Environ. Int. 44(1), 92-99. 
Naddeo, V., Meriç, S., Kassinos, D., Belgiorno, V., Guida, M., 2009. Fate of pharmaceuticals in 
contaminated urban wastewater effluent under ultrasonic irradiation. Water Res. 43(16), 4019-
4027. 
Naddeo, V., Uyguner-Demirel, C.S., Prado, M., Cesaro, A., Belgiorno, V., Ballesteros, F., 2015. 
Enhanced ozonation of selected pharmaceutical compounds by sonolysis. Environ. Technol. 
(United Kingdom). 36(15), 1876-1883. 
Nefau, T., Karolak, S., Castillo, L., Boireau, V., Levi, Y., 2013. Presence of illicit drugs and 



253 
 

metabolites in influents and effluents of 25 sewage water treatment plants and map of drug 
consumption in France. Sci. Total Environ. 461-462, 712-722. 
Ngouyap Mouamfon, M.V., Li, W., Lu, S., Chen, N., Qiu, Z., Lin, K., 2011. Photodegradation of 
sulfamethoxazole applying UV- and VUV-based processes. Water Air Soil Pollut. 218(1-4), 265-
274. 
Ngouyap Mouamfon, M.V., Li, W., Lu, S., Qiu, Z., Chen, N., Lin, K., 2010. Photodegradation of 
sulphamethoxazole under UV-light irradiation at 254 nm. Environ. Technol. 31(5), 489-494. 
Nordstrom, D.K., 1977. Thermochemical redox equilibria of ZoBell's solution. Geochim. 
Cosmochim. Acta. 41(12), 1835-1841. 
Oaks, J.L., Gilbert, M., Virani, M.Z., Watson, R.T., Meteyer, C.U., Rideout, B.A., Shivaprasad, 
H.L., Ahmed, S., Chaudhry, M.J.I., Arshad, M., Mahmood, S., Ali, A., Khan, A.A., 2004. 
Diclofenac residues as the cause of vulture population decline in Pakistan. Nature. 427(6975), 
630-633. 
Ochiai, T., Iizuka, Y., Nakata, K., Murakami, T., Tryk, D.A., Koide, Y., Morito, Y., Fujishima, A., 
2011. Efficient decomposition of perfluorocarboxylic acids in aqueous suspensions of a TiO2 
photocatalyst with medium-pressure ultraviolet lamp irradiation under atmospheric pressure. Ind. 
Eng. Chem. Res. 50(19), 10943-10947. 
Ochoa-Herrera, V., Field, J.A., Luna-Velasco, A., Sierra-Alvarez, R., 2016. Microbial toxicity 
and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and 
polyfluoroalkyl substances (PFASs). Environ. Sci.: Processes Impacts. 18(9), 1236-1246. 
Odziemkowski, M.S., Simpraga, R.P., 2004. Distribution of oxides on iron materials used for 
remediation of organic groundwater contaminants - Implications for hydrogen evolution 
reactions.  Can. J. Chem. 82(10), 1495-1506. 
Okeke, B.C., Frankenberger Jr., W.T., 2003. Molecular analysis of a perchlorate reductase from a 
perchlorate-respiring bacterium Perclace. Microbiol. Res. 158(4), 337-344. 
Okeke, B.C., Frankenberger Jr., W.T., 2005. Use of starch and potato peel waste for perchlorate 
bioreduction in water. Sci. Total Environ. 347(1-3), 35-45. 
Okeke, B.C., Giblin, T.L., Frankenberger Jr., W.T., 2002. Reduction of perchlorate and nitrate by 
salt tolerant bacteria. Environ. Pollut. 118(3), 357-363. 
Oleszczuk, P., Hale, S.E., Lehmann, J., Cornelissen, G., 2012. Activated carbon and biochar 
amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in 
sewage sludge. Bioresour. Technol. 111, 84-91. 
Onesios, K.M., Bouwer, E.J., 2012. Biological removal of pharmaceuticals and personal care 
products during laboratory soil aquifer treatment simulation with different primary substrate 
concentrations. Water Res. 46(7), 2365-2375. 
Orth, W.S., Gillham, R.W., 1996. Dechlorination of trichloroethene in aqueous solution using Fe0. 
Environ. Sci. Technol. 30(1), 66-71. 
Pal, R., Megharaj, M., Kirkbride, K.P., Naidu, R., 2013. Illicit drugs and the environment - A 
review. Sci. Total Environ. 463-464, 1079-1092. 
Pan, C.G., Liu, Y.S., Ying, G.G., 2016. Perfluoroalkyl substances (PFASs) in wastewater 
treatment plants and drinking water treatment plants: Removal efficiency and exposure risk. 
Water Res. 106, 562-570. 
Park, H., Vecitis, C.D., Cheng, J., Choi, W., Mader, B.T., Hoffmann, M.R., 2009. Reductive 
defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroup and chain 
length. J. Phys. Chem. A. 113(4), 690-696. 
Park, H., Vecitis, C.D., Cheng, J., Dalleska, N.F., Mader, B.T., Hoffmann, M.R., 2011. Reductive 



254 
 

degradation of perfluoroalkyl compounds with aquated electrons generated from iodide 
photolysis at 254 nm.  Photochem. Photobiol. Sci. 10(12), 1945-1953. 
Parks, G.A., 1965. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo 
complex systems. Chem. Rev. 65(2), 177-198. 
Patterson, B.M., Shackleton, M., Furness, A.J., Bekele, E., Pearce, J., Linge, K.L., Busetti, F., 
Spadek, T., Toze, S., 2011. Behaviour and fate of nine recycled water trace organics during 
managed aquifer recharge in an aerobic aquifer. J. Contam. Hydrol. 122(1-4), 53-62. 
Paul, A.G., Jones, K.C., Sweetman, A.J., 2009. A first global production, emission, and 
environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 43(2), 386-392. 
Peng, L., Ren, Y., Gu, J., Qin, P., Zeng, Q., Shao, J., Lei, M., Chai, L., 2014. Iron improving bio-
char derived from microalgae on removal of tetracycline from aqueous system. Environ. Sci. 
Pollut. R. 21(12), 7631-7640. 
Periša, M., Babić, S., Škorić, I., Frömel, T., Knepper, T.P., 2013. Photodegradation of 
sulfonamides and their N4-acetylated metabolites in water by simulated sunlight irradiation: 
Kinetics and identification of photoproducts. Environ. Sci. Pollut. R. 20(12), 8934-8946. 
Perkola, N., Vaalgamaa, S., Jernberg, J., Vähätalo, A.V., 2016. Degradation of artificial 
sweeteners via direct and indirect photochemical reactions. Environ. Sci. Pollut. R. 23(13), 
13288-13297. 
Post, G.B., Louis, J.B., Lippincott, R.L., Procopio, N.A., 2013. Occurrence of perfluorinated 
compounds in raw water from New Jersey public drinking water systems. Environ. Sci. Technol. 
47(23), 13266-13275. 
Prieto-Rodriguez, L., Miralles-Cuevas, S., Oller, I., Agüera, A., Puma, G.L., Malato, S., 2012. 
Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar 
photocatalysis using low TiO2 concentrations. J. Hazard. Mater. 211-212, 131-137. 
Punyapalakul, P., Suksomboon, K., Prarat, P., Khaodhiar, S., 2013. Effects of surface functional 
groups and porous structures on adsorption and recovery of perfluorinated compounds by 
inorganic porous silicas. Separ. Sci. Technol. (Philadelphia). 48(5), 775-788. 
Quiñones, O., Snyder, S.A., 2009. Occurrence of perfluoroalkyl carboxylates and sulfonates in 
drinking water utilities and related waters from the United States. Environ. Sci. Technol. 43(24), 
9089-9095. 
Rahman, A., Agrawal, A. 1997. Reduction of nitrate and nitrite by iron metal: Implications for 
ground water remediation. in: Extended abstract, Division of Environmental Chemistry, ACS 
National Meeting, American Chemical Society. San Francisco, CA, pp. 13-17. 
Rahman, M.F., Peldszus, S., Anderson, W.B., 2014. Behaviour and fate of perfluoroalkyl and 
polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Res. 50, 318-
340. 
Rahman, M.F., Yanful, E.K., Jasim, S.Y., Bragg, L.M., Servos, M.R., Ndiongue, S., Borikar, D., 
2010. Advanced oxidation treatment of drinking water: Part I. occurrence and removal of 
pharmaceuticals and endocrine-disrupting compounds from Lake Huron water. Ozone Sci. Eng. 
32(4), 217-229. 
Rajagopalan, S., Anderson, T.A., Fahlquist, L., Rainwater, K.A., Ridley, M., Jackson, W.A., 2006. 
Widespread presence of naturally occurring perchlorate in high plains of Texas and New Mexico. 
Environ. Sci. Technol. 40(10), 3156-3162. 
Rajapaksha, A.U., Vithanage, M., Ahmad, M., Seo, D.C., Cho, J.S., Lee, S.E., Lee, S.S., Ok, Y.S., 
2015. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J. 
Hazard. Mater. 290, 43-50. 



