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Abstract

Hardware texture mapping is essential for real-time rendering. Unfortunately the

memory bandwidth and latency often bounds performance in current graphics ar-

chitectures. Bandwidth consumption can be reduced by compressing the texture

map or by using a cache. However, the way a texture map occupies memory and

how it is accessed affects the pattern of memory accesses, which in turn affects cache

performance. Thus texture compression schemes and cache architectures must be

designed in conjunction with each other.

We define a sparse texture to be a texture where a substantial percentage of

the texture is constant. Sparse textures are of interest as they occur often, and

they are used as parts of more general texture compression schemes. We present a

hardware compatible implementation of sparse textures based on B-tree indexing

and explore cache designs for it. We demonstrate that it is possible to have the

bandwidth consumption and miss rate due to the texture data alone scale with

the area of the region of interest. We also show that the additional bandwidth

consumption and hideable latency due to the B-tree indices are low. Furthermore,

the caches necessary for these textures can be quite small.
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Chapter 1

Introduction

In computer graphics, the mapping of images onto object surfaces rendered on a

computer screen as in Figure 1.1 is a basic example of the use of texture mapping.

With appropriate hardware support, texture mapping is a simple and effective way

to enhance the complexity and quality of computer generated images. Moreover,

texture mapping is not restricted to the pasting of images onto surfaces; sampling

from a discrete representation of a vector valued field, or texture map, has been

used to perturb surface normals [Bli96], render shadows [FFBG01], and compute

functions [MGW01, MH99], among many other uses. In fact, texture mapping is

considered to be a fundamental hardware shading primitive [MH99].

Using texture mapping typically results in millions of texture lookups per ren-

dered frame, which results in a need for high bandwidth and low-latency access

1
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Figure 1.1: A face image texture mapped onto a sphere.

to texture memory. Unfortunately memory bandwidth is the resource that bounds

performance in current graphics architectures [IEH99]. This motivates us to find

ways to reduce memory bandwidth consumption.

One way to reduce bandwidth consumption is by compressing the texture map.

The traditional implementation of a texture map is as a contiguous 2n1 × · · · ×

2nm , ni ∈ N0 array. Each element in the array corresponds to a sample from the

vector field the texture map is generated from, or texel. Texture compression makes

it so that fewer bits on average need to be accessed for each texel lookup, scaling

down the bandwidth consumption. Texture compression also reduces the memory

footprint of a texture map. This is desired as high quality rendering requires high

resolution textures, which when uncompressed take up a lot of memory, severely

bounding the number of unique textures that can be accessed. Texture compression

would increase the upper bound on the resolution and number of unique textures
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available to render an image.

Compression schemes can be divided into two types: lossy and lossless. Lossless

compression schemes produce output from which the original data can be recovered

perfectly. Lossy compression algorithms produce output from which the recovered

data is an imperfect approximation of the original data.

In this thesis, lossless compression of what we consider to be a sparse texture is

of particular interest. We define a sparse texture as the following:

sparse texture: A texture where a substantial percentage of the texture is some

constant d. We call d the default value of the texture.

One common problem lossless sparse texture compression can be aimed at is the

case where the region of interest is non-rectangular or not close in size to a power

of two in each dimension, which wastes memory in a traditional implementation.

A more general reason why lossless sparse texture compression is of interest is that

it comes up repeatedly as a step in texture compression in general.

For example, using multiresolution to break down a texture into a hierarchy of

textures, with each subsequent level refining the detail, is an example of creating an

adaptive texture map, which is based on adaptive sampling from the original

texture. Adaptive sampling, where the sampling density is correlated with the need

for detail i.e. high sampling density in high detail areas and low sampling density in
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low detail areas, is frequently used in software implementations of data compression

where interpolation is used to fill in “missing” values, as the quality/space tradeoff

for a particular area is easily controlled locally and independently of other areas.

As the detail added at the higher resolution levels is sparse, sparse textures are

particularly suited for this type of data. Examples of ways to decompose a texture

to produce sparse textures include adaptive sampling, wavelet compression, and

predictive pyramidal coding.

Another way to reduce bandwidth consumption is based upon the Principle of

Locality [HP03] which can be divided into two parts:

Spatial locality: If items x and y are close together in memory address, then they

are likely to be accessed close together in time.

Temporal locality: If item x is accessed recently, it is likely to be accessed again

in the near future.

If the Principle of Locality applies to a stream of memory accesses, then memory

bandwidth consumption can be reduced by the use of a small fast local memory

holding recently accessed items that is checked before going to slower memory to

retrieve the item; this local memory is called a cache. There is a high degree of

both spatial and temporal locality in texture map accesses so using a cache for

texture memory reduces bandwidth consumption [HG97]. Previous work on caches
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for texture mapping has focused on tuning rendering and memory representation

issues that affect locality and characterizing the cache parameters needed for texture

mapping.

While there has been work on both texture compression and on cache design

for texture mapping, there has been no work combining the two. The effect texture

compression has on cache design is of concern as the change in the way a texture

occupies memory and how memory is accessed affects the pattern of the memory

accesses, which in turn could affect cache performance and memory bandwidth

consumption. Thus it is necessary, when examining a texture compression scheme,

to also look at how using it affects the cache performance.

Contributions

Of the previous work on texture compression, the only method that both provides

adaptive random sampling and is compatible with a hardware implementation is the

uniform grid index method devised by Kraus and Ertl [KE02]. We test the cache

performance of this method and show that we do not get significant bandwidth

consumption savings for a sparse texture unless the cache is very large. Further-

more, this method requires the use of dependent texturing which adds latency to

the memory accesses. This motivates an alternative implementation.
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We present an implementation of lossless sparse texture compression based on

B-tree [LD91] indexing. The extra memory needed due to the index is low and

scales with the area of the region of interest instead of with the resolution of the

texture (as in the uniform grid index method) resulting in a smaller index memory

overhead. With an appropriate cache design, the latency due to the indexing is low

and hideable, and the additional bandwidth consumption due to the B-tree index

is negligible. This implementation does not have many of the disadvantages that

the uniform grid method has; a detailed comparison is given in Chapter 4.

We also build upon previous work on caches for texture mapping to show which

rendering and cache parameters work best for our implementation. Though we

tune the rendering parameters and the cache design to our B-tree indexing scheme,

the results on the rendering parameters are still applicable to texture mapping in

general and the results on the cache design can apply to any sparse texture scheme

based on storing only the necessary data and accessing the data indirectly via an

index.

Outline

Chapter 2 reviews the background necessary to understand the thesis. Chapter 3

covers previous work in texture compression and cache design for texture mapping.



CHAPTER 1. INTRODUCTION 7

Chapter 4 describes our implementation of sparse textures, cache design for it, and

the motivation behind it. The setup for testing is detailed in Chapter 5. Chapter

A gives the results and analyses. Conclusions and future work are in Chapter 7.



Chapter 2

Background

Before we proceed to the research contributions, we give a general overview of the

graphics pipeline, texturing, and caching [HP03]. The overview will establish the

necessary background and vocabulary for the discussion to follow.

2.1 The Graphics Pipeline

Interactive 3D graphics hardware imposes a series of transformations on a scene

description to produce a final picture. The sequence of stages the scene description

goes through are called the graphics pipeline. There are many implementations

of the graphics pipeline athich vary in structure, features and the order in which

they perform their operations [McC00, Owe02, Ige00, Bli96], but for our discussion

8
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transformation

geometric primitives

screen space geometric primitives

calculate vertex parameters
(usually texture coordinates

and lighting)

screen space primitives with vertex parameters

rasterization and interpolation
of vertex parameters

fragments

fragment shading

shaded fragments
fragment operations,
compositing

display

pixels

(including texturing)

Figure 2.1: A representation of a generic graphics pipeline.

we present a generic graphics pipeline into which most of the implementations

described in the references fit. This generic pipeline is shown in Figure 2.1.

We are mainly concerned with two stages in the pipeline: rasterization and

interpolation and fragment shading.

2.1.1 Rasterization

In the rasterization stage of the pipeline, each geometric primitive is broken up

into fragments, each fragment corresponding to a pixel that the primitive intersects
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in screen space. Each primitive may also have parameters associated with each of

its vertices. The vertex parameters could be colours, texture coordinates, vertex

normals, or other properties used to enhance the rendered image. These vertex

parameters, if present, are interpolated across the surface of the primitive to give

each fragment an associated set of interpolated parameters.

The order in which the fragments are produced is called the rasterization

order. We use the term “rasterization curve” to refer to a path drawn through

the pixels in screen space in the order they are visited by the rasterizer. Because we

expect texture accesses to follow the rasterization curve, and caches depend on the

principle of locality to work well, improving the spatial locality of the rasterization

curve will have a significant impact on cache performance.

For simplicity of discussion, we assume for now that the only geometric primitive

we have to deal with is the triangle. We also assume that the rasterization units

are rasterizing one triangle at a time, and that all triangles from a single triangle

are processed serially within a single fragment unit.

Horizontal scanline order, or raster order rasterization [OG97], is shown in

Figure 2.2. The fragments are generated row by row. This order has the advantage

that the rasterization curve is easy to generate. It has the disadvantage of having

poor spatial locality between rows.

There has been recent work [MWM01, MM00, HG97] on other kinds of rasteriza-
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Figure 2.2: A triangle rasterized in horizontal scanline order.

tion with one motivation being better spatial locality for better cache performance.

One of the rasterization curves investigated [MWM01] is based on the Hilbert curve

[Sho38]. Consider the curve H0 in Figure 2.3 and the set of rewriting rules in Figure

2.4. Let H0 be as shown and define Hn+1 to be the result when the curve Hn has

had the rewriting rules applied to all its cells (see Figure 2.3). The two-dimensional

Hilbert curve H is the space-filling curve we obtain when we take the limit of Hn

as n → ∞. For rasterization, we select n large enough so that we visit adjacent

pixels as we go along each straight segment of the curve Hn. Figure 2.5 shows a

triangle being rasterized in Hilbert order. Note that the high spatial coherence of

the curve translates into relatively few large jumps as the triangle is rasterized.

Another space-filling curve is the Morton or Z-order curve, shown in Figure 2.6.

Similarly to the set {Hn}, there is an obvious rewriting rule from which we obtain



CHAPTER 2. BACKGROUND 12

H0 H1 H2 H3

Figure 2.3: The first four iterations of the 2D Hilbert curve.
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Figure 2.4: Rewrite rules for the Hilbert curve. [MWM01]

the set {Zn}, of which the first few members are shown in the figure. While having

a hierarchically self-similar structure like the Hilbert curve, it is not as spatially

coherent as evidenced by the large jumps that can be seen in Z3. It does have the

advantage of being simpler to generate than the Hilbert curve. In fact, the Morton

curve can be generated by bit interleaving the binary representations of x and y

[OM84].
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Figure 2.5: Triangle rasterized in Hilbert order.

Z0 Z1 Z2 Z3

Figure 2.6: The first four iterations of the Morton curve.
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While we have only run tests with a rasterizer that processes one triangle at

a time using the raster order curve, Hilbert order curve, and the Z-order curve,

there are many other rasterization options. Groups of triangles or primitives may

be merged and rasterized together instead of individually. Triangle merging is

particularly useful when there are many small triangles. Object order rasterization

methods divide the primitives into groups, rendering each group of primitives in

turn. Rasterization may also proceed in image order, dividing up the final image

into parts and rendering each part in turn. Tile-based rasterization, shown in

Figure 2.7, may also be employed. Nesting tiles is also possible. We can think of

the Hilbert and Z-order curves as nesting the tiles in a particular order down to

the pixel level. yield many other rasterization orders.

2.1.2 Shading and Texturing

The fragment shading part of the pipeline is where each fragment is assigned a

colour by the fragment shader. The fragment shader uses the interpolated vertex

parameters and other pipeline state parameters to compute a colour for the frag-

ment. Sampling from texture maps may be used in determining the colour. If the

sampling rate for the fragments is lower than the resolution of the texture map

being sampled from, aliasing artifacts will occur. To minimize aliasing, filtering
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1 2

3 4 5 6

7 8 9 10

Figure 2.7: Tiled rasterization. The parts of the triangle in the tiles are rasterized
as shown in tile 2 in the order the tiles are numbered.

is used. We will be concerned with two filtering techniques: MIP-mapping and

FELINE sampling.

MIP-mapping

The most common hardware method for filtering is MIP-mapping [Wil83]. MIP-

mapping involves constructing an image pyramid from the original texture, where

each subsequent level is a half-scale copy of the image in the previous level (see

Figure 2.8). Suppose we wish to sample a texture at coordinates (u, v) in the
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Figure 2.8: Image pyramid for MIP-mapping.

processing of a fragment at screen location (x, y). The derivatives ∂u
∂x

, ∂v
∂x

, ∂u
∂y

,

∂v
∂y

, and the base texture resolution are used to compute a level-of-detail (LOD)

parameter λ [Wil83]. We think of λ as a “measure” of the texel-to-pixel ratio. This

value is used to select two adjacent images in the pyramid to sample from. At each

level the four nearest values in each level are bilinearly interpolated. The fractional
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part of λ is then used to linearly interpolate the two samples to produce the final

result. This way of sampling is also called trilinear interpolation, or a trilinear

probe. If the value of λ is such that it only makes sense to sample from one image,

then bilinear interpolation is done on the four nearest values in that image.

When MIP-mapping is enabled, it keeps the texel-to-pixel ratio less than or

equal to one so we do not get large jumps across the texture on the majority of

consecutive texture accesses. Thus using MIP-mapping makes the memory accesses

more coherent than they might be if MIP-mapping were not enabled. Therefore,

MIP-map filtering has beneficial effects on both quality and bandwidth consump-

tion.

Note that regardless of the relative ratio of the lengths of the derivative vectors

Dx = (∂u
∂x

, ∂v
∂x

), and Dy = (∂u
∂y

, ∂v
∂y

), the same shape reconstruction filter (the trilinear

probe) is used. The only thing that changes is its width, characterized by λ. While

a single trilinear probe is fine if the derivative vectors look like Figure 2.9(a) up to

rotation, excessive blurring occurs in the cases depicted in the other three examples

in the figure [MFPJ99] (OpenGL implementations select the level based on the

longer vector [SA02]). An anisotropic filtering algorithm is needed to deal with

the blurring, in which case the pattern of texture accesses varies from fragment

to fragment as the derivative vectors vary. This may make texture accesses less

spatially coherent, affecting cache performance.
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yD

Dx

yD
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yD

(a) (b) (c) (d)

Figure 2.9: Ways in which the vectors Dx and Dy can be oriented relative to each
other.

FELINE Sampling

One recent hardware algorithm developed for anisotropic texture mapping is the

FELINE (Fast Elliptical LINEs) algorithm [MFPJ99]. Like MIP-mapping, it uses

an image pyramid and computes a LOD value based upon the values of Dx and Dy.

However, instead of using a single trilinear probe into the pyramid, it uses several

trilinear probes along a line to approximate an elliptical Gaussian filter (see Figure

2.10). The filter to approximate and the line to use are computed based upon the

values of Dx and Dy and take their relative lengths and orientations into account.

The same λ value is used for each probe, though each the results of each probe is

weighted differently.

The computations to determine the ellipse for the filter and the line to sample

along can be expensive. As a result, a cheap approximation is desired. One ap-

proximation, table FELINE, uses a 2-D table of precomputed elliptical parameters



CHAPTER 2. BACKGROUND 19

Figure 2.10: Probing along a line. The circles represent trilinear probes. The ellipse
represents the elliptical Gaussian filter that the probes approximate.

to approximate the ellipse. Each table entry corresponds to the ellipse determined

by two vectors, the longer one being (0, 1), and the angle θ between them, which is

between 0 and π/2. The table is indexed by the length of the smaller vector and

a function of θ based on the tangent and cotangent functions. Naturally, (Dx, Dy)

must be converted into the corresponding canonical form to use the table and the

results from the table must be altered to take the conversion into account.

There has been other work on hardware anisotropic texture mapping methods

[MFPJ99, Hec86]. The methods are either similar to FELINE (in that space invari-

ant probes along a line are used), have high memory and computation time costs,

or are inappropriate for sparse textures.
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2.1.3 Programmable Shader Issues

A programmable shader may produce unusual patterns of texel lookups. We choose

a variation on Perlin’s turbulence function [EMP+94] as a representative of a pro-

grammable shader in our tests.

Turbulence

Similarly to the way any function satisfying certain conditions can be constructed

from the sum of various sinusoidal functions via the inverse Fourier transform

[Gla95], a noise function with a particular power spectrum can be constructed

as the sum of various band-limited noise functions.

For example, given a band-limited noise function noise, we can have [EMP+94]:

float my_noise( point Q )

{

value = 0;

for( f = MINFREQ; f < MAXFREQ; f *= 2 )

value += amplitude( f ) * noise( Q*f );

return value;

}

which is built upon noise. The point to sample from is Q. The desired power
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spectrum for my noise is determined by the function amplitude( f ), where f is

considered to be the frequency variable.

Perlin’s turbulence function uses amplitude( f ) = 1
f
. Additionally it uses

the absolute value function to introduce discontinuities in the first derivative of the

resulting function.

float turbulence( point Q )

{

value = 0;

for( f = MINFREQ; f < MAXFREQ; f *= 2 )

value += abs( noise( Q*f ) ) / f;

return value;

}

For our purposes we use a slightly modified version of Perlin’s turbulence func-

tion as found in povray 3.50 code. There are two extra parameters, λ and ω. The

variable f and function amplitude( f ) in the i-th iteration of the loop are defined

to be f = λi and amplitude( f ) = ωi.
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float test_turbulence( point Q, float λ, float ω )

{

value = 0;

amp = ω;

for( f = λ; f < MAXFREQ; f *= λ, amp *= ω )

value += abs( noise( Q*f ) ) * amp;

return value;

}

We control the degree of turbulence in our tests by varying ω. Note that ω =

0 corresponds to no turbulence. The turbulence shader used to perturb texture

coordinates applied to a checkerboard is shown in Figure 2.11. The different MIP-

map levels have been assigned different colours. The turbulence shader applied to

a picture is shown in Figure 2.13. The checkerboard example except using table

FELINE instead trilinear sampling is shown in Figure 2.12.

We choose a shader that perturbs the texture coordinates using a modified

version of Perlin’s turbulent noise because it exemplifies two properties that are

common causes of poor locality due to shaders: distortion and discontinuities.

The distortion is obvious in Figure 2.11. Discontinuities are approximated by the

discontinuities in MIP-map level that occur. Both of these properties are controlled
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by the parameter ω.

Shader Derivatives

The derivatives ∂u
∂x

, ∂v
∂x

, ∂u
∂y

, and ∂v
∂y

, which are the partial derivatives of the texture

coordinate components with respect to the screen space coordinates, are used to

compute a level-of-detail value, λ, which we denote here as λLOD. This value is

used to select the MIP-map levels to sample from. Normally these derivatives are

computed as part of the rasterization process, and any distortions introduced by

the shader do not figure into the computations. This means that there may be a

mismatch between the sampling rate a shader uses on a texture and the texture

resolution, which can lead to poor spatial locality of the texture accesses and bad

cache performance. Since the turbulence shader we use can produce significant

distortion, we add as a test parameter whether or not to use shader derivatives

to compute λLOD.

