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Abstract

Among all the quantum computer candidates, the superconducting system is one of
the most convincing platforms due to its strong couplings and scalability. To be more
specific, this thesis focuses on the superconducting system, in which the artificial atoms
are controlled longitudinally and coupled without any intermediate devices.

This thesis studies the implementation of universal quantum gates in the fixed-coupling
longitudinal controlled superconducting systems. We will discuss the reasons of choosing
this system and also address the difficulties towards one/two-qubit gates in the many-
qubit system. Meanwhile, we will review the state-of-the-art achievements of implementing
quantum gates in such a system.

We propose a superconducting decoupling method in this thesis. Firstly, we state that
our algorithm can effectively ‘turn off’ arbitrary couplings. Then, we analyze the errors
of our decoupling method and prove that the errors are ignorable when a sequence of
decoupling gates are applied on non-nearest-neighboring qubits. We verify the efficiency
of our decoupling method using the numerical simulations, which are well-matched with
the theoretical predictions. The irrelevant coupling strengths are suppressed to the third
order. Using 99.6% fidelity isolated CNOT and 99.89% single-qubit gates, we obtain a
fidelity of 97.8% with the CNOT implementation in a five-qubit system over 14.84 ns.

The decoupling method is not limited to this specific system. The algorithm is derived
in general and can be applied to other quantum systems which has a time-independent
Hamiltonian. We expect this work will be useful for implementing universal quantum
gates.
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Chapter 1

Introduction

Quantum theory is a branch of physics that explains the nature and behavior of matter and
energy on the atomic and subatomic level. Through many great discoveries over the last
century, quantum theory successfully predicts a great number of properties that cannot be
explained using classical theories.

Unlike the classical bit, a quantum bit (qubit) in superposition can be either state 0, 1
or any linear combination of them (superposition). In 1992, Deutsch and Jozsa showed that
the property of superposition can be used to solve a black box problem with only one query
whereas a classical computer requires at least 2n queries1 [3]. Later, in 1994, Peter Shor
showed that with quantum bits, factoring could be solved in polynomial time [4]. There
are many more examples that can be listed here that have proven quantum computers
possess the ability to outperform classical computers.

Over the past few years, scientists have tried to build a quantum computer on different
platforms([5], [6]). The superconducting system is one of the main candidates due to its
scalability and potential to achieve fast operations. This thesis will introduce an algorithm
engineered for a particular type of Hamiltonian, which could be a useful resource for
developing a scalable superconducting quantum computer.

1.1 Scalable Superconducting System

Many types of constraints manifest themselves in all kinds of quantum systems, one of
which involves handling a large number of qubits. According to DiVincenzo’s criterion [7],

1n is the number of total bits.
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to build a quantum computer, a system needs to be able to carry out a set of universal
gates. In a 1D-qubit array (one type of quantum computers), one possible universal set
of gates consists of CNOT gates (on nearest qubits) and single-qubit gates, according to
the Solovay-Kitaev theorem [8]. It has been proven that any CNOT gate needs a finite
coupling strength. This indicates that the 1D-qubit array requires a method to introduce
couplings between qubits that are involved with CNOT gates. However, these couplings
disturb other gate implementations at the same time.

A general approach for superconducting systems towards building a quantum computer
is to design a 1D-array with nearest couplings. Based on this approach, several designs
are proposed to get rid of extra couplings when implementing a gate, such as tunable
couplers and tunable energy splittings (details described in chapter 2), which try to ‘turn
off’ some of the couplings by sacrificing lifetimes of the qubits. Both designs introduce
extra equipment to the system. This approach makes quantum gates easy to implement,
but the qubits’ lifetime is greatly reduced [9], [10], [11]. The equipment also occupies a
significant amount of space in the experimental setups.

Alternatively, there are algorithms to implement quantum gates without additional
equipment. For example, Selective Darkening (SD) [12], Fixed LInear Couplings between
Fixed Off-Resonant Qubits (FLICFORQ) [13] and Cross Resonance [14] are algorithms for
the CNOT gate implementations. However, lack of compatibility with multi-qubit systems
is one common problem among these algorithms.

The same scaling problem happens to pulse engineering techniques like GRadient As-
cent Pulse Engineer (GRAPE) [15], which is a numerical optimization method to find the
pulses that implement a certain gate. In principle, such a technique is able to produce
high fidelity gates for any well-defined quantum system. However, similar to all other op-
timization problems, GRAPE needs to sample a great number of initial pulse sequences,
and the sample size grows quadratically with the number of qubits in the system. There
are solutions to this problem like the subsystem approach[16], but it is hard to argue that
these solutions still hold for systems with strong coupling strengths and when there is a
large number of qubits in the system. Meanwhile, in a fixed-coupling system, the number
of elements we need to manipulate for a quantum gate is much larger than the number of
parameters we can control. Such a mismatch of the freedoms makes GRAPE algorithm’s
performance questionable on a large number of qubits.

This thesis addresses the scaling problem by introducing a method called supercon-
ducting decoupling. Our method does not require extra equipment. It transforms the
Hamiltonian of a fixed-coupling superconducting system into an effective Hamiltonian with
arbitrary couplings. The decoupling method activates only the couplings that we desire,
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which makes scalable quantum gates possible in fixed-coupling systems.

1.2 Outline of the Thesis

This thesis focuses on implementing quantum gates in fixed-coupling superconducting
multi-qubit systems. It is a fundamental step in quantum computing towards building
a quantum computer.

In chapter 2, I will first introduce the fundamental features of a quantum computer and
then review the relative background of superconducting systems. I will also discuss the
reasons for choosing the fixed-coupling design over others. At last, I will introduce some
widely accepted methods to characterize the dynamics of a fixed-coupling system.

In chapter 3, I will introduce some previous works on implementing quantum gates. In
this chapter only, we assume that there are no undesirable couplings. In the first section,
I will introduce the single-qubit gate algorithm, which has been experimentally verified
to have a 99.99% fidelity [17] 2. Then, I will introduce Selective Darkening [18] as the
method we choose to implement CNOT gates. Among all others, this method gives a
comparable fidelity (around 99.99% from simulations) and a rather clear derivation with
fewer estimations.

In chapter 4, I will focus on the fixed-coupled superconducting system under instan-
taneous gates. In this chapter, the only problem that I try to establish is how to ‘turn
off’ (i.e. decouple) some couplings in a system. I will start by introducing the decoupling
method in the lab frame Hamiltonian. Then, I will show that this lab frame decoupling
method can be integrated into the rotating frame. All single-qubit operations discussed in
this chapter are assumed to be 100% accurate and instantaneous.

In chapter 5, I will discuss two attempts for extending instantaneous single-qubit gates
to pulse gates. As one can imagine, there is no such thing as instantaneous gates; any
quantum gate is a summary of qubits’ dynamics over a period of time. One approach
towards making the gates discussed in chapter 4 into pulse gates is to use the control
strengths relatively stronger than couplings in order to ignore them. However, what makes
this approach less attractive is the errors scale with the number of qubits. Alternatively,
the errors can be greatly avoided by applying slow single-qubit gates under some additional
conditions.

2In fact, to achieve such a high fidelity, we also need error filters, which we would no cover in this thesis.
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In chapter 6, I will provide some simulations done in Matlab. I achieved fidelities of
99.93% and 99.6% on the single-qubit gates and CNOT correspondingly when there were
no extra couplings. With these gates, I simulated the CNOT gates in a three-qbuit system
and achieved 96.0% fidelity(on average) and 93.0% in the five-qubit system.
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Chapter 2

Theoretical Bases

In this chapter, I will cover some theoretical foundations of quantum dynamics. I will start
by introducing the concept of qubits and gates in section 2.1, which are building blocks
of quantum computers and bear an analogue to bits and gates in classical computers.
In section 2.2, I will review several designs of superconducting quantum computers and
briefly discuss the aspects of each system. In section 2.3, I will introduce a method called
Rotating Frame (RF) [19], which is a useful tool for analyzing evolutions that consist of
fast and slow oscillations. Section 2.4 presents an estimation method called Rotating Wave
Approximation (RWA) [20], which has been adapted in many research fields and proven to
work very well. In section 2.5, I will introduce the transition strength as one of the many
ways to characterize a quantum system.

2.1 Quantum Computation

Just like (classical) computers in our daily life, quantum computers are expected to operate
in similar ways. This indicates the need for well-defined quantum bits and gates. There
are many candidates for the quantum computers. Any physical system with non-linear
elements could be used to build a quantum bit (qubit), for example: Nuclear Magnetic
Resonance (NMR) [5], ion traps [21], optical atoms [22], quantum dots [22] and Nitrogen-
vacancy Center [23].

A qubit is characterized by a specific scenario in a carefully designed quantum system,
which has well-defined states |0〉, and |1〉. As a superconducting qubit, state |0〉 corresponds
to a circuit with the lowest energy and state |1〉 corresponds to the circuit with a higher
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energy. Due to the presence of the magnetic field, energies (states) change continuously
in time, which can be characterized by the system’s Hamiltonian. A quantum gate is a
summary of these evolutions over a certain period of time.

A qubit can be any linear combination of |0〉 and |1〉. It has the following expression:

|ψ〉 = α|0〉+ β|1〉, (2.1)

where α and β are complex numbers.

The Dirac notation is a common way to describe states and operators to make them
mathematically computable. In Dirac notation, states are represented by vectors:

|ψ〉 =

(
α
β

)
. (2.2)

Also the operators are represented by matrices. A set of operators in a vector space
V is called a basis if the operators are linearly independent and every operator in V is a
linear combination of this set. Many bases can be defined for a single vector space. In a
2-dimensional space, one famous basis is called Pauli matrices [24]:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
and I =

(
1 0
0 1

)
. (2.3)

For higher dimensional spaces, multi-qubit gates are necessary to form a basis. The
Solovay-Kitaev theorem [8] states that any quantum gates can be decomposed into CNOT
and two other single-qubit gates (H and T gates).

Figure 2.1: CNOT gate representation. The CNOT matrix representation (left) and
its circuit representation (right).

A quantum system can be called a computer if it is capable of performing ‘good’ single-
qubit gates and CNOT gates. The gates are created through various control methods
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and they have a chance of failure. Fidelity is a metrics used to measure how well a gate is
performed. Given two gates U1, U2 with the dimension d⊗d, the fidelity F [25] is calculated
as:

F =
1

d2
|tr(U1

†U2)|, (2.4)

where 0 ≤ F ≤ 1 and F = 1 means operation U1 behaves the same as U2.

2.2 Superconducting Qubit

There are many approaches towards building the world first quantum computer. In the
superconducting circuit approach, a qubit is constructed from electrical elements and some
of them are microscopic. Actually, a persuasive design has not yet been devised. Various
ways are proposed to construct qubits as well as coupling them.

There are three major types of qubits: charge, flux and phase qubit. [1]

Figure 2.2: Different types of superconducting qubits. [1] a) Charge qubit; b) Flux
qubit; c) Phase qubit (referred as prototypical models by Devoret.) Figure Courtesy: M.
H. Devoret, et al.

After considering all three of the designs, we chose to analyze our algorithm on the flux
qubits. First of all, a flux qubit has the largest nonlinearity among all three superconduct-
ing qubit types. This means the states |0〉 and |1〉 can be easily distinguished. Secondly,
the dynamics of qubits are controlled by external applied fluxes. This control method is
very convenient; their forms can be manipulated freely and can be precisely directed to
any specific qubit in a multi-qubit system without too much noise.
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The Hamiltonian of a single flux qubit in its degeneracy point1 can be expressed as:

H4 =
4
2
Z + f(t)X, (2.5)

where X, Y are Pauli matrices; f(t) is the external flux; 4 is the Zeeman frequency2.

Coupling flux qubits can be done easily through allocating them near each other. The
capacitances between the qubits will effectively connect them; however, due to the diffi-
culties of analyzing the dynamics, scientists have tried different designs to overcome this
issue.

As Devoret outlined in 2004 [1], there are three major ways to couple the qubits, which
are all have been experimentally achieved at this point:

1. Zeeman frequencies for all qubits are the same and couplings can be turned on/off
using intermediate devices. ([9], [10], [26]).

2. Couplings between qubits are fixed; Zeeman frequencies are tunable by having
additional single-qubit control pulses(Xmon Qubit) ([27], [11], [28]).

3. Fixed-coupling and fixed Zeeman frequencies. ([12],[13], [29]).

Zeeman Frequency
Fix Tunable

Coupling Frequency
Fix Method 3 Method 2

Tunable Method 1 N/A

Table 2.1: Different multi-qubit designs in the superconducting system. Predicted
by Devoret, there are three major ways to couple the qubits. All of them have been
experimentally achieved.

Method 1 and 2 employee extra device to the systems in order to deal with the unwanted
couplings. However, they also cause the systems to decoherence (loss of the quantum
information) very fast [1]. This thesis will focus on the third method, which we refer to
as the fixed-coupling system. We state that our decoupling method has the potential to
enable the CNOT gate implementations in the multi-qubit fixed-coupling system.

1Degeneracy point is a setup of qubit to make it has a long lifetime.
2A Zeeman term is the qubit’s energy frequency gap; a Zeeman frequency is the coeifficient of the

Zeeman term.
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The Hamiltonian we are going to use throughout the thesis is constructed by flux qubits
described in Eq. 2.5 with inductance couplings between the nearest qubits in an 1D-array3:

H(t) = H4 +HJ +Hd(t). (2.6)

Here, H4 is the Zeeman frequency; Hd(t) is the single-qubit control. Both terms are not
affected by whether the qubits in the system are coupled or not. HJ is the extra Hamiltonian
caused by coupling qubits capacitively. They can be expressed as the following:

H4 = −
∑
i

4i

2
Zi, (2.7)

Hd(t) =
∑
i

fi(t)Xi (2.8)

and

HJ =
∑
i

Ji,i+1XiXi+1. (2.9)

Here, the s i is the qubit index; 4i’s are Zeeman frequencies; fi(t)’s are shapes of control
pulses; Ji,i+1’s are coupling strengths. We ignore all couplings with a distance more than
one qubit because they are exponentially weaker than the nearest couplings.