255 
 

Rankin, K., Mabury, S.A., Jenkins, T.M., Washington, J.W., 2016. A North American and global 
survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of 
occurrence. Chemosphere. 161, 333-341. 
Rayne, S., Forest, K., 2009. Perfluoroalkyl sulfonic and carboxylic acids: A critical review of 
physicochemical properties, levels and patterns in waters and wastewaters, and treatment 
methods. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 44(12), 1145-1199. 
Razavi, B., Song, W., Cooper, W.J., Greaves, J., Jeong, J., 2009. Free-radical-induced oxidative 
and reductive degradation of fibrate pharmaceuticals: Kinetic studies and degradation 
mechanisms. J. Phys. Chem. A. 113(7), 1287-1294. 
Reungoat, J., Escher, B.I., Macova, M., Argaud, F.X., Gernjak, W., Keller, J., 2012. Ozonation 
and biological activated carbon filtration of wastewater treatment plant effluents. Water Res. 
46(3), 863-872. 
Richardson, S.D., Ternes, T.A., 2011. Water analysis: Emerging contaminants and current issues. 
Anal. Chem. 83(12), 4616-4648. 
Rikken, G.B., Kroon, A.G.M., Van Ginkel, C.G., 1996. Transformation of (per)chlorate into 
chloride by a newly isolated bacterium: Reduction and dismutation. Appl. Microbiol. Biot. 45(3), 
420-426. 
Robertson, W.D., Blowes, D.W., Ptacek, C.J., Cherry, J.A., 2000. Long-term performance of in 
situ reactive barriers for nitrate remediation. Ground Water. 38(5), 689-695. 
Robertson, W.D., Ptacek, C.J., Brown, S.J., 2007. Geochemical and hydrogeological impacts of a 
wood particle barrier treating nitrate and perchlorate in ground water. Ground Water Monit. R. 
27(2), 85-95. 
Robertson, W.D., Van Stempvoort, D.R., Solomon, D.K., Homewood, J., Brown, S.J., Spoelstra, 
J., Schiff, S.L., 2013. Persistence of artificial sweeteners in a 15-year-old septic system plume. J. 
Hydrol. 477, 43-54. 
Rodil, R., Quintana, J.B., Concha-Graña, E., López-Mahía, P., Muniategui-Lorenzo, S., Prada-
Rodríguez, D., 2012. Emerging pollutants in sewage, surface and drinking water in Galicia (NW 
Spain). Chemosphere. 86(10), 1040-1049. 
Rodriguez, S., Santos, A., Romero, A., 2016. Oxidation of priority and emerging pollutants with 
persulfate activated by iron: Effect of iron valence and particle size. Chem. Eng. J. 318, 197–205. 
Roldan, M.D., Reyes, F., Moreno-Vivian, C., Castillo, F., 1994. Chlorate and nitrate reduction in 
the phototrophic bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides. Curr. Microbiol. 
29(4), 241-245. 
Rosal, R., Rodríguez, A., Gonzalo, M.S., García-Calvo, E., 2008. Catalytic ozonation of 
naproxen and carbamazepine on titanium dioxide. Appl. Catal. , B. 84(1-2), 48-57. 
Rosario-Ortiz, F.L., Wert, E.C., Snyder, S.A., 2010. Evaluation of UV/H2O2 treatment for the 
oxidation of pharmaceuticals in wastewater. Water Res. 44(5), 1440-1448. 
Rusanova, M.Y., Polášková, P., Muzikař, M., Fawcett, W.R., 2006. Electrochemical reduction of 
perchlorate ions on platinum-activated nickel.  Electrochim. Acta. 51(15), 3097-3101. 
Safe, S.H., 2000. Endocrine disruptors and human health - Is there a problem? An update. 
Environ. Health Perspect. 108(6), 487-493. 
Sahu, A.K., Conneely, T., Nüsslein, K.R., Ergas, S.J., 2009. Biological perchlorate reduction in 
packed bed reactors using elemental sulfur. Environ. Sci. Technol. 43(12), 4466-4471. 
Sanchez, W., Sremski, W., Piccini, B., Palluel, O., Maillot-Maréchal, E., Betoulle, S., Jaffal, A., 
Aït-Aïssa, S., Brion, F., Thybaud, E., Hinfray, N., Porcher, J.M., 2011. Adverse effects in wild 
fish living downstream from pharmaceutical manufacture discharges. Environ. Int. 37(8), 1342-



256 
 

1348. 
Sang, Z., Jiang, Y., Tsoi, Y.K., Leung, K.S.Y., 2014a. Evaluating the environmental impact of 
artificial sweeteners: A study of their distributions, photodegradation and toxicities. Water Res. 
52, 260-264. 
Sang, Z., Jiang, Y., Tsoi, Y.K., Leung, K.S.Y., 2014b. Evaluating the environmental impact of 
artificial sweeteners: A study of their distributions, photodegradation and toxicities. Water Res. 
52, 260 -264. 
Santos, L.H.M.L.M., Araújo, A.N., Fachini, A., Pena, A., Delerue-Matos, C., Montenegro, 
M.C.B.S.M., 2010. Ecotoxicological aspects related to the presence of pharmaceuticals in the 
aquatic environment. J. Hazard. Mater. 175(1-3), 45-95. 
Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., 
Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, 
P., Walsh, A., Sokol, A.A., 2013. Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 
798−801. 
Schaffer, M., Boxberger, N., Börnick, H., Licha, T., Worch, E., 2012. Sorption influenced 
transport of ionizable pharmaceuticals onto a natural sandy aquifer sediment at different pH. 
Chemosphere. 87(5), 513-520. 
Schaider, L.A., Rudel, R.A., Ackerman, J.M., Dunagan, S.C., Brody, J.G., 2014. Pharmaceuticals, 
perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in 
a shallow sand and gravel aquifer. Sci. Total Environ. 468-469, 384-393. 
Scherer, M.M., Richter, S., Valentine, R.L., Alvarez, P.J.J., 2000. Chemistry and microbiology of 
permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Environ. Sci. Technol. 
30(3), 363-411. 
Scheurer, M., Brauch, H.J., Lange, F.T., 2009. Analysis and occurrence of seven artificial 
sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Anal. 
Bioanal. Chem. 394(6), 1585-1594. 
Scheurer, M., Godejohann, M., Wick, A., Happel, O., Ternes, T.A., Brauch, H.J., Ruck, W.K.L., 
Lange, F.T., 2012. Structural elucidation of main ozonation products of the artificial sweeteners 
cyclamate and acesulfame. Environ. Sci. Pollut. R. 19(4), 1107-1118. 
Scheurer, M., Schmutz, B., Happel, O., Brauch, H.J., Wülser, R., Storck, F.R., 2014. 
Transformation of the artificial sweetener acesulfame by UV light. Sci. Total Environ. 481(1), 
425-432. 
Scheurer, M., Storck, F.R., Brauch, H.J., Lange, F.T., 2010. Performance of conventional multi-
barrier drinking water treatment plants for the removal of four artificial sweeteners. Water Res. 
44(12), 3573-3584. 
Scheurer, M., Storck, F.R., Graf, C., Brauch, H.J., Ruck, W., Lev, O., Lange, F.T., 2011. 
Correlation of six anthropogenic markers in wastewater, surface water, bank filtrate, and soil 
aquifer treatment. J. Environ. Monit. 13(4), 966-973. 
Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., Von Gunten, U., 
Wehrli, B., 2006. The challenge of micropollutants in aquatic systems. Science. 313(5790), 
1072-1077. 
Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M., 2002. Environmental Organic Chemistry. 
John Wiley & Sons, Inc., New Jersey. 
Schwarzenbach, R.P., Gschwend, P.M., Imbonden, D.M., 2003. Environmental Organic 
Chemistry. John Wiley & Sons, Inc. , New Jersey, USA. 
Scott, B.F., Spencer, C., Lopez, E., Muir, D.C.G., 2009. Perfluorinated alkyl acid concentrations 



257 
 

in Canadian rivers and creeks. Water Qual. Res. J. Can. 44(3), 263-277. 
Segura, Y., Martínez, F., Melero, J.A., 2014. Pharmaceutical wastewater degradation: Effective 
and economical treatment using waste-metallic iron shavings. Int. J. Environ. Stud. 71(2), 200-
208. 
Seiler, R.L., Zaugg, S.D., Thomas, J.M., Howcroft, D.L., 1999. Caffeine and pharmaceuticals as 
indicators of waste water contamination in wells. Ground Water. 37(3), 405-410. 
Seo, P.W., Khan, N.A., Hasan, Z., Jhung, S.H., 2016. Adsorptive removal of artificial sweeteners 
from water using metal-organic frameworks functionalized with urea or melamine. ACS Appl. 
Mater. Interfaces. 8(43), 29799-29807. 
Sharifi, S., Behzadi, S., Laurent, S., Laird Forrest, M., Stroeve, P., Mahmoudi, M., 2012. Toxicity 
of nanomaterials. Chem. Soc. Rev. 41(6), 2323-2343. 
Sharma, V.K., Oturan, M., Kim, H., 2014. Oxidation of artificial sweetener sucralose by 
advanced oxidation processes: A review. Environ. Sci. Pollut. R. 21(14), 8525-8533. 
Sharma, V.K., Sohn, M., Anquandah, G.A.K., Nesnas, N., 2012. Kinetics of the oxidation of 
sucralose and related carbohydrates by ferrate(VI). Chemosphere. 87(6), 644-648. 
Sharpe, R.M., Irvine, D.S., 2004. How strong is the evidence of a link between environmental 
chemicals and adverse effects on human reproductive health? Br. Med. J. 328(7437), 447-451. 
Shirazi, E., Torabian, A., Nabi-Bidhendi, G., 2013. Carbamazepine removal from groundwater: 
Effectiveness of the TiO2/UV, nanoparticulate zero-valent iron, and fenton (NZVI/H2O2) 
processes. Clean - Soil, Air, Water. 41(11), 1062-1072. 
Shoemaker, J.A., Grimmett, P. E., & Boutin, B. K. . 2013. Method 537. Determination of 
selected perfluorinated alkyl acids in drinking water by solid phase extraction and liquid 
chromatography/tandem mass spectrometry (LC/MS/MS), Vol. EPA/ 600/ R-08/092, U.S. 
Environmental Protection Agency, Office of Research and Development, National Exposure 
Research Laboratory. Cincinnati, OH., USA. 
Shrimpton, H.K., Blowes, D.W., Ptacek, C.J., 2015. Fractionation of selenium during selenate 
reduction by granular zerovalent iron. Environ. Sci. Technol. 49(19), 11688-11696. 
Sijimol, M.R., Jyothy, S., Pradeepkumar, A.P., Chandran, M.S.S., Ghouse, S.S., Mohan, M., 
2015. Review on fate, toxicity, and remediation of perchlorate. Environ. Forensics. 16(2), 125-
134. 
Smith, L.J.D., Ptacek, C.J., Blowes, D.W., Groza, L.G., Moncur, M.C., 2015. Perchlorate in lake 
water from an operating diamond mine. Environ. Sci. Technol. 49(13), 7589-7596. 
Snyder, S.A., Vanderford, B.J., Rexing, D.J., 2005. Trace analysis of bromate, chlorate, iodate, 
and perchlorate in natural and bottled waters. Environ. Sci. Technol. 39(12), 4586-4593. 
Song, Z., Tang, H., Wang, N., Zhu, L., 2013. Reductive defluorination of perfluorooctanoic acid 
by hydrated electrons in a sulfite-mediated UV photochemical system. J. Hazard. Mater. 262, 
332-338. 
Sonthiphand, P., Cejudo, E., Schiff, S.L., Neufeld, J.D., 2013. Wastewater effluent impacts 
ammonia-oxidizing prokaryotes of the Grand River, Canada. Appl. Environ. Microbiol. 79(23), 
7454-7465. 
Sorensen, J.P.R., Lapworth, D.J., Nkhuwa, D.C.W., Stuart, M.E., Gooddy, D.C., Bell, R.A., 
Chirwa, M., Kabika, J., Liemisa, M., Chibesa, M., Pedley, S., 2015. Emerging contaminants in 
urban groundwater sources in Africa. Water Res. 72, 51-63. 
Sotelo, J.L., Ovejero, G., Rodríguez, A., Álvarez, S., Galán, J., García, J., 2014. Competitive 
adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem. Eng. 
J. 240, 443-453. 