2.2 Caches

Due to filtering and interpolation many texture lookups may be needed to tex-

ture each fragment. Current processors are fast enough that memory latency and

memory bandwidth needed by texturing are the bottleneck that limits performance
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ω Picture ω Picture

0.0 0.2

0.4 0.6

0.8

Figure 2.11: Turbulence shader applied to a checkerboard for various values of ω.
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ω Picture ω Picture

0.0 0.2

0.4 0.6

0.8

Figure 2.12: Turbulence shader applied to a checkerboard for various values of ω
with table FELINE sampling used.
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ω Picture ω Picture
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0.4 0.6
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Figure 2.13: Turbulence shader applied to a picture for various values of ω.
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in graphics pipelines [Ige00]. Therefore we can significantly improve performance

by decreasing the bandwidth consumption and latency in texture access. Unfortu-

nately, high-speed memory is much more expensive per bit than low speed memory.

We can exploit the locality of texture access by storing recently used items in a small

cache of high speed memory that mediates processor access to main memory.

The cache divides a linear address space into contiguous blocks. The block

is the basic atomic unit stored by the cache. A cache of size N bytes holds

N
block size in bytes

blocks. A request for a block that is present in the cache is called a

cache hit; the hit time is the time it takes to find the requested item in the cache.

If the block is not in the cache the request generates a cache miss. The additional

average cost above the hit time of a miss is called the miss penalty.

2.2.1 Placing Items in the Cache

Consider a cache that holds m blocks in m cache entries. We can divide the m

entries into p sets of n entries (m = n× p). The cache is n-way set associative if

a block can be placed in only one of the p sets, but anywhere within the n entries

in that particular set.

The special case where p = m (and n = 1) is called direct mapped. The

special case where p = 1 (and n = m) is called fully associative.
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block address

tag index
offset

Figure 2.14: Decomposition of a memory address into the various parts used by
the cache. The index field selects the set, the tag field distinguishes the block from
other blocks with the same index field, and the offset is used to select the byte in
the block.

Figure 2.14 shows how the block address is decomposed and Figure 2.15 shows

how it is used. The index field, which is equivalent to the block address modulo p,

is used to select a set S. The block’s data is placed in a cache entry belonging to S.

The cache entry also holds a tag which is used to distinguish the block it contains

from other blocks that could be placed in the same set. The tag field portion of

the block’s address (e.g. block address div p), is placed in the cache entry as the

tag for that entry.

When a lookup is performed, the index field is used to select the appropriate

set S (this step is unnecessary when the cache is fully associative). Then the tags

of every entry in set S are compared to the tag field, usually in parallel for speed.

The appropriate entry is selected if there is a match; otherwise a miss is generated.

The block offset is used to select the appropriate byte in the block.
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Figure 2.15: From top to bottom, we have a fully associative cache, a 2-way set
associative cache, and a direct mapped cache. All caches can hold eight blocks in p
sets of size n. The blocks in each cache are arranged so that each row corresponds
to one of p sets. The shaded areas show where a block for block address 10 can
be stored in each cache; they correspond to set 10 mod p i.e. the index field is
10 mod p.

2.2.2 Eviction Policies

Since a cache is smaller than the memory layer whose blocks it stores, eventually

more blocks will be mapped to a set than the set can contain. As a result a block

will have to be evicted from the set to make room for the new block. In the case

of a direct mapped cache, the choice of which block to evict is simple. Otherwise

we need an eviction policy, a method of choosing which block to evict.
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The eviction policies used in our tests are:

optimal: Assuming knowledge of the block requests in the future, the block needed

farthest in the future is evicted. This cannot be implemented in practice.

least-recently-used (LRU): The least recently used block is replaced. LRU at-

tempts to take advantage of temporal locality but is expensive to calculate.

first-in-first-out (FIFO): Blocks are evicted in the order they entered the cache.

FIFO cheaply approximates LRU when the order in which blocks enter the

cache closely corresponds to the reverse of the order in which they were last

used.

There are other eviction policies (e.g. random, least-frequently-used), but we

do not discuss them here as they have not been used in our tests.

2.2.3 Measuring Performance

One of the most important measures of cache performance is the ratio number of misses
number of memory accesses

,

which we call the miss rate. However, the miss rate is not necessarily a good met-

ric for overall performance. A better metric is the average memory access time,

given by:

average memory access time = hit time + miss rate×miss penalty
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We can improve the processing speed by reducing the miss rate, reducing the

hit time, and/or reducing the miss penalty.

2.2.4 Reducing the Miss Rate, Miss Penalty, and Hit Time

A miss occurs because a block that is requested is not in the cache. We can divide

the misses into cold misses, capacity misses, and conflict misses [HP03].

Cold (or compulsory): The misses that occur in a cache of infinite size. These

count the first time each memory block is brought into the cache.

Capacity: The misses that occur in a fully associative cache of finite size. These

occur because the cache was too small and the missed block was previously

evicted.

Conflict: The misses that occur in a non-fully associative cache of finite size.

These are caused by a non-uniform distribution of requests. Some sets are

more popular than others, resulting in a smaller effective cache size.

One way to reduce the number of cold misses is to increase the block size, so that

there are fewer unique blocks that need to be loaded. However, increasing the block

size results in an increased miss penalty as it takes longer and more bandwidth is
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used to load a new block. Also, the other types of misses may increase or decrease

depending on the cache size and the locality of memory accesses.

Capacity misses may also be reduced by increasing the size of the cache. In-

creasing the cache size is expensive and will make the hit time longer for the same

die area. Hit time will greatly increase if the cache is no longer small enough to fit

onto the same chip as the processor.

Conflict misses are reduced by increasing the associativity of the cache. Unfor-

tunately, increasing associativity means a higher hardware complexity cost for the

same size of cache, which may increase the hit time and memory access time for

similar reasons as increasing the cache size.

There is another class of approaches for reducing conflict misses without increas-

ing the hit time for a fixed hardware cost. Way prediction and pseudoassociative

caches approximate associative caches by first doing a tag check for one cache entry

in the set of cache entries for the block, then checking the other tags in the set. The

average hit time is reduced if the memory access pattern is such that the effect of

the fast hit time provided by the first tag check dominates the effect of the slower

hit time due to the other tag checks. Unfortunately it is possible that the memory

access pattern may result in a higher average hit time or miss penalty than that

for an associative cache of the same size.
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Non-cold misses in general can be reduced by changing the way the data is

arranged in memory and changing the way the data is accessed to produce better

locality.

Miss penalty reduction methods include using multi-level caches to give a grad-

uated range of miss penalties and sending the word in the block requested first.

Victim caches can be used to hold recently evicted entries that may likely be re-

quested in the near future to reduce the penalty for loading them into the cache.

A non-blocking cache can reduce the effective miss penalty because cache hits can

be served while the miss is dealt with. Prefetching of texture data can lower both

the miss penalty and the miss rate.

Hit time is reduced at the expense of increased miss rate by keeping caches small

and simple. It can also be kept low by not having to do any address translation,

say translating a virtual address to a physical address. Pipelining the cache access

can increase the rate of texel retrieval without actually decreasing the hit time.

Some techniques for improving cache performance not mentioned here are not

directly relevant to caches for texture mapping. For example, giving the more

common read misses priority over write misses is not relevant to texture mapping

as the graphics processing unit partitions reads and writes so that they are not

finely interleaved. Also, we only care about caching data and are not concerned

with caching instructions.



Chapter 3

Previous Work

We cover previous work in texture compression and cache design for texture map-

ping.

3.1 Sparse Textures and Texture Compression

Compressing sparse textures is a special case of texture compression in general.

Unlike image or data compression, the way textures are used imposes additional

constraints other than a good compression rate on a texture compression scheme.

The most important of the requirements stated by Beers et al. [BAC96] are:

Fast decompression: required to minimize the latency of each texture access.

Random access: needed because we typically access only small parts of the tex-

34
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ture at a time, so there should not be any need to load and decompress the

whole texture just to access a small portion of it.

The methods used to compress textures generally fall into three categories: fixed-

rate compression schemes, hierarchical data structures, and rearranging the useful

parts of the texture.

Most uses of textures involve two-dimensional textures resulting in most of the

algorithms being designed for two dimensions and described in two dimensions.

Unless otherwise noted assume two-dimensional textures, blocks, coordinates, etc.

3.1.1 Fixed-Rate Compression Schemes

Due to the random access requirement, most of the work in hardware texture com-

pression and rendering has focused on fixed rate encoding schemes i.e. the final

compressed texture size, ignoring auxiliary tables and other info, is a linear func-

tion of the resolution of the texture.

Fixed rate schemes are based on reducing the number of bits needed to rep-

resent blocks of texels so they can be reconstructed independently of each other.

Approaches generally fall into two categories. One approach replaces each block of

texels with an index into a small table. The other approach replaces each block of

texels with a smaller block from which a “reasonable” approximation of the original
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block can be reconstructed.

The most familiar example of the first approach is colour palettizing, in which

each texel is replaced with an index, which has fewer bits than the texel, into a

palette. This is a special case of the approach used by Beers et al. [BAC96], which

replaces 4× 4 blocks of texels with an index into a codebook obtained using vector

quantization (VQ) [GG91]. Both methods need special hardware to convert the

texel location and index into a texel. Unfortunately, a codebook/palette needs to

be loaded each time the application switches textures, and some types of textures

cannot be adequately represented without a large codebook/palette. A codebook

could also potentially use a lot of the cache and memory resources. However, the

most important problem with indexing is the latency and memory usage from the

extra memory accesses. This leads to the second approach, parameterized block

approximation, which does not use indirection.

Examples of the second approach are briefly summarized here.

block truncation coding (BTC) [CDF+86]: BTC replaces each block of 4× 4

texels with two 16-bit colours and 16 bits to select which colour to use for

each texel in the block.

S3TC [Inc98]: This replaces each 4 × 4 block with two 16-bit RGB colours and

sixteen 2-bit indices which are used as selectors from the two colours and two
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other colours derived from them.

Pereberin [Per99]: This method first converts a 4 × 4 block into YUV colour

space. Then it applies two iterations of Haar wavelet decomposition to the

block channels independently. The lowest and middle level frequency coef-

ficients are all kept; of the highest level frequency coefficients only the five

largest in absolute value for Y are kept. Wavelet reconstruction is used to re-

construct the block. This has the advantage of holding three MIP-map levels

in one texture.

Fenney [Fen03]: The essentials of this approach are a reduction of the original

texture to two coarse-resolution full-precision textures A and B, and one

full-resolution low-precision modulation texture. Reconstruction involves bi-

linearly sampling from A and B to obtain colours a and b, then using the

value from the modulation texture to select a value used to linearly interpo-

late between them. A good algorithm for finding textures A and B that can

produce quality images is still being researched.

Parameterized block approximation second also needs special hardware to extract

a texel from the compressed block.

Here are examples that are hybrids of both approaches:

colour cell compression (CCC) [CDF+86]: CCC is the same as BTC except
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the two 16-bit colours are replaced with indices into a palette.

Bajaj et al. [BIP00]: This paper uses an algorithm that is very similar to Pere-

berin’s for 3D. Each 4× 4× 4 cell is decomposed using two iterations of Haar

wavelet decomposition. The less significant wavelet coefficients are set to zero,

and the remaining ones quantized to 8-bit indices into a codebook.

Fixed rate encoding schemes can get very good (2-4 bits-per-pixel) encoding

rates for textures. However, in some cases a texture may not be able to be rea-

sonably represented by a small VQ codebook. Also, when blocks are reconstructed

solely from information in the block, artifacts can occur along the edges of blocks.

Texture modification is difficult if a VQ codebook is used and if using Fenney’s

algorithm. Any indirection and reconstruction also adds to the latency of each

access.

From a cache performance standpoint, ignoring any possible codebooks, using

a fixed-rate encoding scheme increases the temporal and spatial locality of the

memory accesses since the same chunk of memory now “covers” a larger area of

the texture. However, if we take a large codebook into account, we need to deal

with the possibly poor spatial locality of accesses to the codebook since we will be

using the texture to direct the accesses to the codebook. We may also have to deal

with a potentially troublesome additional load on memory resources to store the
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codebook itself.

3.1.2 Hierarchical Data Structures

There has been recent work in using hierarchical data structures such as the quadtree

[LD91] and its three-dimensional counterpart the octree to provide a compact rep-

resentation of sparse data and adaptively sampled data. By adaptively sampled we

mean areas of low detail are represented with few texels or samples, and areas of

high detail are represented with many samples.

Figure 3.1: Quadtree partitioning of space.

A quadtree is based on subdividing a cell into four sub-cells, as shown in Figure

3.1. A node of the tree corresponds to a cell, and its ordered children to the

corresponding subcells. One or more children may be absent (see Figure 3.2) for

varying reasons depending on what the quadtree is storing.

Fernando et al. [FFBG01] use a quadtree to represent a shadow map efficiently.

A shadow map is a depth map from the point of view of a light source used to
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Figure 3.2: Quadtrees for space partitioning in Figure 3.1.

render shadows. Areas where there are depth discontinuities and hence need higher

resolution get higher levels of subdivision of the cells.

Frisken et al. [FPRJ00] use an octree to store an adaptively sampled distance

field. Each quadtree cell contains the sampled distance values of its four corners.

Subdivision only occurs if the distance field within the cell is not well-approximated

by bilinear interpolation of the cell’s data.

Benson et al. [BD02] use an octree to store a texture painted onto a three-

dimensional surface. Only cells that intersect the surface are stored, and similarly

to Frisken et al. subdivision only occurs if the texture is not well approximated by

interpolation of the cell’s data.

Unlike the fixed-rate encoding schemes, the quadtree/octree schemes do not

waste space on empty areas or areas that are well-approximated by a few samples.

The adaptive sampling also means that the quadtree/octree methods can control

the level of approximation in different areas independently. It is also possible to
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modify the texture on the fly [FFBG01]. However, the tree structure is not directly

suited for today’s real-time hardware. The use of many levels of indirection results

in high latency of access. The data structure is also not block oriented, which can

result in memory fragmentation. Memory fragmentation is an issue for real-time

systems as the methods needed to deal with it have relatively high memory and

processor time needs. The above also lead to poor locality of memory accesses

and wasted bandwidth consumption. Creation and editing of the data structure

requires algorithms that are complex to implement in hardware.

3.1.3 Rearranging Storage

The methods discussed here are based on saving space by discarding unused parts

of the texture and scaling down other parts (“adaptively sampling”), then cutting

up what remains and packing the pieces into a smaller texture.

A texture atlas [CHM99, CH02] is a sparse representation of a three-dimensional

(3D) solid texture. Consider an object shaded with a 3D solid texture. The surface

of the object is “cut up” into pieces, say along the individual triangles. Each of

the object’s triangles is mapped onto a shaded triangle embedded in a 2D texture

map. The triangles in the 2D texture may be packed tightly together to not waste

space. Texture coordinates on the object index into the 2D texture, and the 2D
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(a) original texture (512× 512)

(b) index texture (64× 64)

(c) data texture (256× 256)

Figure 3.3: The corresponding index and data textures for the original texture
for the uniform grid index method. We use α = 1 for all the data blocks, which
are of size 9 × 9 when padded. For the index texture, the R channel stores the
x-coordinate, and the G channel stores the y-coordinate. Since α is fixed, we do
not store scale factors in the index texture. We store the empty data block at
coordinates (0, 0), which means that the black parts of the index texture all point
to the empty block.

texture is used to shade the object. The texture consisting of packed pieces makes

it so that the existing MIP-mapping hardware does not produce proper results for

MIP-mapping. The packing also results in some artifacts like seams. This method

binds the texture to the object, making it unusable for any other object.

Kraus and Ertl [KE02] describe a method for adaptively representing texture

maps on current off-the-shelf graphics hardware. It could be described as adding
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an “index” to a texture atlas so the texture is not tied to a particular object, can

be adaptively sampled, and can discard unused parts of the texture. They use a

two-level representation of the texture map. The first level is a coarse uniform grid

covering the domain of the texture map, stored in a texture map (see Figure 3.3(b)).

Each grid cell contains a reference to a “data block” on the second level and a scale

factor, α. The “data block” is a scaled by α version of the part of the texture

covered by the grid cell. To ensure continuous interpolation, the texels at a block’s

boundary are replicated. Grid cells that do not cover any part of the texture’s

“domain” (e.g. grid cells that cover only transparent areas of a colour texture)

refer to a special “empty” data block whose texels are set to the default value (see

Figure 3.4). The data blocks are packed compactly into one texture (Figure 3.3(c)).

Sampling from the adaptive texture involves looking at the appropriate grid cell

in the “index texture” and finding where in the “data texture” the corresponding

data block is, then sampling from the data block.

This method compactly represents sparse textures through the use of the “empty”

data block, and the scaling down of some blocks can be viewed as a way of “adap-

tively sampling” the original texture.

As with the texture atlas, the packing of parts of the original texture into one

texture can result in seam artifacts. Existing MIP-mapping hardware does not

work properly with this method. Texture modification is a problem, and extra



CHAPTER 3. PREVIOUS WORK 44

Figure 3.4: On the left we have the index and original textures from Figure 3.3
combined so that the magnified index texture is transparently laid on top of the
original texture. On the right we have the data texture. The area in each circle is
joined to the corresponding data blocks in the data texture by the arrows.

texels need to be stored for each data block to prevent (some) seam artifacts.

The use of an index, while allowing the storage of only useful parts of a texture

and the adaptive sampling, presents its own set of difficulties. The index lookup

adds to the latency of access. There is a tradeoff between the index texture res-

olution and the amount of memory the data blocks occupy; as the index texture

resolution goes up, the minimum resolution of a data block needed to provide the

same or better level of detail goes down, and as the index texture resolution goes
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down, the minimum resolution of a data block needed to provide the same or better

level of detail goes up. Also for very large textures, say 216 × 216, that require a

high level of detail, it may be impossible to have a small index texture without

resorting to a multi-level index.

3.2 Rasterization Order, Texture Representation,

and Cache Design

Before we discuss issues in cache design for texture mapping we first define the

following term:

working set: The data that is actively in use at a given time [Den68].

A working set size can be detected in a graph of miss rate versus cache size or the

miss rate curve by observing where “steps” (see Figure 3.5(a)) occur in the graph.

Usually there is a hierarchy of working sets (see Figure 3.5(b)), each step down

corresponding to some architectural factor, e.g. the cache becomes large enough

to contain the texture required for a scanline, for a triangle, or the entire screen.

One possible texture representation in memory is to have the texels occupy a

contiguous 2n1 × 2n2 array, where n1, n2 ∈ N , in row-major or raster order. The

consecutive memory blocks they occupy cover the texture as in Figure 3.6. It is
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miss
rate

cache size

(a) A miss rate curve showing a step down
indicating the presence of a distinct work-
ing set.

miss
rate

cache size

first working set size

(b) A miss rate curve showing several steps
down indicating the presence of a hierarchy
of distinct working sets.

Figure 3.5: Miss rate curves showing working set sizes.

also conventional to rasterize one triangle at a time in raster order. Previous work

on the characterization of direct texture mapping indicates that when using the

rasterization method and texture representation described, the first working set is

small compared to the amount of texture data used to render a scene [HG97]. Work

on using a secondary cache to utilize frame-to-frame coherence indicates that the

inter-frame working set size is on the order of several megabytes [CBS98]. Since

a primary cache of several megabytes is unreasonable, we restrict our interest to

working sets within a single frame. From now on, the term “working set” will refer

to the first working set, unless otherwise noted.

