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Abstract

This thesis puts forward the conjecture that for n > 3k with k > 2, the

generalized Petersen graph, GP (n, k) is Hamilton-laceable if n is even and k

is odd, and it is Hamilton-connected otherwise. We take the first step in the

proof of this conjecture by proving the case n = 3k + 1 and k ≥ 1. We do

this mainly by means of an induction which takes us from GP (3k + 1, k) to

GP (3(k+2)+1, k+2). The induction takes the form of mapping a Hamilton

path in the smaller graph piecewise to the larger graph and then inserting

subpaths we call rotors to obtain a Hamilton path in the larger graph.
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Chapter 1

Introduction

Why are Hamiltonian properties of generalized Petersen graphs important?

Lovász [3] has conjectured that all Cayley graphs are Hamiltonian. Re-

cently, Yusheng Qin [6] proved that certain classes of Cayley graphs are

Hamiltonian by using a subset of generators of the Cayley graph to induce

certain isomorphic generalized Petersen Graphs. The proof subsequently

pieces together Hamilton paths in each copy of the generalized Petersen

graphs to create a Hamilton cycle in the original Cayley graph. For this

proof, it was helpful to know that the generalized Petersen graph obtained

was Hamilton-connected, so that one would not have to delve into the details

of how Hamilton paths arise in these subgraphs.

Alspach [1] determined precisely which generalized Petersen graphs are

Hamiltonian. It is natural to ask which are Hamilton-connected. It is the

purpose of this thesis to analyze a partial result along these lines and to

suggest a method for extending the partial result. Before we do that, we will

need some definitions.
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For positive integers n and k, the generalized Petersen graph GP (n, k)

(introduced by Watkins [7]) has vertex set {i|i ∈ Zn}∪ {i′|i ∈ Zn} and three

types of edges:

Spoke Edges: 〈i, i′〉.

Rim Edges: 〈i, i + 1〉.

Hub Edges: 〈i′, (i + k)′〉.

For i ∈ Zn, i is a rim vertex while i′ is the adjacent hub vertex. All arithmetic

is modulo n (in Zn.)

If 2k �≡ 0 (mod n), then GP (n, k) is cubic. The Petersen graph is

GP (5, 2).

Now we introduce some basic isomorphisms of the generalized Petersen

graphs for later reference. Let T : Zn → Zn be the translation function

defined by T (i) = i + 1. Extended in the obvious way to the vertices and

edges of the generalized Petersen graph GP (n, k), T is an automorphism of

GP (n, k). Similarly, let R : Zn → Zn be the reflection defined by R(i) =

n − i. As with T , R extends to an automorphism of GP (n, k) and gives

an isomorphism between GP (n, k) and GP (n, n − k). Thus we may assume

k ≤
⌊

n
2

⌋
.

Let k−1 be the multiplicative inverse of k (mod n), if it exists. For

i ∈ Zn, let j = ik−1. Then j + 1 = (i + k)k−1 and (i + 1)k−1 = j + k−1.

Thus, F : Zn → Zn defined by F (i) = ik−1 takes the rim edge 〈i, i + 1〉
of GP (n, k) to the hub edge 〈j, j + k−1〉 of GP (n, k−1) and the hub edge

〈i, i + k〉 of GP (n, k) to the rim edge 〈j, j + 1〉 of GP (n, k−1). Hence, F is

an isomorphism between GP (n, k) and GP (n, k−1).
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1.1 Hamilton Paths

A u–v Hamilton path is a path which contains all the vertices of the graph

and has u and v as ends. We will say that the Hamilton path joins u and v.

A graph is Hamilton-connected if it has a u-v Hamilton path for all pairs

of vertices u and v. Similarly a bipartite graph is Hamilton-laceable if it has

a u-v Hamilton path for all pairs of vertices u and v, where u belongs to one

set of the bipartition, and v to the other.

Now GP (n, k) is bipartite precisely when n is even and k is odd.

We make the following conjecture:

Conjecture 1 For n > 3k and k > 2:

1. When n is even and k is odd, GP (n, k) is Hamilton-laceable.

2. For all other combinations of parities for n and k, GP (n, k) is Hamilton-

connected.

Some examples demonstrate why we believe this to be true:

• GP (10, 3) is Hamilton-laceable and GP (13, 4) is Hamilton-connected.

• GP (11, 3) and GP (14, 4) are Hamilton-connected.

• In GP (8, 2) there is no Hamilton path from 0′ to 4′, but GP (12, 3) is

Hamilton-laceable and GP (16, 4) is Hamilton-connected.

• In GP (6, 3) there is no Hamilton path from 0′ to 1′, and in GP (12, 4)

there is no path from 0 to 2, but GP (12, 3) is Hamilton-laceable and

GP (16, 4) is Hamilton-connected.
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This conjecture naturally raise the question: what about n = 3k? Well,

GP (3, 1), GP (9, 3) and GP (15, 5) are Hamilton-connected, but GP (6, 2) and

GP (12, 4) are not. Specifically, GP (6, 2) is missing a 0–2 and a 0–4 Hamilton

path, and GP (12, 4) is missing a 0–2, 0-4, 0–6, 0-8 and a 0-10 Hamilton path.

In this thesis, we prove the conjecture when n = 3k + 1.

The existence of the translation automorphism T of GP (n, k) implies

that, for a given w ∈ Zn, a u–v Hamilton path for one pair of rim vertices

{u, v} satisfying v − u = w yields a Hamilton path having any other pair

of rim vertices as endpoints whenever that pair’s labels differ by the same

amount w. For this reason, we define the spread δ(u, v) of the rim vertices

u, v ∈ Zn as v − u (mod n). We similarly define the spread for other pairs

of vertices as: δ(u, v′) = δ(u′, v′) = v − u. We are now able to say that the

spread of a path is the spread of its ends.

Also, applying the reflection automorphism R we determine that it is

enough to find one u–v Hamilton path for each value of δ(u, v) ranging from

1 to �n/2� to show that such paths exist for all pairs of rim vertices. A similar

argument applies to the bipartite case, when only odd values of δ(u, v) need

to be considered.

Similarly, only �n/2� pairs of vertices among hub vertex pairs and an-

other �n/2�+1 of rim-hub vertex pairs need to be considered to demonstrate

Hamilton-connectedness. For a bipartite graph GP (n, k) we need only con-

sider even values (including 0) up to the same upper limit of the spread for

rim-hub pairs and odd values in the same range for hub-hub pairs to show

that the graph is Hamilton-connected.