258 
 

Spoelstra, J., Schiff, S.L., Brown, S.J., 2013. Artificial sweeteners in a large Canadian river 
reflect human consumption in the watershed. PloS one. 8(12), e82706. 
Srinivasan, A., Viraraghavan, T., 2009. Perchlorate: Health effects and technologies for its 
removal from water resources. Int. J. Environ. Res. Public Health. 6(4), 1418-1442. 
Srinivasan, R., Sorial, G.A., 2009. Treatment of perchlorate in drinking water: A critical review. 
Sep.Purif, Technol. 69(1), 7-21. 
Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Lippincott, R.L., 2007. 
Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals 
and other organic compounds. Sci. Total Environ. 377(2-3), 255-272. 
Stafiej, A., Pyrzynska, K., Regan, F., 2007. Determination of anti-inflammatory drugs and 
estrogens in water by HPLC with UV detection. J. Sep. Sci. 30(7), 985-991. 
Stöber, W., Fink, A., Bohn, E., 1968. Controlled growth of monodisperse silica spheres in the 
micron size range. J. Colloid Interface Sci. 26(1), 62-69. 
Sturini, M., Speltini, A., Maraschi, F., Profumo, A., Pretali, L., Irastorza, E.A., Fasani, E., Albini, 
A., 2012. Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water 
under natural sunlight. Appl. Catal. , B. 119-120, 32-39. 
Suja, F., Pramanik, B.K., Zain, S.M., 2009. Contamination, bioaccumulation and toxic effects of 
perfluorinated chemicals (PFCs) in the water environment: A review paper. Water Sci. Technol. 
60(6), 1533-1554. 
Sujana, M.G., Soma, G., Vasumathi, N., Anand, S., 2009. Studies on fluoride adsorption 
capacities of amorphous Fe/Al mixed hydroxides from aqueous solutions. J. Fluorine Chem. 
130(8), 749-754. 
Sumpter, J.P., 2005. Endocrine disrupters in the aquatic environment: An overview. Acta 
Hydrochim. Hydrobiol. 33(1), 9-16. 
Sun, Y., Li, J., Huang, T., Guan, X., 2016. The influences of iron characteristics, operating 
conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water 
Res. 100, 277-295. 
Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., Biswas, P., 2011. 
Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle 
dispersion properties. Nanoscale Res. Lett. 6(1), 1-8. 
Tan, K., Anderson, T.A., Jackson, W.A., 2004. Degradation kinetics of perchlorate in sediments 
and soils. Water Air Soil Pollut. 151(1-4), 245-259. 
Tay, K.S., Madehi, N., 2015. Ozonation of ofloxacin in water: By-products, degradation pathway 
and ecotoxicity assessment. Sci. Total Environ. 520, 23-31. 
Ternes, T.A., 1998. Occurrence of drugs in German sewage treatment plants and rivers. Water 
Res. 32(11), 3245-3260. 
Tikkanen, M.W., 2006. Development of a drinking water regulation for perchlorate in California. 
Anal. Chim. Acta. 567(1 SPEC. ISS.), 20-25. 
Till, B.A., Weathers, L.J., Alvarez, P.J.J., 1998. Fe(0)-supported autotrophic denitrification. 
Environ. Sci. Technol. 32(5), 634-639. 
Tomizawa, M., Kurosu, S., Kobayashi, M., Kawase, Y., 2016. Zero-valent iron treatment of dark 
brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals. J. 
Environ. Manage. 183, 478-487. 
Tong, A.Y.C., Braund, R., Warren, D.S., Peake, B.M., 2012. TiO2-assisted photodegradation of 
pharmaceuticals - A review. Cent. Eur. J. Chem. 10(4), 989-1027. 
Toride, N., Leij, F.J., Van Genuchten, M.T. 1995. The CXTFIT code for estimating transport 



259 
 

parameters from laboratory or field tracer experiments. U.S. Salinity Laboratory, Agricultural 
Research Service. 137. 
Toth, J.E., Rickman, K.A., Venter, A.R., Kiddle, J.J., Mezyk, S.P., 2012. Reaction kinetics and 
efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water. 
J. Phys. Chem. A. 116(40), 9819-9824. 
Tungudomwongsa, H., Leckie, J., Mill, T., 2006. Photocatalytic oxidation of emerging 
contaminants: Kinetics and pathways for photocatalytic oxidation of pharmaceutical compounds. 
J. Adv. Oxid. Technol. 9(1), 59-64. 
Uchimiya, M., Lima, I.M., Thomas Klasson, K., Chang, S., Wartelle, L.H., Rodgers, J.E., 2010. 
Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in 
water and soil. J. Agric. Food Chem. 58(9), 5538-5544. 
Underwood, J.C., Harvey, R.W., Metge, D.W., Repert, D.A., Baumgartner, L.K., Smith, R.L., 
Roane, T.M., Barber, L.B., 2011. Effects of the antimicrobial sulfamethoxazole on groundwater 
bacterial enrichment. Environ. Sci. Technol. 45(7), 3096-3101. 
United Nations Environment Programme, 2009. Stockholm convention persistent organic 
pollutants.SC-4/17: listing of perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl 
fluoride. 
Urbansky, E., 2002. Perchlorate as an environmental contaminant. Environ. Sci. Pollut. R. 9(3), 
187-192. 
Urbansky, E.T., Brown, S.K., Magnuson, M.L., Kelty, C.A., 2001. Perchlorate levels in samples 
of sodium nitrate fertilizer derived from Chilean caliche. Environ. Pollut. 112(3), 299-302. 
US EPA, 2005. Integrated Risk Information System (IRIS). 2005. “Perchlorate and Perchlorate 
Salts.” www.epa.gov/iris/subst/1007.htm. 
US EPA, 2006. Drinking water contaminant candidate list (CCL) and regulatory determination. 
US EPA, 2009a. Provisional health advisories for perfluorooctanoic acid (PFOA) and 
perfluorooctane sulfonate (PFOS). 
US EPA, 2009b. “Revised Assessment Guidance for Perchlorate.” 
www.epa.gov/fedfac/documents/perchlorate_memo_01-08-09.pdf. 
US EPA, 2012. “2012 Edition of the Drinking Water Standards and Health Advisories.” EPA 
822-S-12-001. 
Van Nuijs, A.L.N., Castiglioni, S., Tarcomnicu, I., Postigo, C., de Alda, M.L., Neels, H., Zuccato, 
E., Barcelo, D., Covaci, A., 2011. Illicit drug consumption estimations derived from wastewater 
analysis: A critical review. Sci. Total Environ. 409(19), 3564-3577. 
Van Stempvoort, D.R., Roy, J.W., Brown, S.J., Bickerton, G., 2011. Artificial sweeteners as 
potential tracers in groundwater in urban environments. J. Hydrol. 401(1-2), 126-133. 
Van Stempvoort, D.R., Roy, J.W., Grabuski, J., Brown, S.J., Bickerton, G., Sverko, E., 2013. An 
artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in 
groundwater. Sci. Total Environ. 461-462, 348-359. 
Vandenberg, L.N., Colborn, T., Hayes, T.B., Heindel, J.J., Jacobs, D.R., Lee, D.H., Shioda, T., 
Soto, A.M., vom Saal, F.S., Welshons, W.V., Zoeller, R.T., Myers, J.P., 2012. Hormones and 
endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. 
Rev. 33(3), 378-455. 
Vanderford, B.J., Pearson, R.A., Rexing, D.J., Snyder, S.A., 2003. Analysis of endocrine 
disruptors, pharmaceuticals, and personal care products in water using liquid 
chromatography/tandem mass spectrometry. Anal. Chem. 75(22), 6265-6274. 
Vanderford, B.J., Snyder, S.A., 2006. Analysis of pharmaceuticals in water by isotope dilution 



