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Abstract

Code review is an essential element of any mature software development project, it is
key to ensuring the long-term quality of the code base. Code review aims at evaluating
code contributions submitted by developers before they are committed into the project’s
version control system. Code review is considered to be one of the most effective QA
practices for software projects. In principle, the code review process should improve the
quality of committed code changes. However, in practice, the execution of this process can
still allow bugs to enter into the codebase unnoticed.

Moreover, the notion of the quality of the code review process is not limited to the
quality of the source code that passed a review. It goes beyond that, the quality of
the code review process can affect how successful a software development project is. For
instance, in the world of open source software (OSS), a particular execution code review
process may encourage or deter the contributions from “external” developers, the people
who are essential to OSS projects.

We claim that by analyzing various software artifacts as well as assessing developers’
daily experience, we can create models that represent the established code review processes
and highlight potentially weak points in their execution. Having this information, the
stakeholders can channel the available resources to address the deficiencies in their code
review process. To support such a claim, we perform the following studies.

First, we study the tool-based code review processes of two large OSS projects that use
traditional model of evaluating code contributions. We analyse the software artifacts ex-
tracted from the issue tracking systems to understand what can affect code review response
time and eventual outcome. We found that code review is affected not only by technical
factors (e.g., patch size, priority, etc.) but also by non-technical ones (e.g., developers’
affiliation, their experience, etc.).

Second, we investigate the quality of contributions that passed the code review process
and explore the relationships between the reviewers’ code inspections and a set of factors,
both personal and social in nature, that might affect the quality of such inspections. By
mining the software repository and the issue tracking system of the Mozilla project, as
well as applying the SZZ algorithm to detect bug-inducing changes, we were able to find
that 54% of the reviewed changes introduced bugs in the code. Our findings also showed
that both personal metrics, such as reviewer workload and experience, and participation
metrics, such as the number of involved developers, are associated with the quality of the
code review process.

ix



Third, we further study the topic of code review quality by studying the developers’
attitude and perception of review quality as well as the factors they believe to be important.
To accomplish this, we surveyed 88 Mozilla core developers, and applied grounded theory
to analyze their responses. The results provide developer insights into how they define
review quality, what factors contribute to how they evaluate submitted code and what
challenges they face when performing review tasks.

Finally, we examined the code review processes executed in a completely different envi-
ronment — an industrial project that uses pull-based development model. Our case study
was Active Merchant project developed by Shopify Inc. We performed a quantitative anal-
ysis of their software repository to understand the effects of a variety of factors on pull
request review time and outcome. After that, we surveyed the developers to understand
their perception of the review process and how it is different from developers’ perception
in traditional development model.

The studies presented in this thesis focus on code review processes performed by projects
of different nature — OSS vs. industrial, traditional vs. pull-based. Nevertheless, we
observed similar patterns in the execution of code review that the stakeholder should be
aware of to maintain the long-term health of the projects.
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Chapter 1

Introduction

Building and maintaining software systems is expensive in terms of both costs and developer
time. While each project stores large volumes of information in different forms — such as
source code, bug reports, developer discussions, documentation, etc. — usually much of
this information is not available in a form that is immediately useful to various stakeholders
to answer questions related to development decisions. Consequently, stakeholders cannot
easily base their decisions on the available raw data; indeed, they have to rely largely on
their experience, their intuition, and/or the experience of others that they think might be
applicable to the current problem.

Moreover, modern software development is a complex social activity. With software
systems becoming larger, and developers being distributed across the globe due to differ-
ent reasons such as company having multiple offices, outsourcing, or a project being open
source, the social dimension of software development begins to increase its impact on the
process. In addition, new software development methods, such as agile software develop-
ment, have emerged that put extra emphasis on interactions between all involved parties
— customers, mangers, and developers. Measuring the impact of the social dimension of
software development is difficult because traditional artifacts, such as source code and bug
reports, usually contain only technical information that cannot be used to detect or trace
events and decisions that were influenced or triggered by that dimension.

Although the development of each software product is a complicated process with its
unique set of requirements, there is one problem that the stakeholders were, are, and will be
concerned about — the quality of that software product. One key element that is adopted
by virtually every mature software development project in order to address the question
of quality is code review — the proactive evaluation of code contributions submitted by
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developers. Code review is often thought of as one of the most effective practices for
ensuring quality and success of the resulting software system; it has been shown to be an
effective way of identifying defects in the code changes before they are committed into the
project’s code base [39]. Reviewers, who are viewed as the gatekeepers of a project’s master
repository, must carefully validate the design and implementation of new contributions to
ensure they meet the project’s quality standards.

Initially, code review was presented by Fagan as a formalized and structured pro-
cess [39]. Software inspection, the name used by Fagan, consists of six sequential phases;
each member of an inspection team is assigned one of the four roles that matches their
expertise. The actual inspection happens during lengthy group meetings — the team
members follow the checklists, thoroughly analyse the source code line-by-line, and fill
out several forms when they find defects. Although the inspections were shown to be an
effective quality assurance technique [35, 108, 109], they are very heavy on resources and
developers’ time, and they have not received wide adoption.

Nowadays, many companies and open source software projects perform code review in
more relaxed settings: it is less formal in nature, and each review is usually done by a
single person, typically a senior developer on the core team. In addition, developers use
different tools (e.g., Gerrit) and/or environments (e.g., GitHub) to help themselves with
code review tasks. This lightweight approach is also known as Modern Code Review [8].

While some may view modern code review as purely a technical process, we believe
that it is fundamentally a social process. In Fagan’s code review settings, the technical
nature of code review might have overshadowed the social one due to its formality and
strict structure. However, such a transition (i.e., from formal and structured to informal
and relaxed) will lessen the effect of technical aspects of code review while emphasizing
on the social ones. For example, during modern code review, the identity of the patch’s
author is known to a reviewer, therefore a review and especially the “perceived” quality
of the patch might be affected by the amount of knowledge the reviewer has about the
patch’s author.

Although there is agreement on the positive value that code review has on software
development, the implementation of this process is different among projects. The projects
differ not only in the policies that govern which changes must be reviewed, and who
should perform such reviews but also in a development model (i.e., classic vs. pull-based
model) used that implicitly affects the review process. Once the process is established,
stakeholders have little means to know how this process affects or is affected by the ongoing
software development. In principle, the code review process should improve the quality
of code changes before they are committed to the project’s master repository. However,
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in practice, the execution of this process can still allow bugs to enter into the codebase
unnoticed. Although stakeholders have access to all the raw data available to them, it can
offer them little help in understanding how the process should be adjusted to improve the
quality of the systems they are building.

Because the reviewers stand in the way of the new code contributions to the project’s
master repository, it is crucial that the reviewers and stakeholders understand how code
review affects the needs of the project. For example, in case of open source software, the
need for the contributions from “outsiders” might be of the highest importance, so the
stakeholders must ensure that the established code review process does not discourage
newcomers from making contributions.

Since the investigation of code review processes involves extracting and processing data
from a variety of sources, much of the foundational previous research comes from the field of
mining software repositories (MSR). Mining software repositories refers to extracting data
from multiple sources such as version control systems, bug trackers, discussion boards,
Q&A websites, etc. These sources accumulate a variety of artifacts during the lifetime of
a project. By studying these artifacts, one can gain knowledge about the evolution of the
project, as well as discover meaningful relationships among them. Using mining software
repositories techniques — which come from areas such as data mining, machine learning,
and statistical analysis — as a workhorse for getting the structured data from different
sources, and applying statistical analysis to that gathered data, we can seek to provide
facts that are useful, understandable, and address developers’ or managers’ needs. For
example, by analyzing the structured, mined data from the version control repository and
the issue tracking system, we can look for factors that slow down the review process; in
turn, developers might choose to adjust their day-to-day routines.

1.1 Thesis Statement and Research Problems

This dissertation is focused on the topic of code review quality. To be precise, the thesis
of this dissertation is that by analyzing various software artifacts as well as assessing
developers’ daily experience, we can create models that represent the established code
review processes, help evaluate their quality, and highlight potentially weak points in their
execution. Having this information, the stakeholders can channel the available resources
to address the deficiencies in their code review process.

In our opinion, the definition of the quality of the code review process depends on
the stakeholder’s point of view, and therefore, the quality can be measured using different
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metrics, both quantitative and qualitative in nature, that are tied to a particular definition.
For example, reviewers might associate the quality with the number of defects that passed
a review while developers might associate the quality with the time it takes to review their
code contributions, as well as the likelihood of their patches being accepted.

To support the thesis statement, we study code review in different contexts and address
four main research problems:

1. Understanding the factors affecting code review time and outcome
When submitting patches for code review, individual developers are primarily in-
terested in maximizing the chances of their patch being accepted in the least time
possible. In principle, code review is a transparent process in which reviewers aim to
assess the qualities of the patch on its technical merits in a timely manner; however,
in practice the execution of this process can be affected by a variety of factors, some
of which are external to the technical content of the patch itself. While the length
of the review process might not be of a big interest for developers in the industrial
context, it is crucially important for open source projects. In such projects, lengthy
reviews might discourage contributions from the non-core developers, and as a result
these projects might become less successful.

2. Understanding the quality aspect of code review
One of the key reasons for establishing a code review process is ensuring that new
changes to a software project meet the established quality standards and do not
introduce defects into existing source code. Unfortunately, in practice, software bugs
are sometimes unintentionally missed by the reviewers. Reviewing a code change
is not a trivial task for developers — they must carefully check for any mistakes,
check that the proposed code adheres to best practices, consider possible impact
on the existing code base, etc. Characteristics of a particular code change and the
circumstances under which the review is performed can make the reviewer’s job
easier or harder. In this work, we explore the relationships between the reviewers’
code inspections and a set of factors, both personal and social in nature, that might
affect the quality of such inspections.

3. Understanding developer perspective on what review quality means to
them
Software development is mainly done by humans; therefore, inherently there will be
parts of code review process that are heavily influenced by the people performing it.
However, software-related data sources — such as version control repositories and
issue tracking systems — cannot reveal much about what challenges developers face
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when they conduct code review tasks. Developers’ perception of code review is a
missing piece of the overall picture of review quality. It is needed to find the weak-
nesses within the review process and to drive the development of new processes to
support developers’ work. In this work, we investigate how the developers themselves
define code review quality, what factors contribute to how they evaluate submitted
code, and what challenges they face when performing review tasks.

4. Code review in a pull-based development model
Pull-based software development model has gain a lot popularity among software
developers. Hosting services such as GitHub and Bitbucket attracted a huge number
of new and existing projects — GitHub alone is estimated to have more than 19.4
million active repositories [48]. Unlike traditional model of evaluation code contri-
butions, in pull-based development model developers make changes to an isolated
copy of the project’s repository, create a pull request that represent such changes,
and submit it to the project for evaluation. It is vital to understand whether pull
request review (code review of changes in pull-based model) differs from the tradi-
tional code review in factors that affect its quality. Having such knowledge, we can
identify similar patterns of code review execution.

1.2 Contributions

Here we highlight the main contributions of this thesis:

• We identified three sets of factors — technical, personal, and organizational — that
influence the duration of code review as well as the outcome of that review in two
big OSS projects [15].

• We showed that a large percentage of code changes that successfully passed the review
process still contain defects [71].

• We investigated which aspects contribute to poor code review quality and found that
size of a patch, the number of affected files, the presence of a second reviewer, reviewer
workload and experience, as well as developers participation in the discussion of a
patch are the factors that affect the effectiveness of code review [71].

• We surveyed professional Mozilla developers and found that they believe that factors
such as the experience of developers, the choice of a reviewer, size of a patch, its
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quality and rationale affect the time needed for review; while bug severity, code
quality and its rationale, presence and quality of tests, and developer personality
impact review decisions [70].

• We explored how developers perceive the quality of the code review process, and the
problems developers face during code review and found that developer perception
of code review quality is shaped by their experience and defined as a function of
clear and thorough feedback provided in a timely manner by a peer with a supreme
knowledge of the code base, strong personal and inter-personal qualities [70].

• We investigated the factors that affect the timeliness and outcome of pull request
reviews and found that a pull request size, the discussion, as well as author experience
and affiliation influence both review time and review decision [72].

• We explored how developers perceive pull request quality and found that their per-
ception is defined by pull request description, complexity, and revertability. Pull
request review quality is seen as a function of constructive feedback, quality of tests,
and generated discussion between author and reviewer [72].

Overall, our work presents an in-depth analysis of code review quality in a variety of
settings. We observed similar patterns in the execution of code review that the stakeholder
should be aware of to maintain the long-term health of the projects.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the existing research
relevant to the topic of this thesis, and provides an overview of data analysis techniques
our work relies on. Chapter 3 describes our study of the effects that several sets of factors
might have on the code review response time and eventual outcome. In Chapter 4, we
present our quantitative study of code review quality. Chapter 5 focuses on developers’
and their perception of review quality. Chapter 6 examines the quality of pull request
reviews and analyzes the developers’ perspective on code review in pull-based development
model. Finally, Chapter 7 concludes the thesis by discussing its main contributions as well
as highlighting directions of future work.
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Chapter 2

Background and Related Work

There is much previous work related to our goal of understanding code review and improv-
ing current practices. The research problems of this work corresponds to three research
areas: code review, software quality, and bug fixing. In this chapter, we provide an overview
of the existing research for each studied problem, as well as present data analysis methods
and techniques that can be used to address these problems.

2.1 Code Review and Contribution Management

A large body of work has attempted to assess modern code review as practised in the de-
velopment of large software systems. Mockus et al. [86] were among the pioneer researchers
who studied open source development. By analyzing the Mozilla and Apache projects, they
identified the main characteristics of open source communities such as the dependency on
the contributions from outside developers, and developers being free to choose tasks to
work on. Rigby and German [104] presented a first investigation of code review processes
as practised within four-open source projects: GCC, Linux, Mozilla, and Apache. They
show the existence of a number of review patterns and quantitatively analyzed the review
process of the Apache project. One of the interesting patterns they found is that some-
times the contributions from “outsiders” (i.e., external developers) are simply rewritten by
the reviewers instead of providing the authors with a list of comments. Rigby et al. [105]
examined peer review techniques used by the Apache server project namely, review-then-
commit and commit-then-review. They suggested a series of metrics that produce measures
similar to those used in traditional inspection experiments. Specifically, they measured the
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frequency of review, the level of participation in reviews, the size of the artifact under re-
view, the calendar time to perform a review, and the number of reviews that find defects.
Their findings have shown that Apache adopt a broadcast-based style of code review where
reviews are frequent reviews of small, independent, complete contributions conducted by
a group of self-selected experts. Later, Rigby and Storey [106] investigated the mecha-
nisms employed by developers of five open source projects to identify code changes they
are competent to review. They explored the way stakeholders interact with one another
during the code review process. Their findings provide insights to developers about how to
effectively manage large quantities of reviews. Additionally, their investigation reveals that
the identification of defects is not the sole motivation for modern code review. In effect,
other motivations exist including resolving non-technical issues with code under review
such as feature, scope, or process issues. For example, they found that some features were
not incorporated into the code base simply because no developer was willing to maintain
them.

Weissgerber et al. [124] performed data mining on email archives of two open source
projects to study patch contributions. They found that the probability of a patch being
accepted is about 40% and that smaller patches have higher chance of being accepted
than larger ones. They also reported that if patches are accepted, they are normally
accepted quickly (61% of patches are accepted within three days). Jiang et al. [62] studied,
through the analysis of the Linux Kernel, the relation between patch characteristics and
the probability of patch acceptance as well as the time taken for patches to be integrated
into the code base. The results of their study showed that developer experience, patch
maturity, and prior subsystem churn affect the patch acceptance, while reviewing time is
impacted by submission time, the number of affected subsystems, the number of suggested
reviewers, and developer experience.

In a qualitative study done at Microsoft [8], Bachelli and Bird studied the motivations,
challenges, and outcomes of their code review process. This investigation revealed that
while finding defects remains the main motivation for review, other motivations exist as
well. For example, they found that for 40% of the interviewed developers, the main moti-
vation behind the code review is code improvement (i.e., not bug-related changes regarding
readability, consistency, and comments in the code, etc). Another motivation, identified
by 17% of developers, is finding alternative solution to a submitted piece of source code.
Rigby and Bird [103] did a quantitative study of six industry-led projects and seven OSS
projects; while those projects differed in problem domain, team culture, and development
processes, the study found that the code review processes employed by the projects had
similar characteristics.
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Thongtanunam et al. [119] analyzed three open source projects — Android, Qt, and
OpenStack — to find the common characteristics of patches that suffer from low code
review participation, i.e., patches that are not selected for a review, patches that are not
discussed during the review, and patches that receive a delayed feedback. They found
that the number of reviewers of previous versions of a patch and the number of days since
the last version of a patch correlate with the likelihood of a patch being selected for a
review. The length of patch description as well as the length of prior discussions have a
relationship with the likelihood of a patch undergoing a discussion. Finally, the delay of
feedback on prior patches as well as the type of a change correlate with the feedback delay
of the current patch.

2.2 Software Quality and Metrics Used to Predict It

Researchers have studied a large variety of metrics for predicting the defect-proneness of
source code, including technical metrics (e.g., lines of code and number of code chunks),
organizational metrics (e.g., number of involved developers and distance between them),
and process metrics (e.g., number of previous bugs).

A recent work by Kamaie [64] empirically evaluated a real-time approach, called “Just-
In-Time Quality Assurance”, to identify potentially risky changes. Their study evalu-
ated change-level prediction through the analysis of six open-source and five commercial
projects. They found that process metrics (such as number of past defects) are more
accurate than product metrics (such as cyclomatic complexity) when software quality as-
surance effort is considered. Kim et al. [66] classified changes as being defect-prone or
“clean” based on the use of the identifiers in added and deleted source code and the words
in change logs. Eyolfson et al. [38] analyzed the relation between a change bugginess and
the time of the day the change was committed and the experience of the developer who
made the change. They found that changes performed between midnight and 4 AM are
more buggy than changes committed between 7 AM and noon, and that developers who
regularly make their commits introduce less buggy changes.

Several other metrics have been used to predict defects. For example, Graves et al. [53]
rely on the use of change history-based process metrics — such as the number of past
defects and number of developers — to build defect prediction models. Jiang et al. [61]
have compared the performance of design and code metrics in predicting fault-prone mod-
ules. Their work has shown that code-based models are better predictors of fault-prone
modules than design-level models. A study by Moser et al. [90] found that process metrics
perform similarly to code metrics when predicting defect-prone files in the Eclipse project.
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Zimmermann et al. [131] have focused on investigating defect prediction from one project
to another using seven commercial projects and four-open source projects. They found no
single factor that produced accurate predictions.

Nagappan et al. demonstrated that organizational metrics — such as the number of
developers working on a component, organizational distance between developers, as well as
organizational code ownership — are better predictors of defect-proneness than traditional
measures such as churn, complexity, coverage, dependencies, and pre-release bug metrics
[96]. These findings agrees with Conway’s law [29], which assume that a software system’s
design reflects the structure of the organization that develops it.

Rahman and Devanbu suggested the use of defect prediction models to compare the
impact of product and process metrics [102]. The results of their research suggest that
code metrics are generally less useful than process metrics for prediction. In related work,
the same authors found that lines of code involved in a bug fix are more strongly associated
with contributions from a single developer than contributions from many developers. This
finding suggests that code review is an essential part of the software quality assurance [101].
Mende and Koschke [82] have proposed effort-aware bug prediction models to help allocate
software quality assurance efforts including code review. The suggested models factor in
the effort required to perform code review or test code when evaluating the effectiveness
of prediction models, resulting in more realistic performance evaluations.

Recent works have also investigated source code ownership for software quality. Bird
et al. find measures of ownership — such as the number of low-expertise developers, and
the proportion of ownership for the top owner — have a relationship with both pre-release
faults and post-release failures [20]. Matsumoto et al. have shown that their suggested
metrics of ownership (e.g., the number of developers and the code churn generated by each
developer) are also good indicators of defect-prone source code files [79].

Existing research indicates that personal factors such as ownership, experience, orga-
nizational structure, and geographic distribution significantly impact on software quality.
Understanding these factors, and properly allocating human resources can help managers
enhance quality outcomes. We hypothesize that a modern code review process often fails
to identify buggy changes and that this may be due to several families of factors, including
technical, personal, and organizational.

2.2.1 Identification of Faulty Changes

Many studies on assessing defect-proneness of code changes require preliminary knowledge
of whether a particular commit is a bug-introducing change or not. To label all changes as
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clean or buggy, two problems must be solved: identify all changes that fix bugs, and locate
the changes that led to those fixes.

The first problem is straightforward, and there are two common ways to address it;
both approaches are based on the analysis of the textual description of a commit. The
choice depends on the system being studied and the standards adopted by developers of
that system. One approach is to search for special keywords like bug, fix, or patch [64,87].
Another approach is to use regular expressions to find references to the entries in the
bug tracking systems, such as “#1234 ” which might be the unique identifier of an issue
being tracked by Bugzilla [40, 45, 66, 122]. Śliwerski et al. proposed to use a combination
those approaches together with the analysis of bug reports to improve the precision of the
process [115].

The second problem has proven to be harder to solve; as yet, there is no approach that
provides high precision and recall. However, the SZZ algorithm developed by Śliwerski
et al. is the most widely used technique for locating bug-introducing changes within the
research community [115]. For each commit that is a bug fix, the algorithm calculates
the textual diff between the revision of the commit and the previous revision. The
output of diff corresponds to the list of lines that were added and/or removed between
the two revisions. The SZZ algorithm ignores added lines and considers removed lines as
locations of bug-introducing changes. Next, the Mercurial annotate command (similar to
blame in Subversion and Git) is executed for the previous revision. For each line of code,
annotate adds the identifier of the most recent revision that modified the line in question.
SZZ extracts revision identifiers for each bug-introducing line found at the previous step,
and builds the list of revisions that are candidates for bug-inducing changes. Finally,
the algorithm eliminates those candidates that were added to the repository after the
bug associated with a commit was reported to the issue tracking system. The remaining
revisions are marked as bug-inducing code changes.

Several researchers worked on improving the original algorithm. Kim et al. addressed
some limitations of the SZZ algorithm as it may return imprecise results if diff contains
changes in comments, empty lines, or formatting [67]. By using annotation graphs and
filtering out non behaviour and format changes, they managed to improve both precision
and recall of the algorithm by 36% and 14% respectively. Williams et al. suggested further
improvements tailored towards Java systems [126]. They replaced annotation graphs with
a line-number mapping approach [127], and the heuristics for identification of “cosmetic”
changes with a syntax-aware diff tool for Java called DiffJ.

SZZ was successfully applied to understand whether refactorings induce bug-fixes [9], as
well as to build prediction models that focus on identifying defect-prone software changes
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[64,66]. The investigation of Śliwerski et al. to the Mozilla and Eclipse open-source projects
shows that defect-introducing changes are generally a part of large transactions and that
defect-fixing changes and changes done on Fridays have a higher chance of introducing
defects.

2.3 Code Review and Software Quality

Although modern code review has received a significant attention from researchers recently,
there is little empirical evidence on how effective code review is at detecting bugs and the
extent to which code review is related to factors such as personal ones (e.g., reviewers
expertise), technical (e.g., patch characteristics), or temporal (e.g., review time).

Kemerer and Paulk [65] looked into the effect of the code review rate on the reviewers’
ability to catch problems in new contributions, as well as on the quality of software prod-
ucts, while controlling for a number of potential confounding factors. As a result of their
study, they recommended that to best ensure review quality, reviewers should not proceed
faster than 200 LOC per hour.

Recently, McIntosh et al. [80] empirically investigated the relationship between software
quality, code review coverage, and code review participation. They found that low code
review coverage and participation produce components with up to five additional post-
release defects. Thongtanunam et al. [118] studied the code review of defective files in the
Qt open source project. They found that both historically defective files and files with
future defects reviewed with less scrutiny, have lower team participation, and bigger rate
of review than the defect-free files and files without future defects respectively. The results
of these studies confirm that poor code review negatively affect software quality.

Mäntylä and Lassenius classified the types of defects found in review on university and
three industrial software systems [75] suggesting that code reviews may be most valuable
for long-lived software products as the value of discovering evolvability defects in them is
greater than for short-lived systems.

Hatton [56] found relevant differences in defect finding capabilities among code review-
ers — the “worst” reviewer is ten times less effective than the best reviewer. Moreover,
he found almost 50% improvement in defects detection between settings where the source
code is inspected by two developers together (76% of faults found) and where the source
code is inspected by two developers separately (53% of faults found).
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2.4 Code Review in Pull-Based Development Model

Gousious et al. [50] were among the pioneers in research into pull-based development.
They quantitatively investigated OSS projects hosted on GitHub to learn the factors that
are influential to PR review time as well as to the acceptance of PRs; they found that
the merge time is affected by several factors, including the developer’s track record and
the test coverage in the project, while the PR acceptance is primarily influenced by the
“hotness” of code (i.e., the number of recent changes) that PR proposes to modify.

Tsay et al. [121] investigated the code contributions on GitHub to measure the effect of
social and technical factors on the likelihood of a contribution being accepted; they found
lengthier discussions tended to lead to rejection of PRs, while the developer’s previous
involvement in the project increased the likelihood of acceptance.

Gousious et al. [52] surveyed the integrators (developers responsible for assessing/merging
incoming contributions) of GitHub projects to understand their perspective on pull-based
development practices; they found that the integrators face multiple challenges, such as
maintaining project quality and deciding which PRs to prioritize.

Marlow et al. [76] studied how core developers from GitHub projects form their opin-
ions of the incoming contributions; they found that integrators use signals such as the
contributor’s history of coding activity as well as their actions on GitHub (e.g., following
other developers).

In another study, Gousious et al. [51] surveyed the most active contributors on GitHub
to learn their work practices and the challenges they face; they found that contributors
are eager to maintain awareness of the projects to avoid submitting duplicate PRs, and
that they communicate changes using PRs as well as issue trackers, emails, and instant
messages. The main challenge identified by the contributors is poor responsiveness from
core developers.

2.5 Bug Reporting and Fixing

Bug fixing is a large part of the ongoing maintenance and evolution of any long-lived
software system. Often, this is aided by a tool, such as Bugzilla or JIRA, that provides
support for bug reporting, triage, assignment, discussion, code review, and resolution.
Indeed, Mozilla uses Bugzilla for all their projects as a central system for handling all
bug-related activities such as bug reporting, bug assignment, discussions of patches, code
review, etc. In the case of large projects, a large number of bug reports (e.g., 400 per day
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for Mozilla project) are added to those tracking systems every day [123]. As a result of this
constant flow of bug reports, the bug triage process takes a lot of effort and time. Most of
the research on bug fixing can be linked to one of the three topics: what kinds of bugs the
developers should focus on [130], who is the best developer to fix a particular bug [4,6,84],
and what information should be included in a bug report [18, 68].

A variety of tools and approaches were proposed by the studies focused on automatic
assignment of bugs to developers [5, 6, 10, 23, 32]. Usually those tools and approaches are
based on information retrieval techniques [23] when textual information from the bug report
(e.g., bug description, possible exception messages, class names, etc.) and previous source
code changes are used to identify developers who have expertise relevant to that bug. Other
tools are based on machine learning techniques instead. Such tools use different classifiers
(such as Naive Bayes) trained on a variety of data — such as developers’ previous experience
and bug descriptions — to predict and recommend developers for fixing a particular bug [6,
32,60,129].

Once the bug is fixed, a patch, i.e., the source code change that fixes the problem,
is submitted to the issue tracking system. While existing research provides tools and
approaches for triaging the bugs, to the best of our knowledge, there are no studies or
tools that address the problem of finding an appropriate developer to perform code review
of a submitted patch. We plan to investigate the code review process as well as the factors
that affect its quality, and to provide the right developers with the right information needed
(e.g., which reviewer is an expert for a particular patch, or a warning to a reviewer that
the patch’s author has low experience in writing patches for that system component) so
each path could undergo code review of the highest quality.

2.6 Data Analysis

To better understand the current practice of code review and investigate possible new
approaches and tools for handling it, we need to transform the abundance of raw data that
comes from a variety of different sources (version control systems, bug tracking systems,
release history, email lists, documentation and policies, etc.) into condensed pieces of
usable information by extracting, pre-processing, and analyzing the data using different
techniques and tools. In this section we describe the main categories of techniques that
can be used to address our research problems: statistical analysis, machine learning, and
grounded theory.
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2.6.1 Statistical Analysis

Researchers use statistics to describe, model, analyze and interpret data [97, 107, 114].
There are two main statistical methodologies: descriptive and inferential statistics. De-
scriptive statistics aim to summarize a given sample, i.e., a dataset, using measures such
as the mean, median, standard deviation, and skewness. Inferential statistics are used to
draw conclusions about statistical populations observing sampled datasets. Both of these
methodologies are an integral part of data mining.