Chapter 2 introduces rotors. We use these rotors to prove that if k is even,
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then every pair of rim vertices in GP (3k+1, k) are joined by a Hamilton path

and any rim vertex and any hub are joined by a Hamilton path. Chapter 3

introduces two new rotors to deal with the hub to hub Hamilton paths.

Finally, in Chapter 4, we show that, when k is odd, GP (3k+1, k) is Hamilton-

laceable.
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Chapter 2

Rotors

In this chapter we prepare the groundwork for the proof of Conjecture 1 in

the case n = 3k+1 and prove that if k is even, then, for every pair of vertices

in GP (3k + 1, k) at least one of which is a rim vertex, there is a Hamilton

path joining the pair. The proof is by induction on k. The inductive step

consists of an operation which we call inserting a rotor.

First we stipulate some preconditions necessary for the insertion of a

rotor. We observe that these preconditions are identical for the two different

rotors. Next, we show that the preconditions for the insertion of either

rotor are preserved. That is to say, that we can then again insert either

rotor. Insertion of a rotor provides the inductive step which takes us from a

Hamilton path in GP (3k+1, k) to a Hamilton path in GP (3(k+2)+1, k+2).

In order to reach all paths we will add the operation of reflection.
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2.1 Alternative Point of View

In the introduction, we observed that:

GP (n, n − k) ∼= GP (n, k) ∼= GP (n, k−1),

where kk−1 ≡ 1 (mod n). Now, k−1 ≡ −3 (mod 3k + 1). Thus, multiply-

ing the number part of each label by −3, interchanging rim and hub vertices,

and applying the reflection isomorphism, we obtain:

GP (3k + 1, k) ∼= GP (3k + 1,−3) ∼= GP (3k + 1, 3).

The following theorem has been proved by Liu [2] in his thesis:

Theorem 2 1. GP (n, 3) is Hamilton-connected if and only if n is odd

and n �= 5.

2. GP (n, 3) is Hamilton-laceable if and only if n is even and n �= 6.

Thus our problem has been solved. However, we feel that our way of solving

the problem introduces a new method, which is worthwhile for its own sake.

In particular, we are using an induction which changes n and k simultane-

ously. We believe that has not been done previously.

2.2 Inserting Rotors

Here we formally introduce the notion of inserting a rotor. In this chapter,

two rotors will be introduced, which we call an A-rotor and a B-rotor. First

we present the A-rotor, but before we do that we need some notation:
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Definition 3 For a, b ∈ Zn, the interval [a, b] is the set of vertices {a, a +

1, a + 2, . . . , b − 2, b − 1, b} ∪ {a′, (a + 1)′, (a + 2)′, . . . , (b − 2)′, (b − 1)′, b′} of

GP (n, k). A hub edge 〈u′, (u+k)′〉 crosses an interval [a, b] if a, b ∈ [u, u+k].

Similarly, a rim edge 〈u, u + 1〉 crosses the interval [u, u + 1].

Now we state what it means for a Hamilton path to be rotor-ready.

Definition 4 A Hamilton path P in GP (3k + 1, k) is rotor-ready at i if the

following conditions hold:

(a) P includes the edge 〈i, i′〉;

(b) P does not include any of

〈i, i + 1〉, 〈i′, (i − k)′〉, 〈i + k, i + k + 1〉, and 〈i − k, i − k − 1〉; and

(c) i − k is an end vertex of P .

Consider the following injective function fi,k:

Definition 5 For i ∈ Z3k+1:

fi,k : Z3k+1 → Z3(k+2)+1 is defined by:

v �→ v, for v ∈ [i − k, i];

v �→ v + 2, for v ∈ [i + 1, i + k];

v �→ v + 4, for v ∈ [i + k + 1, i − k − 1].

The domain of fi,k is extended to the vertices and edges of GP (3k + 1, k)

by: for u ∈ Z3k+1, fi,k(u
′) = (fi,k(u))′, and, for u, v ∈ V (GP (3k + 1, k)),

fi,k(〈u, v〉) = 〈fi,k(u), fi,k(v)〉. The intervals [i, i + 1], [i + k, i + k + 1], and

[i − k − 1, i − k] are gaps of fi,k.
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Since i and k will usually be fixed, we will sometimes write f for fi,k.

Notice that the numbers of rim vertices in the three intervals of the domain

of fi,k are k + 1, k, and k, respectively.

First, we prove the following elementary fact.

Lemma 6 Let k be a positive integer, and let i ∈ Z3k+1. Let fi,k be as in

Definition 5.

(a) If j ∈ Z3k+1, and j /∈ {i, i + k, i − k − 1} then fi,k(〈j, j + 1〉) is an edge

of GP (3(k + 2) + 1, k + 2).

(b) If j ∈ Z3k+1, then fi,k(〈j, j′〉) is an edge of GP (3(k + 2) + 1, k + 2).

(c) If j ∈ Z3k+1, and j �= i−k, then fi,k(〈j′, (j +k)′〉) is an edge of GP (3(k+

2) + 1, k + 2).

Proof: Let H = GP (3(k+2)+1, k+2) and let I1 = [i−k, i], I2 = [i+1, i+k],

and I3 = [i + k + 1, i − k − 1]. Fix r ∈ {1, 2, 3} and let j ∈ Ir.

(a) Since j /∈ {i, i + k, i − k − 1}, we have j + 1 ∈ Ir. So, if fi,k(j) = t, then

fi,k(j + 1) = t + 1. Therefore fi,k(〈j, j + 1〉) is a rim edge of H.

(b) This is obviously so.

(c) Now j �= i − k and j ∈ Ir for some r ∈ {1, 2, 3} imply that j + k ∈ Is

with s ≡ r + 1 (mod 3). Let f(j′) = s′ and let f((j + k)′) = t′. If r = 1 or

r = 2, then t = s + k + 2, so 〈s′, t′〉 is an edge of GP (3(k + 2) + 1, k + 2),

as required. If r = 3, then s = j + 4 and t ≡ j + k (mod 3k + 1). That is,

t = j +k− (3k +1) = j−2k−1. Since s+k +2 ≡ j +4+k +2 ≡ j +k +6 ≡
j + k + 6 − (3(k + 2) + 1) ≡ j − 2k − 1 (mod 3(k + 2) + 1), we see that

t ≡ s+k+2 (mod 3(k+2)+1), and again 〈s′, t′〉 is in GP (3(k+2)+1, k+2)

as required.

This leads us to the following:
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Proposition 7 If the Hamilton path P is rotor-ready at i, then fi,k(P ) is a

path of length 3k in GP (3(k + 2) + 1, k + 2).