260 
 

liquid chromatography/tandem mass spectrometry. Environ. Sci. Technol. 40(23), 7312-7320. 
Vellanki, B.P., Batchelor, B., Abdel-Wahab, A., 2013. Advanced reduction processes: A new class 
of treatment processes. Environ. Eng. Sci. 30(5), 264-271. 
Verlicchi, P., Zambello, E., 2014. How efficient are constructed wetlands in removing 
pharmaceuticals from untreated and treated urban wastewaters? A review. Sci. Total Environ. 
470-471, 1281-1306. 
Verliefde, A.R.D., Heijman, S.G.J., Cornelissen, E.R., Amy, G.L., Van Der Bruggen, B., Van 
Dijk, J.C., 2008. Rejection of trace organic pollutants with high pressure membranes (NF/RO). 
Environ. Prog. 27(2), 180-188. 
Von Ehrenstein, O.S., Fenton, S.E., Kato, K., Kuklenyik, Z., Calafat, A.M., Hines, E.P., 2009. 
Polyfluoroalkyl chemicals in the serum and milk of breastfeeding women. Reprod. Toxicol. 
27(3-4), 239-245. 
Vymazal, J., Dvořáková Březinová, T., 2016. Removal of saccharin from municipal sewage: The 
first results from constructed wetlands. Chem. Eng. J. 306, 1067-1070. 
Wang, B., Zhang, W., Li, H., Fu, H., Qu, X., Zhu, D., 2016. Micropore clogging by leachable 
pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of 
hydrophobic organic contaminants to black carbon. Environ. Pollut. 220, Part B, 1349–1358. 
Wang, F., Shih, K., 2011. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate 
(PFOA) on alumina: Influence of solution pH and cations. Water Res. 45(9), 2925-2930. 
Wang, J., Wang, S., 2016. Removal of pharmaceuticals and personal care products (PPCPs) from 
wastewater: A review. J. Environ. Manage. 182, 620-640. 
Wang, L., Li, J., Jiang, Q., Zhao, L., 2012. Water-soluble Fe3O4 nanoparticles with high 
solubility for removal of heavy-metal ions from waste water. Dalton Trans. 41(15), 4544-4551. 
Wang, Y., Beesoon, S., Benskin, J.P., De Silva, A.O., Genuis, S.J., Martin, J.W., 2011. 
Enantiomer fractions of chiral perfluorooctanesulfonate (PFOS) in human sera. Environ. Sci. 
Technol. 45(20), 8907-8914. 
Wang, Y., Jin, L., Deshusses, M.A., Matsumoto, M.R., 2013. The effects of various amendments 
on the biostimulation of perchlorate reduction in laboratory microcosm and flowthrough soil 
columns. Chem. Eng. J. 232, 388-396. 
Wang, Z., Cousins, I.T., Scheringer, M., Buck, R.C., Hungerbühler, K., 2014. Global emission 
inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, 
Part I: Production and emissions from quantifiable sources. Environ. Int. 70, 62-75. 
Wang, Z., Xie, Z., Mi, W., Möller, A., Wolschke, H., Ebinghaus, R., 2015. Neutral poly/per-
fluoroalkyl substances in air from the Atlantic to the southern ocean and in Antarctic snow. 
Environ. Sci. Technol. 49(13), 7770-7775. 
Ward, C.H., 2008. In Situ Bioremediation of Perchlorate in Groundwater. Springer, New York. 
Watson, S., Scott, J., Beydoun, D., Amal, R., 2005. Studies on the preparation of magnetic 
photocatalysts. J. Nanopart. Res. 7(6), 691-705. 
Watts, C.D., Crathorne, B., Fielding, M., Steel, C.P., 1983. Identification of non-volatile organics 
in water using field desorption mass spectrometry and high performance liquid chromatography, 
in: Angeletti, G., Bjorseth, A.(Eds.), Analysis of Organic Micropollutants in Water. D.D. Reidel 
Publishing Co, Oslo, Norway,, pp. 120-131. 
Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005. Fate of endocrine-disruptor, pharmaceutical, 
and personal care product chemicals during simulated drinking water treatment processes. 
Environ. Sci. Technol. 39(17), 6649-6663. 
Wilkin, R.T., Fine, D.D., Burnett, N.G., 2007. Perchlorate behavior in a municipal lake following 



261 
 

fireworks displays. Environ. Sci. Technol. 41(11), 3966-3971. 
Williams, C.F., Adamsen, F.J., 2006. Sorption-desorption of carbamazepine from irrigated soils. J. 
Environ. Qual. 35(5), 1779-1783. 
Williams, M., Kumar, A., Ort, C., Lawrence, M.G., Hambly, A., Khan, S.J., Kookana, R., 2013. 
The use of multiple tracers for tracking wastewater discharges in freshwater systems. Environ. 
Monit. Assess. 185(11), 9321-9332. 
Williams, M., Martin, S., Kookana, R.S., 2015. Sorption and plant uptake of pharmaceuticals 
from an artificially contaminated soil amended with biochars. Plant Soil. 395(1-2), 75-86. 
Wilson, R.E., 1923. The mechanism of the corrosion of iron and steel in natural waters and the 
calculation of specific rates of corrosion. Ind. Eng. Chem. 15(2), 127-133. 
Wolff, J., 1998. Perchlorate and the thyroid gland. Pharmacol. Rev. 50(1), 89-105. 
Wunder, D.B., Bosscher, V.A., Cok, R.C., Hozalski, R.M., 2011. Sorption of antibiotics to 
biofilm. Water Res. 45(6), 2270-2280. 
Xiang, G., Wang, Y.G., Wu, D., Li, T., He, J., Li, J., Wang, X., 2012. Size-dependent surface 
activity of rutile and anatase TiO2 nanocrystals: Facile surface modification and enhanced 
photocatalytic performance. Chem. Eur. J. 18(15), 4759-4765. 
Xiao, F., Davidsavor, K.J., Park, S., Nakayama, M., Phillips, B.R., 2012. Batch and column study: 
Sorption of perfluorinated surfactants from water and cosolvent systems by Amberlite XAD 
resins. J. Colloid Interface Sci. 368(1), 505-511. 
Xu, J., Song, Y., Min, B., Steinberg, L., Logan, B.E., 2003a. Microbial degradation of 
perchlorate: Principles and applications. Environ. Eng. Sci. 20(5), 405-422. 
Xu, J.L., Song, Y.G., Min, B.K., Steinberg, L., Logan, B.E., 2003b. Microbial degradation of 
perchlorate: principles and applications. Environ. Eng. Sci. 20(5), 405-422. 
Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., Gao, B., 2012. Removal of Cu, Zn, and Cd from 
aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. R. 20(1), 358-368. 
Yamashita, N., Kannan, K., Taniyasu, S., Horii, Y., Okazawa, T., Petrick, G., Gamo, T., 2004. 
Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid 
chromatography-tandem mass spectrometry. Environ. Sci. Technol. 38(21), 5522-5528. 
Yan, S., Song, W., 2014. Photo-transformation of pharmaceutically active compounds in the 
aqueous environment: A review. Environ. Sci.: Processes Impacts. 16(4), 697-720. 
Yang, G.C.C., Tang, P.L., 2016. Removal of phthalates and pharmaceuticals from municipal 
wastewater by graphene adsorption process. Water Sci. Technol. 73(9), 2268-2274. 
Yang, Q., Yao, F., Zhong, Y., Wang, D., Chen, F., Sun, J., Hua, S., Li, S., Li, X., Zeng, G., 2016. 
Catalytic and electrocatalytic reduction of perchlorate in water – A review. Chem. Eng. J. 306, 
1081-1091. 
Yargeau, V., Lopata, A., Metcalfe, C., 2007. Pharmaceuticals in the Yamaska River, Quebec, 
Canada. Water Qual. Res. J. Can. 42(4), 231-239. 
Yavuz, C.T., Prakash, A., Mayo, J.T., Colvin, V.L., 2009. Magnetic separations: From steel plants 
to biotechnology. Chem. Eng. Sci. 64(10), 2510-2521. 
Ye, L., Wang, S., You, H., Yao, J., Kang, X., 2013. Photocatalytic reduction of perchlorate in 
aqueous solutions in UV/Cu-TiO2/SiO2 system. Chem. Eng. J. 226, 434-443. 
Ye, L., You, H., Yao, J., Su, H., 2012. Water treatment technologies for perchlorate: A review. 
Desalination. 298, 1-12. 
Yim, L.M., Taniyasu, S., Yeung, L.W.Y., Lu, G., Jin, L., Yang, Y., Lam, P.K.S., Kannan, K., 
Yamashita, N., 2009. Perfluorinated compounds in tap water from china and several other 
countries. Environ. Sci. Technol. 43(13), 4824-4829. 



262 
 

Yin, P., Hu, Z., Song, X., Liu, J., Lin, N., 2016. Activated persulfate oxidation of 
perfluorooctanoic acid (PFOA) in groundwater under acidic conditions. Int. J. Environ. Res. 
Public Health. 13(6), 602. 
Yu, J., Lv, L., Lan, P., Zhang, S., Pan, B., Zhang, W., 2012. Effect of effluent organic matter on 
the adsorption of perfluorinated compounds onto activated carbon. J. Hazard. Mater. 225-226, 
99-106. 
Yu, X., Amrhein, C., Deshusses, M.A., Matsumoto, M.R., 2006. Perchlorate reduction by 
autotrophic bacteria in the presence of zero-valent iron. Environ. Sci. Technol. 40(4), 1328-1334. 
Yurdakal, S., Loddo, V., Augugliaro, V., Berber, H., Palmisano, G., Palmisano, L., 2007. 
Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics. 
Catal. Today. 129(1-2 SPEC. ISS.), 9-15. 
Zhang, C., Wang, L., Li, J., Su, P., Peng, C., 2015. Removal of perfluorinated compounds in 
wastewater treatment plant effluents by electrochemical oxidation. Water Sci. Technol. 71(12), 
1783-1789. 
Zhang, D., Luo, Q., Gao, B., Chiang, S.Y.D., Woodward, D., Huang, Q., 2016. Sorption of 
perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular 
activated carbon. Chemosphere. 144, 2336-2342. 
Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J., 2010. P25-graphene composite as a high performance 
photocatalyst. ACS Nano. 4(1), 380-386. 
Zhang, Y., Geißen, S.U., Gal, C., 2008. Carbamazepine and diclofenac: Removal in wastewater 
treatment plants and occurrence in water bodies. Chemosphere. 73(8), 1151-1161. 
Zhang, Y., Hurley, K.D., Shapley, J.R., 2011. Heterogeneous catalytic reduction of perchlorate in 
water with Re-Pd/C catalysts derived from an oxorhenium(V) molecular precursor.  Inorg. Chem. 
50(4), 1534-1543. 
Zheng, B.G., Zheng, Z., Zhang, J.B., Luo, X.Z., Wang, J.Q., Liu, Q., Wang, L.H., 2011. 
Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. 
Desalination. 276(1-3), 379-385. 
Zheng, H., Wang, Z., Zhao, J., Herbert, S., Xing, B., 2013. Sorption of antibiotic 
sulfamethoxazole varies with biochars produced at different temperatures. Environ. Pollut. 181, 
60-67. 
Zhou, Q., Deng, S., Zhang, Q., Fan, Q., Huang, J., Yu, G., 2010. Sorption of perfluorooctane 
sulfonate and perfluorooctanoate on activated sludge. Chemosphere. 81(4), 453-458. 
Zhou, Y., Gao, B., Zimmerman, A.R., Chen, H., Zhang, M., Cao, X., 2014. Biochar-supported 
zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour. Technol. 
152, 538-542. 
Ziylan, A., Ince, N.H., 2015. Catalytic ozonation of ibuprofen with ultrasound and Fe-based 
catalysts. Catal. Today. 240, 2-8. 
 



