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Abstract 

A new methodology for predicting the short term and long term responses of viscoelastic and 

viscoplastic materials is developed in this research. The methodology aims to predict the behaviour of 

viscoelastic/viscoplastic isotropic material subjected to loading in isochronous condition (temperature 

effects are not included). The methodology is implemented in a finite element (FE) procedure through 

a user defined material subroutine (UMAT) which is linked to ABAQUS software and is called at each 

increment and material calculation point. The built-in viscoelastic ABAQUS procedure is not able to 

analyze the nonlinear behaviour of viscoelastic and viscoplastic materials, hence, a specific procedure 

needs to be defined, which justifies the application of user generated subroutines for material definition 

in this work. 

The development of the methodology consists of four major parts: 1) development of material models 

for Nonlinear Viscoelastic (NVE) and Nonlinear Viscoplastic (NVP) materials; 2) development of 

macromechanical NVE and NVP models; 3) development of failure model; 4) implementation in finite 

element procedure. 

For the first part, a new approach is developed for macromechanical constitutive formulations for 

time-dependent materials. In particular, two phenomenological constitutive models for polymer 

materials are illustrated, describing time-dependent and nonlinear mechanical behaviour, the Nonlinear 

Viscoelastic (NVE) and Nonlinear Viscoplastic (NVP) material models. In the proposed approach, 

short term creep test data are used for modelling both short term and long term responses. A major part 

of the experiments were done by Liu (Liu, 2007), while the rest have been provided by ExxonMobil, a 

division of Imperial Oil. The differential form of the model is used to simulate typical Nonlinear 

Viscoelastic polymeric behaviour using a combination of springs and dashpots. Unified plasticity 

theory is then used to develop the second model, the Nonlinear Viscoplastic one. Least squares fitting 

is applied for the determination of material parameters for both models based on experimental results. 

Due to practical constraints, experimental data are usually available for short term time-frames only.  

In the presented proposed formulation, the material parameters determined from short term testing are 

used to obtain material parameter relationships for predicting the long term material response.  This is 

done by extending short term information for longer time frames. 

The second part, which is the development of macromechanical NVE and NVP models, is done using 

two theories: multiple integral and single integral representations of constitutive equations. Multiple 
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integral representation for three-dimensional behaviour is an extension of linear superposition to the 

nonlinear range. The method is based on the small strain assumption, but is extended to large 

deformation for materials in which the stress-strain relation is nonlinear and the concept of 

incompressibility is governing. Similar to the material modelling (first part), the modelling process uses 

springs and dash-pots, and a power-law approximation function method for viscoelastic and 

viscoplastic nonlinear behaviour, respectively. Single integral representation, on the other hand, is a 

simplified form of multiple integral representation. Based on Schapery's single integral constitutive 

law, a solution procedure has been provided to solve nonlinear viscoelastic behaviour. This procedure 

is applicable to three dimensional problems and uses time- and stress-dependent material properties to 

characterize the nonlinear behaviour of the material. The approximation equations describing material 

behaviour are defined based on the material response in a short test time frame.  For this estimation, 

Prony series method is used the basis of the constitutive relations is the non-separable form of the 

equations. 

For the failure modelling (third part), an energy based method of delayed failure is presented. The 

delayed failure approach is applicable to both NVE and NVP modelling for both multiple integral and 

single integral theories. The approach works with limiting the strain energy of the material to a 

boundary which is the resilience limit. Here, based on Schapery's single integral constitutive law, the 

delayed failure criterion is employed for NVE modelling, which helps to solve for the polymer’s time 

to failure involving material nonlinearity.  

In the last part, the proposed viscoelastic and viscoplastic models, as well as the delayed failure 

criterion, are implemented in a user material algorithm of the FE general purpose program ABAQUS 

and the validity of the models is assessed by comparisons with experimental observations from tests on 

polyethylene material samples in one-dimensional tensile loading (these tests are done by others). The 

experiments are short term loading, long term loading, and step loading. Comparisons show that the 

proposed constitutive model can satisfactorily represent the time-dependent mechanical behaviour of 

polymers even for long term predictions and the developed formulation provides a flexible and reliable 

framework for predicting load responses of polymers. It is also concluded that with proper material 

properties to reflect the deformation involved in the mechanical tests, the deformation behaviour 

observed experimentally can be accurately predicted using the Finite Element Method (FEM) 

simulation. 
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Chapter 1 

Introduction 

 

1.1 Research significance 

Polymers and plastics are commonly used in structural and mechanical applications such as pipes, 

automotive parts and medical implants. During the last few decades, a significant amount of research 

has been done on polymers in order to predict their behaviour under different loading and 

environmental conditions. The application of polymers in industry has led to the development of 

different approaches of investigation in forms of theoretical, experimental, numerical and finite element 

approaches. In particular, two specific approaches are important to mention. These are molecular 

(micro-mechanical) and macroscopic (macro-mechanical) in nature. Micromechanical models 

emphasize the relation between the macroscopic properties of materials and their microstructure. For 

predicting mechanical response of polymers for structural analysis, the macromechanical approach is 

employed. 

Research presented in this thesis is focused on macromechanical analysis. Although many scientific 

works have been carried out on this topic there are still gaps that need to be filled. A common problem 

in the area of macromechanical investigation of polymers is defining the behaviour of materials, which 

involves consideration of viscoelasticity and/or viscoplasticity, as well as nonlinearity in response. This 

has always been one of the main concerns of researchers in this area, which involves two procedures. 

First is the development of constitutive equations and second is defining material properties. The first 

procedure includes two major formulation approaches, which are differential and integral. 

The first step is based on an approximation process. For the differential approach, a configuration of 

spring and dash-pot elements, which best describes the behaviour, needs to be chosen. Approximation 

functions describing material behaviour need to be selected. The right selections of these components 

of formulations have always been of interest to researchers. Herein, a multi Kelvin solid configuration 

of springs and dash-pot elements is chosen for the differential formulation. For the integral formulation, 

on the other hand, exponential and power law functions are approximated for viscoelastic and 

viscoplastic analysis, respectively. The suitability of all these selections is analyzed. 
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The second step involves employment of experimental results in defining material parameters using 

the developed constitutive formulation in step 1. The technique involves fitting the resultant constitutive 

relations to the test data and optimizing the solution for the unknown material parameters. In this work, 

a nonlinear optimization approach is developed in MATLAB workspace, which defines the material 

properties, using 24-hour unidirectional creep test results. It is then shown that the methodology used 

in step 1 and the resultant material properties from step 2 are useful and easy to be implemented in 

finite element procedures. 

Another important consideration is predicting the response in a long term time-frame. Running long 

term experiments is expensive and time consuming. Although many researchers have used the Time-

Temperature Superposition Principle (TTSP) for predicting long term behaviour of polymers, to the 

best knowledge of the author, no work is available on other methods and this research aims to fill this 

gap by providing an efficient empirical procedure. In the proposed approach one means of generating 

relevant design data is to investigate prototype structures within a shorter time-frame. Based on this 

investigation, the constitutive equations are modified accordingly. 

For the main objective of this research, to accomplish, which is finite element (FE) implementation 

of constitutive models in a commercial software, a user defined material subroutine is generated. 

Abaqus is used for the Finite Element Analysis (FEA). The current version of the commercial software 

Abaqus allows only linear viscoelastic modeling, which can be used for both small and large strain 

problems. It has to be used in conjunction with linear elastic behaviour or hyperelastic behaviour. 

Material parameters are defined either by direct specification of Prony series parameters, or by direct 

inclusion of creep, relaxation or frequency test data. The built-in procedure in Abaqus software is not 

able to analyze the nonlinear behaviour of viscoelastic and viscoplastic materials. Noting that nonlinear 

time domain analysis requires application of time- and stress-dependent material properties, a specific 

procedure needs to be defined, which justifies the application of user generated subroutines for material 

definition. For this, two procedures are developed using integral formulation of material behaviour. The 

first procedure is based on the multi-integral formulation of viscoelastic and viscoplastic analyses, and 

the second one is based on Schapery’s single integral formulation. The formulations are modified in 

such a way that the material parameters can be employed for the long term analysis. These properties 

are based on a multi-Kelvin configuration of spring and dash-pot elements for viscoelastic behaviour 

and power law functions for viscoplastic behaviour. Both analyses are nonlinear and based on the user 

defined material subroutine. 
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A failure analysis, based on maximum distortion energy, is also studied and used in further 

improvement of the FE procedure. Consequently, this makes the procedure able to predict the ultimate 

life time of the material for the long term. 

1.2 Objectives 

The objectives of the thesis are outlined below. 

1.  Development of a mathematically rational modelling of polymeric material behaviour and 

optimization using results of the tested polymers (macromechanical constitutive modelling). The 

modelling should include time dependent and nonlinear characteristics of the behaviour and, at the 

same time, be simple enough for easy implementation into a commercial finite element package such 

as ABAQUS. 

2.  Development of the mathematical modelling for long term response prediction. The strategy is to 

use short term test data for optimizing the model parameters. 

3.   Development of a mathematical failure model based on ultimate failure energy criteria, which is 

easy to implement in FE analysis through a user defined material subroutine. 

4.  Implementation of the developed mathematical model along with failure criteria (steps 1~3) into 

the commercial software ABAQUS, by developing an appropriate procedure. For this a user defined 

material subroutine is generated, which is invoked by FE software ABAQUS, during the nonlinear 

analysis. 

5.  Validating both the mathematical model and the FE procedure by comparing the present results 

with experimental ones. 

1.3 Outline of the Research 

The thesis is written is a form composed of several published and planned journal papers. 

Chapter 1:  

Provides a description of the research significance and justification, as well as objectives of the 

research, and the steps taken to achieve these objectives. 

Chapter 2: Background and Literature Review 

Parts of this chapter are based on the book chapter: 
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Polak, M.A., H. Sepiani and A. Penlidis. Modelling Material Behaviour of Polymers, Chapter in 

Computational Modelling, Optimization, and Manufacturing Simulation of Advanced Engineering 

Materials, (Pablo Munoz-Rojas, Ed.), by Springer, ISBN 978-3-319-04265-7 

In this chapter a background is provided on viscoelastic and viscoplastic materials, their application, 

and micromolecular and macromolecular characteristics. Also, experimental investigations that have 

been done previously at the University of Waterloo are described. An introduction to the modelling 

methods is provided. The theoretical approaches adopted in the thesis are explained. 

Chapter 3: Modelling Short and Long Term Time-dependent Nonlinear Behaviour of 

Polyethylene 

Contents of this chapter is published in the journal of “Mechanics of Advanced Materials and 

Structures”. In this chapter a new methodology for developing macromechanical constitutive 

formulations for time-dependent materials is developed which describes nonlinear behaviour. 

Differential formulation as well as unified plasticity theory is used for development of 1-D nonlinear 

viscoelastic and viscoplastic models, respectively. Models are extended to long term, based on short 

term experimental observations. Materials parameters are obtained using nonlinear optimization, which 

is a minimization technique of an error function. The resultant models describe nonlinear time 

dependent behaviour, and are easy to use in finite element procedures. 

Chapter 4: Finite Element Implementation of Long Term Behaviour of Viscoelastic and 

Viscoplastic Materials 

In this chapter, a multiple integral approach, which is essentially an extension of the Boltzmann’s linear 

superposition principle to nonlinear range, is employed for three-dimensional behaviour of viscoelastic 

and viscoplastic materials. Some simplifications are considered in order to obtain a particularly useful 

theory, namely the fully incompressible behaviour assumption of the material, the superposition of 

small time dependent deformations, and finally the simplifications of the material functions. 

Differential formulation (exponential form), and unified plasticity (power-law function) 

approximations are used for viscoelastic and viscoplastic modelling, respectively. 

The equations describing material behaviour are modified based on the measured material properties 

through an empirical approach, by fitting the results to experimental data. The models are optimized 

for long-term responses which are beyond the test time. Finite element procedures are implemented in 
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the user-defined material algorithm in Abaqus (UMAT). The validity of the models is assessed by 

comparison with experimental observations on high density polyethylene (HDPE) for a single element 

under uniaxial loading. The comparisons show that the proposed constitutive model can satisfactorily 

represent the time-dependent mechanical behaviour of polymers. 

Chapter 5: Constitutive Equations and Finite Element Implementation of Linear Behaviour for 

Viscoelastic Materials 

This chapter is concerned with the formulation and constitutive equations of finite strain viscoelastic 

materials using the superposition principle in a thermodynamically consistent manner.  Based on the 

proposed constitutive equations, a finite element (FE) procedure is developed, and is implemented in a 

User Material FE code. For validation, the material properties are used, which have been previously 

obtained experimentally by Liu (Liu, 2007).  The model is used to predict the response of sample 

materials and the results are compared to experimental ones. 

Chapter 6: Constitutive Equations and Finite Element Implementation of Isochronous Nonlinear 

Viscoelastic Behaviour 

In this chapter, based on Schapery's single integral constitutive law, a nonlinear solution procedure is 

used to solve problems involving material nonlinearity. To simulate the viscoelastic behaviour of 

materials, a multi Kelvin solid configuration of spring and dash-pot elements is used to construct the 

constitutive equations. Time- and stress-dependent material properties (based on a generalized multi 

Kelvin simulation) are used to characterize the nonlinear behaviour of material. 

For finite element analysis purposes, the three dimensional formulation is developed and material 

functions are defined and modified to include the long term response of the material. For this, the 

parameters within the equations describing material behaviour are set to be functions of test time by 

observing the parameters trend versus different examined test times. 

The presented model can be used for the development of a unified computer code that can handle 

both linear as well as nonlinear viscoelastic material behavior. The proposed viscoelastic model is 

implemented in a user-defined material algorithm in Abaqus (UMAT). The validity of the models is 

assessed by comparison with experimental observations on high density polyethylene (HDPE) 

specimens test results under uniaxial loading. 
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Chapter 7: A Review and Analysis on Failure of Polyethylene 

In this chapter a brief introduction is provided on failure criteria for polymers. Out of the many criteria, 

the maximum strain energy is chosen for finite element application. The results are compared with 

results published in the literature. 

Chapter 8: Conclusions and Future Works 

In this chapter the outcome of the research is discussed and future possible research opportunities are 

suggested. 
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Chapter 2 

Background and Literature Review 

 

Polymers are the most widespread materials in nature. Silk, wool, DNA, cellulose, rubber and proteins 

are typical examples. In contrast, synthetic polymers, like polyethylene, nylon, polyesters, Teflon and 

epoxy, are industrially derived from petroleum oil. They are often formulated for specific applications.  

Polymers are widely used in the automotive, aerospace and computer industries, building trades and 

many other applications. Some important areas of applications of polymers are: fiber reinforced 

plastics, adhesives, insulation applications, optical applications, fibers and plastic pipes. 

This chapter provides a background and literature review on the polymeric material and the 

constitutive equations. First a background on micromolecular behaviour of viscous and solid materials 

are presented. Types of polymers and their applications are discussed and the experimental methods of 

investigating polymers are provided. 

Constitutive modelling of viscoelastic and viscoplastic materials are discussed later. This will follow 

with parameter estimation for linear modelling which has been performed previously at University of 

Waterloo. Methods of nonlinear modelling (vs. linear modelling) are provided and techniques of 

extending the material parameters to longer time frames are discussed. Also, the widely-used 

superposition principle is mentioned. Finally, modelling methodology which will be used in this 

research is explained briefly. 

2.1 Introduction 

2.1.1 Micromolecular background to viscous and solid behaviour 

There are numerous ways to classify polymers from a micromolecular point of view. Most of the 

polymers can be classified as either thermoplastics or thermosets. These names are associated with 

general structural, thermal and processing characteristics. Basic structural differences greatly impact 

material properties. The fundamental physical difference between the two classes comes from the way 

the polymer molecules are connected with each other. Thermosets consist of cross-linked molecules; 

hence they have a network structure. This influences the specific behaviour of these materials. In 
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contrast to thermoset polymers, thermoplastic polymers can be made to flow over many processing 

cycles and they can be melted or molded. 

Many polymers are two-phase materials consisting of an amorphous and a crystalline phase. What 

distinguishes the crystalline phase from the amorphous phase is that in crystals the macromolecules are 

packed together in an organized fashion as opposed to forming a random shape as in the case of the 

amorphous phase. When the polymer is subsequently subjected to a load, each phase behaves 

differently. The crystalline lamellae provide high yield stress, while the amorphous phase provides 

flexibility and hence a recoverable elastic response. Figure 1 shows a schematic representation of the 

two phases in polyethylene. The parallel lines at the centre of the figure represent the crystalline phase 

and the random configuration at the two sides represents the amorphous phase. 

What gives most polymers, especially polyethylene, their uniform resistance to load is the existence 

of covalent bonds between carbon atoms. A covalent bond is a chemical bond in which the electrons 

are shared between the atoms. The angular relations between atoms in a polymer determine the strength 

of the covalent bond. To create a polymeric chain each central atom needs to have at least two bonds 

with other atoms. However, two carbon atoms can have double or triple bonds. 

The cohesive properties of a polymer are due to van der Waals forces, which come from interactions 

between different molecules. There are two mechanisms that are at play when it comes to van Der 

Waals forces: one is the mass attraction and the other is related to momentary electron fluctuations. The 

strength of the van Der Waals force relative to a covalent bond is usually about 1%. However, there are 

several factors that can help increase this value to 10%. Some of these factors are: proximity of 

molecules, increase in molecule size, and multiple bonds between carbon atoms.  

Two general modes of deformation in polymer crystals are described. (1) Within chains of the 

polymer: This mode of deformation can be caused by stretching of covalent chains (this stretching is 

strongly resisted and therefore does not account for much of the deformation), change of angle between 

adjacent covalent bonds (which is more easily accommodated than the previous mode), and rotation of 

one bond with respect to the next adjacent bond (which is easier than the previous modes). (2) Between 

chains, which refers to deformations that are perpendicular to the chains. This type of deformation 

happens with much less resistance than the ones within the chains. 



 

 9 

 

Figure 1: Amorphous and crystalline phases within the polymer materials 

2.1.2 Types of polymers and their tensile and compressive behaviour 

As mentioned previously, there are two main categories of polymeric material behaviour. 

Thermoplastic polymers: They can be made to flow and one can melt or mold them during 

processing. The crystalline phase is denser than the amorphous part. This results in enhancement 

in some properties like hardness, corrosion resistance or resistance to environmental stress 

cracking (ESC), friction and wear, and less creep or time-dependent behaviour. 

Examples include polyethylene, polypropylene, Polyamides (nylon), polytetrafluoroethylene, 

polyvinyl Chloride (PVC), polystyrene, polycarbonate, and polymethyl Methacrylate. 

Thermoset polymers: These are used generally where high thermal and dimensional stability are 

required. They are suitable for electrical and thermal insulation, high performance composite 

applications and where high strength and modulus are required. Phenolics, polyurethanes, and 

epoxy-polymers are typical examples. 

Tensile and compressive behaviour: Polymers show solid and viscous as well as time-dependent 

behaviour. The induced stress and strain are functions of time. They generally can be thought of as a 

three-dimensional surface. The stress-strain-time relationship, or time-dependent constitutive law, can 

be determined by loading a polymer specimen with constant stress (results in creep phase response) or 

constant strain (results in relaxation or isometric response). These two types of behaviour and 

corresponding experiments will be discussed further in the following sections. 
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Creep phase: Viscous materials deform continuously when subjected to constant load. The initial 

strain is produced due to the pure elastic property of a polymer and is predicted by its stress-strain 

modulus. The elastic region is followed by the viscoelastic or viscoplastic response. The deformation 

slowly continues until rupture or yielding occurs. As seen in Figure 2, the primary region is the early 

stage of loading when the creep rate decreases rapidly with time. Then, the creep rate reaches a steady-

state, which is called the secondary creep stage. The next region is characterized by a rapid increase in 

strain (tertiary stage) and, finally, fracture. 