The decoupling method also works well in systems with superconducting qubits coupled
by resonators. This system has the advantage of strong couplings between qubits that lead
to fast quantum entangling gates. The system can be characterized by the famous Jaynes-
Cummings Hamiltonian [30] :

HJC = ~ω(a†a+
1

2
)− 4

2
Z + J(a†σ− + aσ+), (2.10)

where ω is the qubit frequency and a, a†, σ−, σ+ are ladder operators.

The coupling terms specified in the equation is not exactly XX-coupling as Eq. 2.9.
However, Jaynes-Cummings Hamiltonian gives the same expression as the fixed-coupling
Hamiltonian in rotating frame. This means that they can be decoupled in the same way
using the method we are going to introduce in this thesis.

3We will refer this structure as the ‘fixed-coupling’ system throughout the thesis.
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2.3 Rotating Frame

When describing a system with the Hamiltonian, scientists try to avoid having terms
significant larger than others. On one hand, large amplitude terms make the evolutions
sensitive to time. In a laboratory environment, to measure a quantum system at a very
specific time is challenging; if a evolution is not captured at the exact time, the extra
evolution will cause a significant error. On the other hand, with the presence of large
amplitude terms, the weak terms cannot be observed precisely.

Rotating frame is an useful technique for eliminating terms with large amplitudes in
a Hamiltonian. Referring to the Hamiltonian in Eq. 2.6, it describes how states evolve
in a laboratory environment, which is called the lab frame Hamiltonian. In this Hamilto-
nian, single-qubit Zeeman frequencies (4i) are few times larger than the controlling (fi(t))
and coupling strengths (Ji,i+1). This is not a desirable property because qubits are domi-
nated by the fast single-qubit (Zeeman) rotations, so that, other less trivial dynamics are
significantly disturbed and result in less effective quantum gates.

The problem of large Zeeman frequencies can be solved by finding a suitable frame
rotation. We consider a reference frame rotates at the same angular speed as the Zeeman
terms.

For a state |ψ(t)〉 evolving under the Hamiltonian H(t) (in lab frame), we define another
state |ψ(t)〉RF which has a time-dependent relation to the original state 4:

|ψ(t)〉RF = eiH4t|ψ(t)〉. (2.11)

In the next step, we use the Schrödinger’s time-dependent equation to find the Hamil-
tonian for the state |ψ(t)〉RF :

HRF(t)|ψ(t)〉RF = i
d

dt
|ψ(t)〉RF. (2.12)

For the right-hand-side of the equation, we express state in the lab frame, do the derivative
and then change the state back to the RF:

i
d

dt
|ψ(t)〉RF = −H4eiH4t|ψ(t)〉+ ieiH4t

d

dt
|ψ(t)〉 (2.13)

= −H4|ψ(t)〉RF + eiH4tHLFe
−iH4t|ψ(t)〉RF (2.14)

4Plank unit is used here for clarity, where c = ~ = 1.
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By expanding HLF using Eq. 2.6 and the operator commutative property [e−iH4t, H4] = 0,
we get the on-resonance rotating frame Hamiltonian Eq. 2.11, which is:

HRF(t) = eiH4t(HJ +Hd(t))e−iH4t. (2.15)

We observe that all the terms in the RF Hamiltonian are small in amplitudes. Instead,
they have periodical behaviors caused by the frame rotation.

In this section, we have seen a particular type of the frame transformation. It is easy to
extend this method of frame rotation to other rotations. By replacing eiH4t in Eq.2.11 with
any unitary U(t), the Hamiltonian of the corresponding rotating frame can be found. Note
that an exponentiation form of U(t) with time-independent coefficients is highly preferred,
because its time-derivative does not introduce extra terms in the RF Hamiltonian.

2.4 Rotating Wave Approximation

RWA is a common tool in quantum dynamic analysis [31]. It states that when a Hamil-
tonian is periodic, its fast oscillating (short period) terms can be ignored as long as their
amplitudes are not large.

Despite how unreliable it might sound, this approximation performs quite well in many
practical situations and is widely accepted in quantum dynamics. In this section, I will
present a theoretical proof.

Statement:

Let H(t) denotes the Hamiltonian, and U(t0, t) denotes the evolution of the system from
t0 to t. Rotating Wave Approximation (RWA) states that the evolution can be predicted
quite precisely with only the slow oscillating terms in H(t).

Proof:

The evolution U(t0, t) can be expanded using the Dyson series [32] in terms of H(t),
which is:

U(t0, t) = 1− i
∫ t

t0

dt1H(t1)−
∫ t

t0

dt2H(t2)

∫ t2

t0

dt1H(t1) + i

∫ ∫ ∫
... (2.16)
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Since most of the Hamiltonians we are interested in are periodic, the integrals are
proportional to their frequencies ω as:∫

eiωtdt =
eiωt

iω
. (2.17)

The amplitude of the numerator is always one regardless of the frequency ω, but a large
ω value in the denominator makes the equation to have a small value. Therefore, only the
low frequency terms are significant in a Hamiltonian.

A nature question would be how to determine whether a frequency is considered in-
significant than others. For the estimation that we are going to use in this thesis:

Hd(t) = a cos(ωt)X =
a

2
(eiωt + e−iωt)X =

a

2
eiωt(1 + e−2iωt)X ≈ a

2
e±iωtX, (2.18)

where ’±’ depends on the direction of static Hamiltonian H0.

The above estimation is quite accurate, since the frequency ω is always going to be
on-resonance. Since the bandwidth of the system will be around the resonant frequency,
the off-resonance term is very far away from the bandwidth that is safe to be ignored.

2.5 Time Evolution of Hamiltonian

As we all know, an efficient way to characterize a system is to use the Hamiltonian. How-
ever, there are no obvious ways to derive the evolution operator from a Hamiltonian.
According to the Schrödinger equation:

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, (2.19)

if the Hamiltonian H(t) is time-independent, the solution is simply as the following:

|ψ(t)〉 = e−iHt|ψ(0)〉. (2.20)

When the Hamiltonian is time-dependent, there is no universal solution so far. Some of
the time-dependent Hamiltonians are even not solvable. Fig. 2.3 lists several approaches
as an example. In this section, to serve the purpose of finding the qubits’ dynamics, I
will introduce a specific approach. Some people may refer this approach as the transition
strength between states. Later, we will use this technique to find the control parameters
for single and two-qubit gates.
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Figure 2.3: A non-exhaustive flow chart of ways to solve a Hamiltonian. It
describes several available ways towards getting the evolution matrix from a Hamiltonian.
The approaches may vary depending on the properties of a Hamiltonian.

Transition strength: [31]

Starting from the Schrödinger’s picture5, which is:

i
d

dt
|ψ(t)〉RF = HRF(t)|ψ(t)〉RF. (2.21)

We define the state |ψ(t)〉RF as a linear combination of time-independent basis vectors
{|vi〉}i:

5We use RF Hamiltonian for convenience.
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i
d

dt

∑
n

cn(t)|vn〉 = HRF(t)
∑
n

cn(t)|vn〉. (2.22)

Then, we can multiply 〈va| on the both sides:

i〈va|
∑
n

ċn(t)|vn〉 = 〈va|HRF(t)
∑
n

cn(t)|vn〉. (2.23)

This gives an expression for each of the time-dependent coefficient ca(t):

iċa(t) =
∑
n

cn(t)〈va|HRF(t)|vn〉, for all the possible ca(t). (2.24)

Here, 〈va|HRF(t)|vn〉 is referred as the transition strength between the state |va〉 and
|vn〉; ca,cn are the corresponding probability coefficients.

Usually ca(t)’s cannot be solved due to the complexity of Partial Differential Equa-
tion (PDE). However, if we have enough controls over these transition strengths, we can
manufacture the equations to be solvable.
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Chapter 3

Controlled Dynamics of
Fixed-Coupling Qubits

Over the years, researchers were trying to build a quantum computer with different sys-
tems. The language of ‘gate’ and ‘qubit’ has been adapted in general [33]. Among all the
landscapes of quantum computers, 2D surface code stands out because of simplicity and
scalability. It has been proven that the gates in a surface code needs to have fidelities
higher than 99.9% [34]. In the current stage of superconducting systems this fidelity can
be achieved, but we are facing a trade-off between the fidelity and coherence time as stated
in section 2.2. It is not clear that which design is better or what degrees of the trade-off
we want. The fixed-coupling system we discussed in this thesis has the advantage of a long
coherent time, but the transverse couplings make the Hamiltonian difficult to solve.

In this chapter, I will present the previous works for implementing one-qubit and CNOT
gates in the fixed-coupling system. In section 3.1, I will introduce the algorithm for imple-
menting single-qubit gates. In section 3.2, I will introduce Selective Darkening (SD), which
is an algorithm for CNOT gates in the fixed-coupling system. It achieves a 99.99% fidelity
according to the simulation [12], where the threshold of surface codes is well satisfied.
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3.1 Single-Qubit Gate

We will consider a single-qubit Hamiltonian1 of the form:

H(t) = −4
2
Z + a cos(ωt+ φ(t))X, (3.1)

where ω, a 2and φ(t) are the control frequency, amplitude and phase correspondingly.

To have a low noise experimentally, the control amplitude a is generally set to few times
smaller than the Zeeman frequency 4. The difference between frequencies is a good clue

of using rotating frame (RF). We rotate the lab frame with the operator e−i
4
2
Zt:

HRF(t) = ae−i
4
2
Zt cos(ωt+ φ)Xei

4
2
Zt = H+ +H−, (3.2)

where H+, H− are clockwise and anticlockwise rotations defined as:

H± =ae−i
4
2
Zte±i(ωt+φ)Xei

4
2
Zt (3.3)

=(ae±iφ)e−i
4
2
Zte±iωtXei

4
2
Zt. (3.4)

Once we figure out the Hamiltonian in RF, we can calculate the transition strengths:

〈0|H+ +H−|1〉 ≈ 〈0|H+|1〉 = ae+iφ〈0|e−i
4
2
Zte+iωtXei

4
2
Zt|1〉 = ae+iφe−i(4−ω)t (3.5)

and

〈1|H+ +H−|0〉 ≈ 〈1|H−|0〉 = ae−iφ〈1|e−i
4
2
Zte−iωtXei

4
2
Zt|0〉 = ae−iφe+i(4−ω)t. (3.6)

Rotating Wave Approximation (RWA) is being used in Eq. 3.5 to ignore H− because
it is the faster term compared to H+. Similarly, we ignore H+ in Eq. 3.6.

Note that choosing ω = 4 is the only way to avoid the system from rotating ‘too fast’.
Then by solving the partial differential equation (PDE) with an initial state, we can have
a complete description of the system3:

c0(t) = eiφ cos(at) (3.7)

and

c1(t) = e−iφ sin(at). (3.8)

Fig. 3.1 shows that with a proper control, the initial state periodically changes between
|0〉 and |1〉.

1In both this section and the next, undesired couplings are not considered. Discussions on many-
coupling systems will take place in both Chapter 3 and 4.

2Generally speaking, we can have a time-depedent a, but here we only take it as the constant.
3I use the ground state as the initial state for example
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Figure 3.1: Rabi oscillation of a single qubit. [2] A state is initiated as |0〉. The proba-
bility of observing a state is plotted against time. With the matched control frequency, the
state oscillates between being observed as |0〉 and |1〉. Figure Courtesy: R. P. Feynman,
et.al

3.2 CNOT–Selective Darkening

This section gives a simple overview of Selective Darkening (SD). It is a method to imple-
ment CNOT in a fixed-coupling system. Details can be found in Groot’s paper. [18]

In a two-qubit system, the lab frame Hamiltonian is defined as:

H = H0 +HJ +Hd(t), (3.9)

H4 = −41

2
Z1 −

42

2
Z2, (3.10)

HJ = J12X1X2 (3.11)

and

Hd(t) = a1 cos(ω1t+ φ1)X1 + a2 cos(ω2t+ φ2)X2. (3.12)

The controlHd(t) is done through the magnetic flux, which can be made sufficiently flexible.
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However, it is a convention to define Hd(t) in the above form because it captures both the
phase and frequency of the control pulses.

As we discussed in earlier sections, it is never a bad idea to find the system’s dynamics
by transforming the Hamiltonian into RF:

HRF(t) = ei(H4+HJ)tHd(t)e−i(H4+HJ)t. (3.13)

Here, we define our logic basis as the eigenstates of H4+HJ. Note that the eigenstates
are entangled in tensor product space and cannot be prepared or measured precisely. Luck-
ily, for J12 << |41 −42|, these entangled states are nearly indistinguishable from tensor
product states.

Expression of the eigenstates using tensor vectors as the followings:

˜|0〉 =(cos θ1; 0; 0;− sin θ1), (3.14)

˜|1〉 =(0; cos θ2;− sin θ2; 0), (3.15)

˜|2〉 =(0; sin θ2; cos θ2; 0) (3.16)

and

˜|3〉 =(sin θ1; 0; 0; cos θ1), (3.17)

where

θ1 =
1

2
arctan(

2J12

41 +42

) (3.18)

and

θ2 =
1

2
arctan(

2J12

41 −42

). (3.19)

By defining the states in the eigenbasis of H4 + HJ, state transitions maintain the
same structure as the no coupling system. The blue/red arrows in Fig. 3.2 indicate that
the connected states can evolve into one another. Without change the basis, the coupling
J12 introduces two extra transitions (red arrows). These transitions are captured by the
entangled basis and the structure is the same as the no coupling case.
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Figure 3.2: Energy levels of two qubits with/without transverse couplings. 00, 01,
10, 11 are eigenstates of the system without couplings; 0̂0, 0̂1, 1̂0, 1̂1 are the eigenstates of a
finite coupling J12. The altitude of each bar is a visual representation of the energy which
a state possesses. 4’s and 4̃’s are the transition strengths. Arrows indicate the connected
states are evolving into each other simultaneously under the corresponding Hamiltonian. In
a) we see there are four transitions in the system with no coupling between two qubits. In b)
we see that using the same states as before, the coupling introduces two extra transitions,
which makes the evolution very hard to characterize. In c), by changing the basis, the
number of transitions are reduced to four again.