263 
 

Appendix A: Supplementary Information in 

Chapter 2 

   



264 
 

Table A.1 Data used for regression fits of NO3-N removal as a function of residence time 
in columns containing zero-valent Fe (ZVI), organic C (OC), or both. PV: pore volumes; 
RT: residence time. “< DL” indicates the concentrations < detection limits (DL).  

Distance 
from the 
input, cm 

Column 2 (ZVI)  Column 3 (OC)  Column 4 (ZVI + OC)  
Stage 1:  
95 PV 

Stage 2:  
115 PV 

Stage 1:  
108 PV 

Stage 2:  
132 PV 

Stage 1:  
106 PV 

Stage 2:  
128 PV 

RT, 
d 

NO3-N,  
mg L-1 

RT, 
d 

NO3-N,  
mg L-1 

RT, 
d 

NO3-N,  
mg L-1 

RT, 
d 

NO3-N,  
mg L-1 

RT, 
d 

NO3-N,  
mg L-1 

RT, 
d 

NO3-N,  
mg L-1 

0 0 11.0 0 11.0 0 11.0 0 11.0 0 11.0 0 11.0 

4.3 0.4 6.4 1.3 4.2 0.3 8.7 1.0 5.8 0.3 7.9 1.0 3.8 

8.6 0.8 4.8 2.7 2.0 0.6 7.3 1.9 3.6 0.7 4.7 2.0 < DL 

13 1.2 3.8 4.0 0.7 1.0 6.3 2.9 2.1 1.0 1.7 3.0 < DL 

17 1.6 2.8 5.3 0.3 1.3 5.4 3.8 0.9 1.3 0.1 4.1 < DL 

21 1.9 1.8 6.7 0.1 1.6 3.8 4.8 0.4 1.7 < DL 5.1 < DL 

26 2.3 1.1 8.0 < DL 1.9 3.2 5.8 0.1 2.0 < DL 6.1 < DL 

30 2.7 0.4 9.4 < DL 2.2 2.6 6.7 < DL 2.4 < DL 7.1 < DL 
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Table A. 2 Data used for regression fits of ClO4
- removal as a function of residence time 

in columns containing organic C (OC) and both zero-valent Fe (ZVI) and OC. PV: pore 
volumes; RT: residence time. “ ̶ ” indicates the samples were not available or analyzed. 

Distance 
from the 

input (cm) 

Column 3 (OC) Column 4 (ZVI + OC) 

Stage 1: 108 PV Stage 2: 132 PV Stage 1: 106 PV Stage 2: 128 PV 

RT, d 
ClO4

-,   
µg L-1 RT, d 

ClO4
-,  

µg L-1 RT, d 
ClO4

-,  
µg L-1 RT, d 

ClO4
-,  

µg L-1 

0 0 919 0 857 0 919 0 857 

4.3 0.3 830 1.0 798 0.3 831 1.0 747 

8.6 0.6 833 1.9 745 0.7 848 2.0 668 

13 1.0 790 2.9 679 1.0 827 3.0 564 

17 1.3 783 3.8 506 1.3 ̶ 4.1 475 

21 1.6 751 4.8 309 1.7 739 5.1 398 

26 1.9 651 5.8 104 2.0 717 6.1 200 

30 2.2 547 6.7 0.2 2.4 679 7.1 0.1 
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Table B.1 Spearman rank correlation coefficients (ρ)† of the target compounds and Cl- 
over the sampling distance in the Grand River in December 2014. 

 SUC SAC CBZ IBU GEM NAP Cl 
ACE 0.90 0.54 0.81 0.74 0.74 0.71 0.55 
SUC  0.48 0.88 0.74 0.74 0.90 0.48 
SAC   0.57 0.80 0.80 0.45 0.73 
CBZ    0.74 0.74 0.93 0.55 
IBU     1.00 0.74 0.74 
GEM      0.74 0.74 
NAP       0.43 

Note: † Positive values were interpreted as follows: 0.8-1.0 = very strong; 0.6-0.8 = 
strong; 0.4-0.6 = moderate; 0.2-0.4 = weak; 0.0-0.2 = weak or no relationship. 
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Figure B.1 Concentrations of pH, Eh, alkalinity, EC, Cl-, SO4

2-, NO3
--N, NO2

--N, NH3-N, 
total N, PO4-P, and TOC as a function of sampling distance. 
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Figure B.2 Concentrations of acesulfame-K (ACE-K), sucralose (SUC), saccharine 
(SAC), carbamazepine (CBZ), caffeine (CAF), sulfamethoxazole (SMX), ibuprofen 
(IBU), gemfibrozil (GEM) and naproxen (NAP) as a function of sampling distance. The 
method detection limits of ACE-K, SUC, SAC and CAF were too low to appear in the 
figure.  
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Figure B.3 Concentrations of acesulfame-K (ACE-K), sucralose (SUC), saccharine (SAC), 
carbamazepine (CBZ), caffeine (CAF), sulfamethoxazole (SMX), ibuprofen (IBU), gemfibrozil 
(GEM), and naproxen (NAP) as a function of Cl- concentration. The method detection limits of 
ACE-K, SUC, SAC, and CAF were too low to appear in the figure. 
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Chapter 4 
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Figure C.1 The TEM image of GO/TiO2/CSA nanoparticles. 
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Figure C.2 The XRD patterns of GO/TiO2/CSA nanoparticles. Peaks labelled with A match 
anatase phase TiO2 (JCPDS No. 21-1272), R matches rutile phase TiO2 (JCPDS No. 21-1276), 
and those labeled with M match Magnetite (Fe3O4) iron oxide (JCPDS No. 19-629). 
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Figure C.3 Concentration of ACE-K, SMX, MDA, MDMA, IBU, GEM, NAP, CAF, and CBZ 
as a function of reaction time during the 60 min dark adsorption test. 
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Table D.1 First order removal rate constant (kobs, d
-1), mass normalized rate constant (kM, L g-1 d-1), and surface area normalized rate 

constant (kSA, L m-2 d-1) of carbamazepine. kobs is calculated using least-squares regression during two experimental stages. ƚC is the 

input contaminant concentration. 

Contaminant (CAS#), 
pKa, log Kow, and 

structure 
Column Stage PV 

Removal rateƚ, 
µmol L-1 d-1 

(µg L-1 d-1) 

kobs, 
d-1 

kM, 
L g-1 d-1 

kSA, 
L m-2 d-1 

Half-life, 
d 

R2 

Carbamazepine 
(CBZ) 

(298-46-4)  
pKa= -0.49,  
log Kow=2.25 

 

N

O NH2  
 

Column 2 
(ZVI) 

1 
1 1.1E+01 × C 1.1E+01 2.6E-03 2.8E-04 0.06 0.999 
13 4.9 × C 4.9 1.1E-03 1.2E-04 0.14 0.975 
25 4.4 × C 4.4 1.0E-03 1.1E-04 0.16 0.965 

2 53 1.2 × C 1.2 2.9E-04 3.0E-05 0.56 0.931 

Column 3 
(BC) 

1 
1 5.4 × C 5.4 1.2E-02 1.8E-04 0.19 0.998 
13 2.5 × C 2.5 5.3E-03 8.2E-05 0.28 0.998 
25 1.9 × C 1.9 4.2E-03 6.4E-05 0.36 0.996 

2 53 0.7 × C 0.7 1.5E-03 2.3E-05 1.0 0.970 

Column 4 
(ZVI + BC) 

1 
1 8.2 × C 8.2 7.2E-03 2.1E-04 0.09 0.999 
13 4.5 × C 4.5 3.9E-03 1.2E-04 0.16 0.966 
25 4.0 × C 4.0 3.5E-03 1.0E-04 0.17 0.970 

2 53 1.3 × C 1.3 1.1E-03 3.3E-05 0.55 0.992 
KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1.
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Table D.2 First order removal rate constant (kobs, d
-1), mass normalized rate constant (kM, L g-1 d-1), and surface area normalized rate 

constant (kSA, L m-2 d-1) of caffeine. kobs is calculated using least-squares regression during two experimental stages. ƚC is the input 

contaminant concentration. 