The creep response depends on material properties and type, magnitude of applied stress, temperature 

and time. Thermoplastics and thermosets show different behaviour. As seen in Figure 3, the strain will 

tend to a constant value after a long time for a thermoset, while the strain will increase without limit 

for a thermoplastic. Upon removal of the applied load, an immediate elastic recovery equal to the elastic 

deformation occurs for both types of polymers.  It is then followed by a period of slow recovery. For 

an ideal thermoset material, a decay to zero can be seen, which happens after a long time interval 

(compared to the loading time). 

Relaxation phase: This behaviour is defined as a gradual decrease in stress with time under a 

constant deformation or strain. The resultant response is shown in Figure 4. After a long period of time, 

both curves decay to a constant value. This asymptotic value is equal to zero for thermoplastic materials. 

The relaxation and creep tests observations reveal both solid and fluid characteristics related to 

polymeric materials. The relation ܧሺ௧ୀ଴ሻ ൌ  ௖ shows the instantaneous modulus of elasticityߝ/଴ߪ

corresponding to the elastic solid behaviour in a relaxation test, where index ܿ  shows the constant value 

and index 0 shows the initial one. In similar fashion, the relation ܦሺ௧ୀ଴ሻ ൌ  ௖ indicates the initialߪ/଴ߝ

relaxation compliance which is related to the elastic solid portion of the material behaviour. 

Fluid behaviour of polymers is defined by considering a time-dependent relaxation modulus as 

ሻݐሺܧ ൌ  ௖. Plotting this modulus versus log time (Figure 5) reveals that at short times, the stressߝ/ሻݐሺߪ

is at a high plateau corresponding to a “glassy” modulus ܧ௚, and then falls exponentially to a lower 

equilibrium “rubbery” modulus ܧ௥. 
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Figure 2: Creep curve for viscous materials subjected to constant load (Brinson, et al., 2008) 

 

 

Figure 3: Strain recovery in both thermoelastic and thermoset polymers (Brinson, et al., 2008) 

Modulus vs. compliance: Creep and relaxation are both illustrations of the same molecular 

mechanism, and are related to each other. However, even though ܧ ൌ  in both glassy and rubbery ܦ/1

regions, in general ܧ ്  In particular, the relaxation response moves toward its equilibrium value .ܦ/1

more quickly than does the creep response. These factors are related by a convolution integral (Ferry, 

1980) 

 
න ݐሺܧ െ ߬ሻܦሺ߬ሻ݀߬
௧

଴
ൌ (1) ݐ

where ݐ is time and ߬ is an integration parameter with time unit. Several approximation methods of 

interconversion between transient relaxation modulus, ܧሺݐሻ, and creep compliance, ܦሺݐሻ, are used in 

the literature. They are mostly based on adjustment of the elastic-like reciprocal relationship between 

these two parameters. The simplest interrelationship which is recommended for weakly viscoelastic 

materials is based on the quasi-elastic interrelationship defined as ܧሺݐሻ	ܦሺݐሻ 	ൎ 	1 (Park, et al., 1999). 
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For linear viscoelastic materials in which the relaxation modulus and creep compliance can be 

represented by simple power laws over their transition zones, Leaderman (Leaderman, 1943), 

Christensen (Christensen, 1971), Denby (Denby, 1975) and Park (Park, et al., 1999) presented the 

following interconversion formulas, respectively. 

 
ሻݐሺܦሻݐሺܧ ൌ

݊݅ݏ ߨ݊
ߨ݊

(2)

 
ሻݐሺܦሻݐሺܧ ≅

1

1 ൅
݊ଶߨଶ
4

(3)

 
ሻݐሺܦሻݐሺܧ ≅

1

1 ൅
݊ଶߨଶ
6

(4)

ሻݐሺܦሻݐߙሺܧ  ൌ ሻߙ/ݐሺܦሻݐሺܧ ൌ 1 (5)

in which ߙ ൌ ቀୱ୧୬௡గ
௡గ

ቁ
ଵ/௡

 and ݊ is the local slope of the source function ܨሺݐሻ ሺൌ ሻ or ൌݐሺܧ  ,(ሻݐሺܦ

defined as 

 
݊ ൌ ฬ

݀ ݃݋݈ ሺ߬ሻܨ
݀ ݃݋݈ ߬

ฬ
௔௧ ఛୀ௧

(6)

 

Figure 4:  Relaxation behaviour for both thermoelastics and thermosets and the definition of 

the 10 second relaxation modulus (Brinson, et al., 2008) 
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Linearity, nonlinearity and the concept of isochronous modulus: Two important definitions of 

linearity (or nonlinearity) are usually employed: the first is material linearity which deals with Hookean 

stress-strain behaviour or linear relation between stress and strain; and the second is geometric linearity 

(or nonlinearity). 

 

Figure 5: The stress relaxation modulus E(t) vs log (t) (Brinson, et al., 2008) 

One of the main points in analysis is to determine if the material behaviour under specific conditions 

is linear or nonlinear. This can be accomplished by determining if the creep compliance (or relaxation 

modulus) is independent of stress (or strain). This can be performed by plotting the stress-strain curves 

for different times. It can be seen in Figure 6 and is called isochronous stress-strain diagram. If this 

isochronous variation of stress versus strain at any given time, ݐ௜, is linear, the material is linear. In this 

case the creep compliance (or relaxation modulus) can be determined by ܦሺݐ௜ሻ ൌ ௜ሻݐሺܧ ௜ (orߪ/௜ߝ ൌ

 ௜). This property is characterized as linear viscoelasticity. In the linear range the compliance (orߝ/௜ߪ

modulus) is independent of stress (strain). By increasing the applied stress or strain, a transition from 

linear to nonlinear viscoelasticity can be observed (Figure 6). In the nonlinear region, the slope of 

isochronous stress-strain curve is no longer constant, meaning that the compliance (or modulus) is a 

function of stress (or strain).  

It is worth pointing out that polymers generally exhibit linear behaviour at low stresses, while at 

moderate or higher stress levels, the material is assumed to be nonlinear and will not obey the linear 

Hookean relationship. 

Eg 

Er 
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Figure 6: Strain-time curves for 24-hour creep tests on HDPE-pipe (left), and HDPE-resin 

(right) (Liu, 2007) 

Both the material nonlinearity analysis and geometric nonlinearity analysis are of researchers’ 

interest. The linearity corresponds to the small or infinitesimal deformation theory, while the 

nonlinearity follows the theory of large or finite deformation. Linearity in polymers is the result of the 

displacements of the material particles assumed to be much smaller than any relevant dimension of the 

body. With this assumption, the geometry and the constitutive properties of the material such as density 

and stiffness at each point of space can be assumed to be unchanged by the deformation. This results 

in simplification of the Lagrangian and Eulerian strain equations. Although a lot of work has been done 

on large deformation analysis of polymers (see, for instance, (Drozdov, 1998), (Drozdov, 1992), 

(Drozdov, 2007) & (Drozdov, et al., 2003)), infinitesimal behaviour has limited applications in 

polymers (see (Cernocky, et al., 1980)). 

2.1.3 Experimental considerations  

The main reason for performing experiments is to determine material characteristics. Creep test 

involves recording the strain due to application of constant stress, while relaxation test yields the 

resultant stress when the material is subjected to constant strain. In some cases, shear stress or strain 

experiments are done. Observations which show that deformations in viscoelastic materials such as 

polymers are more related to changes of shape than changes of volume, suggest that shear tests may be 
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more valuable than the traditional uniaxial tests. The main material classifications which form the basis 

of mathematical modelling of polymers are as follows: 

Viscoelastic and viscoplastic materials: The first level of material classification is determining if 

the material is described best by a viscoelastic or a viscoplastic model. A viscoelastic material shows a 

significant amount of delayed recovery upon unloading, whereas there remains a permanent residual 

‘plastic’ strain for viscoplastic materials. Even though either model can be used to describe the time 

dependent “creep” of materials under uniaxial loading, viscoplastic models are generally used to 

describe high temperature creep of metals, while viscoelastic models are used to describe creep of 

ductile polymers (Krishnaswamy, et al., 1992). 

Linear and nonlinear materials: By performing creep tests at several constant stress levels, a series 

of strain vs. time curves are obtained.  A plot of the compliance "ܺ ൌ  vs. time can be used to  "ߪ/ሻݐሺߝ

determine if the material response at various stresses is linear or nonlinear. If the compliance is 

independent of the stress, meaning that a single curve is obtained for the compliance under different 

levels of constant stress, then the material is said to be ‘linear’. Otherwise, the compliance is a function 

of stress, the material is known as ‘nonlinear’, and a nonlinear model must be used to represent its creep 

behaviour (Krishnaswamy, et al., 1992). 

Nonlinear materials-separable and non-separable: Nonlinear materials can be categorized taking 

into account whether the effects of stress (σ) and time (t) on strain (ε) are separable or not. If all 

compliance curves for nonlinear materials have the same ‘shape’, the material needs a nonlinear-

separable model, i.e., same function for all stresses. ε is given by the following Eq. (7) 

ߝ  ൌ ݄ሺߪሻ݂ሺݐሻ (7)

Otherwise, if the shape of the compliance curves at all stress levels is not similar, then ε must be 

represented by a different function of time at each stress level. In this case, the material can only be 

described by a nonlinear non-separable model given by Eq. (8) 

ߝ  ൌ ݃ሺߪ, ሻݐ (8)

2.1.3.1 Polymer material testing at the University of Waterloo  

Polymer studies have been a major research area at the University of Waterloo.  Material testing has 

included creep and tensile testing of a variety of polyethylene and polyfluoroethylene. Mechanical 
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testing was supplemented by detailed analysis of polymer micromolecular properties (Cheng, et al., 

2008) (Sardashti, et al., 2012) and (Sardashti, et al., 2014). This section outlines the testing done and 

the rationale behind it. 

 

Figure 7: Strain versus time tests (Liu, et al., 2008) 

Liu (Liu, 2007) and Liu et al. (Liu, et al., 2008) have done experiments on high density and medium 

density polyethylene (PE) materials. Testing was done on seven types of PEs and included short term 

tensile creep (3 and 24 hours), long-term creep (7 days and 14 days), creep with step loading, constant 

stress rate, constant strain rate, and complex load history tests. The specimens were produced from 

resins by melting them and machining, and from pipes by cutting out the samples. 24-hour creep testing 

was done at different stress levels to examine time dependent and nonlinear behaviour of the materials. 

The testing showed clear differences in the behaviour of different HDPEs; examples of the results of 

HDPE 24 hour creep curves for two different materials are shown in Figure 6. Based on the measured 

strain values under different stress levels and observing creep compliance Dሺtሻ ൌ  diagrams ߪ/ሻݐሺߝ

versus time (Liu, et al., 2008), it can be inferred that polyethylenes show high degree of material 

nonlinearity and time dependency. Comparing the compliance curves in terms of similarity reveals that 

they cannot be separated by two stress dependent and time dependent terms. This leads to the conclusion 

that the final constitutive equation of polyethylene is a non-linear-non-separable relationship. 

The long term, step loading, complex stress and strain history, and tensile tests, were all conducted 

to provide experimental data for mathematical modelling of the behaviour of the materials. Some of 
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the creep tests were later used for parameter estimation, while others served for model verification.  

Tensile rate tests were conducted with the stress rate equal to 1.0, 0.1, 0.05, and 0.01 (MPa/s), and also 

with the constant strain rates of 0.05, 0.01 and 0.005 (/s). The step loading tests involved tests where a 

material first creeps for a period of time under a constant stress and then creeps for a period of time at 

another (increased or decreased) constant stress level. An example of a strain–time curve for stepped 

loading creep tests of HDPE-Pipe is shown in Figure 7. For increasing stress, progressive strain growth 

can be observed; for decreasing stress, strain reduction under sustained loading can be observed.  

Behjat (Behjat, 2009) and Behjat et al. (Behjat, et al., 2014) performed further experiments on six 

different HDPEs obtained from various industrial sources and designed for a variety of applications. 

These PEs had a wide range of environmental stress crack resistance (ESCR) values, determined by 

prior microstructural analysis testing of the resins performed by Cheng (Cheng, 2008). Two blow-

molding resins (PE1 and PE4) had low ESCR and unimodal narrow molecular weight distribution 

(MWD).  These were compared to pipe resins (PE 7-10) with high ESCR and broad or bimodal MWD. 

The differences in the short and long-term behaviour of the two groups of resins provided meaningful 

information on the link between molecular structure and mechanical properties of PEs. The mechanical 

testing included short and long-term creep tests and strain rate controlled tests at 7 (mm/min) strain rate 

based on ASTM D638-03 standard recommendation. 

ESCR in PE resins occurs through a slow crack growth mechanism under low applied stresses and 

long periods of time. This property is usually assessed by unreliable and time consuming testing 

methods, such as the notch constant load test (NCLT) on notched PE specimens in the presence of an 

aggressive fluid at elevated temperatures. Cheng et al. ( (Cheng, et al., 2008), (Cheng, et al., 2009) and 

(Cheng, et al., 2009)) performed tests on PE resins to determine their average molecular weights (MW), 

molecular weight distribution  (MWD), short chain branching content, crystallinity, crystalline lamella 

thickness and area, ESCR by notch contact load test (NCLT) and hardening stiffness (HS) from short-

term tensile strain hardening tests (i.e., the slope of the stress-strain curve during the strain hardening 

phase).  They found that HS can be related to ESCR of PE. Following this, Behjat et al. (Behjat, et al., 

2014) investigated the relationship of short term creep strain (8 hr at 10 MPa) and ESCR.  In Figure 8 

the hardening stiffness (HS) at a 7mm/min deformation rate is plotted against short-term creep strain at 

10 MPa for all resins.  The 8-hour strain (elastic plus creep strain) was chosen as an indicator of short 

term creep straining level. The graph indicates a relationship of increasing HS (and thus ESCR) with 
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an increase in short-term creep strain, meaning that short-term creep is inversely related to the long-

term creep behaviour in environmental stress cracking.  

Short chain branches (SCB) are well known to affect ESCR of PE (Cheng, 2008).  A general trend 

of increasing SCB content is associated with an increase in creep strain.  SCB interferes with the 

formation of crystalline lamellae, and hence, makes the PE more malleable.   

 

Figure 8: Strain after 8 hours of creep test at 10 MPa versus hardening stiffness (Behjat, et al., 

2014) 

The long-term mechanical behaviour of polyethylene (PE) is of great importance especially in cases 

where structural integrity is required. In order to predict characteristics of the mechanical behaviour of 

PE, it is necessary to fully understand the molecular structure of the employed resins. Sardashti et al. 

(Sardashti, et al., 2012) evaluated several micromolecular properties of PE. These properties influence 

an important performance indicator of PE for structural applications, namely, the environmental stress 

cracking resistance (ESCR). In (Sardashti, et al., 2012), relationships between molecular structure and 

material response characteristics, mainly between molecular weight properties and short chain 

branching content in relation to strain hardening behaviour of PE resins, were investigated based on 

results from tensile experiments.  

Charbonneau (Charbonneau, 2011) and Charbonneau et al. (Charbonneau, et al., 2014) conducted 

tests on ethylene tetrafluoroethyle (ETFE) films. ETFE is used for producing films used in the 

construction industry for tensile cushions used for roofs and wall cladding, e.g, China’s National 

Aquatics Centre, commonly known as the Water Cube, which hosted aquatic events during the 2008 
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summer Olympic Games was built using ETFE.  The test program included a series of 24-hour uniaxial 

creep, 7-day creep, and stress-strain tests; all performed in the controlled temperature of 23C. Three 

film grades with varying thicknesses were tested. The 24 hour creep tests were done at stress levels of 

2, 8, 12 and 14 MPa. All films were tested in both the longitudinal (the direction of extrusion) and 

transverse directions. A minimum of two independent replications were done on each film type, at each 

stress level and in each direction. 

All of the films were tested at all stress levels in both the longitudinal and transverse directions of 

the material, and in nearly every case, more strain was observed in the transverse direction than the 

longitudinal direction. The stress-strain curves in Figure 9 show the same trend. The extrusion process 

by which ETFE film is created could be responsible for this anisotropic behaviour because it causes the 

molecules to be stretched in the direction of extrusion such that they are aligned in the longitudinal 

direction. It could also be due to the crystal structure of the molecule, i.e., the degree of crystallinity, 

the location of the crystalline regions and the orientation of the crystals, or to thermally activated 

relaxation processes that occur during film processing. 

Same phenomenon is expected to happen in polyethylene material. The response of polyethylene 

material is not fully isotropic, due to the extrusion process or the non-uniform molding process. Also, 

due to the crystal structure of the molecule, i.e., the degree of crystallinity, the location of the crystalline 

regions and the orientation of the crystals, material response would not be same in different directions. 

one of the assumptions made through this research is that the material shows isotropic behavior, as in 

the practical applications of polyethylene, the applied stress is expected to be much smaller than the 

yield point. Therefore, it is assumed that at small stresses the material can be modelled as isotropic and 

the developed formulations and finite element procedure is applicable for isotropic analysis. 
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Figure 9: Sample stress-strain curves for ETFE film tested in tension in both directions 

(Charbonneau, 2011)	

2.2 Constitutive modelling 

Also known as anelasticity, viscoelasticity is the study of materials that exhibit both viscous and elastic 

characteristics when undergoing deformation. Viscous materials, like honey, resist shear flow and strain 

linearly with time when stress is applied. Elastic materials strain instantaneously when stretched and 

return to their original state once the stress is removed. Viscoelastic materials have elements of both of 

these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of 

bond stretching along crystallographic planes in an ordered solid, viscoelasticity is the result of the 

diffusion of atoms or molecules inside of an amorphous material.  

Another approach is based on viscoplasticity, which is a theory in continuum mechanics that 

describes the rate-dependent inelastic behaviour of solids. Rate-dependence in this context means that 

the deformation of the material depends on the rate at which loads are applied. The inelastic behaviour 

that is the subject of viscoplasticity is plastic deformation, which means that the material undergoes 

unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for 

transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic 

material models is that the latter exhibit not only permanent deformations after the application of loads 

but continue to undergo a creep flow as a function of time under the influence of the applied load. The 

constitutive equations of these materials may be either linear or nonlinear. 

The usefulness of a numerical model depends largely on three features (Zhang, et al., 1997): 1) 

physically, the constitutive model should be able to predict material response well for a wide range of 
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loading histories; 2) mathematically, the constitutive formulation should be simple and suitable for easy 

implementation in computer algorithms; and 3) the parameters in the model should be easily evaluated 

from experimental data. 

In this section, different methods are discussed and constitutive models are developed which are 

useful for implementation in numerical procedures (e.g., finite elements). 

2.2.1 Micro- and macro-scale modelling 

Two approaches are usually taken to develop constitutive models for polymeric materials. They are 

molecular and macroscopic in nature (Budianski, 1983). Micromechanical models emphasize the 

relation between the macroscopic properties of materials and their microstructure. The mechanical 

performance of polyethylene materials depends on loading and temperature conditions but also on 

phenomena occurring at the microscopic level (e.g., (G'Sell, et al., 1994), (Lin, et al., 1994), 

(Schrauwen, 2003) & (G‘Sell, et al., 2002)). In recent years, there has been a considerable interest in 

developing reliable experimental and mathematical models to study polymeric materials at different 

scales. Understanding the nonlinear behaviour of semicrystalline polyethylene by relating 

microstructure with macroscopic performance under both small ( (Nikolov, et al., 2000), (Nikolov, et 

al., 2002)) and large ( (Lin, et al., 1994), (Cowking, et al., 1968)) deformations has been the focus of 

many studies.  