Consider the following maps describing a direct texture lookup:
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1 2 3 4 5 6 70
8 9 10

Figure 3.6: How a texture might be covered by memory blocks. Each small box
indicates the texels covered by a memory block, and is 1 texel high. The boxes are
arranged in texel raster order.
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As we can see from the maps, the rasterizer “generates” the initial locality that

results in spatial and temporal locality in memory. Of the maps shown, we only

have control over two: the texture coordinate to memory map, i.e. base texture

representation and the rasterizer.

3.2.1 Base Texture Representation

The simple texture representation shown in Figure 3.6 has a miss rate curve for a

fully associative cache that is sensitive to orientation when raster order rasterization
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is used [HG97]. It is easy to see why this is so as for raster order rasterization the

working set of data is roughly the texture data requested to texture a scanline

[HG97]. The number of memory blocks required for texturing a scanline is small

if the scanline runs horizontally through the texture, and large if it runs vertically

through it. Also, since cache sizes, texture dimensions, and block dimensions are

powers of two, the simple representation maps texels in the same column to the same

cache index, resulting in many conflict misses for a non-fully associative cache if

we are unlucky enough to have the transformed rasterization curve travel vertically

down the texture. One way to ameliorate these orientation related problems is to

change the base texture representation.

A blocked or tiled representation is shown in Figure 3.7. Texels within each

square-shaped region of the texture are stored in a contiguous array of memory.

The consecutive blocks are arranged in raster order in the texture. This reduces

the effect the orientation of the texture has on the working set size compared to the

simple representation by reducing the variance in the number of blocks required to

render, or “cover”, a scanline.

With a blocked representation comes the question of the relationship between

block size and cache line size. Hakura et al. [HG97] determined that the best block

size is one that matches the cache line size. They found that increasing the line

size without blocking and increasing the block size correspondingly degrades cache
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Figure 3.7: A texture using a blocked representation. Each box indicates the texels
covered by a memory block. The boxes are arranged in raster order.

performance.

A blocked representation (with larger block and cache line size) reduces the

number of capacity misses for cache sizes smaller than the working set size by

better translating the initial spatial locality into spatial locality within a memory

block. It also reduces the number of conflict misses by trading conflicts between

neighbouring texels in the conventional map for conflicts between neighbouring

texels in neighbouring blocks which occur far less frequently [HG97].
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3.2.2 Rasterization Order

Using a blocked texture representation, Hakura et al. experimented with tiled ras-

terization in which the tiles are arranged in raster order and raster order is used to

order the pixels within the tiles (see Figure 2.7). They show that the texel access

pattern converges to that for conventional raster order rasterization for tiles that

are too small or too big, so “medium” sized tiles are the best. They also show that

for a texture block size of 8 × 8 texels, a tile size of 8 × 8 pixels is best. Tiled

rasterization has little effect on scenes with small or moderately sized triangles.

However, for scenes with large triangles it reduces the working set size by increas-

ing the spatial locality. It also reduces the number of conflict misses, though not

enough so that a 2 or 4-way set associative cache would have a miss rate curve near

the miss rate curve for a fully associative cache. They explain that this is due to

the working set being restricted to a more spatially contiguous region of the texture

and the working set size being smaller so fewer blocks in it can possibly conflict.

McCormack et al. present metatiling [MM00], in which there are multiple levels

of tiling with tiles “nested” within supertiles as in Figure 3.8. They suggest using

multiple tiling levels with the tile size at each level selected so that the resulting

working set sizes correspond to the sizes of the various levels of memory in use,

such as the caches in a multi-level cache system and the frame buffer.
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tiling level 1

tiling level 2

tiling level 0: squares are pixel sized

Figure 3.8: Rasterization using metatiling. Rasterization at all tiling levels for this
example is in raster order.

McCool et al. suggest using Hilbert order rasterization to improve spatial locality

at all scales [MWM01]. Such a scheme, or one based on the Z-curve, is equivalent

to metatiling at all scales. This is a simple way to to ensure that each memory

level has a working set size corresponding to it. The high spatial locality is also

expected to be robust under a programmable shader.

3.2.3 Conflict Misses

For a single MIP-map texture pyramid using a blocked representation, most conflict

misses occur for two reasons [HG97]:

1. There is a conflict between blocks in neighbouring MIP-map levels due to
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trilinear interpolation.

2. There is a conflict between neighbouring blocks in the same column on the

same MIP-map level.

A two-way set associative cache takes care of most of the conflicts due to MIP-

map levels [HG97]. Igehy et al. use two direct mapped caches, one each for odd and

even MIP-map levels, to deal with conflict misses between MIP-map levels [IEP98].

The second case is more difficult to deal with as the path through the texture

is highly dependent on the rasterization method and the scene. One method that

greatly reduces this type of conflict miss is to use tiled rasterization [HG97]. Most

other research on this is based on rearranging the blocks in a blocked representation,

i.e., changing the texel addressing scheme.

Here is a list of different addressing schemes. Note that this does not affect

capacity misses as it merely permutes the order of the blocks of texels in memory.

4D: What we have heretofore described as a blocked or tiled representation, this

scheme is prone to conflicts between neighbouring blocks in the same column

[HG97].

4D padded: Shown in Figure 3.9, this scheme avoids conflicts between blocks in

the same column by modularly shifting each row of blocks a fixed distance
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texture blocks

pad blocks

Figure 3.9: 4D padded representation, with n = 2. Based on a diagram from
[HG97].

from the previous row in address space by padding the end of each row with

n dummy blocks. Hakura et al. show that for their scenes and n = 4, it is an

an improvement upon the 4D representation for a 2-way set associative cache

[HG97]. It has the disadvantage of wasting memory and adding latency in

texel addressing.

6D raster: This scheme has two levels of tiling (see Figure 3.10(a)). The tile size

in the upper level is chosen to match the size of the cache. Both levels of tiles
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(a) raster (b) z-order

Figure 3.10: 6D blocked tiling. Based on a diagram from [HG97].

are arranged in raster order. Using it results in a reduction in conflict misses

compared to using 4D-padded so that the miss rate is close to that of a fully

associative cache [HG97].

6D Z-order: This scheme is the same as 6D raster (see Figure 3.10(b)) except

the tiles are arranged in Z-order instead of raster order within each supertile.

This arrangement makes it so that any four adjacent blocks will have different

cache indices [IEP98].
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These various texel addressing methods vary in the amount of time required to

compute them.

3.2.4 Parallel Access to Neighbouring Texels

With MIP-mapping and trilinear interpolation enabled, texels are accessed in 2× 2

blocks from adjacent levels, so it is advantageous to be able to retrieve them in

parallel. One way to do this is to interleave the texels across multiple cache banks

[Mol95, CBS98]. Distributing neighbouring texels across different cache banks in-

volves arranging the texels in Z-order within each block. Similarly to arranging

blocks in Z-order in the texture, this ensures that neighbouring texels do not map

to the same bank and conflict with each other.

3.2.5 Reducing Latency

Igehy et al. use prefetching in a specialized texture mapping cache architecture

to give performance near that of a zero-latency memory system, even with high

memory latency [IEP98]. This performance comes with the provision that there be

no dependent texturing involved.



Chapter 4

A B-tree Implementation of

Sparse Textures

Of the previous work in hardware texture compression the one best suited for

general sparse textures is the method devised by Kraus and Ertl [KE02]. However,

their method has some disadvantages when applied to real-time shading that led

us to explore another implementation and specialized caching hardware to support

it.

56
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4.1 Our Implementation

Similarly to the grid method, our implementation is based on adding an index so

only the necessary parts of the texture need to be stored. We choose to index our

data using a B-tree. Consequently we must also tune the B-tree parameters for

good performance.

4.1.1 The B-tree

Our implementation is designed with the assumption that memory is divided up

into blocks of a fixed size that are cached, and that loading a block into the cache

is “expensive” while accessing a block that is already in the cache is “cheap”. This

models graphics hardware at the present time and for the immediate future. Under

these restrictions, we will wish to minimize the number of blocks accessed when ac-

cessing a texel. Also, in order to simplify memory allocation and deallocation and

avoid memory fragmentation issues, we want an implementation with data struc-

tures whose requirements for a contiguous chunk of physical memory is restricted

to the size of a memory block. Assuming a one-dimensional key space, a data

structure well suited for indexing under the given constraints is the B-tree [LD91]

and its variants.

Before we define a B-tree we need the definition of an (a, b)-tree. Let a ≥ 2,
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b ≥ 2a− 1. An (a, b)-tree is one of the following:

1. The empty tree.

2. A leaf.

3. A tree for which

• All non-leaf and non-root nodes have c children, where a ≤ c ≤ b.

• The root has c children where 2 ≤ c ≤ b.

• All leaves are at the same depth.

We now define a B-tree of order b as an (a, b)-tree where b = 2a − 1 and the

following search property for internal nodes holds:

If key value K is stored in an interior node between pointers to subtrees

T and T ′, then every key in T is less than or equal to K and every key

in T ′ is greater than K. [LD91]

In order to make b as large as possible and thus the tree height as low as

possible, we only store keys and their associated data at the leaves of the tree. For

our purposes, each leaf consists of a memory block containing a set of (key, data)

pairs. The internal nodes only store index values to direct the searches and pointers

to children nodes. Also, we choose b to be as large as possible while still fitting
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57 74 76 816 20 3331 leaf blocks

88

index blocks

= unused space

= path taken searching for key 31

= path taken searching for key 76

Figure 4.1: This is an example of a B-tree for b = 3. The data stored are (key, p)
pairs, where p is a pointer to one of the blocks with a grid of data in it. Only the
subtree to the left of the index 88 in the root node is shown.

each node into a memory block. This minimizes tree height while producing a one-

to-one mapping from nodes to memory blocks. Figure 4.1 shows an example of a

B-tree and how to search it. Searching a node to find the appropriate child pointer

to follow can be implemented in constant time in hardware since the block-size is

fixed.

The B-tree is obviously designed for block-oriented transfers and a memory

allocation/deallocation scheme based on fixed-size memory blocks. It also supports

efficient insertion of data [LD91]. The B-tree is also self-balancing, with the height

of the B-tree being of orderO(log n). Unfortunately the B-tree has the disadvantage

of permitting the nodes to be only half full resulting in wasted memory and a higher

tree height when random insertion is used. The remedy is compaction.
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(a) The original tree.
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6 33

(b) The compacted tree.

Figure 4.2: Illustration of B-tree compaction.

Compacting a B-tree (see Figure 4.2) involves rearranging the distribution of

data in the leaves and the indices in the internal nodes to make the nodes as full as

possible. Since it possibly involves all nodes in the B-tree, it is not as efficient an

operation as insertion or deletion which involves O(h) nodes, where h is the height

of the B-tree. However, if b is large, the number of nodes in the B-tree is small.
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4.1.2 Basic Description

For now assume we are dealing with a 2-D texture with default value d. We divide

the texture up into n × n blocks, where n is chosen to be as large as possible

and have the block of texels still fit into a memory block i.e. we choose a blocked

representation. Only blocks that have a texel with a non-d value, i.e. occupied

blocks, are kept; unoccupied or void blocks are “discarded”. Each occupied block

has a key k associated with it that can be computed from the (x, y)-coordinates of

the origin of each block; we call the method of computing k the index scheme.

The (k, pointer to block) pairs are stored in a B-tree. It is easy to see how this

method can be extended to higher-dimensional textures.

As a confusion avoiding measure, henceforth we refer to B-tree index blocks and

leaf blocks as index blocks, occupied blocks as texture blocks, and occupied and

void blocks as (texture) data blocks.

Looking up a texel at position (x, y) involves the following:

1. Compute k from (bx
n
c, b y

n
c).

2. Search the B-tree for key k. If k is not in the B-tree,

a) Return p = 0. We could additionally return at constant cost a key-

range [k1, k2] where k1 <= k <= k2 and ki corresponds to a void-block
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∀ki ∈ [k1, k2]. k1 and k2 are obtained from the keys in the B-tree that

bracket k in the ordering.

Else

b) Return the appropriate pointer p.

3. Return the texel. If p = 0,

a) Return d.

Else

b) Retrieve the block b pointed to by p

c) Compute the offset i into the block from (x− bx
n
cn, y − b y

n
cn).

d) Return the texel b[i].

Note that unlike the grid method, there is no scale factor stored to implement

a form of “adaptive sampling”. We also do not pad the texture blocks.

4.1.3 B-tree Parameters

Naturally it is best for the texel searches to be as efficient as possible. In order to

accomplish this we need to tune the B-tree parameters in conjunction with other
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external parameters to optimize performance. These B-tree parameters are the

block size and the index scheme.

Block size

The block size affects the height and size of the B-tree, the amount of memory

needed to store the texture data, and the time taken to load a memory block

into the cache. These effects in turn affect the latency of texel access, the texture

compression ratio, the miss rate, and the bandwidth consumption.

As the block size increases, tree height decreases so the number of index blocks

accessed on a texel lookup also decreases. However, the time taken to load a memory

block into the cache increases. Also, more memory is required to store the texture

data. For a fixed cache size, the number of cold misses decreases. The opposite

occurs when the block size decreases.

Index scheme

The use of a B-tree requires an index scheme that imposes a strict one-dimensional

order on each texture block based on the location of the block. The curves men-

tioned in the section on rasterization order are appropriate for 2-D textures, as

are their higher dimensional analogues for higher dimensional textures. In fact,

a sufficiently high resolution quantized approximation of any space-filling curve
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f : [0, 1]n → [0, 1] is also appropriate [Ma02, MM02]. The block arrangements

described in Section 3.2.3 also qualify for 2-D textures.

We choose to test using raster order, Z-order, and Hilbert-order curves. The

main concerns with the choice of index scheme are computational expense and

locality preservation.

The computation of the key k for a texel at (x, y) adds to the access time so we

want an index scheme that is efficient. Z-order is particularly efficient as it can be

implemented in hardware to be zero cost (using bit interleaving), while Hilbert is

more time consuming to compute as the bits of k need to be generated sequentially.

Computational cost must be balanced with the need for a spatially coherent curve.

Consider a small set of consecutive texel requests and their corresponding keys.

If the interval containing the keys is small, it restricts the number of paths down the

B-tree involved in servicing the texel requests which translates into better temporal

locality of the accesses to the index blocks of the B-tree. While we expect an index

scheme with good spatial coherence to be apt for the task, the rasterization order

and the orientation of the texture also need to be taken into account, as they

interact with the index scheme to affect the width of the interval (see Figure 4.3).

Regardless of the index scheme chosen for ordering the texture blocks, in order

to ensure parallel access to neighbouring texels as described in Section 3.2.4, the

texels in each block need to be arranged in Z-order.
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(a) The texture. (b) Texture showing block occupation.

Figure 4.3: In (b) the white areas are occupied blocks and the gray areas are the
intervals between the keys in the B-tree. The index scheme used is raster order.
Note that if we travel vertically down the texture a much larger interval is needed
to contain a set of texel requests compared to the case where we travel horizontally
across the texture.

4.2 Motivation

Both disadvantages to the uniform grid index method and advantages over the

standard texture storage method motivate our implementation.

4.2.1 Uniform Grid Index Method

The use of a uniform grid to index the data blocks of a texture as described by

Kraus and Ertl [KE02], possibly using a multi-level index, is similar to the use of

page tables [Tan92] to index the occupied parts of a range of virtual memory. While
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texture index

Figure 4.4: A texture and corresponding magnified index texture using the adaptive
texture scheme described by Kraus and Ertl [KE02]. Blank parts of the index refer
to the “empty” data block. Note that multi-level indexing for a reasonable block
size will not reduce the space occupied by the index.

page tables work for virtual memory where the memory occupation pattern has a

small number of contiguous segments, the occupation pattern for textures may not

follow an analogous pattern. In fact, it is easy to create a sparse texture for which

the use of more than one level of indexing would not save memory over using just

one level of indexing (see Figure 4.4). The result is that the space taken up by the

index does not necessarily scale with the texture occupancy.

Another concern is that the index texture can conflict with the data texture in

the cache. The graphs in Figures 4.6, 4.7, 4.8, and 4.9 show that an extra level of
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associativity or a separate cache is needed to deal with the conflict misses induced

by the index if the cache is small or the memory block size is large for densely

occupied portions of a sparse texture. This necessity obviously extends to an extra

level of associativity or separate cache being needed for each level of indexing.

Comparing the bandwidth consumption of the uniform grid index method to

that of the standard dense texture storage method when loading blocks with nothing

interesting in them consumes no bandwidth (Figures 4.10, 4.11, 4.12, 4.13), we

see that the bandwidth consumption overhead involved in the uniform grid index

method is high. Most of the overhead can be attributed to the texel padding needed

to minimize seam artifacts, and the wasted bandwidth from the “edge effect” of

the memory blocks not perfectly covering the area in use at a time.

The requisite dependent texturing in the uniform grid index method means high

latency of access that cannot be covered by a prefetching architecture such as that

proposed by Igehy et al. [IEP98].

These areas for improvement motivate our implementation of sparse textures

and the supporting hardware.
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name original(512× 512) index (64× 64) data data resolution

cat 256× 256

cellorig 512× 512

star 512× 512

Figure 4.5: The 512× 512 texture is cut up into 8× 8 tiles (resulting in a 64× 64
index texture) that are padded to 9×9 and are processed in raster order and stored
in the data texture in raster order. The scale factor for all the data blocks is α = 1.
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Figure 4.6: The graph of bandwidth consumption versus cache size using the
adaptive texture map method of Kraus and Ertl [KE02] for the cat texture in
Figure 4.5 for a memory block size of 64 bytes or 4 × 4 texels. All textures are
represented in memory using the blocked representation, with the blocks arranged
in Z-order in the texture. The rasterization order is Hilbert order; the combination
of this rasterization order and the arrangement of the memory blocks in the texture
was chosen to be shown because it gives the best performance. Other parameters:
the scene is a single triangle zoomed to full screen (256× 256) and rotated so that
the texture is at a 90 degree angle, the sampling method is bilinear interpolation,
the eviction policy is LRU, and the cache line size is matched to the memory block
size.
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Figure 4.7: This is the same as in Figure 4.6 except the block size is (a) 256 bytes
(8× 8) and (b) 1024 bytes (16× 16).
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Figure 4.8: This is the same as in Figures 4.6 and 4.7 except the texture is cellorig.
The block size for each graph is (a) 64 bytes (4× 4) (b) 256 bytes (8× 8) and (c)
1024 bytes (16× 16).
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Figure 4.9: This is the same as in Figure 4.8 except the texture is star. The block
size for each graph is (a) 64 bytes (4× 4) (b) 256 bytes (8× 8) and (c) 1024 bytes
(16× 16).
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Label Description
D Conventional sampling from the original cat texture in Figure

4.5. The sampling method is bilinear interpolation with no MIP-
mapping to match the Kraus and Ertl method. The other param-
eters used to generate the graph line are as in Figure 4.6.

M Same as D except that blocks that only store the default value do
not have the bandwidth they contribute counted.

G Uses the uniform grid indexing method of Kraus and Ertl using the
index and data textures for the cat texture in Figure 4.5.