Proof: Let H = GP (3(k + 2) + 1, k + 2). Lemma 6 above shows that

〈u, v〉 ∈ E(P ) =⇒ 〈f(u), f(v)〉 ∈ E(H).

Observe that fi,k is a one-to-one function in each of the intervals, and the

intervals are disjoint, as are their images. Extended, it is a one-to-one func-

tion on the vertices and edges of GP (3k + 1, k). In particular, if a vertex of

P has degree one in the subgraph P of GP (3k +1, k), then it has degree one

in the subgraph f(P ) of GP (3(k +2)+1, k +2). A similar statement applies

if the vertex has degree two in P . Thus f(P ) has two vertices of degree one

and 3k − 1 vertices of degree two, just like P . Since it has the same number

of edges as P , we conclude that it must be a path of the same length as P ,

namely 3k.

2.2.1 Rotor A

We are now ready to introduce our first rotor.

Definition 8 An A(i, k + 2)-rotor is the path

i, i + 1, i + 2, (i + 2)′, (i + 2 + k + 2)′, i + 2 + k + 2, i + 2 + k + 1,

(i + 2 + k + 1)′, (i + 1)′, (i − k − 1)′, i − k − 1, i − k − 2, (i − k − 2)′, i′.

We will often just say A to indicate the A(i, k + 2)-rotor when the values of

i and k are clear from the context. This definition leads immediately to the

following:
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Proposition 9 The union (fi,k(P )− 〈i, i′〉)∪A(i, k + 2) is a Hamilton path

in H whose ends are the ends of fi,k(P ).

Proof: Let Q = (fi,k(P ) − 〈i, i′〉) ∪ A(i, k + 2). Note that V (A(i, k + 2)) ∩
V (fi,k(P )) = {i, i′} and E(A(i, k + 2)) ∩ E(fi,k(P )) = ∅. Since fi,k(P ) is a

path containing the edge 〈i, i′〉, fi,k − 〈i, i′〉 is the union of two paths, one

having i = fi,k(i) as an end and the other having i′ = fi,k(i
′) as an end. Thus

Q is a path. Since |V (Q)| = |V (fi,k(P ))| + 12, |V (Q)| = |V (H)|, so Q is a

Hamilton path in H whose ends are the ends of fi,k(P ).

Next we show that we can repeat the process of inserting rotor A.

Proposition 10 If P is rotor-ready at i, then the path obtained from P by

the insertion of rotor A(i, k + 2) is rotor-ready at i + 2.

Proof: Let Q be the path obtained from P by the insertion of the rotor

A(i, k + 2). We prove this for each of the excluded edges first.

1. 〈i + 2, i + 3〉 /∈ E(Q):

〈i + 1, i + 2〉 ∈ E(A)

〈i + 2, (i + 2)′〉 ∈ E(A)


 imply 〈i + 2, i + 3〉 /∈ E(Q)

2. 〈(i + 2)′, (i − k)′〉 /∈ E(Q):

〈i + 2, (i + 2)′〉 ∈ E(A)

〈(i + 2)′, (i + 2 + k + 2)′〉 ∈ E(A)


 imply 〈(i + 2)′, (i− k)′〉 /∈ E(Q).

3. 〈i + 2 + k + 2, i + 2 + k + 3〉 /∈ E(Q):

〈i + k + 4, i + k + 3〉 ∈ E(A)

〈i + k + 4, (i + k + 4)′〉 ∈ E(A)


 imply 〈i+k +4, i+k +5〉 /∈ E(Q).
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4. 〈i − k, i − k − 1〉 /∈ E(Q):

〈(i − k − 1)′, i − k − 1〉 ∈ E(A)

〈i − k − 1, i − k − 2〉 ∈ E(A)


 imply 〈i − k, i − k − 1〉 /∈ E(Q).

Finally, 〈i+ 2, (i+ 2)′〉 ∈ E(A), and i− k is an end of Q since i− k is an end

of P and fi,k(i − k) = i − k.

Now we have all the facts we need about rotor A.

2.2.2 Rotor B

Here we introduce our second rotor.

Definition 11 A B(i, k + 2)-rotor in GP (3(k + 2) + 1, k + 2) is the path

i − k, i − k − 1, (i − k − 1)′, (i + 1)′, i + 1, i + 2, (i + 2)′, (i + 2 + k + 2)′,

i + 2 + k + 2, i + 1 + k + 2, (i + k + 3)′, (i − k − 2)′, i − k − 2.

When the values of i and k are clear from the context, we will simply write

rotor B. This definition, similar to the case of the A(i, k + 2)-rotor leads

immediately to the following:

Proposition 12 The union B∪fi,k(P ) is a Hamilton path in GP (3(k+2)+

1, k + 2) having ends i − k − 2 and the end of fi,k(P ) other than i − k.

Proof: Let H = GP (3(k +2)+1, k +2) and let fi,k = f . Let S = B ∪ f(P ).

Firstly, V (B) ∩ f(V (P )) = {i − k}. Secondly, the edge of B incident with

the vertex i− k does not duplicate any edge of f(P ) since 〈i− k, i− k− 1〉 is

an edge of B but [i−k, i−k− 1] is a gap of f and thus 〈i−k, i−k− 1〉 does

not lie in the domain of f or the image, f(P ) in H. Furthermore B has 12
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edges, and S is therefore a Hamilton path in H since |E(S)| = |E(P )|+12 =

|V (G)| − 1 + 12 = |V (H)| − 1.

Next, we show that we may again insert either rotor in the path S in H.

Proposition 13 The path S in GP (3(k + 2) + 1, k + 2), obtained from the

path P in G = GP (3k + 1, k) by inserting a B(i, k + 2)-rotor, is rotor-ready

at i.

Proof: Let H = GP (3(k + 2) + 1, k + 2) First of all, the end i − k of P

becomes the end i − k − 2 of S. Secondly, f(〈i, i′〉) = 〈i, i′〉 since this edge

lies in I1. Thirdly, the forbidden edges come about as follows:

1. 〈i, i + 1〉 /∈ E(S):

〈i + 1, (i + 1)′〉 ∈ E(B)

〈i + 1, i + 2〉 ∈ E(B)


 imply 〈i, i + 1〉 /∈ E(S).

2. 〈i′, (i − k − 2)′〉 /∈ E(S):

〈(i + k + 3)′, (i − k − 2)′〉 ∈ E(B)

〈(i − k − 2)′, i − k − 2〉 ∈ E(B)


 imply 〈i′, (i − k − 2)′〉 /∈ E(S).