A CNOT gate is an evolution that exchanges states |10〉 and |11〉. If we apply a
pulse at frequency 42 in the system, it will only activate two transitions |1̃0〉 ↔ |1̃1〉 and
|0̃0〉 ↔ |0̃1〉. However, it takes quite an effort to turn off |0̃0〉 ↔ |0̃1〉 among two transitions,
since they are activated by the same control frequency value. It turns out that a specific
ratio between two qubits’ control amplitudes can make it work.

To rewrite the above explanation as mathematical equations, we start from the RF
Hamiltonian in Eq. 3.13 and an arbitrary state expressed in entangled basis:

HRF(t) = ei(H4+HJ )tHd(t)e−i(H4+HJ)t, (3.20)

|ψ(t)〉RF = c0(t)|0̃0〉+ c1(t)|0̃1〉+ c2(t)|1̃0〉+ c3(t)|1̃1〉, (3.21)

where

Hd(t) = a1 cos(ω1t+ φ1)X1 + a2 cos(ω2t+ φ2)X2. (3.22)

Then, we can match the control frequencies ω1, ω2 to the entangled states after rotating
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the frame:

ω1 = ω2 = E3 − E1 =
1

2
(
√

4J2 + (41 +42)2 +
√

4J2 + (41 −42)2). (3.23)

As a result, we only have the following transition strength expressions, since others are
forbidden due to the mismatch of the frequencies [18]:

˜〈2|Hd(t) ˜|0〉 = +
a1

2
eiψ1 cos(θ1 + θ2) +

a2

2
eiψ2 sin(θ2 − θ1) (3.24)

and

˜〈3|Hd(t) ˜|1〉 = +
a1

2
eiψ1 cos(θ1 + θ2)− a2

2
eiψ2 sin(θ2 − θ1). (3.25)

Lastly, we engineer the ratio of a1, a2 to make ˜〈2|Hd(t) ˜|0〉 = 0, which is:

a1

a2

=
J12

41 −42

. (3.26)

To sum up, this section briefly introduces SD. It operates on an entangled basis and
uses it to carry out the CNOT gate with only the errors caused by RWA.
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Chapter 4

Instantaneous Decoupling

The idea of decoupling originated from Nuclear Magnetic Resonance (NMR). It is a tech-
nique for making some/all terms in a Hamiltonian effectively zero (referred as being ‘de-
coupled’) [35] [36]. This idea is highly practical in NMR because the single-qubit gates,
which the decoupling method heavily relied on, can be implemented very fast compared to
the disturbance caused by the couplings.

In superconducting systems, it is possible to have large qubit-qubit couplings. This large
coupling is favoured due to the possibility to implement fast coupling gates. However, in
this case, the strength of the control pulses may not be much larger than the couplings,
making the analysis of coupling difficult. Moreover, we are interested here in the couplings
which are transverse with respect to the Zeeman terms, which further complicates the
implementation of decoupling.

In this chapter, I will discuss the ‘ideal’ decoupling method in the 1D-array with fixed-
couplings. All the single-qubit gates are assumed to have 100% fidelities and are instanta-
neous. In general, this assumption is too good to be true. However, the analysis will lead
to the actual implementations which will be discussed in the next chapter and we will see
that the pulse gates are the natural extensions to these instantaneous ones.

Fully and partially decoupling methods with the lab frame Hamiltonian are introduced
in section 4.1 and 4.2 respectively; In section 4.3, I will introduce the decoupling method in
the rotating frame (RF) by establishing the relations between a lab frame and its rotating
frame.
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4.1 Refocusing in the Lab Frame

In this section, we will see that how the refocusing (fully decoupled) method works in our
fixed-coupling system. It is a method that creates an identity operation in a quantum
system over any period of time. As mentioned above, in this chapter including all sections,
we will assume the driving Hamiltonian Hd(t) = 0. This makes the lab frame Hamiltonian
of the fixed-coupling system time-independent.

A time-independent Hamiltonian (for example Eq. 2.6) generates a fixed consistent
evolution in the system. Suppose that in this system, we are able to do instantaneous
gates G and G†. They are computed in a way that by applying G and G† at the beginning
and the end of a period of the evolution can effectively change the basis of the Hamiltonian
of this period. The new basis can be constructed in a way that the evolution on this basis
negates the evolution of the original basis. So that, by having a sequence of a period of
the evolution, gate G, the evolution of the same period and gate G† our effective evolution
is just identity because the evolution of the second period negates the first period.

For any time-independent Hamiltonian H, the time evolution operator from t0 to t can
be expressed as an exponential form:

U(t0, t) = e−iH(t−t0). (4.1)

Assuming that we are able to apply operators G† and G before and after the evolution
of the system, which gives:

GU(t0, t)G
† = Ge−iH(t−t0)G†. (4.2)

For the operators that are unitary:
G†G = I, (4.3)

we can insert any number of G†G pairs to Eq.4.2 and ‘lift them up’:

GeiH(t−t0)G† =G(
∞∑
a=0

−iH(t− t0))a

a!
)G† (4.4)

=
∞∑
a=0

ia(t− t0)a

a!
(GHaG†) (4.5)

=
∞∑
a=0

ia(t− t0)a

a!
(GHG†)a (4.6)

=eiGHG
†(t−t0). (4.7)
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Now, we assume that the operators G and G† satisfies:

GHG† = −H. (4.8)

Then over a time interval T , the system can be refocused by the following gate sequence:

e
1
2
iHTGe

1
2
iHTG† =e

1
2
iHT e

1
2
iGHG†T (4.9)

=e
1
2
iHT e−

1
2
iHT (4.10)

=I. (4.11)

This result indicates that if we could find a pulse G that satisfies Eq. 4.8, then by applying
it twice the system can be refocused.

For the fixed-coupling Hamiltonian (two qubits) [18]:

H0 = −41

2
Z1 −

42

2
Z2 + J12X1X2, (4.12)

one possible refocusing pulse G could be1:

G = X1Y2. (4.13)

4.2 Decoupling in the Lab Frame

In this section, I will introduce decoupling, which is an extension of refocusing. Rather
than ‘erasing’ the entire Hamiltonian, decoupling only ‘erase’ a part of the Hamiltonian.

The method of decoupling uses the same idea of refocusing outlined in Eq. 4.9, and also
utilizes another result called Baker-Campbell-Hausdorff (BCH) lemma2 [37]. It states that
the matrix exponents of two multiplying exponentiations can be summed up with errors
of second order and higher in the matrix norms.

BCH Lemma:

For any two operators A, B and a constant t,

eiAteiBt =ei(A+B)t−[A,B] t
2

2
−i([A,[A,B]]+[B,[B,A]]) t3

12 ...

=ei(A+B)t +O(t2).
(4.14)

1Some other decoupling gates are Y1X2, Z1Y2 and X1Z2.
2Sometimes, this also called CBH lemma. They are the same thing with different name orders.
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In our situation, all the matrices are operators with norm one. As long as t is small,
we can estimate the evolutions with only the first order3 in t. Using the BCH lemma,
terms in A and B with the same expressions but different signs will get canceled. Perhaps
an example of lab frame decoupling is more explanatory and this will be used for later
chapters anyways.

The Hamiltonian of a three-qubit system (without external controls) is:

H0 = −41

2
Z1 −

42

2
Z2 −

43

2
Z3 + J12X1X2 + J23X2X3, (4.15)

where the evolution over time T under this Hamiltonian is:

e−iH0T = e−iH0
T
2 e−iH0

T
2 . (4.16)

If we use a modified G from Eq. 4.13 as the decoupling pulse:

G = Y1, (4.17)

Then, the ‘sandwiched’ evolution has the following Hamiltonian:

H0− = GH0G =Y1(−41

2
Z1 −

42

2
Z2 −

43

2
Z3 + J12X1X2 + J23X2X3)Y1 (4.18)

= +
41

2
Z1 −

42

2
Z2 −

43

2
Z3 − J12X1X2 + J23X2X3. (4.19)

One possible sequence for decoupling qubit 1 is to apply the gate G every δt time:

Ge−iH0δtGe−iH0δtGe−iH0δtGe−iH0δt... (4.20)

=e−iH0−δte−iH0δte−iH0−δte−iH0δt... (4.21)

=e−i(H0+H−0)δte−i(H0+H0−)δt...+N ×O(δt2) (4.22)

=e−
i
2

(H0+H0−)t +N ×O(δt2) (4.23)

=e−i(−
42
2
Z2−43

2
Z3+J23X2X3)t +N ×O(δt2). (4.24)

As a result of the computations, we can see that the decoupling sequence with G gates
can simplify a three-qubit Hamiltonian to a two-qubit Hamiltonian. We say that the first
qubit is ‘decoupled’ from the three-qubit system. The error here is N ×O(δt2) due to the

3In fact, in our error analysis, we considered second order errors as well. Here, we stick to the first
order for simplicity.

24



BCH estimation, where N = T/δt. O(δt2) is the estimation errors for each time step δt,
and it cumulates N times.4

In general, the decoupling method is able to cancel an arbitrary subset of the coupling
terms from the Hamiltonian. However, there are some further conditions we need to discuss,
as well as the scalable implementation which will be covered in subsection 5.5.2.

4.3 Refocusing and Decoupling in Rotating Frame

Maybe there is a confusion about why we keep talking about the rotating frame if every-
thing seems to work fine in the lab frame. In fact, the rotating frame is quite favored
by experimentalists. In the rotating frame (RF), fast oscillations of the state are absent,
facilitating a simpler description of the dynamics. After calculating the dynamics in the ro-
tating frame, a translation back to the lab frame is necessary to calculate the system state.
However, if the measurements applied to the system commute with the frame rotations,
one can consider their action in the rotating frame.

In this section, I will introduce a method that establishes the relation between the lab
and rotating frames. Then we can use this method to do decoupling in the rotating frame
Hamiltonians.

We write the Hamiltonian of the fixed-coupling 1D-array in the lab frame as:

HLF = H4 +HJ, (4.25)

where

H4 = −
∑ 4i

2
Zi (4.26)

and

HJ =
∑

Ji,i+1XiXi+1. (4.27)

Then if we define the frame rotation UROT (t) as :

UROT(t) = eiH4t, (4.28)

4This algorithm is only valid when G is (close to) an instantaneous gate and the δt is small.
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this gives the RF state:

|ψ(t)〉RF = UROT(t)|ψ(t)〉, (4.29)

which leads to the RF Hamiltonian HRF(t):

HRF(t) = UROT(t)HJU
†
ROT(t). (4.30)

We also know by Eq. 4.29, there is a clear relation between the evolutions under each
of the Hamiltonians from an arbitrary time t to t+4t:

ULF(t, t+4t) = U †ROT(t+4t)URF(t, t+4t)UROT(t), (4.31)

where ULF(t, t+4t) indicates the evolution under the lab frame Hamiltonian from time t
to t+4t. This could be proven by equating the states at different times. First we can use
Eq. 4.29 to establish the relation at time t:

|ψ(t)〉LF = U †ROT(t)|ψ(t)〉RF. (4.32)

Then, we can evolve both sides and they also hold the relation:

ULF(t, t+4t)|ψ(t)〉LF = U †ROT(t+4t)URF(t, t+4t)|ψ(t)〉RF. (4.33)

Also, the states at time t+4t should also hold Eq. 4.29, which is:

|ψ(t+4t)〉LF =U †ROT(t+4t)|ψ(t+4t)〉RF (4.34)

=U †ROT(t+4t)URF(t, t+4t)UROT(t)|ψ(t)〉RF. (4.35)

By equating Eq. 4.33 and Eq. 4.35, we can get the relation stated in Eq. 4.31:

ULF(t, t+4t) = U †ROT(t+4t)URF(t, t+4t)UROT(t). (4.36)

Eq. 4.31 is very important to our analysis. Using this equation, the rotating frame
decoupling scheme can be implemented in three steps:

1. We find the decoupling gate G in the lab frame to achieve the desired evolution UD,
which is:

UD = ...GULF(2τ, 3τ)GULF(τ, 2τ)GULF(0, τ), (4.37)

where τ is a small time interval.
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2. Assuming that there is a decoupling sequence in the rotating frame with gates G̃(t)
that can achieve the desired evolution in the RF ŨD, which is:

ŨD = ...G̃(t)URF(2τ, 3τ)G̃(t)URF(τ, 2τ)G̃(t)URF(0, τ). (4.38)

3. We transform URF to ULF and find out what is the G̃(t) that satisfies the equation:

...G̃(t)URF(τ, 2τ)G̃(t)URF(0, τ) (4.39)

= ...G̃(t)[UROT(2τ)ULF(τ, 2τ)U †ROT(τ)]G̃(t)[UROT(τ)ULF(0, τ)] (4.40)

= ...G̃(t)UROT(2τ)]ULF(τ, 2τ)[U †ROT(τ)G̃(t)UROT(τ)]ULF(0, τ). (4.41)

4. Equating Eq. 4.37 and Eq. 4.41 gives the expression of G̃n, which is:

G̃n = UROT(nτ)GU †ROT(nτ), (4.42)

Since we verified Y pulses can be used for lab frame decoupling, the corresponding RF
pulse is:

G̃n = eiH4nτ

(∑
p

Yp

)
e−iH4nτ =

∑
p

cos(4pnτ)Yp − sin(4pnτ)Xp, (4.43)

where the sum is over the indices p corresponding to the qubits where the decoupling gates
are applied, that have the Zeeman frequencies 4p and Pauli matrices Yp, Xp.

Note that our decoupling gates in the lab frame is single-qubit operations, as well as
the frame rotation. As a result, the decoupling gates in the rotating frame, which we will
discuss later, must be single-qubit gates.