Alvarado-Contreras et al., (Alvarado-Contreras, et al., 2007) and (Alvarado-Contreras, et al., 2008), 

proposed coupling a damage mechanics formulation for the crystalline phase and its amorphous 

counterpart in polyethylene. The study involved modelling degradation processes taking place in the 

microstructure due to loading effects. The mechanical properties were studied considering not only the 

original microstructure but also the particular mechanisms activated at various deformation steps. The 

microscopic deterioration was modeled considering an isotropic damage variable. The evolution of this 

variable was linked to the deformation evolution and the changes in tie-molecule density. This resulted 

in a damage–coupled model for semicrystalline polyethylene, which effectively incorporated the 

developed constitutive equations for the crystalline and amorphous phases. 

For predicting mechanical response of polymers for structural analysis, the macroscopic approach is 

usually employed. Examples include the work of Zhang and Moore (Zhang, et al., 1997) and (Zhang, 

et al., 1997) and Drozdov et. al. (Drozdov, et al., 1996), (Drozdov, 1995), (Drozdof, et al., 2006) and 

(Drozdov, 1998). The finite element programs developed for simulating viscoelastic or viscoplastic 
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analysis use formulations similar to those of the incremental theory of plasticity, in which the total 

strain rate is separable into elastic and inelastic components ( (Krishnaswamy, et al., 1990), 

(Zienkiewicz, 1977) and (Hughes, et al., 1978)). 

In viscoelastic theory, constitutive equations are usually formulated using one of the differential or 

integral forms (Lockett, 1972). In contrast to the differential formulation (simulating the behaviour by 

spring and dash-pot element configurations) which involves only the current values of stress and strain 

and their current time rates, the integral form takes into account the history of loading and it is more 

accurate and strict in nonlinear modelling. The viscoplastic formulation is usually an extension of 

viscoelastic theory which considers permanent residual strain by assuming the rate of total strain as 

summation of elastic and plastic strain rates. These forms of the constitutive equation in linear 

viscoelasticity are described in the following sections. 

2.2.2 Viscoelastic modelling 

Two explanations can be offered for viscoelastic modelling. The first is defining the material response 

as a mixture of two simple cases: elastic and viscous.  In the elastic behaviour, the material acts as a 

spring in which the length increases by a certain amount ݑ or ߝ, in proportion to the applied load ݂ or 

 When the force is removed, the spring returns to its original length. Assuming linear-elastic .ߪ

behaviour, Hooke’s law, ߪ ൌ  is used to describe the stress-strain relation for the spring. In viscous ,ߝܧ

behaviour, a piston cylinder (dash-pot) system is used to describe the time-dependent behaviour of 

viscous materials. In this case, the deformation rate is proportional to the applied force. Considering a 

linear relationship, the applied load is related to the rate of change of displacement by ߪ ൌ  ሶ. Thereߝߤ

are many possible spring and dash-pot configurations that describe viscoelastic material behaviour. 

Maxwell Fluid uses a spring and a dash-pot model in a series configuration and is suitable generally for 

viscoelastic fluid modelling. Kelvin Solid or Voigt Solid uses a spring and a dash-pot model in a parallel 

configuration and is suitable for modelling viscoelastic solid materials. 

Direct use of spring and dash-pot elements and their combination in modelling of the material 

behaviour leads to the following constitutive equation and the method is referred as differential 

formulation, 

 ܲሺܦሻߪሺݐሻ ൌ ܳሺܦሻߝሺݐሻ (9)
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where the operators ܲ and ܳ are polynomials in D such that ܦ௡ is interpreted as ݀௡/݀ݐ௡. Due to the 

complicated configurations of these two elements, one of the most useful methods to reach the final 

governing equation is Laplace Transformation. The second approach to the definition of linear 

viscoelastic behaviour is the hereditary integral form of the constitutive equations which takes into 

account the history of loading, described as: 

 
ሻݐሺߝ ൌ න ߰ሺݐ െ ߬ሻ ሶሺ߬ሻ݀߬ߪ

௧

ିஶ
(10)

 
ሻݐሺߪ ൌ න ߶ሺݐ െ ߬ሻ ሶሺ߬ሻ݀߬ߝ

௧

ିஶ

(11)

where ߶ሺݐሻ is known as the stress relaxation function for the material, and ߰ሺݐሻ is known as the 

strain compliance function. They must be determined either by experiments or from the physics of the 

material structure. It is possible to consider the material to be linear at first and use the rule of linear 

superposition to calculate the strain produced by the common action of several loads (creep phase) or 

stress caused by the application of several strain constraints (relaxation phase). This is what makes this 

method special for non-linear modelling by means of linear superposition. The procedures for both 

creep and relaxation are the same. For any additional strain (stress), time is measured by a clock that 

starts at ݐ ൌ ߬. The total strain for ݐ ൐ ߬ is (Flugge, 1967): 

 
ሻݐሺߝ ൌ න ߰ሺݐ െ ߬ሻ ሺ߬ሻߪ݀

ఛୀାஶ

ఛୀିஶ
ሺܿ݌݁݁ݎ 	ሻ݁ݏ݄ܽ݌ (12)

 
ሻݐሺߪ ൌ න ߶ሺݐ െ ߬ሻ ሺ߬ሻߝ݀

ఛୀାஶ

ఛୀିஶ
ሺ݊݋݅ݐܽݔ݈ܽ݁ݎ 	ሻ݁ݏ݄ܽ݌

(13)

This form plays a significant role in linear and non-linear modelling of viscoelastic and viscoplastic 

materials. Either Eq. (12) or Eq. (13) can be used for defining the material response. Creep functions 

are easier to obtain from experiments. In the linear modelling case, the stress in the experiment is kept 

constant and the strain is recorded with time. For a constant applied stress, Eq. (12) becomes: 

ሻݐሺߝ  ൌ ௖ߪ ߰ሺݐሻ (14)

The material modelling task is to find an approximation function ߰ሺݐሻ that best fits test results. This 

is what one may get from the differential approach to vicoelasticity mentioned before in this section. 

In linear viscoelastic theory, Christensen (Christensen, 1971) introduced the concept of fading memory, 
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which states that the material response depends more on recent history than earlier events. Based on 

this, an assumption was made for the relaxation modulus and/or creep compliance: 

 
ሻݐሺܣ ൌ ஶܣ െ෍ܣ௜݁ି௧/ఛ೔

ே

௜ୀଵ

(15)

In order to find the unknown parameters involved in A (assumed ߰ and/or ߶), the Prony series 

approximation is used. Based on what Christensen (Christensen, 1971) stated as fading memory, the 

best alternative for the Prony series is a multi-Kelvin approach model, since it considers the 

instantaneous elastic strain, ߝ௘, and consequently the instantaneous elastic modulus, ܧ଴ (or elastic 

compliance, ߰଴). The strain growth rate decreases with time and it becomes constant at a certain time. 

Therefore, the linear viscoelastic material behaviour under constant stress can be described as Eq. (14), 

in which (Liu, et al., 2008): 

 
߰ሺݐሻ ൌ ߰௘ ൅ ߰௩ሺݐሻ ൌ ߰଴ ൅෍߰௜ ൜1 െ ݌ݔ݁ ൬െ

ݐ
߬௜
൰ൠ

ே

௜ୀଵ

(16)

Or, similarly, for constant strain by substituting ߰ by ߶ in which ߰଴ ൌ ଴ or ߶଴ܧ/1 ൌ ଴ܧ ൌ 1/߰଴. 

Material constants are ܧ଴ and ܣ௜ (having same units as stress) with corresponding relaxation times ߬௜. 

One can obtain parameter values by fitting the material response (Eq. (16)) to experimental data. 

2.2.3 Viscoplastic modelling 

The plasticity in semicrystalline polymers like polyethylene starts to develop at small strain and the 

material behaves with both viscoelastic and viscoplastic characteristics. Yield (the development of 

permanent deformation) occurs gradually with a steady transition from linear to nonlinear response. 

Thus, it is difficult to identify exactly where yielding commences. For this reason, classical plastic 

potential theory (Zienkiewicz, 1977), (Bodner, et al., 1972) and (Bodner, et al., 1975) which employs 

a yield surface is unsuitable for characterizing rate effects. Instead, unified theories, (Bodner, 1984), 

(Liu, et al., 1979), (Bodner, et al., 1972) and (Bodner, et al., 1975), which do not separate creep strains 

and plastic strains and which consider inelastic deformation to be rate dependent, are a better 

alternative. 

Based on a yield criterion, the total strain rate is considered to be decomposable into elastic and 

inelastic components: 
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ሶ௜௝ߝ  ൌ ሶ௜௝ߝ
௘ ൅ ሶ௜௝ߝ

௉ (17)

Based on what Krishnaswamy et al. (Krishnaswamy, et al., 1992) have suggested, a power law 

function can describe the linear viscoplastic creep behaviour. This function is able to model the growing 

deformation (strain) at decreasing rate, which doesn’t approach an asymptotic value and the material 

remains time-dependent. In this model the compliance is expressed as a power law function (Liu, et al., 

2008)  

 
߰ሺݐሻ ൌ ߰௘ ൅ ߰௩ሺݐሻ ൌ

1
଴ܧ

൅ ஼భݐ଴ܥ (18)

where ߰௘ is the instantaneous elastic component, ߰௩ሺݐሻ the time-dependent component, and ܧ଴ 

(same unit as stress), ܥ଴ (same unit as compliance) and ܥଵ (no unit) are material constants. Similar to 

viscoelastic modelling, the formulation constants are obtained by least squares. Substituting Eq. (18) 

into Eq. (14), results in the final constitutive equation for linear viscoplasticity: 

ሻݐሺߝ  ൌ
௡ߪ
଴ܧ

൅ ஼భݐ଴ܥ௡ߪ (19)

2.3 Parameter estimation for linear modelling 

Any configuration of spring and dash-pot obeys the following differential formula: 

ߪ  ൅ ሶߪଵ݌ ൅ ሷߪଶ݌ ൅ ⋯ ൌ ߝ଴ݍ ൅ ሶߝଵݍ ൅ ሷߝଶݍ ൅ ⋯ (20)

and the material properties are represented by an expression consisting of multiplication of a constant 

and a time-dependent term. In the development of linear viscoelasticity models, it is necessary to 

perform stress-strain experiments involving time as an independent variable. Thereafter, the 

experimental results are represented by a constitutive equation obtained by means of theoretical 

approaches. The relation is fitted to data and an error function has to be minimized.  

The other way to construct constitutive equations is approximating a creep compliance or a relaxation 

modulus using an appropriate function. The function, then, is fitted to experimental data, and unknown 

parameters associated with the material response are obtained. Researchers use different methods of 

minimization along with approximation functions. One of the most common functions is called Prony’s 

series, which uses an exponential basis function. The Prony series is the most used mathematical curve 

to represent viscoelastic materials properties, which many researches have proved to be a representative 
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and computationally efficient function for such materials. However, the procedure to obtain the Prony 

series unknown constants from experimental data is not trivial, involving many numerical tasks. 

Another notable point regarding this method is the complexity of viscoelastic time functions related to 

material properties, which involves complex mathematical relations that are easy to overcome using 

Prony’s series. 

Prony series method: Since the material properties are independent of the testing procedure, Eq. 

(12)~ Eq. (14) uniquely define the material response. Creep functions are easier to obtain from 

experiments. The material modelling task is to find an approximation function ߰ሺݐሻ and/or ߮ሺݐሻ that 

best fits test results (see Eq. (15)). 

The equation representing the viscoelastic material is obtained by a mechanical model consisting of 

linear springs and dashpots (as discussed in previous sections). The alternative representation of the 

relation can be of the form of Eq. (16), which can be rewritten as: 

 
ሻݐሺܣ ൌ ଴ܣ ൅෍ ௜ܣ ሺ1 െ ௜ሻሻ߬/ݐሺെ݌ݔ݁

ே

௜ୀଵ
(21)

where ܣ଴ ൌ ஶܣ ൅ ∑ 	௜ܣ
ே
௜ୀଵ . The terms ܣஶ and ܣ଴ are called independent terms. The exponential 

terms ߬௜ are known as time constants because they appear in association with the time variable ݐ. The 

set of terms ܣ௜ are the dependent terms of the Prony series and the number of terms ܰ is determined 

according to the experimental data. Usually, one must use around 8 to 15 terms in the Prony series in 

order to have a satisfactory mathematical model based on experimental data. 

The objective is to determine the constants ܣ௜ and ߬௜ from measured values of Aሺtሻ at fixed moments 

in time. The problem is particularly difficult in that the ߬௜ appear non-linearly in the expression. Further 

the appropriate number ܰ is also unknown. Collocation or least squares approaches are used for 

obtaining the unknown constants of Prony’s series approximation function. 

Prony-collocation method: let’s say ݂ሺݐሻ ൌ  ሻ areݐሻ. We suppose that experimental values of ݂ሺݐሺܣ

specified on a set of ܰ equally spaced points. Therefore from experimental results we have the values 

for ݂ሺ0ሻ, ݂ሺ∆ݐሻ, ݂ሺ2∆ݐሻ, … . For simplicity we set ௞݂ ൌ ݂ሺ݇∆ݐሻ. 

In Prony’s method we will first find ߙ௜ ൌ ௜ሻ (from which ߬௜߬/ݐ∆ሺെ	݌ݔ݁ ൌ െ∆ݐ/݈݊	ሺߙ௜ሻ) and then we 

will find ܣ௜, which are positive values. The procedure is to first note that 
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௞݂ ൌ ݂ሺ݇∆ݐሻ ൌ෍ܣ௜ߙ௜

௞ ሺ݇ ൌ 0,1,2, … ሻ (22)

which is particular for Eq. (15), and that the ߙ௝ can be considered the roots of the polynomial 

 
ሻߙሺ݌ ൌෑ ሺߙ െ ௜ሻߙ

ே

௜ୀଵ
ൌ ேߙ ൅ ܿேିଵߙேିଵ ൅ ⋯൅ ܿ଴ (23)

With these relations one can observe that 

 ଴݂ܿ଴ ൅ ଵ݂ܿଵ ൅ ⋯൅ ே݂ିଵܿேିଵ ൅ ே݂ ൌ 0

ଵ݂ܿ଴ ൅ ଶ݂ܿଵ ൅ ⋯൅ ே݂ܿேିଵ ൅ ே݂ାଵ ൌ 0	

…	

௞݂ܿ଴ ൅ ௞݂ାଵܿଵ ൅ ⋯൅ ௞݂ାேିଵܿேିଵ ൅ ௞݂ାே ൌ 0	

(24)

The first of these follows easily by expansion and noting that each α୨ is a root of  ݌ሺߙሻ ൌ 0; the 

second follows by introducing ̅ܣ௜ ൌ  ௜ , expanding, and using the root property again; the thirdߙ௜ܣ

follows by a similar procedure. Rewriting in matrix vector form, we have: 

 

൦൮

଴݂ ଵ݂

ଵ݂ ଶ݂
⋯ ே݂ିଵ

ே݂
⋮ ⋱ ⋮

ே݂ିଵ ே݂ ⋯ ଶ݂ேିଶ

൲൪൮

ܿ଴
ܿଵ
⋮

ܿேିଵ

൲ ൌ െ൮

ே݂

ே݂ାଵ
⋮

ଶ݂ேିଵ

൲	 (25)

With these equations we have a set of linear equations that we can solve for ܿ௜ . One can use only the 

number of equations needed to uniquely determine ܿ௜ (as shown) or one can use more equations and 

over-determine the system – thus leading to a least squares solution. Once the ܿ௜ are known, the roots 

ሻߙሺ݌ ௝ ofߙ ൌ 0 can be determined. Once these are known one can solve the system  

 

൦൮

1 1
ଵߙ
ଵ ଶߙ

ଵ ⋯
1
ேߙ
ଵ

⋮ ⋱ ⋮
ଵߙ
ேିଵ ଶߙ

ேିଵ ⋯ ேߙ
ேିଵ

൲൪൮

ଵܣ
ଶܣ
⋮
ேܣ

൲ ൌ െ൮

଴݂

ଵ݂
⋮
ே݂ିଵ

൲ (26)

for the ܣ௜. These relations are the first ܰ equations from Eq. (24). Note that in this procedure one 

needs to select ܰ ahead of time.  

Prony-least squares method: A linear least squares fitting is used by assuming values for the 

relaxation times ௝߬ in Eqs. (15) & (21). We define the squared error as 
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௝൯ݐ൫ܨ ൌ෍൫݂ሺݐ௜ሻ െ ݂ሺ̅ݐ௜ሻ൯

ଶ
௣

௜ୀଵ

(27)

where ݌ is the number of data (measurements), ݂ሺ̅ݐ௜ሻ is a data measurement at time ݐ௜ , and ݂ሺݐ௜ሻ is 

the corresponding theoretical value (Eqs. (15) & (21)). By setting ݀ݐ݀/ܨ௝ ൌ 0 for ݆ ൌ 1…ܰ (ܰ is the 

number of terms in Prony series), to minimize	ܨ൫ݐ௝൯, a set of linear simultaneous equations with respect 

to the material parameters ݐ௝  is obtained. 

 ሾܶሿேൈேሼܣሽேൈଵ ൌ ሼܤሽேൈଵ (28)

where for Eq. (15) 

 

௜ܶ௝ ൌ ෍൫݁ି௧ೖ/ఛ೔൯൫݁ି௧ೖ/ఛೕ൯

௣

௞ୀଵ

 

௜ܤ ൌ ෍൫݂ሺ̅ݐ௞ሻ െ ஶ൯൫݁ܣ
ି௧ೖ/ఛೕ൯

௣

௞ୀଵ

 

(29)

and for Eq. (21) 

 

௜ܶ௝ ൌ ෍൫1 െ ݁ି௧ೖ/ఛ೔൯൫1 െ ݁ି௧ೖ/ఛೕ൯

௣

௞ୀଵ

 

௜ܤ ൌ ෍൫݂ሺ̅ݐ௞ሻ െ ଴൯൫1ܣ െ ݁ି௧ೖ/ఛೕ൯

௣

௞ୀଵ

 

(30)

For this approach, see (Liu, et al., 2008) and (Cheng, et al., 2011). 

2.4 Nonlinear modelling 

This section deals with nonlinear constitutive relations for polymers. Polyethylene is time dependent 

with a high degree of nonlinearity. 

In the linear approach, the compliance is a function of time which means that for a constant applied 

stress a resultant strain is obtained and the constitutive equation has a separable nature of Eq. (7). In 

the other hand, the nonlinear constitutive equation obeys the non-separable format of Eq. (8). 



 

 29 

There are generally two methods of nonlinearization of model parameters. The classic method of 

nonlinearization and the optimized method of nonlinearization. In the former one, which has been used 

by Liu (Liu, 2007), model parameters (usually compliances and relaxation times) are obtained in several 

stress levels. Then model parameters for unexamined stress levels, let’s say stress ߪ௔ in which ߪ௡ ൏

௔ߪ ൏  .௠ߪ ௡, andߪ ௠, are obtained by interpolating model parameters for two other stress levelsߪ

In optimized method of nonlinearization, model parameters (usually compliances and relaxation 

times) are approximated by functions of stress. Obviously this method is much more accurate and more 

reliable than the classic method (presented by Liu), and is more complex and time consuming. In the 

following sections these methods are presented in detail. 