In empirical studies, researchers often work with multiple datasets and test proposed
hypotheses about a population. Therefore in such studies, statistical analysis plays a cru-
cial role because it can provide a meaningful interpretation of the study results [36]. There
are two ways in which statistical analysis can be used to interpret the data in question:
describing and comparing the data, and making predictions. By looking at the distribution
of values, we can describe the shape and the expected range of values of a population, as
well as find outliers in the observed dataset. These observations tell us about the under-
lying data and help us to model that data in the most mathematically appropriate way.
However, researchers rarely collect data simply to report the descriptive statistics since
these values usually do not have high scientific value. Researches often find themselves
comparing two or more datasets (i.e., the distributions behind those datasets) or models
built upon the observed datasets. There are multiple statistical tests available for com-
paring the distributions: the t-test, the Kolmogorov-Smirnov test, ANOVA, the Wilcoxon-
Mann-Whitney test, the Kruskal-Wallis test, etc. The selection of one test over another
is usually driven by the nature of the observed data (which includes the facts about the
data that can be obtained from the descriptive statistics). Software-related data might not
follow the normal (Gaussian) distribution or any other probability distribution; therefore,
non-parametric tests (the tests that do not make any assumptions about the probability
distribution of the studied data), such as the Kolmogorov-Smirnov test, the Wilcoxon-
Mann-Whitney test, or the Kruskal-Wallis test, are especially useful. Although parametric
tests might be more robust, they are tied to datasets that follow the distributions that the
tests were designed for, i.e., applying parametric tests to the datasets with the “wrong”
distribution will lead to spurious results.

2.6.2 Machine Learning

Machine learning provides a powerful set of tools for learning from and making data-driven
decisions and predictions from empirical data [21, 99, 128]. Machine learning is useful for
our research because it can utilize the available historical data to build classification or
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prediction models. The training data (i.e., the past data) is used to construct (train)
a classifier (such as linear regression, logistic regression, decision trees, support vector
machines, etc.) that later is used for classification or prediction on the new data. There
are also two main types of machine learning: unsupervised and supervised. In unsupervised
machine learning, the training data is not labelled, and thus the learning algorithm tries to
identify the structure (i.e., to find clusters) inside given data. Contrary to the unsupervised,
in supervised machine learning, every data point from the training dataset is labelled with
“desired value”. By processing the training data, the learning algorithm builds a function
that can be used to label (essentially predict) “unseen” data points (the data points that
are not from the training set).

Machine learning has been applied to a number of software engineering research prob-
lems. Aversano et al. [7] proposed an approach for predicting whether a new code change
is buggy or not. The bug-introducing changes were identified from the commit history
and were used to train the classifiers. In their work, the authors also evaluated different
classifiers (K-Nearest neighbor, simple logistic regression, multi-boosting, decision trees,
and support vector machines) and found that K-Nearest neighbor algorithm yields signifi-
cantly better trade-offs between precision and recall. Anvik et al. [6] used a support vector
machine algorithm to build a classifier for recommending the list of developers for resolving
a bug. Past bug reports and project-related heuristics were used to train the classifier in
the study. Cubranic et al. [32] used a Naive Bayes classifier to automatically assign bugs
to the developers. Similar to Biugie et al. [22] and Panjer [98], Hosseinni [60] studied
the prediction of bug lifetimes and compared different classifiers (0-R, 1-R, Naive Bayes,
decision tree, logistic regression) that are suitable for this purpose. The study shows that
Naive Bayes algorithm outperforms other classifiers by around 2%.

Similar to McIntosh [80] and others [24, 85, 110], in our research on code review qual-
ity [71], we used multiple linear regression models to explore the relationship between the
explanatory variables (technical, personal, and participation factors of code review) and the
dependent variable (the quality of code review). From the analysis of the built models, we
were able to identify factors that have statistically significant effect on defect-proneness of
code review, as well as to tell whether each factor was associated with positive or negative
effect.

2.6.3 Grounded Theory

A lot of data in software engineering can be analyzed using quantitative methods (for
example, for source code we can compute different metrics such as size or complexity).
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However, a lot of data also comes from sources such as interviews, observations, surveys,
blogs, emails, and documentation, and it is more appealing to analyze it using qualitative
methods rather than quantitative ones because we can answer broader how and why ques-
tions. Grounded theory method is a systematic methodology in the social sciences involving
the discovery of theory through the analysis of data [77]. The idea behind grounded theory
approach is to start with the data and develop a substantive theory by going through an it-
erative and rigorous process of data analysis and theoretical analysis [49]. The key moment
here is that researchers start with no theory at all and develop it during the application
of the approach. The goal of grounded theory is to generate concepts and categories that
emerge from the raw data and are connected to the reality. Grounded theory analyses the
data with no preconceived ideas. It is useful when we have questions of the form “what is
happening here?, or when we want to learn how people understand and handling particular
situations or tasks.

Open coding [30, 31, 83] is the part of grounded theory that deals with identifying,
naming, categorizing, and describing phenomena found in the data. Written data from
notes or transcripts are conceptualized line by line. Each line, sentence, paragraph etc. is
read to understand what it is about and what it is referring to [49,116]. As a result, open
coding generates concepts from the data that a future theory will be based on. Open coding
is a repetitive process, a researcher goes back and forth while comparing data, constantly
modifying, and improving the developing theory. The researcher continues to collect and
examine the data as long as patterns continue to emerge.

The software engineering research community has successfully applied grounded theory
on a wide range of software engineering problems. Adolph et al. proposed a model for ap-
plying grounded theory for software engineering research, as well as showed the application
of grounded theory for studying how people manage software development process [1, 2].
Similar to Coleman et al. [28], Montoni et al. used grounded theory to study the success
of Software Process Improvement (SPI) implementations [88]. They built three categories
of factors as well as five groups of actions that are critical to the success of SPI imple-
mentations. Grounded theory was also used by Hoda et al. to study the human aspects of
software engineering [59]. The authors studied how the teams that follow Agile software
development self-organize in practise. They identify six informal roles that developers have
in Agile teams, as wells practices that help them in self-organization. Dagenais et al. stud-
ied project landscapes and integration experience new developers go through when they
are joining a new project [33]. Using grounded theory they identified the factors that affect
the experience of newcomers, as well as provided recommendations for improving it. Souza
et al. used grounded theory to study how individual software developers perform change
impact analysis [34]. They identified 21 strategies that developers adopted to minimize
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the impact each developer has on others, as well as to incorporate others’ impact into the
current task they are working on.
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Chapter 3

Factors Affecting Code Review Time
and Patch Acceptance

When submitting patches for code review, individual developers are primarily interested
in maximizing the chances of their patch being accepted in the least time possible. In
principle, code review is a transparent process in which reviewers aim to assess the qualities
of the patch on its technical merits in a timely manner; however, in practice the execution
of this process can be affected by a variety of factors, some of which are external to the
technical content of the patch itself. In this chapter, we describe two empirical studies
of the code review processes for large, open source, and industry-led projects (WebKit
and Google Blink) to learn the effect of different factors on code review time and patch
acceptance.

Chapter Organization. In Section 3.1, we first provide an introduction describing the
studies done as well the the research questions we tried to answer. Section 3.2 presents
patch lifecycle analysis by comparing the Mozilla Firefox, WebKit, and Blink lifecycle
models; this is followed in Section 3.3 by a description of the methodology we used in the
empirical studies. Section 3.4 presents the two case studies: WebKit (Section 3.4.1) and
Blink (Section 3.4.2). Section 3.5 interprets the results and addresses threats to validity.
Finally, Section 3.6 summarizes our results.

Related publication. The work described in this chapter has been published in the
following paper1:

1 My role in this work included web scraping, data pre-processing and cleaning, and writing.
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• Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. Investigat-
ing technical and non-technical factors influencing modern code review. Empirical
Software Engineering, 21(3):932–959, 2016.

3.1 Introduction

Many software development projects employ code review as an essential part of their devel-
opment process. Code review aims to improve the quality of source code changes made by
developers (as patches) before they are committed to the project’s version control reposi-
tory. In principle, code review is a transparent process that aims to evaluate the quality
of patches objectively and in a timely manner; however, in practice the execution of this
process can be affected by many different factors, both technical and non-technical.

Existing research has found that organizational structure can influence software quality.
Nagappan et al. demonstrated that organizational metrics (number of developers working
on a component, organizational distance between developers, organizational code owner-
ship, etc.) are better predictors of defect-proneness than traditional metrics such as churn,
complexity, coverage, dependencies, and pre-release bug measures [96]. These findings
provide support for Conway’s law [29], which states that a software system’s design will
resemble the structure of the organization that develops it.

In this chapter, we have performed empirical studies to gain insight into the different
factors that can influence how long a patch takes to get reviewed and a patch’s likelihood of
being accepted. The factors we analyzed include personal and organizational relationships,
patch size, component, bug priority, reviewer/submitter experience, and reviewer load.
Since software developers are primarily interested in getting their patches accepted as
quickly as possible, we have designed our research questions to align with this perspective:

RQ1 What factors can influence how long it takes for a patch to be reviewed?
Previous studies have found that smaller patches are more likely to receive faster re-
sponses [62,105,124]. We replicate these studies on our data, and extend the analysis
to a number of other potential factors.

RQ2 What factors influence the outcome of the review process?
Most studies conclude that small patches are more successful in landing to the
project’s codebase [105,124]. A recent study showed that developer experience, patch
maturity and prior subsystem churn play a major role in patch acceptance [62]. We
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further extend these results with additional data that includes various non-technical
factors.

In this work, we study the community contributions and industrial collaboration on
the WebKit and Google Blink open source projects. WebKit is a web browser engine that
powers the Apple’s Safari and iOS browsers, was the basis for Google’s Chrome and Android
browsers, and host of other third-party browsers. WebKit is a particularly interesting
project as many of the organizations that collaborate on the project — including Apple,
Google, Samsung, and Blackberry — also have competing business interests. In April 2013
— and during the execution of our initial study — Google announced that they had created
and would subsequently maintain their own fork of WebKit, called Blink. Therefore, when
extending our previous work [14], we have decided to investigate the differences in the
velocity of the code reviews on the patches submitted to the Blink project and compare
findings of the two case studies.

3.2 Lifecycle Analysis

WebKit is an HTML layout engine that renders web pages and executes embedded JavaScript
code. The WebKit project was started in 2001 as a fork of the open source KHTML project.
At the time of our study, developers from more than 30 companies actively contributed
to this project; Google and Apple were the two primary contributors, submitting 50%
and 20% of patches respectively. Individuals from Adobe, BlackBerry, Digia, Igalia, Intel,
Motorola, Nokia, Samsung, and other companies were also active contributors.

The WebKit project employs an explicit code review process for evaluating submitted
patches; in particular, a WebKit reviewer must approve a patch before it can “land” in (i.e.,
be incorporated into) the project’s version control repository. The set of official WebKit
reviewers is maintained through a system of voting to ensure that only highly-experienced
candidates are eligible to review patches. A reviewer will either accept a patch by marking
it review+ or ask for further revisions from the patch owner by annotating the patch with
review-. The review process for a particular submission may include multiple iterations
between the reviewer and the patch writer before the patch is ultimately accepted and
lands in the version control repository.

Since WebKit is an industrial project, we were particularly interested to compare its
code review process to that of other open source projects. To do so, we extracted the
WebKit’s patch lifecycle (Figure 3.2) and compared it with the previously studied patch
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lifecycle of Mozilla Firefox [13] (Figure 3.1). The patch lifecycle captures the various states
patches undergo during the review process, and characterizes how the patches transition
between these states. The patch lifecycles enable large data sets to be aggregated in a way
that is convenient for analysis. For example, we were surprised to discover that a large
proportion of patches that have been marked as accepted are subsequently resubmitted by
authors for further revision. Also, we can see that rejected patches are usually resubmitted,
which might ease concerns that rejecting a borderline patch could cause it to be abandoned.

While the set of states in our patch lifecycle models of both WebKit and Firefox are
the same, WebKit has fewer state transitions; this is because the WebKit project does
not employ a ‘super review’ policy [93]. Also, unlike in Mozilla, there are no self-edges on
the Accepted and Rejected states in WebKit; this is because Mozilla patches are often
reviewed by two people, while WebKit patches receive only individual reviews. Finally,
the WebKit model introduces a new edge between Submitted and Resubmitted; WebKit
developers frequently “obsolete” their own patches and submit updates before they receive
any reviews at all. One reason for this behaviour is that submitted patches can be auto-
matically validated by the external test system; developers can thus submit patches before
they are to be reviewed to see if they fail any tests. All together, however, comparing the
two patch lifecycles suggests that the WebKit and Firefox code review processes are fairly
similar in practice.

Blink’s patch lifecycle is depicted in Figure 3.3, which shows that 40% of the submitted
patches receive positive reviews and only 0.3% of the submitted patches are rejected.
Furthermore, a large portion of patches (40.4%) are resubmitted. This is because Blink
developers often update their patches prior to receiving any reviews; as with WebKit, this
enables the patches to be automatically validated. At first glance, outright rejection does
not seem to be part of the Blink code review practice; the Rejected state seems to under-
represent the number of patches that have been actually rejected. In fact, reviewers often
leave comments for patch improvements, before the patch can be accepted.

The model also illustrates the iterative nature of the patch lifecycle, as patches are
frequently Resubmitted. The edge from Submitted to Landed represents patches that
have been merged into Blink’s source code repository, often after one or more rounds of
updates. Developers often fix “nits” (minor changes) after their patch has been approved,
and land the updated version of the patch without receiving additional explicit approval.
The lifecycle also shows that nearly 10% of patches are being neglected by the reviewers
(i.e., Timeout transition); Timeout patches in Blink can be considered as “informal” rejects.

Comparing the patch lifecycle models of WebKit and Blink, we noticed that Blink has
fewer state transitions. In particular, the edges from the Accepted and Rejected back
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Figure 3.1: Mozilla Firefox’s patch lifecycle.

!"
#$%&'%(

)*+%,

!"#"$%"&'$$"(%"&

-+),

)*+,-."&

-+.,

/01&"& 2-,"3*%!"4*+,-."& '+01&31"&

%/+$, '+(, $-+%, ))+%, )+*, *+',

!"#$%&

.%+/,
-+),

-+0,

Figure 3.2: WebKit’s patch lifecycle.

Submi&ed
#23,723

0.3%

RejectedAccepted

Submi.ed

Landed TimeoutResubmi.ed Abandoned

23.5% 16.7% 40.4% 0.2% 0.2% 9.6%

!meout

40.3%

0.1%

9.4%

Figure 3.3: Blink’s patch lifecycle.

23



to Submitted are absent in Blink. Since Blink does not provide any indication of the
review request on patches, we had to reverse engineer this information for all patches by
considering the timestamps on each item (patch) in the series. We automated this process
by putting the Submitted label to the patch at the time the patch was filed to the issue
repository.

Blink also accepts a smaller portion of patches (about 40% of all contributions compared
to the WebKit’s 55% of submitted patches), yet officially rejects less than 1%. While
timeouts are more frequent for Blink patches than WebKit ones, timeouts can be viewed
as “unofficial” rejects in the Blink project where disapprovals are uncommon.

Blink appears to exhibit a larger portion of patches being resubmitted (a 10% increase
compared to the WebKit patches), including resubmissions after patches are successfully
accepted (16.7%).

Finally, a new edge is introduced between Submitted and Landed, accounting for those
contributions that were committed to the code base without official approval from the
reviewers; these cases typically represent patch updates. Both WebKit and Blink devel-
opers frequently “obsolete” their own patches and submit updates before they receive any
reviews at all.

Comparing the two patch lifecycle models suggests that the WebKit and Blink code
review processes are similar in practice; at the same time, it appears that Google’s review
policy may not be as strict as the one employed by Apple on the WebKit project. While
no code can be checked into trunk without successfully passing code review, no formal
approval is required for trivial patch updates.

3.3 Methodology

To investigate our research questions, we first extracted code review data from the Bugzilla
issue tracking system (for the WebKit project) and the Chromium code review repository
(for the Blink case study); we then pre-processed the data, identified factors that may affect
review delays and outcomes, and performed our analysis. To avoid repetition in explaining
two similar processes, we describe each step of our approach for the first case study only. For
any deviations in the methodology of the Blink project (e.g., description of the extracted
dataset and data filtering), we refer readers to the beginning of the Section 3.4.2.
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3.3.1 Data Extraction

Every patch contributed to the WebKit project is submitted as an attachment to the
project’s issue repository2; we extracted this data by “scraping” Bugzilla for all public
patches submitted between April 12, 2011 and December 12, 2012. We use the same time
interval value as in our previous study on Firefox [13] to be able to compare code review
processes of two projects. The data we retrieved consists of 17,459 bugs, 34,749 patches,
763 email addresses, and 58,400 review-related flags. We tracked a variety of information
about issues such as name of the person who reported the issue, the date the issue was
submitted, its priority and severity, as well as a list of patches submitted for the issue. For
each patch, we saved information regarding its owner, submission date, whether a patch is
obsolete or not, all review-related flags along with the files affected by the patch. For each
patch we also recorded the number of lines added and removed along with the number of
chunks for each changed file. All details were stored in a relational database.

All fields in the database, except those related to affected files, were extracted directly
from the issue tracker. To create the list of affected files, we needed to download and parse
the individual patches. Each patch file contains one or more diff statements representing
changed files. In our analysis we ignored diff statements for binary content, e.g., images,
and focused on textual diffs only. From each statement we extracted the name of changed
file, number of lines marked added and removed, and number of code chunks. Here a code
chunk is a block of code that represents a local modification to a file as it defined by the
diff statement. We recorded total number of lines added and removed per file in total,
and not separately for each code chunk. We did not try to interpret the number of changed
lines from the information about added/removed lines.

Almost every patch in our database affects a file called ChangeLog. Each ChangeLog

file contains description of changes performed by the developer for a patch and is prepared
by the patch submitter. Although patch files contain diff statements for ChangeLog files
and we parsed them, we eliminated this information when we computed the size.

There are three possible flags that can be applied to patches related to code review:
review? for a review request, review+ for a review accept, and review- for a review
reject. For each flag change we also extracted date and time it was made as well as an
email address of the person who added the flag.

As the issue tracker uses email addresses to identify people, our initial data set contained
entries for many individuals without names or affiliations. Luckily, the WebKit team

2https://bugs.WebKit.org/
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maintains a file called contributors.json3 that maps various developer email addresses
to individual people. We parsed this file and updated our data, reducing the number of
people in our database to 747.

We next determined developers’ organizational affiliations. First, we parsed the “We-
bKit Team” wiki webpage4 and updated organizational information in our data. We then
inferred missing developers’ affiliations from the domain name of their email addresses,
e.g., those who have an email at “apple.com” were considered individuals affiliated with
Apple. In cases where there was no information about organization available, we per-
formed a manual search on the web. For those individuals where we could not determine
an affiliated company, we set company field to “unknown”; this accounted for 18% of all
developers but only 6% of patches in our data.

3.3.2 Data Pre-Processing

In our analysis we wanted to focus as much as possible on the key code review issues within
the WebKit project. To that end we performed three pre-processing steps on the raw data:

1. We focused only on the patches that change files within the WebCore portion of the
version control repository. Since WebKit is cross-platform software, it contains a
large amount of platform-specific source code. The main parts of WebKit that all
organizations share are in WebCore; these include features to parse and render HTML
and CSS, manipulate the DOM, and parse JavaScript. While the platform-specific
code is actively developed, it is often developed and reviewed by a single organization
(e.g., the Chromium code is modified only by Google developers while the RIM code
is modified only by the Blackberry developers).

Therefore we looked only at the patches that change non-platform-specific files within
WebCore; this reduced the total number of patches considered from 34,749 to 17,170.
We also eliminated those patches that had not been reviewed, i.e., patches that had
only review? flag. This filter further narrowed the input to 11,066 patches.

2. To account for patches that were “forgotten”, we removed slowest 5% of WebCore
reviews. Some patches in WebCore are clear outliers in terms of review time; for
example, the slowest review took 333 days whereas the median review was only 76

3http://trac.WebKit.org/browser/trunk/Tools/Scripts/WebKitpy/common/config/

contributors.json
4http://trac.WebKit.org/wiki/WebKit%20Team
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minutes. This filter excluded any patch that took more than 120 hours (≈5 days),
removing 553 patches. 10,513 patches remained after this filter was applied.

3. To account for inactive reviewers, we removed the least productive reviewers. Some
reviewers performed a small number of reviews of WebCore patches. This might be
because the reviewer focused on reviewing non-WebCore patches or had become a
reviewer quite recently. In ordering the reviewers by the number of reviews they
performed, we excluded those developers performed only 5% of the total reviews.
This resulted in 103 reviewers being excluded; the 51 reviewers that remained each
reviewed 31 patches or more. This resulted in an additional 547 patches being re-
moved from the data.

The final dataset consists of 10,012 patches and was obtained by taking the intersection
of the three sets of patches described above.

3.3.3 Determining Independent Factors

Previous research has suggested a number of factors that can influence review response
time and outcome [62, 105, 124]. Table 3.1 describes the factors (independent variables)
that were considered in our study and tested to see if they have an impact on the dependent
variables such as time and outcome (positivity). We grouped the factors into two categories:
technical and non-technical. Our choice of selecting independent factors is determined by
the availability of the data stored in the projects’ issue tracking systems.

Independent Factor Type Description
Patch Size technical number of LOC added and removed
Component technical top-level module in /Source/WebCore/
Priority technical assigned urgency of resolving a bug
Organization non-technical organization submitting or reviewing a patch
Review Queue non-technical number of pending review requests
Reviewer Activity non-technical number of completed reviews
Patch Writer Experience non-technical number of submitted patches

Table 3.1: Overview of the factors studied.

Based on the advice of WebKit developers, we identified the WebKit component the
patch changes by examining the patches directly rather than using the issue tracker com-
ponent. This was because the issue tracker was frequently incorrect.
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WebKit does not employ a formal patch assignment process; in order to determine
review queues of individual reviewers at any given time, we had to reverse engineer patch
assignment and answer the following questions:

• When did the review process start? We determined the date when a request for a
review was made (i.e., review? flag was added to the patch). This date was referred
as “review start date”. While there might be some delay from this to the time
the reviewer started working on the patch, we have no practical means of tracking
when the developer actually received the request or started to perform the review in
earnest.

• Who performed code review of a patch? The reviewer of a patch is defined as the
person who marked the patch with either review+ or review-. Having this, we
added the assignee to each review request.

We computed a reviewer queue by considering the reviews a developer eventually com-
pleted. The review queue is defined as the number of patches that were ‘in flight’ for that
developer at the time a patch was submitted.

3.3.4 Data Analysis

Our empirical analysis used a statistical approach to evaluate the degree of the impact of
the independent factors on the dependent variables. First, we tested our data for normality
by applying Kolmogorov-Smirnov tests [78]. For all samples, the p < 0.05, showing that
the data is not normally distributed. We also graphically examined how well our data
fits the normal distribution using Q-Q plots. Since the data is not normally distributed,
we applied non-parametric statistical tests: Kruskal-Wallis analysis of variance [73] for
testing whether the samples come from the same distribution, followed by a post-hoc non-
parametric Mann-Whitney U (MWW) test [74] for conducting pairwise comparisons.

All our reported results including Figures and Tables are statistically significant with
the level of significance defined as p < 0.05.

3.4 The Case Studies

Ultimately, we investigated the impact of seven distinct factors on the code review process
both in terms of response time and review outcome or positivity for the WebKit and Blink
projects; this is summarized in Table 3.2.
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Factor
WebKit Blink

Time Positivity Time Positivity

Patch Size X N/A X N/A
Priority X X N/A N/A
Component X × X ×
Organization X X X ×
Review Queue X X × ×
Reviewer Activity X × X ×
Patch Writer Experience X X X X

Table 3.2: Effect of factors on response time and positivity:
X- statistically significant; × - not statistically significant.

3.4.1 WebKit

To answer our research questions, we performed two empirical studies. We start with
demonstrating the results of our analysis of the WebKit dataset and highlighting its main
findings. The overview of the numerical factors is summarized in Table 3.3.

Patch Size

The size of the patch under review is perhaps the most natural starting point for any
analysis, as it is intuitive that larger patches would be more difficult to review, and hence
require more time; indeed, previous studies have found that smaller patches are more likely
to be accepted and accepted more quickly [124]. We examined whether the same holds for
the WebKit patches based on the sum of lines added and removed as a metric of size taken
from the patches.

To determine the relationship between patch size and the review time, we performed
a (non-parametric) Spearman correlation. The results showed that the review time was
weakly correlated to the patch size, r=0.09 for accepted patches and r=0.05 for rejected
patches, suggesting that patch size and response time are only weakly related, regardless
of the review outcome.

With a large dataset, outliers have the potential to skew the mean value of the data set;
therefore, we decided to apply two different outlier detection techniques: Pierce’s criterion
and Chauvenet’s criterion. However, we found that removal of the outliers did not improve
the results, and we ultimately rejected their use.
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Factor Min Median Mean Max

Patch Size 1 31 131.7 25928
Number of Components 0 1 1.691 18
Review Queue 0 0 0.566 11
Reviewer Activity 1 281 401.7 1955
Patch Writer Experience 1 68 113.3 836

Table 3.3: Overview of the numerical factors in WebKit.

Next we split the patches according to their size into four equal groups: A, B, C, and
D where each group represents a quarter of the population being sampled. Group A refers
to the smallest patches (0–25%) with the average size of 4 lines, group B denotes small-to-
medium size changes (25–50%) on average having 17 lines of code, group C consists of the
medium-to-large changes (50–75%) with the mean of 54 LOC, and group D represents the
largest patches (75–100%) with the average size of 432 lines. A Kruskal-Wallis test revealed
a significant effect of the patch size group on acceptance time (χ2(3)=55.3, p < 0.01).
Acceptance time for group A (the median time is 39 minutes, the mean is 440 minutes) is
statistically different compared to the time for groups B (with the median of 46 minutes
and the mean of 531 minutes), C (the median of 48 minutes and the mean of 542 minutes)
and D (the median is 64 minutes, the mean time is 545 minutes).

In terms of review outcome, we calculated the positivity values for each group A–D,
where we define positivity as positivity =

∑
review+ / (

∑
review- +

∑
review+). The

median values of positivity for groups A–D are 0.84, 0.82, 0.79, 0.74 respectively. Positivity
did decrease between the quartiles, matching the intuition that reviewers found more faults
with larger patches, although this result was not significant.

However, review time for a single patch is only part of the story; we also wanted to
see whether smaller patches undergo fewer rounds of re-submission. That is, we wanted to
consider how many times a developer had to resubmit their patch for additional review.
We calculated the number of patch revisions for each bug, as well as the size of the largest
patch. Figure 3.4 illustrates the medians of the patch revisions for each size group, the
median of the revisions for group A and B is 1, for group C is 2, and for D is 3. The results
show that patch size has a statistically significant, strong impact on the rounds of revisions.
Smaller patches undergo fewer rounds of revisions, while larger changes have more re-work
done before they successfully land into the project’s version control repository.
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Figure 3.4: Number of revisions for each size group.

Priority

A bug priority is assigned to each issue filed with the WebKit project. This field is created
to help developers define the order in which bugs should be fixed5. The Webkit project
defines five priority levels, ranging from the most important (P1) to the least important
(P5). We were surprised when we computed the distribution of patches among priority
levels: P1 – 2.5%, P2 – 96.3%, P3 – 0.9%, P4 and P5 – 0.1% each. Looking at these
numbers one might speculate that the priority field is not used as intended. Previous work
of Herraiz et al. also found that developers use at most three levels of priority and the use
of priority/severity fields is inconsistent [58]. The default value for priority is P2, which
might also explain why the vast majority of patches have this value assigned. Also, in our
discussion with WebKit developers we found that some organizations maintain internal
trackers that link to the main WebKit bug list; while the WebKit version has the default
priority value, the internal tracker maintains the organization’s view on the relative priority.
In our analysis we discarded priorities P4 and P5 because they did not have enough patches.