Contaminant 
(CAS#), pKa, log 
Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 

kobs, 
d-1 

kM, 
L g-1 

d-1 

kSA, 
L m-2 d-1 

Half-life, 
d 

R2 

Caffeine 
(CAF) 

(58-08-2) 
pKa=10.4,  

log Kow= ‐0.07 
 

N

N

CH3

O

CH3

O

N

N
CH3  

 

Column 2 
(ZVI) 

1 
1 1.6E+01  × C 1.6E+01 3.7E-03 3.9E-04 0.04 0.999 
13 7.2 × C 7.2 1.7E-03 1.8E-04 0.10 0.998 
25 5.1 × C 5.1 1.2E-03 1.2E-04 0.14 0.982 

2 53 1.5 × C 1.5 3.5E-04 3.6E-05 0.47 0.961 

Column 3 
(BC) 

1 
1 4.8 × C 4.8 1.0E-02 1.6E-04 0.14 0.999 
13 2.8 × C 2.8 6.0E-03 9.4E-05 0.25 0.999 
25 2.2 × C 2.2 4.8E-03 7.4E-05 0.31 0.996 

2 53 1.0  × C 1.0 2.1E-03 3.3E-05 0.70 0.973 

Column 4 
(ZVI + BC) 

1 
1 6.9 × C 6.9 6.0E-03 1.8E-04 0.10 0.996 
13 5.5 × C 5.5 4.8E-03 1.4E-04 0.13 0.989 
25 4.5 × C 4.5 3.9E-03 1.2E-04 0.15 0.973 

2 53 1.7 × C 1.7 1.5E-03 4.5E-05 0.40 0.996 
KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.3 First order removal rate constant (kobs, d
-1), mass normalized rate constant (kM, L g-1 d-1), and surface area normalized rate 

constant (kSA, L m-2 d-1) of sulfamethoxazole. kobs is calculated using least-squares regression during two experimental stages. ƚC is the 
input contaminant concentration. “ ̶ ”  represents not applicable. 

Contaminant 
(CAS#), pKa, log 
Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 

kobs, 
d-1 

kM, 
L g-1 d-1 

kSA, 
L m-2 d-1 

Half-life, 
d 

R2 

Sulfamethoxazole 
(SMX) 

(723-46-6) 
pKa1=1.7, 
pKa2=5.6,  

log Kow=0.89 
 

NH2

S

O O

NH

N
O

CH3

 

Column 1 
(Control) 

1 25 0.2 × C 0.2 ̶ ̶ 3. 6 0.877 
2 53 0.4 × C 0.4 ̶ ̶ 1.8 0.984 

Column 2 
(ZVI) 

1 
1 4.5E+02 × C 4.5E+02 1.1E-01 1.1E-02 0.002 1.000 
13 4.7E+02 × C 4.7E+02 1.1E-01 1.1E-02 0.001 1.000 
25 4.6E+02 × C 4.6E+02 1.1E-01 1.1E-02 0.001 1.000 

2 53 1.5E+02 × C 1.5E+02 3.5E-02 3.7E-03 0.005 1.000 

Column 3 
(BC) 

1 
1 1.6 × C 1.6 3.5E-03 5.4E-05 0.43 0.999 
13 1.2 × C 1.2 2.5E-03 3.8E-05 0.60 0.999 
25 1.1 × C 1.1 2.4E-03 3.8E-05 0.61 0.993 

2 53 0.5 × C 0.5 1.1E-03 1.7E-05 1.4 0.991 

Column 4 
(ZVI + BC) 

1 
1 4.5E+02 × C 4.5E+02 4.0E-01 1.2E-02 0.002 1.000 
13 4.7E+02× C 4.7E+02 4.1E-01 1.2E-02 0.001 1.000 
25 4.6E+02 × C 4.6E+02 4.1E-01 1.2E-02 0.001 1.000 

2 53 1.5E+02 × C 1.5E+02 1.3E-01 3.9E-03 0.005 1.000 
KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.4 First order removal rate constant (kobs, d
-1), mass normalized rate constant (kM, L g-1 d-1), and surface area normalized rate 

constant (kSA, L m-2 d-1) of MDA. kobs is calculated using least-squares regression during two experimental stages. ƚC is the input 
contaminant concentration.  

Contaminant (CAS#), pKa, 
log Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 

kobs, 
d-1 

kM, 
L g-1 d-1 

kSA, 
L m-2 d-1 

Half-life, 
d 

R2 

3,4-
methylenedioxyamphetamine 

(MDA)  
(4764-17-4),  

pKa= 9.7,              
log Kow=1.64 

 

O

O

CH3

NH2

 

Column 2  
(ZVI) 

1 
1 1.9E+02 × C 1.9E+02 4.3E-02 4.6E-03 0.004 1.000 
13 1.3E+01 × C 1.3E+01 3.0E-03 3.1E-04 0.06 0.999 
25 7.8 × C 7.8 1.8E-03 1.9E-04 0.09 0.998 

2 53 2.4 × C 2.4 5.5E-04 5.8E-05 0.29 0.996 

Column 3  
(BC) 

1 
1 1.1E+01 × C 1.1E+01 2.4E-02 3.7E-04 0.06 0.999 
13 8.1 × C 8.1 1.7E-02 2.7E-04 0.09 0.997 
25 5.1 × C 5.1 1.1E-02 1.7E-04 0.14 0.998 

2 53 3.2 × C 3.2 6.8E-03 1.1E-04 0.22 0.997 

Column 4 
(ZVI + BC) 

1 
1 2.0E+01 × C 2.0E+01 1.8E-02 5.3E-04 0.03 1.000 
13 1.2E+01 × C 1.2E+01 1.0E-02 3.0E-04 0.06 0.999 
25 8.7 × C 8.7 7.6E-03 2.3E-04 0.08 0.999 

2 53 3.9 × C 3.9 3.4E-03 1.0E-04 0.18 0.999 
KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.5 First order removal rate constant (kobs, d
-1), mass normalized rate constant (kM, L g-1 d-1), and surface area normalized rate 

constant (kSA, L m-2 d-1) of MDMA. kobs is calculated using least-squares regression during two experimental stages. ƚC is the input 
contaminant concentration.  

Contaminant (CAS#), pKa, log 
Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 

kobs, 
d-1 

kM, 
L g-1 d-1 

kSA, 
L m-2 d-1 

Half-
life, 

d 
R2 

3,4-
methylenedioxymethampheta

mine (MDMA)  
(42542-10-9),  

pKa=9.9,  
log Kow=2.28 

 

O

O

CH3

NH
CH3

 

Column 2 
(ZVI) 

1 
1 3.0E+02 × C 3.0E+02 6.9E-02 7.3E-03 0.002 1.000 
13 3.5E+02 × C 3.5E+02 8.2E-02 8.7E-03 0.002 1.000 
25 1.4E+01 × C 1.4E+01 3.2E-03 3.4E-04 0.05 1.000 

2 53 4.0 × C 4.0 9.3E-04 9.8E-05 0.17 1.000 

Column 3 
(BC) 

1 
1 1.1E+01 × C 1.1E+01 2.3E-02 3.6E-04 0.07 0.999 
13 7.7 × C 7.7 1.7E-02 2.6E-04 0.09 0.998 
25 5.2 × C 5.2 1.1E-02 1.7E-04 0.13 0.997 

2 53 3.1 × C 3.1 6.7E-03 1.0E-04 0.22 0.997 

Column 4 
(ZVI + BC) 

1 
1 2.5E+01 × C 2.5E+01 2.2E-02 6.6E-04 0.03 1.000 
13 1.6E+01 × C 1.6E+01 1.4E-02 4.1E-04 0.04 1.000 
25 1.0E+01 × C 1.0E+01 9.0E-03 2.7E-04 0.07 0.999 

2 53 4.3 × C 4.3 3.8E-03 1.1E-04 0.16 1.000 
KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.6 First order removal rate constant (kobs, d
-1), mass normalized rate constant (kM, L g-1 d-1), and surface area normalized rate 

constant (kSA, L m-2 d-1) of ibuprofen. kobs is calculated using least-squares regression during two experimental stages. ƚC is the input 
contaminant concentration.  

Contaminant 
(CAS#), pKa, log 
Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 

kobs, 
d-1 

kM, 
L g-1 d-1

kSA, 
L m-2 d-1 

Half-life, 
d 

R2 

Ibuprofen 
(IBU) 

 (15687-27-1),  
pKa=4.5,  

log Kow=3.5 
 

CH3

CH3

O

CH3

OH

 
 

Column 2 
(ZVI) 

1 
1 2.6 × C 2.6 6.0E-04 6.3E-05 0.27 0.943 
13 1.2 × C 1.2 2.9E-04 3.0E-05 0.56 0.926 
25 0.9 × C 0.9 2.2E-04 2.3E-05 0.74 0.932 

2 53 0.2 × C 0.2 4.7E-05 4.9E-06 3.5 0.864 

Column 3 
(BC) 

1 
1 1.9 × C 1.9 4.2E-03 6.5E-05 0.36 0.992 

13 1.2 × C 1.2 2.6E-03 4.0E-05 0.57 0.997 
25 1.1 × C 1.1 2.4E-03 3.7E-05 0.63 0.996 

2 53 0.4 × C 0.4 8.9E-04 1.4E-05 1.7 0.992 

Column 4 
(ZVI + BC) 

1 
1 2.9 × C 2.9 2.5E-03 7.6E-05 0.24 0.978 
13 1.7 × C 1.7 1.5E-03 4.5E-05 0.41 0.958 
25 1.6 × C 1.6 1.4E-03 4.1E-05 0.44 0.952 

2 53 0.5 × C 0.5 4.0E-04 1.2E-05 1.5 0.941 
KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.7 First order removal rate constant (kobs, d
-1), mass normalized rate constant (kM, L g-1 d-1), and surface area normalized rate 

constant (kSA, L m-2 d-1) of gemfibrozil. kobs is calculated using least-squares regression during two experimental stages. ƚC is the input 
contaminant concentration.  