2.4.1 Classic method of nonlinearization by Liu (Liu, 2007) 

Liu et al. (Liu, et al., 2008) obtained a separate set of material parameters for each stress level. The sets 

of constants for all creep tests created an array of material constants. The material parameters for 

stresses other than the tested stresses were obtained by linear interpolation. Thus, piece-wise linear 

functions were assumed for the material functions. The expressions for the linear interpolation of 

material parameters for non-linear viscoelatic modelling were the following: 

ሻߪ଴ሺܧ  ൌ ௠ሻߪ଴ሺܧ ൅
ߪ െ ௠ߪ
௡ߪ െ ௠ߪ

ሾܧ଴ሺߪ௡ሻ െ 	௠ሻሿߪ଴ሺܧ

߰௜ሺߪሻ ൌ ߰௜ሺߪ௠ሻ ൅
ߪ െ ௠ߪ
௡ߪ െ ௠ߪ

ሾ߰௜ሺߪ௡ሻ െ ߰௜ሺߪ௠ሻሿ	

(31)

where ߪ௠ and ߪ௡ are stresses used for model development by considering ߪ௠ ൏ ߪ ൏  ,௡. Similarlyߪ

for non-linear viscoplastic modelling: 

ሻߪ଴ሺܥ  ൌ ௠ሻߪ଴ሺܥ ൅
ߪ െ ௠ߪ
௡ߪ െ ௠ߪ

ሾܥ଴ሺߪ௡ሻ െ 	௠ሻሿߪ଴ሺܥ

ሻߪଵሺܥ ൌ ௠ሻߪଵሺܥ ൅
ߪ െ ௠ߪ
௡ߪ െ ௠ߪ

ሾܥଵሺߪ௡ሻ െ 	௠ሻሿߪଵሺܥ

(32)

and the interpolation of the instantaneous elastic parameter, ܧ଴ሺߪሻ, is the same as in the viscoelastic 

case, Eq. (31). The presented two-step curve-fitting approach works well at a given stress for a material 

for which the model is developed. However, since each polyethylene behaves differently under a creep 

test, the model compliance-stress relationship should theoretically be redefined for each specific 
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material. This means that for each specific material new compliance functions of stress representing 

material parameters should be created.  

2.4.2 Optimized method of nonlinearization (present research) 

In our recent published work (Sepiani, et al., 2017), continuous functions for the ‘nonlinearizations’ 

of model parameters for the case of viscoelasticity were proposed.  The process of developing a non-

linear model starts with a linear model for the material under constant stress (separable form) and then 

it is extended to the nonlinear one by considering effects of stress on the stress dependent part (non-

separable form). Thus, the following stress-strain relationship is defined for predicting the response of 

the material under constant applied stress: 

ሻݐሺߝ  ൌ ߪ ܺሺݐሻ (33)

In this formulation, ܺሺݐሻ	describes the creep compliance of the material and is based on the spring 

and dash-pot method of modelling described previously. According to the concept of fading memory, 

the material response depends more on recent history than on earlier events. Accordingly, this theory 

considers the following formulation for creep compliance: 

 
ܺሺݐሻ ൌ ܺ଴ ൅෍ ௜ܺ൫1 െ ݁ି௧/ఛ೔൯

ே

௜ୀଵ

(34)

where ܺ଴ is the elastic time-independent compliance at time ݐ଴ ൌ 0, and ௜ܺ and ߬௜ are creep 

compliance and relaxation time, respectively, for the ݅௧௛ Kelvin element. ܰ indicates the number of 

Kelvin elements in the model. 

Most finite element implementations of this form assume that the creep compliance and relaxation 

modulus have the exponential form of Eq. (34), which is a form of a Prony series approximation, with 

2 ൈ ܰ unknown material properties ( ௜ܺ and ߬௜). The term ܺ଴ ൌ  .଴ is called an independent termܧ/1

One can obtain parameter values by means of least squares estimation by fitting the Prony series to 

experimental data by fixing a set of ߬௜ or by pre-setting X୧ and τ୧ as power law functions of t. 

௜ܺ and ߬௜ can be expressed as power-law functions of stress. To reduce the number of material 

functions, which is equal to 2 ൈ ܰ, all values of ௜ܺ and ߬௜ are obtained using four parameters ଵܺ, ߬ଵ, ݉ 

and ߙ following the formulation presented by Zhang and Moore  (Zhang, et al., 1997). 
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 ௜ܺ ൌ ݉ଵି௜ ൈ ଵܺ 		,				߬௜ ൌ ௜ିଵߙ ൈ ߬ଵ (35)

݉ and ߙ  have no units of measurement. The determination of the material functions proceeds in two 

steps. In the first step, and for a particular creep stress, Eqs. (33)~(35) are used to fit the corresponding 

experimental creep curve and find the specific unknown parameters by means of least squares (linear 

modelling). Then, in the second step, curve fitting is used to produce stress-dependent parameters 

ଵܺሺߪ௡ሻ and ߬ଵሺߪ௡ሻ based on the values from linear modelling. This is referred to as ‘nonlinearizing the 

constants’ by assuming that they are functions of stress and obey the non-separable form of the 

kinematic relation (Krishnaswamy, et al., 1992). 

For simplicity, constants ݉ and ߙ are considered to be stress-independent (Zhang, et al., 1997). In 

recent unpublished work of ours, the curve fitting of the two parameters ଵܺ and ߬ଵ showed that the 

parameter distributions versus applied stress ߪ௡	obeyed the following: 

 ଵܺ
ିଵ ൌ ܾ଴ ൅ ܾଵ ሺܾଶ݌ݔ݁ െ ܾଷߪ௡ െ ܾସ/ߪ௡ሻ	

߬ଵ ൌ ܿ଴ ሺെܿଵ݌ݔ݁ ൅ ܿଶߪ௡ ൅ ܿଷߪ௡ଶ െ ܿସߪ௡ଷሻ	
(36)

where ܺ଴ is a constant that is obtained from experimental results for each test and it is assumed to 

vary with respect to stress. The constants ܾ௜, ܿ௜, ݉ and ߙ are obtained via least squares for each 

examined material. It can be seen that ܺ ଴ is approximately constant for all stress levels, and the variation 

versus stress is trivial and therefore negligible. These material properties are used to plot the response 

of HDPE resin versus experiments in Figure 10. ܾ଴ and ܾଵ have stress unit, ܾଶ has no unit, ܾଷ has 

inverse unit of stress and ܾସ has unit of stress. ܿ଴ has unit of time, ܿଵ has no unit, ܿଶ has unit of inverse 

of stress, ܿଷ has unit of inverse of squared stress, and ܿସ has unit of inverse of cubic stress. 

The nonlinearization for viscoelasticity starts with the assumption that the plastic flow starts to 

develop when there is a small strain and the material behaves in both viscoelastic and viscoplastic 

fashion. Since yield occurs gradually with a steady transition from a linear to a nonlinear response, 

unified theories, which do not separate creep strains and plastic strains, are a better alternative than 

those that consider creep and plasticity as separate phenomena (Zhang, et al., 1997). Here is the non-

separable viscoplastic model that has been discussed in this chapter: 
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ߝ  ൌ ௘ߝ ൅ ௩ߝ ൌ
ߪ
଴ܧ

൅ ߪ ଴ܥ ൬
ݐ
ܶ
൰
஼భ

(37)

 

Figure 10: Experimental (continuous line) (Liu, 2007), and non-linear viscoelastic model 

(dashed line) results for 24-hour creep tests for an HDPE resin 

Here, ܥ଴ has unit of inverse of stress, ܶ has time unit and ܥଵ has no unit. Similar to viscoelastic 

modelling, the determination of the material constants proceeds in two steps. In the first step, for a 

particular constant creep stress, Eq. (37) is used to fit the corresponding experimental creep curve and 

determine the unknown parameters (linear modelling). Then, in the second step, ‘nonlinearizing’ curve 

fitting is used to find the distribution of parameters, ܥ଴ሺߪሻ and ܥଵሺߪሻ with respect to stress.  ܧ଴ is also 

obtained from the experimental data at each stress level. 
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Figure 11: Experimental (continuous line) (Liu, 2007), and non-linear viscoplastic model 

(dashed line) results for 24-hour creep tests for an HDPE resin 

The first step leads to the material constants, and corresponding plots of model and experiments are 

shown in Figure 11 for HDPE resin. Based on the variation of the constants versus stress, the following 

equations can be fitted: 

 
଴ܥ ൌ ሺܾଵ ൅ ܾଶߪො ൅ ܾଷߪොଶሻ ቀ

௡ߪ
തߪ
ቁ
൫௕రା௕ఱఙෝା௕లఙෝమ൯

 

ଵܥ ൌ ݉ଵ ൅ ݉ଶ ൭1 ൅
1
2
݊ܽݐܿݎܽ	 ൬

ොߪ െ ௔ݏ
തߪ

൰൱ 

ܶ ൌ ଵܶ ቀ
௡ߪ
തߪ
ቁ
ௗబ

(38)

തߪ ത is introduced for dimensional consistency (in this research we haveߪ ൌ  Here, ܾଵ has unit .(ܽܲܯ	1

of compliance (inverse of stress), ܾଶ has unit of inverse of squared stress and ܾଷ has unit of inverse of 

cubic stress. ܾସ has no unit, ܾହ has unit of inverse of stress and ܾ଺ has unit of inverse of squared stress. 

݉ଵ, ݉ଶ and ݀଴ have no units. Unit of ݏ௔ is same as stress and ଵܶ is time. 

2.5 Extending the material parameters to longer times frames 

In order to realistically model the service life-time for polymeric structures, long-term prediction 

methods are needed within the developed constitutive law. The constitutive laws are normally 

formulated based on available short-term tests. One of the most popular methods for predicting long 
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term properties of polymers is ‘time temperature superposition’, which is based on short term behaviour 

and uses the information from short duration tests. The method uses the similarity between the variation 

of relaxation modulus (creep compliance) with time and temperature. The variation of time and 

temperature of the moduli (compliances) of a polymer is often said to be related or even equivalent 

(Barbero, 2011) & (Luo, et al., 2012). There are also several test methods for evaluating long-term 

properties of materials, including creep test ASTM-D2990, stress relaxation test D2991, hydrostatic 

test D1598, D2837, and DMA (Dynamic Mechanical Analysis). 

A nonlinear approach has been proposed by recent work of ours and an overview is given in the 

following section. 

2.5.1 Using short term testing for predictions at longer time frames 

The important point of constructing a mathematical model is predicting the response of creep behaviour 

over extended operating time. Using the material properties and modelling constants, as described in 

section 4, resulted in good agreement during the test time interval which was  24 hours (creep test time, 

Figure 10 and Figure 11). To examine the validity of the model for extended times, the method proposed 

herein is to observe the trend of material constants with respect to test time. First, the curve fitting is 

done for all materials in different test times, namely: 10, 14, 18, 20, 22 and 24 hours. This allows one 

to observe how the modelling constants are dependent on test time (ߣ).  It is proposed that the material 

parameter change over test time can be represented by the following equations for the viscoelastic case: 

 ܾ௜ሺߣሻ ൌ ܾ′௜ ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 0, 1, 2 

ܾ௜ሺߣሻ ൌ ܾᇱ௜/ሺߣ/ߣ′ሻௗ೔							݂ݎ݋						݅ ൌ 3, 4 

ܿ଴ሺߣሻ ൌ ܿ′଴ ሺߣ/ߣ′ሻௗఱ

(39)

′ߣ is introduced for dimensional consistency (in this research we have ′ߣ stands for test time and ߣ ൌ

 ,଴,  ܾ′௜  and ݀௜ are constants independent of the test time used to develop the model. Here′ܿ	.(ݎݑ݋݄	1

ܾ′௜ and ܿ′଴ have same units as ܾ௜ and ܿ଴, respectively and ݀௜ have no units. 

Similarly, when the same method is applied to viscoplastic modelling, the following equations for 

the dependency of constants on ߣ are obtained: 

 ܾ௜ሺߣሻ ൌ ܾ′௜ ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 0~6 (40)
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௝݉ሺߣሻ ൌ ݉′௝ ሺߣ/ߣ′ሻ
௡ೕ ݎ݋݂ ݅ ൌ 1, 2

ሻߣሺܽݏ ൌ 	ሻ௔′ߣ/ߣሺ	௔′ݏ

ଵܶሺߣሻ ൌ ܶ′ଵ ሺߣ/ߣ′ሻ మ் 

Here, ܾ′௜, ݉′௝, ݏ′௔ and ܶ′ଵ have same units as ܾ௜ , ௝݉, ݏ௔ and ଵܶ, respectively and ݏ, ݀௜ , ௝݊, and ଶܶ 

have no units. 

2.5.2 Viscoelastic (NVE) and viscoplastic (NVP) long term responses 

The parameter identification procedure is based on a minimization of the total error between 

experimental data and model predictions. The models have been developed using the data from 24 hour 

creep testing (using 10, 12, 14… hour time frames).  Then the model was verified using experimental 

data for long-term creep of polyethylene (Liu, et al., 2008). The model showed the ability to predict 

well the independent data from long-term testing; it sufficiently describes the variation of strain in time 

for the loading history. The long-term scheme was validated by tests on PIPE material and other HDPE 

resins. Creep tests were conducted under three different stress levels of 4.42 MPa, 6.08 MPa and 8.15 

MPa over 40 hours (Liu, et al., 2008). In addition, creep strain measurements on a pipe material were 

conducted under 6.89 MPa in a seven-day test (Liu, et al., 2008).  

Both NVE and NVP models have been applied to the experimental data. According to the definition, 

the parameter ߣ is set to be 40 and 168 for case I and case II, respectively. The theoretical results are 

depicted in Figure 12~Figure 15 and compared with experimental ones.  

 

 



 

 36 

 

Figure 12: Experimental (continuous line) (Liu, 2007), and present NVE model prediction 

(dashed line) in 40 hours test time (pipe material) 

 

 

Figure 13: Experimental (continuous line) (Liu, 2007), and present NVE model prediction 

(dashed line) in 7 days test time (pipe material) 
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Figure 14: Experimental (continuous line) (Liu, 2007), and present NVP model prediction 

(dashed line) in 40 hours test time (pipe material) 

 

Figure 15: Experimental (continuous line) (Liu, 2007), and present NVP model prediction 

(dashed line) in 7 days test time (pipe material) 

Looking at Figure 12 to Figure 15, it can visually be inferred that the NVE model results in smaller 

fitting error for the long-term strain response prediction compared to the NVP model. The NVE model 

seems more capable in modelling polymer behaviour in extended time. The most important reason for 

this is that the NVP model has only two parameters to adjust during fitting, while NVE has more, 

resulting in more accurate curve fitting. The other difference is that based on the nature of the governing 
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equation for each model, viscoplastic materials tend to extend under continuing applied load, while 

viscoelastic strain reaches an upper limit after a while. 

2.6 Modelling the response under varying stress 

The modified superposition principle (Findley 1967) employs the assumption that the strain response 

after any abrupt change of stress is the sum of the strain due to the first loading and the strain response 

due to each change of stress. This approach makes use of the equations from the multiple functions for 

constant stress (linear models) to describe the nonlinear yet synergistic characteristics of creep 

behaviour. In this method, the modification of the superposition principle consists of relaxing the 

requirement of linearity in stress and treating nonlinearity as discussed in this section. 

2.6.1 Modified superposition principle (MSP) 

The stress-strain equation for viscoelastic and viscoplastic materials consists of time-independent and 

time-dependent parts: 

ߝ  ൌ ௘ߝ ൅ ௩ߝ ൌ ݂௘ሺߪሻ ൅ ݂௩ሺߪ, ሻݐ (41)

where ݂௘ሺߪሻ denotes the elastic strain ߝ௘, and ݂௩ሺߪ,  ௩, causedߝ ሻ denotes the time dependent strainݐ

by applied constant stress. 

The superposition method can be described as follows. When the state of stress is abruptly changed 

from ߪଵ to ߪଶ at time ݐଵ, the creep behaviour can be considered as if, at this instant, stresses ߪଵ are 

removed and at the same time stresses ߪଶ are applied to the specimen, both being considered as 

independent actions. The recovery strain ߝ′ resulting from removal of ߪଵ after loading time ݐଵ is given 

by: 

ᇱߝ  ൌ ݂௘ሺߪଵሻ െ ݂௘ሺߪଵሻ ൅ ݂௩ሺߪଵ, ሻݐ െ ݂௩൫ߪଵ, ሺݐ െ ଵሻ൯ݐ

ᇱߝ ൌ ݂௩ሺߪଵ, ሻݐ െ ݂௩൫ߪଵ, ሺݐ െ ଵሻ൯ݐ
(42)

The creep behaviour due to ߪଶ applied at ݐଵ, denoted by ߝᇱᇱ, is 

ᇱᇱߝ  ൌ ݂௘ሺߪଶሻ ൅ ݂௩൫ߪଶ, ሺݐ െ ଵሻ൯ݐ (43)

The total strain is the sum of ߝᇱ and ߝᇱᇱ and equal to 

ߝ  ൌ ݂௩ሺߪଵ, ሻݐ െ ݂௩൫ߪଵ, ሺݐ െ ଵሻ൯ݐ ൅ ݂௘ሺߪଶሻ ൅ ݂௩൫ߪଶ, ሺݐ െ ଵሻ൯ (44)ݐ
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In this theory, the time-independent part of the strain response depends only on the final state of 

stress applied to the specimen. The time-independent part of the strain on loading and unloading follows 

the same path. Thus, when the stress state changes from ߪଵ to ߪ௡, the total strain response after the ݊௧௛ 

stress change will be as follows: 

 
ߝ ൌ ݂௘ሺߪ௡ሻ ൅෍ ቂ݂௩ ቀߪ௣, ൫ݐ െ ௣ିଵ൯ቁݐ െ ݂௩ ቀߪ௣ିଵ, ൫ݐ െ ௣ିଵ൯ቁቃݐ

௡

௣ୀଵ

 (45)

For example, consider a 2ܰ ൅ 1-parameter (ܰ Kelvin units) spring and dash-pot model. The stress-

strain relationship under constant stress for the ݇௧௛ step is as follows: 

ሻݐሺߝ ൌ ݂௘ሺߪ௜ሻ ൅ ݂௩ሺߪ௜,  ሻݐ

ሻݐ௞ሺߝ	⇒ ൌ ܺ଴,௞ሺߪ, ௞ߪሻߣ

൅෍൝෍ ௜ܺ,௝ሺߪ, ሻߣ ൤1 െ ݌ݔ݁ ൬െ
௞ݐ െ ௝ିଵݐ
߬௜ሺߪ, ሻߣ

൰൨ ௝ߪ

ே

௜ୀଵ

௞

௝ୀଵ

െ෍X௜,௝ିଵሺߪ, ሻߣ ൤1 െ ݌ݔ݁ ൬െ
௞ݐ െ ௝ିଵݐ
߬௜ሺߪ, ሻߣ

൰൨ ௝ିଵߪ

ே

௜ୀଵ

ൡ 

(46)

If the stress state changes from ߪଵ to ߪଶ, the total strain response for each step is: 

0 ൑ ݐ ൏ ሻݐଵሺߝ ଵݐ ൌ ܺ଴,ଵߪଵ ൅෍ ௜ܺ,ଵ ൤1 െ ݌ݔ݁ ൬െ
ଵݐ െ ଴ݐ
߬௜

൰൨ ଵߪ

ே

௜ୀଵ

 (47)

ଵݐ ൑ ݐ ൏ ∞ 

ሻݐଶሺߝ ൌ ܺ଴,ଶߪଶ ൅ ൝෍ ௜ܺ,ଵ ൤1 െ ݌ݔ݁ ൬െ
ଶݐ െ ଴ݐ
߬௜

൰൨ ଵߪ

ே

௜ୀଵ

ൡ

൅ ൝෍ ௜ܺ,ଶ ൤1 െ ݌ݔ݁ ൬െ
ଶݐ െ ଵݐ
߬௜

൰൨ ଶߪ

ே

௜ୀଵ

െ෍ ௜ܺ,ଵ ൤1 െ ݌ݔ݁ ൬െ
ଶݐ െ ଵݐ
߬௜

൰൨ ଵߪ

ே

௜ୀଵ

ൡ 

(48)

The theoretical and experimental results for a high density PE resin (HDPE) subjected to various 

load histories are compared and discussed next. The material was tested subject to multi-stress levels 

by (Liu, 2007). 
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Figure 16 shows three steps change in applied stress. The resin was tested under 2.9 MPa, 5.8 MPa 

and 8.7 MPa stresses which lasted 2 hours each. Very good correlation can be seen between two data 

sets. In Figure 17, the material was tested under five different time step loadings starting from smaller 

stress values. 1.46 MPa, 2.92 MPa, 4.38 MPa, 5.84 MPa and 7.30 MPa stresses were applied.  