A Kruskal-Wallis test demonstrated a significant effect of priority on time (χ2(2)=12.70,
p < 0.01). A post-hoc test using Mann-Whitney tests with Bonferroni correction showed
the significant differences between P1 and P3 with median time being 68 and 226 minutes
respectively, p < 0.05, and between P2 and P3 with median time being 62 and 226 minutes

5https://bugs.webkit.org/page.cgi?id=fields.html
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respectively, p < 0.01. While patches with priority P2 receive faster response that the ones
with P1, the difference is not statistically significant.

To analyze positivity, we considered each review by a developer at a given priority and
computed their acceptance ratio. To reduce noise (e.g., the data from reviewers who only
reviewed one patch at a level and hence had a positivity of 0 or 1), we discarded those
reviewers who reviewed only four or fewer patches for a given priority.

We found a statistically significant correlation between priority levels and positivity
(χ2(2)=10.5, p < 0.01). The difference of the review outcome for patches of P1 (median
value is being 1.0) compared to the ones of P2 (median is 0.83) is statistically significant
(p < 0.01), indicating that patches of higher priority are more likely to land to the project’s
codebase. Although reviewers are more positive for patches of higher priority, we caution
about the interpretation of these results because the vast majority of patches are P2.

Component

WebCore represents the layout, rendering, and DOM library for HTML, CSS, and SVG.
WebCore consists of several primary components (bindings, bridge, css, dom, editing,

html, inspector, page, platform, and rendering).

While it is natural to assume that some components may be more complex than others,
we wanted to find out whether contributions to certain components are more successful or
are reviewed more quickly. To answer this, we selected the components that undergo the
most active development: inspector (1,813 patches), rendering (1,801 patches), html
(1,654 patches), dom (1,401 patches), page (1,356 patches), bindings (1,277 patches), and
css (1,088 patches).

The difference in the response time between components was statistically significant
(χ2(6)=29.9, p < 0.01), in particular the rendering component takes longer to review
(the median time is 101 minutes) compared to bindings (72 minutes), inspector (58
minutes), and page (58 minutes). The difference in reviewing time of patches submitted
to the page and dom components was also significant with the medians being 58 minutes
vs. 91 minutes respectively.

Although the positivity values vary among components and range between 0.73–0.84, we
found no relation between positivity and the component. From the developer’s perspective,
we can tell that it is more difficult for developers to land a patch to page (the value of
positivity is 0.73), while patches to inspector are more likely to be successful (the value
of positivity is 0.84).
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Review Queue Length

Our previous qualitative study of Mozilla’s process management practices found that de-
velopers often try to determine current work loads of reviewers prior to making a decision
as to who would be the best choice to request a review from [11]. Thus, we investigated the
relationship between review queue size and review response time, expecting to find that
reviewers having shorter queues would provide quicker reviews.

We calculated queue sizes for the reviewers at any given time (the process is described
in Section 3.3.3). The resulting queues ranged from 0 to 11 patches.

Since the average queue was 0.6 patches, we distributed patches into three groups
according to the queue size: shortest queue length ranging from 0–1 patches (group A),
medium length consisting of 2–3 patches (group B) and longer queues ranging from 4–11
patches (group C).

We found a significant effect of review queue size on reviewing time (χ2(2)=15.3, p <
0.01). The medians of queue size for group A, B and C are being 0, 2, and 5 patches
respectively. A post-hoc test showed significant differences between group A and group C
(with median time being 63 and 158 minutes respectively, p < 0.01) and group B and C
(with median time being 90 and 158 minutes respectively, p < 0.05).

Studying the impact of the queue size on the reviewer positivity (with the Kruskal-
Wallis effect being χ2(2)=15.8, p < 0.01), we found a significant difference between A and
C groups (the median positivity being 0.84 and 1 respectively, p < 0.01), as well as B and
C groups (with median positivity being 0.88 and 1.0 respectively, p < 0.05).

Thus, we found that the length of the review queue influences both the delay in com-
pleting the review as well as the eventual outcome: the shorter the queue, the more likely
the reviewer is to do a thorough review and respond quickly; and a longer queue is more
likely to result in a delay, but the patch has a better chance of getting in.

Organization

Many companies that participate in the WebKit development are business competitors.
An interesting question is whether patches are considered on their technical merit alone or
if business interests play any role in the code review process, for instance by postponing
the review of a patch or by rejecting a patch for a presence of minor flaws. We have
considered the top five organizations that contribute patches to the WebKit repository.
Figure 3.5 provides an overview of the participation of these organizations on the project
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Figure 3.5: Overview of the participation of top five organizations in WebKit.

with respect to the percentage of the total patches they submit and the percentage of the
patches they review. It is clear that two companies play a more active role than others;
Google dominates in terms of patches written (60% of total project’s patches) and patches
reviewed (performing 57% of all reviews) while Apple submits 20% of the patches and
performs 36% of the reviews. While we analyzed all possible pairs of organizations (36 of
them; the top 5 organizations + “Others”), for the sake of brevity we discuss only Apple,
Google, and “the rest”.

Figure 3.6 represents review time for each pair of organizations. The first letter in
the label encodes a reviewer’s affiliation, the second encodes submitter’s affiliation; for
example, A-G represents Apple reviewing a Google patch. Analysis of the patches that
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Figure 3.6: Acceptance time (left), rejection time (right). Organization: A=Apple,
G=Google, X=Rest.

received a positive review showed that there is a correlation between review time and the
organization affiliated with the patch writer.

To identify where the correlation exists, we performed a series of pair-wise comparisons.
We discovered that there is a statistically significant difference between how Apple approves
their own patches (A-A) and how Google approves their own patches (G-G column). Another
statistically significant difference was found between time Apple takes to accept their own
patches and time it takes to accept Google patches (A-G). However, we found no statistical
difference in the opposite direction — between the time for Google to accept their own
patches compared to patches from Apple (G-A).

The correlation between review time and company was also found for patches that
received a negative review. The pair-wise comparison showed almost the same results:
statistical difference between Apple-Apple and Apple-Google, and no statistical difference
between Google-Google and Google-Apple. At the same time the difference between Apple-
Apple and Google-Google is no longer present. Based on these findings, it appears that
Apple treats their own patches differently from external patches, while Google treats exter-
nal patches more like their own. Pairs involving “the rest” group exhibited no statistically
significant differences for both review decisions.

Since statistical tests can report only a presence of statistical difference, we also report
the means and medians of review time required for each company pair (Table 3.4). To ease
comparison of the differences in the response time for organizations, patch reviewers and
writers between the two projects, we placed Tables 3.4, 3.5, 3.6, and 3.7 on one page (p. 37).
According to the data, Apple is very fast in reviewing its own patches, but is relatively
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slow in reviewing Google patches (3–4 times difference in medians, 1.5–2 times difference
in means). At the same time Google exhibits the opposite behaviour, i.e., provides faster
response to the patches from Apple than their own developers. While both means and
medians are almost the same for positive reviews, the median and the mean values of
review time for negative review for Apple patches are 20 and 200 minutes less respectively
than for Google own patches.

To compute the positivity of various organizations, we cleansed the data as we did
for the priority analysis above; we removed any reviewer who had reviewed less than 10
patches (i.e., removed 5% of least active reviewers) to avoid an overabundance of positivities
of 0 or 1. The box plot with this filter applied is shown in Figure 3.7. Statistical tests
showed that there is a correlation between the outcome of the review and patch owner’s
affiliation (χ2(2)=10.7, p < 0.01). From the pair-wise comparison, we found that there
is statistically significant difference between positivity of Apple reviewers towards their
own patches (A-A column) compared to the patches of both Google (A-G column) and
“the rest” (A-X column). The other pair that was statistically different is positivity of
Google reviewers between their own patches (G-G column) and patches from “the rest”
(G-X column).

Quantitatively, there are some interesting results. First, the positivity of Apple re-
viewers towards their own patches clearly stands out (the median is ≈0.92). Possible
explanations for this include that there is a clear bias among Apple reviewers, or that
Apple patches are of extreme quality, or that Apple applies some form of internal code
review process. We also observed that both Apple and Google are more positive about
their own patches than ’foreign’ patches; while this could be a systematic bias, Apple and
Google are also the two most experienced committers to WebKit and this may account
for this difference. Finally, the positivity of Apple reviewers towards Google patches (the
median is ≈0.73) is lower than the positivity of Google reviewers towards Apple patches
(the median is ≈0.79).

Reviewer Activity

WebCore has 51 individuals performing code reviews of 95% of patches. The breakdown
of the reviewers by organization is as follows: 22 reviewers from Apple, 19 reviewers from
Google, 3 reviewers from BlackBerry, Igalia and Intel are being represented by one reviewer
each, and 5 reviewers belong to the group “others”. Comparing reviewing efforts, we
noticed that while Apple is predominant in the number of reviewers, it reviews only 36% of
all patches; by comparison, Google developers perform 57% of the total number of reviews.
Since WebKit was originally developed and maintained by Apple, it is perhaps unsurprising
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Reviewer → Writer
Accepted Rejected

Median Mean Median Mean
Apple → Apple 25 392 60 482
Apple → Google 73 617 283 964
Google → Google 42 484 102 737
Google → Apple 45 483 80 543

Table 3.4: Response time (in minutes) for organizations participating on the WebKit
project.

Group
Reviewer Writer

Median Mean Median Mean
A 84 621 102 682
B 76 634 76 632
C 46 516 43 491
D 57 496 48 478

Table 3.5: Response time (in minutes) for WebKit patch reviewers and writers.

Reviewer → Writer
Accepted Rejected

Median Mean Median Mean
Google → Google 57 385 169 716
Google → Other 95 473 428 737
Other → Other 66 351 n/a n/a
Other → Google 48 399 n/a n/a

Table 3.6: Response time (in minutes) for organizations participating on the Bink project.

Group
Reviewer Writer

Median Mean Median Mean
A 71 434 106 547
B 71 490 51 384
C 42 338 59 394
D 91 362 56 287

Table 3.7: Response time (in minutes) for Blink patch reviewers and writers.
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Figure 3.7: Positivity values by organization: A=Apple, G=Google, X=Rest.

that Apple remains a key gatekeeper of what lands in the source code. However, we can see
that Google has become a more active contributor on the project, yet has not surpassed
the number of Apple reviewers.

To find out whether reviewers have an impact on review delay and outcome, for each
reviewer we calculated the number of previously reviewed patches and then discretized
them according to their reviewing efforts using quartiles. Applying statistical tests, we
determined that the difference for response time for A and B groups of reviewers (i.e., the
less active ones) is statistically significant when compared to C or D groups (i.e., the more
active ones). Since the distribution of delays is very skewed, we report both the median
and mean values for reviewers’ timeliness (see Table 3.5). The results show that the choice
of reviewers plays an important role on reviewing time. More active reviewers provide
faster responses (with median being 57 minutes and mean being 496 minutes) compared
to the individuals who performed fewer code reviews (the median for time is 84 minutes
and 621 minutes for the mean).

38



Considering that reviewers’ work loads appear to affect their response rate, WebKit
contributors may wish to ask the most active reviewers to assess their patches in order to
get a quick response. With respect to the question whether there are reviewers who are
inclined to be more positive than negative, we found that there is no correlation between
the amount of reviewed patches on the reviewer positivity: 0.83 for group A, 0.84 for group
B, 0.75 for group C, and 0.83 for group D. This suggests that WebKit reviewers stay true
and unbiased in their role of ensuring the quality of code contributions. This observation is
important since reviewers serve as gatekeepers protecting the quality of the project’s code
base.

Patch Writer Experience

The contributions to WebCore during the period studied came from 496 individuals among
which 283 developers filing 95% of patches (submitting 5 patches or more). Considering our
top five organizations, we identified that WebCore patches were submitted by 50 developers
from Apple, 219 individuals from Google, 20 BlackBerry developers, 16 developers from
Intel, 10 from Igalia, and 181 developers come from other organizations.

Noticing good contributor diversity in the WebCore community, we wondered if patches
from certain developers have a higher chances of being accepted. To assess whether de-
veloper experience influences review timeliness and acceptance, we performed a similar
procedure (as described in 3.4.1) of calculating the number of submitted changes for each
developer and then discretizing patch owners according to their contributions.

We achieved similar results in the differences of response time for A and B groups of
submitters (occasional contributors) is statistically significant compared to more experience
developers in C or D groups. From Table 3.5 we conclude that more experienced patch
writers receive faster responses (with median in group D being 48 minutes and mean being
478 minutes) compared to those who file fewer patches (the median for time in group A is
102 minutes and 682 minutes for the mean).

Investigating the impact of developer experience on positivity of the outcome, we found
correlation between two variables (χ2(3)=17.93, p < 0.01). In particular, statistical dif-
ference was found between group A (least active developers) and groups C and D (more
active developers) with the median positivity values being 1.0, 0.73 and 0.81 respectively,
as well as group B (less active developers) compared to the group D (most active ones)
with the median positivity being 0.63 and 0.81 respectively. These findings suggest that
the WebKit community has a positive incentive for newcomers to contribute to the project
as first-patch writers (i.e., group A with the median number of patches submitted being 1)
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are likely to get a positive feedback. For developers of group B (where contributions range
between 3–6 patches) it is more challenging to get their patches in, while contributing to
the project comes with the improved experience of landing patches and as a result with
more positive outcomes.

Our findings show that developer experience plays a major role during code review.
This supports findings from our previous work, where we have seen faster response time
for core developers compared to the casual contributors on the project [13]. This appears
to show that active developers are being rewarded with both faster response and more
positive review outcome for their active involvement in the project.

3.4.2 Blink

Google forked WebKit to create the Blink project in April 2013. Google decided to fork
WebKit because they wanted to make larger-scale changes to WebKit to fit their own
needs that did not align well with the WebKit project itself. Several of the organizations
who contributed to WebKit migrated to Blink after the fork [100]. Our data demonstrates
that the following companies participate on Blink by submitting patches: Samsung, Opera,
Intel, Adobe, Igalia, Yandex, and BlackBerry (this list is ordered by the number of contri-
butions).

Every Blink patch is submitted to the project’s issue repository. 6 We extracted all
patches by scraping the public Blink issue tracking system for the patches submitted be-
tween April 03, 2013 and January 07, 2014. The extracted dataset consists of 18,177 bugs,
37,280 patches, 721 emails and 64,610 review flags. We extracted the same information
about issues, patches, and files as we did for the WebKit data (described in Section 3.3.1).

The reviewers on the Blink project approve patches by annotating it “LGTM” (“Looks
Good To Me”, case-insensitive) on the patch and reject patches by annotating “not LGTM”.
In this work, we consider WebKit’s review+/review- flags and Blink’s “lgtm”/“not lgtm”
annotations as equivalent. Since Blink does not have an explicit review request process
(e.g., review?), we infer requests by adding a review? flag a patch as soon as it is submit-
ted to the repository. Since patches are typically committed to the version control system
by an automated process, we define landed patches as those followed by the automated
message from the “commit bot”. The last patch on the issue is likely to be the patch
that eventually lands to the Blink’s source code repository. Committers could optionally
perform a manual merge of the patches to the version control system, although we do not
consider these due to their infrequence.

6code.google.com/p/chromium/issues/
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Factor Min Median Mean Max

Patch Size 1 31 195.3 61314
Number of Components 0 1 1.871 22
Review Queue 0 0 0.738 19
Reviewer Activity 1 185 416.7 2393
Patch Writer Experience 1 107 175.4 1333

Table 3.8: Overview of the numerical factors in Blink.

To determine developer’s organizational affiliations, we first inferred affiliations from
the domain name of their email addresses. Then, we asked a Blink developer to confirm
our guesses. To be consistent with our WebKit dataset, we marked independent developers
contributing to the Blink project as “unknown”.

Data Filtering. To clean up our our dataset, we performed pre-processing steps on
the raw data similar to that of the WebKit study:

1. We considered only patches that affect files within Source/core portion (the Blink
team refactored WebCore to this directory) of the source repository reducing the total
number of patches from 37,280 to 23,723.

2. We further eliminated those patches that had not been reviewed, narrowing the input
to 9,646 patches.

3. We removed 5% of slowest patches, eliminating those that took more than 80 hours
to review.

4. We eliminated the least active reviewers: those who performed less than 10 code
reviews; this resulted in retaining a set of 174 reviewers out of the 223 individual
reviewers performing code reviews for Blink.

After applying data filtering, the final Blink dataset consisted of 8,731 patches.Table 3.8
contains the overview of the numerical factors.

Patch Size

To investigate the correlation between patch size and review response time we again split
the patches according to their size into four equal groups (quartiles): A, B, C, and D.

41



Group A refers to the smallest patches (0–25%) with the average size of 4 lines, group
B denotes small-to-medium size changes (25–50%) on average having 18 lines of code,
group C consists of the medium-to-large changes (50–75%) with the mean of 63 LOC, and
group D represents largest patches (75–100%) with an average size of 698 lines of code. A
Kruskal-Wallis test revealed a significant effect of the patch size group on acceptance time
(χ2(3)=44.16, p < 0.01). Acceptance time for group A (the median time is 47 minutes,
the mean is 368 minutes) is statistically different compared to the time for group C (with
the median of 76 minutes and the mean of 444 minutes), and D (the median of 69 minutes
and the mean of 388 minutes).

The median positivity values for groups A–D are all 0.99. Reviewers’ positivity remains
quite high and does not appear to be affected by the size of the contributions.

Investigating the relationship between patch size and the number of patch revisions,
we considered all the bug IDs that we have the patches for after applying our data filters.
We calculated the number of patch revisions for each bug, as well as the size of the largest
patch. Our results demonstrate statistically significant, strong impact of patch size on the
rounds of revisions (χ2(3)=1473.7, p < 0.01. The median of the patch revisions for smaller
patches of group A (under 22 LOC) is 1, while the highest number of resubmissions is
7. Group B (patch size ranges between 22–71 LOC) and group C (with the size between
72–205 LOC) has the same median value of resubmissions (on average 2 patches per issue),
the highest number of patch revisions is 11 for group B and 23 for group C. The largest
patches (on average of around 1,000 LOC) have more revisions than smaller patches with
a median of 3 and a maximum of 30 resubmissions from group D.

Component

Blink’s source code is organized similar to the WebKit’s except that bindings and bridge

have been removed.

We selected the same number of top actively developed components: dom (5,856 patches),
rendering (5,732 patches), page (4,936 patches), html (4,934 patches), css (4,517 patches),
inspector (2,938 patches), loader (2,305 patches). The difference in the response time
between components was statistically significant (χ2(6)=40.75, p < 0.01); similar to the
WebKit study, the rendering component takes longer to review (the median time is 89
minutes) compared to any other component including inspector (49 minutes), page (70
minutes), dom and html (58 minutes), and css (63 minutes).

We found no relationship between positivity and the component factor; the average
positivity values for the components are quite high (0.98-0.99), suggesting that patches
have high chance of being landed to these actively developed components.
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Review Queue Length

Similar to the WebKit study, we calculated queue sizes for the reviewers at any given
time (the process is described in Section 3.4.1). The resulting queues ranged from 0 to 14
patches and the average queue was 0.7 patches. Statistical tests showed that there is no
significant effect of review queue size on neither reviewing time (χ2(14)=21.63, p = 0.086)
nor positivity of the reviewers (χ2(14)=20.20, p = 0.124).

Thus, we found that the length of the review queue affects neither the review response
time nor its outcome.

Organization

While Google developers submit 79.3% of all patches, other organizations also contribute
to the project including Samsung (8.7%), Opera (3.8%), Intel (2.9%), Adobe (1.9%) and
Igalia (0.2%), as well as independent individuals (3.1%). To assess whether organization in-
fluences review response and outcomes, we grouped non-Google contributions together and
labelled them as “other” and then compared this group against Google-only contributions.

We discovered that there is a statistically significant relationship between response time
and which organization submits the patch. Regardless of the review outcome, patches from
Google developers receive faster responses than patches coming from other organizations
(57 minutes vs. 95 minutes). Table 3.6 reports the mean and medians of both accepted
and rejected review times for each group. Google patches are accepted or rejected faster
that patches from others.

In terms of the positivity, we found no difference in review outcomes for Google vs.
“other” patches. This finding is somewhat expected since 98% of reviews ares done by
Google reviewers who appear to provide mainly positive reviews (see Section 3.4.2).

Comparing review response times, we noticed that the median values of both acceptance
and rejection increase while the mean values decrease for Google reviewers participating
on the Blink project vs. the WebKit project. While we do not have insights on why this
happened, we speculate that Google focuses on rather accepting good contributions (the
positivity values being very high) and providing constructive feedback to patch writers
than just hurling quick negative feedbacks to the developers.
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Reviewer Activity

Blink has 174 active reviewers performing code reviews. While the majority of the contri-
butions to the Blink repository are reviewed by Google (98%), other organizations perform
the remaining 2% of code reviews; Intel reviewed 75 patches, Samsung reviewed 41 patches,
Adobe reviewed 13 patches, and independent developers reviewed 29 patches.

To determine whether reviewer activity as a factor has an effect on the response time,
we calculated the number of previously reviewed patches for each reviewer and discretized
reviewers according to their reviewing experience using quartiles (similar to the procedure
we performed for WebKit). Statistical test showed that the difference for response time
of less experienced reviewers (i.e., A and B groups of reviewers with the median response
time of 71 minutes) is statistically significant (χ2(3)=62.14, p < 0.01) compared to more
active ones (group C with median value of the reviewing time being 42 minutes). The
difference in the response time for group C was also statistically significant compared to
group D (median time is 91 minutes). We note that group D consists of one most active
reviewer on the Blink project who reviewed 1,392 patches (15% of all reviewed patches).
Table 3.7 reports both the median and mean values for reviewers’ timeliness.

Looking at the reviewers’ involvement on the project and whether it affects their pos-
itivity, we found no correlation between reviewers’ positivity and their activity on the
project. Positivity values remain similar for the group A, B, C and D with medians rang-
ing between 0.99–1.0. This shows that reviewers provide positive feedback to almost all
patches they review; it seems that Google reviewers use positive reinforcement when assess-
ing contributions. If a patch is not quite ready to land to the source code, reviewers would
discuss potential flaws and expect the patch to be resubmitted again for further review.
Such behaviour is likely to increase response from developers submitting their patches.

Patch Writer Experience

The contributions to Blink’s core during the studied period came from 394 developers.
While Blink is developed and maintained mainly by Google — they submit 78% of all
patches — other organizations also contribute patches to the Blink repository, including
Samsung (757 patches), Opera (328 patches), Intel (256 patches), Adobe (170 patches),
and Igalia (21 patches) and other independent developers (274).

To understand whether the experience of a patch writer affects the timeliness and out-
come, we grouped developers according to their contributions (similar to the step described
in 3.4.1). We found that the differences of response time for group A of submitters is statis-
tically significant (χ2(3)=109.04, p < 0.01) when compared to more experienced developers
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(B, C and D groups). From the Table 3.7 we conclude that more experienced patch writers
are more likely to get faster responses (the median for groups B, C, and D being 51, 59
and 56 minutes respectively) than those who have not gained enough experience in filing
project contributions, individuals who submitted fewer than 30 patches (the median for
group A of submitters is 106 minutes).

When investigating the impact of developer experience on the likelihood of patch accep-
tance, we found correlation between two variables (χ2(3)=32.65, p < 0.01). In particular,
a statistical difference was found between group A (least active contributors) and groups C
and D (more active developers), as well as group B compared to the group D (most active
ones). However, the median and mean values for the groups are almost same, 1.0 for the
median and mean values ranges between 0.98-0.99. The statistical difference accounts for
the distribution of the positivity scores within each group, showing that the developers
who are more actively involved on the project almost certainly can expect their patches
to be accepted. On the other hand, the least active developers receive a fair amount of
rejections. This conclusion also supports the overall code review culture that we have seen
from the lifecycle model (shown in Figure 3.3) — Google reviewers are inclined to accept
patches with only very small portion (0.3%) of the submitted patches receiving negative
reviews; patches that need reworking are simply resubmitted again, after reviewers provide
their comments about the potential flaws.

Our findings show that developer experience is a key factor when it comes to review
outcomes and timeliness. Similar to the WebKit study, we see that more active developers
on the Blink project receive faster responses and their patches have high chances of being
approved.

3.5 Discussion

In this section, we discuss the results from two empirical studies. We start with highlighting
similarities and differences between the WebKit and Blink findings and provide our answers
to the research questions. Further, we offer other interpretations of the results and discuss
threats to validity.

3.5.1 WebKit and Blink Comparison

When studying each factor individually, we found that almost all of the studied factors
have a statistically significant effect on the review time across both projects: review queue
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showed no effect on time for Blink patches, and priority was not studied for Blink patches
because they do not have priority levels.

In terms of review positivity, we detected more differences between two projects. Only
patch writer experience has a statistically significant effect on positivity in both We-
bKit and Blink. Another two factors, organization and review queue, have a statis-
tically significant effect on positivity only in WebKit. The last two factors, component

and reviewer activity, showed no statistically significant effect on positivity in both
projects.

We now present our answers to the research questions stated at the beginning of our
work.

RQ1: What factors can influence how long it takes for a patch to be reviewed?

Based on the results of two empirical studies, we found that both technical (patch
size and component), as well as non-technical (organization, patch writer

experience, and reviewer activity) factors affect review timeliness when
studying the effect of individual variables. While priority appears to influence
review time for WebKit, we were not able to confirm this for Blink.

RQ2: What factors influence the outcome of the review process?

Our findings from both studies suggest that patch writer experience af-
fects code review outcome. For the WebKit project, factors like priority,
organization, and review queue also have an effect on the patch acceptance.

3.5.2 Other Interpretations

Drawing general conclusions from empirical studies in software engineering carries risk: any
software development process depends on a potentially large number of relevant contextual
variables, which are often non-obvious to outsiders. While our results show that certain
non-technical factors have a statistically significant effect on the review time and outcome
of patch submissions, understanding and measuring the practical significance of the results
remains challenging. Processes and developer behaviour around their contributions to
the WebKit project depend on the organization, its culture, internal structure, settings,
internal development cycles, time pressures, etc. According to Beller et al. [17], the type of
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a change (maintainability vs. functionality) might also account for the variations in time
and outcome of code review.

Any of these “hidden” factors could potentially influence patch review delays and out-
comes; for example, let us consider time pressures. It is our understanding that Apple
prefers strict deadlines for shipping hardware, and the supporting software needs to match
the projected delivery dates of the new hardware. This results in Apple developers pri-
oritizing internal development goals over external ones, and thus prioritizing patches that
help them meet their short-term objectives.

Organizational and geographical distribution of the developers may also provide insights
into review delays. We understand that WebKit developers at Apple are co-located within
the same building, which may account for a better visibility of the patches that their
co-workers are working on; conversely, WebKit developers at Google tend to be more
geographically distributed, which may result in a poorer awareness of the work of others.

In summary, understanding the reasons behind observable developer behaviour requires
an understanding of the contexts, processes, and the organizational and individual factors
that can influence code review and its outcome. Thus, while our results may be statistically
valid, care must be taken in interpreting their meaning with respect to actual developer
behaviour and intent. We consider that much work remains to be done in studying how best
to interpret empirical software engineering research within the context of these “hidden”
contextual factors.

3.5.3 Threats to Validity

Internal validity concerns with the rigour of the study design. In our study, the threats are
related to the data extraction process, the selection of the factors that influence code review,
and the validity of the results. While we have provided details on the data extraction,
data filtering, and any heuristics used in the study, we also validated our findings with
the WebKit developers and reviewers. We contacted individuals from Google, Apple,
BlackBerry, and Intel and received insights into their internal processes (as discussed in
Section 3.5.2). To ensure that we are on the correct track in interpreting the results of
our studies, we talked to the WebKit and Blink developers via email (for Apple, Intel,
Google), as well as had face-to-face meetings with Google and Blackberry developers at
the respective local offices in Waterloo, Ontario (Canada). Face-to-face meetings included
a presentation of the main findings followed by the discussion about possible explanations
and insights into the “hidden” factors affecting code review process and practice.
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When investigating the relation between patch size and the number of patch revisions,
we assumed that patches are independent; this might have introduced some bias since
several different patches can often be associated with the same bug ID and “mentally”
form one large patch. However, for both studies we considered the size of the largest patch
due to the lack of indication of which patches are actually comprising a larger patch and
which patches are being resubmits.