It is sufficient for us to use the Pauli-X and Y gates to decouple a 1D-qubit array as
we mentioned. However, for the completeness of the discussion, a fully-coupled system can
also be decoupled with a similar idea. Prior work [35] [36] found methods to arrange the
evolutions according to combinatorial properties of the Hadamard matrices. So that, any
arbitrary subset of the couplings in the fully-coupled system can be effectively decoupled.
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Chapter 5

Superconducting Decoupling

In the previous chapter, we established that if single-qubit (decoupling) gates can be applied
instantaneously, the couplings of a Hamiltonian can be manipulated with nearly no errors.
However, all the gates in any quantum system are accomplished by evolving the system
according to the Hamiltonian, the duration of a gate is unavoidably finite. This means
that we need to do the decoupling gates with pulses, as well as other gates in the system.

Quantum operations do not always commute. Applying two implementations of gate
at the same time can introduce extra evolution caused by non-commutativity. One good
example would be the Selective Darkening (SD) scheme. It consists of two local pulses,
but an entangling gate is created when they are applied together. In this chapter, I
will discuss how to separate the decoupling gates from the overall evolution of the fixed-
coupling system. Therefore, even if implementing a pulse gate takes a long time, it can
still be treated as instantaneous.

In section 5.1, I will show that an attempt to implement decoupling based on fast gates
applied to the qubits does not work well, due to the coupling terms in the Hamiltonian
that do not commute with the gates. In section 5.2, I will introduce a method called
separation of the evolution, to implement the decoupling gates. This method has an error
of third order in time and I will analyze it in section 5.3. In section 5.4, I will propose a
solution to minimize these errors and state that our decoupling method is robust. Finally,
in section 5.5, I will show that applying pulse gates after we decoupled the system does
not induce extra errors.
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5.1 Fast Decoupling

One problem of the single-qubit gates in a fixed-coupling multi-qubit system is that the
evolution during the gates is perturbed by the coupling terms HJ in the Hamiltonian. The
Hamiltonian of the driven fixed-coupling system is1:

H(t) = H4 +HJ +Hctrl(t), (5.1)

where

H4 = −
∑
i

4i

2
Zi, (5.2)

HJ =
∑
i

Ji,i+1XiXi+1 (5.3)

and

Hctrl(t) =
∑
i

fi(t)Xi. (5.4)

In the entire Hamiltonian, fi(t)’s are the only controllable parameters, whereas all
others cannot be modified freely. In the fixed-coupling regime, all the coupling strengths
require to be greater than zero and remain as a constant, which means we need a way to
do single-qubit gates while all the couplings are presenting.

One straightforward way to do single-qubit gates is to make the controls as strong as
possible and ignore the couplings (|fi(t)| � Ji,i+1, Ji−1,i). This is how NMR decoupling
gates work [35] [36].

The superconducting system has the ability to achieve strong qubit-qubit couplings.
This is favored comparing to week couplings because the time for an entangling gate to
be implemented is upper-bounded by the strength of the relevant couplings. However, in
this case the strength of the control pulses fi(t) may not be much larger. With this limit,
the control strengths are generally about twenty times larger than the coupling strengths.
The coupling terms in the Hamiltonian is arguably hard to be ignored with this ratio, and
most importantly, the error caused by the couplings will be cumulated during rounds of
the gate implementations.

A numerical simulation is provided in Fig. 6.3 a). It indicates that twenty single-qubit
gate implementations have an overall error about 37.9% if we ignore the couplings, which
is unacceptable. Also, the performance will be even worse with more gates applied.2.

1The Hamiltonian is pretty much the same as Eq. 4.25, expect we have the extra control term.
2All the parameters for the simulation are specified in section 6.3
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5.2 Slow Decoupling for Free Evolution

A better approach towards implementing the single-qubit gates in the multi-qubit system
is more subtle but efficient. I refer this method as the slow pulse gates. This method does
not ignore the couplings in a system, but rather regards the coupling terms are evolving
alongside of the pulse gates.

The main idea for the slow pulse gates is the Magnus expansion. This expansion
provides a way to estimate the evolution of a time-dependent Hamiltonian. Using the
expansion, we break the evolution of a system into three evolutions, which are beneficial
to our decoupling analysis.

5.2.1 Magnus Expansion

An equation of the following form:

dY (t)

dt
= A(t)Y (t), (5.5)

where A(t) and Y (t) are arbitrary time-depedent matrices. The solution of Y (t) can be
expressed as a converging Magnus series as long as

∫ tf
ti
||A(t)||dt ≤ π [38]:

Y (tf ) = e
∑∞

k=1 Ωk(ti,tf )Y (ti), (5.6)

Ω1(ti, tf ) =

∫ tf

ti

A(t1)dt1 (5.7)

and

Ω2(ti, tf ) =
1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[A(t1), A(t2)]. (5.8)

For all further terms with k > 2, we have the Magnus terms:

Ωk(ti, tf ) = O((tf − ti)k). (5.9)

For a small tf− ti, it is quite safe to ignore all the terms with large k’s in the expansion,
which have higher orders in time, at short times. In our particular case, we are interested
in a two-level system, which can be estimated quite well with only the first two terms in
the expansion.[38] The main reason is the third order term is about 3×20 smaller than the
second order, where 3 is the constant in the Magnus expansion and 20 is an approximate
ratio between control and coupling strengths.
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5.2.2 Separate the Evolution

In this subsection, I will introduce how to convert from the evolution under a driven fixed-
coupling Hamiltonian H4 +HJ +Hctrl(t) in rotating frame (RF) (defined in 5.1) into two
separate evolutions under H4 + HJ and H4 + Hctrl(t). This analysis is useful because an
evolution under Hctrl(t) can be used to create decoupling gates with 99.99% fidelities.

First, we use the Magnus expansion to express the |ψ(t)〉RF in the Schrödinger’s equation
(Eq. 5.5), as the following:

d|ψ(t)〉RF

dt
= −iHRF(t)|ψ(t)〉RF, (5.10)

which gives:

|ψ(t)〉RF = eΩ1(ti,tf )+Ω2(ti,tf )|ψ(t0)〉RF +O((t− t0)3), (5.11)

Ω1(ti, tf ) =

∫ tf

ti

−iHRF(t1)dt1 (5.12)

and

Ω2(ti, tf ) = −1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[HRF(t1), HRF(t2)]. (5.13)

For the clarity of the derivation, we define a new label that will be used throughout
this chapter:

Ha[Hb](t) ≡ eiHbtHae
−iHbt. (5.14)

For the fixed-coupling system that we are interested in (the Hamiltonian is defined in
Eq. 5.1), the Magnus terms are:

Ω1(ti, tf ) =− i
∫ tf

ti

dt1(HJ +Hctrl)[H4](t1) (5.15)

=− i
∫ tf

ti

dt1HJ[H4](t1)− i
∫ tf

ti

dt1Hctrl[H4](t1) (5.16)

31



and

Ω2(ti, tf ) =− 1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[Hctrl[H4](t1), Hctrl[H4](t2)]

− 1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[HJ[H4](t1), HJ[H4](t2)]

− 1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[HJ[H4](t1), Hctrl[H4](t2)] + [Hctrl[H4](t1), HJ[H4](t2)].

(5.17)

By rearranging the terms, we can rewrite the system’s evolution Utot(ti, tf ) as:

Utot(ti, tf ) = T e−i
∫ tf
ti

dtHRF(t) (5.18)

= eΩ1(ti,tf )+Ω2(ti,tf ) +O((tf − ti)3) (5.19)

= eΩJ (ti,tf )+ΩC(ti,tf )+h(ti,tf ) +O((tf − ti)3), (5.20)

where

ΩJ(ti, tf ) = −i
∫ tf

ti

dt1HJ[H4](t1)− 1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[HJ[H4](t1), HJ[H4](t2)], (5.21)

ΩC(ti, tf ) = −i
∫ tf

ti

dt1Hctrl[H4](t1)− 1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[Hctrl[H4](t1), Hctrl[H4](t2)] (5.22)

and

h(ti, tf ) = −1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[HJ[H4](t1), Hctrl[H4](t2)] + [Hctrl[H4](t1), HJ[H4](t2)]. (5.23)

We know that one exponential function can only represent a single evolution, whereas
several exponential functions multiplied together can be treated as evolutions performed
in a sequence. Here, we use the BCH theorem again to split one exponential function into
three with a second order error g(ti, tf ).

eΩJ (ti,tf )+ΩC(ti,tf )+h(ti,tf ) = eΩJ (ti,tf )eΩC(ti,tf )eh(ti,tf )+g(ti,tf ) +O((tf − ti)3)

= T e−i
∫ tf
ti

dtHJ[H4](t)T e−i
∫ tf
ti

dtHctrl[H4](t)eh(ti,tf )+g(ti,tf ) +O((tf − ti)3),
(5.24)
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Figure 5.1: A visualization of steps for estimating the evolution in the rotating
frame. The length of the blocks are associated with the running time of the system, and
the heights of the blocks are meaningless. 1) A system evolves from ti to tf under the
Hamiltonian HJ + Hctrl. 2) The same system can also be seen as three equal time evolu-
tions4 in a sequence with the same Hamiltonian, where the time intervals are characterized
by t1 and t2. 3) Each of the three evolutions can be reformed into evolutions under Hctrl

followed by HJ. 4) We can regard the evolutions under Hctrl as instantaneous gates.

where

g(ti, tf ) =
1

2
[ΩJ(ti, tf ),Ω

C(ti, tf )]. (5.25)

Fig. 5.1 gives a vivid cartoon about the process converting from the evolution under the
Hamiltonian HJ +Hctrl to a decoupling sequence. The evolution during a period of time is

4Three intervals are just for the purpose of the example, the evolution can be segments into any number
of intervals.
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broken down into evolutions over small time intervals (three as an example in the figure).
In each of these small time intervals, the evolution is well approximated by evolving the
couplings and controls separately. Since the decoupling gates can be well characterized
by the evolutions of the controls, we can assume the evolution during the complete time
interval as the couplings with instantaneous decoupling gates.

Note that we have not evaluate the second order (in time) errors in these process yet.
The error analysis will be covered in later chapters. For the errors higher than the second
order in time, the simulation in Fig. 6.3 shows that they are extremely close to zero. In
the figure, the evolution under the Hamiltonian is compared with the separate evolutions
of couplings and controls, which we derived using the first two orders in time. It leads to
a fidelity of 97.91%, which is very close to the predicted value 97.82%.
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5.3 Error Analysis

In this section, we will focus on analyzing the total errors during the separation of the
evolutions, which are of second order in time. We will derive the exact representation of
the error term E(ti, tf ), which is defined as:

E(ti, tf ) = g(ti, tf ) + h(ti, tf ). (5.26)

This error term is an overall error, which holds the following equation:

T e−i
∫ tf
ti

dtHJ[H4](t)+Hctrl[H4](t) = T e−i
∫ tf
ti

dtHJ[H4](t)T e−i
∫ tf
ti

dtHctrl[H4](t)eE(ti,tf ) +O((tf − ti)3),
(5.27)

where

E(ti, tf ) =g(ti, tf ) + h(ti, tf ) (5.28)

=
1

2
[ΩJ(ti, tf ),Ω

C(ti, tf )]−
1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[HJ[H4](t1), Hctrl[H4](t2)] (5.29)

+ [Hctrl[H4](t1), HJ[H4](t2)]. (5.30)

We rewrite g(ti, tf ) as a double integral form5:

g(ti, tf ) =
1

2
[ΩJ(ti, tf ),Ω

C(ti, tf )] =
1

2

∫ tf

ti

dt1

∫ tf

ti

dt2[Hctrl[H4](t1), HJ[H4](t2)]. (5.31)

Then, we use g(ti, tf ) to simplify E(ti, tf ) by combining it with the second term of h(ti, tf ):

E(ti, tf ) =
1

2

∫ tf

ti

dt1

∫ tf

t1

dt2[Hctrl[H4](t1), HJ[H4](t2)]

− 1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[HJ[H4](t1), Hctrl[H4](t2)].

(5.32)

For the second term in E(ti, tf ), we change the variable labels t1, t2 and change the order
of the integrals:

E(ti, tf ) =
1

2

∫ tf

ti

dt1

∫ tf

t1

dt2[Hctrl[H4](t1), HJ[H4](t2)]

− 1

2

∫ tf

ti

dt1

∫ tf

t1

dt2[HJ[H4](t2), Hctrl[H4](t1)].

(5.33)

5Here we take only the first terms of the Magnus coefficients because all other terms give results higher
than the second order in time.
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Combining the two terms above we find:

E(ti, tf ) =

∫ tf

ti

dt1

∫ tf

t1

dt2[Hctrl[H4](t1), HJ[H4](t2)]. (5.34)

To derive further, we assume Hctrl[H4(t)] to be:

Hctrl[H4(t)] =eiH4t(
N∑
a=0

fa(t)Xa)e
−iH4t (5.35)

=
N∑
a=0

fa(t)(cos(4at)Xa + sin(4at)Ya), (5.36)

where the sum is over the indices a corresponding to the qubits, which we want to drive
and N is the total number of qubits.

In a fixed-coupling Hamiltonian, HJ[H4](t) is:

HJ[H4](t) =
n−1∑
b

Jb,b+1(cos(4bt)Xb + sin(4bt)Yb)(cos(4b+1t)Xb+1 + sin(4b+1t)Yb+1).

(5.37)
By substituting HJ[H4](t) and Hctrl[H4](t) in Eq. 5.34, we have:

E(ti, tf ) =

∫ tf

ti

dt1

∫ tf

t1

dt2

N∑
a,b

Jb,b+1fa(t1)

[cos(4at1)Xa + sin(4at1)Ya,

(cos(4bt2)Xb + sin(4bt2)Yb) (cos(4b+1t2)Xb+1 + sin(4b+1t2)Yb+1)]

(5.38)

= 2i
N∑
a=1

∫ tf

ti

dt1fa(t1)Za

( ∑
b=a−1,
a+1

b∈[1,N ]

Ja,b

∫ tf

t1

dt2 sin (4a(t2 − t1)) (cos(4bt)Xb + sin(4bt)Yb)
)
.