3. 〈i + k + 2, i + k + 3〉 /∈ E(S):

〈i + k + 4, i + k + 3〉 ∈ E(B)

〈i + k + 3, (i + k + 3)′〉 ∈ E(B)


 imply 〈i+k +2, i+k +3〉 /∈ E(S).

4. 〈i − k − 2, i − k − 3〉 /∈ E(S).

i − k − 2 is an end of S,

〈i − k − 2, (i − k − 2)′〉 ∈ E(B)


 imply 〈i−k−2, i−k−3〉 /∈ E(S).
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Figure 2.1: A path in GP (7, 2) that is rotor-ready at i = 2.

This concludes the proof of Proposition 13.

Now we know everything we need to about the B-rotor.

We illustrate the process of inserting rotors into a Hamilton path in Fig-

ures 2.1, 2.2, 2.3, and 2.4.

2.3 The Inductive Step

In Section 1.1, it was observed that we need only find Hamilton paths for

�n/2� pairs of rim vertices to show that such paths exist for all pairs of rim

vertices. What does this mean in terms of GP (3k + 1, k) for even k? Once

again, let u and v be end vertices of the path. Then we need only consider

the following range for v − u:
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Figure 2.2: Inserting an A-rotor into the path of Figure 2.1.

Figure 2.3: Inserting a B-rotor into the path of Figure 2.1.
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Figure 2.4: Inserting both rotors into the path of Figure 2.1.

1 ≤ v − u ≤
⌊
n

2

⌋
=

⌊
3k + 1

2

⌋
=

3k

2
.

The last equality holds since k is even.

For each value of v − u between 1 and
⌊

n
2

⌋
, we will show the existence of

a u–v Hamilton path for one pair u, v ∈ Zn. As already mentioned, this will

suffice to prove the existence of a u–v Hamilton path for all pairs u, v ∈ Zn.

Recall that the quantity δ(u, v) = v − u is the spread of the pair u, v.

Similarly, later in this work, we show the existence of u–v′ and u′–v′

Hamilton paths for nearly the same range of the spread. This will then

prove that GP (3k + 1, k) is Hamilton-connected for all k ≥ 2.

We start with u–v paths.

Let G = GP (3k+1, k) and H = GP (3(k+2)+1, k+2) As the domain of
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f = fi,k, V (G) is split into three intervals. For the inductive step, we apply

f before inserting a rotor. For the first part of this proof, we will show that a

vertex of V (G) is mapped to an equivalent vertex of V (H). By an equivalent

vertex we mean a vertex where the action of f is identical in the next step.

We defined the action of f on its three intervals in Definition (5). How-

ever, this is not enough. We have yet to identify i, u, and v for the next

inductive step. These may not correspond exactly to their images under f ,

depending upon which rotor we choose to insert.

For the A rotor, we replace i by i+2 for the next inductive step. We will

denote the replacement of vertices by their equivalents for the next inductive

step as the action of a function, A, in the case of the A rotor, or B, in the

case of the B rotor. Thus A maps intervals in V (G) to equivalent intervals

in V (H) as follows:

A : [i − k, i] �→ [i − k, i + 2]

[i + 1, i + k] �→ [i + 3, i + k + 4]

[i + k + 1, i − k − 1] �→ [i + k + 5, i − k − 1]

Comparing these to the actions of f on the same intervals of V (G), we see

that the equivalent intervals under A in V (H) contain the images of the same

intervals in V (G) under the action of f . So we see that f maps a vertex in

a specified interval of its domain to a vertex in an equivalent interval in its

co-domain.

Furthermore A acts as follows on i, u, and v:

A : i �→ i + 2

u �→ f(u)

v �→ f(v)

17



So that these three are mapped to equivalent vertices. Specifically, i is the

right end of the interval [i − k, i] and A(i) = i + 2 is the right end of the

equivalent interval A([i − k, i]) = [i − k, i + 2].

The above shows that the ends of the path, u and v, are mapped via

A into an equivalent interval no matter how often A is applied. Thus the

spread of the path is changed by the same amount each time that an A-rotor

is inserted. More specifically, the change in spread of the ends of the path

is completely determined by the initial intervals of f the ends of the original

path fall in. As a matter of fact, if v ∈ Ir, then A changes the spread by

2(r − 1).

For the B-rotor, intervals are mapped as follows:

B : [i − k, i] �→ [i − (k + 2), i];

[i + 1, i + k] �→ [i + 1, i + (k + 2)];

[i + k + 1, i − k − 1] �→ [i + (k + 2) + 1, i − (k + 2) − 1].

One end of the original Hamilton path in GP (3k + 1, k), u = i − k, and

B : i �→ i;

u �→ u − 2;

v �→ f(v).

So we see that, as was the case for A, the three vertices are mapped into

equivalent vertices.

As with the A-rotor, the initial intervals of f the ends of the original path

occupy are all that is needed to completely determine the effect of inserting

a B-rotor on the spread of the ends of the path. In this case, if v ∈ Ir then

B changes the spread by 2r.
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Besides inserting rotors, we also include the operation of reflection in two

different ways.

In the introduction, we defined the reflection R(u) = n− u in Zn. Define

R analogously for hub vertices and for edges. This changes the spread v − u

of the u–v path as follows:

R(v) − R(u) ≡ (n − v) − (n − u) ≡ −(v − u) ≡ n − (v − u) (mod n).

Now we determine what R does to forbidden edges. We let n − i = j.

R : 〈i, i + 1〉 �→ 〈j − 1, j〉
〈(i − k)′, i′〉 �→ 〈j′, (j + k)′〉
〈i + k, i + k + 1〉 �→ 〈j − k − 1, j − k〉
〈i − k − 1, i − k〉 �→ 〈j + k, j + k + 1〉

The action of R on the intervals is as follows:

R : [i − k, i] �→ [j, j + k]

[i + 1, i + k] �→ [j − k, j − 1]

[i + k + 1, i − k − 1] �→ [j + k + 1, j − k − 1]

In general, we will refer to an interval Ir of f , and its reflected counterpart,

R(Ir), generically as Ir.

How does R affect the action of f? After reflecting with R, the graph is

identical if we count the labels in reverse order. But we wish to maintain the

same labelling of the graph, only to reflect the paths. Thus we first reflect,

then apply f , then reflect back (R is idempotent). Thus, f becomes R◦f ◦R,

with an added twist. The function f takes us from its domain to its co-

domain, where n has increased by 6. Namely, R◦f◦R(w) = (n+6)−f(n−w).
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We list here the original and reflected action of f on the three intervals:

f R ◦ f ◦ R

I1 : w �→ w w �→ w + 6

I2 : w �→ w + 2 w �→ w + 4

I3 : w �→ w + 4 w �→ w + 2

R(B) is inserted in the opposite sense to B. Thus R◦B : u �→ R◦f ◦R(u)+2.