Unlike Bugzilla’s issue tracking — which is used by both Mozilla and WebKit to carry
out code review tasks — Blink’s code review system does not support history tracking of
patch changes and lacks any explicit review requests. We overcome these limitations by
inferring the review start times of Blink patches by considering the most recent patch (in
terms of time) in a list of the patches followed by a review flag. This heuristic is a “best
effort” approximation; unfortunately, accurate timestamps of the review starting point
cannot be determined by scraping the data from the existing code review system.

Our empirical study is also subject to external validity concerns; we cannot generalize
our findings to say that both organizational and personal factors affect code review in
all open source projects. While we compared WebKit’s code review process with that of
Mozilla Firefox, and found that its patch lifecycle is similar to open source projects, the
fact that WebKit is being developed by competing organizations makes it an interesting
case yet a rather obvious exception. Hence, more studies on similar projects are needed.

Statistical conclusion validity refers to the ability to make an accurate assessment of
whether independent and dependent variables are related and about the strength of that
relationship. To determine whether relationships between variables are statistically signif-
icant, we performed null hypothesis testing. We also applied appropriate statistical tests
(analysis of variance, post-hoc testing, and Spearman’s correlation).

3.6 Summary

In this chapter we presented two empirical studies of WebKit and Blink software projects
that aimed to analyze the effect of various factors, both technical and non-technical in
nature, on the review time and chances of a patch to be accepted. Both studied projects
are comprised of complex communities to which a variety of organizations contribute; these
organizations compete at a business level while collaborating at a technical level. Ideally,
the contributions of these organizations to be treated equally, based on their technical
merits alone. While some influencing factors include the size of the patch itself or the part
of the code base being modified, other non-technical factors have significant impact on
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the code review process. Our results provide empirical evidence that organizational and
personal factors influence both review timeliness as well as the likelihood of a patch being
accepted. Additionally, we found significant differences in how long a patch took to be
reviewed based on the organizations that wrote and reviewed a given patch along with the
final outcome of the review.

Ultimately, the most influential factors of the code review process on both review time
and patch acceptance are the organization a patch writer is affiliated with and their level
of participation within the project. The more active role a developer decides to play, the
faster and more likely their contributions will make it to the code base.
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Chapter 4

Bugginess as a Measure of Code
Review Quality

In Chapter 3, we studied the code review process from the developer’s perspective. We
analyzed the effects of various factors on the time it takes to a review a contribution as well
as on the likelihood of that contribution being accepted. We now consider code review from
the perspective of the reviewers themselves as well as the project owners; in particular,
we pay close attention to how reviewing helps to ensure quality of the committed code.
In principle, code review should improve the quality of code changes (patches) before
they are committed to the project’s master repository. In practice, bugs are sometimes
unwittingly introduced during this process. In this chapter, we report on an empirical study
investigating code review quality for Mozilla, a large open-source project. We explore the
relationships between the reviewers’ code inspections and a set of factors, both personal
and social in nature, that might affect the quality of such inspections.

Chapter Organization. We start by providing motivation and the research questions this
chapter is focused on in Section 4.1. Then we present some background about the Mozilla
code review process in Section 4.2. Section 4.3 describes the methodology followed in this
study. In Section 4.4, we present and discuss the results of our three research questions. In
Section 4.5, we address the threats to validity. Finally, Section 4.6 summarizes our results.

Related publication. The work described in this chapter has been published in the
following paper:

• Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W. God-
frey. Investigating code review quality: Do people and participation matter? In

51



Proceedings of the International Conference on Software Maintenance and Evolution
(ICSME), pages 111–120. IEEE, 2015.

4.1 Motivation and Research Questions

Code review is an essential element of any mature software development project; it aims at
evaluating code contributions submitted by developers. Code review is considered to be one
of the most effective QA practices for software projects; it is relatively expensive in terms
of time and effort, but provides good value in identifying defects in code changes before
they are committed into the project’s code base [39]. Reviewers are the gatekeepers of a
project’s master repository; they must carefully validate the design and implementation of
patches to ensure they meet the expected quality standards.

In principle, the code review process should improve the quality of code changes
(patches) before they are committed to the project’s master repository. However, in prac-
tice, the execution of this process can still allow bugs to enter into the codebase unnoticed.
This work aims to investigate the quality of code review.

In this chapter, we have studied code review of a large open source system: the Mozilla
project. For Mozilla, code review is a vital part of their development process, since con-
tributions may come not only from core Mozilla developers but also from the greater user
community. The Mozilla community embraces code review to help maintain consistent
design and implementation practices among the many casual contributors and across the
various modules that comprises the Mozilla codebase [92]. They have found that code
review increases code quality, promotes best practices, and reduces regressions [93].

The Mozilla code review process requires that every submitted patch be evaluated by
at least one reviewer [94]. Reviewers are advised to grant approval to a patch if 1) they
believe that the patch does no harm, and 2) the patch has test coverage appropriate to the
change. If a reviewer feels unable to provide a timely, expert review on a certain patch,
they can re-direct the patch to other reviewers who may be better able to perform the task.
However, even given the careful scrutiny that patches undergo, software defects are still
found after the changes have been reviewed and committed to the version control repository.
These post-release defects naturally raise red flags about the quality of code reviews. Poor-
quality reviews that permit bugs to sneak in unnoticed can introduce stability, reliability,
and security problems, affecting the user’s experience and ultimately their satisfaction with
the product.

Previous research on code review has examined topics such as the relation between
code coverage/participation and software/design quality [80, 89]; however, the topic of
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code review quality remains largely unexplored. In this chapter, we perform an empirical
case study of a large open source Mozilla project including its top three largest modules:
Core, Firefox, and Firefox for Android. We apply the SZZ algorithm [115] to detect bug-
inducing changes that are then linked to the code review data extracted from the issue
tracking system. We address the following overarching research questions:

RQ1 Do code reviewers miss many bugs?
The goal of code review is to identify problems (e.g., the code-level problems) in the
proposed code changes. Yet, software systems remain bug-prone.

RQ2 Do personal factors affect the quality of code reviews?
Previous studies found that code ownership has a strong relationship with both pre-
and post-release defect-proneness [20,79,101].

RQ3 Does participation in code review influence its quality?
A recent study demonstrated that low review participation has a negative impact on
software quality [80].

4.2 The Mozilla Code Review Process

Mozilla employs a two-tiered code review process for assessing submitted patches: review
and super review [92]. A review is performed by the owner of the module (or peers of the
module) in question; reviewers thus have domain expertise in the specific problem area
of concern. Super reviews are required if the patch involves integration or modifies core
Mozilla infrastructure (e.g., major architectural refactoring, changes to API, or changes
that affect how code modules interact). Currently, there are 30 super-reviewers for all
Mozilla modules [93], 162 reviewers for the Core module, 25 reviewers for Firefox, and 11
reviewers for Firefox for Android (also called “Fennec”) [95]. However, any person who
is not on the list of designated reviewers but has level three commit access — i.e., core
product access to the Mercurial version control system — can review a patch.

The Mozilla team reviews every patch using the Bugzilla issue-tracking system, which
records and stores all information related to code review tasks. The process works as
follows. First, a developer submits a patch to Bugzilla that contains their proposed code
changes; they then request a review from a designated reviewer of the module where the
code will be checked in. Patches that have significant impact on the design of Mozilla
may trigger a super review. After the code has been reviewed, the reviewer will indicate
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Figure 4.1: Process overview.

a positive or negative outcome, and may provide feedback comments. Once the reviewers
approve a patch, the code changes are committed to Mozilla’s source code repository.

As we can see, Mozilla employs a strict review policy. Investigating what makes devel-
opers miss bugs in code during review process is the topic of our work.

4.3 Methodology

To address our research questions we followed a data mining process shown in Figure 4.1
that consists of the following stages. First, we extracted commits from the Mozilla’s version
control repository (step 1). We then linked these commits to the corresponding bug reports
in the Bugzilla issue tracking system (step 2). After that, we extracted information about
linked bug reports and review-related information for patches attached to them (steps 3
and 4). Finally, we established the links between commits and reviewed patches (step 5)
and identified bug-inducing commits (step 6).
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Table 4.1: Overview of the studied systems.

System Commits Reviews Writers Reviewers
Mozilla-all 27,270 28,127 784 469
Core 18,203 18,759 544 362
Firefox 2,601 2,668 214 110
Firefox for Android 2,106 2,160 108 72

4.3.1 Studied Systems

Mozilla uses Mercurial as their version control system and maintains several repositories,
with each repository built around a specific purpose and/or set of products. We considered
mozilla-central1 as the main repository; it contains the master source code for Firefox
and Gecko, Mozilla’s layout engine.

For our study, we took all code changes that were committed to mozilla-central

between January 1, 2013 and January 1, 2014. In this chapter, we use terms “code change”
and “commit” interchangeably. We studied four systems: Mozilla-all (full set of commits),
as well as the three largest modules: Core, Firefox, and Firefox for Android. Table 4.1
describes the main characteristics of these systems; the numbers represent “clean” datasets
that we obtained after performing the steps described in Sections 4.3.2, 4.3.3, and 4.3.4.
We report the number of commits, reviews, writers, and reviewers for our Mozilla-all, Core,
Firefox, and Firefox for Android datasets.

4.3.2 Data extraction

We extracted a total of 44,595 commits from mozilla-central. During the extraction
phase, we collected a variety of information about each commit including its unique iden-
tifier, the name and email address of the person who made this commit, the date it was
added to the repository, the textual description of a change, and the size statistics of the
commit. To calculate the size statistics, we analyzed the diff statements of each com-
mit. We looked only at textual diffs, and we excluded those that describe a change in
binary files such as images. We recorded the number of files changed, the total number
of lines that were added and removed, and the total number of code chunks found in the
investigated diffs.

1http://hg.mozilla.org/mozilla-central
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Linking revisions to bugs. Prior to identifying bug-inducing changes, we had to
detect changes that aim to fix bugs. For that, we linked commits in the version control
repository to bugs in the issue tracking system using the commit descriptions. Manual
inspection of commit summaries confirmed that developers consistently include a bug ID
in the commit summary, and also tend to use the same formatting. Based on this finding,
we wrote a set of case-insensitive regular expressions to extract bug ID values. If a regular
expression found a match, we checked whether a commit description contains any review
flags to eliminate matches from unreviewed commits. If such flags were found and commits
contained bug ID numbers, we linked bug ID numbers to them.

As a result of this, we were able to assign bug ID values to 35,668 (80%) commits. As
suggested by Kim et al. [66], we manually checked summaries of both matched and non-
matched commits and found no incorrectly assigned bug IDs. The analysis of non-matched
commits (8,927 in total) showed that 2,825 commits (6.3%) were backed out commits, 5,520
(12.3%) commits were merges, 413 (1%) of them were “no bug” commits, and 169 of them
were other commits.

Getting additional data from Bugzilla. We scraped Bugzilla for each linked bug
ID to get detailed information, including the date when the bug was submitted, the name
and email address of the person who reported the bug, the bug severity and priority, the
module affected by the bug, and the list of proposed patches. For each patch, we recorded
the author of the patch, the submission date, and the review-related flags. For each review-
related flag, we extracted the date and time it was added, as well as the email address of
the person who performed the flag update.

Out of 22,015 unique bug IDs assigned to the commits, we were unable to extract the
data for 188 bugs that required special permissions to access them. For 490 bugs, we found
no patches with review-related flags. Such a situation might arise in only two cases: if we
incorrectly assigned bug ID in the first place, or if a patch landed into the code base without
undergoing the formal code review process. To investigate this, we performed a manual
check of several randomly-selected bug IDs. We found no examples of incorrect assignment:
all of the checked bug IDs were bugs with no reviewed patches in Bugzilla. Since commits
having no information about reviews can not contribute to our study, we disregarded them,
reducing the number of unique bug IDs by 678 and the number of commits in the dataset
to 34,654.
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4.3.3 Linking Patches and Commits

Since each commit in the version control system is typically associated with a single patch,
we linked each commit to its corresponding patch and its review-related information. How-
ever, establishing these links requires effort. The best matching of a patch to a commit
can be achieved by comparing the content of the commit to the contents of each patch,
and then verifying if the two are the same. However, this approach does not work in an
environment where developers constantly make commits to the repository independently
from one another. For example, suppose that a patch p1 was added to Bugzilla at time
t1 and was committed to the repository at time t2. If there were no changes to the files
affected by the patch between t1 and t2, then the commit and the patch would be the
same. If another patch p2 changing some of those files was committed to the repository
during that time frame, then the content of the commit of p1 might not match the content
of the patch p1 itself. This might happen if (a) the line numbers of the changed code in
p1 were different at t1 and t2, e.g., p2 added a line at the beginning of a file shifting all
other content down, or (b) p1 changed lines that had been changed by p2, i.e., the removed
lines in the diff statements of p1 would be different from the removed lines in the diff

statements of the commit of p1. The most precise way of matching patches and commits
would be to employ some code cloning techniques to detect matches on the string level;
however, we decided against this approach as it is expensive in terms of time and effort.

Instead, we opted for a less precise but conservative way of mapping commits to patches.
For each commit with a bug ID attached, we took all reviewed patches ordering them by
their submission date. We then searched for the newest patch such that (1) the last review
flag on that patch was review+ or super-review+, and (2) this review was granted before
the changes were committed to the version control system. Previous research showed that
patches can be rejected after they receive a positive review [13, 14]. The first heuristic
makes sense as patches with last review flags being review- are unlikely to land into the
code. On the contrary, patches that were first rejected and later accepted (e.g., another
more experienced reviewer reverted a previous negative review decision) are likely to be
incorporated into the code base. The second heuristic ensures that changes cannot be
committed without being reviewed first; it facilitates proper mapping when several commits
in the version control system are linked to the same bug, and there are multiple patches
on that bug. For example, a bug can be fixed, reopened, and fixed again. In this case, we
would have two different patches linked to two commits; without the second heuristic, the
same patch would be linked to both commits.

By applying these heuristics, we were able to successfully link 28,888 out of a total of
34,654 (i.e., 83%) commits to appropriate patches. The manual inspection of the remaining
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17% of the commits revealed that the main reason why we did not find corresponding
patches in Bugzilla was incorrect date and time values of the commits when they were added
to the version control system. For example, a commit with ID 147321:81cee5ae7973 was
“added” to the repository on 2013-01-28; the bug ID value assigned to this commit is
904617. Checking this bug history in Bugzilla revealed that the bug was reported on
2013-08-13, almost 7 months after it was fixed.

4.3.4 Data Pre-Processing

Prior to data analysis, we tried to minimize noise in our data. To eliminate outliers, we
performed data cleanup by applying three filters:

1. We removed the largest 5% of commits to account for changes that are not related to
bug fixes but rather to global code refactoring or code imports (e.g., libraries). Some
of the commits are obvious outliers in terms of size. For example, the largest commit
(“Bug 724531 - Import ICU library into Mozilla tree”) is about 1.1 million lines of
code, while the median value for change size is only 34 lines of code. This procedure
removed all commits that were larger than 650 lines (1,403 commits in total).

2. Some changes to binary files underwent code review. However, since the SZZ algo-
rithm can not be applied to such changes, we removed the commits containing only
binary diffs (52 commits in total).

3. We found that for some changes the submission date of their associated patches was
before the start of our studied period. We believe that these patches “fell on the
floor” but later were found and reviewed. To eliminate these outliers, we removed
all commits representing patches that were submitted before 2012-09-01. This filter
excluded 163 commits.

Our final dataset2 contains 27,270 unique commits, which corresponds to 28,127 reviews
(some linked patches received multiple positive reviews, thus, commits can have more than
one review).

2http://swag.cs.uwaterloo.ca/~okononen/bugzilla_public_db.zip

58

http://swag.cs.uwaterloo.ca/~okononen/bugzilla_public_db.zip


Table 4.2: A taxonomy of considered technical, personal, and participation metrics used.

Type Metric Description Rationale

T
ec

h
n

ic
al

Size (LOC) The total number of phys-
ical lines of code that were
added or removed.

Large commits are more likely to be bug
prone [124]; thus the intuition is it is easier
for reviewers to miss problems in large code
changes.

Chunks The total number of iso-
lated places (as defined
by diff) inside the file(s)
where the changes were
made.

We hypothesize that reviewers are more
likely to miss bugs if the change is divided
into multiple isolated places in a file.

Number of files The number of modified
files.

Similarly, reviews are more likely to be bug
prone if the changes are spread across mul-
tiple files.

Module Mozilla module name
(e.g., Firefox).

Reviews of changes within certain modules
are more likely to be bug prone.

Priority Perceived urgency of the
bug.

Our intuition is that patches with higher
priority are more likely to be rushed in and
thus be more bug prone than patches with
lower priority levels.

Severity Perceived severity of the
bug (i.e., how much it may
affect the system)

We think that changes with higher levels of
severity introduce fewer bugs because they
are often reviewed by more experienced de-
velopers or by multiple reviewers.

Super review Indicator of whether the
change required super re-
view or not

Super review is required when changes af-
fect core infrastructure of the code and,
thus, are more likely to be bug prone.

Number of previous
patches

The number of patches
submitted before the cur-
rent one on a bug.

Developers can collaborate on resolving
bugs by submitting improved versions of
previously rejected patches.

Number of writer’s
previous patches

The number of previous
patches submitted by the
current patch owner on a
bug.

A developer can continue working on a bug
resolution and submit several versions of
the patch, or so called resubmits of the
same patch, to address reviewers concerns.

P
er

so
n

al

Review queue The number of pending re-
view requests.

While our previous research [14] demon-
strated that review loads are weakly corre-
lated with review time and outcome; we
were interested to find out whether re-
viewer work loads affect code review qual-
ity.

Reviewer experi-
ence

The overall number of
completed reviews.

We expect that reviewers with high overall
expertise are less likely to miss a bug.
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Type Metric Description Rationale

P
er

so
n

al

Reviewer experi-
ence for module

The number of completed
reviews by a developer for
a module.

Reviewers with high reviewing experience
in a certain module are less likely to miss
defects; and on the contrary, reviewers
with no past experience in performing code
reviews for some modules are more likely to
fail to catch bugs.

Writer experience The overall number of
submitted patches.

Developers who contribute a lot to the
project — have high expertise — are less
likely to submit buggy changes.

Writer experience
for module

The number of submitted
patches for a module.

Developers who make few changes to a
module are more likely to submit buggy
patches.

P
ar

ti
ci

p
at

io
n

Number of develop-
ers on CC

The number of developers
on the CC list at the mo-
ment of review decision.

Linus’ law states that “given enough eye-
balls, all bugs are shallow” [37].

Number of com-
ments

The number of comments
on a bug.

The more discussion happens on a bug, the
better the quality of the code changes [80].

Number of com-
menting developers

The number of develop-
ers participating in the
discussion around code
changes.

The more people are involved in discussing
bugs, the higher software quality [80].

Average number of
comments per de-
veloper

The ratio of the comment
count over the developer
count.

Does the number of comments per devel-
oper has an impact on review quality?

Number of reviewer
comments

The number of comments
made by a reviewer.

Does reviewer participation in the bug dis-
cussion influence the quality of reviews?

Number of writer
comments

The number of comments
made by a patch writer.

Does patch writer involvement in the bug
discussion affect review quality?

4.3.5 Identifying Bug-Inducing Changes

To answer our research questions, we had to identify reviews that missed bugs, i.e., the
reviews of the patches that were linked to bug-inducing commits. We applied the SZZ
algorithm proposed by Śliwerski et al. [115] to identify the list of bug-inducing changes.
For each commit that is a bug fix, the algorithm executes diff between the revision of
the commit and the previous revision. In Mercurial, all revisions are identified using both
a sequential numeric ID and an alphanumeric hash code. Since Mercurial is a distributed
version control system, RevisionId - 1 is not always a previous revision and thus cannot
be used in the algorithm. To overcome this problem, we extracted the parent revision
identifier for each revision and used it as a previous revision value for executing diff. The
output of diff produces the list of lines that were added and/or removed between the two
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revisions. The SZZ algorithm ignores added lines and considers removed lines as locations
of bug-introducing changes.

Next, the Mercurial annotate command (similar to blame in Git) is executed for the
previous revision. For each line of code, annotate adds the identifier of the most re-
cent revision that modified the line in question. SZZ extracts revision identifiers for each
bug-introducing line found at the previous step, and builds the list of revisions that are
candidates for bug-inducing changes.

Kim et al. addressed some limitations of the SZZ algorithm as it may return imprecise
results if diff contains changes in comments, empty lines, or formatting [67]. The problem
with false positives (precision) occurs because SZZ treats those changes as bug-introducing
changes even though such changes have no effect on the execution of the program. Since we
implemented SZZ according to the original paper, i.e., without any additional checks, we
wanted to find out how many false positives are returned by SZZ. To assess the accuracy
of the SZZ algorithm, we performed a manual inspection of the returned results (that is,
potential candidates returned by SZZ) for 100 randomly selected commits. We found 9%
(39 out of 429 candidates) of false positives with 19 of those being changes in formatting
and the remaining 20 candidates being changes in comments and/or empty lines. While
we think the percentage of false positives is relatively small, the limitations of SZZ remain
a threat to validity.

Finally, the SZZ algorithm eliminates those candidates that were added to the repos-
itory after the bug associated with a commit was reported to the issue tracking system.
The remaining revisions are marked as bug-inducing code changes.

We ran the SZZ algorithm on every commit with a bug ID, and obtained the list of
changes that led to bug fixes. Some of the changes might have been “fixed” outside of our
studied period and thus would not be marked as bug-inducing. To account for such cases,
we also analyzed the changes that were committed within a six-month time frame after
our studied period: we assigned bug ID values, scraped Bugzilla for bug report date, and
executed the SZZ algorithm; the results were added to the list of bug-inducing commits.
The commits from the dataset were marked as bug-inducing if they were present in this
list; otherwise, they were marked as bug-free commits.

4.3.6 Determining Explanatory Factors

Our previous work suggests that various types of metrics can affect code review time and
outcome [14]. Similarly, we grouped our metrics into three types: technical, personal, and
participation.
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Table 4.2 describes the metrics used in our study and provides rationale for their se-
lection. The metrics for technical factors were calculated on our dataset. However, the
personal and participation metrics could not be extracted from our data due to its fixed
time frame. For example, one developer started to participate in code review in 2013, while
another one has been performing review tasks since 2010; if we compute their expertise
on the data from our dataset (i.e., a 12-month period of 2013), the experience of the sec-
ond developer will be incorrect, i.e., his experience for previous three years (2010–2012)
will be not taken into account. To overcome this problem, we queried an Elastic Search
cluster containing the complete copy of the data from Bugzilla [91]. The nature of how
Elastic Search stores the data allowed us to get the “snapshots” of Bugzilla for any point
in time and to accurately compute the personal and participation metrics. While comput-
ing the review queue values, we found that many developers have a noticeable number of
“abandoned” review requests, i.e., the requests that were added to their loads but never
completed. Such requests have no value for the review queue metric; therefore, any pend-
ing review request on the moment of 2014-01-01 was ignored when calculating developer
review queues.

The metrics of the three types presented in this section served as explanatory variables
for building our models that we describe next.

4.3.7 Model Construction and Analysis

To study the relationship between personal and participation factors and the review quality
of the studied systems, we built Multiple Linear Regression (MLR) models. Multiple linear
regression attempts to model the relationship between two or more explanatory variables
and a response variable by fitting a linear equation to observed data [27]. The model is
presented in the form of y = β0 + β1x1 + β2x2 + ... + βnxn, where y is the response
variable and x1, x2,... xn are explanatory variables. In our MLR models, the response
variable is the code review quality (buggy or not) and the explanatory variables are the
metrics described in Table 4.2. The value of the response variable ranges between 0 and 1
— we used the value of 1 for bug-prone reviews and the value of 0 for bug-free inspections.
While MLR is not typically used with binary dependent variables, it was demonstrated to
be still applicable in such cases [57,117]. Our goal was to explain the relationship (if any)
between the explanatory variables (personal and participation metrics) and the response
variable (code review quality). In our models we control for several technical dependent
factors (size, number of files, etc.) that are likely to influence the review quality. We build
our models similar to the ones described in [14,24,80,85].
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Transformation. To eliminate the impact of outliers on our models, we applied a
log transformation log(x + 1) to the metrics whose values are natural numbers (e.g., size,
chunks, number of files, experience, review queues, etc.). Since categorical variables can not
be entered directly into a regression model and be meaningfully interpreted, we transform
such variables (e.g., priority, severity, etc.) using a “dummy coding” method, which is
a process of creating dichotomous variables from a categorical variable. For example, if
we have a categorical variable such as priority that has 5 levels (P1–P5), then four
dichotomous variables are constructed that contain the same information as the single
categorical variable. By using these dichotomous variables we were able to enter the data
presented by categorical metrics directly into the regression model.

Identifying Collinearity. Collinearity, or excessive correlation among explanatory
variables, can complicate or prevent the identification of an optimal set of explanatory
variables for a statistical model. We identified collinearity among explanatory variables
using the variance inflation factor (VIF). A VIF score for each explanatory variable is
obtained using the R-squared value of the regression of that variable against all other
explanatory variables. After calculating VIF scores, we removed those with high values.
The VIF score threshold was set to 5 [42], thus if the model contained a variable with VIF
score greater than 5, this variable was removed from the model and VIF scores for the
variables were recalculated. We repeated this step until all variables in our model had VIF
scores below the threshold.

Model Evaluation. We evaluated our models by reporting the Adjusted R2 values.
We also performed a stepwise selection [41], a method of adding or removing variables based
solely on the t-statistics of their estimates. Since we had many explanatory variables, it
was useful to fine tune our model by selecting different variables. Our goal was to identify
the best subset of the explanatory variables from our full model. For the stepwise variable
selection, we applied both the “forward” and “backward” methods.

4.4 Results

In this section, we present and discuss the results of our empirical study performed on
various Mozilla systems.

RQ1: Do code reviewers miss many bugs?

In theory, code review should have a preventive impact on the defect-proneness of
changes committed to the project’s source code. Yet, code review might induce bugs since
identifying the code-level problems and design flaws is not a trivial task [8]. We determine
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the proportion of buggy code reviews for the different projects by computing the number
of bug-inducing code reviews for each Mozilla module.

As indicated in Table 4.3, we find that overall 54% of Mozilla code reviews missed
bugs in the approved commits. This value proved to be remarkably consistent across the
different modules we looked at: the Core module contained 54.3% buggy reviews, Firefox
contained 54.2%, and Firefox for Android contained 56%. While the studied systems are
of widely varying sizes and have different numbers of commits and reviewers (as reported
in Table 4.1), the proportion of “buggy” code reviews in these modules is almost identical.

Table 4.3: Number of code reviews that missed bugs.

System # Reviews # Buggy Reviews % Buggy Reviews
Mozilla-all 28,127 15,188 54.0 %
Core 18,759 10,184 54.3 %
Firefox 2,668 1,447 54.2 %
Firefox for Android 2,160 1,210 56.0 %

While we were surprised to see such minute variation across the different modules, the
proportion of buggy changes (54–56%) we observed is within the limits of the previously
reported findings. Kim et al. [66] reported that the percentage of buggy changes can
range from 10% to 74% depending on the project; with Mozilla project having 30% of
buggy changes for the 2003–2004 commit history when Mozilla code base was still growing.
Śliwerski, Zimmerman, and Zeller [115] found 42% of bug-inducing changes for Mozilla and
11% for Eclipse projects (the dataset contained changes and bugs before 2005).

RQ1: About 54% of the patches after being reviewed and approved, still contain
problems that required bug fixes later on.

RQ2: Do personal factors affect the quality of code reviews?

Intuitively, one would expect that an experienced reviewer would be less likely to miss
design or implementation problems in code; also, one would expect smaller work loads
would allow reviewers to spend more time on code inspections and, thus, promote better
code review quality. To investigate if these are accurate assumptions, we added technical
and personal metrics from Table 4.2 to our MLR model.

Table 4.4a shows that review queue length has a statistically significant impact on
whether developers catch or miss bugs during code review for all the four studied systems.

64



Table 4.4: Model statistics for fitting data. Values represent regression coefficients associ-
ated with each variable.

(a) Technical and personal factors.