MSP can also be applied on viscoplastic formulations. The corresponding relation is: 

 
௞ߝ ൌ ܺ଴,ఙೖߪ௞ ൅෍ቄቂܥ଴,ఙೕ ൈ ൫ݐ௞ െ ௝ିଵ൯ݐ

஼భ,഑ೕ ቃ ௝ߪ

௞

௝ୀଵ

െ ቂܥ଴,ఙೕషభ ൈ ൫ݐ௞ െ ௝ିଵ൯ݐ
஼భ,഑ೕషభቃ  ௝ିଵቅߪ

(49)

 

Figure 16: Strain vs time for HDPE resin. Stress level 1 = 2.90 MPa, stress level 2 = 5.80 MPa, 

stress level 3 = 8.70 MPa, (blue continuous line: experimental data (Liu, 2007), red dashed line: 

present model) 
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Figure 17: Strain vs time for HDPE pipe. Stress level 1 = 1.50 MPa, stress level 2 = 2.90 MPa, 

stress level 3 = 4.38 MPa, stress level 4 = 5.84 MPa, stress level 5 = 7.30 MPa, (blue continuous 

line: experimental data (Liu, 2007), red dashed line: present model) 

 

For the first time-step the stress-strain relationship under constant stress is: 

ଵߝ  ൌ ൛ܺ଴,ఙభ ൅ ଴,ఙభܥ ൈ ଵ (50)ߪ஼భ,഑భൟݐ

If the stress state changes from ߪଵ to ߪଶ, the total strain response after the second stress change is:  

0 ൑ ݐ ൑ ଵߝ ଵݐ ൌ ൛ܺ଴,ఙభ ൅ ଴,ఙభܥ ൈ  ଵߪ஼భ,഑భൟݐ

(51)
ଵݐ ൑ ݐ ൑ ∞ 

ଶߝ ൌ ܺ଴,ఙభߪଵ ൅ ൛ܥ଴,ఙభ ൈ ሺݐଶ െ ଴ሻݐ
஼భ,഑భൟߪଵ

൅ ൛ൣܥ଴,ఙమ ൈ ሺݐଶ െ ଵሻݐ
஼భ,഑మ൧ߪଶ

െ ଴,ఙభܥൣ ൈ ሺݐଶ െ ଵሻݐ
஼భ,഑మ൧ߪଵൟ 

2.7 Modelling Methodology 

Modelling of viscous materials requires material properties. Finding material properties have basis in 

experimental data. These tests can be one dimensional tension/compression creep or relaxation or 

biaxial creep and/or relaxation. Many researchers (e. g. Findley (Findley, et al., 1976) and Aklonis 
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(Aklonis, et al., 1983)) have introduced methods on how to use these tests for extracting material 

properties. In this research, one dimensional creep tests on polyethylene materials are used for 

developing the methods and finding material properties. 

Material Properties: Different methods can be used for finding modelling material properties. Two 

classes of models exist. The first consists of the so called “mechanical analogues” which, is a 

differential method of formulation. These are combinations of spring and dash-pot elements that are 

assembled to reproduce the viscoelastic or viscoplastic response of the real system. The right 

combinations of the elements must be chosen to match the real behaviour of a material. For example, 

the Multi Kelvin solid configuration best describes the viscoelastic behaviour of the materials, while 

the Multi Maxwell Fluid is more suitable for materials with high degree of plasticity or those that show 

fluidic behaviour (Flugge, 1967). The second method is called “hereditary integral”, method which is 

an integral formulation. This method is based on the approximation of the material properties. In this 

research, the first class of formulation, based on multi kelvin solid configuration, is used for finding the 

material properties for the viscoelastic behaviour of polyethylene, while the second class of 

formulation, using power law approximation function is used for viscoplastic behaviour. Both methods, 

result in a series of model constants, which are Prony series and power law constants, respectively. 

These constants (fitting parameters) are found by fitting the models to the experimental data. For this 

either a linear curve fitting method or nonlinear optimization technique can be used. For more details 

on the material properties refer to the next chapter. The resultant properties will be used for the finite 

element investigation. 

Finite Element Formulation: Two methods can be used for developing a finite element procedure. 

The first is Multiple integral representation for three-dimensional behaviour, which is an extension of 

linear superposition to the nonlinear range, and the second one is a Schapery's single integral 

constitutive law, which is a simplified linear representation of multiple integral formulation. 

Multiple integral representation: Multiple integral approach is very useful in modelling materials 

which are nonlinearly viscoelastic/viscoplastic. Many constitutive equations have been developed for 

nonlinear viscoelasticity from multiple integral formulation (Findley, et al., 1976). This method is an 

extension of linear superposition in the nonlinear range. The method is based on the small strain 

assumption, but it is extended to large deformation for materials in which the stress-strain relation is 

nonlinear. For small strains one can write ߝ௜௝ ൌ  ሻ is time dependent relaxationݐሻ. where ߯ሺݐ߯ሺ	௜௝ߪ
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compliance. Discretizing for small changes of strain due to a constant stress in a small time interval 

yields the following formula which represents the resultant strain shown in Figure 18. 

ሻݐ௜ሺߝ  ൌ ሺ∆ߪ௜ሻ ߯ሺݐሻ (52)

 

Figure 18: Strain resultant due to the assumed constant stress increments; representation of 

superposition principle. 

Here ߝ଴ is resulting constant strain due to small change in constant stress, ∆ߪ௜. Eq. (52) is 

representation of Hooke’s law. If a nonlinear material is stretched beyond its elastic limit, a plastic 

deformation contributes in the resultant response, meaning that the material doesn’t return to its original 

shape when the applied force is removed. It will permanently deform and will no longer obey Hooke’s 

law. Not all materials, especially polymers, obey Hooke’s law when they are deformed.  With reference 

to the Boltzmann’s superposition principle which states that the sum of the strain outputs resulting from 

each component of stress input is the same as the strain output resulting from the combined stress input, 

in discretized model, the time-dependent strain resulting from a nonlinear constant stress may be 

represented by a polynomial as (Findley, et al., 1976) 

ሻݐ௜ሺߝ  ൌ ሺ∆ߪ௜ሻ߯ଵሺݐሻ ൅ ሺ∆ߪ௜ሻଶ ߯ଶሺݐሻ ൅ ሺ∆ߪ௜ሻଷ ߯ଷሺݐሻ ൅ ⋯ (53)

Eq. (53) is a multi-order discrete constitutive equation and ߯௝  are time dependent material functions. 

By increasing the order of the equation in RHS, the accuracy increases. The integral form of total 
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resultant strain at current time, ߝሺݐሻ, for the case of varying stress, ߪ, for time ݐ would be (Findley, et 

al., 1976): 

ሻݐሺߝ ൌ න ߯ଵሺݐ െ ሶߪଵሻߦ ሺߦଵሻ݀ߦଵ
௧

଴
൅ න න ߯ଶሺݐ െ ݐଵሻ߯ଶሺߦ െ ሶߪଶሻߦ ሺߦଵሻߪሶሺߦଶሻ݀ߦଵ݀ߦଶ

௧

଴

௧

଴

൅ න න න ߯ଷሺݐ െ ݐଵሻ߯ଷሺߦ െ ݐଶሻ߯ଷሺߦ െ ሶߪଵሻߦሶሺߪଷሻߦ ሺߦଶሻߪሶ ሺߦଷሻ݀ߦଵ݀ߦଶ݀ߦଷ
௧

଴

௧

଴

௧

଴
൅ ⋯ 

(54)

which is so-called multi integral representation of the constitutive equation. Here ߦଵ, ߦଶ, ߦଷ, … are 

integration variables, ߪሶሺߦሻ݀ߦ introduced instead of ݀ߪሺξሻ and ߯௝ are kernel functions. This approach 

is used in chapter 4 for developing the finite element procedure. 

Schapery's single integral constitutive law:  Due to the complexity of the multiple integral 

formulation, the single integral representations have been the most widely applied theories. Especially 

the thermodynamic based theory of non-linear viscoelasticity developed by Schapery (Schapery, 1969) 

& (Schapery, 1997) has been found a convenient one, see for example (Smart, et al., 1972). Schapery’s 

model utilizes the same structure as the linear integral model, in which just one term in RHS of the Eq. 

(53) is considered. 

ሻݐ௜ሺߝ  ൌ ሺ∆ߪ௜ሻ߯ଵሺݐሻ (55)

so, the Eq. (54) is simplified to 

 
ሻݐሺߝ ൌ න ߯ଵሺݐ െ ଵߦଵሻ݀ߦሶሺߪଵሻߦ

௧

଴
 (56)

Schapery presented a nonlinear constitutive equation based on the linear viscoelastic representation. 

Schapery’s model utilizes the same structure as the linear integral model. In addition, several nonlinear 

models, such as the Leaderman model and the free volume approach by Knauss and Emri (Knauss, et 

al., 1981), can be interpreted as a special case of the Schapery model. Schapery’s nonlinear viscoelastic 

model is given by 

 
ሻݐሺߝ ൌ ݃଴ ଴ܦሻݐሺߪ ൅ ݃ଵ න ሺ߰௧ܦ∆ െ ߰ఛሻ

݀
݀߬
ሾ݃ଶ ሺ߬ሻሿ݀߬ߪ

௧

଴
 (57)

This approach is used in chapters 5 & 6 for developing the finite element procedures for viscoelastic 

behaviour. 
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Determination of material functions:  For modelling the behaviour of materials reliably, the 

material functions in the constitutive equation must be accurately determined. For a linearly viscoelastic 

material, either the creep compliance or relaxation modulus must be determined. For the displacement 

based FE-method, it is convenient to use the relaxation-based constitutive equation. However, the creep 

test is easier to perform than the relaxation test. To develop the FE procedure, the material properties 

from experiments are used. The multi integral approach is difficult to use for finite element 

development. For this, some assumptions will be made in this research. These are 1) full 

incompressibility of a material and 2) simplifications of material functions. Exponential and power law 

functions are used for approximating material properties for nonlinear viscoelastic and viscoplastic 

behaviours, respectively (see chapter 4). The single integral method is easier to use for finite element 

model development. Chapters 5 & 6 in this research use this approach for modelling the viscoelastic 

linear and nonlinear behaviours, respectively. 

2.8 Practical applications of the present work 

The purpose of this research is to provide a tool for predicting the viscoelastic and viscoplastic 

behaviour of polymers over time. The tool is intended to be user friendly and accurate enough to be 

applicable for practical applications. 

Two steps are required to be taken for this purpose. First, the material properties need to be obtained 

from experiments. A code is developed in Matlab workspace. The code is able to read uniaxial tensile 

creep tests on samples of material. These data provide measured creep strains versus time for material 

samples under several constant stresses. The outcome of this analysis would be model parameters for 

either viscoelastic or viscoplastic behaviours which define the material properties. These material 

properties are suitable for studying the material response in a wide range of stresses and longer time 

frames beyond the test time. 

The next step is foreseeing the viscoelastic and viscoplastic behaviours of polymers using a finite 

element (FE) method. The developed formulations are implemented into a finite element procedure 

through a user defined material subroutine (UMAT). The developed UMAT subroutine is linked to the 

commercial software ABAQUS, makes users able to investigate the creep and relaxation responses of 

3D solid material models made in Graphic User Interface (GUI). The inputs to this step are the boundary 

conditions (which are defined through GUI) and material properties (which are obtained in step 1 as 

material model parameters). 
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By knowing the strain energy storage limit (resilience factor) of the material, the provided FE tool is 

also able to predict the time to failure of the material. Basic information, like resilience factor is 

obtained from stress rupture testing on the sample materials. Based on this data, a safe stress and a 

maximum value of stored strain energy can be determined below which it is safe to operate. 

An instruction on how to use the developed Matlab and UMAT codes for practical applications are 

presented in Appendix A.  

From practical application point of view, for a desired lifetime, that defines a maximum time, there 

is one maximum level of stress which satisfies the maximum strain. So the design is all about defining 

the priority (among three factors of maximum stress, time and strain) which depends on the specific 

application. In some situations, strain or deformation is more critical, which requires design for 

stiffness. Meaning that by limiting the strain to a certain small amount, the maximum allowable applied 

stress decreases and the life time increases. If the dimension precision of the component under 

discussion is not so important, design for strength is then used accordingly. Which means increase in 

maximum allowable applied stress, and consequently increase in deformation and decrease in life time. 

For complicated structures, like in nuclear industry, commercial buildings, infrastructures and 

pipelines, both can be used for design criteria to ensure successful material performance during service 

time. The presented tool (combination of material model and FE model) provided us with information 

on stress and strain vs. time and the ultimate limits. 

It should be noted that some assumptions are made for developing the tool under discussion, like 

isotropic behaviour of material and isothermal condition. Also some simplifications are made on the 

formations to make them easy for finite element implementation. Also just one mechanism of failure is 

considered which is delayed failure due to sored strain energy. The comparison between results on 

experiments and the present model shows an acceptable prediction of material behaviour in long time. 

2.9 Conclusion 

This chapter presents an overview of polymer material research including testing and modelling. 

Modelling techniques for short term, long-term and time-history cases are discussed. 

The experimental results show a high degree of nonlinearity in polyethylene behaviour which 

requires simulations based on coupled non-separable formulations. Viscoelastic and viscoplastic 
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models were developed based on differential formulations, suitable for implementation in finite element 

procedures. 
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Chapter 3 

Modelling Short and Long Term Time-dependent Nonlinear 

Behaviour of Polyethylene 

 

Contents of this chapter is based on a paper which has been published in the journal of “Mechanics of 

Advanced Materials and Structures”. A new methodology for developing macromechanical constitutive 

formulations for time-dependent materials is presented in this chapter. In particular, two 

phenomenological constitutive models for polymer materials are illustrated, describing time-dependent 

and nonlinear mechanical behaviour. In this new approach, short term creep test data (done by Liu (Liu, 

2007)) are used for modelling both short term and long term responses. The differential form of a model 

is used to simulate typical Nonlinear Viscoelastic (NVE) polymeric behaviour using a combination of 

springs and dashpots. Unified plasticity theory is then used to develop the second model, which is a 

Nonlinear Viscoplastic (NVP) one. Least squares fitting is applied for determination of material 

parameters for both models; based on experimental results. Due to practical constraints, experimental 

data are usually available for short term time-frames.  In the presented proposed formulation, the 

material parameters determined from short term testing are used to obtain material parameter 

relationships for predicting the long term material response.  This is done by extending short term 

information for longer time frames. Finally, theoretical and experimental results of tensile tests on 

polyethylene subjected to various load levels and test times are compared and discussed. Very good 

agreement of the modelling results with experimental data shows that the developed formulation 

provides a flexible and reliable framework for predicting load responses of polymers. 

3.1 Introduction 

Polymers are increasingly used in many aspects of our lives, including infrastructure, building and 

pipeline construction. Thermoplastic polyethylene (PE) and unplasticized polyvinyl chloride (PVC or 

UPVC) are the predominant materials used for water and sewer pipes (Polak, et al., 2004). Other 

plastics for pipe production are polypropylene (PP), polybutylene (PB) and acrylonitrile-butadiene-

styrene (ABS); which are all thermoplastics (Janson, 2003). The pipeline installation procedures, for 

example by horizontal directional drilling, impose tensile and bending deformations on the pipes and 

often result in significant amount of scratching of the pipe’s outer surface. Subsequent utilization 



 

 49 

subjects the pipe to internal and external hoop stresses, often variable over time. The 3-D stress and 

strain under normal utilization conditions is relatively low due to high safety factors, which generally 

protect the pipes from failure under short term conditions. However, adequate long term strength of the 

PE pipes is a major concern in the design and construction of such pipeline systems. Therefore, 

theoretical and/or numerical modelling of the behaviour of these materials is essential to complement 

experimental data and to allow for structural analysis of polymeric elements and structures. 

The primary goal of this chapter is to propose a practical formulation for nonlinear modelling of 

polymeric structures for short and long term time frames.  Due to practical constraints, experimental 

data are usually available for short term testing.  Extending this information for longer time frames is 

important for rational structural modelling.  The proposed new theoretical approach for long term 

modelling, based on information from short -term testing, is presented in the chapter. 

The models describing the behaviour of polymeric materials have basis in: 1) the physical concept 

of a network of macromolecular chains with cross-links, or 2) the phenomenological laws of 

viscoelastic solids. These are referred to as micromechanical modelling and macromechanical 

modelling, respectively. The work presented herein addresses the macromechanical approach, which is 

appropriate for the analysis of structures or structural components on the macroscale. This research is 

focused on development of constitutive formulations that are appropriate for subsequent 

implementation into such structural analysis platforms like, for instance, finite element modelling. 

In the micromechanical approach time-dependent functions expressing breakage of links of 

macromolecule chains and deformations of crystalline phase are usually formulated and applied to 

characterize the development of stress and strain ( (Zehsaz, et al., 2014) to (Popa, et al., 2014)). Based 

on this approach, Alvarado et al. (Alvarado, et al., 2010) presented a novel damage-coupled constitutive 

formulation for the mechanical behaviour of semicrystalline polyethylene.  

In the macromechanical modelling, phenomenological models of viscoelastic solids are often 

employed. The theoretical formulation results in the evolution equation of stress or strain, which is 

expressed generally as a linear or nonlinear differential equation. The equation can be function of either 

time, stress and strain rate (time hardening theory) or strain, stress and strain rate (strain hardening). 

Several constitutive models based on this methodology were developed in the past two decades. Several 

viscoelastic constitutive equations were developed by Bae and Cho (Bae, et al., 2015) to describe 

nonlinear viscoelastic behaviour. Zacharatos and Kontou (Zacharatos, et al., 2015) presented a one-
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dimensional phenomenological constitutive model, representing nonlinear viscoelastic behaviour of 

polymers using a three element standard solid model. Hasanpour et al. (Hasanpour, et al., 2009) 

developed a finite element (FE) procedure for compressible viscoelastic materials. The work includes 

the formulation and constitutive equations of finite strain viscoelastic materials using multiplicative 

decomposition in a thermodynamically consistent manner. In a similar comprehensive research, a finite 

element algorithm was successfully developed by Krishnaswamy et al. (Krishnaswami, et al., 1992) to 

study nonlinear time-dependent problems. A practical simplified approach to nonlinear modelling of 

polyethylene, based on creep testing at different stress levels, was proposed by Liu et al. (Liu, et al., 

2008). Cheng et al. (Cheng, et al., 2011) followed up on this work by presenting a rigorous statistical 

approach for modelling creep compliance of PE. In a work concerning a class of non-aging isotropic 

viscoelastic solids, Muliana et al. (Muliana, et al., 2015) proposed a model by developing a nonlinear 

integral formulation, which belongs to the class of quasi-linear viscoelastic models, for solid-like 

materials.  A thermodynamics-based constitutive model was developed by Krairi and Doghri (Krairi, 

et al., 2014) for isotropic homogeneous thermoplastic polymers under arbitrary multiaxial and non-

monotonic loadings. Chan and Ngan (Chan, et al., 2010) investigated polyethylene which is subjected 

to a tensile test with a jump in the loading rate. Muliana (Muliana, 2015) presented analyses of 

deformations in nonlinear viscoelastic beams that experience large displacements and rotations due to 

mechanical, thermal, and electrical stimuli. Nguyen et al. (Nguyen, et al., 2013) focused on 

viscoelasticity, as a predominant factor in the high cycle fatigue stress range. For this they derived an 

isothermal nonlinear viscoelastic model for small strains using a thermodynamics framework. An 

efficient method of fitting Prony series models to viscoelastic experimental data with power-law pre-

smoothing was presented for the experimental data by Park and Kim (Park, et al., (2001). The same 

group also investigated and illustrated methods of interconversion between relaxation modulus and 

creep compliance for linear viscoelastic materials using data from asphalt concrete (Park, et al., 1999). 