The reflected end is u = j + k.

The spread is also affected by R. The change in the spread is now replaced

by six minus the change in spread for the unreflected case. Thus, if v ∈ Ir

then R ◦ A changes the spread by 2(4 − r) and R ◦ B changes the spread by

2(3 − r).

2.4 Rim to Rim Paths

In this section, we construct Hamilton paths for all rim-rim pairs in GP (3k+

1, k) for even k. We split our constructions into several cases depending upon

the spread δ. We start the construction with given paths in GP (7, 2) and

construct paths from these for GP (3k + 1, k) with even k greater than 2.

We start with a Hamilton path in GP (7, 2) and no rotors. The addition

of a rotor inctreases k by 2. Thus, letting a denote the number of A-rotors

inserted, and letting b denote the number of B-rotors inserted, the total

numbers of rotors inserted is a + b = k−2
2

= k
2
− 1.

Case 1: δ is odd, and 1 ≤ δ ≤ k − 1. This case was precisely illustrated in

Figures 2.1, 2.2, 2.3, and 2.4. In GP (7, 2), P1 is the following 0–1 Hamilton
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path:

0, 0′, 5′, 5, 6, 6′, 1′, 3′, 3, 4, 4′, 2′, 2, 1.

The initial insertion point for rotors is i = 2. The forbidden edges can easily

be verified:

〈i, i + 1〉 = 〈2, 3〉 /∈ E(P1);

〈(i − k)′, i′〉 = 〈0′, 2′〉 /∈ E(P1);

〈i + k, i + k + 1〉 = 〈4, 5〉 /∈ E(P1);

〈i − k − 1, i − k〉 = 〈6, 0〉 /∈ E(P1).

Furthermore, u = i−k = 0 is an end of P1. Then v = 1. Since u, v ∈ [0, 2] =

[i − k, i], f(u) = u and f(v) = v.

Now the rotors act as follows:

A : u �→ f(u) = u, v �→ f(v) = v, δ(A(u),A(v)) = δ(u, v);

B : u �→ u − 2, v �→ f(v) = v, δ(B(u),B(v)) = δ(u, v) + 2.

Setting b = δ−1
2

and a = k
2
− 1− b, after inserting a A-rotors and b B-rotors,

we get a Hamilton path with spread δ in GP (3k + 1, k).

Case 2: δ is even and 2 ≤ δ ≤ k. Let P2 be the following 0–2 Hamilton

path in GP (7, 2):

0, 0′, 2′, 4′, 4, 3, 3′, 5′, 5, 6, 6′, 1′, 1, 2.

Reflected rotors will initially be inserted at j = 5. Only reflected rotors will

be inserted. The forbidden edges are:

〈j − 1, j〉 = 〈4, 5〉 /∈ E(P2);

〈j′, (j + k)′〉 = 〈5′, 0′〉 /∈ E(P2);
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〈j − k − 1, j − k〉 = 〈2, 3〉 /∈ E(P2);

〈j + k, j + k + 1〉 = 〈0, 1〉 /∈ E(P2).

Furthermore u = j + k = 0 is an end of P2, and v = 2 is the other end. Also,

u ∈ [5, 0] = I1 and v ∈ [1, 2] = I3. The action of the reflected rotors on the

ends of the path are as below:

R ◦ A : u �→ u + 6, v �→ v + 2, δ(R ◦ A(u), R ◦ A(v)) = δ(u, v) + 2;

R ◦ B : u �→ u + 6 + 2, v �→ v + 2, δ(R ◦ B(u), R ◦ B(v)) = δ(u, v).

Setting a = δ
2
− 1, and b = k

2
− 1 − a, after inserting a R(A) and b R(B)

rotors we obtain a Hamilton path with spread δ in GP (3k + 1, k).

Case 3: δ is an integer with k + 1 ≤ δ ≤ 3k/2. Let P3 be the following 0–3

Hamilton path in GP (7, 2):

0, 0′, 2′, 2, 1, 1′, 3′, 5′, 5, 6, 6′, 4′, 4, 3.

The point of insertion is j = 5 and we use reflected rotors only. The forbidden

edges are thus the same as for P2 and may easily be checked. The ends of P3

are u = j + k = 0 and v = 3. Once again u ∈ [5, 0] = I1, but v ∈ [3, 4] = I2.

The action of the reflected rotors on the ends of P3 is as follows:

R ◦ A : u �→ u + 6, v �→ v + 4, δ(R ◦ A(u), R ◦ A(v)) = δ(u, v) + 4;

R ◦ B : u �→ u + 6 + 2, v �→ v + 4, δ(R ◦ B(u), R ◦ B(v)) = δ(u, v) + 2.

After inserting a R(A) rotors and b R(B) rotors, the spread, δ = 3+2b+4a =

−1 + 2(k − b), the latter since a + b = k
2
− 1.

Sub-case 3(i): δ is odd. Setting b = k − δ+1
2

and a = k
2
− 1 − b, after

inserting a R(A)-rotors and b R(B)-rotors we obtain a Hamilton path with

spread δ in GP (3k + 1, k).
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Sub-case 3(ii): δ is even. Setting b = δ−k
2

− 1, and a = k
2
− 1 − b, after

inserting a R(A)-rotors and b R(B)-rotors and reflecting the path so obtained

we get a Hamilton path with spread δ in GP (3k + 1, k).

Summing up, for Case 3 the spread takes on one of the k
2

integers in the

range from k + 1 to 3k
2
. Finally, all the spreads of all the paths generated

from P1, P2, and P3 cover the range from 1 to 3k
2
, inclusively. As already

stated, this shows that, for every pair of rim vertices, there is a Hamilton

path having that pair as ends.

2.5 Rim to Hub Paths

In this section we show that there is a Hamilton path between all rim-hub

pairs of vertices in GP (3k+1, k) for even k. To do this, we will once again be

using induction on k. We start the base cases by exhibiting four rotor-ready

paths in GP (7, 2) and one such path in GP (13, 4). We then insert the same

two rotors as for the rim-rim pairs of vertices.

We must now cover spreads, v − u = δ, over all integers from 0 to 3k
2
,

inclusively to obtain a u–v′ Hamilton path for all possible pairs (u, v′).

We accomplish our goal by doing a case analysis.

Case 1: δ is even and 0 ≤ δ ≤ k − 2. Consider the following 0–0′ Hamilton

path in GP (7, 2):

P4 : 0, 1, 2, 2′, 4′, 4, 3, 3′, 1′, 6′, 6, 5, 5′, 0′.