Mozilla Core Firefox Firefox for Android
Adjusted R2 0.128 0.123 0.173 0.138
Size (LOC) 0.102*** 0.098*** 0.108*** 0.115***
Chunks † † † †
Number of files 0.058*** 0.059*** 0.109*** 0.062*
Module ? n/a n/a n/a
Priority ? ? ‡ ·
Severity ‡ ‡ · ‡
Super review -0.139** -0.177*** · n/a
Review queue 0.017*** 0.0204*** 0.038** 0.045**
Reviewer exp. -0.013*** -0.012*** -0.029*** -0.041***
Reviewer exp. (mod.) † † ‡ 0.018*
Writer exp. · -0.004* ‡ ‡
Writer exp. (module) † † ‡ ·
# prev patches † † † -0.045***
# writer patches -0.012*** · · †

(b) Technical and participation metrics.

Mozilla Core Firefox Firefox for Android
Adjusted R2 0.134 0.128 0.173 0.147
Size (LOC) 0.105*** 0.103*** 0.105*** 0.117***
Chunks † † † †
Number of files 0.060*** 0.059*** 0.090*** 0.067***
Module ? n/a n/a n/a
Priority ‡ ? ‡ ?
Severity ? ‡ ? ‡
Super review -0.124*** -0.160*** ‡ n/a
# of devs on CC 0.053*** 0.056*** ‡ 0.049*
# comments † † † †
# commenting devs -0.124*** -0.102*** -0.075*** -0.176***
# comments/ # dev -0.039*** -0.029** ‡ ‡
# reviewer comments 0.010** ‡ 0.026* ‡
# writer comments · · · -0.047**

†Disregarded during VIF analysis (VIF coefficient > 5).
‡Disregarded during stepwise selection.
? “It’s complicated”: for categorical variables see explanation of the results in Section 4.4.
Statistical significance: ’***’ p < 0.001; ’**’ p < 0.01; ’*’ p < 0.05; ’·’ p ≥ 0.05.
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The regression coefficients of the review queue factor are positive, demonstrating that
reviewers with longer review queues are more likely to submit poor-quality code evaluations.
These results support our intuition that heavier review loads can jeopardize the quality of
code review. A possible improvement would be to “spread the load on key reviewers” [11]
by providing a better transparency on developer review queues to bug triagers.

For all studied systems, reviewer experience seems to be a good predictor of whether
the changesets will be effectively reviewed or not. Negative regression coefficients for this
metric demonstrate that less experienced developers — those who have conducted relatively
fewer code review tasks — are more likely to neglect problems in changes under review.
These results follow our intuition about reviewer experience being a key factor to ensure the
quality of code reviews. It was surprising to us that writer experience (overall or module-
based) does not appear to be an important attribute in most of the models (with the
exception of Core). We expected to see that less active developers having little experience
in writing patches would be more likely to submit defect-prone contributions [38,101] and
thus, increase the chances of reviewers in failing to detect all defects in poorly written
patches.

Factors such as the number of previous patches on a bug and the number of patches re-
submitted by a developer seem to have a positive effect on review quality for one of the four
systems: Firefox for Android (and also on the overall Mozilla-all). A possible explanation
is that Firefox for Android is a relatively new module, and the novelty of the Android
platform may attract a variety of developers to be more involved in contributing to the
Android-based browser support building on each other’s work (i.e., improving previously
submitted patches). However, we have not attempted to test this hypothesis.

Among the technical factors, size of the patch has a statistically significant effect on
the response variable in all four models. Its regression coefficients are positive, indicating
that larger patches lead to a higher likelihood of reviewers missing some bugs. Similarly,
number of files has a good explanatory power in all four systems. The need for a super
review policy is well explained, as super reviews have a positive impact on the review
quality. This shows that such reviews are taken seriously by Mozilla-all and Core projects
(our dataset contains no super reviews for Firefox for Android). It is not surprising as the
role of super reviewer is given to highly experienced developers who demonstrated their
expertise of being a reviewer in the past and who has a greater overall knowledge of the
project’s code base.

When examining the impact of module factor on code review effectiveness, we no-
ticed that for some Mozilla modules such as Core, Fennec Graveyard, Firefox, Firefox for
Metro, Firefox Health Report, Mozilla Services, productmozilla.org, Seamonkey, Testing,
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and Toolkit, the model contains negative regression coefficients that are statistically signif-
icant; this indicates that these modules maintain a better practice of ensuring high quality
of their code review process.

We found that while the bug priority level is associated with a decrease of poorly
conducted reviews (P5 patches for Mozilla-all with regression coefficient being -0.13, p <
0.05 and P3 patches for Core module with the regression coefficient = -0.10, p < 0.05), it
does not have a significant impact on other two modules.

RQ2: Reviewers with higher workload are more likely to miss bugs than reviewers
who have fewer patches to review. Novice reviewers (i.e., those who have done
fewer reviews) are more likely to approve a buggy patch than experienced reviewers.

RQ3: Does participation in code review influence its quality?

Previous research found that the lack of participation in code review has a negative
impact on the quality of software systems [80]. To investigate whether code review quality
is affected by the involvement of the community, we added metrics that relate to developer
participation in review process, described in Table 4.2 to our models.

Table 4.4b shows that the number of developers on the CC list has a statistically
significant impact on review bugginess for three of the four systems; and its regression
coefficients are positive, indicating that the larger number of developer names is associated
with the decrease in review quality. This may sound counterintuitive at first. However,
from the developer perspective, their names can be added to CC for different reasons:
developer submitted the bug, wrote a patch for the bug, wants to be aware of the bug,
commented on the bug, or voted on the bug. Thus, we think that CC is negatively
associated with review quality due to its ambiguous purpose: “CC is so overloaded it
doesn’t tell you why you are there” [11].

The number of commenting developers has a statistically significant impact on the
models of all four of the studied systems. The regression coefficients are negative, indicating
that the more developers that are involved in the discussion of bugs and their resolution
(that is, patches), the less likely the reviewers are to miss potential problems in the patches.
A similar correlation exists between review quality and the metric representing average
number of comments per developer and having statistically significant negative coefficients
for two of the four systems (Mozilla-all and Core). This shows that reviews that are
accompanied with a good interactions among developers discussing bug fixes and patches
are less prone to bugs themselves. The number of comments made by patch owners is also
demonstrated to have a statistically significant negative impact on review bug-proneness
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in the model for Firefox for Android only. These results reveal that the higher rate of
developer participation in patch discussions is associated with higher review quality.

While any developer can collaborate in bug resolution or participate in critical analysis
of submitted patches, reviewers typically play a leading role in providing feedback on the
patches. Thus, we expected to see that the number of comments made by reviewers has
a positive correlation with review quality. However, in Table 4.4b we can see that while
having a statistically significant impact in the models for two of the four systems, the
regression coefficients are positive, indicating that more reviewers participate in discussing
patches, the more likely they would miss bugs in the patches they review. A possible
explanation of these surprising results is that if a reviewer posts many comments on patches,
it is possible that he is very concerned with the current bug fix (its implementation, coding
style, etc.). Or, as our previous qualitative study revealed, the review process can be
sensitive due to its nature of dealing with people’s egos [11]. As one developer mentions
“there is no accountability, reviewer says things to be addressed, there is no guarantee
that the person fixed the changes or saw the recommendations.” Code review is a complex
process involving personal and social aspects [26].

Table 4.4b demonstrated that while developer participation has an effect on review
quality, technical attributes such as patch size and super review are also good predictors.
All models suggest that the larger the code changes, the easier it is for reviewers to miss
bugs. However, if changes require a super review, they are expected to undergo a more
rigorous code inspections. For two of the three studied systems, super review has negative
regression coefficients; but it does not have a significant impact for Firefox (Firefox for
Android patches have no super reviews).

Code reviews in modules such as Core, Fennec Graveyard, Firefox, Firefox for Metro,
Firefox Health Report, Mozilla Services, productmozilla.org, Seamonkey, Testing, and
Toolkit are statistically less likely to be bug prone; the regression coefficients for these mod-
ules have negative values and are -0.209 (p < 0.05), -0.339 (p < 0.01), -0.191 (p < 0.05),
-0.205 (p < 0.05), -0.197 (p < 0.05), -0.263 (p < 0.05), -0.679 (p < 0.001), -0.553 (p < 0.01),
-0.204 (p < 0.05) and -0.297 (p < 0.001) respectively. Similar to the findings for RQ2, code
inspections performed in these modules appear to be more watchful than in other compo-
nents.

Priority as a predictor has a statistically significant impact on review outcome for Core
and Firefox for Android only. For the Core module, priority P3 has a negative effect
(regression coefficient = -0.09, p < 0.05), i.e., the patches with P3 level are expected to
undergo more careful code inspections. For Firefox for Android, patches with priority P1
are more likely to be associated with poor reviews (regression coefficient = 0.17, p < 0.001).
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Among severity categories, we found that patches of trivial severity have statistically sig-
nificant negative impact on review bug-proneness in the models for Mozilla-all and Firefox
(regression coefficients =-0.125 and =-0.385 p < 0.05, respectively). Developers find that
“priority and severity are too vague to be useful” [11] as these fields are not well defined
in the project. But since these metrics are associated with the review quality, developer
should be given some estimation of the risks involved to decide how much time to spend
on patch reviews.

RQ3: The number of developer names on bug’s CC list is correlated with the
decrease in review quality. The number developers involved in patch discussion
and the number of comments per developer are correlated with the increase in
review quality, i.e., the more developers comment on a patch and more actively
they are doing it, the more likely that all defects will be identified.

While the predictive power of our models remain low (even after rigorous tune-up
efforts), the best models appear to be for Firefox (Adjusted R2 = 0.173 for fitting technical
and personal factors, as well as technical and participation metrics). The goal in this study
is not to use MLR models for predicting defect-prone code reviews but to understand the
impact our personal and participation metrics have on code review quality, while controlling
for a variety of metrics that we believe are good explainers of review quality. Thus, we
believe that the Adjusted R2 scores should not become the main factor in validating the
usefulness of this study.

4.5 Threats to Validity

External validity. Our findings cannot be generalized across all open source projects.
While we only study one (large) open source community, we considered various Mozilla
modules including Core, Firefox, and Firefox for Android. Our goal was to study a repre-
sentative open source system in detail. Nevertheless, further research studies are needed
to be able to provide greater insight into code review quality.

Internal validity concerns with the rigour of the study design. In this study, the
heuristics used, as well as the data filtering techniques adopted may be a threat. We
mitigate such a threat by providing details on the data extraction and filtering and by
using a well-known outliers filtering procedure. The choice of metrics may be seen as a
threat. We selected widely used metrics characterizing code review activities, bugs, code
changes (patches/commits), and developer attributes.
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We assume that a code review is documented and communicated via Bugzilla issue
tracking system. While this assumption holds in most cases, some code review tasks
can be carried out via other channels such as email, face-to-face meetings, etc. When
investigating the relation between code change and reviewer, we assumed that patches are
independent; this might have introduced some bias since several different patches can often
be associated with the same bug ID and “mentally” form one large patch. In our study
we considered that the most recent patch is the one that gets incorporated into the code.

We assume that all bugs tied to to particular patch and that they appear in the software
system because they were not caught during code review of that patch. Although this
assumption is likely to hold for most bugs, it is possible that (due to some external changes)
some defects might be found in patches that were initially bug free.

In Bugzilla, bug reports per se actually serve several purposes: they can be bug-fix
requests, or requests for adding new functionality, or documentation-related changes, etc.
Since Bugzilla does not provide mechanisms for distinguishing between “true” bugs and
new feature requests, we treat all changes as bug fixes.

When calculating review queue length of developers, we assume that at any given point
the number of review requests for a developer defines his or her current review load. This
heuristic is a “best effort” approximation; accurate review loads are hard to determine by
scraping the data from the existing code review system.

Conclusion validity is the degree to which conclusions we reach about relationships
in our data are reasonable. Proper regression models were built for the sake of showing the
impact of studied factors on the code reviews bugginess. In particular, we built our MLRs
for two types of metrics and evaluated them based on the appropriate measures such as
the deviance explained and Adjusted R2.

4.6 Conclusion

Code review explicitly addresses the quality of contributions before they are integrated
into project’s codebase. Due to volume of submitted contributions and the need to handle
them in a timely manner, many code review processes have become more lightweight and
less formal in nature. This evolution of review process increases the risks of letting bugs
slip into the version control repository, as reviewers are unable to detect all of the bugs.

In this chapter, we have explored the topic of code review quality by investigating what
factors might affect it. We investigated what aspects contribute to poor code review qual-
ity to help software development projects better understand their current review processes.
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We built and analyzed MLR models to explain the relationships between personal charac-
teristics of developers, team participation and involvement in code review, and technical
properties of contributions on the effectiveness of code review.

Our findings suggest that developer participation in discussions surrounding bug fixes
and developer-related characteristics such as their review experience and review loads are
promising predictors of code review quality for all studied systems. Among technical
properties of a change, its size, the number of files it affects, its impact on the rest of
the project’s code (or the need to perform a super review) have also a significant link
with the review bug-proneness. We believe that these findings provide practitioners with
strong empirical evidence for revising current code review policies and promoting better
transparency of the developers’ review queues and their expertise on the modules.
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Chapter 5

Developers’ Perception of Code
Review Process

In the previous chapter, we quantitatively explored the degree to which different factors
affect the reviewer’s ability to catch defects in contributions under the review. A study
purely based on the raw mined data cannot draw a full picture of the review process.
Therefore, in this chapter, we perform a qualitative study of code review practices of a
large, open source project, and we investigate how the developers themselves perceive code
review quality.

Chapter Organization. This chapter starts with Section 5.1 providing an overview of
the study as well as the research questions asked. Section 5.2 describes our methodology
including the survey design, participants, and data analysis. Section 5.3 presents the
results of the qualitative study. Section 5.4 discusses implications of our work and suggests
possible future research directions. Section 5.5 addresses limitations of our work. Finally,
Section 5.6 concludes the chapter.

Related publications. The work described in this chapter has been published in the
following papers:

• Oleksii Kononenko and Olga Baysal. A Qualitative Exploratory Study of How OSS
Developers Define Code Review Quality. Technical Report CS-2015-14, University
of Waterloo, Waterloo, Canada, August 2015.

• Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. Code Review Quality:
How Developers See It. In Proceedings of the 38th International Conference on
Software Engineering (ICSE), pages 1028–1038. ACM, 2016.

73



5.1 Study Overview

In Chapter 4, we explored the topic of code review quality by conducting a quantitative in-
vestigation of what factors may influence the quality of evaluating code contributions. The
study presented there was of quantitative nature as it employed data mining and analysis
of project’s repositories. While we found that both technical and personal attributes are
associated with the review quality, many other factors such as organization, its culture and
structure, development cycles, time pressures, etc., can potentially influence how reviewers
assess code changes. Since these “hidden” factors are difficult to take into account in a
quantitative analysis because such data is not available, easily accessible, or extractable
from the available artifacts, we decided to employ qualitative research methods to fill the
gap in the knowledge we had about the developer perception and attitude towards the
code review quality.

Our qualitative study is organized around an exploratory survey that we design based
on the state-of-the-art qualitative research [16, 52, 113] and our own observations of the
Mozilla code review process and interactions with Mozilla developers during our previous
research project [12]. We conducted an exploratory survey with 88 Mozilla core developers.
In this chapter, we will refer to patch writers and reviewers as developers. Our qualitative
analysis of the survey data aims at addressing the following research questions:

RQ1 How do Mozilla developers conduct code review?

Existing literature offers several case studies of how code review processes are em-
ployed by various software development projects and organizations [8,13,50,86,104,
106].

RQ2 What factors do developers consider to be influential to review time and decision?

Code review is a complex process that involves people, their skills and social dynam-
ics, as well as development artifacts and environments; thus, it can be affected by
both technical [62, 86,103,106] and non-technical factors [14,52,76,121].

RQ3 What factors do developers use to assess code review quality?

While the quality assessment of code contributions is an active research area, the
topic of code review quality remains largely unexplored. To better understand devel-
oper perception and attitudes towards the quality of the process that evaluates code
changes, we further refine this research question into the following subquestions:

RQ3.1 How do reviewers assess the quality of a patch?
RQ3.2 How do developers define a well-done code review?
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RQ3.3 What factors are perceived to contribute to the review quality?

RQ4 What challenges do developers face when performing review tasks?

We believe that it is important to understand what ongoing problems developers deal
with to provide them with better tools to support their daily tasks and activities.

Our main findings reveal that the review quality is primarily associated with the thor-
oughness of the feedback, the reviewer’s familiarity with the code, and the perceived quality
of the code itself. As expected, we found that different factors including technical, personal
and social signals, are perceived to contribute to the review quality. Also, we found that
reviewers often find it difficult to keep their technical skills up-to-date, manage personal
priorities, and mitigate context switching.

The chapter makes the following contributions:

• A qualitative study with the professional OSS developers who participated in our
survey on the topic of code review quality.
• A detailed survey analysis that offers insights into the developer perception of the

code review quality and factors affecting it, as well as identifies of the main challenges
developers face when conducting review tasks.
• A publicly available dataset of 88 anonymized survey responses1.

5.2 Methodology

We conducted an exploratory qualitative study that involved data collection through a sur-
vey with professional developers. This section describes the survey design, the participants,
and the analysis of the responses in detail.

5.2.1 Survey Design

Our survey consisted of three main parts: nine questions about the developer’s demographic
background and work practices, three Likert-scale questions related to different aspects of
code review, and seven follow-on open-ended questions to allow developers to elaborate on
issues raised by the multiple choice questions. The full text of the survey questions can
be found in Appendix A. Participants were asked to spend 5–10 minutes to complete the
survey.

1http://swag.cs.uwaterloo.ca/~okononen/review_quality/
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The main goal of conducting the survey was to solicit developer feedback on the per-
ceived quality of code reviews and factors affecting review time, decision, and quality. We
also wished to identify key problem areas within the existing review process.

5.2.2 Participants

We decided to continue our work within the Mozilla project developer community for
several reasons: much of our previous work has studied this project and we have good
intuition about the system and its development practices, we have made good contacts
within the project who are supportive of our research goals, and because Mozilla is a well
known, very large, and long-lived open source project.

To identify potential participants for our study, we looked at the 12 month history
(from May 10, 2014 to May 10, 2015) of all contributions to the Mozilla project as they
are recorded in Bugzilla issue tracking system. Because of the Bugzilla’s limitations on the
search results, we directly queried Mozilla’s Elastic Search cluster that contains the up-to-
date copy of Bugzilla data [91]. By processing the queried data, we extracted 3,142 unique
email addresses (Bugzilla uses an email address as a unique user identifier). After that, we
queried the cluster for each email address to extract information about each developer’s
activity: the number of contributions they have submitted for review, and the number
of patches that the developer had reviewed during the studied period. Finally, we used
Bugzilla’s REST API to extract developers’ real names.

We decided to limit our survey to experienced developers who were not new to the
project. We computed an experience value as the sum of submitted and reviewed patches.
We set a threshold for the experience value at 15, meaning that anyone with a combined
experience of at least 15 patches will pass the filter; this reduced the list of potential
participants to 843 (27%) people. To filter out developers who were new to the Mozilla
project — regardless of their experience level — we defined familiarity as having contribu-
tions (submitted and/or reviewed patches) at least 6 months prior to the beginning of the
studied period; this filter further reduced the list of experienced developers to 403 (13%)
people.

Once we selected developers whom we wanted to survey, we sent out 403 personalized
emails. Each email contained the number of contributions submitted or reviewed during
the 12 months period and an invitation to participate in the survey. The survey was open
for 3 weeks (from May 29 to June 19, 2015) and we received 88 responses (22% response
rate).
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The beginning of the survey consisted of background-related questions. By analyzing
the responses, we found that we had successfully targeted highly experienced developers:
about 48% of respondents said that they have more than 10 years of software development
experience, while another 26% of them have between 7 and 10 years of experience. Most
of the respondents have been performing code review for more than 3 years (67%).

5.2.3 Survey Data Analysis

We applied a grounded theory methodology to analyze the survey data; as we had no
predefined groups or categories, we used an open coding approach. As we analyzed the
quotes, themes and categories emerged and evolved during the open coding process [83].

Researcher Kononenko created all of the “cards”, splitting 88 survey responses into
938 individual quotes; these generally corresponded to individual cohesive statements. In
further analysis, researchers Kononenko and Baysal acted as coders to group cards into
themes, merging themes into categories. For each open-ended question, we proceeded with
this analysis in three steps:

1. The two coders independently performed card sorts on the 20% of the cards extracted
from the survey responses to identify initial card groups. The coders then met to
compare and discuss their identified groups.

2. The two coders performed another independent round, sorting another 20% of the
quotes into the groups that were agreed-upon in the previous step. We then calculated
and report the coder reliability to ensure the integrity of the card sort. We selected
two of the most popular reliability coefficients for nominal data: percent agreement
and Cohen’s Kappa. Coder reliability is a measure of agreement among multiple
coders for how they apply codes to text data. To calculate agreement, we counted
the number of cards for each emerged group for both coders and used ReCal2 [44] for
calculations. The coders achieved a substantial degree of agreement; on average two
coders agreed on the coding of the content in 96% of the time (the average percent
agreement varies across the questions and is within the range of 94.2–97.2%; while
the average Cohen’s Kappa score is 0.68).

3. The rest of the card sort (for each open-ended question) — 60% of the quotes — was
performed by both coders together.
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5.3 Results

During the open coding process, 30 main categories emerged; this includes one we labelled
“irrelevant”. Table 5.1 presents these categories in detail reporting the number of quotes,
the number of respondents, the question numbers, the totals, and the average percent
agreement for each question.

5.3.1 RQ1: How do Mozilla developers conduct code review?

First, we wanted to understand the current practices of performing code review tasks at
Mozilla. We asked developers several multiple choice questions with an option of providing
their own detailed response. The first pair of questions focused on the workload that
developers face: the average number of patches they write and the average number of
reviews they perform each week. While the answers to these two questions are skewed
towards smaller workloads (fewer than 5 patches per week submitted or reviewed, 69% and
57% respectively), we received many more responses for the heavier review workload than
for the patch workload. About 10% of the respondents reported that they review 11 to
20 patches each week, while another 4% said that they review more than 21 patches each
week. The analysis of a contingency table for these two variables shows that developers
with high workloads (i.e., over 10 patches/reviews per week) tend to concentrate their
efforts on a single task type, i.e., either writing patches or reviewing them. The need
for “dedicated” reviewers is pursued to bring their unique knowledge and expertise, e.g.,
overall architecture or domain knowledge, to the project to ensure the correctness and fit
of code contributions. This finding mirrors Mozilla’s notion of super reviewers — a small
set of developers enlisted by Mozilla who provide an additional review for certain kinds of
changes [93].

The remaining two questions focused on where developers perform code review (i.e.,
within what environment) and where they discuss patches under review. While all review-
related information is stored in Bugzilla, there is no requirement in the Mozilla’s code
review policies on where a review should be performed. Surprisingly, although Mozilla
provides their developers with a code review platform called MozReview [125], only 5%
of the respondents said that they are using it. The majority of the respondents (80%)
conduct their code review tasks inside Bugzilla itself, while another 8% copy a patch
locally into their IDE. As for the locations of patch discussions, developers were allowed to
select multiple of the proposed answers and/or their own answer. The two overwhelmingly
popular answers were Bugzilla and IRC channel (99% and 78% respectively), while VoIP,
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Table 5.1: The list of categories that emerged during open coding.

Category
Q11 Q13 Q14 Q15 Q17 Q18

#Q #R #Q #R #Q #R #Q #R #Q #R #Q #R
Code quality 49% 57% 24% 30% 31% 65% 9% 22% 8% 15% 1% 2%
Testing 13% 28% 6% 9% 12% 36% 7% 15% 8% 15% – –
Time constraints 1% 4% – – – – 8% 20% 14% 19% 17% 25%
Change scope/rationale 11% 22% 9% 12% 26% 58% – – 4% 8% 10% 15%
Understanding code change/base – – 6% 9% – – 21% 30% 20% 31% 31% 38%
Human factors – – – – – – 17% 28% 14% 23% 11% 16%
Tools – – 4% 5% – – – – 6% 12% 9% 9%
Communication – – 2% 2% – – – – 8% 12% 1% 2%
Change complexity – – 18% 23% 10% 31% – – 8% 15% 10% 15%
Relationship/trust 5% 9% 3% 5% – – – – – – – –
Usefulness – – – – 1% 3% 1% 3% – – – –
Workload – – – – – – – – 4% 8% 4% 5%
Submitter related 2% 6% 3% 5% – – – – – – – –
Architecture/design – – – – 5% 15% 6% 10% – – – –
Reviewer related 9% 13% – – – – – – – – – –
Discussion 1% 4% – – – – – – – – – –
Conformance to project goals 6% 7% – – – – – – – – – –
Bug type – – 9% 12% – – – – – – – –
Selecting correct reviewer – – 7% 12% – – – – – – – –
Performance – – – – 2% 8% – – – – – –
Integration into code base – – – – 4% 15% – – – – – –
Security – – – – 1% 3% – – – – – –
Memory management – – – – 1% 2% – – – – – –
Familiarity with the author – – – – 1% 5% – – – – – –
Thorough feedback – – – – – – 23% 38% – – – –
Catching bugs – – – – – – 4% 8% – – – –
Organizational factors – – – – – – – – 4% 4% – –
Documentation – – – – – – – – 2% 4% – –
Context switch – – – – – – – – – – 6% 10%
Irrelevant 3% 7% 9% 12% 5% 15% 4% 10% – – – –
Total: 141 54 67 43 290 86 219 86 50 26 81 55
Average percent agreement 97.2% 96.6% 95.5% 94.2% 94.2% 95.0%

Notes: #Q: the number of quotes, #R: the number of respondents, Q11: factors affecting
decision, Q13: factors affecting time, Q14: patch quality, Q15: characteristics of code review
quality, Q17: other factors affecting review quality, Q18: challenges.

email, and face-to-face discussions received a similar number of responses (around 22%
each). While this wide adoption of IRC might be influenced by Mozilla itself, it also might
be explained by the fact that IRC allows them to have real-time, less formal discussions
with ability to bring in more people into a conversation as needed.
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RQ1: While most of developers write patches as well as review them, a dedicated
group of developers is responsible for reviewing code changes. The majority of
reviewers conduct code review in Bugzilla despite having access to a custom built
code review tool, and use various communication channels for discussing code
modifications.

5.3.2 RQ2: What factors do developers consider to be influential
to review time and decision?

We asked developers about the factors that they believe are most likely to affect the length
of time needed to review a patch, as well as the decision of the review (i.e., accept or
reject). For each aspect (review time and decision), we solicit developers’ opinions via a 5-
point Likert-scale question and probe more in-depth information via an optional follow-on
open-ended question. The proposed answers to Likert-scale questions were compiled from
the factors that were previously reported in the literature [14, 62, 124] to have an impact
on time and outcome. The open-ended questions provided developers an opportunity to
specify any other factors not covered by the Likert-scale question.

1) Time. The analysis of the Likert-scale question (Figure 5.1) shows that size-related
factors (patch size, the number of modified files, and the number of code chunks) are the
ones the developers feel are most important (100%, 95%, and 95% of positive responses
respectively). This finding is consistent with several previous quantitative studies that
demonstrate the correlation between the size of the code change and the review time
(i.e., smaller patches are more likely to receive faster responses ) [14, 62, 124]. The second
most positive group is experience — reviewer experience (96%) and patch writer experience
(91%). Again, this also mirrors previous research that found that the increase in experience
leads to faster reviews. While all other proposed factors received more than 50% of positive
responses, the two factors with the biggest numbers of negative responses stand out: bug
priority and severity received 36% and 30% of negative responses respectively. Such high
values speak against the very idea of bug triage. It may be because Mozilla developers
use the priority and severity fields inconsistently [58], or because these fields are not used
as intended (for example, in our previous study, we found that over 96% of all patches in
WebKit project are assigned the same priority value [14]).

The manual coding analysis of the open-ended question revealed several categories that
developers believe have an impact on code review time. The biggest theme identified in
the responses is code quality, which includes code quality and change complexity categories.
As explained by R67, “The amount of in-code comments describing what the patch does.
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The following factors influence code review TIME

Percent
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Figure 5.1: Factors influencing code review time.

Readability/variable-naming affecting how hard it is to understand any particular hunk
of the patch on its own.” When reviewing patches, the developers stated that “patches
dependency” (R39) and “changes to the API surface between modules” (R32) affect the
review time.

Perhaps surprisingly, developers identified that the bug type category also plays a role
during the review of a patch and affects its time. According to respondent R76, “When
the cause of the bug is obscure, it takes time to review”, while R74 said “nature of the bug
— some bugs require time-consuming manual testing”.