In modelling of polymers, experiments play an important role, since they offer insight into the 

material behaviour (namely, linearity and nonlinearity, and separable and non-separable form of 

equations), and they form the basis for model validation. The mechanical behaviour of polymeric 

materials depends on both time and temperature and several experimental techniques may be used to 

measure and quantify this behaviour. Drozdov and Christiansen reported their observations on uniaxial 

tensile tests with constant strain rates at moderate finite deformations, as well as in creep and relaxation 

tests on a thermoplastic elastomer (ethylene–octane copolymer) (Drozdof, et al., 2006) and 
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polyethylene (Drozdov, et al., 2003). Dusunceli and Colak (Dusunceli, et al., 2008), same as Liu et al. 

(Liu, et al., 2008), presented an approach for modelling the mechanical behaviour of polyethylene 

materials. They developed both viscoelastic and viscoplastic models and showed model corroboration 

with tensile, step-loading, and load-rate creep experimental results. They also presented creep 

numerical and experimental data for a medium density polyethylene (MDPE) pipe material and 

confirmed the efficiency of the macro- mechanical approach. Ayoub et al. (Ayoub, et al., 2010), Ellyin 

et al. (Ellyin, et al., 2007), Cao et al. (Cao, et al., 2010), Wendlandt et al. (Wendlandt, et al., 2010) and 

Pan et al. (Pan, et al., 2012) also used experimental results to validate proposed theoretical models. 

Although viscoelastic and viscoplastic models of polymers have been developed by these 

aforementioned researchers, only limited work is available on the long term response prediction of 

material behaviour. The work that exists is limited to the demonstration of the well-known time-

temperature superposition principle (Barbero (Barbero, 2011), Luo et al. (Luo, et al., 2012), Diani et 

al. (Diani, et al., 2015), Gnip et al. (Gnip, et al., 2008) & (Gnip, et al., 2010)). The research presented 

herein aims to propose a new empirical approach for long term modelling. For practical reasons, most 

creep testing of polymers is done using short term test frames. However, when constitutive modelling 

is applied to the analysis of real structural components, the long- term response is usually needed. The 

model presented herein has the capability of adjusting fitted parameters to the anticipated time interest. 

The long term material/parameter relationships are obtained based on the trends observed during short 

term testing. Experimental tensile short term creep tests (done by Liu (Liu, 2007)) are used for defining 

material properties of polyethylene to be used in nonlinear constitutive equations. Prony series and 

associated multi-Kelvin modelling are used to find viscoelastic (VE) material parameters, which is 

based on the work by Zhang and Moore (Zhang, et al., 1997), while plastic theory is used to determine 

the viscoplastic (VP) model parameters, based on research done by Krishnaswami (Krishnaswami, et 

al., 1992). The model considers time-dependent as well as nonlinear behaviour of the material. 

Theoretical and experimental results for polyethylene subjected to various load levels and test times 

are compared and discussed.  

3.2 Problem Definition 

The primary target in this work is to develop nonlinear and time-dependent models using creep test 

results at different stress levels. These results, for any given material, are usually available in short time 

frames. The challenge is to use this short term creep test data for modelling longer time frames of 
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behaviour which is done by extending the short term models to long term ones.  The responses of both 

short term and long term models are highly dependent on material characteristics as input data. 

Polymers, in particular polyethylene materials used in this work, show different material behaviour for 

different grades. Therefore, creep tests must be done for each material under investigation. 

Experimental results are used, as input information, for the development of constitutive models specific 

to a given material. This can be done using procedures described herein implemented into the Matlab 

platform.  The computerized procedures for material model development allow for fast and efficient 

ways to create a customized model for a given polymeric material. The input for the model are creep 

curves, at short time frames (24 hours in this work), at different constant stress levels. 

The development of the models proceeds as follows. The 24 hour creep tests, are used first for the 

creation of the viscoelastic and viscoplastic nonlinear models.  The development is based on the premise 

that material parameters change with stress, as the models are nonlinear. Then, the stress- and time-

dependent models are validated by comparing theoretical and experimental results for longer than 24 

hour time frames. 

3.3 Material characteristics 

The experimental tensile creep results used in this work have been reported by Liu (Liu, 2007).  Five 

high density polyethylene (HDPE) sample materials tested in our laboratories by Liu (Liu, 2007) are 

used for defining material properties (Table 1). The samples are of two types: pipe materials and HDPE 

resins. The pipe materials were cut from pipe samples with length along the pipe axis and width along 

the radius of the pipe, while the resin specimens were made by melting the resins and then pressing into 

plates.  The process includes heating up the material to 320 F in the mould and then cooling down to 

room temperature on a hot plate with the heater off, followed by hot pressing into 7 in square plates.  

Both specimen types were then machined down to the required dog-bone shape dimensions. All tested 

specimens have dimensions that conform to ASTM Standard Test Method for Tensile Properties of 

Plastics (2002). 

Material characteristics are tabulated in Table 1. Among those, Resin1 and Resin2 are blow molding 

resins, Resin4 is injection molding resin and PE80 is a pipe grade resin. These are cited to show 

differences in microstructural properties of the sample materials. These properties are not directly used 

in the modelling presented herein, as macromechanical model development uses creep tests for material 

characterization.  The cited micromolecular properties are weight-average molecular weight, M୵, 
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number-average molecular weight, M୬, and the environmental stress crack resistance (ESCR) values 

of resins. Environmental stress cracking (ESC) is one of the important factors affecting failure of 

polyethylene.  

The creep test results allow classification of the polyethylene materials. The first level of material 

classification is determining if the material is described best by a viscoelastic or viscoplastic model. A 

viscoelastic material shows a significant amount of delayed recovery upon unloading, whereas there 

remains a permanent residual ‘plastic’ strain for viscoplastic materials. By performing creep tests at 

several constant stress levels, a series of strain vs. time curves are obtained. The compliance plot, "ߪ/ߝ" 

vs. time, provides information if the compliance is independent of the stress level; if a single curve is 

obtained for the compliance under different levels of constant stress, then the material is said to be 

‘linear’. Otherwise, the compliance is a function of stress and the material is known as ‘nonlinear’ and 

a nonlinear model must be used to represent its creep behaviour. Nonlinear materials can be categorized 

by considering whether the effects of stress (ߪ) and time (t) on strain (ߝ) are separable or not. If all 

plotted compliance curves for nonlinear materials have the same ‘shape’, the material can be described 

as nonlinear-separable, i. e., the same type of time function can be used for compliance at all stresses. 

Strain ሺߝሻ is then given by (Krishnaswami, et al., 1992): 

ߝ  ൌ ݄ሺߪሻ݂ሺݐሻ (58) 

where ݄ is a function of applied stress ߪ and ݂ a function of time ݐ. If the shape of the compliance 

curves at different stress levels is not similar, then strain ሺߝሻ must be represented by a different function 

of time at each stress level. In this case, the material can only be described by a nonlinear non-separable 

model given by (Krishnaswami, et al., 1992): 

ߝ  ൌ ݃ሺߪ,  ሻ (59)ݐ

where ݃ is a function of both variables, stress and time. 

3.4 Non-linear Viscoelastic (NVE) Model Development 

Based on test results for the materials listed in Table 1, conducted by Liu et al. ( (Liu, et al., 2008) and 

(Liu, 2007)) and briefly described in the previous section, a strong nonlinearity was observed in 

material responses, because different time-dependent compliance curves were seen for different applied 

stresses ( (Liu, et al., 2008) and (Zhang, et al., 1997)). Subsequent to these test results, a suggested 

process of developing a non-linear model ( (Zhang, et al., 1997)) is to start with a linear model for the 
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material under constant stress (separable form) and then extend it to the nonlinear one by considering 

effects of stress on the stress-dependent part (non-separable form).  

For the first step which is linear modelling, the following stress-strain relationship is defined for 

predicting the linear response of the material under a particular constant applied stress: 

ሻݐሺߝ  ൌ ߪ ܺሺݐሻ (60) 

In this formulation, ܺሺݐሻ describes the creep compliance of the material and is based on the spring 

and dash-pot method of modelling described by Flugge (Flugge, 1967). According to the concept of 

fading memory (Christensen, 1971), the material response depends more on recent history than on 

earlier events. Accordingly, this theory considers the following formulation for creep compliance for a 

solid multi Kelvin configuration of spring and dash-pot, and is one of the most useful forms of creep 

compliance for finite element implementations 

 
ܺሺݐሻ ൌ

1
଴ܧ

൅෍ ௜ܺ൫1 െ ݁ି௧/ఛ೔൯

ே

௜ୀଵ

 (61) 

Eq. (61) is a form of a Prony series approximation, with 2 ൈ ܰ unknown material properties ( ௜ܺ and 

߬௜). ௜ܺ and ߬௜ are creep compliance and relaxation time, respectively, for the ݅௧௛ Kelvin element. ܰ 

indicates the number of Kelvin elements in the model. ܧ଴ is the instantaneous elastic time-independent 

modulus and equals to 1/ܺ଴, which ܺ଴ is measured creep compliance at ݐ଴ ൌ 0, and is called an 

independent term. 

One can obtain parameter values ( ௜ܺ and ߬ ௜) by fitting the Prony series to experimental data by means 

of an optimization technique or by classical simplified technique. For optimization Baumgaertal and 

Winter, (Baumgaertel, et al.) presented a regression technique in which ௜ܺ and ߬௜ are all variables. 

Fernanda et. al (Fernanda, et al., 2011) also used same optimization technique to find constitutive 

parameters for viscoelastic materials. However, the more common practice is to avoid the optimization 

technique by estimating (fixing) the relaxation times, ߬ ௜, from the total range of time domain and finding 

the compliance values. Once this simplified method of estimating relaxation times is chosen, a classical 

technique to build the linear system must be defined. Using one of the most useful methods of curve 

fitting, which is the least squares method, results in the following linear system 

 ௜ܶ௝ ௜ܺ ൌ  ௝ (62)ܤ
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Schapery (Schapery, 1961) and Liu et. al (Liu, et al., 2008), used this technique to fit a linear 

viscoelastic model to test data. In this equation ௜ܺ is the unknown compliance for each Kelvin element 

(Eq. (61)) and 

 

௜ܶ௝ ൌ ෍൫1 െ ݁ି௧ೖ/ఛ೔൯൫1 െ ݁ି௧ೖ/ఛೕ൯

ே೟

௞ୀଵ
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(63) 

where ෠ܺሺݐ௞ሻ is the measured compliance at time ݐ௞ that from Eq. (60) is equal to ߝ௜̂/ߪ. ௧ܰ is the 

number of experimental points or equivalently number of measured ߝ௜̂ for a particular stress. 

Using either optimization or classical technique, one can find a set of 2 ൈ ܰ values (ܰ values of ௜ܺ 

and ܰ values of ߬௜) for each particular stress. If ݊ stress levels creep curves are used for modelling, this 

provides ݊ sets of ௜ܺ and ߬௜ values corresponding to the creep curves for ݊ stress levels. 

After the above first step is completed, the modelling progresses to the second step, which is non-

linearization. For this, curve fitting is used to produce stress dependent parameters ௜ܺሺߪሻ and ߬௜ሺߪሻ. 

This can be done by fitting chosen approximation functions of stress to those ݊ sets of parameters from 

linear step. Zhang and Moore (Zhang, et al., 1997) used exponential approximation functions to find 

stress dependent parameters by fitting the approximation functions to strain-time curves for eight stress 

levels. 

In our work, the optimization method is chosen out of two described methods for linear modelling 

step. For the non-linearization step, parameters are approximated by the chosen exponential functions 

of stress. This results in a combined (step one and step two described above) step of nonlinear 

optimization, which aims to find stress dependent parameters by fitting the model to test data. The 

nonlinear optimization technique is generally referred to as “unconstrained nonlinear optimization”. 

This is a method of either minimization or maximization. For this, one of the numerical methods, out 

of many available (Derivative-free method, Descent method, Line search, Gradient descent method, 

Steepest descent method, Newton’s method, Quasi-Newton’s method, etc.) is used. In this chapter, the 

procedure works by finding the minimum of the error function of several variables (fitting parameters), 

starting at an initial estimate. In this method, the process starts at the point ݔ଴ and returns a value ݔ that 
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is a local minimizer of the function. For this a code is developed in a MATLAB workspace which uses 

a built-in algorithm of Derivative-free Optimization method. ݔ଴ can be a scalar, vector, or matrix and 

the error function is a function handle (see section 3.7 for further discussion on the function). 

It is known that when a local optimization technique is applied to minimize the error function it is 

sensible to the starting point, ݔ଴, since the problem may have many local minima. To overcome this 

problem and to force the convergence to the global optimal set, different methods have been mentioned 

in the literature. Bower and Gunt (Bower, et al., April 1994), and Fernanda et al. (Fernanda, et al., 2011) 

suggested choosing the starting parameter set, ݔ଴, close to global optimal set. However, this strategy is 

only possible when the range of the admissible parameters is known; otherwise the method requires 

multiple iterations of process by changing the first guess. The other suggested method is the 

improvement of the quality of the initial guess, ݔ଴. For this Robert (Robert, 1997) proposed a strategy 

to begin with just a few Prony terms in Eq. (61). This is equivalent to simplifying the function (model) 

by removing the parameters that have less effect on the behavior in the initial iteration and adding those 

parameters in latter ones. By using either of these two suggestions, convergence may not be fully 

attained with one execution of the optimization technique. Therefore, one may need multiple iterations 

to get proper accuracy in the outcome. This is what we have done here by examining multiple start 

parameters until we get the desired error value. The outcome of the calculations is a set of fitting 

parameters for nonlinear viscoelastic model.  The program works by pre-setting ܺ ௜ and ߬ ௜ as exponential 

functions of ߪ.  Using such an approach, it is possible to effectively estimate values for ߬௜ and ௜ܺ , with 

a relatively high degree of accuracy, compared to the classical technique. 

In this work, to reduce the number of material parameters for a particular stress curve, which is equal 

to 2 ൈ ܰ, all values of ௜ܺ and ߬௜ are obtained using four parameters, namely ଵܺ, ߬ଵ, ݉ and ߙ, following 

the formulation suggested in literature  (Zhang, et al., 1997). 

 ௜ܺ ൌ ݉ଵି௜
ଵܺ   ,    ߬௜ ൌ  ௜ିଵ߬ଵ (64)ߙ

Here, ߙ and ݉ are approximation parameters with no units of measurement, which constrain the 

selection of higher order relaxation times/compliances to an optimized increasing/decreasing power 

law trend. For simplicity, parameters ݉ and ߙ are considered to be stress-independent. Based on the 

analyses done using the developed MATLAB program the curve fitting of the two parameters ଵܺ and 

߬ଵ showed that the parameter distributions versus applied stress ߪ	can be best described by 

approximation functions similar to those suggested in the literature (Zhang, et al., 1997), as following 
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 ܺ଴ ൌ ሺܽ଴ ൅ ܽଵ݁൫ି௔మఙෝ
య൯ሻିଵ (65) 

(a) ଵܺ
ିଵ ൌ ܾ଴ ൅ ܾଵ ሺܾଶ݌ݔ݁ െ ܾଷߪො െ ܾସ/ߪොሻ 

(66) 
(b) ߬ଵ ൌ ܿ଴ ሺെܿଵ݌ݔ݁ ൅ ܿଶߪො ൅ ܿଷߪොଶ െ ܿସߪොଷሻ 

Here  ߪො ൌ ߪ ൈ 10ି଺ , and ߪ is the applied stress for a given creep curve. ܧ଴ ൌ 1/ܺ଴ is obtained from 

experimental results for each test and varies with respect to stress. Eq. (65) is used to simulate this 

variation. The fitting parameters ܽ଴, ܽଵ and ܽଶ are obtained by fitting Eq. (65) to experimental readings 

and are tabulated in Table 2, while ܾ௜ and ܿ௜  will be discussed shortly below. Here, ܽ଴ and ܽଵ have unit 

of compliance and ܽଶ has unit of inverse of cubic stress. ܾ଴ and ܾଵ have stress unit, ܾଶ has no unit, ܾଷ 

has inverse unit of stress and ܾସ has unit of stress. ܿ଴ has unit of time, ܿଵ has no unit, ܿଶ has unit of 

inverse of stress, ܿଷ has unit of inverse of squared stress, and ܿସ has unit of inverse of cubic stress. 

In this chapter, and for the sake of brevity, only the PIPE and Resin 1 materials are used as examples 

of material modelling.  When considering  ܰ ൌ 6 (6 Kelvin elements chosen for NVE material 

modelling in Eq. (61)), the fitting parameters (݉, ߙ, ܾ௜ and ܿ௜) for PIPE and Resin 1 are listed in Table 

3. The corresponding material parameters ( ௜ܺ and ߬௜) for these two materials can be obtained using Eq. 

(66), which are tabulated in Table 4 and Table 5. In these tables, only ଵܺ
ିଵ and ߬ଵ are listed and ߙ and 

݉  are used to determine the remaining ௜ܺ
ିଵ and ߬௜ using Eq. (64).  The material parameters of Table 4 

and Table 5 (for ܰ ൌ 6) are used to plot the material nonlinear response in Figure 19 and Figure 20, 

for PIPE and Resin1, respectively, and at the stress levels used for the development of the model (Eq. 

(60)).  

3.5 Non-linear Viscoplastic ( NVP) Model Development 

Plastic flow in PE starts to develop at small strain and the material behaves in both viscoelastic and 

viscoplastic fashion. Since yield occurs gradually with a steady transition from a linear to a nonlinear 

response, the unified theories, which do not separate creep strains and plastic strains, are a better 

alternative than those that consider creep and plasticity as separate phenomena (Krishnaswami, et al., 

1992). One of the main points of using these theories is that there is no need to perform the unloading 

experiment, since they do not distinguish between elastic and plastic deformations. Following non-

separable viscoplastic model, Eq. (67), has been suggested by Krishnaswamy et al. (Krishnaswami, et 

al., 1992). Although it includes both elastic and plastic terms, the model doesn’t make use of each 

portion separately, meaning that the combination of two strains in a single equation is always valid 
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through the entire process of deformation. Hence, there is no need to specify the point at which plastic 

deformation starts.  

(a) ߝሺݐሻ ൌ ߪ ܺሺݐሻ 

ܺሺݐሻ ൌ
1
଴ܧ

൅ ଴ܥ ൬
ݐ
ܶ
൰
஼భ

 
(67) 

(b) 

Here, 1/ܧ଴ ൌ ܺ଴ is the elastic compliance at ݐ଴ ൌ 0 , explained by Eq. (65), and the rest of Equation 

(67)(b) represents the plastic portion of the time dependent creep compliance, and ܶ, ܥ଴ and ܥଵ are 

material parameters. ܥ଴ has unit of inverse of stress, ܶ has time unit and ܥଵ has no unit. 