Figure 4.10: This graph shows the bandwidth used by the various methods of
storing the cat texture from Figure 4.5 for different types of caches. The descriptions
of the various methods used are in the table. The memory block size is 64 bytes
(4× 4 texels).
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Figure 4.11: This is the same as in Figure 4.10 except the block size is (a) 256 bytes
(8× 8) and (b) 1024 bytes (16× 16).
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Figure 4.12: This is the same as in figures 4.10 and 4.11 except the texture is
cellorig. The block size for each graph is (a) 64 bytes (4× 4) (b) 256 bytes (8× 8)
and (c) 1024 bytes (16× 16).
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Figure 4.13: This is the same as in Figure 4.12 except the texture is star. The block
size for each graph is (a) 64 bytes (4× 4) (b) 256 bytes (8× 8) and (c) 1024 bytes
(16× 16).
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4.2.2 Advantages of the B-tree Index Method

Besides advantages over the uniform grid index method, there are more general

benefits to the B-tree index method.

One advantage over the uniform grid index method is the B-tree index method

does not require texture blocks to be padded. Seam artifacts are also not an issue.

Another advantage of the B-tree method is the size of the B-tree is based on the

number of (key, pointer) pairs stored in it, not the texture size, so the index size is

directly related to the amount of memory needed to store the texture data of the

sparse texture, which is important for large high dimensional textures. Our method

is also intended to work with existing MIP-mapping hardware. Finally, since the

B-tree data structure supports on-the-fly editing if the memory allocation is done

in fixed-size blocks, we get as a result on-the-fly texture editing.

An important general benefit arises from the B-tree being a block-oriented data

structure with fixed-size blocks. Since all the blocks, both index and texture blocks,

are the same size, memory allocation and deallocation can be done in such a way

that there is no memory fragmentation. Memory fragmentation is a problem be-

cause most memory systems needed to deal with it are not compatible with a

real-time system, and may have relatively high space and processor time costs.

No memory fragmentation means that the memory systems necessary to deal with
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memory fragmentation are not needed, nor the associated space and processor time.

4.3 Cache Support

There are many cache design techniques used to improve performance by reducing

the miss rate, the miss penalty, and the hit time. Many are mentioned in Section

2.2.4. Some of these techniques are complicated to implement. The relative impact

of the various techniques is also hard to quantify without actual hardware imple-

mentations. Most do not directly address the problems posed by our method of

storing and accessing the texture, but work in a more general fashion that would

still work for our method. As a result, we focus our cache design efforts on coarse

solutions that deal directly with the problems introduced by the B-tree indexing.

We focus on minimizing the extra latency and bandwidth consumption induced

by the indexing. We also try to translate not storing void parts of the texture

into reductions in bandwidth consumption and miss rate. The only hardware cache

parameters we are concerned with are the size, the associativity, and the eviction

policy.
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4.3.1 Dealing With the Index

There are two main issues with the index: latency and extra bandwidth consump-

tion.

Latency

As stated before, the use of an index to store only blocks we need to store is

analogous to the use of page tables to index virtual memory, which have similar

latency issues. The solution for page tables is to take advantage of the principle

of locality and keep a small fully associative cache or translation lookaside buffer

(TLB) to map virtual addresses to page frames, so one only needs to do the full

page table lookup if the virtual address needed is not in the TLB [HP03]. In the

case where the latency involved in the TLB lookup is unwanted, a solution is to use

virtual addresses for both the cache index and tags instead of the physical address

allowing the elimination of the TLB. Such caches are called virtual caches as

opposed to physical caches [HP03].

Virtual caches are not widely adopted as there are issues arising from having

multiple processes [HP03]. Fortunately, most of these issues are not relevant to

the case of multiple textures. The only issue that applies is the case where one

switches between different processes/textures, requiring a cache flush. The solution
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is simply to widen the index/tag to include a process/texture identifier. We use

such a virtual cache with a texture identifier prepended to each block’s key as the

tag in our block-based caches.

Using a virtual cache solves other problems besides the latency problem. It

unifies the treatment of void blocks and occupied blocks in the texture, at the

disadvantage of having void blocks fill up cache entries. Most importantly we can

apply the block permutation techniques described in Section 3.2.3 to reduce conflict

misses by choosing the index scheme carefully.

Due to the spatial locality of texel accesses consecutive lookup paths down

the B-tree tend to have similar prefixes which we can leverage to reduce both the

average latency for a lookup and bandwidth consumption for index blocks. One

way to use it is to store n paths per texture unit and search the paths backwards,

then forwards for the appropriate block for a given key in parallel like in an n-

way associative cache. Most of the time we should not have to search very far

backwards whereas we would have to travel the whole height of the B-tree if we

searched forwards.

Bandwidth Consumed by the Index Blocks

If index blocks are not cached, we must load h + 1 index blocks on a cache miss

where h is the height of the B-tree. This is an unwanted scaling of the bandwidth
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requirements which motivate us to investigate the effect of caching B-tree index

blocks in our tests.

Suppose the index blocks are stored in the same cache as the data for the

texture. This is possible for virtual caches if we add a bit to the tag to distinguish

between an index block and a texture data block. If the index blocks in use at the

time are needed frequently, that means that a lot of B-tree lookups are needed so

there must be a lot of misses for the texture data. In this scenario the index blocks

that are commonly used, like the ones near the root of the tree, basically live in

the cache and exacerbate the bad situation. If the index blocks in use at the time

are not needed because the cache performance with respect to the actual texture

blocks is good, we expect the index blocks in use to be evicted by the time they are

needed again, thus loading them into the cache only served to evict texture blocks.

It is with this reasoning that we expect a separate cache for the index blocks to be

needed and to noticeably lower the miss rate.

4.3.2 Reducing Bandwidth Consumption and the Miss Rate

Due to the Texture Data

Bandwidth savings come automatically from not reading (or storing) void blocks

with the amount saved dependent on the texture. Any additional bandwidth usage
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would have to come from the effect of the index blocks which we discuss in the

section on the index. The same is not necessarily so for the total miss rate.

Recall that we use the term texture block to refer to an occupied block in

the texture. As discussed previously, to reduce latency we can use a virtual cache

which treats void blocks and occupied blocks the same by indexing the cache based

on the key. This means that while bandwidth consumption is reduced, the miss

rate is not. Also, the void blocks take up valuable cache space despite not needing

all of it. One solution to this is to have a separate cache for the void blocks that

does not have unneeded storage space.

Instead of storing void-blocks individually, we can use a fully associative cache

to store a set of key intervals whose blocks are void instead, gleaned from a lookup

for a void-block in the B-tree. We call this sort of cache a void-range cache.

Looking up a block in the void-range cache then involves checking whether the

(modified) key falls in any of the intervals in the cache in place of matching a tag

stored in the cache. By using a range [k1, k2] instead of a single key k, we compress

multiple blocks which could take up multiple cache entries into one entry. This

should result in a smaller working set in terms of the number of cache entries.

One thing to note is that if we use key intervals [k1, k2], the index scheme in

combination with the occupancy pattern of the texture affects the shape of the

individual intervals in texture space. This, in interacting with the rasterization
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order and the texture orientation, could affect the working set size. For example, in

Figure 4.3, travelling vertically through the texture would result in a larger working

set size than travelling horizontally through it.
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Test Setup

In this chapter we describe the test setup and the input data we use. We also

explain why particular data are chosen.

5.1 The Simulation Process

The experimental setup is based on trace driven programs arranged in a pipeline,

shown in Figure 5.1. The individual components of the pipeline work as follows:

Generate texel requests: This stage takes as input a scene description and pa-

rameters on how to render it e.g. window size, rasterization order, geometry,

shaders, and produces the texel requests that result from rendering the given

scene.

82
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Generate 

requests
texel

key−ranges
requests and

memory block
Convert to Generate

cache
misses

statistics

and rendering parameters
scene description

specifications on the representation
in the scene to texture files,
mapping of textures

of the textures

cache design description

statistics
Generate

Figure 5.1: The inputs and data flow in the simulation pipeline used for the tests.

Convert texel requests to memory block requests and key-ranges: This stage

uses a mapping from scene textures to sparse texture files and specifications

on the representation of the sparse textures, including memory block size, to

translate the texel requests to the necessary memory block requests and key-

ranges. The key-ranges are produced to enable the simulation of range-caches

and virtual caches.

Generate cache misses: This part of the pipeline takes as configuration input

cache design specifications, simulates the cache(s) on the output from the

previous stage of the pipeline, and produces the cache misses that are gener-

ated. The cache block size used is identical to the memory block size used in

the previous stage.
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1. box 2. teapot 3. venus 4. ground

5.(a)trifs-0 5.(b)trifs-45 5.(c) trifs-90 texture

Figure 5.2: Scenes used for generating texel requests, rendered with the bordered
checkerboard pattern at the bottom right.

Generate statistics: Several programs are used in this stage to generate a variety

of types of output. We plot bandwidth versus cache-size and miss-rate versus

cache-size graphs using data generated from the previous stage in the pipeline.

Unlike other parts of the pipeline, a statistic generating program may take

the output of many iterations of the previous parts of the pipeline, typically

while varying a single variable, to produce its output. This deviation from a

typical pipeline is indicated by the dashed line for the corresponding box.
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5.2 Test Scenes

The test scenes (Figure 5.2) each consist of a simple object with a 2-D texture image

mapped onto its surface. The scenes were chosen to give a variety of triangle sizes

and MIP-map level changes. The texture coordinates were chosen so that there is

no tiling except in the cases of “ground” and “box”, and there is as little texture

magnification as possible. This is to limit the working set size reducing effect of

tiling and texture magnification, which has already been explored in previous work

[IEH99].

The image resolution of each scene was selected so that most of the texel accesses

were to MIP-map levels of resolution 512×512 and 256×256. Lower resolution levels

would be densely occupied, and higher resolution levels would require a larger image

resolution, vastly increasing the amount of data needed to be generated, processed,

and stored.

Here is a short description of each scene:

Scene 1: box

image resolution: 256× 256

triangle size: large

LOD: gradual changes in the level-of-detail
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Scene 2: teapot

image resolution: 512× 512

triangle size: small

LOD: sharp changes in the level-of-detail around the silhouette edges

Scene 3: venus

image resolution: 512× 512

triangle size: moderate

LOD: sharp changes in the level-of-detail around the curves

Scene 4: ground

image resolution: 1024× 1024

triangle size: small and moderate

LOD: large range in level-of-detail, discontinuities in level-of-detail around

mountain silhouettes

Scenes 5a,b,c: trifs-0, trifs-45, trifs-90: This is a set of theoretical test scenes

consisting of a single zoomed-in triangle chosen to eliminate the working set

size limiting effect of geometry. There is also only one constant level-of-

detail. The suffix of the name of a scene indicates the rotation in degrees of
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the triangle counter-clockwise about the viewing axis; the various rotations

allow for testing how texture orientation affects performance.

image resolution: 256× 256

triangle size: one triangle that fills the screen

LOD: one constant level-of-detail

5.3 The Textures

The set of textures used is shown in Figure 5.3. The textures chosen give a variety

of texture occupation patterns and occupation densities.

5.4 Other Parameters

The use of a B-tree to index the n × n blocks of the texture induces a blocked

representation of the texture. The selection of the index scheme used to index the

blocks then corresponds to the selection of a way to order the set of both occupied

and unoccupied blocks of the texture. The permutation of the texture data blocks

selected affects several things:

key-intervals: As noted in the section on our implementation of sparse texture,

the shape of the parts of the texture that are represented by a single key-
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cat cellorig check

dense funny3 galaxies

sine11-1 sine11-45 sine11-91

Figure 5.3: The test textures.

interval is affected by the index scheme, which could affect the working set

size for a void-range cache. The shape of key-intervals when the index scheme

is raster order tends towards long and thin. The shape of the key-intervals

for Hilbert and Z-order tends to be less anisotropic, and closer to a square

(Figure 5.4).

conflict miss avoidance: Since we use virtual caches, with the key for each block
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texture r z h

Figure 5.4: The texture cellorig and how the void key-intervals are distributed in
it for various index schemes. The white areas are occupied blocks, the gray areas
are the void key-intervals.

as the virtual address for the block, the B-tree index scheme used affects where

in the cache a block is placed for a non-fully associative cache. Arranging the

blocks in raster order results in conflict misses between blocks in the same

column. Using Z-order ensures that any four adjacent blocks will not map

to the same cache-index (for a cache that holds more than four entries).

Hilbert order does not ensure that any four adjacent blocks will not conflict,

but neither does it have anything as bad as all blocks in the same column

conflicting.

cost of computation: The effects of the factors above must be balanced against

the cost associated with the scheme. Z-order can be implemented to be zero-

cost in hardware by interleaving the bits of the x and y coordinates. Hilbert

order keys must be generated bit-by-bit sequentially.
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We denote the raster order, Z-order, and Hilbert order index schemes by r, z,

and h respectively. They cover a range of behaviours for all the factors listed.

Here are descriptions of the other test parameters:

block size: We test using block sizes of 64, 256, and 1024 bytes a 4-byte texel, and

32-bit keys and pointers. These correspond to 4 texels× 4 texels, 8 texels×

8 texels, and 16 texels× 16 texels respectively.

rasterization order: The rasterization orders we test are raster order, Z-order

and Hilbert order. We denote them by the symbols R, Z, and H respectively.

Hilbert order is tested because of its high spatial locality. Raster order is

tested as a conventional case and because it is at the other end of the scale of

spatial locality. Z-order is tested because it is between the other two in the

scale of spatial locality, and is simpler than Hilbert-order rasterization.

sampling method: We use trilinear sampling from a MIP-map pyramid in most

of the tests because it is an anti-aliasing feature common across most modern

graphics hardware, and the MIP-mapping is needed for coherent memory

accesses in order to ensure good cache behaviour. We use table FELINE

sampling to test the effects of less coherent texture accesses due to the use

of an anisotropic filtering method. Some tests use bilinear sampling from the

nearest MIP-map level to restrict the sampling to one level of the MIP-map.
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shader: We use the function test turbulence described in Section 2.1.3 to rep-

resent the effects of a programmable shader in our tests. The parameter

controlling the degree of turbulence is ω.

shader derivatives: Whether or not to use shader derivatives when computing

the level of detail for MIP-mapping is an option.

cache design: We vary the cache design as described in Section 4.3. If the cache

design allows for a range of cache associativities, we run tests with 1, 2, 4,

8-way set-associative, and fully associative caches. We also vary the eviction

policy between LRU, FIFO and optimal.

5.5 Metrics

We use the bandwidth consumption curve as the primary measure of cache perfor-

mance. Note that the bandwidth consumption curve is the miss rate curve scaled

by the block size.

It is hard to quantify the average memory access time without a hardware

implementation. The hit time can possibly vary depending on whether there is

a separate void cache and how a separate void cache is implemented. The miss

penalty is also variable as no texture data needs to be downloaded if the miss
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involves a void part of the texture. The use of an index cache also contributes to

variation in the miss penalty. Because of these complications, we use the average

number of index blocks accessed to lookup a texel as our measure of the extra

latency due to the indexing.
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Results

In order for the B-tree indexing method to be a viable alternative to other sparse

texture compression methods and the standard dense texture storage method, it

must demonstrate good texture compression, lower bandwidth consumption, and

low additional latency. This section provides the results and arguments that show

that our method satisfies all the requirements.

6.1 Summary of Unimportant Results

We found the following in our tests:

• The anisotropic nature of rasterization order R and index scheme r resulted

in poor performance.

93
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• Rasterization orders H and Z produced similar results.

• Index schemes h and z produced similar results.

• The combination of rasterization order H or Z and index scheme z produced

negligible conflict misses between neighbouring blocks. When index scheme h

was used instead, we got somewhat more conflict misses at small cache sizes,

• The H/Z, h/z combination was also tolerant of miss rate increasing factors

like a turbulence shader and table FELINE sampling when shader derivatives

are used.

• Using FIFO was comparable to using LRU.

Due to the above we will use rasterization order H, index scheme z, a fully

associative cache, and LRU eviction policy for demonstrating most of the results.

We also confirmed previous work showing that the rasterization order used has

little effect on the miss rate when the triangles are small [HG97]. In the case of

rasterization orders H and Z, this resulted in the results improving as triangle size

increased, with teapot scene giving the worst miss rate/bandwidth consumption

curves, and the trifs scenes giving the best ones. We will usually use these two

scenes to demonstrate the results.

Unless otherwise specified, the graphs shown are for block size 256.
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6.2 Texture Compression

The tables in Figures 6.1 and 6.2 give the texture compression ratio with and

without the index overhead for various textures and block sizes, while the table in

Figure 6.3 gives the index overhead as a proportion of the amount of memory used

to store the occupied blocks.

Both Figures 6.1 and 6.2 demonstrate the memory needed to store the texture

roughly scaling with the texture occupancy. Figure 6.3 shows that the index over-

head is unacceptable for a block size of 64 bytes. Figure 6.2 shows that the extra

memory needed due to the blocking, or the “edge effect”, is high for a block size of

1024 bytes.

Texture
block size = n bytes

n = 64 n = 256 n = 1024

cat 0.15 0.15 0.22
cellorig 0.31 0.35 0.47
check 0.75 0.79 0.96
dense 1.17 1.03 1.01
funny3 0.07 0.08 0.12
galaxies 0.22 0.32 0.46
sine11-1 0.23 0.30 0.49
sine11-45 0.32 0.42 0.70
sine11-91 0.23 0.31 0.50

Figure 6.1: The compression ratio of the B-tree indexing method for the 512× 512
level of the MIP-map.
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Texture
block size = n bytes

n = 64 n = 256 n = 1024

cat 0.13 0.15 0.21
cellorig 0.27 0.34 0.47
check 0.64 0.76 0.95
dense 1 1 1
funny3 0.064 0.082 0.12
galaxies 0.19 0.3 0.46
sine11-1 0.2 0.29 0.48
sine11-45 0.28 0.4 0.7
sine11-91 0.2 0.3 0.5

Figure 6.2: The compression ratio of the B-tree indexing method ignoring the index
overhead for the 512× 512 level of the MIP-map.

6.3 Texture Bandwidth

The graphs in Figure 6.4 show that as expected the bandwidth consumption due

to the texture data scales with the texture occupancy.

We intuitively expect a separate cache devoted to the void parts of the texture to

decrease bandwidth consumption due to the texture blocks. However, as depicted

in Figure 6.5, in reality there is hardly any bandwidth reduction when a separate

void cache is used.

The reductions in bandwidth are greatest for scene teapot, and least for scene

trifs-90. This is explained by the way the occupied blocks tend to cluster together

in the texture so that a working set is more likely to contain both void blocks

and texture blocks when the spatial locality is poor, which we do not get when
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Texture
ru for block size = n bytes

n = 64 n = 256 n = 1024

cat 0.17 0.034 0.014
cellorig 0.17 0.035 0.01
check 0.17 0.034 0.0092
dense 0.17 0.034 0.0098
funny3 0.17 0.036 0.0081
galaxies 0.17 0.035 0.011
sine11-1 0.17 0.035 0.01
sine11-45 0.17 0.035 0.0098
sine11-91 0.17 0.035 0.0099

Figure 6.3: The memory overhead involved in the B-tree index for the 512 × 512
level of the MIP-map. Expressed in terms of ru = number of index blocks

number of texture data blocks
.

rasterizing in H or Z order. The non-cold miss rate is also so low as to make any

reductions in bandwidth necessarily small.