(5.39)
The above equation gives an exact expression for the error term. In the next subsection,
we will see how to use this expression to make the errors vanish during the evolution of
the system.
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5.4 Effective Error Elimination for the Free Evolution

So far, we see that the evolution of a system is separated into three parts (Eq. 5.27), where
one of them being the error term E(ti, tf ). Since an effective decoupling sequence does not
involve the evolution of E(ti, tf ), it is important to make it zero.

In this section, we show that there are three requirements to fulfill the goal of making
E(ti, tf ) effectively zero. In subsection 5.4.1, I will derive an equation, which describes
the fact that error terms can be seen as pairs during the evolution of the system. Using
this equation as a guideline, we show that the requirements introduced in subsection 5.4.2,
subsection 5.4.3 and subsection 5.4.4 are sufficient conditions for the errors to vanish on
the second order of time. To clarify and guide the readers through these subsections, we
give here list these three requirements.

Requirement 1: Decoupling gates have to be applied on non-neighboring
qubits.

We will discuss the non-neighboring gates in subsection 5.4.2. As we mentioned before,
a single-qubit (decoupling) gate is implemented through control pulses and the errors are
mainly coming from the coupling terms in the Hamiltonian. It turns out that these pulse
gates refocus their own errors naturally. However, when we apply another decoupling gate
on the nearest qubit, it will interrupts the self-correction process and cause a significant
error.

Requirement 2: Decoupling gates have to be applied frequently.

The decoupling gates are required to be applied very frequently, which means that a
time interval δt need to be small, assuming that gates are applied once per each time
interval δt. This requirement is discussed in subsection 5.4.3. According to the Magnus
expansion, the errors from separating the evolutions are of the second order and higher in
δt. This means the decoupling gates need to be applied as frequent as possible. Meanwhile,
note that the gates are always in pairs, because it takes two single-qubit gates to negate a
Hamiltonian (as in Eq. 4.20). As a result, we need an even number of them.

Requirement 3: The time interval and Zeeman frequencies need to have a
proper ratio.

When doing the decoupling, it is better to choose a time interval δt that has the relation
of δt = 2πm

4p
for any m ∈ I and all qubit p. This requirement is discussed in subsection 5.4.4.

It makes the error term E(tn−1, tn)’s (Eq. 5.39) equal to each other for all integer n, so
that they will be perfectly refocused over two time intervals.
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5.4.1 Derivation of Relation between Errors

Recall that in section 5.3 we derived a specific expression for the error term Eq. 5.39.
The double integral form has a really complicated solution, and gives little insight of its
behavior. In this subsection, I will switch the point of view and derive an equation, which
indicates the relation between the error terms and when they are zero.

Recall that the fixed-coupling system evolution U(0, T ) in rotating frame (RF) Eq. 2.11
is:

U(0, T ) =
∏

n∈even

U(tn, tn+1)U(tn−1, tn) (5.40)

≈
∏

n∈even

(eΩJ (tn,tn+1)eΩC(tn,tn+1)eE(tn,tn+1))(eΩJ (tn−1,tn)eΩC(tn−1,tn)eE(tn−1,tn)), (5.41)

where E(tn−1, tn) is defined in Eq. 5.39; ΩJ and ΩC are defined in Eq. 5.21.

As introduced in section 3.1, eΩC(tn,tn+1) is used to create the nth decoupling gate:

eΩC(tn,tn+1) = T e−i
∫ tn+1
tn

dtHctrl(t) +O((tn+1 − tn)3) ≡ G̃n+1 +O((tn+1 − tn)3). (5.42)

So, we can rewrite the evolution as6:

U(0, T ) =
∏

n∈even

eΩJ (tn,tn+1)G̃n+1e
E(tn,tn+1)eΩJ (tn−1,tn)G̃ne

E(tn−1,tn). (5.43)

Now, we want to move two error terms together to see if they could cancel. We can
switch the coupling evolution with the error term once, because the error is of third order
in time:

U(0, T ) =
∏

n∈even

eΩJ (tn,tn+1)G̃n+1e
ΩJ (tn−1,tn)eE(tn,tn+1)G̃ne

E(tn−1,tn). (5.44)

The target sequence of the system’s evolution is:

Utarget(0, T ) =
∏

n∈even

eΩJ (tn,tn+1)G̃n+1e
ΩJ (tn−1,tn)G̃n. (5.45)

By comparing U(0, T ) and Utarget(0, T ), we discover that rather than having the error
evolutions to be identity, the following condition is sufficient:

G̃†ne
E(tn,tn+1)G̃ne

E(tn−1,tn) = eG̃nE(tn,tn+1)G̃neE(tn−1,tn) = I, (5.46)

6In the following derivations, we will ignore the third order terms for simplicity.
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for all n ∈ [1, T
τ
−1], where τ = tn− tn−1 is a small time interval. Here we use the property

of G̃†n = G̃n because all G̃’s are of the form Eq. 4.43.

The above equation is all it takes for the decoupling method to be accurate because
the errors are getting canceled during the evolution. In the next three subsections, we will
find the ways to satisfy this equation.

5.4.2 Requirement 1: Non-Nearest-Neighbor Decoupling Gates

The first thing we are going to do to fulfill Eq. 5.46 is by making the following equation
to be true:

G̃nE(tn−1, tn)G̃n = −E(tn−1, tn) (5.47)

for all n ∈ I.

This relation is desired because it provides a way to cancel the errors using two con-
secutive intervals. By looking at Eq. 5.46, an error term with the negative sign has the
potential to cancel the term with the positive sign (if they are equal in magnitude, which
we will cover this in subsection 5.4.4) for all pairs of errors.

Recall that the E(tn−1, tn) and G̃n are:

E(tn−1, tn) =
N∑
a

pa(tn−1, tn)ZaXa+1 + qa(tn−1, tn)ZaXa−1 (5.48)

+ ra(tn−1, tn)ZaYa+1 + sa(tn−1, tn)ZaYa−1 (5.49)

G̃n =
∑
x

cos(n4xδt)Yx − sin(n4xδt)Xx, (5.50)

where pa(tn−1, tn), qa(tn−1, tn), ra(tn−1, tn), sa(tn−1, tn)′s are some constants result from cal-
culating the double integral over δt = tn− tn−1 on all qubit a, and x is the index for qubits
with the decoupling pulses.

To satisfy this relation, we need the decoupling gates to not applying on any two
nearest-neighbor qubits. Assuming a pulse sequence of G̃n only applies a pulse on qubit
x, at a certain time interval δ:

G̃x = cos(n4xδ)Yx − sin(n4xδ)Xx. (5.51)
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This pulse gate will induces an error evolution, where the exponent E(tn−1, tn) has the
form:

E(tn−1, tn) =
∑

n=x−1,
x+1

(pa(tn−1, tn)Xa+1 + qa(tn−1, tn)Xa−1 (5.52)

+ma(tn−1, tn)Ya+1 + na(tn−1, tn)Ya−1)Zx, (5.53)

where we see that our decoupling gate G̃x, which is a linear combination of Yx and Xx

will negate this error term. However, if there is another decoupling pulse gate on qubit
x + 1, there will not only be new error terms introduced, but all the original ones cannot
be negated completely as well, for example, the terms with Xa+1Za and Ya+1Za.

5.4.3 Requirement 2: Frequent Decoupling Gates

This condition is very critical for eliminating the errors. Throughout the thesis, we are
ignoring the third order terms in the time interval δt assuming only one decoupling gate
is applied per interval. The evolution of coupling and gates are of the first order in δt,
whereas the E(tn, tn+1) is of the second order.

By having a small time interval, the magnitude of error terms will be suppressed. So
that, the decoupling sequence can be predict very precisely. As a result, we need the time
interval δt to be as small as possible. This means two things, there should be no ‘free’ time
between two decoupling gate implementations and they should be implemented very fast.

5.4.4 Requirement 3: Proper Ratios between Zeeman Terms and
Time Interval

In this subsection, I will show the conditions to make the error terms E(tn, tn+1) equal to
a constant for all n.

Building on the Eq. 5.46 and Eq. 5.50, we have:

eE(tn−1,tn)eG̃n+1E(tn,tn+1)G̃n+1 = eE(tn,tn+1)e−E(tn−1,tn), (5.54)

for all possible value of n. According to Eq. 5.46, we like the above equation to be identity
in order to minimize the errors. This leads to the following condition:

I = eE(tn,tn+1)e−E(tn−1,tn), (5.55)

(5.56)
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where one solution is:

E(tn, tn+1) = E(tn−1, tn). (5.57)

Furthermore, we need this condition over all the possible values of n, so that, the most
general condition is:

E(ti−1, ti) = C for all i ∈ I, (5.58)

where c is a time-independent matrix (operator).

There is one easy condition to make sure the decoupling has no second order errors.
We can derive it by expressing E(tn, tn+1) in terms of previous time interval E(tn−1, tn)
and the time interval length δt:

E(tn, tn+1) = E(tn−1 + δt, tn + δt)

=
N∑
a

∫ tn+δt

tn−1+δt

dt1ifa(t1)Za

[ ∑
b=a−1,
a+1

∫ tn+δt

t1

dt2 sin (4a(t2 − t1)) (cos(4bt2)Xb + sin(4bt2)Yb)
]

(5.59)

=
N∑
a

∫ tn

tn−1

dt1ifa(t1 + δt)Za

[ ∑
b=a−1,
a+1

∫ tn

t1

dt2 sin (4a(t2 + δt− (t1 + δt)))

(cos(4b(t2 + δt))Xb + sin(4b(t2 + δt))Yb)
]

(5.60)

=
N∑
a

∫ tn

tn−1

dt1ifa(t1 + δt)Za

[ ∑
b=a−1,
a+1

∫ tn

t1

dt2 sin(4a(t2 − t1))

(cos(4bt2 +4bδt)Xb + sin(4bt2 +4bδt)Yb)
]
.

(5.61)

Now, we want the above equation to be equal between a finite δt and δt = 0. There
are many solutions to it, where an obvious one would be:

4pδt = 2πm (5.62)

fa(t+ qδt) = fa, (5.63)

for all p in [0, N ] and q,m are integers.
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5.5 Gate Implementation on Decoupled System

Using the decoupling method, we are able to manipulate couplings in a Hamiltonian and
only keep the useful ones. In this section, we will see how CNOT gates (which are the
actual gates we want to apply in the first place) can be applied to the decoupled system.
It turns out that as long as the CNOT gates are not applied on the same qubits as the
decoupling gates, we can just apply them without further modifications (details are covered
in subsection 5.5.1).

The following steps can be considered as a guideline to implement CNOT in multi-qubit
system:

1. In a fixed-coupling superconducting system, we first modify the parameters and
choose the time interval δt to satisfy the relation 4pδt = 2πm for all p.

2. Then, we construct the decoupling sequence by figuring out what are the couplings
needed to be decoupled (details are covered in subsection 5.5.2).

3. In the decoupled system, we can apply the CNOT gates to the desired qubits.

5.5.1 CNOT Gates with Decoupled Hamiltonian

The decoupling method we discussed so far has not covered the case where extra pulses
(that are not decoupling pulse gates) are involved. In this subsection, I will show that
having extra gates in a decoupled system will not affect the quality of the decoupling.

We will start the proof by assuming an extra controlling term Hextra(t) (for example
CNOT gate pulses) in the Hamiltonian (Eq. 5.1):

HRF(t) = [HJ +Hctrl(t) +Hextra(t)]H4(t); (5.64)

Hextra(t) =
∑
c

fc(t)Xc, (5.65)

where Hextra(t) has the same form of Hctrl(t), but it is acting on the qubits involved in the
CNOT gates rather than the qubits getting decoupled.

Similar to section 5.2, we can apply the Magnus expansion to the evolution, and separate
it into two components. Only this time, ΩJ(ti, tf ) contains the extra evolution Hextra as
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well:

ΩJ
new(ti, tf ) =

∫ tf

ti

dt1(HJ +Hextra(t1))[H4(t1)]

+
1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[(HJ +Hextra(t1))[H4(t1)], (HJ +Hextra(t1))[H4(t2)]],

(5.66)

which results in a new error function Enew(ti, tf ) (similar to Eq. 5.28):

Enew(ti, tf ) = hnew(ti, tf ) + gnew(ti, tf ), (5.67)

where hnew(ti, tf ) is:

hnew(ti, tf ) =
1

2

∫ tf

ti

dt1

∫ t1

ti

dt2[(HJ +Hextra(t1))[H4(t1)], Hctrl(t2)[H4(t2)]]

+[Hctrl(t1)[H4(t1)], (HJ +Hextra(t2))[H4(t2)]].

(5.68)

As we will show later in subsection 5.5.2, the pulse CNOT gates are never applied on
the same qubit as the decoupling gates, so that their Hamiltonians commute:

[Hctrl(t1)[H4(t1)], Hextra(t2)[H4(t2)]] = 0, (5.69)

which gives back the same error term:

hnew(ti, tf ) = h(ti, tf ). (5.70)

Similarly, the another error term gnew(ti, tf ) is the same as the old one:

gnew(ti, tf ) =
1

2
[ΩJ

new(ti, tf ),Ω
C(ti, tf )] (5.71)

=
1

2
[ΩJ(ti, tf ),Ω

C(ti, tf )] +
1

2
[

∫ tf

ti

dt1Hextra(t1)[H4(t1)],Ω
C(ti, tf )] +O((tf − ti)3),

(5.72)

where the third term comes from the non-commutativity between Hextra(t)[H4(t)] and
HJ [H4(t)]; the second term gives a value of zero because two Hamiltonians are not on
the same qubit. As a result, this gives the expression:

gnew(ti, tf ) =g(ti, tf ) +O((tf − ti)3). (5.73)
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As we can see, further control pulses (gates) implemented on the decoupled system
do not cause extra errors. One thing worth mentioning is that none of the decoupling
pulses are implemented on the qubits that are expected to remain coupled. This is an
useful characteristic that allows us to avoid the problem of having decoupling gates and
the CNOT gates on the same qubits.