Contaminant 
(CAS#), pKa, log 
Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 

kobs, 
d-1 

kM, 
L g-1 d-1 

kSA, 
L m-2 d-1 

Half-life, 
d 

R2 

Gemfibrozil 
(GEM) 

(25812-30-0),  
pKa=4.8,  

log Kow=4.3 
 

O

CH3

CH3

CH3CH3

OH

O

 

Column 2 
(ZVI) 

1 
1 9.3 × C 9.3 2.2E-03 2.3E-04 0.07 0.999 
13 4.6 × C 4.6 1.1E-03 1.1E-04 0.15 0.969 
25 3.5 × C 3.5 8.2E-04 8.6E-05 0.20 0.954 

2 53 1.0 × C 1.0 2.4E-04 2.5E-05 0.67 0.927 

Column 3 
(BC) 

1 
1 4.5 × C 4.5 9.7E-03 1.5E-04 0.15 0.997 
13 2.4 × C 2.4 5.1E-03 8.0E-05 0.29 0.995 
25 1.8 × C 1.8 3.8E-03 5.9E-05 0.39 0.996 

2 53 0.6 × C 0.6 1.4E-03 2.1E-05 1.1 0.981 

Column 4 
(ZVI + BC) 

1 
1 5.9 × C 5.9 5.1E-03 1.5E-04 0.12 0.990 
13 3.5 × C 3.5 3.1E-03 9.2E-05 0.20 0.967 
25 2.8 × C 2.8 2.5E-03 7.4E-05 0.24 0.935 

2 53 0.9 × C 0.9 7.6E-04 2.3E-05 0.80 0.989 
KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.8 First order removal rate constant (kobs, d
-1), mass normalized rate constant (kM, L g-1 d-1), and surface area normalized rate 

constant (kSA, L m-2 d-1) of naproxen. kobs is calculated using least-squares regression during two experimental stages. ƚC is the input 
contaminant concentration. 

Contaminant 
(CAS#), pKa, log 
Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 

kobs, 
d-1 

kM, 
L g-1 d-1 

kSA, 
L m-2 d-1 

Half-life, 
d 

R2 

Naproxen 
(NAP) 

 (22204-53-1), 
pKa=4.2,  

log Kow=2.8 
 

O
CH3 O

CH3

OH

 
 

Column 2 
(ZVI) 

1 
1 5.7 × C 5.7 1.3E-03 1.4E-04 0.12 0.988 
13 3.1 × C 3.1 7.2E-04 7.6E-05 0.22 0.908 
25 2.8 × C 2.8 6.4E-04 6.8E-05 0.25 0.949 

2 53 0.6 × C 0.6 1.4E-04 1.5E-05 1.2 0.941 

Column 3 
(BC) 

1 
1 3.7 × C 3.7 8.0E-03 1.2E-04 0.19 0.999 
13 2.0 × C 2.0 4.2E-03 6.6E-05 0.35 0.996 
25 1.7 × C 1.7 3.6E-03 5.6E-05 0.41 0.999 

2 53 0.6 × C 0.6 1.4E-03 2.2E-05 1.1 0.985 

Column 4 
(ZVI + BC) 

1 
1 4.7 × C 4.7 4.1E-03 1.2E-04 0.15 0.978 
13 3.0 × C 3.0 2.6E-03 7.7E-05 0.23 0.959 
25 2.6 × C 2.6 2.2E-03 6.7E-05 0.27 0.977 

2 53 0.7 × C 0.7 6.5E-04 1.9E-05 0.94 0.980 
KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.9 Removal rate constant kobs, mass normalized rate constant kM, and surface area normalized rate constant kSA of acesulfame-
K. Removal rate constant kobs is calculated using least-squares regression during two experimental stages. ƚC is the input contaminant 
concentration. “ ̶ ” represents no removal of contaminant was observed.  

Contaminant 
(CAS#), pKa, log 

Kow, and 
structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 
kobs kM kSA 

Half-life, 
d 

R2 

Acesulfame-K 
(ACE-K) 

(55589-62-3), 
pKa=2.0,  

log Kow= -1.3 
 

N
S

O

O

O O

K

CH3

+

 
 

Column 2 
(ZVI) 

1 
1 2.3E-01 × C a 2.3E-01a 5.3E-05a 5.6E-06a 3.1 0.749 
13 1.0E-01 × C a 1.0E-01a 2.4E-05a 2.6E-06a 6.6 0.906 
25 9.8E-02 × C a 9.8E-02a 2.3E-05a 2.4E-06a 7.0 0.874 

2 53 1.1E-01 × C a 1.1E-01a 2.7E-05a 2.8E-06a 6.1 0.870 

Column 3 
(BC) 

1 
1 1.6 E+01b 1.6 E+01b 3.4E-02b 5.3E-04b 3.2 0.864 
13 ̶ ̶ ̶ ̶ ̶ ̶ 
25 ̶ ̶ ̶ ̶ ̶ ̶ 

2 53 ̶ ̶ ̶ ̶ ̶ ̶ 

Column 4 
(ZVI + BC) 

1 
1 5.9b 5.8b 5.1E-03b 1.5E-04b 8.3 0.976 
13 4.2b 4.2b 3.7E-03b 1.1E-04b 12 0.634 
25 4.9b 4.9b 4.3E-03b 1.3E-04b 10 0.835 

2 53 3.2b 3.2b 2.8E-03b 8.3E-05b 17 0.866 
a Removal of ACE-K followed a first order reaction rate, unit of kobs is d-1, unit of kM is L g-1d-1, unit of kSA is L m-2 d-1. 

bRemoval of ACE-K followed a zero order reaction rate, unit of k is µmol ACE-K L-1 d-1 (µg ACE-K L-1 d-1), unit of kM is µmol ACE-
K d-1 g (reactive media)-1 [µg ACE-K d-1 g (reactive media) -1], unit of kSA is µmol ACE-K d-1 m-2 (µg ACE-K d-1 m-2). 

KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.10 Zero-order removal rate constant kobs (µmol CYC L-1 d-1 or µg CYC L-1 d-1), mass normalized rate constant kM  [µmol CYC  
g (reactive media) -1 d-1 or µg CYC g (reactive media)-1 d-1], and surface area normalized rate constant kSA (µmol CYC m-2 d-1 or µg 
CYC m-2 d-1) of cyclamate. Removal rate constant kobs is calculated using least-squares regression during two experimental stages. ƚC 
is the input contaminant concentration. “ ̶ ” represents no removal of contaminant was observed.  

Contaminant 
(CAS#), pKa, 
log Kow, and 

structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 

kobs, 
µmol L-1 d-1 

(µg L-1 d-1) 

kM, 
µmol g-1 d-1 

(µg g-1 d-1) 

kSA, 
µmol m-2 d-

1 

(µg m-2 d-1) 

Half-life, 
d 

R2 

Cyclamate 
(CYC) 

(45951-45-9),  
pKa=1.7,  

log Kow= -2.6 
 

NH

S

O O

O
-

 

Column 2 
(ZVI) 

1 
1 1.5E+01 1.5E+01 3.6E-03 3.8E-04 3.3 0.697
13 ̶ ̶ ̶ ̶ ̶ ̶ 
25 ̶ ̶ ̶ ̶ ̶ ̶ 

2 53 ̶ ̶ ̶ ̶ ̶ ̶ 

Column 3 
(BC) 

1 
1 8.4 8.4 1.8E-02 2.8E-04 5.8 0.839
13 ̶ ̶ ̶ ̶ ̶ ̶ 
25 ̶ ̶ ̶ ̶ ̶ ̶ 

2 53 ̶ ̶ ̶ ̶ ̶ ̶ 

Column 4 
(ZVI+BC) 

1 
1 2.0 2.0 1.8E-03 5.2E-05 23 0.624
13 ̶ ̶ ̶ ̶ ̶ ̶ 
25 ̶ ̶ ̶ ̶ ̶ ̶ 

2 53 ̶ ̶ ̶ ̶ ̶ ̶ 
KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.11 Removal rate constant kobs, mass normalized rate constant kM, and surface area normalized rate constant kSA of saccharin. 
Removal rate constant kobs is calculated using least-squares regression during two experimental stages. ƚC is the input contaminant 
concentration. “ ̶ ” represents no removal of contaminant was observed. 

Contaminant 
(CAS#), pKa, 
log Kow, and 

structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 
kobs kM kSA 

Half-life, 
d 

R2 

Saccharin 
(SAC) 

(81-07-2),  
pKa=1.3,  

log Kow=0.9 
 

NH

S

O

OO  

Column 2 
(ZVI) 

1 
1 3.5E+01b 3.5E+01b 8.1E-03b 8.6E-04b 1.5 0.898 
13 4.7b 4.7b 1.1E-03b 1.2E-04b 9.3 0.804 
25 ̶ ̶ ̶ ̶ ̶ ̶ 

2 53 1.7b 1.7b 3.9E-04b 4.1E-05b 32 0.583 

Column 3 
(BC) 

1 
1 1.0 × Ca 1.0a 2.2E-03a 3.4E-05a 0.7 0.978 
13 0.5 × Ca 0.5a 9.8E-04a 1.5E-05a 1.5 0.981 
25 2.4E+01b 2.4E+01b 5.2E-02b 8.0E-04b 2.2 0.983 

2 53 2.6b 2.6b 5.6E-03b 8.6E-05b 21 0.828 

Column 4 
(ZVI + BC) 

1 
1 3.4E+01b 3.4E+01b 3.0E-02b 8.9E-04b 1.3 0.969 
13 1.4E+01b 1.4E+01b 1.2E-02b 3.6E-04b 3.1 0.960 
25 1.1E+01b 1.1E+01b 9.4E-03b 2.8E-04b 4.9 0.845 

2 53 2.1b 2.1b 1.9E-03b 5.6E-05b 25 0.701 
a Removal of SAC followed a first order reaction rate, unit of kobs is d-1, unit of kM is L g-1 d-1, unit of kSA is L m-2 d-1. 

b Removal of SAC followed a zero order reaction rate, unit of k is µmol SAC L-1 d-1 (µg SAC L-1 d-1), unit of kM is µmol SAC d-1 g 
(reactive media)-1 [µg SAC d-1 g (reactive media)-1], unit of kSA is µmol SAC d-1 m-2 (µg SAC d-1 m-2). 

KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.12 Removal rate constant kobs, mass normalized rate constant kM, and surface area normalized rate constant kSA of sucralose. 
Removal rate constant kobs is calculated using least-squares regression during two experimental stages. ƚC is the input contaminant 
concentration. “ ̶ ” represents no removal of contaminant was observed. 