The initial insertion point for both rotors is i = 2. Observe that P4 in

GP (7, 2) is rotor-ready. It satisfies all the same conditions as P1 in Section 2.4

except that v = 1 is replaced by v′ = 0′. So both u and v lie in I1 and the
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effect on the spread of inserting each rotor is the same as for P1 in Section 2.4.

Setting b = δ/2, and a = k
2
− 1− b, after inserting a A-rotors and b B-rotors,

we obtain a rim-hub Hamilton path with spread δ in GP (3k + 1, k).

Case 2: δ = k− 1. Consider the following 0–3′ Hamilton path in GP (13, 4):

P5 : 0, 0′, 4′, 4, 3, 2, 1, 1′, 10′, 10, 9, 9′, 5′, 5, 6, 6′, 2′, 11′, 11, 12, 12′, 8′, 8, 7, 7′, 3′.

The path P5 is reflected-rotor-ready at j = 9. Insert a R(A)-rotors. The

spread δ = 3 + 2a becomes k − 1.

Case 3: δ = k. Consider the following 0–2′ Hamilton path in GP (7, 2):

P6 : 0, 0′, 5′, 5, 6, 6′, 4′, 4, 3, 3′, 1′, 1, 2, 2′.

Again, we insert no A-rotors and k
2
−1 B-rotors with the same initial insertion

point, i = 2 and the same analysis as for P1. The spread δ = 2 + 2b, with

b = k
2
− 1, becomes k.

Case 4: k + 1 ≤ δ ≤ 3k
2
. Consider the following 0–3′ Hamilton path in

GP (7, 2):

P7 : 0, 0′, 5′, 5, 6, 6′, 1′, 1, 2, 2′, 4′, 4, 3, 3′.

Once again we insert either rotor initially at i = 2. However, v = 3 now falls

in I2, and u = 0 still lies in I1. The analysis that shows that P7 is rotor-ready

is the same as for P1. The action of the rotors on the ends of the path are

as follows:

A : u �→ u, v �→ v + 2, δ(A(u),A(v)) = δ(u, v) + 2;

B : u �→ u − 2, v �→ v + 2, δ(B(u),B(v)) = δ(u, v) + 4.

Thus δ = 1 + k + 2b, with 0 ≤ b ≤ k
2
− 1. Now we consider even and odd

values of the spread for this case separately:
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Sub-case 4(i): δ is odd. Setting b = (δ − k − 1)/2 and a = k
2
− 1− b, after

inserting a A-rotors and b B-rotors, we obtain a Hamilton path with spread

δ in GP (3k + 1, k).

Sub-case 4(ii): δ is even. Setting b = k − (δ(u, v)/2), and a = k
2
− 1 − b,

after inserting a A-rotors and b B-rotors and reflecting the resultant path,

we obtain a Hamilton path with spread δ in GP (3k + 1, k).

Case 5: δ is odd and 1 ≤ δ ≤ k − 3. Consider the following 0–1′ Hamilton

path in GP (13, 4): Remembering that we start in GP (13, 4), we have

P8 : 0, 0′, 4′, 4, 3, 3′, 7′, 11′, 11, 12, 12′, 8′, 8, 7, 6, 5, 5′, 9′, 9, 10, 10′, 6′, 2′, 2, 1, 1′.

The path P8 is reflected-rotor-ready at j = 9. Insert a = (δ − 1)/2 R(A)-

rotors and b = k−4
2

− a R(B)-rotors to obtain the desired δ.

This concludes the construction for rim to hub Hamilton paths.
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Chapter 3

More Rotors

In the following sections, we will show the existence of hub-hub Hamilton

paths for all such possible pairings.

3.1 Primed Rotors

Unfortunately, the rotors already presented with their reflections do not suf-

fice to build up all the paths we need. For this reason, we introduce the

primed rotors, each closely related to the unprimed version. First we define

what it means for a Hamilton path P to be primed-rotor-ready.

Definition 14 A Hamilton path P , in GP (3k +1, k), is primed-rotor-ready

at rim vertex i ∈ Zn if:

1. 〈i′, (i − k)′〉 ∈ E(P ).

2. 〈i − 1, i〉 and 〈i, i + 1〉 ∈ E(P ).

3. 〈i − k, i − k − 1〉 and 〈i + k, i + k + 1〉 /∈ E(P ).
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4. The hub vertex i′ is an end vertex of P .

Next, consider the following injective function gi,k:

Definition 15 For i ∈ Z3k+1:

gi,k : Z3k+1 → Z3(k+2)+1

v �→ v, for v ∈ [i − k, i − 1] = J1

v �→ v + 2, for v ∈ [i, i + k] = J2

v �→ v + 4, for v ∈ [i + k + 1, i − k − 1] = J3.

When it is clear what is meant, we will omit the subscripts on g. We extend

the domain of g to all vertices of G = GP (3k +1, k) and edges of P similarly

to what we did with f . The main difference is now that the ends of g(〈i−1, i〉)
would lie in two intervals, J1 and J2. We solve this problem by redefining g

on this edge so that g(〈i − 1, i〉) = 〈i − 1, i〉. This leads us immediately to

the following:

Proposition 16 If P is a Hamilton path that is primed-rotor-ready at i,

then gi,k(P ) has two components which are paths in GP (3(k + 2) + 1, k + 2),

one having (i + 2)′ as an end, the other having g(w′) as an end, where w′ is

the end of P other than i′. The other ends are i and i + 2.

The proof is similar to the proof of Proposition 7 and we do not give it here.

Now we are ready to introduce our primed rotors.

3.1.1 Rotor A′

Here we introduce the first of our primed rotors.
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Definition 17 The A′(i, k + 2)-rotor consists of the following two paths:

i, i + 1, i + 2; and

(i + 2)′, (i + k + 4)′, i + k + 4, i + k + 3, (i + k + 3)′, (i + 1)′, (i − k − 1)′,

i − k − 1, i − k − 2, (i − k − 2)′, i′.

We insert this rotor in GP (3(k + 2) + 1, k + 2) thereby connecting the com-

ponents of g(P ) to form a Hamilton path. The following is easy to prove:

Proposition 18 If P is primed-rotor-ready at i in GP (3k+1, k), then, after

inserting the A′(i, k + 2)-rotor, the resultant path gi,k(P ) ∪ A(i, k + 2) in

GP (3(k + 2) + 1, k + 2) is primed-rotor-ready at vertex i.