Another category that emerged from the responses is patch scope and rationale. Here,
the scope also includes granularity: “Whether the patch is broken up into self-contained
pieces or whether it’s one big patch touching lots of different areas — 5 individual patches
are much faster to review in total than one big merged patch of those pieces” (R19). De-
velopers believe that the clarity of explanation of what is being changed and why affects
the review time: “clearly identified goal for the patch” (R11) and “what is patch trying to
do, and should we even be doing that?” (R55). Understanding the code base category goes
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along with the scope of a patch. Several developers stated that amount of knowledge that
a reviewer has about the code being changed affects the review time.

Several of the emerged categories can be combined into a social theme. One of the cate-
gories here is selecting the correct reviewer. There are different characteristics that identify
the suitability of a reviewer. For R87 it is “the personality of a reviewer”, while for R52
it is presence of “personal backlog of work, and personal priorities”. Moreover, sometimes
the reviewers themselves question their suitability for reviewing a patch: “am I the best
person to be reviewing this patch?” (R55). Developers also identified the importance of
previous relationship with an author of a patch: “if someone has a good track record I
won’t think about the code in quite as much detail compared to someone with a track record
of breaking things often” (R13). The other categories in this theme are about submitter
type (e.g., newcomer or not) and the ease of communication between a patch writer and a
reviewer.

2) Decision. Contrary to the answers to the Likert-scale question about the review time,
we found no agreement between developers (i.e., strong prevalence of either positive or
negative answers) for the majority of factors in the case of the review decision (Figure 5.2).
Similarly to the previous question, both patch writer experience and reviewer experience
are the factors with the most positive answers (86% and 84%). At the same time, the size-
related factors (patch size, the number of modified files, and the number of code chunks) no
longer have an overwhelming number of positive answers; instead, the respondents are more
likely to disagree with the statement that these factors affect review decisions. Surprisingly,
bug severity and priority are now the third and the fourth the most agreed factors. Another
interesting finding is related to reviewer workload: about 81% of respondents disagree
that workload affects the decision in any way. This demonstrates that developers think
of reviewers as highly capable of carefully analyzing every patch regardless of the time
pressure they might face. While such attitude describes the project’s culture, this result
contradicts our previous finding that suggest that reviewers with shorter review queues are
more likely to reject a patch [14].

Several categories emerged during the analysis of the open-ended question related to
review decision. The highest impact on the review decision is perceived to be code quality
of a submitted patch. While developers associate different meanings with the term “code
quality”; they can be grouped into several sub-categories. The first one is adherence to
the code style (R57 – “the quality of the code, and whether it adheres to accepted style
and practices”), as well as spelling (R38 – attention to “details such as spelling, grammar
and code formatting”). Other two sub-categories are readability and simplicity of a patch
(R34 – “ease of understanding of code/changes, i.e., simplicity of code”), and presence and
quality of design or architectural changes. Finally, developers associate the code correctness
and its maintainability with code quality.
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The following factors influence code review DECISIONS
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Figure 5.2: Factors influencing code review decision.

The second biggest category identified from the answers is testing. When developers
submit a patch they can include the results of running existing tests, as well as include
the tests they wrote specifically for that patch. The two sub-categories that we identified
reflect the option patch writers have. The first sub-category is focused on the presence
of automated tests in a patch: “... changes that are accompanied by tests are much more
likely to be accepted” (R20). Moreover, developers identified that the actual completeness
of tests is also important: “thoroughness of tests included in patch” (R37). The other
sub-category represents the presence of test results for a patch: “including test results as
a message on the bug tracker can either give the reviewer more confidence to accept the
patch (if the tests pass) or likewise lead them to reject the patch (if the tests fail)” (R38).

Change scope and rationale is believed to be an of influential factor for reviewers making
their decisions. Reviewers first look for the actual appropriateness of change to be incor-
porated into the code base: “Does the feature fit in with the product (for patches submitted
out of the blue)” (R29). As R10 explains: “... not all fixes or improvements are a good
idea to actually land, even if they’re correct”. Also, reviewers expect a clear explanation
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of the reasoning behind the proposed change, how it solves a problem, and why an author
chose a particular way of doing it. According to R38, including such information “can have
a significant impact on some reviewers’ confidence to accept the patch”.

Similarly to the previous question, we have a theme of social categories. The reviews
are done by humans, so the process is likely to be influenced by their personalities. Indeed,
we identified reviewer related factors. Several developers report that with some reviewers
it is more difficult to get a patch accepted than with others: “a new reviewer might feel
inclined to find a fault to prove that they done due duty in reviewing the patch” (R38), and
“the perfectionist syndrome (Can you try ... ?)” (R49). In addition to that, “individual
quirks/preferences of the reviewer” (R20) play a role as well. Relationship/trust between
reviewer and patch writer is found to play a critical role in decision making. Several
respondents stated that interpersonal relationship is important for the review outcome. As
explained by R36: “If it’s someone you trust you don’t have to check things as rigorously”.
And finally, contributor type (i.e., whether he is new, mentored, or experienced contributor)
can influence reviewers’ decisions: “if the patch writer is a new or first-time contributor,
the reviewer may be inclined to encourage them by accepting their patch more readily (after
identifying any obvious problems that need fixing)” (R38).

RQ2: Developers believe that factors such as the experience of developers, the
choice of a reviewer, size of a patch, its quality and rationale affect the time
needed for review; while bug severity, code quality and its rationale, presence and
quality of tests, and developer personality impact review decisions.

5.3.3 RQ3: What factors do developers use to assess code review
quality?

Quality is one of the key attributes of ensuring high standards of both code and project
development. With this research question, we explore how developers perceive the quality
of a patch and what characteristics they believe to be essential in contributing to a well-
done code review. To answer this question, we analyzed two mandatory and one optional
open-ended questions, as well as one multiple-choice question of the survey.

1) Perception of a patch quality.

One of the top attributes for developers when evaluating patch quality is code quality.
Code quality has many interpretations. For some developers it is associated with cod-
ing style such as “the names of things need to be descriptive”, readability, compactness,
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maintainability (“lack of redundant or duplicated code”, “strong and unverified coupling”),
“consistent indentation and style”, and “elegance and lack of hacks”. While for others
code quality is about the presence of meaningful comments (“comments should tell why
not what”), documentation and “clear and helpful” commit messages, “I’m looking for
a thoughtful summary that instructs me, reviewer, what is going on and what to expect”
(R28). Some developers find that “adherence [of the code] to project module standards”
was equally important to ensure the changes are consistent and conformant to the Mozilla
Coding Standards.

Change rationale is the second top property that reviewers look for. Patches are assessed
for their correctness, “does [it] actually implements what it intends to do?” (R19), asso-
ciated risk and possible alternative solutions, “are there easier, less risky ways to achieve
the same thing?” (R35), functionality and errors (e.g., “correct handling of exceptional
cases” (R33), “are all cases handled?” (R56)). Reviewers examine whether the patch au-
thor understands the source of the problem and the problem domain, without “introducing
any other bugs” (R62) or ambiguity. Reviewers often think of their own solution to the
fix before reviewing it and then compare it with the submitted patch. They also try to
understand how much time the author spent on the patch and “how well the solution has
been thought through: does it needlessly reinvent the wheel, does it rewrite everything from
scratch even though a spot fix would have been better, ... does it use “clever” tricks that
others will struggle to understand” (R64). In a nutshell, a high quality patch “usually
provides a robust solution for the problem” (R42).

Change complexity is also perceived as an important property of the patch quality.
Developers often look for simple solutions: “simpler is better” (R20), “simplicity of code
makes a big difference. Code that is complicated often is the result of not being able to distill
the problem down to its core. Also, reducing the cognitive load required to understand the
code means it’s easier to maintain, and less likely to have bugs in it” (R34). If a patch is
trying to resolve more than one issue, it is expected that submitter split it into multiple
patches: “if the patch is addressing 3 or 4 different things it is lower quality than 3 or
4 separate patches for the individual issues” (R13). Many developers agree that size of
the change is correlated to the bug-proneness: “small, focused changes are easier to assess
than large ones. If bug rate is proportional to lines of code, quality is inversely proportional
to patch size. So, small patches preferred” (R28).

Testing is also a key indicator of quality for developers when they evaluate patches.
Reviewers expect code changes to come with a corresponding test change. The lack of
such tests is a good sign that “test coverage is lacking and we’re taking a risk accepting the
patch” (R28). The presence of tests in the patch also boosts developers confidence that the
patch actually fixes the problem. Many developers run and test patches locally, or when
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testing is not practical, they perform manual testing as well. As a part of manual testing,
developers often perform an operational proof such as code walks through: “I walk through
the changes, executing it as I imagine the machine would, with as much variety of inputs
and states as I can imagine. I look for edge cases. I try to consider what is not in the
patch (things that are being affected by the patch but are not directly changed by the patch)”
(R21).

Reviewers pay careful attention on how the patch fits into the existing code base.
Integration into the code base can be examined by checking how the patch “melds with
the existing code or how it replaces the existing code” (R23), “how much change there is
and how far spread the change is” (R12), or whether “the patch breaks web compatibility”
(R4). Submitters are often expected to be able to anticipate the upcoming surrounding
changes and have an overall understanding of the impact of the change on other areas of
the code. To support code maintainability, submitters are expected to conduct refactoring
tasks if they see the need for it. Reviewers can request to perform necessary refactoring if
they find that the patch is “contributing to code rot” (R38).

When reviewing patches, developers often examine whether software architecture and
design meet expectations. For example, whether a code change “meets other design consid-
erations (e.g., PEP8 for Python code) (R67)”. It is expected that submitted changes keep
the architecture of the code base intact to facilitate code comprehension and maintenance:
“does it continue the architecture of the existing code or diverge in a way that makes future
maintenance difficult?” (R81), “I look for architectural impact to see if it is making the
code cleaner or messier” (R87). If the code changes rely on APIs, reviewers check whether
they are used appropriately: “could the new APIs be misused?” (R65).

Among other characteristics that developers consider when assessing changes are mem-
ory management such as “no leaks, no unsafe memory usage” (R4), “no accesses to dead
objects” (R9), security such as security related checks and return types, performance that
relates to “the order of algorithms used” (R38), “the right trade-offs between simplicity of
code and performance” (R24), efficiency and speed.

Social factors such as familiarity with the author play an important role in evaluating
patches. Previous relationships with the submitters, their experience and reputation within
the project can determine the fate of their patches: “I set a baseline based on any previous
relationship with the submitter, and the area of code concerned. If I know the submitter
I have both some idea of what to check and a better idea if they’ll be around later to fix
subsequent issues” (R56), “past experience of patch author is a big factor” (R43).
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2) Characteristics of a well-done code review.

This research question investigates developer perception of the key characteristics con-
tributing to a well-done code review. Through an open-ended question, we asked develop-
ers’ opinion on what a high quality review means to them.

The majority of the developers (38%) responded that clear and thorough feedback is the
key attribute of a well-done review. Reviewers are expected to provide feedback that 1)
is clear to understand; 2) is not only “about code formatting and style” (R6); 3) provides
constructive advice, e.g., “points out major correctness issues first, and points our minor
issues that can be clearly fixed without another round of review” (R24), “highlighting poten-
tial problems ... and how to fix them” (R42), “saying ‘this is the worst code I’ve ever seen’
is not constructive” (R81); 4) is done by the correct reviewer who “has the domain knowl-
edge to properly evaluate the change” (R55); 5) is delivered via proper communication:
“good code reviews are dialogues between the reviewer and patch author” (R50); and 6)
provides mentoring and training for patch authors: “providing detailed mentoring to help
them improve faster” (R56), “to help the author of the patch become a better programmer
in the long term” (R35).

Developers expect reviewers to have understanding of the code, in particular to know
“the code that’s being changed and what other pieces of code interact with it and what
their assumptions are (“what else could break?”) ...” (R19), “knowledge of the code is
paramount because otherwise reviews are superficial” (R30). Submitters want reviewers to
know the outcome, the impact and “the side effects of the modified code” (R49), as well
as to ensure that the logic of the patch makes sense. Reviewers are also expected to have
an overall understanding of the project’s code base: “enough domain knowledge is always
the first criteria for a well-done code review” (R61) and “familiarity with utilities in other
parts of the repository that could be re-used” (R38).

We found that human factors play a crucial role for developers when receiving feedback.
Developers associate good reviews with the reviewers who possess (1) personal attributes
such as being “supportive, yet strict” (R9), “patient and stable” (R61), “punctual and tact-
ful” (R28), “helpful and encouraging, especially when rejecting a patch” (R55), “expressing
appreciation for contributions” (R38) especially if contributions come from the newcomers
to the OSS community, and (2) inter-personal qualities such as being able to “establish clear
and open-minded communication” (R73), “trust the programmer to be competent enough
to fix the problems” (R64), provide positive and constructive feedback “with the comments
written in such a way that the patch author does not take them personally” (R9) delivered
in a “constructive tone that respects/acknowledges the efforts of the patch writer” (R21).
From the developer perspective, code review relies on the participation of everyone on the
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project, and an ideal review process is described as the one that “allows the author and the
reviewer to work together to produce better code than either could on their own, maintain
quality standards, and build familiarity with the code base” (R56).

Code quality, once again, is found to be a vital part of the review process. The review
quality is associated with patch writers taking into consideration coding style and format-
ting, preserving code maintainability, embracing “current best practice within the project”
(R38). While reviewers are responsible for “not allowing messy code in just because of
time” (R23), ensuring “the patch achieves what it was intended to achieve” (R31) and “the
code adheres to community standards” (R82).

Quick turnaround time is also important for the responses as they report that both
parties, reviewers and submitters, are expected be done in a timely manner, “the value
of the review feedback is in the proportion to the cost in terms of delays and time spend”
(R87). However, reviewers are to avoid shipping their feedback “under stress or when
there’s a deadline” (R7) as this introduces risks of missing problems. Some developers
noted that Mozilla code review suffers from non-responsive reviewers due to overload or
too few reviewers available. As a result, the speed of reviews might overweight the risks:
“depending on what module, a faster yet less thorough review is probably going to be OK,
and worth the risk” (R34).

Testing is seen as a feature that helps to accomplish the review process. During the
review, developers are expected to apply the patch locally and test it to make sure it
causes no regression. Thorough and careful testing of the patch ensures “it is doing what
is is supposed to and not introducing regressions” (R42). Among other factors contributing
to a well-done review are design and code pattern considerations, providing architectural
recommendations (e.g., interaction wit other subsystems, use of correct APIs), and catching
the bugs left in the patch.

3) Factors affecting code review quality.

Through a mandatory multiple choice question and an optional open-ended question,
we asked participants to express their opinion on the factors they find to influence code
review quality. The results of the relevant Likert-scale survey question are summarized in
Figure 5.3. The vast majority of the developers agrees that factors such as reviewer expe-
rience and technical properties of the patch (patch size, code chunks, number of modified
files) are strong indicators of code review quality. Most developers (76-85%) also consider
that personal factors such as patch writer experience, reviewer workloads, developer par-
ticipation in the discussion of code changes, module and number of resubmitted patches
are more likely to affect the quality of reviews. While developers have mixed feelings
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The following factors influence code review QUALITY
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Figure 5.3: Factors influencing code review quality.

about whether severity and priority of a bug, review response time, and the length of the
discussion have an affect on code review and its quality.

From the open-ended question, we found a number of additional factors that respon-
dents think are influencing the review quality (but were not present in our multiple-choice
question). As we have seen from previous findings, developers consider understanding of
the code base as an important property that characterizes the review quality: “domain
expertise of both the author and reviewer” (R35), and “experience of the reviewer and
familiarity with the code or domain are pretty important” (R85).

Human factors such as reviewer mood, personality, experience, communication skills
and style, style of making reviews, and productivity (stress level) are seen as ones of the
highest determining factors in the quality of the review. Time-related factors such as
the time of the day the reviewer gets to do a review, time pressure and deadlines, release
schedules, release management, and priorities of other tasks are also among the factors that
influence reviewer ability to deliver efficient reviews. Code quality and patch complexity,
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presence of tests, tool support, organizational overhead are mentioned as other potential
factors affecting the review quality.

Developer perception of the factors affecting code review quality matches the insights
we obtained in our qualitative analysis of the data from the project’s repositories [71].
Reviewer experience and their work loads, number of previous patches, discussion around
issues, as well as technical characteristics of a code change such as its size and the number
of files it spreads across are found to be strong indicators of the code review quality.

RQ3: Developer perception of code review quality is shaped by their experience
and defined as a function of clear and thorough feedback provided in a timely
manner by a peer with a supreme knowledge of the code base, strong personal and
inter-personal qualities.

5.3.4 RQ4: What challenges do developers face when performing
review tasks?

This research question identifies key challenges developers face when conducting code
review tasks. We identified two categories of challenges: technical challenges affect re-
viewers’ ability to execute effective reviews, while personal challenges relate to their self-
management and context switching. We also report the responses to an optional open-
ended question about the desired tool support that could help developers with their code
review activities.

1) Technical challenges

The biggest challenge for developers is gaining familiarity with the code. Since reviewers
are often asked to review the code they do not own, understanding the unfamiliar code
that the patch is modifying can be challenging, “our module boundaries are broad, so
patches often touch areas that I’m not up-to-date on” (R37). Developers also find that
decision-making of whether the change is good can be difficult, “it’s really important that
I understand what the patch does” (R62). Related to this, reviewers often have to assess
whether they are capable of reviewing a particular patch or whether they should delegate
it to a different reviewer, “deciding whether I am the most appropriate reviewer or if my
knowledge of the area of code is good enough to be an effective reviewer” (R57). Reviewers
are also expected to fully understand the problem, which can be a time-consuming process
in particular if they review code in diverse areas of the code base. Reviewers have to not
only understand the change but also understand its interactions with the existing code and
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being able to determine what code has to be co-changed, as well as “spot now-redundant
code” (R74).

Another category of the technical challenges is related to code complexity. Reviewers
are often required to evaluate large patches. The size of the patch is correlated with the
quality of the reviews. Large patches are difficult to review because it can be difficult
for developers to see the big picture: “long patches are hard to review - attention wanes,
quality of the review goes [down]” (R21). R12 mentions that “if large patches are broken up
it can still be difficult to understand the bigger picture”. The complexity of the pre-existing
code can add up to this problem. Nevertheless, being able to see the big picture can be
troublesome yet very critical for reviewers.

Finally, many reviewers complained about the current tool support available to perform
review tasks. Some of them mentioned that reviewing in Bugzilla is difficult, while others
refer to Bugzilla as “a pretty good tool” (R62). Since running automated tests is a part
of the review, developers find applying the patch locally and testing it time-consuming.
Reviewers mention that existing tools are good at visualizing line-by-line change (“diff”
tools) but fall short in providing a summary of what a patch is changing (not on the file
level).

2) Personal challenges

Reviewers often find themselves struggling with time management skills such as setting
personal priorities and beating procrastination: “convincing yourself that reviews should
have higher priority than whatever other work you’re doing” (R19), “how to get reviewing
on a first priority and still getting your own things done” (R40). All reviewers have other
non-review tasks to conduct such as writing patches, participating in discussions, attending
meetings (in person or remotely), engaging and recruiting other members to the community,
or educating and training the new generation of hackers. Thus, balancing time to perform
reviews, as well as all other daily activities can be a struggle. As R38 says “I try to respond
within 24 hours but sometimes a review for 15 patches can just show up out of the blue
requiring a full day to review. That throws all other plans out of schedule”.

On a personal level, reviewers often feel the pressure of keeping up the personal technical
skill level: “I need to constantly improve, so I can help others too” (R52). While reviewers
understand the importance of providing guidance and support to new contributors, they
admit that this can be very time-consuming and carry risks of landing bug-prone patches
to the code repository. As R54 explains: “reviewing patches by new contributors where
hand-holding is needed... it becomes tempting to simply land the patch to end the hassle
for both the contributor and the reviewer. This frequently results in buggy code landing in
the tree”.
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Several reviewers find it difficult to work on multiple tasks simultaneously. Working
on multiple tasks such as performing reviews and fixing a bug is common for developers.
Context switching from one problem space to another appears to be challenging. More
importantly, when the patch undergoes several revisions, reviewers have to keep the context
between revisions of the patch to make sure all their concerns with the proposed changes
are addressed by the submitter. From the submitter’s point of view, keeping track of the
comments from the reviewer or other peers can be difficult. This becomes a challenge when
a patch writer is working on a large bug or feature that involves a substantial discussion
on the best way to resolve or implement it.

RQ4: The key challenges are twofold. Technical challenges are associated with
gaining familiarity with the code, coping with the code complexity, and having
suitable tool support. While personal challenges are related to time management,
technical skills, and context switching.

3) Tools

The majority of respondents perform code review tasks inside Bugzilla that provides a
very basic and limited set of code review related features — it allows side-by-side viewing
of the patch and code, as well as adding comments to the patch diff. The most commonly
requested feature is a built-in lint-like tool that should provide automatic static analy-
sis, automatic format and style checking, and automatic spell-checking. Moreover, many
developers stated that such a tool should not only automatically check the code, but also
automatically fix it (where it is possible). Such a feature would allow them to focus on a
bigger picture rather spending time on small problems: “I should be paying more attention
to the architecture and the problem solving mechanics of the patch, rather than whether or
not the braces are in the right position” (R21).

Developers also expressed interests in having better development environment that offers
the ability to easily get the patch from the issue tracking system into the local editor for
analysis. Another feature is autolanding (i.e., incorporation into the code base) of patches
once they are reviewed. Finally, the developers expressed a desire for direct access to the
indexed source code from inside the issue tracker to better understand how the code that
being changed is used, as well as for the ability to get the change history of that code.

Almost every code review involves “before-after” comparison of the code. Therefore, it
is not surprising that developers want improved support for diff tools. The most desired
features here are the ability to see the diff “in the context of the entire file” (R57) and com-
pare the difference between the original code and code with multiple consecutive patches
applied.
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5.4 Discussion

We now discuss several research directions that have emerged from this work and can help
researchers and practitioners to plan their next research projects.

Reviewer recommender system. Mozilla developers need to control an overwhelming
flow of information including bug reports, review requests, updates on their patches,
etc. [12]. One way to help developers manage the increasing flow of information is to
provide them with tools that can assist them with specific tasks. For example, for code re-
view tasks, a reviewer recommender system could be able to help both reviewers and patch
writers determine the right person to review a code change at hand considering reviewer
code/module expertise, his or her current review loads and availability (schedule). For
example, R8 asks for a tool to be able to “automatically identify potential reviewers based
on similar types of code change (perhaps in other modules)”. While there is a large body
of research that addresses this problem of expertise recommendation and offers a variety
of techniques [5,6,84,123], most existing solutions are research tools that do not scale well
or would otherwise be impractical to deploy within an industrial environment.

Next generation code review tool. Many reviewers expressed concerns with current
support for tasks related to code review. Code review is an essential part of the development
process at Mozilla; yet respondents complained about the lack of a good code review tool.
We found that developers expressed interests in having an online code review tool that
supports automatic static analysis, automatic format and style checker, as well as automatic
spell checker. These features can help developers with their time-management by allowing
them to focus on the code change and how they fit into the bigger picture rather than paying
attention to the formatting and style nits. The next generation review tool should also
support code indexing and navigation for reviewers to be able to better understand code
modifications and their interactions with other areas of the code base. Another desired
feature is related to developing better diff tools to enable the comparison of different
versions of the code or tracking of individual code changes. Reviewers also commented on
the importance of having the ability to compare code on “file-by-file” rather then “line-by-
line” level and to determine the differences between multiple consecutive patches.

Reshaping OSS. While we only attracted and surveyed Mozilla developers, the results
of our study can be applied to other OSS projects such as Linux, Apache, Red Hat, etc.
Most recent studies were either conducted at Microsoft [8] or focused on the pull-based
development model [52]. While pull-based development (e.g., via GitHub) is gaining pop-
ularity among distributed software development community, the need to continue studying
and supporting the evolution of large long-lived OSS projects remains as important as
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ever. We noticed that some developers are interested in borrowing emerging technologies
(e.g., GitHub) and bringing them to their own working environments. OSS projects are
constantly reshaping themselves [3], and researchers can facilitate their growth by helping
them address their practical needs and overcome the obstacles they face. Having said that,
our study adds to the existing body of knowledge on code review.

5.5 Threats and Limitations

The first limitation lies in the validity of our findings from the qualitative study. While
we carefully designed our survey questions to ensure their clarity, as with all exploratory
studies, there is a chance we may have introduced the researcher bias when applying coding
to the open ended questions. We tried to minimize this by coding the 20% of the card
sorts extracted from each question independently, measuring the coder reliability on the
next 20% and reporting these values in the chapter (see Table 5.1).

As with any survey method, to control for sampling bias can be challenging. We
targeted the core developers of the Mozilla community who actively participate in code
review tasks either by evaluating patches of their peer developers or submitting their own
code changes to reviewers for quality assessment.

We only survey developers from one large open source community, yet we targeted
Mozilla’s core developers who are full-time employees. While our findings might not gen-
eralize outside of Mozilla, we believe any medium and large open source project employ
similar code review practices. Nevertheless, further research studies are needed to be
able to provide greater insight into code review quality and develop an empirical body of
knowledge on this topic. To encourage replication of our study, we documented our survey
questions and card sort results in a technical report that is made available online [69]. We
also made anonymized survey responses publicly available.

5.6 Summary

Code review is a vital element of any long-lived software development project. A high-
quality execution of this process is essential to ensuring the ongoing quality of project’s
code base. This work explores the code review practices of a large, open source project
and aims to understand the developers’ perception of code review quality. To accomplish
this, we surveyed 88 core contributors to the Mozilla project. The qualitative analysis of
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the survey responses provides insights into the factors that affect the time and decision of
a review, the perceived review quality, and the challenges developers face when conducting
code review tasks. Our findings suggest that the review quality is mainly associated with
the thoroughness of the feedback, the reviewer’s familiarity with the code, and the perceived
quality of the code itself. We also found that developers often struggle with managing their
personal priorities, maintaining their technical skill set, and mitigating context switching.
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Chapter 6

Code Review in Pull-Based
Development

In the previous chapter we were focused on the review process as it happens in more
traditional approaches to evaluating code contributions. However, recently pull-based de-
velopment has become a popular choice for developing distributed projects, such as those
hosted on GitHub. In this model, contributions are pulled from forked repositories, mod-
ified, and then later merged back into the main repository. In this chapter, we report
on two empirical studies that investigate pull request (PR) merges of Active Merchant, a
commercial project developed by Shopify Inc. In the first study, we apply data mining
techniques on the project’s GitHub repository to explore the nature of merges, and we
conduct a manual inspection of pull requests; we also investigate what factors contribute
to PR merge time and outcome. In the second study, we perform a qualitative analysis
of the results of a survey of developers who contributed to Active Merchant. The study
addresses the topic of PR review quality and developers’ perception of it.

Chapter Organization. Section 6.1 highlights the direction of the research in this chap-
ter. Section 6.2 describes the methodology we followed in our study. In Section 6.3, we
present the results of our qualitative and quantitative analyses. Section 6.4 discusses our
findings, while Section 6.5 addresses threats to validity. Finally, Section 6.6 summarizes
our results.

Related publication. The work described in this chapter has been presented in the
following paper:

• Oleksii Kononenko, Tresa Rose, Olga Baysal, and Michael W. Godfrey. Studying
Pull Request Merges: A Case Study of Shopify’s Active Merchant. Under review.
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6.1 Introduction

Pull-based software development has gained substantial popularity in recent years. Host-
ing services that support this style of development, such as GitHub and Bitbucket, have
attracted a huge number of new and existing projects: GitHub alone is estimated to have
more than 19.4 million active repositories1. Unlike more traditional approaches to evalu-
ating code contributions, in the pull-based model developers make changes to an isolated
copy of the project’s repository, and then later submit a pull request (PR) to the owners
of the project to incorporate their changes into the main codebase; of course, the project
owners need to evaluate the proposed changes, and decide whether to merge the new code
into the project in the main repository.

Many previous studies, both qualitative and quantitative in nature, have mined data
from GitHub to investigate a variety of research questions. Since the vast majority of public
software projects on GitHub are open source software systems (OSSs), the findings from
those studies likely reflect the kinds of processes typically used in open source development.
However, there are also commercial projects on GitHub that allow their repositories to be
viewed by the public, while at the same time maintaining strict ownership and tight control
over their ongoing evolution. Such repositories give researchers a unique opportunity to
study industrial software development processes. We decided to perform an in-depth study
on one such project.