The miss rate curves for a separate void cache (Figure 6.6) are flat enough so

that enlarging the cache has little effect on the miss rate. Figure 6.7 demonstrates

that using a range cache is effective at lowering the miss rate due to the void parts

of the texture, even when the range cache has very few entries. The miss rates that

result are low enough that unless the texture is very sparsely occupied (e.g. cat),

they are small compared to the miss rate due to the occupied parts of the texture.

From the above, we have that the bandwidth consumption due to the texture

data scales with the texture occupancy. If additionally we use a separate void range

cache, we also have that the miss rate scales with the texture occupancy.
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Figure 6.4: Bandwidth consumption due to texture blocks for various textures and
scenes teapot and trifs-90. The cache is a fully associative cache that stores both
texture and void blocks.

6.4 The Index

Figure 6.8 demonstrates that the bandwidth consumption for the index blocks scales

with the texture occupancy. We can also see from the figure that it is somewhat

sensitive to spatial locality, as the steepness of the curve for scene teapot is much

greater than that for scene trifs-90.

Figure 6.9 shows that for sufficiently large caches, a larger block size results in

less index bandwidth consumption overhead. Unfortunately the Figure 6.10 shows

that the reductions are more than made up for by the extra bandwidth due to

the edge effect in the texture. Clearly, increasing the block size to 1024 bytes

does not decrease the overall bandwidth consumption. Though the same can be



CHAPTER 6. RESULTS 99

 0

 1

 2

 3

 4

 5

 1  2  4  8  16  32  64  128  256

ba
nd

w
id

th
 (

te
xe

ls
/fr

ag
m

en
t)

cache size (kbytes)

cat, separate

cat, unified

cellorig, separate

cellorig, unified

check, separate

check, unified

 0

 1

 2

 3

 4

 5

 1  2  4  8  16  32  64  128  256

ba
nd

w
id

th
 (

te
xe

ls
/fr

ag
m

en
t)

cache size (kbytes)

cat, separate

cat, unified

cellorig, separate

cellorig, unified

check, separate

check, unified

teapot trifs-90

Figure 6.5: Comparison of texture block bandwidth consumption when using a
unified cache and when using a separate void cache. The cache size is the size of
the cache that stores the texture blocks.

said of increasing the block size to 256 bytes, the increase in overall bandwidth

consumption is modest in this case.

Lacking a hardware implementation, we use the average number of index blocks

accessed per fragment as the measure of latency. Figure 6.11 gives this for several

scenes and textures. Note that the latency scales with the texture occupancy,

reflecting the height of the B-tree increasing with texture occupancy (see figure

6.12). The number when the block size is 64 is high, indicating that we should

avoid using such a small block size if latency is an issue.

In our tests, the block size that best balances bandwidth consumption and

latency of access is 256 bytes.

The effect of using path-caches to store the paths down the B-tree for backwards
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Figure 6.6: Miss rates for the void block-based cache for various textures.
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Figure 6.7: Comparison of miss rates for a void block cache and a void range cache.
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Figure 6.8: Index bandwidth as a function of the index cache size for several
textures. We use a texture block cache of size 16K and a void range cache of size
8192 entries.
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Figure 6.9: Bandwidth consumption for the index blocks for various block sizes as
the index cache size varies. The texture is cellorig. We use a texture block cache
of size 16K and a void range cache of size 8192 entries.



CHAPTER 6. RESULTS 102

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  4  8  16  32  64

ba
nd

w
id

th
 (

te
xe

ls
/fr

ag
m

en
t)

cache size (kbytes)

64

256

1024

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  4  8  16  32  64

ba
nd

w
id

th
 (

te
xe

ls
/fr

ag
m

en
t)

cache size (kbytes)

64

256

1024

teapot trifs-90

Figure 6.10: Total bandwidth consumption for various block sizes as the index
cache size varies. The texture is cellorig. We use a texture block cache of size 16K
and a void range cache of size 8192 entries.
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Figure 6.11: The average number of index blocks accessed per fragment for various
block sizes, textures, and scenes teapot and trifs-90. We use a texture block cache
of size 16K and a void range cache of size 8192 entries.
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Texture
B-tree height for block size = n bytes
n = 64 n = 256 n = 1024

cat 4 2 2
cellorig 5 3 2
check 5 3 2
dense 5 3 2
funny3 4 2 1
galaxies 5 3 2
sine11-1 5 3 2
sine11-45 5 3 2
sine11-91 5 3 2

Figure 6.12: This table shows the effect of block size on B-tree height for the
various textures and block sizes.

searching is shown in Figure 6.13. While the reduction is small when the texture

is very sparse, the use of path-caches is noticeable when the texture is denser.

6.5 Discussion

Bandwidth consumption and latency of access constrain current graphics hardware

performance. Here we discuss and compare measures of these two factors for our

B-tree indexing method, Kraus and Ertl’s uniform grid indexing method, and the

standard dense texture storage method.

As can be seen in Figures 6.4 and 6.8, the bandwidth consumption scaling with

the region of interest and the low index bandwidth consumption overhead combine

to give bandwidth consumption that is much lower than that for the standard dense
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Figure 6.13: Effect of having a path cache in use on latency. We use a texture
block cache of size 16K and a void range cache of size 8192 entries.

texture method (Figure 6.14) unless the texture is densely occupied. Even when

the texture is dense, the index bandwidth consumption overhead is not intolerable.

Now compare the index bandwidth overhead for our method (Figure 6.8) with

the bandwidth above the theoretical limit for the uniform grid index method (Fig-

ure 6.15). They are not directly comparable as the uniform grid index method has

an advantage from sampling bilinearly from one texture image instead of trilinearly

probing into a MIP-map pyramid so less data is involved. There are also other fac-

tors affecting performance. Despite this, the padding of the texture tiles combined

with sensitivity to the edge effect results in much higher bandwidth consumption

overhead above the theoretical limit than our method. In fact, we do not obtain

significant savings in bandwidth consumption for a sparse texture unless the cache
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Figure 6.14: The total bandwidth consumption for the B-tree method compared
to the standard method for several textures as the index cache size varies. For the
B-tree method, we use a texture block cache of size 16K and a void range cache of
size 8192 entries.

is very large (see the graph for texture cellorig and block size 256 in Figure 6.15).

A better measure of performance than the miss rate or bandwidth consumption

is the average memory access time, given by:

average memory access time = hit time + miss rate×miss penalty

However, the average memory access time is hard to quantify without a hardware

implementation. The miss penalty is variable because we do not always need to

download a memory block and because of the indexing. The hit time may also be

variable depending on the type and size of void cache we use.

As an approximation, we can divide the overhead affecting the average memory
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access time into two parts: the additional hit time due to accessing index blocks

in the cache, and the additional time needed to download the index blocks into

the cache. The latter corresponds to the extra bandwidth due to the index, which

we have shown is relatively low and usually overcompensated for by not having to

download void parts of the texture.

The former is given by

average number of index blocks accessed per texel access× hit timeindex cache

. Since there are eight texel accesses per trilinear probe, Figure 6.13 gives the

average number of index blocks accessed per texel access scaled by eight. Note that

since we only access the index on a texture data miss, the average number of index

blocks accessed per texel access is correlated with the total miss rate, which depends

on the texture occupancy if a void range cache is used. For the worst case of texture

dense and no path-cache, this translates into approximately 0.11÷ 8 u 0.014 index

blocks accessed per texel access. This corresponds to the relatively low 1.4% hit

time overhead over the standard method if the hit time for the index cache is the

same as the hit time for the texture cache.

The average memory access time for the uniform grid index method is large

in comparison. The dependent texturing results in an extra texel access for each
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sample from the actual texture data, which comes with a doubling of the hit time,

not accounting for the time needed for the shader to compute where to sample in

the texture data. Moreover, we have shown via the bandwidth consumption curves,

which are just the miss rate curves scaled by the number of texels in a memory

block, that the miss rate for the uniform grid index method is higher than that for

the B-tree index method.

In discussing the average memory access time we should note that because we

use virtual caches, we only go to the index on a miss, so the latency due to the

indexing in our method is hideable by a prefetching texture cache architecture such

as the one proposed by Igehy et al. [IEP98]. Since the uniform grid index method

uses dependent texturing, the latency due to the index lookup there is not hideable.
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Figure 6.15: Bandwidth consumption for scene trifs-90, various textures and block
sizes. A direct mapped cache is used for the theoretical limit and the standard
method, and a 2-way set-associative cache used for the uniform grid index method.
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Conclusions

This document presents a hardware compatible implementation of sparse textures

based on B-tree indexing and explores cache designs for it. We demonstrate that

it is possible, with the appropriate cache design and other parameters, to have the

bandwidth consumption and miss rate due to the texture data alone scale with

the texture occupancy. We also show that the additional bandwidth consumption

and hideable latency due to the B-tree indices is low. Furthermore, the caches

necessary for this can be quite small. These results are highly dependent on good

spatial locality in the texel accesses, which is possible when rasterizing in Hilbert

order and indexing the texture blocks in Z-order.

Hardware manufactures are currently looking at implementing a virtual memory

system for GPUs. Such a system would require an indexing scheme very similar to

109
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that explored here. Even for dense textures, a B-tree index simplifies memory man-

agement and avoids memory fragmentation. Thus there is motivation for further

future work related to our method.

7.1 Summary of Results

The tables in Section 6.2 show that the amount of memory occupied by a texture

scales with the texture occupancy. Also, the space overhead due to the index can

be less than 4% of the size of the texture data stored if the block size is at least

256 bytes.

The tests in Section A.5 and the graphs in Section 6.3 show that the bandwidth

consumption and miss rate due to the texture data alone can scale with the texture

occupancy. Section A.5.2 shows that a separate void cache is ineffective at reducing

the bandwidth consumption when there is good spatial locality.

The tests in Section A.7 and the graphs in Section 6.4 show that the band-

width consumption and latency due to the index are low and scale with the texture

occupancy. They also show that the best block size balancing the bandwidth con-

sumption and latency of access in our tests is 256 bytes. Section A.7.4 demonstrates

the latency reducing effect of using path-caches.
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7.2 Applications

The applications of sparse textures are not restricted to the simple pasting of im-

ages onto polygons, but can be applied anywhere normal textures can be applied.

As defined in this document, sparse textures do not have any form of “adaptive

sampling”, so their memory saving advantages are not widely applicable to different

data. They are primarily directly useful when the region of interest sparsely occu-

pies the texture space, as is often the case with 3D volumes and higher dimensional

data. Specific examples where sparse textures are useful include:

• alpha masks

• decals

• map of locations of objects

• thresholded height fields, polynomial texture maps, deep shadow maps

• star fields

• 3D surfaces

• 3D surface textures

Storing adaptive texture maps in sparse textures, as described in the introduction,

would get around the sparse data limitation.
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7.3 Future Work

There are many avenues left unexplored, particularly in implementation and texture

compression.

Our tests are based on software simulations involving 2D sparse textures. It

would be simple to extend the software implementation to three or higher dimen-

sions. More cache tests would need to be run as the way a 3D texture is accessed is

different from the way a 2D texture is accessed. Some ways in which a 2D texture

could be accessed are not tested for in our tests, in particular the accessing of more

than two MIP-map levels in one texture for each fragment. A hardware implemen-

tation of the B-tree sparse texture and the supporting cache structures would also

be useful to compare hardware costs.

In order to be more generally useful, an implementation of an adaptive texture

map scheme is needed. One way to do this is to incorporate sparse textures into

a compression scheme like the wavelet decomposition/reconstruction described in

the introduction. Another way to do this is extend the B-tree sparse texture to

have adaptive sampling built in. This would be possible with the addition of some

scale bits, i.e. instead of just (key, pointer) pairs the B-tree stores (key, pointer, α)

triplets, where α is a scale factor. Sparse textures could be used in a texture

synthesis scheme such as one described by Wei [Wei01]. In any case, the texture
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access patterns in a more general texture compression scheme could be sufficiently

unusual to necessitate a specific supporting cache design.



Appendix A

Appendix

A.1 Basic Tests for Dense Textures

We start our tests by seeing what kind of miss rate curves the different rasterization

orders give in a conventional setup i.e. ignore the effect of the index blocks, then

see how rotating the scene or zooming in and out changes the miss rate curves.

A.1.1 Test: Basic Curve Shapes

The first test establishes a baseline relationship between the rasterization order

and the shape of the miss rate curve for a non-sparse texture. The test input is as

follows:

114
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scene: trifs-0

texture: dense

rasterization order: R, Z, H

sampling method: trilinear

block size: 64 – the smallest size is used to reduce aliasing artifacts from the

discreteness of the blocks

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full

eviction policy: LRU, optimal

index scheme: r (irrelevant for a fully associative cache)

The results are in Figures A.1 and A.2.

Discussion

The graphs in Figure A.1 show that there is a fundamental difference between the

shapes of the miss rate curve for the Z and H-order rasterizations and the shape

of the miss rate curve for the conventional R-order.
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Figure A.1: Graphs of the miss rate vs. cache size for LRU and optimal eviction
policies. The rasterization orders used for each graph are (a) R (b) Z and (c) H.

There is a clearly defined step in the curve corresponding to a distinct working

set size in the case of R order. Note that the number obtained for R order agrees

with the analysis in that for the given case the working set must contain enough

texture to rasterize a scanline [HG97].

There is no well defined working set for either Z or H order. This can be ex-

plained by the shape of the Z-order and H-order curves, which are hierarchically

self-similar in 2 × 2 blocks, so at each level there is a working set roughly corre-

sponding to the texture data needed for a 2 × 2, 4× 4, 8× 8, etc. block of pixels.
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Figure A.2: Comparison of the miss rate curves for rasterizing in R, Z, and H
order.

This, coupled with the cache sizes being powers of 2, results in a smooth decline

for their miss rate curves. Additionally, the miss rate curve for Z-order is always

higher than the corresponding miss rate curve for H-order, which is explained by

the poorer spatial locality of Z-order.

As expected, H and Z orders have much lower miss rates than R order at most

cache sizes due to their greater spatial locality (Figure A.2). In fact, the LRU

eviction policy curves for H and Z are lower than the optimal eviction policy curve

for R. For very large cache sizes R order performs slightly better than the other

two. This is because when rasterizing using Z or H order, the texture blocks used

to render some of the pixels on the edge of a 2n × 2n block of pixels belong to

a working set that is larger than the working set for rasterizing in R-order, and
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Figure A.3: The effect of changing the orientation of the viewpoint. The graphs
are for a cache eviction policy of LRU and rasterization orders (a) R, (b) Z, and
(c) H.

contribute misses other than cold misses to the miss rate for cache sizes that are

smaller than that working set size.

A.1.2 Test: Effect of Texture Orientation

The second test is to see the effect of rotating the scene. The test parameters are:

scene: trifs-0, trifs-45

texture: dense
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rasterization order: R, Z, H

sampling method: trilinear

block size: 64

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full

eviction policy: LRU, optimal

index scheme: r (irrelevant for a fully associative cache)

The results are in Figures A.3.

Discussion

The miss rate for scene trifs-45 is greater than the corresponding miss rate for scene

trifs-0. This is translated into a steeper curve for Z and H order, and a higher and

steeper step for R order. Since the rotation of the scene is about the view axis,

the number of texture blocks needed to render the scene is little changed between

scenes. We attribute the increase in miss rate instead to the increase in the number

of texture blocks needed to render a scanline and a 2n×2n block of pixels, due to the
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texture block boundaries no longer being aligned with the edges of the rasterization

curves.

A.1.3 Test: Effect of Changing λ− bλc

The third test deals with the effect of changing the fractional part of the value λ

by slightly zooming in and out of the scene. This was shown to dramatically affect

the texture memory bandwidth consumption in typical test scenes [IEH99]. The

test parameters are:

scenes: trifs-0, trifs-0′, trifs-0′′. The latter two are slightly zoomed in or out

versions of the first scene. Their corresponding values for λ are 9.313409,

9.991481, and 9.106958 respectively.

texture: dense

rasterization order: R, Z, H

sampling method: trilinear

block size: 64

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).
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Figure A.4: The effect of changing λ − bλc on the miss rate curve for rasterizing
in: (a) R order (b) Z order (c) H order.

associativity: full

eviction policy: LRU, optimal

index scheme: r (irrelevant for a fully associative cache)

The results are in Figures A.4 and A.5.

Discussion

This has a greater effect on the curves than rotation. For raster order R, as the

fractional part of λ gets close to 0, the working set doubles from when the frac-

tional part of λ is close to 1. The cold miss rate, indicated by the miss rate for very
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Figure A.5: Graphs showing the curves for all rasterization orders for (a) λ−bλc =
0.106958 (b) λ− bλc = 0.313409 and (c) λ− bλc = 0.991481.

large cache sizes, greatly increases for all rasterization orders. The steepness of the

curves for Z and H also increases. These changes are explained by the increased

texture block-to-fragment ratio, which increase the number of texture blocks in-

volved in rendering the scene, hence the increase in the number of cold misses. It

also increases the number of texture blocks needed to cover a scanline or a 2n × 2n

block of pixels, which similarly to rotating the scene, results in a larger working

set for R order rasterization and a steeper curve for Z and H order. However, the

conclusions for the initial test still hold for all the values of lambda; the curves still

have the same basic shape, Z and H are still pretty close, with Z higher than H,
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and both are well below R.

A.1.4 Summary

In conclusion, if there are no other factors breaking up the scene for better spatial

locality, it is desirable to use either Z or H order rasterization because of the lower

miss rates, flatter miss rate curve shape, and less additive sensitivity to changes in

the block-to-fragment-ratio.

A.2 Basic Tests for Void Range-Cache

Our next set of tests explores the effects of storing a key-interval instead of a block

in the cache on the basic miss rate curve. The scenario is based on caching the void

key-intervals for a sparse texture and ignoring the effects of the B-tree index. More

specifically, we focus on the effects of the interaction of the index scheme chosen

with the rasterization order and texture orientation on the miss rate curve.

A.2.1 The Index Scheme and the Layout of the Key Inter-

vals

In order to inform our analyses in subsequent tests we visually show how the void

key-ranges are distributed in various textures depending on the index scheme.
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Table A.1 shows the MIP-map level with resolution 512×512 for various sparse

textures. These images also show the block occupation and key distribution of the

textures. White is an occupied block and shades of gray denote key-ranges.

The graphs in Table A.2 show the number of void key-ranges and the distribution

of the lengths of them in the given textures.

Table A.1: Pictures showing how key-ranges are shaped

in a sparse texture depending on the index scheme cho-

sen. The texture is blocked into 4× 4 texel blocks.

Texture Name
Index Scheme

h z r

cat

cellorig
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Texture Name
Index Scheme

h z r

check

funny3

galaxies-bw

sine11-1
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Texture Name
Index Scheme

h z r

sine11-45

sine11-91

sine11-135
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Table A.2: List of graphs showing the distribution of

interval lengths for index schemes r, z, and h in a sparse

texture.