5.5.2 Parallel Implementations

So far, we discussed the topological requirements for the decoupling method in the system
with nearest-neighbor couplings, it has two major restrictions:

1. Decoupling gates cannot be applied on the nearest-neighboring qubits.

2. Decoupling gates cannot be applied on the CNOT gate qubits.

The above conditions raise a problem that parallel gates may not be able to carry out in
a single run. For example, two CNOT gates in a four-qubit array. Theoretically, they can
be implemented at the same time. However, this is not the case for our method because
we need some ‘free’ qubits to apply the decoupling gates. Therefore, we actually need two
rounds of gates to do it.

Figure 5.2: Two parallel CNOT implementations in the four-qubit system. In
order to do two CNOT gates in a fixed-coupling system, we need to decouple the coupling
between the qubit 2 and 3. As a result, two CNOT gates need to be implemented through
two time-steps. Here, G stands for the frequently applied decoupling gates.
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In fact, we are going to prove that for any form of parallel gates with any number of
qubits, our decoupling method takes at most four time-steps. In fact, for most of the time,
people can figure out themselves how to insert the decoupling gates in their systems. I will
demonstrate the structural approach in the following procedures:

1. We can ignore all the single-qubit gates in the circuit at first.

First of all, we ignore all the single-qubit gates and reconstruct the circuit with only
two-qubit gates. This is because single-qubit gates are rather easy to ‘slip’ in after we
figure out the decoupling sequence. Even in the case that the couplings associate with the
single-qubit gates are not decoupled, it only gives a non-scalable error of second order in
time.

2. We identify the gaps and their parities.

When applying gates in parallel, the qubit without gate implementations is an ‘inactive
qubit’. We call a chain of such qubits sandwiched by two CNOT gates in the 1D array
‘a gap’. For all the gaps in the system, we find their parities (whether the number of the
qubits is odd or even). If a gap has an odd number of qubits, we know that applying the
decoupling pulses G̃ on alternative qubits is able to decouple all these qubits. If a gap has
an even number of qubits, we need to introduce the four-qubit decoupler to decouple these
qubits.

3. We can implement all the CNOT gates with the help of four-qubit de-
coupler.

I will refer the sequence of decoupling gates ({G̃n} discussed in Eq. 4.43) as one-qubit
decoupler. A four-qubit decoupler7 for the 1D-array (shown in Fig. 5.3) consists of two
one-qubit decouplers on first and fourth qubits and CNOT applied twice on qubits two
and three.

7It is definitely better to have a two-qubit decoupler and I believe it is achievable, however, we have
not delicate our time to this topic yet.

45



Figure 5.3: A 4-qubit decoupler. Two rounds of decouple pulses sandwiched CNOT
gates.

This decoupler is useful in two aspects. First of all, it can decouple even qubit gaps.
Meanwhile, with at most four time steps, a chain of CNOT gates can be implemented using
the four-qubit decouplers shown in Figure 5.4.

4. At last, we can add back the single-qubit gates.

Sadly, some single-qubit gates cannot be applied in a decoupled environment. Some
of the qubits are already occupied by the decoupling pulses. The way we choose to do a
single-qubit gate on an occupied qubit is to replace the last pulse gate in the decoupling
sequence G with the gate we try to implement. This will only leads to a small error.
Refering back to Fig. 6.3, we see that one single-qubit gate even without decoupling still
possess a high fidelity (about 99.93%), as long as we do not stack many of them together.
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Figure 5.4: Implementation of a circuit occupied with CNOTs. CNOTs are sepa-
rated into four time steps. Red boxes are four-qubit decouplers; BlackG gates are one-qubit
decouplers.
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Chapter 6

Verification and Visualization

In this chapter, we focus on the numerical simulations of CNOT gates in the multi-qubit
1D-chain fixed-coupling system. We take several steps to achieve this goal, where these
steps are covered as sections in this chapter. The first two sections introduce the re-
quired background. They introduce the fixed-coupling system itself, the pulse gate perfor-
mances (without extra couplings) and the metrics we use to measure the system. Next,
I will demonstrate the performance of the non-nearest-neighboring decoupling gates in a
five-qubit system. In the last section, I will evaluate the performance of the decoupling
method by implementing CNOT gates on both three-qubit and five-qubit systems. From
the simulations, we will see that our decoupling method successfully suppress the irrelevant
couplings.

In more details, the content of this chapter is as follows. In section 6.1, I will give the
definitions of fidelity and Schmidt strength, and argue that these two metrics are reasonable
and sufficient to serve our purpose of measuring how well a system is being decoupled. In
section 6.2, I will introduce the parameters that we use to construct the fixed-coupling
system. Also, I will introduce the methods to implement single-qubit and CNOT gates
and their fidelities (in the system without extra couplings). In section 6.3, I will discuss the
implementation of the decoupling sequence and use it to illustrate the method of refocusing
in the five-qubit system. In section 6.4, using the decoupling method we derived in early
chapters, I will illustrate the CNOT implementations in multi-qubit system.
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6.1 Fidelity and Schmidt Strength

In the first part of this section, I will introduce the fidelity function that is used in the simu-
lations. Fidelity is a measurement of how close two gates are, concerning the performance.
The fidelity F between U1 and U2 both with dimension d⊗ d is defined as [25]:

F (U1, U2) =
1

d2
|tr(U1

†U2)|. (6.1)

The fidelity F (U1, U2) ranges from 0% to 100%, where 100% means U1 behaves exactly
the same as U2 up to a global phase. In this chapter, we drop the variables associate with
F since it is always obvious what are the operators being compared.

To serve the purpose of this thesis, we are also interested in how much a group of qubits
is entangled with another group, where the degree of entanglement can be characterized
by the Schmidt strength. [39] Given an operator U in the tensor produce space and its two
subsystems characterized by P and Q, each representing a group of qubits. In order to
calculate the Schmidt strength between these two groups, we first do the Operator Schmidt
Decomposition:

U(P,Q) =
∑
i

αiPi ⊗Qi, (6.2)

where αi’s > 0 are Schmidt coefficients and Pi, Qi’s are orthonormal operator bases for
system P and Q. Based on this decomposition, the Schmidt strength s(U) is defined using
the Schmidt coefficients as:

s(U) = −
∑
i

α2
i log2(α2

i ). (6.3)

As an example, we calculate the Schmidt strength of the CNOT gate expressed in the
tensor basis:

CNOT =
1√
2
|0〉〈0| ⊗

√
2I +

1√
2
|1〉〈1| ⊗

√
2X. (6.4)

We find that the Schmidt coefficients are α1 = α2 = 1√
2
, which gives the Schmidt strength:

s(CNOT) = −1

2
log(

1

2
)− 1

2
log(

1

2
) = 1. (6.5)

For any two-qubit system, the Schmidt strength between two qubits range from 0 to 2.
Here, We see that s(CNOT) = 1, which means that the CNOT gate entangles two qubits
significantly1.

1In fact, a swap gate possess the highest entangling strength of 2, which consists of three CNOT gates.
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6.2 Simulation Setup

6.2.1 Three/Five-Qubit System Setup

We consider an implementation with superconducting qubits. With a CNOT gate of 20
ns and a coherence time of 60 µs,the gate error, estimated as the ratio between gate time
and coherence time, is no more than 0.03%. Therefore, in the regime we consider, errors
are dominated by the coherent dynamics.

For a five-qubit system:

HLF =−
5∑
i=1

4i

2
Zi +

4∑
j=1

Jj,j+1XjXj+1, (6.6)

the parameters are set to the followings2:

41 = 43 = 45 = 2π × 5 GHz, (6.7)

42 = 44 = 2π × 7 GHz (6.8)

and

J1,2 = J2,3 = J3,4 = J4,5 = 2π × 100 MHz. (6.9)

The parameters are set to typical values for experiments. Also, for a three-qubit system,
we exclude the qubit 4 and 5. Even though we mentioned in Requirement 3 (Eq. 5.62) that
a set of particular Zeeman terms are needed, I find that setting the parameters to arbitrary
values give similar performances, even with non-integers. This is a topic worth exploring,
but we will settle the argument that the errors cause by not obeying Requirement 3 is
small for now, as indicated in the simulations.

Another interesting topic is the cross-talks in the system. In addition to the ideal
nearest-neighbor couplings that are assumed in this thesis, there are inevitable long distance
couplings in a real experimental implementation. In this thesis, we will ignore the coupling
strengths because they are second order in Ji,i+1. Furthermore, our method can potentially
decouple these cross-talks using the Hadamard matrices [35] [36].

2As we mentioned before, we use the Plank unit in this section as well.
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6.2.2 Implementation of Single-Qubit Gates on the Isolated Qubit

In this subsection, we discuss the parameters for implementing the single-qubit gate in a
single-qubit system. In particular, we want to implement the single-qubit decoupling gate
of the form (Eq. 4.43):

G̃(ξ) = cos(ξ)Y − sin(ξ)X. (6.10)

The parameter ξ depends on the time of the decoupling gate G̃(ξ) being applied. As we
discussed in section 4.3, a qubit can be decoupled from the system by repetitively applying
the gate G̃(ξ) on it3 (Eq. 4.42). ξ is set to a new value every time: ξ = 4× t.

The Hamiltonian4 of a single qubit is:

Hsingle = −4
2
Z + a(t) cos(ωt+ ψ)X. (6.11)

Using the theory covered in section 3.1, we choose the control frequency and phase as:

ω = 4 (6.12)

and

ψ = ξ +
π

2
. (6.13)

For the case of this single-qubit gate applied in a multi-qubit system, ω is always matched
with the Zeeman frequency of the ‘gate qubit’. For the control strength a(t), there is no
particular value favored, we choose to analyze the following value:

a(t) = 2π × 1.25 r(t, T ) GHz, (6.14)

where T is the total gate time and r(t, T ) is the pulse shape function defined as:

r(t, T ) =


−1

2
cos(3πt

T
) + 1

2
, if t < T

3

1, if T
3
≤ t ≤ 2T

3
1
2

cos(3πt
T

+ 4π) + 1
2
, if t > 2T

3

. (6.15)

The pulse is shaped to reduce transitions between the Floquet system of the driven sys-
tem [40]. In order to achieve a high fidelity single-qubit gate, the control pulse needs to be
turned on and off slowly and gradually. This leads to the implementation time T = 0.75 ns
and the fidelity between the pulse implementation and the desired gate Eq. 6.10 is 99.89%
on average.

3We will refer to this set of G̃(ξ) as the decoupling sequence.
4This is the lab frame Hamiltonian. Of course, we use RF for the gates implementation.
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Figure 6.1: Shape of the Pulse Strength Used in the Single-Qubit Gate Imple-
mentation. For an arbitrary period of time T , we plot the behavior of r(t, T ) in Eq.
6.15.

6.2.3 Implementation of the CNOT Gate on an Isolated Two-
Qubit System

In this subsection, a CNOT gate in a two-qubit system is simulated. The goal is to find
a proper control pulses for a CNOT gate, so that, we can use it in the decoupled system
later.

The two-qubit fixed-coupling Hamiltonian is:

Htwo(t) = −41

2
Z1 −

42

2
Z2 + a1(t) cos(ω1t+ ψ1)X1 + a2(t) cos(ω2t+ ψ2)X2. (6.16)

With the Selective Darkening method introduced in section 3.2, we calculate the fol-
lowing parameters:

a1 = 2π × 0.285 GHz, (6.17)

a2 = 2π × 0.0166 GHz, (6.18)

ω1 = ω2 = 2π × 4.9958 GHz (6.19)

and

ψ1 = ψ2 = 0. (6.20)
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The gates have the implementation time t = 14.84 ns and the fidelity between the pulse
implementation and ideal CNOT gate is 99.6% on average. This number is not optimal,
where the main error source is proportional to the strength of the control pulses. We can
achieve a better fidelity by applying weaker controls. Even though this leads to longer gate
time, but the decoherence error does not increase much.

Figure 6.2: Single and CNOT gate implementations. The fidelities between the im-
plementation and the ideal gate are plotted. Top: The single-qubit gate implementation
has a fidelity of 99.89% at 0.75 ns. Since we are pushing the limit of the strength of the
control pulse, we see the Rotating Wave Approximation (RWA) starts to break down6 re-
sulting the fast oscillations shown in the graph. Bottom: The CNOT gate implementation
has the fidelity of 99.6% at 14.84 ns.

6This breakdown is acceptable, we can still achieve a high fidelity using the technique of pulse shaping.
[40]
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6.3 Refocusing in Five-Qubit System

In this section, we are going to discuss the effectiveness of the fully decoupling (refocusing)
method in the five-qubit system. We will show that the five-qubit system without any
control pulses evolves away from being identity significantly. Then, we will use the single-
qubit pulses to implement the decoupling sequences on qubit 2 and 4 to decouple all the
couplings in the system and measures the performance of the system. By comparing two
scenarios, there is a clear indication that our decoupling method protects the system from
couplings very well.

Case 1: The Free Evolution Compared with Identity

Using the numerical simulation in Matlab, we can obtain the evolution of the five-qubit
system with the parameters in Eq. 6.14. In the Rotating Frame (RF), the not driven
system only evolves under the couplings. We compare the fidelity between the operator
that describes the simulated evolution and the identity operator. In Fig. 6.3, we see that
the fidelity is 62.09% at 15.2 ns. This indicates that the coupling terms in the five-qubit
Hamiltonian influences the evolution significantly. The overall time 15.2 ns corresponds
to the CNOT implementation time, which means it is not feasible to ignore the couplings
during the CNOT implementation.

Case 2: The Decoupled Evolution Compared with The Ideal Gates

In this case, we segment the overall time into twenty intervals. Then, for each interval
a we apply the pulses to implement the following gate:

(cos(a42τ)Y2 − sin(a42τ)X2) (cos(a44τ)Y4 − sin(a44τ)X4) . (6.21)

The control parameters for implementing the above gate is chosen according to subsec-
tion 6.2.2. These parameters achieve the gate fidelity of 99.89% in the isolated single-qubit
system.