Contaminant 
(CAS#), pKa, log 
Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 
kobs kM kSA 

Half-life, 
d 

R2 

Sucralose 
(SCL) 

(56038-13-2) 
pKa=11.8,  

log Kow= -1.0 
 

O

O O

OH

Cl

OH

OH

OH

OH

Cl

Cl

 

Column 2 
(ZVI) 

1 
1 2.1 × Ca 2.1a 4.8E-04a 5.1E-05a 0.3 0.922 
13 1.0 × Ca 1.0a 2.4E-04a 2.5E-05a 0.7 0.927 
25 4.4E+01b 4.4E+01b 1.0E-02b 1.1E-03b 1.4 0.963 

2 53 1.2E+01b 1.2E+01b 2.8E-03b 2.9E-04b 4.9 0.995 

Column 3 
(BC) 

1 
1 1.3 × Ca 1.3a 2.7E-03a 4.2E-05a 0.5 0.999 
13 0.9× Ca 0.9a 1.9E-03a 2.9E-05a 0.8 0.983 
25 0.7 × Ca 0.7a 1.4E-03a 2.2E-05a 1.1 0.983 

2 53 0.2 × Ca 0.2a 4.3E-04a 6.6E-06a 3.5 0.981 

Column 4 
(ZVI + BC) 

1 
1 1.6 × Ca 1.6a 1.4E-03a 4.2E-05a 0.4 0.948 
13 0.9 × Ca 0.9a 8.1E-04a 2.4E-05a 0.8 0.961 
25 0.7 × Ca 0.7a 6.4E-04a 1.9E-05a 1.0 0.942 

2 53 0.2 × Ca 0.2a 1.6E-04a 4.7E-06a 3.9 0.995 
a Removal of SCL followed a first order reaction rate, unit of kobs is d-1, unit of kM is L g-1 d-1, unit of kSA is L m-2 d-1. 

b Removal of SCL followed a zero order reaction rate, unit of k is µmol SCL L-1 d-1 (µg SCL L-1 d-1), unit of kM is µmol SCL d-1 g 
(reactive media) -1 [µg SCL d-1 g (reactive media) -1], unit of kSA is µmol SCL d-1 m-2 (µg SCL d-1 m-2). 

KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.13 Removal rate constant kobs, mass normalized rate constant kM, and surface area normalized rate constant kSA of 
perfluorooctanoic acid (PFOA). Removal rate constant kobs is calculated using least-squares regression during two experimental stages. 
ƚC is the input contaminant concentration. “ ̶ ” represents no removal of contaminant was observed. 

Contaminant 
(CAS#), pKa, log 
Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 
kobs kM kSA 

Half-
life, d 

R2 

Perfluorooctanoic 
acid (PFOA) 
(335-67-1), 
pKa=0.5,  

log Kow=5.11 
 

 

Column 2 
(ZVI) 

1 
1 2.2E+01b 2.2E+01b 5.2E-03b 5.5E-04b 1.3 0.821 
13 ̶ ̶ ̶ ̶ ̶ ̶ 
25 ̶ ̶ ̶ ̶ ̶ ̶ 

2 53 ̶ ̶ ̶ ̶ ̶ ̶ 

Column 3 
(BC) 

1 
1 1.0 × Ca 1.0a 2.1E-03a 3.3E-05a 0.7 0.980 
13 0.5 × Ca 0.5a 1.1E-03a 1.8E-05a 1.3 0.987 
25 1.2E+01b 1.2E+01b 2.5E-02b 3.9E-04b 2.3 0.956 

2 53 0.9b 0.9b 1.9E-03b 3.0E-05b 25 0.780 

Column 4 
(ZVI + BC) 

1 
1 2.0E+01 b 2.0E+01b 1.8E-02b 5.3E-04b 1.3 0.935 

13 7.7b 7.7b 6.7E-03b 2.0E-04b 3.3 0.933 
25 2.0b 2.0b 1.7E-03b 5.1E-05b 13 0.725 

2 53 ̶ ̶ ̶ ̶ ̶ ̶ 
a Removal of PFOA followed a first order reaction rate, unit of kobs is d-1, unit of kM is L g-1 d-1, unit of kSA is L m-2 d-1. 

b Removal of PFOA followed a zero order reaction rate, unit of k is µmol PFOA L-1 d-1 (µg PFOA L-1 d-1), unit of kM is µmol PFOA d-1 

g (reactive media) -1 [µg PFOA d-1 g (reactive media) -1], unit of kSA is µmol PFOA d-1 m-2 (µg PFOA d-1 m-2). 

KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table D.14 Removal rate constant kobs, mass normalized rate constant kM, and surface area normalized rate constant kSA of 
perfluorooctane sulfonic acid (PFOS). Removal rate constant kobs is calculated using least-squares regression during two experimental 
stages. ƚC is the input contaminant concentration. “ ̶ ” represents no removal of contaminant was observed. 

Contaminant 
(CAS#), pKa, log 
Kow, and structure 

Column Stage PV 
Removal rateƚ, 

µmol L-1 d-1 

(µg L-1 d-1) 
kobs kM kSA 

Half-
life, d 

R2 

Perfluorooctane 
sulfonic acid 

(PFOS) 
(2795-39-3),  
pKa= -2.3,  

log Kow=5.41 
 

 

Column 2 
(ZVI) 

1 
1 2.0 × Ca 2.0a 4.6E-04a 4.9E-05a 0.4 0.911 
13 0.9 × Ca 0.9a 2.1E-04a 2.3E-05a 0.8 0.834 
25 2.2E+01b 2.2E+01b 5.1E-03b 5.4E-04b 1.5 0.929 

2 53 2.6b 2.6b 6.2E-04b 6.5E-05b 16 0.734 

Column 3 
(BC) 

1 
1 1.8 × Ca 1.8a 3.9E-03a 6.0E-05a 0.4 0.989 
13 0.5 × Ca 0.5a 1.2E-03a 1.8E-05a 1.3 0.511 
25 0.9 × Ca 0.9a 1.8E-03a 2.8E-05a 0.8 0.961 

2 53 0.2 × Ca 0.2a 4.6E-04a 7.2E-06a 3.2 0.967 

Column 4 
(ZVI + BC) 

1 
1 2.2 × Ca 2.2a 1.9E-03a 5.7E-05a 0.3 0.974 
13 0.7 × Ca 0.7a 5.8E-04a 1.7E-05a 1.1 0.881 
25 1.1 × Ca 1.1a 9.6E-04a 2.9E-05a 0.6 0.962 

2 53 7.0 b 7.0E+01b 6.1E-03b 1.8E-04b 5.9 0.966 
a Removal of PFOS followed a first order reaction rate, unit of kobs is d-1, unit of kM is L g-1 d-1, unit of kSA is L m-2 d-1. 

b Removal of PFOS followed a zero order reaction rate, unit of k is µmol PFOS L-1 d-1 (µg PFOS L-1 d-1), unit of kM is µmol PFOS d-1 g 
(reactive media) -1 [µg PFOS d-1 g (reactive media) -1], unit of kSA is µmol PFOS d-1 m-2 (µg PFOS d-1 m-2). 

KM and KSA were calculated following the expression KM = Kobs/ρm; KSA = Kobs/ρa = KM/as (Johnson et al., 1996). ρm is the mass 
concentrations of reactive media (g L-1 of solution). ρa is the surface area concentrations of reactive media (m2 L-1 of solution). as is 
the specific surface area of reactive media (m2 g-1). Specific surface areas of ZVI, BC, and (ZVI + BC) are 9.5, 64.5, and 33.6 m2 g-1. 
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Table E.1 Concentrations of F- and acetate in treatment samples (PFOA+ ZVI, Day 90; PFOA+ 
ZVI, Day 120; PFOS+ ZVI, Day 90; PFOS+ ZVI, Day 120) and recoveries of F- and acetate in 
the same sample fortified with F- and acetate. Each sample was fortified with either 0.1mg L-1 F- 
or 1mg L-1 acetate or both of 0.1mg L-1 F- and 1mg L-1 acetate. The IC chromatograms for the 
detection of fluoride (F-) ions are presented in Figures E.1  ̶  E.4. “ ̶ ” indicates the samples were 
not available or analyzed.  

Sample name 
Con. of F-, 

mg L-1 

Con. of 
acetate,   
mg L-1 

Recovery of 
fortified F-

, % 

Recovery of 
fortified 

acetate, % 
PFOA + ZVI, Day 90 0.14 0.91 ̶ ̶ 
PFOA + ZVI, Day 90_fortified with F- 0.23 0.90 0.86 ̶ 
PFOA + ZVI, Day 90_fortified  with acetate 0.13 1.71 ̶ 0.79 
PFOA + ZVI, Day 90_fortified with F- and acetate 0.22 1.76 0.80 0.85 
PFOA + ZVI, Day 120 0.14 1.35 ̶ ̶ 
PFOA + ZVI, Day 120_fortified with F- 0.22 1.26 0.79 ̶ 
PFOA + ZVI, Day 120_fortified with acetate 0.15 2.26 ̶ 0.91 
PFOA + ZVI, Day 120_fortified with F- and acetate 0.22 2.20 0.79 0.86 
PFOS + ZVI, Day 90 0.06 1.38 ̶ ̶ 
PFOS + ZVI, Day 90_fortified with F- 0.13 1.22 0.75 ̶ 
PFOS + ZVI, Day 90_fortified with acetate 0.05 2.04 ̶ 0.76 
PFOS + ZVI, Day 90_fortified with F- and acetate 0.14 2.11 0.83 0.73 
PFOS + ZVI, Day 120 0.06 1.49 ̶ ̶ 
PFOS + ZVI, Day 120_fortified with F- 0.15 1.54 0.83 ̶ 
PFOS + ZVI, Day 120_fortified with acetate 0.06 2.50 ̶ 1.01 
PFOS + ZVI, Day 120_fortified with F- and acetate 0.14 2.28 0.73 0.79 
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