Texture Graph
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Texture Graph
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Texture Graph
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Discussion

Looking at the pictures in Table A.1, we see that index scheme r only works well

when there are large open horizontal spaces, as in the textures cat, sine11-1, and the

bottom of galaxies-bw. The presence of any features that extend vertically result in

many shorter 1-block high intervals; this means that the orientation of the features

in the texture is also an issue for good compression. The graphs in Table A.2 show

that index scheme r produces void key-intervals that pack well into the texture, as

there are few short key-intervals.
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The pictures and graphs in the two tables show that index schemes z and h

produce similar results. They both pack the void parts of a texture with roughly

square “blocks”, whose size is bounded by the smallest dimension of the space the

“block” is in. The graphs of number of intervals versus interval length for z and

h have a rough decay shape, indicating that there are many shorter intervals and

a few larger ones. From the pictures for textures sine11-1, sine11-91, sine11-45,

and sine11-135, we see that feature orientation in the texture does not affect the

key-intervals produced to the extent that they affect the key-intervals for r-order,

though there are some noticeable visual differences for z-order. Also, unlike index

schemes r and h, index scheme z does not pack well, requiring many unit-length

intervals clustered around the occupied blocks.

A.2.2 Rasterization Order

We first run a test to determine the relationship between rasterization order and

index scheme in how they affect the miss rate curve. The test parameters are:

scenes: trifs-0

textures: cat, check, cellorig, funny3, sine11-1, sine11-45, sine11-91

rasterization order: R, Z, H

index schemes: r, z, h
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sampling: bilinear sampling from the nearest MIP-map level – the statistical dis-

tribution of the key intervals is different for each MIP-map level, so we restrict

the sampling to one MIP-map level to simplify the analysis

block size: 64

cache design:

cache 1: A range-cache used to store key-intervals for void-ranges ([k1, k2]).

eviction policy: LRU

cache 2: A cache used to store texture blocks that never generates a miss.

The results for the texture cellorig are in Figure A.6. The graphs for the other

textures are similarly shaped.

Discussion

Identically to the case of dense textures, the curves for rasterization order R are

different from the curves for rasterization orders Z and H, with R having a distinct

working set size while Z and H have a smooth decline as cache size increases. These

shapes are not affected by the index scheme. The exception to this is rasterization

order R with index scheme r; this curve appears very flat because the long thin

key-intervals being aligned with the direction of rasterization results in extremely
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Figure A.6: Graphs of the miss rate curve for the texture cellorig for rasterization
orders (a) R, (b) Z, and (c) H. The curves for the different index schemes are
placed in the same graph.

low miss rates.

The curves do not look as theoretically “perfect” as the curves obtained in

previous tests. This is explained by the irregular shapes and sizes of the void key-

intervals and their irregular placement in the texture. Before we note anything else

we run some tests to see how rotation affects the results.
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A.2.3 Effects of Rotation

The next test is to rotate the scene to see how the orientation of the texture relative

to the rasterization order affects the miss rate curve. The test parameters are:

scenes: trifs-0, trifs-45, trifs-90

textures: cat, check, cellorig, funny3, sine11-1, sine11-45, sine11-91

rasterization order: R, Z, H

index schemes: r, z, h

sampling: bilinear sampling from the nearest MIP-map level – the statistical dis-

tribution of the key intervals is different for each MIP-map level, so we restrict

the sampling to one MIP-map level to simplify the analysis

block size: 64

cache design:

cache 1: A range-cache used to store key-intervals for void-ranges ([k1, k2]).

eviction policy: LRU

cache 2: A cache used to store texture blocks that never generates a miss.

Some results for texture cellorig are in Figures A.7 to A.9.
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Figure A.7: Miss rate curves for various scenes for texture cellorig with rasteriza-
tion order R and index schemes (a) r, (b) z, and (c) h.

Discussion

We find that with a couple of exceptions, rotation of the scene produced the same

effects in this test as in the corresponding test for dense textures i.e. the miss rate

curve for scenes trifs-0 and trifs-90 is about the same, while that for trifs-45 is

somewhat higher and has a larger working set. We can divide the explanation into

the following cases:

• In the case where the index scheme is z or h the miss rate curve behaviour

under texture rotation is expected due to the block-like shapes of the void

key-intervals, reducing the situation to a variation of the dense texture case.
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Figure A.8: Miss rate curves for various scenes for texture cellorig with rasteriza-
tion order Z and index schemes (a) r, (b) z, and (c) h.

Note that the increase in the cold miss rate for scene trifs-45 for the given

graphs for cellorig is due to features popping in and out of the scene as it

rotates; scene trifs-45 still has the steepest non-cold miss rate curve of the

three scenes.

• For the case where the index scheme is r and the rasterization order is Z or

H, the explanation is depicted in Figure A.13. Basically the number of void

key-intervals necessary to cover a square block of pixels peaks at the 45-degree

angle.
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Figure A.9: Miss rate curves for various scenes for texture cellorig with rasteriza-
tion order H and index schemes (a) r, (b) z, and (c) h.

• The first exception to the miss rate peaking near the 45-degree angle is when

the textures have very few void key-intervals showing such as funny3, so that

the number of void key-intervals is so low and the texture so irregular that

“sampling artifacts” become an issue.

• The second exception to the rule and remaining case of rasterization order

R, index scheme r, has the working set size and miss rate peaking at the

90-degree angle. Also, unlike the other cases there is a marked performance

disparity between the 0-degree angle curve and the 90-degree angle curve.

Similarly to the second case, this is accounted for in Figure A.14.
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Figure A.10: Non-cold miss rate curves for scene trifs-90 and textures cellorig and
cat and various index schemes. The rasterization order is (a) R, (b) Z, and (c) H.

Regardless of texture orientation, if we consider the curves obtained when the

directions of rasterization order R and index scheme r are aligned to be the tail end

of a step curve, the basic curve shape for each rasterization order stays the same

independently of the texture or index scheme chosen.

We also find that using a void range cache instead of a void block-based cache

results in comparatively low miss rates and working set sizes for the sparser textures

(see Figure A.11) . The exception is the combination of rasterization order R and

index scheme r, which only produces comparatively low miss rates and working set

sizes if the void key-intervals and the direction of rasterization are aligned.
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Figure A.11: Graphs comparing the miss rate for the different index schemes when
using a range-cache to the miss rate when using a fully associative cache for ras-
terization orders (a) R, (b) Z, and (c) H. The scene is trifs-90, and the texture
cellorig.

However, the reduction in working set size and flattening of the rate of growth

as the cache size shrinks does not necessarily increase as the texture gets sparser.

Figure A.10, which shows the non-cold miss rate curves for texture cellorig and the

sparser texture cat in scene trifs-90, show that when index scheme r is used, the

working set size for R order and the rate of growth as the cache size decreases for

Z and H orders stay much the same between the two textures. This is not the case

with index schemes z and h, which have the non-cold miss rate curves get flatter as

the texture gets sparser. The explanation for this is in the pictures in Table A.1.
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Figure A.12: Graphs comparing the miss rate for the different index schemes for
rasterization order (a) R, (b) Z, and (c) H. The scene is trifs-45, and the texture
cellorig.

We get fewer larger key-intervals for the sparser texture when index schemes z or h

are used, while we still get many 1-block high void key-intervals for both textures

independent of sparsity when index scheme r is used.

As for the effects of the index scheme when the texture and scene is fixed, they

can be described in terms of the miss rate at small cache sizes and large cache sizes

(see Figure A.12). The miss rate for the largest cache sizes is determined by the

cold miss rate, which means that for these cache sizes index scheme z produces the

highest miss rate for a given rasterization order due to poor packing of the void key-

intervals. The miss rate at the smallest cache sizes for rasterization orders Z and H
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trifs−90trifs−45trifs−0

Figure A.13: Simplified graphics representing how void key-intervals for index
scheme r cover a square block of pixels for the various scenes.

trifs−90

trifs−0

trifs−45

Figure A.14: Simplified graphics representing how void key-intervals for index
scheme r cover a row of pixels for the various scenes.

increase as we go from index scheme h, to z, to r, corresponding to the increasing

number of void key-intervals on average needed to cover a 2n × 2n block of pixels,

though the differences are so slight as to be insignificant. For rasterization order R

the ordering is similar for similar reasons except that the texture orientation and

the texture itself will move the placing of r in the list around, though for the worst

case where the scene is trifs-90 r will generally produce a larger working set.
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A.3 Shader Tests

The tests in this section deal with the effects of unusual patterns of texel lookups

due to a programmable shader and anisotropic sampling.

A.3.1 Test: Effect of Turbulence On A Conventional Setup

We start off with testing the effect of turbulence on dense textures. The test

parameters are:

scenes: trifs-90

textures: dense

rasterization order: R, Z, H

index schemes: r (irrelevant for a fully associative cache)

sampling: trilinear

shader parameters:

ω: 0.0, 0.2, 0.4, 0.8

shader derivatives: no

block size: 64
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Figure A.15: Miss rate curves when not using shader derivatives for rasterization
orders (a) R, (b) Z, and (c) H.

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full

eviction policy: LRU, optimal

The results for block size 64 are in Figure A.15.
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Discussion

Generally, we get abysmally bad miss rates for higher degrees of turbulence. Note

that we get the same basic shapes of a decay curve for H and Z orders and a step

curve for R order regardless of the degree of turbulence, but we also get an increase

in cold miss rate for all rasterization orders, an increase in slope for rasterization

orders Z and H, and an increase in step height and working set for rasterization

order R. The cold miss rate can be explained by looking at Figure 2.13. Since

the MIP-map level used to access the texture is constant (flat triangle parallel to

view-plane), as ω increases more of the texture is used and hence more texture

blocks are used. However, it is unclear how much of the increase in miss rate is

due to the turbulence and how much is due to sampling from the wrong MIP-map

level.

A.3.2 Test: Effect of Using Shader Derivatives

We next run the same tests but this time the λLOD is determined by the actual

derivatives of the shader function.

scenes: trifs-90

textures: dense

rasterization order: R, Z, H
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index schemes: r (irrelevant for a fully associative cache)

sampling: trilinear

shader parameters:

ω: 0.0, 0.2, 0.4, 0.8

shader derivatives: yes

block size: 64

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full

eviction policy: LRU, optimal

The results for block size 64 are in Figure A.16.

Discussion

The primary thing to note is that the miss rate curves here are very close together for

all rasterization orders, indicating that the main reason for the bad cache behaviour
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Figure A.16: Miss rate curves when using shader derivatives for rasterization orders
(a) R, (b) Z, and (c) H.

in the previous case is using the wrong MIP-map level for sampling instead of the

increase in discontinuities and distortion.

As ω increases the cold miss rate, indicated by the miss rate at large cache sizes,

initially increases slightly, then largely decreases, well below the bound established

in Figure A.4. Some of the decrease we can attribute to fewer blocks being needed

at the large scale due to the average MIP-map level going down resulting in partial

“tiling”, but some of it can also be attributed to changes in λ−bλc. For rasterization

orders Z and H, this translates into a lower miss rate for most cache sizes as ω
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goes above 0.2, as the effect of having fewer blocks involved outweighs the effect of

having a steeper slope. Note that the steepness of the slopes is close to the variation

due to the fractional value of λLOD changing (see Figures A.4 and A.5).

A.3.3 Test: Block Size

So far we have seen that using shader derivatives when sampling is sufficient to

ensure that there is enough locality in the texel accesses to deal with a high degree

of turbulence for a block size of 4 texels× 4 texels. However, using that block size

results in a high cold miss rate, and as detailed in the chapter on the test setup

a small block size results in a high index overhead for the B-tree sparse texture

implementation for both index memory overhead and tree height.

We run tests to see if there is sufficient locality to take advantage of the inherent

prefetching in a larger block size, so that the miss rate can be reduced without

incurring too much additional bandwidth usage. The test parameters are:

scenes: trifs-90

textures: dense

rasterization order: R, Z, H

index schemes: r (irrelevant for a fully associative cache)
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sampling: trilinear

shader parameters:

ω: 0.0, 0.2, 0.4, 0.8

shader derivatives: yes

block size: 64, 256, 1024

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full

eviction policy: LRU, optimal

Graphs showing curves for various values of ω while the rasterization order and

block size are fixed are in Figures A.16, A.17, and A.18. Some results showing both

miss rate and bandwidth consumption with curves for different block sizes in the

same graph are in Figures A.19 to A.24.

Discussion

From the miss rate graphs in Figures A.17, and A.18, we see that similarly to the

test for block size 64, the miss rate curves for the different degrees of turbulence are
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Figure A.17: Miss rate curves for varying values of ω for block size 256 and raster-
ization orders (a) R, (b) Z, and (c) H.
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Figure A.18: Miss rate curves for varying values of ω for block size 1024 and
rasterization orders (a) R, (b) Z, and (c) H.
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Figure A.19: The miss rate for varying block sizes for ω = 0.0 for rasterization
orders (a) R, (b) Z, and (c) H.
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Figure A.20: The miss rate for varying block sizes for ω = 0.4 for rasterization
orders (a) R, (b) Z, and (c) H.
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Figure A.21: The miss rate for varying block sizes for ω = 0.8 for rasterization
orders (a) R, (b) Z, and (c) H.
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Figure A.22: The bandwidth consumption for varying block sizes for ω = 0.0 for
rasterization orders (a) R, (b) Z, and (c) H.
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Figure A.23: The bandwidth consumption for varying block sizes for ω = 0.4 for
rasterization orders (a) R, (b) Z, and (c) H.
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Figure A.24: The bandwidth consumption for varying block sizes for ω = 0.8 for
rasterization orders (a) R, (b) Z, and (c) H.
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close together, indicating that there is enough spatial locality so that turbulence

does not significantly affect the miss rate for those block sizes.

As expected, increasing the block size decreases the cold miss rate and the miss

rate at very large cache sizes (Figures A.19 to A.21). However, looking at the miss

rate curves for ω = 0.0 more closely, we see something occur around cache sizes

2K and 8K for block sizes 256 and 1024 respectively. For rasterization order R,

we get the end of a step-down. For rasterization orders Z and H, the miss rate

curve suddenly becomes much steeper as the cache size drops below the threshold.

The bandwidth consumption curves (Figures A.22 to A.24) are similarly affected

as they are the miss rate curves scaled by the corresponding block size. The given

thresholds also mark the cache size below which the advantages of a lower cold miss

rate from the next larger block size is outweighed by the increase in curve steepness

for rasterization orders Z and H.

This behaviour is explained by the given thresholds (2K, 8K) being the cache

size needed to hold 8 texture blocks. This is the maximum number of blocks needed

by a trilinear probe. However few trilinear probes require 8 blocks; many more use

4, and the vast majority of the probes use only 2. This accounts for the curves for

block size 1024 and ω = 0.0, where the increase in miss rate as the cache size goes

from 4 blocks to 2 blocks is much greater than the increase as the cache size goes

from 8 to 4 blocks.
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The bandwidth consumption curves are in Figures A.22 to A.24. As expected

from more memory being needed to cover the texture used, the working set size

(we ignore the first step-down) for rasterization order R doubles with each increase

in block size. The step height for the curve also increases dramatically. When

the rasterization order is Z or H, going from block size 64 to 256 results in modest

increases in bandwidth consumption when the cache size is at least 2K; the increase

from going from block size 256 to 1024 is large in comparison. The additional

bandwidth overhead from going to block size 1024 also increases quite a bit as ω

increases.

To summarize, there is sufficient locality so that the miss rate curves belonging

to larger block sizes are not significantly affected by turbulence. However, when

using trilinear sampling, it is necessary for the cache size to be large enough to

hold 8 texture blocks to ensure that increasing the block size improves the miss

rate for rasterization orders Z and H. In order to do the same for rasterization

order R the cache must be large enough to contain the working set size, which in

our test cases roughly doubles for each increase in block size. There is also sufficient

locality to use a block size of 256 to reduce the miss rate with minor increases in

the bandwidth consumption. There is insufficient locality to take advantage of the

greater inherent prefetching in a block size of 1024.
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A.3.4 Test: Effect of Turbulence on Void Range-Cache

Now we see the effect of turbulence on the miss rate for a void range-cache. We

use the following test parameters:

scenes: trifs-90 – we only use the scene of the set of three that produces worst

case behaviour for rasterization order R

textures: cat, funny3, cellorig, sine11-91

rasterization order: R, Z, H

index schemes: r, z, h

sampling: trilinear

shader parameters:

ω: 0.0, 0.2, 0.4, 0.6, 0.8

shader derivatives: yes

block size: 64

cache design:

cache 1: A range-cache used to store key-intervals for void-ranges ([k1, k2]).

eviction policy: LRU
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Figure A.25: Miss rate curves for texture cellorig, block size 64, and rasterization
order R for index schemes (a) r, (b) z, and (c) h.

cache 2: A cache used to store texture blocks that never generates a miss.

The results for texture cellorig are shown in Figures A.25 to A.27. Similar results

were obtained for the other textures.

Discussion

The miss rate curves for the various degrees of turbulence for rasterization orders

Z and H are pretty close together except at small cache sizes where the curves

for ω = 0.6 and ω = 0.8 are somewhat steeper than the others, showing that they

are only significantly affected by turbulence at the small scale (we ignore the parts
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Figure A.26: Miss rate curves for texture cellorig, block size 64, and rasterization
order Z for index schemes (a) r, (b) z, and (c) h.

of the curve with 8 or fewer cache entries). Part of the steepness increase can be

attributed to the poorer spatial locality and changes in λ − bλc, but it should be

noted that as turbulence increases the MIP-map level resolutions accessed decreases,

changing the shapes and number of void key-intervals involved in rendering in a way

dependent on the texture. The dependency of the changes on the texture results

in variances in the change in steepness of the curve and the number of cold misses

as ω increases.

Turbulence has a much greater effect on the miss rate curves for rasterization

order R. The effect of turbulence on the working set size and step height using
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Figure A.27: Miss rate curves for texture cellorig, block size 64, and rasterization
order H for index schemes (a) r, (b) z, and (c) h.

index schemes z and h varies with the texture, but when index scheme r is used we

get a large decrease in the step height and the working set size with each increase

in turbulence, even for small cache sizes.

This is explained by looking at the graph in Figure A.28. It is evident that

for ω = 0, the miss rate and working set size is strongly influenced by texture

orientation, indicating that it is the primary factor in determining locality in this

case. We also see that for ω = 0.6 and ω = 0.8, changing the texture orientation

does not alter the curve as much as changing the turbulence does. Note also that

the curves are sandwiched between the curve for (scene=trifs-0, ω = 0) where
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Figure A.28: Graph showing the miss rate curves for various values of ω for the
scenes trifs-0 and trifs-90 using rasterization order R and index scheme r.

the key-intervals are aligned with the direction of rasterization and the curve for

(scene=trifs-90, ω = 0) where they are not. We conclude that the turbulence

improves locality of reference for scene trifs-90 where the key-intervals are already

aligned in the worst possible direction, and degrades it for scene trifs-0 where they

are already aligned in the best possible direction.

In summary, turbulence does not much affect the performance of a void range-

cache except in the case when rasterization order R and index scheme r is used,

where due to the extreme anistropy of both the rasterization order and the void

key-intervals the perturbations in the alignment between the two due to turbulence

strongly affect the locality of the key-interval requests.
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A.3.5 Test: Effect of FELINE Sampling on a Block-Based

Setup

Here we see the effect of using table FELINE sampling on the miss rate curves.