We had three criteria for selecting an appropriate project to study. First, while many
projects host their codebase on GitHub, it is also common practice to perform day-to-day
development activities elsewhere using private external repositories, with only occassional
large updates being made to the public repository [63]. Therefore, one criterion was that
the selected project should be developed completely on the GitHub platform so we would
be confident that the granularity of observed activities was that of day-to-day develop-
ment. A second criterion was that the selected project should be commercially successful,
since successful projects are more likely to systematically employ similar practices that
supported their success. Finally, we wanted to study a project that had been developed in
physical proximity to our labs, in case we wanted to interview members of the main devel-
opment team. Based on these criteria, we decided to study the Active Merchant project
developed by Shopify Inc. which has offices in Ottawa, Toronto, Montreal, Waterloo, and
San Francisco.

Shopify is an e-commerce company that provides a platform for online stores. As
of February 2017, more than 377,500 merchants use this platform to sell commercial

1https://octoverse.github.com
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goods [112]. Active Merchant is a part of that platform; it is a payment abstraction
library that handles and unifies access to a variety of payment gateways with different in-
ternal APIs. The development of that project is done completely on GitHub. All PRs must
pass a code review process and get approval before being merged into the main codebase.
Although this project is owned by Shopify, Spreedly Inc. has recently become an active
contributor as well.

Our investigations are built around a quantitative analysis of the Active Merchant
project repository, as well as an exploratory survey that we conducted with Shopify devel-
opers. Our goal is to answer the following research questions.

RQ1 Which merge strategies are used by developers? Do they affect the pull request review
time?

A submitted PR may consist of multiple commits; a developer can add yet more
commits to address reviewers’ comments. If the PR is accepted, developers can
incorporate the commits in several ways [63]. We study how developers merge PRs,
as well as fill the gap in the existing research by analyzing the effect the PR merge
type has on the merge time.

RQ2 What factors affect the PR review time and decision?

Previous studies have looked into effect of a variety of factors that concern the time
needed to reach a decision about a PR, as well as the effect on that decision itself [50,
121]. We investigate what factors play a role in the studied commercial project.

RQ3 How do developers perform and assess the PR review process?

We believe that the data extracted from project’s code repositories would tell us only
part of the full story. To get a more comprehensive view of the pull-based development
process used by Active Merchant, we conducted a survey among Shopify developers.
The analysis of the survey results provided us with a better understanding of the
developers’ perception of PRs and PR review quality.

This chapter makes the following contributions:

• An in-depth study of new contributions in a pull-based software development model
within a successful commercial software project.

• A survey with professional full-time developers that offers insight into their perception
of the process of assessing of new PRs.
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• A publicly shared dataset2 that includes mined data with manually verified and
labeled merged PRs, the survey questions used, and the anonymized survey responses.

6.2 Methodology

To answer our research questions, we performed a combination of quantitative and quali-
tative analyses. Our quantitative study consisted of mining software artifacts from Active
Merchant’s GitHub repository [111], pre-processing, and analyzing the extracted data. For
our qualitative study, we surveyed the developers involved in the project development.

6.2.1 Data Mining

Data collection. Active Merchant is a library that provides a unified API that allows
communication with many different payment gateways. The project is hosted on GitHub
and employs a pull-based mechanism for submitting and accepting code contributions, as
well as performing review of those contributions. GitHub provides APIs that allow users
to access its data [47]. We used an official library developed by GitHub to make API
calls [46]. For our study, we looked at the contributions made to Active Merchant between
January 1, 2012 and October 1, 2016; we extracted a total of 1,657 pull requests (PRs) that
were submitted during this period. During the extraction process, we tracked a variety
of information about each PR, including the unique ID of its author, the date the PR
was added to the repository, the date the PR was closed, whether the PR was merged
and (if so) the date of the merge, the natural language description of the PR, and its size
statistics.3 For each PR, we also collected both PR-wide comments and in-code comments
left by the developers.

GitHub user accounts of many Active Merchant contributors do not contain affiliation
information or email address. To recover missing email addresses, we extracted the actual
commits from the repository. For each commit, we analyzed commit author informa-
tion recorded by GitHub (represented by unique user ID) and commit author information
recorded in the header of the commit by Git (Git identifies users using their email address,
so this field is always present). If GitHub user data was missing, we used name (if available)
and the email address from the commit header. While it is possible that some of these
email addresses are inaccurate, using this approach we were able to reduce the number

2http://swag.cs.uwaterloo.ca/~okononen/shopify
3We did not calculate the size statistics ourselves; instead, we relied on the values provided by GitHub.

100

http://swag.cs.uwaterloo.ca/~okononen/shopify


of anonymous contributors. To recover developers’ affiliation information, we parsed the
email addresses and set it based on the domain name of the emails (except for “public”
emails such as Gmail, Yahoo, etc.).

PR merge types. Kalliamvakou et al. noted that GitHub data is not always reliable
regarding whether a PR has been merged or not [63]. The discrepancy between the recorded
merge information and the actual merge status exists because developers can merge a PR
using several different approaches. We used the heuristics proposed by Kalliamvakou et
al. [63] to recover “missing” merge flags. These heuristics are based on commits in the
master branch of a repository as well as on the content of the last comments left on a
PR. For example, according to one heuristic, a PR was merged if there is a commit in
the repository’s master branch and that commit closed a PR using a specially formatted
message appended to the commit message. By applying these heuristics, we were able to
mark 798 “not merged” PRs (as reported by GitHub) as “merged” ones. Kalliamvakou et
al. also warned that their heuristics may result in a considerable number of false positives.
To reduce this risk, we performed a manual inspection of the merged PRs; the inspection
also afforded us the opportunity to label each PR according the merge type labels suggested
by Kalliamvakou et al.:

• GitHub merge — a merge performed using GitHub facility (i.e., using the “merge”
button in the UI).

• Cherry-pick merge — a merge when a developer selects a subset of commits from a
PR and adds it to the repository without any changes.

• Commit squashing — a situation when a developer creates a new commit that con-
tains all commits from a PR, makes additional changes if needed, and adds this
commit to the repository.

Manual inspection of pull requests. Researchers Kononenko and Rose performed
the inspection of all PRs marked as “merged” by the stated heuristics. To ensure that
the researchers had the same understanding of the merge types, we selected 20 random
PRs and performed independent labelling of each PR. We then compared the assigned
labels and calculated intercoder reliability score (i.e., percent agreement). The researchers
achieved high agreement (93%) between themselves: they differed only in two PRs. After
that, the remaining PRs (778) were split in two sets; two researchers separately inspected
and labelled one of these sets. As a result of this inspection, we found seven PRs that were
incorrectly marked as “merged”.
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Data pre-processing. To minimize any potential noise in the collected data, we tried
to eliminate outliers by applying three filters:

• We removed 5% of the PRs with the longest review time to account for PRs that
struggled to catch developers’ attention. Several PRs took an extremely long time
to get reviewed; for example, the longest review took 637 days, while the median for
review time is 3 days.

• Some PRs are unusually large in terms of added/removed lines of code (LOC) —
the biggest PR is nearly 1 million LOC, while the median is only 35 LOC — and to
account for such PRs we removed the largest 5% of all PRs.

• Since we were interested only in studying those PRs that the developers had decided
on, we removed all PRs that were not marked as “closed” (26 PRs in total).

After applying these filters at the same time, our dataset was reduced to 1,475 PRs.

6.2.2 Explanatory Factors

Previous research suggests a set of different metrics that can affect code review time and
outcome [15,50]. Table 6.1 lists the explanatory factors we considered in our study. The se-
lection of each factor was governed by our ability to accurately calculate its values from the
mined data (i.e., we did not include a factor if we could not collect the data corresponding
to that factor or if we needed to apply some heuristic to compute its value).

Although GitHub allows a PR to be assigned to a specific developer, we found that
this feature was rarely used within the Active Merchant repository. Therefore, one of the
challenges we faced was determining the exact time boundaries of a review period. We
considered the PR submission date to be the date that the review process started. Since
a PR cannot be merged before it has passed the review, we considered the date a PR was
closed as the date the review process ended. Thus, the time between these two dates (i.e.,
start and end dates of review) is defined as review process length.

Another challenge we had to overcome was the lack of standardized flags or labels in
GitHub to indicate the outcome of a PR review. In the studied repository, some reviewers
add a textual comment, some use emoticons, while others include images of boats (meaning
“ship it”). We marked all closed and merged PRs as the ones that successfully passed the
review, and all closed but not merged PRs as the ones that received a negative review.
Similar assumptions were made in [50,121].
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Table 6.1: Overview of the factors studied.

Explanatory Factor Description
PR size Sum of added and removed LOC
# files # files changed by a PR
# commits # commits in a PR
PR author experience # prior PRs submitted by PR author
# comments # comments left on a PR
# author comments # comments left by the PR author
# commenting developers # devs participating in discussion
# in-code comments # comments left on source code
# author in-code comments # comments left on source code by author
# in-code commenting devs # devs who commented on source code
PR author’s affiliation An org that a PR author affiliates with

6.2.3 Data Analysis

To understand the effect of the selected factors on review time and review outcome, we built
Multiple Linear Regression (MLR) and Logistic Regression Models respectively. These
models try to capture the relationship between the explanatory variables — in our case,
the factors described in Table 6.1 — and a response variable — i.e., the PR review time
and review outcome [27]. Our goal of understanding the relationship between explanatory
and dependent variables, as well as our model construction process are similar to the ones
in the previously published studies [24, 71,80,85].

Variable transformation. Empirical evidence suggests that software engineering
data is rarely normally distributed [81]. To minimize any possible skewness in the data,
we applied a log transformation log(x+1) to all continuous variables (e.g., size, author
experience, comments, etc.). Because categorical variables (e.g., affiliation) cannot be
used directly in regression models, we employed a dummy coding technique to transform a
categorical variable into a set of dichotomous variables that capture the same information.

Controlling Multicollinearity. Multicollinearity is defined as a high correlation
among two or more explanatory variables in a regression model. We checked the models
for multicollinearity using the variance inflation factor (VIF). A VIF score of each variable
represents how much its variance is explained by the collinearity with other variables. We
used vif function from the R car package to calculate VIF scores [43]. As recommended
in [42], the threshold for VIF score was set to 5. Through an iterative process, we checked
that our models contain only variables with VIF scores lower than the threshold; at each
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iteration, if there was a variable with a VIF score higher than the threshold, we removed
that variable and recalculated the VIF scores.

Model Evaluation. To evaluate our models, we considered R2 values. For our MLR
model, we used Adjusted R2 value [55]; unlikeR2, this value is affected by the extra variables
with low explanatory power in the model: the more such variables, the lower the value.
To reduce the number of “useless” variables in the MLR model, we used a bidirectional
stepwise selection technique [41], a process of adding and removing independent variables
for finding a best subset of such variables. There is no R2 value for Logistic Regression
Models; instead several statistics, so called “pseudo R2”, have been proposed. We are
using the one proposed by Tjur — Tjur’s D [120]. This statistic is closely related to the
definition of R2 in MLR models, and it is designed for dichotomous dependent variables.
We used R binomTools package to calculate Tjur’s D [25].

6.2.4 Survey Design and Participants

To understand developers’ work practices and their vision of the pull request review process
established in the project, we decided to conduct a survey with them. Similarly to previous
studies [50, 70], we designed a survey containing three groups of questions: nine questions
related to the demographic information about participants and their work practices, three
Likert-scale questions focused on PR review, and four open-ended questions asked partici-
pants to provide more information concerning their responses to the Likert-scale questions.
The questions from the survey are presented in Appendix B. Participants were informed
that our survey would take 10–15 minutes to complete.

Since Active Merchant is a product of Shopify, we targeted Shopify developers because
they own the product and remain its main contributors. Our dataset included 88 developers
who were affiliated with Shopify. To recruit participants for our survey, we sent out 78
personalized emails inviting developers to participate in the survey; 10 developers in our
database had missing email addresses. For five of those emails we received an automated
response saying that the email address had been deactivated; we speculate that these
developers are no longer with Shopify. The survey was open for two weeks — from February
27, 2017 to March 13, 2017 — and we received 16 responses. While the number of responses
may seem small, the response rate of 22% (16/73) is higher than the suggested minimum
response rate of 10% [54].
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6.2.5 Card Sorting

We employed a grounded theory approach for analyzing the developers’ responses to open-
ended questions in the survey. Before our analysis we had no preconceived ideas or theories
about the survey responses, so we used an open coding approach to create categories and
themes, and to group the data into them [83].

Researcher Kononenko split 16 survey responses into 181 isolated quotes (cards), i.e.,
each quote represents a single statement that differs from other statements in a particular
answer to a question. After that, two researchers, serving as coders, went through the
cards grouping them into themes, and later grouping themes into broader categories. The
coders used the following protocol on all but one of the open-ended questions:4

• The coders took the first 25% of cards that correspond to a particular question and
— independently of each other — organized them into several groups. Once they
were done with the first round of card sorting, they compared and discussed the
emerged groups and the cards in them.

• During the next round, the coders took another 25% of cards and — again, indepen-
dently of each other — sorted the cards into the groups created in the previous step.
If a coder believed that a card did not match any of the existing groups, they were
allowed to create a new group for that card. To ensure the integrity of the process,
we computed the intercoder reliability at this step.

• During the final round, the coders sorted the rest of the cards (i.e., the remaining
50%) together.

We opted for percent agreement as our intercoder reliability coefficient as it is one of the
most popular reliability metrics. We used ReCal2 to compute percent agreement values for
each question [44]. The values of the reliability coefficient were different among questions
and ranged between 91.9% and 100%, with the average of 96.4%.

6.3 Results

In this section we present the results of our quantitative and qualitative studies, and we
answer our research questions.

4One of the questions received only few responses making it impractical for us to apply the described
procedure.
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6.3.1 RQ1: Merge types and their effect on review time.

In a more traditional development model, if a contribution (e.g., a patch) is approved, it
will be added to the repository. If such a contribution has undergone a series of revisions
before being approved, only its final version will be incorporated into the codebase. Pull-
based development, on the other hand, has created a new way of dealing with incoming
contributions to a software project. When dealing with PRs, developers have more flex-
ibility: they can choose to incorporate as little as they deem beneficial to the project or
they can decide to merge a complete PR. If they decide to incorporate the full PR, they
have another choice: they can either leave the commits from a PR untouched — preserving
more historical information this way — or “squash” the commits into a single commit and
add it into the repository — to have a cleaner commit history on the master branch. While
researchers have studied different aspects of pull-based development, we did not find any
studies that analyzed the merge approaches used by developers. Thus, first we decided to
take an exploratory look at the PR merge strategies.

As described in Section 6.2.1, we applied several heuristics to determine merged PRs;
later, we also manually inspected and labelled all merged PRs in our dataset. Table 6.2
reports the results of this manual classification. While we were surprised to see that only a
small number of PRs — about 25% — were merged using the native GitHub UI, it might be
due to the fact that the merge via “merge” button is possible only if (a) there are no further
changes required, and (b) GitHub can automatically resolve a merge conflict if it occurs.
In fact, during the manual inspection we noticed that a lot of merged PRs had additional
changes made by a merger. When developers were merging a PR, they often updated
changelog, readme, and/or contributors files to reflect the new change. Squashing was
the most popular merge type used by developers. Although some historical information is
lost during such a merge, there are some advantages too. The main benefit here is that the
squashing merge helps developers to keep the commit history in the master branch simple
and relatively clean: each commit represents a single PR. With such an organization of
the branch, developers can ensure that the commits are accompanied by a descriptive log
message; also, it is easier for developers to revert a merged PR if there is a need. Moreover,
squashing naturally supports both the small additional changes the mergers make and the
automatic closure of a PR.

To study whether merge types have an effect on the time a PR stays open — i.e., until it
is ultimately rejected or merged — we used two non-parametric statistical tests: Kruskal-
Wallis analysis of variance [73], and a post-hoc Mann-Whitney U (MWW) test [74]. The
Kruskal-Wallis test revealed that merge type has a statistically significant effect on time
(χ2(3)=89.02, p < 0.001). Since this test does not show where the significance occurs,

106



Table 6.2: Classification of PRs by a merge type.

Merge type Count Percent Median review time (in min)
Not merged 372 25.2% 10,111.5
GitHub 367 24.9% 1,107.8
Squashing 612 41.5% 4,241.8
Cherry-picking 124 8.4% 3,177.6

we followed up with pairwise comparison using MWW test with Bonferroni correction.
The test showed significant difference among all pairs except one: the difference between
cherry-picking and squashing was not statistically significant, although the median time for
the former is smaller than the median time for the latter. We report the median time for
each merge type in Table 6.2. The huge difference in median time between unmerged PRs
and merged PRs might indicate that if a PR is going to be accepted, it will be accepted
quickly; otherwise, it will be shelved and “forgotten”.

RQ1: While most developers merge pull request via squashing (41.5%), GitHub
and cherry-pick PR merge types are also a common practice. Merge type has
a statistically significant effect on PR merge time; cherry-picking and squashing
merges take more time than the merges done via the GitHub UI.

6.3.2 RQ2: Factors affecting merge time and decision.

To investigate which factors influence the time developers take to make a decision about
a PR, as well as the factors that affect the review decision (to merge or not to merge), we
built two statistical models: Multiple Linear Regression Model for PR review time, and
Logistic Regression Model for PR review decision. The models used factors from Table 6.1
as independent variables. We removed merge type factor from the decision model because
it implicitly reflects (i.e., is correlated with) the dependent variable. Table 6.3 reports the
regression coefficients for each of the studied factors. In addition to the qualitative analysis,
in our survey, we asked developers which factors they experienced to be influential to time
and decision. We used 4-point Likert-scale questions, as well as open-ended questions to
obtain developer insights.

Merge time. The MLR model indicates that the PR size has a statistically significant
effect on review time. The positive value of the regression coefficient means that the larger
a PR is, the longer it takes for developers to review it. PR size was also seen as influential
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Table 6.3: Models for fitting data.

PR review time PR review outcome
Adjusted R2: 0.28 Tjur’s D: 0.14

Size (LOC) 0.110* -0.187***
Number of files ‡ ‡
Number of commits · ‡
Writer experience -0.285*** 0.217***
# of comments † †
# of commenting devs 1.021*** -0.786***
# of author comments ‡ ·
# of in-code comments † †
# of in-code commenting devs 0.389* 0.357*
# of in-code author comments ‡ ‡
Affiliation with Shopify -1.721*** 1.160***
Affiliation with Spreedly -1.980*** 1.046***
Cherry-pick merge 0.654* n/a
GitHub merge -0.610** n/a
Squashing merge 0.804*** n/a

†Removed during VIF analysis.
‡Removed during stepwise selection.
Stat. significance codes: *** < 0.001 < ** < 0.01 < * < 0.05 < ·

by almost all developers who participated in the survey (Figure 6.1). These findings are
similar to the previous research studies [15,62,70,124].

Writer experience appears to have a statistically significant effect on review time. Neg-
ative regression coefficient for this factor demonstrates that more experienced developers
tend to have quicker turnaround time for their PRs. One possible explanation for this find-
ing is that experienced developers might be more familiar with the codebase and project
culture, and thus are likely to submit PRs that fit better into the project. While we did
not consider reviewer experience as a factor — because it was not feasible to calculate it
accurately — it was one of the factors we asked developers about. Developers believe that
both author and reviewer experience are important contributors to PR review time (81%
and 87% of positive answers respectively).

Out of six discussion-related factors only two made it to the final model: the number of
developers who left comments at a PR level and at a source code level. Both of these metrics
have positive regression coefficients, indicating that each new developer participating in a
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The following factors influence code review TIME

Percent

# of commits
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Figure 6.1: Factors influencing PR review time.

discussion delays the decision on a PR. Discussion of new contributions is vital to the health
of software project, thus a thorough discussion should likely be welcomed although it can
cause a delay. At the same time, we were surprised to see that the PR author comments
factor was not present in the model. It is author’s job to explain a proposed change and
address reviewer comments; our intuition is that the lack of such comments would only
delay the final decision. Contrary to the results of the model, developers indicated that
the length of a discussion is a critical factor (81% positive responses).

The model shows that the PR author’s affiliation influences review time as well. Pull
requests submitted by Shopify developers (owners of the project) or Spreedly developers
(who work very closely with Shopify on this project) receive faster reviews on their PRs
than PRs submitted for review by external developers. This finding is somewhat similar to
the one made by Baysal et al. [13] who studied code review of Mozilla project. Surprisingly,
few developers agreed with the statement that author affiliation affects PR review time.
Perhaps, these developers did not participate in a review of external PRs, or because they
believe that the established process is impartial.
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Merge type was also included in the final model; the findings here are similar to the
ones presented in Section 6.3.1. A merge that is performed using GitHub UI is correlated
with shorter review time, while the other two merge types are associated with longer review
time.

The open-ended questions of the survey provided developers an opportunity to discuss
any other factors not covered by the Likert-scale questions. The open coding analysis of
the open-ended questions also revealed several additional factors that developers believe
have an impact on the PR review time. The biggest theme identified in the responses is
PR quality, which includes PR description and PR complexity categories. As explained by
D9, “bad descriptions are the biggest factor; someone submitting a 1,000 LOC PR with a
good description is much better than someone submitting a 100LOC PR with only ‘Added
XXX integration”’. Several developers believe that type of change (e.g., “new feature,
refactor, bugfix, etc.”) and where the change affects code’s architecture/design (e.g., “big
refactoring” (D14)) are also important factors affecting review time. Human factors such as
“trust you have in author” (D6) and reviewers’ familiarity with “that part of the codebase”
(D2), PR discussions that may take place across multiple channels “in a GitHub issue,
face-to-face, etc.” (D10), the “set up of the tophat” (i.e., testing) are all considered by
developers to contribute to the PR review time.

Merge decision. Similar to the previous model, the PR size metric is included in the
final model for review outcome (i.e., merge decision). Its negative regression coefficient
indicates that larger PRs are more likely to receive a negative merge decision (i.e., a PR is
not merged) than the smaller ones. However, when we asked developers what they think
about the influence of this factor, the answers were split: only 56% of developers agreed
that the size affects the review outcome (Figure 6.2). A possible explanation for this is that
a larger PR has a higher chance of containing more than one “atomic” change, which is
against PR submission policies in many software projects. While developers may not mind
accepting a large PR that is coherent and single-purpose, they may feel more negatively
about a large PR that is a collection of loosely related changes.

The PR author experience has a statistically significant effect on merge decision. The
more PRs a developer has submitted in the past, the more likely their PR will be accepted
again. Developers actively contributing to the project are often well known to other de-
velopers, and therefore the acceptance of a PR might be affected by their reputation [19]
or interpersonal relationship with other developers [70]. Surprisingly, when we asked de-
velopers about impact of experience on merge decision, they believed that neither author
nor reviewer experience affects it (63% of negative responses for each factor).

Similar to the model on time, the only discussion-related factors in the model are
the number of people leaving comments and the number of people commenting on the
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The following factors influence code review DECISIONS
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Figure 6.2: Factors influencing PR review outcome.

source code. However, in this model, these factors have the opposite effect on the merge
decision: the higher number of developers commenting on a PR leads to lower chances of
it being approved, while the number of developers leaving comments on the source code is
likely to increase the chance of a PR being accepted and merged. We speculate that this
happens in the situations when PR comments are likely to be more ‘high level’ (e.g., the
need for such a change, alignment with project’s goals, etc.) while the comments on the
source code, by definition, are more ’low level’ (e.g., implementation, API choice, etc.).
At the same time, the discussions regarding high-level issues are likely to be controversial;
therefore, bringing more developers to such discussions might prevent them from reaching
an agreement. Developers agreed that the number of people involved in a PR discussion
affects its acceptance (56% of positive responses), however, they disagreed the length of
that discussion plays a role (63% of negative responses).

The affiliation of the PR author has a statistically significant impact on the merge
decision. Both Shopify’s and Spreedly’s regression coefficients are positive, indicating that
the PRs that come from the developers of these two organizations have a higher chance of
being accepted.
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In analyzing developer responses to the open-ended survey question related to review
decision, we observed that several categories emerged. The highest impact on the PR review
decision is perceived to be PR quality including its complexity, “can we instead generalize
this feature? can you do instead something simpler using the current functionality of the
code?” (D12). Developers also argue that PR author’s responsiveness and workloads (we
put these under human factors) affect reviewer’s decision on whether to merge the PR. As
D6 explains, “mostly if people have time, most PRs seem to eventually get merged as long
as the author has time to fix things.” Some developers find that overall project schedule
such as “release plan”, “code freeze” (D14) may also impact merge decisions.

RQ2: The statistical models revealed that both PR review time and merge deci-
sion are affected by a PR size, the discussion, as well as author experience and
affiliation. Developers believe that PR quality, type of change, and responsiveness
of an author are also important factors.

6.3.3 RQ3: How developers perform and assess PR review pro-
cess

During the open coding process, 22 key categories (including “irrelevant”) emerged; Ta-
ble 6.4 presents these categories in detail reporting the number of quotes, the number of
respondents, the question numbers, and the totals for each question.

PR review process of Active Merchant. Since each organization adopts its own
code review guidelines and practices, we first wanted to understand how developers conduct
reviews of the Active Merchant PRs. In particular, in our survey we asked developers about
the steps they typically follow when they are asked to review a PR.

The analysis of the survey answers shows that developer see testing as the key feature of
the PR review process: new code must pass automated tests and be peer reviewed. Thus,
one of the first steps is to “tophat” (i.e., test the code locally). To do so, reviewers check
whether the PR author has tested the code, “did you tophat the change? what steps did
you follow?” (D10). D10 further explains that Shopify requires “separate tophats (testing)
from someone other than the PR author before submission”. Therefore, reviewers “look for
tests and what kind of tests and where they cover” (D1) and “make sure that test cover all
changes” (D10).

The next key step of the process is to understanding the scope of the change. First,
reviewers read PR title and description and skim through, i.e., “an initial pass to get a
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Table 6.4: The categories created during open coding.

Category
Q9 Q11 Q13 Q15 Q16

#Q #R #Q #R #Q #R #Q #R #Q #R
Understanding context/rationale
/scope

19% 60% - - 25% 50% 16% 33% 7% 20%

Code inspection 15% 70% - - - - - - - -
Touchy code 4% 20% - - - - - - - -
Testing 22% 70% 5% 10% 8% 17% 6% 20% 14% 33%
PR complexity / granularity 4% 20% 30% 50% 25% 33% 12% 33% - -
PR description - - 25% 30% - - 20% 47% - -
Skimming through 4% 20% - - - - - - - -
Catching bugs 2% 10% - - - - - - 5% 13%
Refactoring 2% 10% - - - - - - - -
Comments/discussion 11% 40% 10% 10% - - 4% 13% 7% 20%
Code quality 2% 10% - - - - 18% 47% 7% 20%
Architecture/design 9% 10% 10% 20% - - - - 5% 13%
Type of a change - - 10% 20% - - - - - -
Familiarity/knowledge of code-
base

- - 5% 10% - - - - - -

Release schedule - - - - 17% 17% - - - -
Human factors (e.g., experience,
trust)

- - 5% 10% 17% 33% 2% 7% 2% 7%

Time - - - - - - 2% 7% 11% 33%
Feedback - - - - - - - - 32% 60%
Conformance to project goals - - - - - - 6% 13% 9% 13%
Performance - - - - - - 2% 7% - -
Revertability - - - - - - 6% 13% - -
Irrelevant 7% 30% - - 8% 17% 8% 27% 2% 7%
Total 54 10 20 10 12 6 51 15 44 15

Notes: #Q: the number of quotes, #R: the number of respondents, Q9: PR review process,
Q11: factors affecting time, Q13: factors affecting decision, Q15: characteristics of PR quality,
Q16: characteristics of PR review quality.

sense of what it’s about” (D6). And next, they try to “understand the full extent of the
change, not simply the changes in the diff” (D10). D1 reports that “I read the what,
how and why you are trying to do with your PR.” To understand why a change was made,
sometimes developers need to “jump to different parts of the code as necessary to reference
other changes” (D8). At the end of this step, reviewers pay close attention to “touchy
code” (D1), i.e., “things that look weird” (D6).