Similarly, to viscoelastic modelling, the determination of the material parameters proceeds with 

nonlinear optimization method. For this, the curve fitting of the Eq. (67) is done on experimental data, 

using the least squares criterion. For nonlinearization, parameters are approximated by functions of 

stress, similar to those suggested in the literature (Krishnaswami, et al., 1992), as follows: 

(a) 
଴ܥ ൌ ሺܾଵ ൅ ܾଶߪො ൅ ܾଷߪොଶሻ ቀ

௡ߪ
തߪ
ቁ
൫௕రା௕ఱఙෝା௕లఙෝమ൯

 

(68) 
(b) 

ଵܥ ൌ ݉ଵ ൅݉ଶ ൭1 ൅
1
2
݊ܽݐܿݎܽ ൬

ොߪ െ ௔ݏ
തߪ
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(c) 
ܶ ൌ ଵܶ ቀ

௡ߪ
തߪ
ቁ
ௗబ

 

Again ߪො is ߪ௡ ൈ 10ି଺ for simplicity and ߪത is introduced for dimensional consistency (in this research 

we have ߪത ൌ  and ଵܶ for all ܽݏ ,݀଴, ݉௜	Table 6 shows the compilation of fitting parameters ܾ௜, .(ܽܲܯ	1

examined materials. Here, ܾ ଵ has unit of compliance (inverse of stress), ܾ ଶ has unit of inverse of squared 

stress and ܾଷ has unit of inverse of cubic stress. ܾସ has no unit, ܾହ has unit of inverse of stress and ܾ଺ 

has unit of inverse of squared stress. ݉ଵ, ݉ଶ, ݏ and ݀଴ have no units. Unit of ݏ௔ is same as stress and 

ଵܶ is time. 

Using fitting parameters and Eq. (68) material parameters ܶ, ܥ଴ and ܥଵ are obtained which are  listed 

in Table 7 and Table 8 for two materials, “PIPE” and “Resin1”, respectively. The corresponding plots 

(model and the experimental results used for model development) are shown in Figure 21 and Figure 

22 . 
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Figure 19: Experimental (continuous line) (Liu, 2007), and nonlinear viscoelastic model (dashed 

line) results for 24 hour creep tests (PIPE) using Eqs. (61), (64) and (66) . (Material properties 

and fitting parameters are cited in Table 3 and Table 4, respectively) 

 

Figure 20 Experimental (continuous line) (Liu, 2007),  and nonlinear viscoelastic model (dashed 

line) results for 24 hour creep tests (Resin1) using Eqs. (61), (64) and (66) . (Material properties 

and fitting parameters are cited in Table 3 and Table 5, respectively) 
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Figure 21 Experimental (continuous line) (Liu, 2007) and nonlinear viscoplastic model (dashed 

line) results for 24 hour creep tests (PIPE) using Eqs. (67) and (68). (Material properties and 

fitting parameters are cited in Table 6 and Table 7, respectively) 

 

Figure 22 Experimental (continuous line) (Liu, 2007), and nonlinear viscoplastic model (dashed 

line) results for 24 hour creep tests (Resin1) using Eqs. (67) and (68). (Material properties and 

fitting parameters are cited in Table 6 and Table 8, respectively) 
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3.6 Modelling Long term Behaviour  

The nonlinear models described in sections 3.4 and 3.5 are able to represent the response of the material 

within the test time-frame. It is well known that beyond the test time, the response of the viscoelastic 

model (described in Eq. (61)) approaches to an asymptotic value equal to ܺ ଴ ൅ ∑ ௜ܺ
ே
௜ୀଵ  and the response 

of the viscoplastic model (described in Eq. (67)) increases continuously with a time dependent slope 

equal to ܥ଴ܥଵ	ܶି஼భݐ஼భିଵ. This difference in the two modelling approaches clearly suggests that the 

models are most likely not valid beyond the curve fitting time period.   

In this section an empirical solution to this problem is proposed, in view of the fact predicting the 

response of creep behaviour over extended time periods is very important for practical application of 

modelling real structures and elements. In this section, we propose a new method for obtaining the long 

term material parameter functions, based on the material parameters and creep testing done for the short 

term response. Using the discussion provided in sections 3.4 and 3.5, material parameters and fitting 

parameters (Table 4-Table 6) are obtained for 24 hour test periods. To examine the validity of the model 

for an extended time, the proposed method is to observe the trend of fitting parameters with respect to 

the test time. First, the curve fitting is done for all materials in different test times, namely: 10, 14, 18, 

20, 22 and 24 hours. This allows observing how the fitting parameters are dependent on test time (ߣ).  

We then propose that the parameter change over test time can be represented by the following equations 

for the viscoelastic case: 

(a) ܾ௜ሺߣሻ ൌ ܾ′௜ ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 0, 1, 2 

(69) (b) ܾ௜ሺߣሻ ൌ ܾᇱ௜/ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 3, 4 

(c) ܿ଴ሺߣሻ ൌ ܿ′଴ ሺߣ/ߣ′ሻௗఱ  

Where ߣ stands for test time and ߣ′ is introduced for dimensional consistency (in this research we 

have ߣ′ ൌ  ሻ are parameters used to define ௜ܺ and ߬௜ as in Eq. (66),  and ܾ′௜, ܿ′଴ߣሻ and ܿ଴ሺߣ௜ሺܾ .(ݎݑ݋݄	1

and ݀௜ are fitting parameters independent of the test time and used to extend the short term model 

response to a long term one. Here, ܾ′௜ and ܿ′଴ have same units as ܾ௜ and ܿ଴, respectively and ݀௜ have 

no units. 

Similarly, when the same method is applied to viscoplastic modelling, the following equations for 

the dependency of parameters form Eq. (68) on ߣ are obtained: 
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(a) ܾ௜ሺߣሻ ൌ ܾ′௜ ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 1 െ 6 

(70) 
(b) ௝݉ሺߣሻ ൌ ݉′௝ ሺߣ/ߣ′ሻ

௡ೕ ݎ݋݂ ݆ ൌ 1, 2 

(c) ܽݏሺߣሻ ൌ ௔′ݏ ሺߣ/ߣ′ሻ௦ 

(d) ଵܶሺߣሻ ൌ ܶ′ଵ ሺߣ/ߣ′ሻ మ் 

These parameters obtained using nonlinear optimization technique by least squares fitting of the 

proposed formulation on the short term experimental results and are listed in Table 9 and Table 10 for 

the examined materials. Here, ܾ′௜, ݉′௝, ݏ′௔ and ܶ′ଵ have same units as ܾ௜ , ௝݉, ݏ௔ and ଵܶ, respectively 

and ݀௜ , ௝݊, and ଶܶ have no units. 

3.7 Error Analysis 

To examine the validity of the method, a criterion should be chosen for the convergence of the least 

squares fitting method. The test strain convergence criterion is adopted: 
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Eq. (71) is the Least Squares Error criterion which is the root mean square of deviation (RMSD) 

between the predicted values ߝ௜, and the measured ߝ௜̂ data and indicates the average scatter of the data 

points about the least squares fit curve. In recent years, it has become regarded as one of the most 

informative fit indices (Hooper, et al., 2008) and many researchers have used this criterion for 

validating the theory versus experiments. From those are Liu et. al (Liu, et al., 2008), Cantrell (Cantrell, 

2008) and Fernanda et. al (Fernanda, et al., 2011). In Eq. (71)  ௧ܰ is the number of strain measurements 

used for curve fitting. 

The curve fitting procedure is applied on PIPE and Resin1 materials for NVE (nonlinear viscoelastic) 

and NVP (nonlinear viscoplastic) modelling (Figure 19-Figure 22). For this task, a code was developed 

in MATLAB.  Material testing for PIPE includes four creep curves, each pertaining to different stress 

levels. The tests are done within 24 hours. Strain measurements are recorded every 30 seconds, which 

yields ௧ܰ ൌ 2880, for each curve. Furthermore, to account for the long term prediction, the fitting 

procedure needs to be done for multiple test times, ߣ, other than 24 hours. As discussed in previous 

section, 10, 14, 18, 20 and 22 hours are considered, which yields in ௧ܰ ൌ1200, 1680, 2160, 2400 and 
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2640, respectively. Four stress levels and six test times, result in 4 ൈ 6 ൌ 24 error values obtained using 

Eq. (71). The purpose of the developed code is to minimize the average of the errors using local 

optimization technique. The mean fitting error (MFE) is defined for each material, which is the average 

of fitting errors associated with ݊  stress levels and ݉  test times. Same procedure is followed for material 

Resin1 considering ݊ ൌ ݉ ൌ 6. 
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 (72) 

Here ݁௜௝ is error related to stress level ݅௧௛ and ݆௧௛ test time. To obtain the best fit, MFE in the code, 

is set to an optimum value. It is well known that if a smaller value is chosen, a more correlated 

estimation to test data is achieved, although it is also more probable that the calculations could diverge. 

Thus, the choice of MFE is an important issue for the success of the nonlinear optimization technique. 

Different values are suggested in literatures for the goodness of fit. MacCallum et. al (MacCallum, et 

al., 1996) used 0.01, 0.05 and 0.08 to indicate excellent, good, and acceptable fit, respectively. 

However, others have suggested 0.1 as the cut-off for poor fitting models (Hooper, et al., 2008). Here 

in our research we choose MFE to be equal to 0.05 (5%). 

The other important choice is ܰ, the number of Kelvin elements in viscoelastic modelling (Eq. (61)). 

This doesn’t apply to viscoplastic modelling as we are using one single term for inelastic portion of the 

response (Eq. (67)). In NVE modelling, as the number of Kelvin elements increases, the accuracy of 

the fitting increases (Flugge, 1967), while in viscoplastic analysis, one term approximation formula 

yields enough accuracy in relatively short term behaviours (see discussions in (Findley, et al., 1976)). 

Since the MFE (Eq. 12) for each material should satisfy the convergence criterion ሺܧܨܯ ൑ 0.05ሻ, six 

Kelvin elements ሺܰ ൌ 6ሻ	 are considered in this chapter which result in	2 ൈ 6 unknown material 

constants (fitting parameters). Although further increase in the number of Kelvin elements is expected 

to result in more accurate calculations of strains, the observations show that the results are essentially 

the same as for ܰ ൌ 6. For ܧܨܯ ൌ 0.05 and test time ߣ ൌ 24 error values are recorded for both 

viscoelastic (Table 4 and Table 5) and viscoplastic (Table 7 and Table 8) models. As observed from 

recorded values, the average of least squares errors for both materials are less than the criterion. This 

shows that both models are valid for short term (24 hour) analysis. 
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3.8 Results 

The first example presented is to show how the developed models can be used to predict creep 

behaviour at another stress level.  Figure 23 and Figure 24 show the viscoelastic and viscoplastic 

behaviour predictions, using the developed formulation, for a test under 5.97 MPa constant stress for 

the PIPE material.  This creep test result, which was obtained previously by Liu (Liu, 2007), has clearly 

a different shape than the other creep curves for the same materials (see Figure 19 and Figure 21) due 

to possible test errors.  When the experimental results of the creep at 5.97 MPa are used to fit both the 

NVE and NVP models, the average of errors for 24 hour (ߣ ൌ 1) curve fitting, significantly increases 

by 3.5%.  Also, as seen, the model does not fit well to these inaccurate creep test data (for 24 hour test 

frame the theoretical results should be in close agreement with the test).  The error for this curve only 

is 8.6% and 8.1% for viscoelastic and viscoplastic modelling, respectively, which, as per MacCallum 

et. al (MacCallum, et al., 1996), are not within the acceptable range of goodness of fit. This is an 

interesting ‘counter-example’ with a problematic creep test data set. One can thus do effective process 

‘trouble-shooting’ and ‘detect’ a potential abnormality in the data. In other words, the developed 

formulation, through the estimation of material parameters that should follow predetermined trends, 

can also be used to eliminate erroneous experimental data sets from constitutive modelling. 

The next examples are used to corroborate the accuracy of the developed long term modelling 

approach. A separate set of tests (separate from the 24 hour creep tests used to estimate the material 

parameters) is used to predict the material responses over a longer term time frames. Two kinds of tests 

are considered for the PIPE material. One is a creep test that is done under three different stress levels, 

namely, 4.42 MPa, 6.08 MPa and 8.15 MPa, and the time frame of 40 hours, Case I. The second test is 

creep strain measurements of the PIPE material under 6.75 MPa, for seven days, Case II (Liu, 2007). 

Both NVE and NVP models are used in the model verification study.  Accordingly, ߣ is set to 40 hours 

and 170 hours for Case I and Case II, respectively. The results are shown in Figure 25-Figure 28, which 

show a comparison between experimental data (continuous lines) and model predictions (dashed lines). 

Figure 25 and Figure 26 show the long term viscoelastic response of PIPE for 40 hours and 7 days, 

respectively. Long term viscoplastic responses are shown in Figure 27 and Figure 28 for 40 hours and 

7 days, respectively. The errors (per Eq. (71)) associated with each stress level, case and model are 

tabulated in Table 11 and Table 12. Table 11 cites the errors obtained for λ ൌ 40, while Table 12 shows 

the errors for longer test times (ߣ ൌ 170ሻ. The observed errors in both tables are not greater than 9% 

and 16% for both cases of long term analyses, for NVE and NVP, respectively.  Scrutinizing the error 
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levels for both cases and model types, one can infer that NVE yields more accurate results compared 

to NVP. The differences between experiments and model prediction seen in both Figure 27 and Figure 

28 indicate that the proposed NVP model is not as rigorous as the presented NVE model. This is due 

to the number of fitting parameters, which is less in NVP compared to NVE. Furthermore, the ability 

to set the number of Kelvin units (ܰ), allows for more flexibility in fitting process, which leads in more 

accurate and reliable prediction of response in NVE. The presented results show the usefulness of the 

present approach in forecasting the response over extended test times-frames  

3.9 Conclusions 

A new approach including integrated macromechanical constitutive models is proposed, which makes 

it possible to predict the long term behaviour of polymeric materials. Short term (24 hour) experimental 

tensile creep tests were used for determining material properties of polyethylene to be used in nonlinear 

constitutive equations and predicting the response of the material in the long term. Molecular properties 

were not considered in the model development, as ESCR affects just the failure mechanism, and effects 

of molecular weight averages and density are inherent in mechanical properties without appearing 

directly in macromechanical formulations. 

Prony’s series and associated multi-Kelvin modelling are used to determine viscoelastic material 

parameters, while plastic theory was used to determine viscoplastic model parameters. The models 

consider time-dependent and nonlinear behaviour of the material. Theoretical and experimental results 

for polyethylene subjected to various load levels and test times were compared and discussed. The NVE 

model in comparison with the NVP model results in smaller fitting errors for long term strain response 

predictions. Both models can be used in computational methods for predictions of long term material 

behaviour. 

The developed modelling approach, implemented into the computational Matlab platform, allows for 

effective and fast parameter optimization and development of constitutive modelling for time-

dependent and nonlinear polymeric materials.  In this particular case, the formulation was used for 

modelling different grades of polyethylene. Since each grade behaves differently under stress, such a 

constitutive modelling approach is needed for analysis of polymeric structures and structural 

components. 

Based on the research conducted in this chapter and summarized above, the following specific 

findings and contributions can be mentioned: 
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A nonlinear optimization method of finding material parameters has been used in this research. To 

construct the material models, a theoretical optimization method of finding material properties using 

experimental uniaxial creep test results developed for short term investigation. Differential 

formulation as well as unified plasticity theory is used for development of 1-D nonlinear viscoelastic 

and viscoplastic models, respectively. Material models are then extended to long terms. Materials 

parameters are obtained using nonlinear optimization technique, which is a minimization technique of 

error function. For this a code was developed in MATLAB workspace. 

Here are the conclusions: 

1- The Prony’s series approach, and the associated multi-Kelvin solid modelling, is able to 

determine viscoelastic material parameters, while plastic theory is able to determine 

viscoplastic model parameters. The developed nonlinear optimization method allows for 

effective and fast parameter optimization and the development of constitutive modelling for 

time-dependent and nonlinear polymeric materials, and it is more efficient than linear methods. 

2- Beyond the short term test time, the response of the viscoelastic model (exponential 

formulation) approaches an asymptotic value and the response of the viscoplastic model (power 

law formulation) increases continuously with a time dependent slope. This difference in the 

two modelling approaches clearly suggests that the models are most likely not valid beyond 

the curve fitting time period. The result of the proposed long term formulation (which simulates 

the long term behaviour), lies between the curves which are the extension of viscoelastic and 

viscoplastic models beyond the short term period. 

3- The proposed material models are able to detect erroneous creep test curve. It is because the 

developed material models are able to predict creep behaviour at another stress level, meaning 

that the models give an estimation of the creep curve which its applied stress level is between 

the two available ones. One can thus do effective process “trouble-shooting” and “detect” a 

potential abnormality in the data. In other words, the developed formulation, through the 

estimation of material parameters that should follow predetermined trends, can also be used to 

eliminate erroneous experimental data sets from constitutive modelling. 

4- The comparisons show that the proposed constitutive model can satisfactorily represent the 

time-dependent mechanical behaviour of polymers in short term analysis. Both theoretically 
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presented models are able to predict short term responses with less than 5% error (in most 

cases). 

5- Fitting results for both viscoelastic and viscoplastic material models show that the viscoelastic 

one yields a better fit for both short and long term modelling, and the reason is that the former 

one has more fitting parameters compared to viscoplasic one which results in more flexible 

fitting to the short term test data, so more accurate short term and long term response prediction. 

 

 

Figure 23: Experimental (continuous line) (Liu, 2007), and present nonlinear viscoelastic model 

(dashed line) results for 24 hour creep test showing erroneous behaviour at 5.97 MPa (PIPE) 

using Eqs. (61), (64) and (66). Other stress levels are shown in grey (dotted lines) 
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Figure 24: Experimental (continuous line) (Liu, 2007), and present nonlinear viscoplastic model 

(dashed line) results for 24 hour creep test showing erroneous behaviour at 5.97 MPa (PIPE) 

using Eqs. (67) and (68). Other stress levels are shown in grey (dotted lines) 

 

Figure 25: Experimental (continuous line) (Liu, 2007), and present nonlinear viscoelastic model 

prediction (dashed line) in 40 hours test time (PIPE) using Eqs. (61), (64), (66) and (69). 

(Material properties and fitting parameters are cited inTable 4 and Table 9, respectively) 
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Figure 26:  Experimental (continuous line) (Liu, 2007), and present nonlinear viscoelastic model 

prediction (dashed line) in 7 days (170 hours) test time (PIPE) using Eqs. (61), (64), (66) and 

(69). (Material properties and fitting parameters are cited inTable 4 and Table 9, respectively) 

 

Figure 27: Experimental (continuous line) (Liu, 2007), and present nonlinear viscoplastic model 

prediction (dashed line) in 40 hours test time (PIPE) using Eqs. (67), (68) and (70). (Material 

properties and fitting parameters are cited in Table 8 and Table 10, respectively) 
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Figure 28: Experimental (continuous line) (Liu, 2007), and present nonlinear viscoplastic model 

prediction (dashed line) in 7 days (170 hours) test time (PIPE) using Eqs. (67), (68) and (70). 