Defining the effect of inserting an A′-rotor as that of a function A′, we obtain:

A′ : i �→ i;

i′ �→ i′;

u �→ g(u);

where u is the other end of the path P other than i′. If u ∈ Jr then A′

changes the spread by 2(r − 1).

3.1.2 Rotor B′

We now introduce the other primed rotor.

Definition 19 The B′(i, k + 2)-rotor is the following path:

i, i′, (i − k − 2)′, i − k − 2, i − k − 1, (i − k − 1)′, (i + k + 4)′, i + k + 4,

i + k + 3, (i + k + 3)′, (i + 1)′, i + 1, i + 2.
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Once again, we insert this rotor in GP (3(k + 2), k + 2) connecting the com-

ponents of gi,k(P ) into a Hamilton path. The following is immediately clear:

Proposition 20 If P is primed-rotor-ready at i in GP (3k+1, k), then, after

inserting the B′(i, k + 2)-rotor, the resultant path gi,k(P ) ∪ B(i, k + 2) in

GP (3(k + 2), k + 2) is primed-rotor-ready at vertex i + 2.

Once more, defining the effect of inserting the rotor as that of the action of

a function B′, we obtain:

B′ : i �→ i + 2;

i′ �→ (i + 2)′;

u �→ g(u);

where, once again u is the end of the path P other than i′. If u ∈ Jr, then

B′ changes the spread by 2r.

Now we have all the facts we need about the primed rotors. These rotors

are illustrated in Figures 3.1 and 3.2.

3.2 Hub to Hub Paths

In this section we show the existence of all Hamilton paths in GP (3k + 1, k)

for even k starting and ending on hub vertices. To do this we construct paths

having spreads δ in the range 1 to 3k
2
, inclusively. We accomplish our task

by a case analysis.

Case 1: δ is odd and 1 ≤ δ ≤ k − 1. This case is illustrated in Fig-

ures 3.1 and 3.2. Consider the following hub-hub Hamilton path in GP (7, 2):

0′, 2′, 4′, 4, 5, 5′, 3′, 3, 2, 1, 0, 6, 6′, 1′.

29



Figure 3.1: The A′-rotor.

Figure 3.2: The B′-rotor.
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This path is primed-rotor-ready at vertex 1. The same analysis as in the

previous section then shows that adding an A′ does not change the spread,

and adding a B′-rotor adds two to the spread. The result follows.

Case 2: δ is even and 2 ≤ δ ≤ k − 2. Consider the following hub-hub

Hamilton path in GP (13, 4):

0′, 9′, 9, 10, 11, 11′, 7′, 3′, 12′, 12, 0, 1, 2, 3, 4, 4′, 8′, 8, 7, 6, 5, 5′, 1′, 10′, 6′, 2′.

The given path is primed-rotor-ready at 0. We see that the A′-rotor adds

two to the spread, and that the B′-rotor leaves the spread unchanged. The

result follows.

Case 3: δ = k. We insert reflected A′-rotors starting at vertex 4 to the

following 0′–4′ Hamilton path in GP (13, 4):

0′, 0, 1, 1′, 5′, 9′, 9, 10, 10′, 6′, 6, 5, 4, 3, 2, 2′, 11′, 11, 12, 12′, 3′, 7′, 7, 8, 8′, 4′.

Inserting the reflected rotor adds two to the spread. The result follows.

Case 4: δ = k + 2. We insert reflected A′-rotors starting at vertex 0 to the

following 0′–7′ Hamilton path in GP (13, 4):

0′, 4′, 4, 5, 6, 7, 8, 8′, 12′, 3′, 3, 2, 2′, 6′, 10′, 10, 9, 9′, 5′, 1′, 1, 0, 12, 11, 11′, 7′.

This adds four to the spread. Now we reflect the graph to obtain the desired

spread.

Case 5(i): δ is odd and k + 1 ≤ δ ≤ 3k/2. Consider the following 0′–5′

Hamilton path in GP (13, 4)

0′, 0, 12, 11, 10, 10′, 1′, 1, 2, 3, 3′, 12′, 8′, 4′, 4, 5, 6, 6′, 2′, 11′, 7′, 7, 8, 9, 9′, 5′.

The path is reflected-primed-rotor-ready at 5. Thus we add reflected A′-

rotors to increase the spread by four and reflected B′- rotors to increase the
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spread by two. Setting b = k − (δ − 1)/2 and a = k
2
− 2− b, after inserting a

A′-rotors and b B′-rotors, we obtain a Hamilton path with spread δ.

Case 5(ii): δ is even and k + 4 ≤ δ ≤ 3k/2. This case occurs only if k ≥ 8.

Setting b = (δ − k)/2 and a = k
2
− 2 − b, after inserting a A′-rotors and b

B′-rotors into the same path as Case 5(i), and reflecting the resultant path,

we obtain a Hamilton path with spread δ in GP (3k + 1, k).
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Chapter 4

From GP (3k + 1, k) to

GP (3(k + 2) + 1, k + 2) for odd k

This chapter is much like the last one, except here we consider odd values of

k only. When k is odd, GP (3k + 1, k) is bipartite with equal-sized partite

sets. For this reason we need only consider Hamilton paths starting in one

partite set and ending in the other.

It turns out that the method of inserting rotors works for these cases as

well.

4.1 Rim to Rim Hamilton Paths

The spread will be an odd integer between 1 and (3k + 1)/2. We consider

two cases:

Case 1: The spread is an odd integer between 1 and k − 2. Consider the
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following 0–1 Hamilton path in GP (10, 3):

0, 0′, 7′, 7, 8, 9, 9′, 2′, 5′, 8′, 1′, 4′, 4, 5, 6, 6′, 3′, 3, 2, 1.

The initial insertion point is i = 3. Inserting an A-rotor doesn’t change

the spread, and inserting a B-rotor adds two to the spread. Inserting a

combination of (k − 3)/2 A and B rotors yields the desired spread.

Case 2: The spread is an odd integer between k and (3k+1)/2 with k being

at least 5. Consider the following 0–3 Hamilton path in GP (10, 3):

0, 0′, 7′, 4′, 4, 5, 5′, 8′, 1′, 1, 2, 2′, 9′, 9, 8, 7, 6, 6′, 3′, 3.

The initial insertion point for reflected rotors is j = 6. The A-rotor is simply

the original one, reflected. However, the B- rotor, shown in Figure 4.1, is a

modified one. If j+k+1 is an end of the original path, the reflected modified

B-rotor is the following path in GP (3(k + 2) + 1, k + 2):

j + k + 3, j + k + 2, (j + k + 2)′, (j − k − 3)′, j − k − 3, j − k − 4,

(j − k − 4)′, (j − 2)′, j − 2, j − 1, (j − 1)′, (j + k + 1)′, j + k + 1.