Code inspection is an integral part of the PR review. Reviewers look at the code and
evaluate code quality according to code guidelines. For example, D10 checks if PR author
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“named everything correctly and in an intuitive way: variables, tests”. Some reviewers
apply different code inspection strategies depending on the type of change they review. D8
reflects on his approach: “If it’s a bugfix or feature, start reading through the changes in
one window (top to bottom). If it’s a refactor, open the code in two windows side-by-side,
so additions and deletions can be browsed independently”.

Reviewers typically provide their feedback — in a form of comments or questions — to
a PR author to “discuss the solution and the approach, not just the implementation” (D10).
Such discussions are critical as they are seen as communication mechanisms between PR
author and reviewer. Reviewers check whether the PR author has addressed their questions,
as D8 elaborates “I circle back on questions and comments to see if they’ve been answered
by code later in the PR”.

Apart from code quality, reviewers also check for any violations related to architec-
ture and design. Such inspections can be performed on code itself (“are any abstractions
leaked into code?”), tests (“are the tests tightly coupled making refactoring harder in the
future?”) or use cases (“is any complexity added from tyring to anticipate future use-cases
of the code?”). Also, reviewers check whether PR author has used the “best methods” of
implementing a piece of functionality.

Developer perception of a PR quality. Enforcing quality standards is a key aspect
of code review; standards of both code and project development must be met by proposed
PRs. With this research question, we explore how developers define and view PR quality.

One of the main attributes for developers when evaluating PR quality is its descrip-
tion. Developers believe that the PR description should be thorough, explaining “what it’s
solving and why” (D8), describing “happy/unhappy paths” and “possible errors/problems
that are not fully solved” (D11). Some respondents also said they wanted PR descriptions
to include “potential alternatives” to the solution and “decision why current solution was
chosen” (D12). Useful commit messages can help reviewers to decide whether “PR is large
[and needs to] be broken down into smaller bits” (D8).

Code quality is another top property that Shopify reviewers look for. PR must follow
“coding guidelines” (D14), “clean and in a mergeable (not draft) state (no commented out
lines, syntax follows convention, etc.)”, “annotated if necessary (why certain things are
changed; foreseeing where a reviewer might have questions)” (D8).

PR complexity is also an important indicator of quality. Developers check whether a PR
is “too large for people to review in one go?” (D2) and “can be split into smaller PRs” (D4).
Reviewers want a PR to be “small and easy to understand” (D1) and to “solve only one
issue, and make the smallest change possible (doesn’t get carried away doing non-targeted
changes” (D8).
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Developers also checked PRs for their revertability, where PR is “self-contained” (D2),
and “can be reverted (in most cases) with no side effects” (D4). Conformance to project
goals is seen as an important property of a PR. For example, D13 justify that “a good PR
either adds features as per the goals of the project or rectifies errors and inconsistencies
in existing code and documentation”. Other reviewers look at whether PR’s functionality
satisfies performance requirements, i.e., it “satisfies SLA’s the code is going to be run
under” (D6).

Several respondents suggested that testing is a good indicator of the PR quality. “Does
PR have tests?” (D6), “can [PR] be tested on its own?” (D10), “how good PR in terms
of tests coverage?” (D14) are some of the questions that developers try to answer when
reviewing PRs.

“Good discussions going on” (D4), author experience submitting PRs, and time it takes
to review a PR as explained by D5 “the minimum time I can spend reviewing it, the better
is the PR” are also attributed to the PR quality.

Perception of the PR review quality. We now offer insights related to understand-
ing developer perception of the main characteristics contributing to a PR review quality.

The responses to the relevant Likert-scale question in the survey are shown on Fig-
ure 6.3. For the majority of factors we asked developers about, there was no strong
prevalence of either positive or negative responses. The only factor that received the
overwhelming support support is reviewer experience (94% of positive responses). Many
developers are also agree that response time is strong indicator of PR review quality. Sur-
prisingly, only one size-related metric (PR size) received a considerably large number of
positive responses (81%). The vast majority of the developers disagreed with the statement
that the affiliation of the PR author affects the quality of the review process. This might
indicate that developers are confident that the established practices are fair, and do not
differentiate based where a contribution came from.

Applying the manual coding analysis to the open-ended question, we found that the
majority of survey respondents indicated that constructive feedback remains the key at-
tribute of a high quality review. Developers expect from reviewers to 1) maintain “a
good balance between asking questions and being clear about what you, as a reviewer, want
changed” (D2); 2) offer “actionable comments” (D2) for PR author so it’s easy for them
to address these comments; 3) express their feedback in an appropriate manner, “strong
opinions weakly held — a weak opinion is useless” (D4); 4) take time to “educate when you
point out a mistake” (D6); 5) ask detailed questions to PR authors to get them “thinking
about what they are trying to accomplish” (D10). When PR is“rejected”, developers want
reviewers to offer “the list of what is missing of the user story/task functionality, coding
style, architectural approaches” (D15).
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The following factors influence code review QUALITY

Percent

PR author affiliation

# of commits

# of modified files

The length of the discussion

PR author experience

# of people in the discussion

Reviewer workload

PR size (LOC)

Review response time

Reviewer experience

50 0 50 100

Strongly Disagree Disagree Agree Strongly Agree

Figure 6.3: Factors influencing PR review quality.

Testing is viewed as a process that helps reviewers to conduct PR reviews. Reviewers
typically need to pull a PR into their local repository and test it to make sure it does not
cause any issues. Thus, reviewers check for presence of “automated tests and the quality of
the tests” (D1). Other factors that developers attribute to review quality if time taken to
review PRs, reviewers are advised to “take time to read it all” (D6) and not “rush through”
(D4).

Conformance to project goals, once again, was also important property. Developers
noted that review quality is associated with whether reviewers understand that “we are all
on the same team”, as D2 suggests “let’s keep things moving, as long as they are moving
in the right direction”. Reviewers are expected to evaluated PRs based on project priority
and “charter”, as well as how they improve “maintainability of the project” (D13).

PR reviews are also assessed by how well developers understand context/rationale/scope
of the change and whether “its impact is well acknowledged” (D7), proper syntax/language
(D8), and whether the PR review facilitated a good discussion, e.g., such as “generated
from important stakeholders” (D7).
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RQ3: Since Active Merchant uses a pull-based development model, PR reviews
are performed to evaluate changes. Developer perception of PR quality is defined
by its description, complexity, and revertability. PR review quality is seen as a
function of constructive feedback, quality of tophats (tests), generated discussion
between reviewer and PR author, and moving the project forward.

6.4 Discussion

Merge types. One of our findings is that developers use squashing more often than any
other merge technique. While this approach has the largest median merge time associ-
ated with it, developers clearly see benefits in using it. Squashing also leads to some loss
of historical information, and hence it has been suggested that it is a “bad” development
practice5. We argue that further research is needed to better understand the considerations
that developers make when deciding how to integrate a pull request. With such an un-
derstanding, researchers can better address the shortcomings of current merge techniques,
which in turn may improve the quality of future research of git-stored data.

Merge time. Recent work by Gousios et al. [50] has also studied merge time and
the factors affecting it. The authors analyzed similar factors to the ones studied in this
chapter; however, their findings are somewhat different. Both studies showed that devel-
oper experience/reputation impacts merge time. However, in Gousios et al.’s study the
project-level metrics were shown to be influential while we did not investigate those factors.
Furthermore, the factors that were significant in our model were not significant in their
study. This suggests that there is likely no unified model that will work across the dis-
parate landscape of all GitHub projects, and that each project/domain should be studied
individually.

Merge decision. The factors that affect the merge decision were also studied by
Gousios et al. [50] and Tsay et al. [121]. Our findings align well with those of Tsay et al.:
both sets of studies showed similar effects of PR size, discussion (although via different
metrics: number of commits vs. number of people involved), and affiliation on decision to
merge a PR. Gousios et al.’s study showed the effect of the number of files changed as
well as some project-level metrics; in our work, those metrics were either insignificant or
not studied. Here, the claim we made for the differences in findings regarding merge time
appears to be unjustified. However, it is worth pointing out that both Tsay et al. and we
relied on the same statistical model — logistic regression — while Gousios et al. used a

5Certainly, software engineering researchers may be expected to be unhappy with the loss of information.
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random forest classifier. We wonder to what degree the choice of statistical model affects
the results, which in turn might warrant a call for unifying the way in which statistical
models are used by software engineering researchers.

6.5 Threats to Validity

Threats to internal validity concerns the quality of study design and rigorousness of its
execution. In our study, these threats are related to data mining, model construction,
as well as survey design and analysis. We extracted data using GitHub’s own API; this
ensured that we had the most up-to-date dataset at our disposal. To limit the number
of inaccurate records, we performed a manual inspection of the merged PRs. In addition,
we filtered out the obvious outliers from the dataset. While the choice of factors selected
for the models might be a threat, we relied on the metrics previously used by the research
community. In designing our survey, we tried to ensure that our questions were clear and
easy to answer. We might have introduced some research bias during the analysis of open-
ended questions; however, we also tried to minimized any such bias by following a strict
protocol described in Section 6.2 and reporting the intercoder reliability scores.

External validity concerns the generalizability of the findings. We focused on a single
software project and the developers working on it. While Active Merchant is a successful
commercial project and the survey respondents are highly experienced full-time employees,
it might not be possible to generalize the findings across all projects hosted on GitHub.
At the same time, we do believe that any medium-sized software project with similar
structure (i.e., a commercial project that is open to external contributions) is likely to
exhibit many similar features of pull-based development. Nevertheless, further research is
required to enhance the understanding of pull-based software development model and to
create a unified body of empirical knowledge about it. To allow replication of this work,
we made anonymized dataset, classification of PRs by merge type, the survey design, and
the anonymized survey responses publicly available.

6.6 Conclusions

Pull-based software development is a popular model of modern distributed software de-
velopment. In this work we provide an in-depth study of a commercial software project
that employs the pull-based model. First, we studied PR merge types used by the project.
We manually classified merged PRs and found that the most of PRs were merged using
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squashing and that PR merge type and PR merge time have a statistically significant rela-
tionship. We then built statistical models to investigate the effect of a variety of factors on
the PR review time and PR merge decision. We found that PR size, the number of people
involved in the discussion of a PR, author experience and his or her affiliation were signif-
icant factors in both models. Developers also believe that PR description and complexity,
type of change, and responsiveness of an author are influential factors as well. Finally,
we surveyed Shopify developers to understand their perception of the PR quality and PR
review process. The analysis of the survey responses showed that the developers associate
the quality of a PR with the quality of its description, its complexity and revertability,
while the quality of the review process is linked to the feedback quality, tests quality, and
the discussion among developers. The quantitative findings obtained in this chapter (i.e.,
the factors affecting PR review time and acceptance) are similar the findings in Chapter 3.
The developers perception of PR quality and PR review quality is somewhat similar to the
perception of Mozilla developers we studied in Chapter 5.
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Chapter 7

Conclusions

In a large, long-lived project, an effective code review process is key to ensuring the long-
term quality of the code base. Code review is considered to be one of the most effective
QA practices in software development. While it is relatively expensive in terms of time
and effort, it delivers benefits of identifying defects in code modifications before they are
committed into the project’s code base [39]. Reviewers play a vital role in the code review
process not only by shaping and evaluating individual contributions but also by ensuring
the high quality of the project’s master code repository. Moreover, reviewers serve as
a human face of a project, they are the ones developers interact with to discuss their
contributions.

We view the quality of code review as a complex function of contributors’ interests (e.g.,
the timely acceptance of their contributions) and reviewers’ interests (e.g., acceptance of
only good contributions). We claim that by mining and analyzing software artifacts and
by studying developers’ day-to-day experience we can learn the specifics of the quality
function of a particular software project, which in turn will help the stakeholders to better
understand and view the established code review process from the unified perspective.

In Chapter 3, we looked into the code review process from the point of view that might
be associated with the one of contributors to a software project, namely we investigated
what factors might affect code review time and the likelihood of patch acceptance. By
mining issue tracker systems and applying statistical analysis to the gathered data, we
were able to show that the size of a patch, the source code area it changes, submitter’s
affiliation and experience, as well as reviewer’s experience and workload influence the time
it takes to review that patch. We also discovered that patch acceptance is affected by
many of the same factors as well. These findings presented in this chapter might help both
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contributors and project owners — contributors might want to submit smaller patches as
well as be more “visible” to the core developers while the owners might want to establish a
process for assigning the reviewers to incoming patches based on the author’s background
and reviewer’s current tasks.

In Chapter 4, we applied data mining to a source code repository and an issue tracking
system to investigate the quality of contributions that passed the code review process
and to explore the relationships between the reviewers’ code inspections and a variety of
factors that might affect the quality of such inspections. We showed that 54% of reviewed
patches contained defects that required future bug fixes. We also built statistical models
that captured the effect of different factors on the likelihood of a reviewer missing or
introducing a bug during the inspection of a patch. The findings from this chapter identify
the problem that the stakeholders might even be aware of. To address such a problem, they
can alter the review process to be more vigilant around big patches, ensure that reviewers
are not overloaded with tasks, encourage more discussion, and assign more experienced
reviewers to specific patches.

In Chapter 5, we turned to developers themselves and asked them about their opinion
on the issues we studied in the previous two chapters. We surveyed 88 professional devel-
opers (who were also full-time Mozilla employees) to understand their perception of code
review quality, what factors contribute to how they evaluate submitted code, and what
challenges they face when they perform code review activities. With respect to review
time and patch acceptance, the developers’ responses somewhat aligned with the findings
we obtained in Chapter 3. Surprisingly, developers did not identify “catching bugs” as
the main characteristic of high quality review. In fact, for developers, code review qual-
ity is more about thorough and timely feedback provided by a reviewer with exceptional
knowledge of the codebase.

The studies in the previous chapters were based on open source software systems that
used more traditional model of evaluation of contributions. Nowadays, pull-based software
development model have become popular among many software projects. For our final
study, in Chapter 6, we applied data mining techniques and surveyed the developers of an
industrial software project hosted on GitHub. The data mining showed that pull request
review time and the likelihood of pull request acceptance affected by the similar factors
we found to be influential in Chapter 3. At the same time, the developers we surveyed did
not have strong opinions about the effect of any factor on the acceptance of pull requests.
This might indicate that there are differences between code review processes in OSS and
industrial projects. Surprisingly, the developers identified the same main characteristic of
a well-done pull request review — feedback quality — that was identified by the Mozilla
developers in Chapter 5.
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Overall, the studies presented in this thesis show how we can better understand the
established code review processes through data mining of existing software artifacts as
well as direct communication with the involved developers. With better understanding
of these processes, the stakeholders can specifically target aspects of their review process
that would benefit the project. For instance, OSS projects, such as Mozilla, can modify
the code review process in way that prioritize contributions from outsiders to encourage
them to participate more. Industrial projects, such as Active Merchant, can make the
project requirements to new code more clear so the overall code review process will be
more impartial.

7.1 Code Review Process Recommendations

We now consider how the findings of this dissertation may provide constructive feedback
for developers, reviewers, and managers in the goal of improving code review quality. As we
mentioned in Chapter 1, code review quality can be evaluated in many ways using a variety
of metrics. Naturally, different stakeholders will care about some of those metrics more
than about the others. As such, we structure our recommendations from the perspective
of three major groups — developers, reviewers, and managers.

Recommendations for developers:

• Submit patches that are small and localized: fewer lines of code overall, fewer changed
files, and less fragmentation (“spread”) of a change across the software system. Our
studies showed that size metrics affect many aspects of code review — smaller changes
are reviewed faster and are accepted more often. Additionally, reviewers indicated
that they prefer small and isolated patches. Do not address several different things
in a single patch.

• Provide a clear description and rationale for each patch. Reviewers want to see not
only what is being change but also why it is being changed. In the descriptions that
developers write, reviewers are also looking for the signs that developers thought
about other solutions as well as potential problems with the proposed one.

• Write patches that are simple and easy to understand. Complex code is more difficult
to maintain, and it is easier for bugs to stay unnoticed in such code. Moreover,
reviewers believe that an overly complex patch is a sign that patch writer did poor
job solving a problem.
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• Write tests for new code. Update the existing tests if the proposed change affects
them. Although it might sound redundant, include the results of test execution if
the code review tool used by the project does not perform auto testing.

• Familiarize yourself with the project. Make sure that the changes you write follow
the same style used in the project, do not violate the established architecture and
design, and fit nicely with the existing code base.

• Work with a reviewer as a team. Do not abandon your changes while they are under
the review; respond to the reviewer in a timely manner, and address their concerns.

Recommendations for reviewers:

• Provide clear and detailed feedback. It cannot be stressed enough how important
feedback quality is — it provides the unique opportunity for knowledge transfer be-
tween a reviewer and a developer, it is the only source of information that can help
a developer understand what was done wrong and what can be improved. While de-
tailed feedback is important, do not concentrate only on the little things such as style
or spelling errors. Developers want reviewers to focus on “bigger picture”, highlight
weak points, and suggest a way of fixing them. Provide actionable comments, so it
would be easier for developers to address them.

• Be mindful of how you communicate with developers, especially your tone. Phrase
your feedback constructively; be supportive, patient, and tactful.

• Larger patches require more attention, as we found that they are more likely to have
defects go unnoticed.

• Strive to perform reviews promptly; however, do not allow deadline pressures or
other stress to affect the review quality. Out studies show that reviewers with higher
workloads tend to miss more defects.

Recommendations for managers:

• Ensure that project policies and goals are defined and known to both developers and
reviewers. Developers must know what the requirements are for the changes they
submit (e.g., code style, use of tests, review process steps, etc.). Reviewers will be
able to use those requirements as a baseline in their reviews.
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• If possible, setup the code review process in a way that incoming changes are reviewed
by multiple reviewers. Our findings, as well as finding of other researchers indicate
that the presence of “a second pair of eyes” greatly improves the review quality.

• If your project is open source, check repeatedly that the established review process
is impartial — check that there is no much difference in review time and acceptance
for patches submitted by “core” team and “external” developers.

• Design and implement an explicit process for assigning incoming changes to reviewers.
This process should take into account reviewers’ current workload, their experience
with code reviews, and their familiarity with code that the proposed change affects.

Most of our recommendations are behavioral in nature, and thus they are likely not to
provide immediate results. Instead, they will pay off over time, and in our opinion, should
be viewed as a long-term investment in the quality of the code review process.

7.2 Future Work

Based on the findings presented in this thesis, we identified several possible directions for
future research.

• Understanding the effect of testing on code review quality.
Software testing is undoubtedly an important technique that aims to improve the
quality of software. The majority of software projects use testing, although they
differ in test coverage, test quality, and the policies around writing and maintaining
of the tests. From our surveys with the developers (Chapter 5 and Chapter 6), we
learned that they view tests as an important and integral piece of the code review
process. While a lot of research has been done on the effect of testing and code review
on software quality, there are no studies on the effect of testing on code review quality.
Does testing help reviewers? Do they overly rely on the presence and/or results of
tests in their reviews? Can we decouple testing from the code review process? These
are some questions that might be worth investigating.

• Investigating the bugs caught during the review.
In Chapter 4, we studied the factors that might affect reviewers’ ability to identify
defects during the review. It would be interesting to explicitly study these bugs in
more detail: How numerous are they? Are they demonstrably different from other
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bugs (e.g., criticality, files affected, time to fix once identified)? Our intuition is that
if reviewers are swamped with non-critical defects (e.g., spelling, indentation, etc.),
they might deal with these issues first and after that feel as if they have done a proper
inspection while critical defects are left unnoticed. If this is indeed the case, we need
to study whether identification of such non-critical defects can be automated (for
example, through the use of static analysis tools) so the developers could focus on
more important questions regarding the code in front of them.

• Designing a next-generation code review tool.
Both open source and industrial developers stated that the quality and thoroughness
of the feedback is the main characteristic of a well-done code review. To “make”
developers leave thorough feedback, we need to find ways to motivate them to do
so. This might be achieved through the gamification (the process of adding game
elements to non-game processes) of the code review process. Introducing elements
like votes for patches and reviews, badges, “thank you’s” for the feedback might add
some “healthy competitiveness” to the review process which in turn may increase its
quality.

7.3 Summary of Contributions

Here we highlight the main contributions presented in this thesis:

• We identified three sets of factors — technical, personal, and organizational — that
influence the duration of code review as well as the outcome of that review in two
big OSS projects [15].

• We showed that a large percentage of code changes that successfully passed the review
process still contain defects [71].

• We investigated which aspects contribute to poor code review quality and found that
size of a patch, the number of affected files, the presence of a second reviewer, reviewer
workload and experience, as well as developers participation in the discussion of a
patch are the factors that affect the effectiveness of code review [71].

• We surveyed professional Mozilla developers and found that they believe that factors
such as the experience of developers, the choice of a reviewer, size of a patch, its
quality and rationale affect the time needed for review; while bug severity, code
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quality and its rationale, presence and quality of tests, and developer personality
impact review decisions [70].

• We explored how developers perceive the quality of the code review process, and the
problems developers face during code review and found that developer perception
of code review quality is shaped by their experience and defined as a function of
clear and thorough feedback provided in a timely manner by a peer with a supreme
knowledge of the code base, strong personal and inter-personal qualities [70].

• We investigated the factors that affect the timeliness and outcome of pull request
reviews and found that a pull request size, the discussion, as well as author experience
and affiliation influence both review time and review decision [72].

• We explored how developers perceive pull request quality and found that their per-
ception is defined by pull request description, complexity, and revertability. Pull
request review quality is seen as a function of constructive feedback, quality of tests,
and generated discussion between author and reviewer [72].

Overall, our work presents an in-depth analysis of code review quality in a variety
of settings — open source software and industrial projects, traditional and pull-based
distributed development models. We observed similar patterns in the execution of code
review that the stakeholder should be aware of to maintain the long-term health of the
projects. Our findings are based on the evidence found in the studied software systems as
well as on the communication with the developers and reviewers involved in those systems.
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Appendix A

Survey of Mozilla Developers

1. How would you describe your role on the project(s)?

� Software Developer/Engineer

� Project Manager/Lead

� QA/Testing Engineer

� Other:

2. How many years of experience do you have in software development?

# < 1

# 1 to 2

# 3 to 6

# 7 to 10

# 10+

3. You work for:

# Mozilla

# Other:

4. How are you involved in code review?
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� Writing patches

� Reviewing patches

� Discussing patches/bugs

� Other:

5. On average, how many patches do you submit for a review every week?

# < 5

# 6 to 10

# 11 to 20

# 21+

# I do not submit

6. How long have you been reviewing patches?

# less than 6 months

# 6 to 12 months

# 1 to 2 years

# 3 to 4 years

# 5+ years

# I do not review

7. On average, how many patches do you review every week?

# < 5

# 6 to 10

# 11 to 20

# 21+

# I do not review

8. In what environment do you typically conduct code review?

# Issue tracking (e.g., Bugzilla)
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# Copy a patch locally into editor/IDE

# Other:

9. Where do you discuss patches?

� Issue tracking

� Email

� IRC

� Skype/Hangouts

� Face-to-face discussions

� Other:

10. The following factors influence code review DECISIONS (i.e., whether you accept or
reject the patch itself after having reviewed it):

Strongly
disagree

Disagree
Neither

agree nor
disagree

Agree
Strongly

agree

Patch size (LOC) # # # # #

Code chunks # # # # #

Number of modified files # # # # #

Module # # # # #

Priority of a bug # # # # #

Severity of a bug # # # # #

Number of previous
patches (resubmits)

# # # # #

Review queue (aka load) # # # # #

Reviewer experience # # # # #

Patch writer experience # # # # #

Number of people involved
in the discussion of a patch

# # # # #

The length of the
discussion of a patch

# # # # #

147



11. In your opinion, what other factors affect code review DECISIONS?

12. The following factors influence code review TIME (duration):

Strongly
disagree

Disagree
Neither

agree nor
disagree

Agree
Strongly

agree

Patch size (LOC) # # # # #

Code chunks # # # # #

Number of modified files # # # # #

Module # # # # #

Priority of a bug # # # # #

Severity of a bug # # # # #

Number of previous
patches (resubmits)

# # # # #

Review queue (aka load) # # # # #

Reviewer experience # # # # #

Patch writer experience # # # # #

Number of people involved
in the discussion of a patch

# # # # #

The length of the
discussion of a patch

# # # # #

13. In your opinion, what other factors affect code review TIME?

14. How do you assess the quality of a patch?
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15. In your opinion, what characteristics do contribute to a well-done code review?

16. The following factors influence code review QUALITY (e.g., the likelihood of detect-
ing problems with a patch):

Strongly
disagree

Disagree
Neither

agree nor
disagree

Agree
Strongly

agree

Patch size (LOC) # # # # #

Code chunks # # # # #

Number of modified files # # # # #

Module # # # # #

Priority of a bug # # # # #

Severity of a bug # # # # #

Number of previous
patches (resubmits)

# # # # #

Review queue (aka load) # # # # #

Reviewer experience # # # # #

Patch writer experience # # # # #

Number of people involved
in the discussion of a patch

# # # # #

The length of the
discussion of a patch

# # # # #

Review response time # # # # #

17. In your opinion, what other factors affect code review QUALITY?
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18. What is your biggest challenge in performing code review tasks?

19. What tools would you like to have to assist you with code review activities?
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Appendix B

Survey of Shopify Developers

1. How would you describe your role on the project(s)?

� Software Developer/Engineer

� Project Manager/Lead

� QA/Testing Engineer

� Other:

2. How many years of experience do you have in software development?

# < 1

# 1 to 2

# 3 to 6

# 7 to 10

# 10+

3. On average, how many pull requests do you submit every week?

# 1 to 2 pull requests

# 3 to 4 pull requests

# 5 to 10 pull requests

# 10 to 20 pull requests
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# 20+ pull requests

# I do not submit

4. On average, how many pull requests do you review every week?

# 1 to 2 pull requests

# 3 to 4 pull requests

# 5 to 10 pull requests

# 10 to 20 pull requests

# 20+ pull requests

# I do not review

5. How long have you been involved in pull request reviews?

# less than 6 months

# 6 to 12 months

# 1 to 2 years

# 3 to 4 years

# 5+ years

# I do not review

6. As a developer, what types of merges do you do?

� GitHub merge (using GitHub UI)

� Cherrypick merge (e.g., git cherrypick)

� Squash merge

� Other:

7. What type of merge do you use most often?

# GitHub merge (using GitHub UI)

# Cherrypick merge (e.g., git cherrypick)

# Squash merge
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# Other:

8. Where do you discuss pull requests?

� GitHub

� Email

� VoIP/online chat (e.g., Skype, Hangout)

� Face to face discussions

� Other:

9. Please, briefly explain the steps you typically follow when you are asked to review a
pull request.

10. In your opinion, which of the following factors affect TIME of pull request review?

Strongly
disagree

Disagree Agree
Strongly

agree

Pull request size (LOC) # # # #

Pull request size (# of commits) # # # #

File count # # # #

Pull request author experience # # # #

Pull request reviewer experience # # # #

Length of the discussion # # # #

Number of people involved in the
discussion

# # # #

Reviewer work load # # # #

Affiliation of a pull request author
(e.g., Shopify dev, Spreedly dev,
etc.)

# # # #
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11. In your opinion, what are the other factors that may influence TIME for pull request
review?

12. Which of the following factors do you think affect pull request review DECISIONS
(i.e., whether you merge/not merge the pull request)?

Strongly
disagree

Disagree Agree
Strongly

agree

Pull request size (LOC) # # # #

Pull request size (# of commits) # # # #

File count # # # #

Pull request author experience # # # #

Pull request reviewer experience # # # #

Length of the discussion # # # #

Number of people involved in the
discussion

# # # #

Reviewer work load # # # #

Affiliation of a pull request author
(e.g., Shopify dev, Spreedly dev,
etc.)

# # # #

13. In your opinion, what are the other factors that may influence DECISION of pull
request review?

14. Which of the following factors do you think affect the QUALITY of pull request
review (based on your definition of quality)?
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Strongly
disagree

Disagree Agree
Strongly

agree

Pull request size (LOC) # # # #

Pull request size (# of commits) # # # #

File count # # # #

Pull request author experience # # # #

Pull request reviewer experience # # # #

Length of the discussion # # # #

Number of people involved in the
discussion

# # # #

Reviewer work load # # # #

Affiliation of a pull request author
(e.g., Shopify dev, Spreedly dev,
etc.)

# # # #

Reviewer time # # # #

15. How do you evaluate the quality of a pull request?

16. How would you define a “pull request review of high quality”? And what factors do
you think affect review quality?
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