Plotted in Fig. 6.3, we compare the fidelity between the simulated evolution with the
ideal gate Tm after the mth interval:

Tm = (cos(m42τ)Y2 − sin(m42τ)X2) (cos(m44τ)Y4 − sin(m44τ)X4)Tm−1 (6.22)

and

T0 =I (6.23)

for all m ∈ [1, 20].
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We obeserve that the fidelities are always high at each time interval. The overall fidelity
is 97.91%, which is extremely close to the fidelity for twenty gates in no extra coupling
case which is 99.89%20 = 97.82%. Meanwhile, we see that the fidelities from comparing
the evolution with the ideal gate after odd number of intervals are slightly lower than the
even ones. This is because the couplings are decoupled in pairs as discussed in chapter 4
and for odd intervals the couplings are not decoupled yet.

Figure 6.3: The Five-Qubit System With and Without Decoupling. The Blue
line indicates the fidelity between the free evolution of the five-qubit system without the
control pulses and the identity operator. The fidelity decreases with time and the fidelity
is 62.09% at t = 15.2 ns. Then, we decouple the system by applying the single-qubit pulses
as in Eq. 6.21. There are twenty implementations of single-qubit gate for each qubit 2 and
4. The yellow dots indicates the fidelities between the system’s evolution under the control
pulses and the ideal case stated in Eq. 6.22 after each completion of the single-qubit gate
implementation. The overall fidelity (the last yellow point) is 97.91%.

6.4 CNOTs implementation in the Three/Five-Qubit

System

6.4.1 CNOT in Three-Qubit System

In this subsection, we will use the decoupling method to discuss the implementation of a
CNOT gate in the three-qubit system. In this system, it is very important to know whether
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the control qubit of a CNOT is the first or second qubit because a strong pulse will induce
larger entanglements with other qubits. As we addressed in section 3.1, a CNOT gate is
implemented through applying a strong pulse on the control qubit, which is about twenty
times the strength of the pulse on the target qubit. I will analyze both cases where the
qubit 2 is the control qubit, as well as the qubit 1 is the control qubit. I will call them
case A and case B as indicated in Figure 6.4.

Figure 6.4: Two different CNOT circuits. In the case A, two pulses are applied
on qubit 2 and 3 to implement CNOT, whereas qubit 1 is decoupled by a decoupling
sequence indicated as G in the graph. The pulse amplitudes for each qubit in the pair
where the CNOT gate is implemented is taken according to subsection 6.2.3 as indicated
on the circuit. For the case B, two pulses (involved in the CNOT implementation) are
implemented on qubit 1 and 2, whereas qubit 3 is decoupled.

Case A:

For the case A, we decouple the first qubit while implementing the pulses for CNOT on
the second and third qubits. The decoupling sequence is defined by the following twenty
single-qubit pulse gates:

UD =
20∏
m=1

(cos(m41τ)Y1 − sin(m41τ)X1) , (6.24)

56



where τ is the time interval.

Qubit 2 has a relatively strong control pulse comparing to qubit 1 and 3. The pulse on
qubit 3 has a strength reasonably close too zero. Therefore, if there are no decoupling gates
applied on the first qubit, the system is controlled almost symmetrically. It means that the
control qubit, which induce a CNOT gate on qubit 3, should also induce the CNOT gate
on qubit 1. The Schmidt strength between qubits 1&2 should be close to the qubit 2&3,
which is also one (Eq. 6.5). However, the Schmidt strength between qubit 1&2 should be
zero for the ideal case.

Figure 6.5: Implementations of CNOT gate on the qubit 2 and 3 in the three-
qubit system. Red curves are the fidelities between the evolution of the pulses and
ideal CNOT; blue curves are the Schmidt strengths between the qubit 1&2 versus time.
Top: An implementation of the CNOT gate without decoupling. Bottom: The CNOT
implementation on the qubit 2 and 3 with the qubit 1 decoupled as presented in Fig. 6.4
a.
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There are two simulations shown in Fig. 6.5. For the top figure, I apply the control
pulses on qubit 2 and 3 using the parameters in Eq. 6.17. There are no pulses applied on
the first qubit. The fidelity for each instance comparing to the ideal CNOT gate is plotted
using the red curve. For the bottom figure, the same control pulses are applied on qubit
2 and 3 as in the top figure. In addition to that, I apply twenty single-qubit decoupling
pulse gates UD(t) on qubit 1. The reason for having twenty decoupling gates is because this
is the maximum even number that can be applied here as mentioned in subsection 5.4.3.
The red curve is the fidelity between the evolution of the pulses and the ideal CNOT with
expected frame rotations.

If we look at the top figure of Fig. 6.5, which is a CNOT gate implementation in
the three-qubit system without decoupling; the blue curve indicates the Schmidt strength
between qubit 1 and 2 at t = 15.2 ns is about 1.2, which fits our prediction. The red
curve indicates the fidelity is about 50% comparing to the ideal CNOT gate at t = 15.2
ns. This fidelity cannot be improved very high even if the optimal single-qubit corrections
are applied at the end of the evolution because qubit 1&2 are severely entangled. We find
the fidelity after the correction is 72.2%.

If we look at the bottom figure, where we use the decoupling method to decouple the
first qubit from the rest. The decoupling sequence we use here is UD(t) as we mentioned
before. The reason of the red curve looks not very smooth is because we do not correct for
the single-qubit phase during the evolution. If we look at the blue curve, we see that the
Schmidt strengths are being suppressed under 0.1 for the entire evolution. This indicates
that our decoupling method is doing the job to prevent qubit 1 from entangling with qubit
2. This gives a fidelity of 96.54% when comparing the ideal CNOT gate, and 97.6% when
we numerically find the optimal local gate corrections.

Case B:

In this case, the control pulses do not change much from the case A. We apply the
CNOT pulses on the qubit 1 and 2, whereas decoupling the qubit 3 similar as Eq. 6.24.
Shown in Fig. 6.6, the no decoupling case (top figure) has a very low fidelity and the
Schmidt strength at t = 15.2 ns is about 0.35. Whereas the CNOT gate with the third
qubit decoupled (bottom figure), the fidelity is about 96% without single-qubit corrections
and the Schmidt strength is about 0.05. The number difference in the Schmidt strength
proves once again that our decoupling method works and has the potential for implementing
a scalable CNOT with a high fidelity. After applying the local corrections to our CNOT
implementation, we find the gate fidelity increases to 99.2%.
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Figure 6.6: Implementations of CNOT gate on the qubit 1 and 2 in the three-
qubit system. This is very similar to Fig. 6.5. Red curves are the fidelities between the
evolution of the pulses and ideal CNOT; blue curves are the Schmidt strengths between the
qubit 2&3 versus time. Top: A CNOT gate implementation without decoupling. Bottom:
The CNOT implementation on the qubit 1 and 2 with qubit 3 decoupled as presented in
Fig. 6.4 b.

Both cases show that our decoupling method is capable of suppressing the couplings
between the qubits during the evolution. A weak coupling strength between the CNOT
qubits and others indicates that its performance can be further improved through single-
qubit gate corrections. We find that in the our decoupled three-qubit system, the CNOT
fidelities are 97.6%, 99.2% after we apply the single-qubit gate corrections for case A and
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B correspondingly.

6.4.2 CNOT in the Five-Qubit System

Besides the three-qubit systems, I also do the simulations of implementing CNOT gates
in the five-qubit system described in subsection 6.2.1. It is quite amazing that all of the
cases I have done achieve over 92% fidelities without local corrections. I will present some
representative ones in this subsection.

The decoupling sequence UD is defined similarly as Eq. 6.24:

UD =
∑
p

(
20∏
a=1

(cos(a4pτ)Yp − sin(a4pτ)Xp)

)
, (6.25)

where the sum is over the indices p corresponding to the qubit p that needs to be decoupled.

Unlike the three-qubit simulations, the phases of each qubit is corrected at every time-
step when measuring the fidelities, which means rather than comparing the fidelity with
CNOT, we compare the fidelity with e−iH4tCNOT at every time t. This causes the rapid
oscillation of the curve in the graphs. The advantage of plotting the graphs this way is
to observe the clear trends with the envelope of the evolutions. We observe that the best
fidelities for a) is 92.5% and b) is 93.38%.

Note that the fidelities can be further improved by single-qubit gate corrections as we
mentioned before. The fidelity in Fig. 6.7 b) rises from 93.38% to 97.5% with extra local
gates applied afterwards (Appendix A.4). Ones may think that this is cheating, however,
the fidelity can only be improved by single-qubit gates if the simulated evolution has a
similar Schmidt strength with the desired gate; without the decoupling method, single-
qubit gate corrections are not able to produce such a high fidelity.

So far, we have seen our decoupling method being applied in the three-qubit and five-
qubit systems we specified in section 6.2, where the parameters can be changed within a
reasonable range. In section 6.3, we showed that in the five-qubit system, the decoupling
pulses can be applied with a very small error. Then in section 6.4, we implemented CNOT
gates in both three and five-qubit systems using these decoupling pulses. Even though the
threshold of the surface code (99.9%) is not achieved, we argue that the gate fidelities can
be further improved to achieve this threshold by having a higher fidelity of the decoupling
sequence as well as the CNOT gate we use. The main source of the error in our decoupling
method comes from the imperfection of the single-qubit pulse gates we use. Each of them
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only has a fidelity of 99.89% in the case of no couplings. Also, the fidelity can be further
improved by applying the Gradient Pulse Engineer (GRAPE) to the pulses. On the other
hand, we do see that the entanglements between the qubits we want to decouple are being
suppressed significantly by the decoupling method we proposed.
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Figure 6.7: The CNOT gate implementations in the five-qubit system. a) A CNOT
gate is applied on qubit 1 and 2. The qubit 3, 4 and 5 are decoupled by two decoupling
sequences G. The overall fidelity is 92.5%. b) Two CNOT gates are applied on qubit
1&2 and 4&5 correspondingly. Where qubit 3 is decoupled by a decoupling sequence G.
The overall fidelity is 93.38%. The blue curves are the fidelities capturing the single-qubit
frequencies whereas the red curves represent the evolution in the rotating frame.

62



Concluding Summary

In this thesis, we point out the difficulties of a scalable gate implementation in the super-
conducting system. We argue that a transversed fixed-coupling superconducting system
has a long coherence time, but a complicated Hamiltonian. Then, we introduce the super-
conducting decoupling method that we proposed in this thesis.

The superconducting decoupling method is inspired by the decoupling method in Nu-
clear Magnetic Resonance (NMR). We make quite a few modifications to the original idea
to adapt it in the superconducting system. It transforms a multi-qubit fixed-coupling
system into an effective system with only the selected couplings. By manipulating the
couplings, we are able to implement one and two-qubit gates to create universal set of
gates.

This work still has the potential to be improved and be expanded to more fields. For
example, the optical quantum computer has the same form of the Hamiltonians, which
means that our method can also be applied. Also, the errors could be further suppressed
by higher fidelities on the single-qubit gate implementations we use. This work is also
compatible with the GRAPE pulses. It provides an initial state for the GRAPE algorithm
to accelerate its running time quadratically.
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Appendix A

Simulation Codes

A.1 Single qubit Gate

Single qubit gates are simulated with Matlab R2015a.

The following script is used to generate pulse shapes that the applied pulse has rising/falling
time:

function[y]=pulse_shape_slow(t_total,t)

% This file inputs the total time a pulse

% is intended to run t_total, and the current time t.

% It outputs value y ranging from 0 to 1.

if t < 1/3*t_total

y = -1/2*cos(3*pi*t/t_total)+1/2;

elseif t > 2/3*t_total

y = 1/2*cos(3*pi*t/t_total+4*pi)+1/2;

else

y = 1;

end

Then, this script simulates the single-qubit gate of the form cos(dt)Y − sin(dt)X:

function[result]=oneq_mixXY(t_delay,dt)
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% The script takes the input of how long

% the system evolves before we try to implement the gate t_delay

% Also, the value in the decoupling gate dt.

% It produces the fidelity of the pulse gate comparing to the ideal one.

n = 9000;

d = 14*pi;

a = 2.5*pi;

w = -d;

phi = dt+pi/2;

t = 0.75;

x_axis = 0:t/(n-1):t; % x-axis value, the time

%% Operator Define;

X =[0,1;1,0];

Y = [0,-1i;1i,0];

I = [1,0;0,1];

Z = [1,0;0,-1];

G =eye(2);

Expc = [0,-1i*exp(-1i*dt);1i*exp(1i*dt),0]; % Ideal case

for p = 1:n % The recursion

T = p/n*t + t_delay;

H = a*pulse_shape(t,p/n*t)*cos(w*T+phi)*(cos(d*T)*X+sin(d*T)*Y);

E = expm(-1i*(H)*t/n); %theoretically: phi = phi(de+pi/2)-t_delay*delta

G = E*G;

F(1,p) = 1/2*trace(conj(transpose(G))*Expc);

end

Final = 1/2*trace(conj(transpose(G))*Expc)

%% Plotting Part

result = G;

plot(x_axis,abs(F))

title(’Fidelity Compare with Intended gate’)

ylabel(’Fidelity’)

xlabel(’time’)
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A.2 CNOT gate

The script for simulating the CNOT gate is:

function[result]=twoq_CNOT(t)

% This script produce a CNOT gate with phases on each state.

% The phase comes from the energy

% pf each state, it is hard to modify.

% The input is the time t we want the pulses to persist

% in the system, and produce the fidelity of the simulated CNOT.