The test parameters are as follows:

scenes: trifs-90

textures: dense

rasterization order: R, H – we do not test Z because it is so similar to H.

index schemes: r (irrelevant for a fully associative cache)

sampling: table FELINE

shader parameters:

ω: 0.0, 0.2, 0.4, 0.6, 0.8

shader derivatives: yes

block size: 64, 256, 1024

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).
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Figure A.29: Miss rate curves when using table FELINE sampling, block size 64,
LRU eviction policy, and various values of ω for rasterization orders R and H.

associativity: full

eviction policy: LRU, optimal

Some results for block sizes 64 and 256 are in Figures A.29 to A.32. We got similar

results for block size 1024.

Discussion

We first note that the changes in the cold miss rate for the various values of ω is

within the range expected due to fractional changes in the value of λ used to select

the MIP-map level to probe. Subsequent discussion will ignore the cold miss rate

and focus on the working set size for rasterization order R and the steepness of the
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Figure A.30: Miss rate curves when using table FELINE sampling, block size 64,
optimal eviction policy, and various values of ω for rasterization orders R and H.
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Figure A.31: Miss rate curves when using table FELINE sampling, block size 256,
LRU eviction policy, and various values of ω for rasterization orders (a) R and (b)
H.
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Figure A.32: Miss rate curves when using table FELINE sampling, block size 256,
optimal eviction policy, and various values of ω for rasterization orders (a) R and
(b) H.

curves for rasterization order H.

We find that for rasterization order R, using table FELINE sampling instead

of trilinear sampling results in the working set size doubling with each increase

in turbulence, even when the eviction policy is optimal. This is expected as both

the path through the texture corresponding to a scanline and the lines we probe

along for each texture sample get longer on average as the turbulence increases

particularly for the higher values of ω. Since the latter are not usually aligned with

the direction of rasterization this means that many more texture blocks are needed

to cover a scanline using this sampling method than when using trilinear sampling.

Comparing the graph in Figure A.29(a) to the graph in Figure A.16(a), we

see that the miss rate curves for table FELINE sampling have smaller step heights

than the corresponding miss rate curves for trilinear sampling, despite having larger

working set sizes. This can be explained by the meandering off a straight line caused
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by the table FELINE sampling actually improving the spatial locality of the texel

requests at the small scales.

In the case where we use rasterization order H, there is a steady increase in the

steepness of the miss rate curves as the value of ω increases; this increase is slight

for values up to ω = 0.4 but is relatively large for higher values.

A.3.6 Test: Effect of FELINE Sampling on Void Range-

Cache

Now we see the effect of table FELINE sampling on the miss rate for a void range-

cache. The test parameters are the same as the previous test except for the following

parameters:

scenes: trifs-90

textures: cat, funny3, cellorig, sine11-91

rasterization order: R, H

index schemes: r, z, h

sampling: table FELINE

shader parameters:
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ω: 0.0, 0.2, 0.4, 0.6, 0.8

shader derivatives: yes

block size: 64

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full

eviction policy: LRU, optimal

The results for texture cellorig are given in Figures A.33 to A.34. Similar results

were obtained for the other textures.

Discussion

When rasterization order R is used the working set size increases as ω increases for

all the index schemes tested.

The results for rasterization order H (Figure A.34 ) show that using FELINE

sampling produces similar results to when no FELINE sampling is used. The curves

for the smallest two or three values of ω tested are close together, and the rest get

noticeably steeper as ω increases. Index schemes z and h produced similar miss
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Figure A.33: Miss rate curves when using table FELINE sampling, block size 64,
a void range-cache, and rasterization order R as turbulence increases for index
schemes (a) r, (b) z, and (c) h. The texture used is cellorig, the scene is trifs-90.

rates, and index scheme r produced miss rates much higher than those obtained

when using the other two index schemes.

A.3.7 Summary

The use of shader derivatives is both necessary and sufficient to ensure that turbu-

lence does not greatly increase the miss rate/bandwidth consumption when trilinear

sampling is used. When table FELINE sampling is used, rasterization order R pro-

duces an expanding working set size as ω increases while rasterization order H
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Figure A.34: Miss rate curves when using table FELINE sampling, block size 64,
a void range-cache, and rasterization order H as turbulence increases for index
schemes (a) r, (b) z, and (c) h. The texture used is cellorig, the scene is trifs-90.

produces increases in curve steepness which are large only for high ω values.

We get similar results, albeit with much smaller increases in miss rate and curve

steepness, for a void range-cache. Additionally, we find that the texture orientation

sensitivity of the rasterization order R and index scheme r combination results in

turbulence significantly affecting the locality in key-space of the texel accesses.
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A.4 Block-Based Cache Tests

This set of tests establishes a baseline for the miss rate curves for each test scene

and the effects of the cache parameters and their interaction with other parameters

in a block-based cache.

A.4.1 Test: Miss Rate Curve Shape

Again, we start off with a conventional setup to establish the effect of rasterization

order on the miss rate curves for just the texture data i.e. we ignore the index. The

test parameters are:

scenes: trifs-90, teapot, box, ground, venus

textures: dense

rasterization order: R, H – we do not test Z because it is so similar to H.

index schemes: r (irrelevant for a fully associative cache)

sampling: trilinear

block size: 256

cache design:
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cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full

eviction policy: LRU

The results are in Figures A.35.

Discussion

Aside from the scenes box and trifs-90, the general shape of the miss rate curves

is primarily determined by the geometry and not the raster order. This confirms

previous work [HG97] showing that changing the rasterization order only makes a

difference to the locality of the texel requests and hence the miss rate when the

triangles are large. Triangle merging when the triangles are small could be used to

change this and improve locality if necessary.

A.4.2 Test: Cache Associativity

The next test is to check the best associativity needed to avoid conflict misses for

the test scenes. The test parameters are:

scenes: trifs-90, trifs-0, trifs-45, teapot, box, ground

textures: dense
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Figure A.35: Miss rate curves for scenes (a) trifs90 (b) box (c) teapot (d) kground
(e) venus.
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rasterization order: R, Z, H

index schemes: r, z, h

sampling: trilinear

block size: 256

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full, 1, 2, 4, 8

eviction policy: LRU

Some results are in Figures A.36 to A.47. The results for rasterization order Z are

not shown for most scenes as they are very similar to the results for rasterization

order H. The only difference is that Z order gives slightly higher miss rates at

small cache sizes e.g. compare Figures A.42 and A.44.

Discussion

The results in the graphs mostly agree with previous work showing that a 2-way

set associative cache combined with index scheme z and some form of tiled raster-



APPENDIX A. APPENDIX 171

(a)
 0

 5

 10

 15

 20

 25

 1  2  4  8  16  32  64  128  256

m
is

s 
ra

te
 (

%
)

cache size (kbytes)

f

1

2

4

8

(b)
 0

 2

 4

 6

 8

 10

 12

 14

 1  2  4  8  16  32  64  128  256

m
is

s 
ra

te
 (

%
)

cache size (kbytes)

f

1

2

4

8

(c)
 0

 2

 4

 6

 8

 10

 12

 14

 1  2  4  8  16  32  64  128  256

m
is

s 
ra

te
 (

%
)

cache size (kbytes)

f

1

2

4

8

Figure A.36: Miss rate curve for various cache associativities for scene teapot and
rasterization order R for index schemes (a) r (b) h and (c) z.

ization is sufficient to deal with most possible conflict misses in our test cases. 1

Additionally, the abrupt changes in MIP-map levels accessed in scenes like kground

and teapot do not seem to affect the miss rate noticeably compared to scenes that

do not have such abrupt changes.

However the graph in Figure A.45(b), for scene trifs-90 using rasterization order

R and index scheme z, shows that it is not just the working set reducing properties

of tiling in rasterization that reduces conflict misses as stated in [HG97], as the

1Previous work actually suggests using 6D-raster or 6D-Z-order with the supertiles the size of
the cache [HG97]. It is clear that using index scheme z is similar except that there is tiling at
all levels. Similarly, we metatile at all levels instead of just one level of 8 × 8 pixel blocks when
rasterizing (while using 8× 8 texel blocks for storing the texture).
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Figure A.37: Miss rate curve for various cache associativities for scene teapot and
rasterization order H for index schemes (a) r (b) h and (c) z.
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Figure A.38: Miss rate curve for various cache associativities for scene box and
rasterization order R for index schemes (a) r (b) h and (c) z.
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Figure A.39: Miss rate curve for various cache associativities for scene box and
rasterization order H for index schemes (a) r (b) h and (c) z.
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Figure A.40: Miss rate curve for various cache associativities for scene kground and
rasterization order R for index schemes (a) r (b) h and (c) z.
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Figure A.41: Miss rate curve for various cache associativities for scene kground and
rasterization order H for index schemes (a) r (b) h and (c) z.
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Figure A.42: Miss rate curve for various cache associativities for scene trifs-90 and
rasterization order H for index schemes (a) r (b) h and (c) z.
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Figure A.43: Miss rate curve for various cache associativities for scene trifs-0 and
rasterization order H for index schemes (a) r (b) h and (c) z.
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Figure A.44: Miss rate curve for various cache associativities for scene trifs-90 and
rasterization order Z for index schemes (a) r (b) h and (c) z.
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Figure A.45: Miss rate curve for various cache associativities for scene trifs-90 and
rasterization order R for index schemes (a) r (b) h and (c) z.

(a)
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1  2  4  8  16  32  64  128  256

m
is

s 
ra

te
 (

%
)

cache size (kbytes)

full

1

2

4

8

(b)
 0

 2

 4

 6

 8

 10

 12

 14

 1  2  4  8  16  32  64  128  256

m
is

s 
ra

te
 (

%
)

cache size (kbytes)

full

1

2

4

8

(c)
 0

 2

 4

 6

 8

 10

 12

 14

 1  2  4  8  16  32  64  128  256

m
is

s 
ra

te
 (

%
)

cache size (kbytes)

full

1

2

4

8

Figure A.46: Miss rate curve for various cache associativities for scene trifs-45 and
rasterization order R for index schemes (a) r (b) h and (c) z.
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Figure A.47: Miss rate curve for various cache associativities for scene trifs-0 and
rasterization order R for index schemes (a) r (b) h and (c) z.
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Figure A.48: Picture roughly showing how the cache indices are visited when
rasterizing in R order. The bold lines delineate the way the texture blocks are
mapped onto the cache by the index scheme. Each boldly outlined group of texture
blocks map one-to-one contiguously to the entire cache. The index schemes used
are: (a) r (b) z and (c) h.

curve for the 2-way set-associative cache is not close to the curve for the fully

associative cache even at cache sizes much larger than the working set size.

Further explanation is found by looking at the curves for the 2-way set-associative

and fully associative caches in Figures A.45(a), A.46(a), and A.47(a), which are the

graphs using rasterization order R and index scheme r for the scenes trifs-90, trifs-

45, and trifs-0 respectively. The recurring motif of good performance when raster-

ization order R and index scheme r is aligned and bad performance when they are

perpendicular occurs yet again. As shown in Figure A.48, the extreme anisotropy
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of the rasterization order R curve is transformed into extreme anisotropy of the

path through the texture. This anisotropy means that the number of cache slots

in use at a given time is sensitive to orientation if the index scheme is anisotropic

as in the case of index scheme r (see Figure A.48(a)), and is restricted if the in-

dex scheme is more isotropic as in the case of index schemes z and h (see Figures

A.48(b,c)). A rasterization order such as Z order or H order with many levels

of nested square tiling would mean a less anisotropic path through the texture,

resulting in less orientation sensitivity if the index scheme is r, and a more even

distribution of the usage of cache entries for index schemes z and h (see Figure

A.49). The former is supported by a comparison of Figures A.42(a) and A.43(a)

which show that the miss rate curves for scenes trifs-0 and trifs-90 differ little when

rasterization order H is used with index scheme r, the latter by a comparison of

the differences between the curves for rasterization R in Figure A.45(b,c) and for

rasterization order H in Figure A.42(b,c), where the difference in miss rate between

the 2-way set-associative cache and the fully associative one for rasterization order

R is high while the corresponding difference for rasterization order H is miniscule.

Now consider the miss rate curves that correspond to test cases where the raster-

ization order is H and index scheme z or h is used (see Figures A.37(b,c), A.39(b,c),

A.41(b,c), A.42(b,c), and A.44(b,c)). They show that when the cache is of size at

least 2K i.e. has at least eight entries, the miss rate curve for associativity 2 and
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Figure A.49: Same as Figure A.48 except we rasterize using H and Z order. The
index schemes used are: (a) r (b) z and (c) h.

index scheme h has a noticeably higher miss rate than the corresponding curve for

index scheme z for the smaller cache sizes.

The explanation for this is in Figures A.49(b,c), where the cache index dis-

tribution for index scheme z is more even than the cache index distribution for

index scheme h. Examining the figures, it is clear that the difference arises from

the way the individual texture blocks are arranged in the delineated cache-sized

superblocks; they are identical for index scheme z, but rotated in various directions

for index scheme h. When rasterization order H is used, identical arrangements

of cache entries for the texture blocks in each cache-sized superblock results in a
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more uniform distribution of usage of cache entries than if the arrangments are

non-identical. It is also clear that any index scheme that tiles the texture blocks

in cache-sized superblocks that are identical cache-index-wise e.g., 6D-raster order

and 6D-Z order, would produce identical miss rate curves if the other parameters

are fixed.

An alternative way to deal with the uniform distribution problem is to calculate

the cache index using a uniform pseudo-random function. The pseudo-randomness

of the function removes any effect the rasterization curve has on the distribution

of the indices. However, disadvantages include not guaranteeing that any four

neighbouring blocks do not map to the same cache index and being more expensive

to compute.

In summary, we find that in addition to using a 2-way set associative cache and

an index scheme like 6D-raster or z-order, multiple levels of nested tiling as in H or

Z order rasterization are necessary to minimize the number of conflict misses. Also,

under the above conditions using index scheme h instead produces comparable miss

rates to using index scheme z except at small cache sizes where they are higher.
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A.4.3 Test: Cache Associativity and Turbulence

The previous test shows that the interaction of the rasterization curve and the index

scheme is important for reducing the number of conflict misses. This brings up the

question of what effect something like turbulence has on the number of conflict

misses.

The test parameters are:

scenes: trifs-90, teapot

textures: dense

rasterization order: R, H

index schemes: r, z, h

shader parameters:

ω: 0.0, 0.2, 0.4, 0.6

shader derivatives: yes

sampling: trilinear

block size: 256

cache design:
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Figure A.50: Miss rate curves for various cache associativities for scene trifs-90,
rasterization order H, and index scheme z when ω = (a) 0.0 and (b) 0.6.
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Figure A.51: Miss rate curves for various cache associativities for scene teapot,
rasterization order H, and index scheme z when ω = (a) 0.0 and (b) 0.6.

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full, 1, 2, 4, 8

eviction policy: LRU

Some results are in Figures A.50 and A.51.
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Discussion

Similarly to the case where there is no turbulence, when there is metatiling in the

rasterization order and the index scheme is z, a cache associativity of 2 removes

most of the conflict misses.

A.4.4 Test: Cache Eviction Policy

Now we test the effect the eviction policy has on the miss rate curve. The test

parameters are:

scenes: trifs-90, teapot, box

textures: dense

rasterization order: R, H

index schemes: r, z, h

sampling: trilinear

shader parameters: no turbulence shader

block size: 256

cache design:
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Figure A.52: Miss rate curves for LRU and FIFO eviction policies and rasterization
orders H and R using a fully associative cache for scenes (a) teapot and (b) trifs90.
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Figure A.53: Miss rate curves for LRU and FIFO eviction policies and rasterization
order H and index scheme z using a cache of various associativies for scenes (a)
teapot and (b) trifs90.

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full, 1, 2, 4, 8

eviction policy: LRU, FIFO

Some results are in Figure A.52 and A.53.
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Discussion

The change in eviction policy makes hardly any difference to the miss rate in the

given graphs, and for rasterization order H any differences are only apparent at

small cache sizes. Similar results were obtained with other index schemes and

scenes. We conclude that FIFO can replace LRU as the eviction policy for most

practical purposes.

A.5 Separate Void Cache Tests

This section tests bandwidth and miss rate reductions for cache designs that have

a separate cache for the void parts of the texture. The effects of the B-tree index

blocks are ignored.

A.5.1 Test: Unified Cache

This test establishes for comparison with future tests the bandwidth consumption

and the miss rate we get in a block-based fully associative cache if the bandwidth

due to void blocks is excluded. The test parameters are:

scenes: trifs-90, teapot, box

textures: cat, funny3, cellorig, check, sine11-91, dense
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rasterization order: R, H – we do not test Z because it is so similar to H for a

fully associative cache.

index schemes: r

sampling: trilinear

block size: 64, 256, 1024

cache design:

cache 1: One cache for only texture blocks (T blocks) and void blocks (V

blocks).

associativity: full

eviction policy: LRU

The miss rate is shown in Figure A.54. The bandwidth consumption if void blocks

do not contribute to bandwidth are shown in Figures A.56 to A.58.

A.5.2 Test: Separate Cache for Void Blocks

The next test sees if using separate caches for the texture (T ) and void (V ) blocks

can reduce the miss rate and bandwidth consumption. The test parameters are:

scenes: trifs-90, teapot, box
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Figure A.54: The miss rate curves when using a fully associative block-based cache
for various scenes and rasterization orders R and H.
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Figure A.55: The bandwidth consumption curves when using a fully associative
block-based cache for various scenes and rasterization orders R and H.
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Figure A.56: The bandwidth consumption curves for scene teapot and rasterization
orders R and H when void blocks contribute no bandwidth.
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Figure A.57: The bandwidth consumption curves for scene box and rasterization
orders R and H when void blocks contribute no bandwidth.
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Figure A.58: The bandwidth consumption curves for scene trifs90 and rasterization
orders R and H when void blocks contribute no bandwidth.
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textures: cat, funny3, cellorig, check, sine11-91, dense

rasterization order: R, H – we do not test Z because it is so similar to H for a

fully associative cache.

index schemes: r

sampling: trilinear

block size: 64, 256

cache design:

cache 1: One cache for only texture blocks (T blocks).

associativity: full

eviction policy: LRU

cache 2: One cache for only void blocks (V blocks).

associativity: full

eviction policy: LRU

Some results are in Figures A.59 to A.61.
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Figure A.59: Comparison of bandwidth consumption curves for scene trifs90 and
block size 256 when using one cache and when using a separate cache for the void
parts of the texture for textures (a) cellorig (b) cat (c) funny3 and (d) sine11-91.

Discussion

The graphs in Figures A.59 to A.60 show that the less spatial locality there is,

the more effective using separate caches for texture and void blocks is. The most

drastic improvements occur when rasterizing in R order for scene trifs-90 (Figure

A.59). Even the bandwidth reductions for scene teapot are noticeably better than

the small bandwidth reductions for scene trifs-90 and rasterization order H. Given

the way that the occupied blocks tend to be clustered together in the texture, a

working set is more likely to contain both void blocks and texture blocks when the

spatial locality is poor than when the spatial locality is good, resulting in the given
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Figure A.60: Comparison of bandwidth consumption curves for scene teapot and
block size 256 when using one cache and when using a separate cache for the void
parts of the texture for textures (a) cellorig (b) cat (c) funny3 and (d) sine11-91.

variance in effectiveness of the use of separate caches. If the goal of separate caches

is to reduce bandwidth consumption, then they are best used when poor spatial

locality of the rasterization curve is expected.