The next insertion point for either reflected rotor is j − 2. Now, inserting

the reflected A-rotor increases the spread by two, and inserting the reflected

modified B-rotor increases the spread by four. So, insert a combination

of (k − 3)/2 reflected rotors, of which up to �(k + 1)/4� may be reflected

modified B-rotors, to obtain the desired spread.

In this way, we may obtain any desired rim-rim Hamilton path with odd

spread.
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Figure 4.1: The reflected modified B-rotor.

4.2 Rim to Hub Hamilton Paths

For odd k, a rim-hub path has even spread δ ∈ [0, (3k + 1)/2].

Case 1: δ = 0. The following sequence of vertices is a Hamilton cycle in

GP (3k + 1, k) for any odd k:

0′, 0, 1, 1′, (k + 1)′, k + 1, k + 2, (k + 2)′, (2k + 2)′, . . .

. . . (qk + q)′, qk + q, qk + q + 1, (qk + q + 1)′, ((q + 1)k + (q + 1))′, . . .

. . . (3k+1
2

k + 3k+1
2

)′.

To verify this claim, observe that this sequence contains 4 edges between

(qk + q)′ and ((q + 1)k + (q + 1))′. Therefore, there are 4 (3k+1)
2

= 2(3k + 1)

edges, the right number, in this sequence. Next, observe that none of the

vertices, except the first and last are repeated in the sequence. If they were,
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then the congruence:

dk + d ≡ c (mod 3k + 1)

would have more than one solution for d in the range [1, (3k + 1)/2] for each

of the following values of c: 0, 1, and -1. Since GCD(3k + 1, k + 1) = 2 for

odd k, this is certainly not the case.

Removing the edge {0, 0′} from this cycle leaves a 0–0′ Hamilton path.

Case 2: 2 ≤ δ ≤ k − 3. Consider the following 0–2′ Hamilton path in

GP (16, 5):

0, 0′, 11′, 11, 12, 12′, 7′, 7, 6, 6′, 1′, 1, 2, 3, 4, 5, 5′, 10′, 10, 9, 8, 8′, 3′, 14′, 9′, 4′, 15′,

15, 14, 13, 13′, 2′.

It is rotor-ready at i = 5. Inserting an A-rotor does not change the spread.

Inserting a B-rotor adds two to the spread. The result follows.

Case 3: δ = k− 1. Consider the following 0–4′ Hamilton path in GP (16, 5):

0, 0′, 5′, 5, 4, 3, 2, 1, 1′, 12′, 12, 11, 11′, 6′, 6, 7, 7′, 2′, 13′, 13, 14, 15, 15′, 10′, 10, 9, 8,

8′, 3′, 14′, 9′, 4′.

The path is reflected-rotor-ready at j = 11. We insert k−5
2

R(A)-rotors, each

one increasing the spread by two, yielding the desired Hamilton path. The

result follows.

Case 4: k + 1 ≤ δ ≤ (3k + 1)/2. Consider the following 0–6′ Hamilton path

in GP (16, 5):

0, 0′, 11′, 11, 12, 12′, 1′, 1, 2, 3, 4, 5, 5′, 10′, 10, 9, 8, 8′, 3′, 14′, 9′, 4′, 15′, 15, 14, 13,

13′, 2′, 7′, 7, 6, 6′.
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This path is rotor-ready at i = 5. Inserting an A-rotor adds two to the

spread. Inserting a B-rotor adds four to the spread. The result follows.

Now we have found all the necessary rim-hub Hamilton paths.

4.3 Hub to Hub Hamilton Paths

Now we need to consider odd values for the spread only.

Case 1: 1 ≤ δ ≤ k − 2. Consider the following 0′–1′ Hamilton path in

GP (10, 3):

0′, 0, 1, 2, 2′, 5′, 5, 6, 7, 7′, 4′, 4, 3, 3′, 6′, 9′, 9, 8, 8′, 1′.

The path is primed-rotor-ready at i = 1. Inserting an A′-rotor doesn’t change

the spread. Inserting a B′-rotor adds two to the spread. The result follows.

Case 2: δ = k. Reflecting the Hamilton cycle of Case 1 in Section 4.2 and

deleting the edge 〈0′, k′〉 yields a 0′–k′ Hamilton path.

Case 3: k +2 ≤ δ ≤ (3k +1)/2. Consider the following 0′–5′ Hamilton path

in GP (10, 3):

0′, 7′, 7, 8, 8′, 1′, 4′, 4, 5, 6, 6′, 3′, 3, 2, 1, 0, 9, 9′, 2′, 5′.

This path is primed-rotor-ready at i = 0. Inserting an A′-rotor adds four to

the spread. Inserting a B′-rotor adds two to the spread. The result follows.

This completes our proof that GP (3k + 1, k + 1) is Hamilton-laceable for

odd k.
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Chapter 5

Conclusion

The main fact we have proven about generalized Petersen graphs is as follows.

Theorem 21 For k ≥ 4, GP (3k + 1, k) is Hamilton-connected if k is even,

and Hamilton-laceable if k is odd.

In our research, we have actually verified all the small cases by computer

search to show that the restriction k ≥ 4 can be removed.

What comes next? We now make a suggestion that would bring us closer

to proving Conjecture 1. Mavraganis [4] introduced the notion of inserting a

2s-pack and used s = 6 to take the inductive step from a Hamilton path in

GP (n, 2) to one in GP (n+6, 2). By trial and error, we have found that from

a Hamilton path in GP (n, 3) we can similarly obtain one in GP (n + 12, 3)

by inserting a 2s-pack with s = 12. Furthermore, using a value of s = 20, we

obtain a Hamilton path in GP (n+20, 4) from one in GP (n, 4). To generalize

this notion, we postulate that a Hamilton path in GP (n, k) can be extended

to a Hamilton path in GP (n + k(k + 1), k) by inserting a 2k(k + 1)-pack.
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Using this procedure, for a fixed value of k, we would only need to show

the existence of the requisite Hamilton paths in k(k + 1) base cases as well

as the existence of the 2s-packs to prove by induction on n that GP (n, k)

is Hamilton-connected or Hamilton-laceable. In this thesis, we have shown

the existence of the required Hamilton paths for one of those base cases for

every value of k.

We hope that investigation of the cases GP (3k + 2, k) and GP (3k + 3, k)

will shed light on Conjecture 1. It is not currently clear if some generalization

of rotors alone or a combination of rotors and (2s)-packs will be required to

prove Conjecture 1. General progress on either would be welcome.
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