% The overall running time is t = 15.2ns for best fidelity

n = 1800;

x_axis = 0:t/(n-1):t; % x-axis value, the time

d1 = 14*pi;

d2 = 10*pi;

J12 = 0.2*pi;

a1 = 0.57*pi;

%% Operator Define;

X =[0,1;1,0];

Y = [0,-1i;1i,0];

I = [1,0;0,1];

Z = [1,0;0,-1];

X1 = kron(X,I);

X2 = kron(I,X);

Y1 = kron(Y,I);

Y2 = kron(I,Y);

Z1 = kron(Z,I);

Z2 = kron(I,Z);

%% Initiate the parameters

F(:,1) = 0; % Initial fidility for entangle AF.

theta1 = atan(2*J12/(d1+d2))/2;

theta2 = atan(2*J12/(d1-d2))/2;

a2 = a1*sin(theta1+theta2)/cos(theta2-theta1)

w1 = -d2-J12*(tan(theta1)-tan(theta2))

% the equation from the paper is:

% 0.5*(sqrt(4*J12^2+(d1+d2)^2)-sqrt(4*J12^2+(d1-d2)^2)), they are the same
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w2 = w1;

G = eye(4);

%% entangled states and phased CNOT

Zero = [cos(theta1);0;0;-sin(theta1)];

One = [0;cos(theta2);-sin(theta2);0];

Two = [0;sin(theta2);cos(theta2);0];

Three = [sin(theta1);0;0;cos(theta1)];

Phase_CNOT = [0.4384+0.8933i,0,0,0;0,0.0716+0.9947i,0,0;

0,0,0,-0.9922-0.0653i;0,0,-0.89-0.4437i,0];

%% The recursion

for p = 1:n

T = p/n*t;

H = J12*(cos(d1*T)*X1+sin(d1*T)*Y1)*(cos(d2*T)*X2+sin(d2*T)*Y2) ...

+a1*cos(w1*T)*(cos(d1*T)*X1+sin(d1*T)*Y1) ...

+a2*cos(w2*T)*(cos(d2*T)*X2+sin(d2*T)*Y2);

E = expm(-1i*(H)*t/n);

G = E*G;

%% With/Without E-initial State

Q(p) = 1/4*trace(transpose(conj(Phase_CNOT))*G);

F(p) = 0.25*(abs(transpose(Zero)*G*Zero)+abs(transpose(One)*G*One)...

+abs(transpose(Three)*G*Two)+abs(transpose(Two)*G*Three));

end

%% Plotting Part

plot(x_axis,Q)

title(’Fidelity Compare with Intended gate’)

ylabel(’Fidelity’)

xlabel(’time’)

%--------------------------------

%% Some useful parameters

%---------------------------------

F(1,n) %fidelity at final time

G %resulting operator

Gate_time = pi/(2*a1*sin(theta1+theta2)); %theriodical gate time

best_fide_with_change = max(F);

best_fide_without = max(Q);
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Actual_Evo_Matrix = abs(G);

A.3 Three-qubit Gates

QETLAB-0.9 [45] is being used here to find the Operator Schmidt decomposition. The
scripts simulate and plot the fidelities as well as the Schmidt strengths.

There are two circuits that I simulated. As I mentioned in Fig. ??, the first case is
CNOT on qubit 1, 2 and decoupling gates on qubit 3.

function[]=with_1st_qubit_decouple(t)

% A CNOT pulse applied on three qubit case and has the fidelity of 96.0%.

% t =15.2ns for the best fidelity

%% General Parameters.

n = 5000;

X =[0,1;1,0];

Y = [0,-1i;1i,0];

I = [1,0;0,1];

Z = [1,0;0,-1];

% X gate

X1 = kron(kron(X,I),I);

X2 = kron(kron(I,X),I);

X3 = kron(kron(I,I),X);

% Y gate

Y1 = kron(kron(Y,I),I);

Y2 = kron(kron(I,Y),I);

Y3 = kron(kron(I,I),Y);

% Z gate

Z1 = kron(kron(Z,I),I);

Z2 = kron(kron(I,Z),I);

Z3 = kron(kron(I,I),Z);

%% Underlying system’s parameters

d1 = 14*pi;

d2 = 10*pi;

d3 = 14*pi;
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J12 = 0.2*pi;

J23 = 0.2*pi;

a1 = 2.483*pi;

a2 = 0.1;

a3 = 1.7187;

w1 = -d1;

w2 = -31.3794;

w3 = w2;

phi1 = pi/2+d1*t_block;

% axis and expected outcome

x_axis = 0:t/n:t;

evo = eye(8);

Phase_CNOT2 = [0.4488 + 0.8881i,0,0,0;0,0,0,-0.9927 + 0.0018i;

0,0,0.0835 + 0.9939i,0;0,-0.8445 - 0.5221i,0,0];

Entropy(1) = 0;

% Decouple

t_block = 15.2/20;

t_single = 0.58;

%% Actual evolution of the system

for p=1:n

T = p/n*t;

if mod(p,n/20) == 0

phi1 = phi1+d1*t_block;

end

if mod(T,t_block)>= t_block-t_single

Hrf = J12*(cos(d1*T)*X1+sin(d1*T)*Y1)*(cos(d2*T)*X2+sin(d2*T)*Y2) ...

+J23*(cos(d2*T)*X2+sin(d2*T)*Y2)*(cos(d3*T)*X3+sin(d3*T)*Y3) ...

+0*a1*pulse_shape_slow(t_single,mod(T,t_block)-t_block+t_single) ...

*cos(w1*T+phi1)*(cos(d1*T)*X1+sin(d1*T)*Y1) ...

+a2*cos(w2*T)*(cos(d2*T)*X2+sin(d2*T)*Y2) ...

+a3*cos(w3*T)*(cos(d3*T)*X3+sin(d3*T)*Y3);

else

Hrf = J12*(cos(d1*T)*X1+sin(d1*T)*Y1)*(cos(d2*T)*X2+sin(d2*T)*Y2) ...

+J23*(cos(d2*T)*X2+sin(d2*T)*Y2)*(cos(d3*T)*X3+sin(d3*T)*Y3) ...
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+a2*cos(w2*T)*(cos(d2*T)*X2+sin(d2*T)*Y2) ...

+a3*cos(w3*T)*(cos(d3*T)*X3+sin(d3*T)*Y3);

end

E = expm(-1i*(Hrf)*t/n);

evo = E* evo;

F2(1,p+1) = 1/8*trace(conj(transpose( ...

kron(expm(-1i*d1/2*15.2*Z),Phase_CNOT2)))*evo);

Schdmit_num = OperatorSchmidtDecomposition(evo,[2,4]);

Schdmit_num = Schdmit_num/norm(Schdmit_num);

Entropy(p+1) = 0;

for a = 1: length(Schdmit_num)

Entropy(p+1) = Entropy(p+1) - Schdmit_num(a)^2*log2(Schdmit_num(a)^2);

end

end

F2(1,n+1)

hold on

plot(x_axis,abs(F2(1,:)),’r’)

plot(x_axis,Entropy,’b’)

hold off

legend(’fidelity with CNOT’,’Entropy of Entangle’)

title(’Y1 with CNOT23-- No Decouple’)

ylabel(’Fidelity’)

xlabel(’time’)

The second script is similar to first one, but the CNOT is being ’up-side-down’. This
put the stronger control pulses near the qubit we want to decouple:

function[]=with_3rd_qubit_decouple(t)

% A CNOT pulse applied on three qubit case and has the fidelity of 93.4%.

% The gate time is t=15.2ns

%% General Parameters.

n = 5000;

X =[0,1;1,0];

Y = [0,-1i;1i,0];

I = [1,0;0,1];

Z = [1,0;0,-1];

% X gate
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X1 = kron(kron(X,I),I);

X2 = kron(kron(I,X),I);

X3 = kron(kron(I,I),X);

% Y gate

Y1 = kron(kron(Y,I),I);

Y2 = kron(kron(I,Y),I);

Y3 = kron(kron(I,I),Y);

% Z gate

Z1 = kron(kron(Z,I),I);

Z2 = kron(kron(I,Z),I);

Z3 = kron(kron(I,I),Z);

%% Underlying parameter

d1 = 10*pi;

d2 = 14*pi;

d3 = 10*pi;

J12 = 0.2*pi;

J23 = 0.2*pi;

a1 = 0.1;

a2 = 1.7187;

a3 = 2.5*pi;

w1 = -31.3794;

w2 = w1;

w3 = -d3;

phi3 = pi/2+d3*t_block;

% additional

x_axis = 0:t/n:t;

evo = eye(8);

Phase_CNOT2 = [0.4488 + 0.8881i,0,0,0;0,0,0,-0.9927 + 0.0018i;

0,0,0.0835 + 0.9939i,0;0,-0.8445 - 0.5221i,0,0];

Entropy(1) = 0;

% Decouple

t_block = 15.2/20;

t_single = 0.58;
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%% Actual evolution of the system

for p=1:n

T = p/n*t;

if mod(p,n/20) == 0

phi3 = phi3+d3*t_block;

end

if mod(T,t_block)>= t_block-t_single && T <= t - t_block

Hrf = J12*(cos(d1*T)*X1+sin(d1*T)*Y1)*(cos(d2*T)*X2+sin(d2*T)*Y2) ...

+J23*(cos(d2*T)*X2+sin(d2*T)*Y2)*(cos(d3*T)*X3+sin(d3*T)*Y3) ...

+0*a3*pulse_shape_slow(t_single,mod(T,t_block)-t_block+t_single) ...

*cos(w3*T+phi3)*(cos(d3*T)*X3+sin(d3*T)*Y3) ...

+a2*cos(w2*T)*(cos(d2*T)*X2+sin(d2*T)*Y2) ...

+a1*cos(w1*T)*(cos(d1*T)*X1+sin(d1*T)*Y1);

else

Hrf = J12*(cos(d1*T)*X1+sin(d1*T)*Y1)*(cos(d2*T)*X2+sin(d2*T)*Y2) ...

+J23*(cos(d2*T)*X2+sin(d2*T)*Y2)*(cos(d3*T)*X3+sin(d3*T)*Y3) ...

+a2*cos(w2*T)*(cos(d2*T)*X2+sin(d2*T)*Y2) ...

+a1*cos(w1*T)*(cos(d1*T)*X1+sin(d1*T)*Y1);

end

E = expm(-1i*(Hrf)*t/n);

evo = E* evo;

F2(1,p+1) = 1/8* ...

trace(conj(transpose(kron(Phase_CNOT2,expm(1i*d3/2*14.36*Z))))*evo);

Schdmit_num = OperatorSchmidtDecomposition(evo,[4,2]);

Schdmit_num = Schdmit_num/norm(Schdmit_num);

Entropy(p+1) = 0;

for a = 1: length(Schdmit_num)

Entropy(p+1) = Entropy(p+1) - Schdmit_num(a)^2*log2(Schdmit_num(a)^2);

end

end

evo

hold on

plot(x_axis,abs(F2(1,:)),’r’)

plot(x_axis,Entropy,’b’)

hold off

legend(’fidelity with CNOT’,’Entropy of Entangle’)
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title(’CNOT12 with Y3 -- With Decouple’)

ylabel(’Fidelity’)

xlabel(’time’)

%%%%%% how to find the single gate:

%rho = evo

%[s,U,V] = OperatorSchmidtDecomposition(rho,[4,2])

% ---> s = [2.8149 0.194 0.1799 0.0808]

%This shows that first element is the most important.

%->s1 = 2.8149,

%->U1 = 0.3690 + 0.3338i -0.0251 - 0.0216i 0.0048 - 0.0090i 0.0238 - 0.0269i

% 0.0281 + 0.0197i -0.0119 - 0.0438i -0.0031 + 0.0396i -0.3057 + 0.3895i

% 0.0084 - 0.0052i 0.0239 - 0.0272i 0.2178 + 0.4467i 0.0082 - 0.0397i

% -0.0325 + 0.0136i -0.4653 + 0.1703i -0.0049 + 0.0370i -0.0348 - 0.0255i

%->V1 = -0.7022 - 0.0000i 0.0681 + 0.0482i

% -0.0660 - 0.0509i -0.2063 - 0.6712i

%isuni = s(1)*kron(U{1},V{1})

%conj(transpose(isuni))*isuni

% -> this shows it is 99.0% unitary(we could tell from 2.8149^2/8)

%conj(transpose(V{1}))*V{1} -> [0.5,0;0,0.5]

% This means real_U = U{1}*s(1)/sqrt(2)

% -> abs(real_U) = 0.9903 0.0659 0.0202 0.0715

% 0.0683 0.0904 0.0791 0.9855

% 0.0197 0.0720 0.9891 0.0808

% 0.0702 0.9862 0.0742 0.0858

A.4 Numerical Optimization

I also use Mathematica to numerically find the local gate corrections after we decouple the
system to further improve the fidelity, which results in 97.56%:

L1 = MatrixExp[I*{{c, a - b*I}, {a + b*I, -c}}];

L2 = MatrixExp[I*{{f, d - e*I}, {d + e*I, -f}}];

L3 = MatrixExp[I*{{C, A - B*I}, {A + B*I, -C}}];
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L4 = MatrixExp[I*{{F, D - Ev*I}, {D + Ev*I, -F}}];

CNOT = {{1, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}};

P0 = {{0.7380 + 0.6676 I, -0.0502 - 0.0432 I, 0.0096 - 0.0180 I, 0.0476 - 0.0538 I},

{0.0562 + 0.0394 I, -0.0238 - 0.0876 I, -0.0062 + 0.0792 I, -0.6114 + 0.7790 I},

{0.0168 - 0.0104 I, 0.0478 - 0.0544 I, 0.4356 + 0.8934 I, 0.0164 - 0.0794 I},

{-0.0650 + 0.0272 I, -0.9306 + 0.3406 I, -0.0098 + 0.0740 I, -0.0696 - 0.0510 I}};

obj = Tr[KroneckerProduct[L1, L2].P0.KroneckerProduct[L3, L4].CNOT];

Fidelity =

Maximize[{0.25*Norm[obj] , a <= 2*Pi, a >= 0, b <= 2*Pi, b >= 0,

c <= 2*Pi, c >= 0, d <= 2*Pi, d >= 0, e <= 2*Pi, e >= 0,

f <= 2*Pi, f >= 0, A <= 2*Pi, A >= 0, B <= 2*Pi, B >= 0,

C <= 2*Pi, C >= 0, D <= 2*Pi, D >= 0, Ev <= 2*Pi, Ev >= 0,

F <= 2*Pi, F >= 0}, {a, b, c, d, e, f, A, B, C, D, Ev, F}]

=>{0.975766, {a -> 1.02028, b -> 1.41264, c -> 6.28319, d -> 1.29421,

e -> 2.53764, f -> 6.28319, A -> 6.28319, B -> 4.59283,

C -> 5.16391, D -> 0.0485388, Ev -> 3.15469, F -> 1.95426}}
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