It is also interesting to note that when the graph of the bandwidth consumption

for texture funny3, rasterization order R, scene trifs-90, and block size 256 in Figure

A.59(c) is compared to the corresponding graph for a dense texture and scene trifs-

90 in Figure A.55, the minor reduction in working set size does not reflect the huge

decrease in texture occupation. However, the corresponding curves for rasterization

order H in the same graphs do reflect the decrease in texture occupation. This is
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Figure A.61: Miss rate contribution of the individual void block and texture block
caches to the total miss rate. The scene is trifs-90 , the block size is 256 and the
texture is (a) cellorig (b) cat (c) funny3 and (d) sine11-91.

explained by the anisotropic features in the texture being aligned with the direction

of rasterization in rasterization order R ensuring that the working set size is still

roughly the amount of texture required to render a scanline. This problem does

not occur when rasterizing in H order because it is not very anisotropic.

Theoretically, we can reduce the total miss rate (ignoring the B-tree indices)

by making the void block cache larger than the texture block cache. (In order to

deal with rendering from mostly void parts of the texture as ably as with rendering

from mostly occupied parts of the texture, the void block cache must be at least

as large as the texture block cache in terms of number of entries.) However, for
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rasterization order R both texture and void block caches need to be large enough

to contain their respective working sets so that most of the misses will already be

cold misses (see Figure A.61 ). For rasterization order H, the miss rate curve is

so flat that again most of the void block misses are cold misses (again see Figure

A.61). Making the void block cache larger does not significantly affect the miss rate

unless the original cache was too small to begin with. What is necessary instead is

a way to reduce the number of cold misses due to the void parts of the texture.

A.5.3 Test: Separate Cache for Void Key-Intervals

We have already seen in previous tests (see Section A.2) how using a range-cache

to store void key-intervals reduces the miss rate due to the void parts of the texture

to well below the cold miss rate for void blocks, even with very few entries in the

range-cache. Here we test with more typical scenes. The test parameters are:

scenes: trifs-90, teapot, box

textures: cat, funny3, cellorig, check, sine11-91, dense

rasterization order: R, H – we do not test Z because it is so similar to H for a

fully associative cache.

index schemes: r
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sampling: trilinear

block size: 64, 256

cache design:

cache 1: One cache for only texture blocks (T blocks).

associativity: full

eviction policy: LRU

cache 2: One range-cache for void key-intervals.

eviction policy: LRU, FIFO

Some results are in Figure A.62 to A.64.

Discussion

We can see from the graphs that we get miss rates well below the cold miss rate

for a void block cache if we use a range-cache and rasterization order H for all the

scenes, even for very small cache sizes. We got similar results using other textures

and index schemes.
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Figure A.62: Graphs comparing the miss rates of a void range-cache versus a void
block-cache for rasterization orders R and H, index scheme z, and texture sine11-
91. The scenes used are (a) teapot (b) box and (c) trifs-90.
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Figure A.63: The same as Figure A.62 except the texture is cellorig.
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Figure A.64: The same as Figure A.62 except the texture is cat.

A.6 Test: Storing the Index Blocks With the

Texture Blocks

The next test examines the additional bandwidth incurred when the index blocks

are stored in the same cache as the texture blocks. Since the miss rate curve for a

void range-cache is very flat, we use a very large void range-cache in our test. The

test parameters are as follows:

scenes: trifs-90, trifs-0, teapot

textures: dense, check, cat
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rasterization order: H – we do not test Z because it is so similar to H in all

previous tests. R is not tested because in previous tests it was shown that

using it required the cache to have a high associativity to give a miss rate

comparable to that for a fully associative cache.

index schemes: z, h – r is not tested for the same reason R is not.

sampling: trilinear

block size: 256

cache design:

cache 1: One cache for only texture blocks (T blocks) and index blocks (I

blocks). We refer to it as a TI cache.

associativity: full, 1, 2, 4, 8

eviction policy: LRU

cache 2: A void range-cache of size 8192, large enough so all misses are cold

misses.

Some results for scene trifs-90 are in Figures A.65 and A.66.
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Figure A.65: The bandwidth consumption curves for various cache associativies.
The scene is trifs-90, the texture is cat, and the rasterization order is H. The index
scheme is (a) z (b) h.
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Figure A.66: The bandwidth consumption curves for various cache associativies.
The scene is trifs-90, the texture is dense, and the rasterization order is H. The
index scheme is (a) z (b) h.

Discussion

Regardless of the rasterization order/index scheme combination, Figures A.65 to

A.66 show that a high associativity is needed to get comparable miss rates to that

achieved with a fully associative cache, even when the texture is relatively sparse.

The same effect was noticed with the other scenes and textures. Since this effect

is quite strong for the comparatively small number of index blocks relative to the
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number of texture blocks, the index blocks should be cached separately from the

texture data.

A.7 The Index Block Cache

This set of tests examines the effect of test parameters on the bandwidth incurred

by the index blocks and latency of access when a cache is used to store the index

blocks exclusively.

A.7.1 Test: Curve Shapes

We determine the bandwidth consumption curve shapes for a fully associative cache

that stores only index blocks. Since the index block cache is only accessed when

there is a miss when accessing texture data, the miss rate curve for the index block

cache is dependent on the misses for texture blocks and void blocks or key-intervals.

Again we use a very large void range-cache. For the texture blocks we use a fully

associative cache of different sizes to give different miss rates. The test parameters

are as follows:

scenes: trifs-90, trifs-0, teapot

textures: dense, check, cat, cellorig
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rasterization order: R, H – we do not test Z because it is so similar to H in all

previous tests.

index schemes: r, z, h

sampling: trilinear

block size: 64

cache design:

cache 1: One cache for index blocks (I blocks).

associativity: full

eviction policy: LRU

cache 2: A void range-cache of size 8192, large enough so all misses are cold

misses.

cache 3: A fully associative cache used to store texture blocks.

eviction policy: LRU

size: 4K, 16K, 64K

The results are in Figures A.67 to A.69.
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Figure A.67: The bandwidth due to the index blocks for various index schemes.
The scene is trifs90, the texture is dense, the texture block cache size is 4K, and
the rasterization order is (a) R and (b) H.
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Figure A.68: The bandwidth due to the index blocks for various index schemes.
The scene is trifs0, the texture is dense, the texture block cache size is 4K, and the
rasterization order is (a) R and (b) H.

Discussion

The results for scene trifs-90 in Figure A.67 shows that when geometry is not a

factor, the basic shape of the bandwidth consumption curve is determined by the

rasterization order independent of the index scheme. Rasterization order R gives

a distinct step corresponding to a distinct working set size, and rasterization order

H giving a smooth decline. The bandwidth consumption when using rasterization
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Figure A.69: The bandwidth due to the index blocks for various index schemes
and rasterization orders for scene teapot, texture block cache size is 4K, and texture
dense.
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order H is also much lower than that when using rasterization order R for small

cache sizes.

Each part of the texture corresponds to a path of index blocks in the B-tree

index, and the vast majority of these blocks are the key-blocks at the end of a path.

Similarly to the case where the texture is partially covered by void key-intervals,

each key-block covers part of the texture in shapes similar to the shapes of the

larger void key-intervals in a sparse texture (see Table A.3). The shape of the

curves can then be explained by the relationship between these shapes and the

order and location of the texel accesses that result in a miss in the texture block

cache (see Figure A.70). The former is primarily determined by the index scheme,

the latter by the rasterization curve.
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Table A.3: Pictures showing how the areas of each tex-

ture are assigned to the leaf blocks in a compacted B-tree

depending on the index scheme chosen. The texture is

blocked into 4× 4 texel blocks.

Texture Name
Index Scheme

h z r

cat

cellorig

funny3
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Texture Name
Index Scheme

h z r

galaxies-bw

sine11-1

sine11-45

sine11-91
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Texture Name
Index Scheme

h z r

sine11-135

dense

For scene trifs-90, the order and location of texel accesses corresponding to

texture block misses is close enough to the original rasterization curve that the

results are very similar to the results in the basic tests for the void-range-cache (see

Section A.2) and can be explained by the same explanations. Supporting this is a

comparison of Figure A.67 for scene trifs-90 and Figure A.68 for scene trifs-0. They

show that the same orientation-sensitivity issues that occur with void key-intervals

occurs here, with the rasterization order R and index scheme r combination only

working well when they are aligned in the same direction, and other combinations

being relatively insensitive in comparison.

The results for scene teapot in Figure A.69 show that like the case for a texture
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Texture R H

dense

cat

Figure A.70: The location of texture block and void key-interval misses that occur
in the tests for a texture block cache size of 4K, scene trifs-90, and rasterization
orders R and H.

block cache, when the triangles are not large the curve for the index block cache is

not much affected by the rasterization order used. However, the curve is affected

by the index scheme, with the bandwidth overhead increasing as we go from index

scheme h, to z, to r, with the first two close to each other and significantly lower

than the third. We attribute the ordering to the much better spatial locality of index

schemes h and z better translating the spatial locality generated by the rasterizer

into locality of reference for the index blocks.

In conclusion, to keep the bandwidth overhead due to the index blocks as low
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as possible the rasterization order and index scheme combination must be chosen

to give as good locality as possible in the B-tree key-space for the scene. Usually

this will mean using rasterization order H with index scheme h or z. Using index

scheme z will produce slightly higher index block bandwidth consumption than

using index scheme h with this cache setup in most situations.

We get similar results for other textures and texture block cache sizes.

A.7.2 Test: Block Size

This test is to see how changing the block size changes the bandwidth usage due

to the index blocks. The test parameters are:

scenes: trifs-90, trifs-0, teapot

textures: dense, check, cat, cellorig

rasterization order: R, H – we do not test Z because it is so similar to H in all

previous tests.

index schemes: r, z, h

sampling: trilinear

block size: 64, 256, 1024
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cache design:

cache 1: One cache for index blocks (I blocks).

associativity: full

eviction policy: LRU

cache 2: A void range-cache of size 8192, large enough so all misses are cold

misses.

cache 3: A fully associative cache used to store texture blocks.

eviction policy: LRU

size: 4K, 16K, 64K

Some results are in Figures A.71 to A.80.

Discussion

Figures A.71 and A.72 show that for sufficiently large caches, a larger block size

results in less bandwidth consumption overhead from the index blocks. When the

block size is 256, a cache size of at least 2K is sufficient in our tests; a cache size of

at least 8K is necessary when the block size is 1024.

Figures A.73 and A.74 show that the reduction in bandwidth due to a larger

block size is mostly counteracted by the corresponding increase in bandwidth from



APPENDIX A. APPENDIX 214

(a)
 0

 0.5

 1

 1.5

 2

 1  2  4  8  16  32  64

ba
nd

w
id

th
 (

te
xe

ls
/fr

ag
m

en
t)

cache size (kbytes)

64

256

1024

(b)
 0

 0.5

 1

 1.5

 2

 1  2  4  8  16  32  64

ba
nd

w
id

th
 (

te
xe

ls
/fr

ag
m

en
t)

cache size (kbytes)

64

256

1024

(c)
 0

 0.5

 1

 1.5

 2

 1  2  4  8  16  32  64

ba
nd

w
id

th
 (

te
xe

ls
/fr

ag
m

en
t)

cache size (kbytes)

64

256

1024

Figure A.71: The bandwidth consumption due to the index blocks for various block
sizes for scene trifs-90, texture dense, rasterization order H, and index scheme z.
The texture block cache size is (a) 4K (b) 16K and (c) 64K.
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Figure A.72: The same as in Figure A.71 except that the texture used is cat.
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Figure A.73: The bandwidth consumption due to both the texture and index
blocks for various block sizes for scene trifs-90, texture dense, rasterization order
H, and index scheme z. The texture block cache size is (a) 4K (b) 16K and (c)
64K.
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Figure A.74: This is the same as in Figure A.73 except that the texture used is
cat.
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Figure A.75: The miss rate of the index block cache for various block sizes for
scene trifs-90, texture dense, rasterization order H, and index scheme z. The
texture block cache size is (a) 4K (b) 16K and (c) 64K.
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Figure A.76: This is the same as in Figure A.71 except that the texture used is
cat.
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Figure A.77: Comparison of the average number of index blocks accessed per texel
access for index schemes z and h. The block size is 256 and the scene is trifs-90.
The texture block cache size is (a) 4K (b) 16K and (c) 64K.
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Figure A.78: Comparison of the average number of index blocks accessed per texel
access for index schemes z and h. The block size is 256 and the scene is teapot.
The texture block cache size is (a) 4K (b) 16K and (c) 64K.
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Figure A.79: The average number of index blocks accessed per texel access for
various block sizes for scene trifs-90, rasterization order H, and index scheme z.
The texture block cache size is (a) 4K (b) 16K and (c) 64K.
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Figure A.80: The average number of index blocks accessed per texel access for
various block sizes for scene teapot, rasterization order H, and index scheme z. The
texture block cache size is (a) 4K (b) 16K and (c) 64K.
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the texture blocks. However, for block size 256 the total bandwidth curve is still

close to the one for block size 64, sitting slightly above for the highest texture block

miss rate and slightly below for the lower ones when the cache size is at least 2K.

Increasing the block size from 256 to 1024 clearly does not decrease the bandwidth

consumption in our tests.

One measure of the latency due to going through the B-tree is the average

number of index blocks accessed per texel access. Figures A.77 and A.78 show that

there is little difference in latency between using index scheme h and using index

scheme z. Figures A.79 and A.80 gives the latency for various block sizes. The

number when the block size is 64 is quite high, indicating that we should avoid

using such a small block size if latency of access is an issue.

A.7.3 Test: Eviction Policy

We next test how the eviction policy of the index block cache affects the bandwidth

consumption. The test parameters are the same as the previous test except that

some parameters are restricted and we add FIFO to the eviction policies tested for

the index block cache.

scenes: trifs-90, trifs-0, teapot

textures: dense, check, cat, cellorig
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rasterization order: R, H – we do not test Z because it is so similar to H in all

previous tests.

index schemes: r, z, h

sampling: trilinear

block size: 256 – we do not test block size 1024 because it results in overly high

bandwidth consumption, and we do not test block size 64 because using it

results in high latency of texel access

cache design:

cache 1: One cache for index blocks (I blocks).

associativity: full

eviction policy: LRU, FIFO

cache 2: A void range-cache of size 8192, large enough so all misses are cold

misses.

cache 3: A fully associative cache used to store texture blocks.

eviction policy: LRU

size: 16K

Some results are in Figures A.81 to A.84.
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Figure A.81: The bandwidth consumption due to the index blocks as the eviction
policy changes. The curves are for block size 256, scene trifs-90, texture dense,
rasterization order H, and index scheme h. The texture block cache size is (a) 4K
(b) 16K and (c) 64K.
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Figure A.82: This is the same as in Figure A.81 except that the texture used is
cat.
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Figure A.83: The bandwidth consumption due to both the texture and index
blocks as the eviction policy changes. The curves are for block size 256, scene trifs-
90, texture dense, rasterization order H, and index scheme h. The texture block
cache size is (a) 4K (b) 16K and (c) 64K.
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Figure A.84: This is the same as in Figure A.83 except that the texture used is
cat.
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Discussion

Figures A.81 and A.82 show that using FIFO instead of LRU for the eviction policy

only slightly increases the bandwidth consumption due to the index blocks when

the cache size is at least 4K in our tests. Figures A.83 and A.84 indicate that when

the total bandwidth consumption is taken into account, using FIFO instead of LRU

for the eviction policy hardly makes a difference.

A.7.4 Test: Reducing Latency in Searching the Index

We implemented one path-per-MIP-map-level-per-texture-unit caches. Each path

cache caches the pointers on the path of a B-tree, and we look up blocks by searching

backwards on the path stored in the path cache, then searching forwards. The actual

blocks on the path are stored in the index block cache, so what the path cache does

is alter the access pattern sent to the index block cache. The test parameters are:

scenes: trifs-90, trifs-0, teapot

textures: dense, check, cat, cellorig

rasterization order: R, H – we do not test Z because it is so similar to H in all

previous tests.

index schemes: r, z, h
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sampling: trilinear

block size: 64, 256

cache design:

cache 1: One cache for index blocks (I blocks).

associativity: full

eviction policy: FIFO

cache 2: A void range-cache of size 8192, large enough so all misses are cold

misses.

cache 3: A fully associative cache used to store texture blocks.

size: 4K, 16K, 64K

Some results are in Figures A.85 to A.92.

Discussion

The use of path-caches has little effect when the index block cache is large but

somewhat reduces the bandwidth consumption when the cache size is small, as

shown in Figures A.85 to A.88. The reductions in bandwidth consumption are

generally modest except for when the block size is 256, the texture is dense, and

the cache size is less than 2K (Figure A.87). This can be explained by looking at
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Figure A.85: The bandwidth consumption due to the index blocks for block size
64, scene trifs-90, texture dense, rasterization order H, and index schemes h and
z. The texture block cache size is (a) 4K (b) 16K and (c) 64K.

the height for the B-tree for the 512× 512 level of each texture in Figure 6.12 (the

scene trifs-90 is set up to sample from the 512× 512 and 256× 256 levels).

For texture dense, the B-tree height is 3 for block size 256 and 5 for block size

64; the corresponding numbers for texture cat are 2 and 4. When the block size is

64 a cache size of 1024 can contain 16 entries which is enough to contain a path

down the B-tree for the 512 × 512 and 256 × 256 levels for both textures dense

and cat. The cache can only contain 4 entries when the block size is 256 which

is insufficient to contain two B-tree paths when the texture is dense but sufficient

when the texture is cat. This leads to very high bandwidth consumption when
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Figure A.86: This is the same as in Figure A.85 except that the texture used is
cat.

path-caches are not used in our bad test case (Figure A.87). From this we expect

the use of path-caches to be most effective at reducing bandwidth consumption

from the index blocks when the cache is not large enough to contain the paths

down B-trees that are involved in rendering the scene.

Figures A.89 to A.91 demonstrate that using path-caches greatly decreases la-

tency of access if there is good spatial locality in the sequence of block keys in

B-tree key-space. When the locality of the sequence of block keys in key-space is

poor as in Figure A.92 where the parameters of scene trifs-90, rasterization order

R, and index scheme r were chosen for that property, the benefits are reduced. In
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Figure A.87: The bandwidth consumption due to the index blocks for block size
256, scene trifs-90, texture dense, rasterization order H, and index schemes h and
z. The texture block cache size is (a) 4K (b) 16K and (c) 64K.

the case where additionally the block size is small (64 bytes) and the path long,

using a path-cache actually produces greater latency than not using one. However,

the poor spatial locality necessary for this is unlikely to occur when the rendering

parameters are chosen properly.
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Figure A.88: This is the same as in Figure A.87 except that the texture used is
cat.
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Figure A.89: The average number of index blocks accessed per texel access for
block size 256, scene trifs-90, rasterization order H, and index scheme z. The
texture block cache size is (a) 4K and (b) 16K.
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Figure A.90: The average number of index blocks accessed per texel access for
block size 256, scene teapot, rasterization order H, and index scheme z. The texture
block cache size is (a) 4K and (b) 16K.
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Figure A.91: The same as Figure A.90 except for block size 64.
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Figure A.92: A case where poor spatial locality makes the use of a path-cache
less effective at reducing latency. The average number of index blocks accessed
per texel access for texture block cache size of 16K, scene trifs-90, texture dense,
rasterization order H, and index scheme r. The block sizes are 64 and 256.
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