(Material properties and fitting parameters are cited in Table 8 and Table 10, respectively)
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Table	1:	List	of	tested	polyethylene	materials	(Liu,	2007)	

No. Material Type Thickness* 
(mm) 

Width*
(mm) 

Code  ࢔ࡹ (kg/mol)࢝ࡹ
(kg/mol) 

ESCR 
(h) 

1 HDPE-
PIPE 

pipe 5.00 13.05 PIPE Data not available 

2 HDPE-
Resin1 

resin 5.80 12.76 RES1 127.5 16.3 4.8 

3 HDPE-
Resin2 

resin 5.65 12.89 RES2 118.5 15.7 1.2 

4 HDPE-
Resin4 

resin 6.27 12.42 RES4 79.4 19.7 3.6 

5 MDPE-
PE80 

resin 5.04 12.76 PE80 202.1 14.0 198.3 

* These represent dogbone dimensions; allowance for thickness is േ૙. ૙૜, and േ૙. ૙૞ for 
width 

 

 

Table	2:	Fitting	parameters	for	ܺ଴	

Material ܽ଴ (MPa-1)  ܽଵ (MPa-1)  ܽଶ (MPa-2) 

PIPE	 5.33e8  1.36e4  0.1864 

RES1	 7.25e8  2.31e8  0.0029 

RES2	 ‐5.82e13  5.82e13  4.7e‐9 

RES4	 ‐3.83e13  3.83e13  1.9e‐9 

PE80	 ‐5.07e8  1.25e8  4.3e‐4 
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Table	3:	Fitting	parameters	for	NVE	model	

૝ (MPa)܊ ૛܊ ૙ (MPa)܊ હ ܕ   ૛܋ ૙ (s)܋

(MPa-1) 

 ૝܋

(MPa-3)

૜ (MPa-1)܊ ૚ (MPa)܊   ૜ (MPa-2)܋ ૚܋ 

PIPE 0.6816 15.78 -6224 3.24 49.9 2.04e-6 -0.606 0.0006 

329 0.798  -22.4 0.0118  

RES1 0.5563 16.83 7.486 7.702 423 1.7e-6 -0.584 0.00024

0.2886 1.546  -18.23 0.0103  

 

Table 4: Material parameters for “PIPE” (Viscoelastic) 

Stress (MPa) Error (%) ૙ (GPa)ࡱ ૚ࢄ
ି૚ (GPa) ࣎૚ (s) 

2.97 7.2% 0.5469 2.571 294 

5.47 2.9% 0.5418 2.645 90 

6.7 3.9% 0.5368 2.662 55 

7.71 5.1% 0.5310 2.671 39 

 

Table 5: Material parameters  for “Resin1” (Viscoelastic) 

Stress (MPa) Error (%) ૙ (GPa)ࡱ ૚ࢄ
ି૚ (GPa) ࣎૚ (s) 

2.67 5.3% 0.9445 3.967 337 

4.55 7.1% 0.9010 3.997 127 

5.15 2.6% 0.8804 4.002 94 

6.23 4.2% 0.8392 4.009 55 

7.58 1.7% 0.7898 4.015 29 

10.60 3.1% 0.7325 4.022 7 
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Table 6: Fitting parameters for NVP model 

Material 
૜(MPa-3)܊ ૚(MPa-1)܊ ૞(MPa-1)܊  ૙܌ (MPa)ࢇܛ ૚ܕ

	૛(MPa-2)܊ ૟(MPa-2)܊ ૝܊   ૚(s)܂ ૛ܕ

PIPE 
-4.84E-04 -1.57E-05 -0.223 0.171 -0.015 -0.0236 

3.10E-04 0.052 0.020 0.053 39.5  

RES1 
1.38E-03 1.47E-05 0.048 0.037 -0.108 -0.0483 

-2.86E-04 -0.007 0.022 0.140 -15162  

 

Table 7: Material parameters  for “PIPE” (Viscoplastic) 

Stress (MPa) Error (%) ૙ (GPa)ࡱ ૙ (MPa-1)࡯  ૚࡯ (s) ࢀ

2.97 1.8% 0.4302 0.00033 313.1 0.2472 

5.47 4.3% 0.5332 0.00048 300.7 0.2585 

6.7 5.9% 0.5332 0.00054 296.7 0.2610 

7.71 6.4% 0.5332 0.00061 293.9 0.2626 

 

Table 8: Material parameters for “Resin1” (Viscoplastic) 

Stress (MPa) Error (%) ૙ (GPa)ࡱ ૙ (MPa-1)࡯  ૚࡯ (s) ࢀ

2.67 5.0% 0.9445 0.00073 10406.0 0.2392 

4.55 3.7% 0.9010 0.00108 11506.2 0.2572 

5.15 3.4% 0.8804 0.00114 11778.1 0.2601 

6.23 7.2% 0.8392 0.00124 12208.5 0.2641 

7.58 4.4% 0.7898 0.00139 12668.4 0.2674 

10.60 3.4% 0.7325 0.00208 13495.2 0.2717 
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Table 9: Fitting parameters for NVE long term model 

Material ܊′૙(MPa) ܊′૚(MPa) ૜(MPa-1)′܊ ૛′܊ ૝(MPa)′܊  ૙(s)′܋

PIPE -19972 72.7 6.772 0.5435 22.0 2.318e-06 

RES1 9782 128.9 6.151 3.8827 272.7 3.414e-06 

RES2 -4231 660.7 2.315 3.5057 -118.1 2.621e-06 

RES4 5130 -331.6 28.539 0.5392 -378.2 1.1338e-06 

PE80 -35906 445.1 6.044 0.6635 222.4 1.6682e-06 

 

 

Table 9 (cont’d): Fitting parameters for NVE long term model 

Material ܌૙ ܌૚ ܌૛ ܌૜ ܌૝ ܌૞ 

PIPE 0.8735 0.4802 -1.0359 2.7954 1.9781 -0.2065 

RES1 -2.2412 0.6736 -0.2153 15.7128 -0.4458 -2.5547 

RES2 -0.8276 -0.95436 0.21306 10.1362 3.7429 -0.1288 

RES4 0.1035 0.8721 -1.5122 0.7342 7.4731 2.3958 

PE80 -2.1686 -0.5946 -0.1970 0.5938 1.8661 0.4858 
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Table 10: Fitting parameters for NVP long term model 

Material ࢈′૚ 

MPa-

1 

 ૛′࢈

MPa-

2 

 ૜′࢈

MPa-

3 

 ૞′࢈ ૝′࢈

MPa-1 

 ૟′࢈

MPa-2 

 ࢇ′࢙ ૛′࢓ ૚′࢓

MPa 

 ૚′ࢀ

(s) 

PIPE 

-4
.4

8E
-0

4 

3.
08

E
-0

4 

-1
.6

7E
-0

5 0.0521 -
0.2289 

0.0210 0.1730 0.0510 -
0.015 

43 

RES1 

1.
31

E
-0

3 

-2
.7

3E
-0

4 

1.
41

E
-0

5 -
0.0068 

0.0507 0.0222 0.0365 0.1444 -
0.101 

-
17679 

RES2 

7.
05

E
-0

5 

1.
35

E
-0

4 

-3
.6

7E
-0

7 -
0.0236 

-
0.0078 

0.0010 0.0211 0.1675 -
0.183 

6538 

RES4 

1.
22

E
-0

5 

-1
.8

3E
-0

6 

8.
78

E
-0

8 -
0.0255 

0.0274 0.0041 -
0.2245 

0.3114 -
0.003 

0 

PE80 

-2
.1

7E
-0

3 

-7
.8

9E
-0

4 

9.
75

E
-0

4 -
0.0616 

-
0.3767 

0.0267 0.0836 0.0736 0.020 10635 

 

 

Table 10 (cont’d): Fitting parameters for NVP long term  model 

Material ࢊ૚ ࢊ૛ ࢊ૜ ࢊ૝ ࢊ૞ ࢊ૟ ࢔૚ ࢔૛ ࢙ ࢀ૛ 

PIPE -0.024 0.025 0.002 -0.018 -0.002 -0.008 -0.018 -0.004 0.010 0.008 

RES1 -0.048 0.014 0.014 0.014 0.008 -0.018 -0.006 0.006 -0.010 0.022 

RES2 0.043 0.004 -0.045 -0.024 0.089 -0.009 0.036 0.002 -0.014 -0.032

RES4 0.048 -0.012 0.011 -0.004 -0.021 -0.042 -0.017 0.004 0.013 0.027 

PE80 0.099 0.082 0.069 0.041 -0.035 0.009 -0.023 -0.029 0.060 -0.037
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Table 11: Fitting error, PIPE material (test time of 40 hours, case I) per Eq. (71) 

Stress 4.42 MPa 6.08 MPa 8.15 MPa 

Error-NVE 0.0896 0.0571 0.0367 

Error-NVP 0.1600 0.0249 0.1247 

 

Table 12: Fitting error, PIPE material (test time of 7 days, 

case II) per Eq. (71) 

Stress 6.75 MPa 

Error-NVE 0.0287 

Error-NVP 0.1308 
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Chapter 4 

Finite Element Implementation of Viscoelastic and Viscoplastic 

Models based on Multi-Integral Formulation 

 

This chapter presents finite element (FE) implementation of phenomenological three-dimensional 

viscoelastic and viscoplastic constitutive models for long term behaviour prediction of polymers. 

Multiple integral representation for three-dimensional behaviour, which is an extension of linear 

superposition to the nonlinear range, is employed. The method is based on the small strain assumption, 

but is extended to large deformation for materials in which the stress-strain relation is nonlinear and 

the concept of incompressibility is governing. An empirical approach is employed for determination of 

material parameters in the constitutive equations, based on measured material properties. The modelling 

process uses a spring and dash-pot, and a power-law approximation function method for viscoelastic 

and viscoplastic nonlinear behaviour, respectively. The model improvement for long term behaviour 

prediction is done by modifying the material parameters in such a way that they account for the current 

test time. The determination of material properties has its basis on the non-separable type of relations 

for nonlinear materials in which the material properties change with stress coupled with time. The 

proposed viscoelastic and viscoplastic models are implemented in a user material algorithm of the FE 

general purpose program ABAQUS and the validity of the models is assessed by comparisons with 

experimental observations from tests on HDPE samples in one-dimensional tensile loading (done by 

Liu (Liu, 2007)).  Comparisons show that the proposed constitutive model can satisfactorily represent 

the time-dependent mechanical behaviour of polymers even for long term predictions. 

4.1 Introduction 

Modelling of polymeric materials can proceed with two general approaches:  micro- and macro- 

mechanical. Micromechanical models emphasize the relation between the properties of materials and 

their microstructure. Examples of such models are works by Alvarado et al. (Alvarado, et al., 2010), 

Zehsaz et al. (Zehsaz, et al., 2014), Behzadfar et al. (Behzadfar, et al., 2013) and Popa et al. (Popa, et 

al., 2014).  Such modelling can provide an excellent insight into what elements of molecular structure 

affect macro-scale behaviour and as such can guide in material manufacturing, processing and 

development. 
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In this chapter a macromechanical approach is presented. Such approach must be employed for 

predicting the mechanical response of polymers for structural analysis. In this approach, which is 

applied herein to semicrystalline polymers, the phenomenological models of viscoelastic/viscoplastic 

solids and/or irreversible thermodynamics with internal variables are employed. The theoretical 

formulation results in the evolution equation of stress or strain, which is formulated as a linear or 

nonlinear differential equation. The equation can be a function of time, stress or strain rate (time 

hardening theory) or strain, stress and strain rate (strain hardening theory). 

Many researchers have carried out macromechanical investigations on polymers in the past two 

decades. Cheng, Polak and Penlidis (Cheng, et al., 2011) presented a rigorous statistical approach for 

modelling creep compliance of polyethylene (PE). They examined linear viscoelastic modelling using 

the multi-Kelvin element theory and compared test data with this theory in two forms: model linear in 

parameters and model nonlinear in parameters. In this work, and other similar theoretical investigations, 

experimental results play an important role, since they give insights into the material behaviour, and 

form the basis for model validation. Zhang and Moore performed extensive experimental work to 

characterize the nonlinear time-dependent response of the material tested under uniaxial compression 

(Zhang, et al., 1997). Drozdov and Christiansen reported their observations on uniaxial tensile tests 

with constant strain rates at moderate finite deformations, as well as in creep and relaxation tests on a 

thermoplastic elastomer (ethylene–octane copolymer) (Drozdof, et al., 2006) and polyethylene 

(Drozdov, et al., 2003). Liu et al. (Liu, et al., 2008) presented an approach for modelling mechanical 

behaviour of polyethylene materials where both viscoelastic and viscoplastic models were developed 

based on one-dimensional creep tests.  The model corroboration was done by comparing results of 

tensile, step-loading, and load-rate creep with experimental ones. Ayoub et al. (Ayoub, et al., 2010), 

Ellyin et al. (Ellyin, et al., 2007), Cao et al. (Cao, et al., 2010), Wendlandt et al. (Wendlandt, et al., 

2010) and Pan et al. (Pan, et al., 2012) also used experimental results for material parameters 

determination. 

Rigorous numerical methods for predicting the material behaviour are necessary for analysis of 

materials and structural components. Generally, three features of usefulness of a numerical model can 

be described (Zhang, et al., 1997) as: 1) the constitutive model should be able to predict material 

response well for a wide range of loading histories; 2) the constitutive formulation should be simple 

and suitable for easy implementation in computer algorithms; and 3) the parameters in the model should 

be easily evaluated from experimental data. 
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Finite element implementation of constitutive equations, as a rigorous numerical method, has been 

researched in recent years. Kim et al. (Kim, et al., 2004) proposed a FE formulation for rubber under 

small oscillatory loads superimposed on large static deformations. Using a three-dimensional mixed 

finite element method with a nonlocal pressure field, Areias and Matous (Areias, et al., 2008) modeled 

nonlinear viscoelastic response of reinforced elastomers. Hasanpour and Ziaei-Rad ( (Hasanpour, et al., 

2008) and (Hasanpour, et al., 2009)) also proposed constitutive equations and developed a finite 

element (FE) procedure implemented in a code to predict the response of elastomer bushings. 

Naghdabadi et al. (Naghdabadi, et al., 2012) also investigated the same material by developing a 

phenomenological finite strain viscoelastic constitutive model, within the framework of irreversible 

thermodynamics with internal variables. They implemented the proposed procedure into a user-defined 

subroutine UMAT in the nonlinear finite element software ABAQUS/Standard, which is applicable for 

compressible polymers and elastomers. These materials properties obey the Ogden hyperelastic model 

(Naghdabadi, et al., 2012). Some other works that used finite element programs for simulating 

viscoelastic or viscoplastic analysis can be found in (Krishnaswamy, et al., 1990), (Zienkiewicz, 1977) 

and (Hughes, et al., 1978). 

The above presented models give satisfactory predictions within the short term. One of the most 

known methods for predicting long term behaviour of polymers is based on the Time Temperature 

Superposition Principle (TTSP), which is in its turn based on short term behaviour and uses the 

information from short duration tests at different temperatures. The method uses the similarity of the 

variation of relaxation modulus (creep compliance) with time and temperature. The variations in time 

and temperature of the moduli (compliances) of a polymer are related (Brinson, et al., 2008). This 

method provides a master curve, which is shifted to longer term using a shift factor. Numerous works 

have been done on predicting long term response of polymers and characterizing the shift factor. Gupta 

et al. (Gupta, et al., 2012) extended an effective time framework to successfully demonstrate a time–

temperature superposition of creep and stress relaxation data of a soft glassy system comprised of a 

clay suspension. Diani et. al (Diani, et al., 2015) characterized the time-temperature superposition 

property of an amorphous polymer acrylate network. Tajvidi et. al (Tajvidi, et al., 2005) applied the 

method to viscoelastic properties of a high-density polyethylene (HDPE) composite, and tested its 

validity. Other sample works are from Li (Li, 2000), Nguyen et. al (Nguyan, et al., 2013) and Naya et. 

al (Naya, et al., 2013). 
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Although many works have been done on the TTSP method for predicting the long term behaviour 

of polymers, to the best of our knowledge, no work is available on methods other than TTSP, and this 

research aims to fill this gap by providing an efficient empirical approach considering that one means 

of generating relevant design data is to investigate prototype structures. 

In this chapter a finite element implementation of phenomenological three-dimensional viscoelastic 

and viscoplastic constitutive models are presented for polymeric materials. This procedure can be used 

to predict the nonlinear response of material for long term problems, which is beyond the experimental 

time-frame. For this the following steps are taken: 

1- Model definition is done based on Multi Integral approach (section 4.2) 

2- Constitutive equations are simplified based on the following assumptions (section 4.2): 

‐ Full incompressibility 

‐ Superposition of small to large deformation (Boltzmann’s superposition) 

‐ Simplification of material functions 

3- Material/kernel functions (ܭଶ, ܭ଺, and ܭଵଶ) are approximated as follows (section 4.3): 

‐ Exponential form of equations for Viscoelastic behaviour 

‐ Power law form of equations for Viscoplastic behaviour 

4- Empirical approach is used for defining the fitting parameters (section 4.3) 

5- Model parameters are optimized for long term prediction (section 4.4) 

6- Models are implemented in FE user subroutine (section 4.5) 

7- The presented models results are validated (section 4.6) 

In section 4.2 (steps 1 and 2), a multiple integral approach, which in a sense is an extension of 

Boltzmann’s linear superposition principle to the nonlinear range (Findley, et al., 1976), will be 

employed for three-dimensional behaviour of viscoelastic and viscoplastic materials. Boltzmann’s 

superposition principle states that the sum of the strain outputs resulting from each component of stress 

input is the same as the strain output resulting from the combined stress input (Figure 18). This principle 

is widely used in viscoelastic, viscoplastic and plasticity descriptions of materials’ behaviour (Findley, 

et al., 1976). The current research benefits from some simplifications of the constitutive equations, 
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namely the assumption of fully incompressible behaviour, the superposition of small time dependent 

deformation on large deformation, and finally the simplification of the material functions (see section 

4.3). 

The resulting constitutive equations include unknown kernel functions (material functions), which 

are defined in section 4.3. First, the estimation process (step 3) uses the spring and dash-pot, exponential 

form, and plasticity power-law function methods for viscoelastic and viscoplastic modelling, 

respectively. The determination of material properties is based on the non-separable nature of relations 

for nonlinear materials in which the material properties change with stress coupled with time. Then, the 

equations describing material behaviour are modified based on the measured material properties (tests 

done by Liu (Liu, 2007)) through an empirical approach (step 4). For this, the resulting equations are 

fitted to experimental data and fitting parameters are obtained. 

In section 4.4, the models are optimized for predicting long term responses, which is beyond the test 

time (step 5). The resulting models are able to predict the behaviour of both viscoelastic and viscoplastic 

materials for extended times and can be implemented in finite element procedures (step 6).  The 

procedure is presented in section 4.5 which is the implementation of the developed material models 

into a user-defined material algorithm in Abaqus (UMAT). 

Steps 3, 4 and 5 (sections 4.3 and 4.4), in which deal with material model functions and parameters 

and nonlinearization for long term prediction, use the information provided in Chapter 3, and the 

formulations, graphs and parameters in tables associated with this concept are all repetitions from 

Chapter 3. The repetitions are intentionally, as the author intends to keep this chapter independently 

conveyer of the proposed concept in the chapter. 

The current version of the commercial software Abaqus allows only linear viscoelastic modelling, 

which can be used for both small and large strain problems. It has to be used in conjunction with linear 

elastic behaviour or hyperelastic behaviour. Material properties are defined either by a specification of 

Prony series parameters, or by an inclusion of creep, relaxation or frequency test data. The built-in 

procedure in Abaqus software is not able to analyze the nonlinear behaviour of viscoelastic and 

viscoplastic materials. Noting that nonlinear time domain analysis requires application of time- and 

stress-dependent material properties, a specific procedure needs to be defined, which justifies the 

application of user generated subroutines for material definition in this work. 
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The validity of the models is assessed by comparison with experimental observations on high density 

polyethylene (HDPE) specimens under uniaxial loading (done by Liu (Liu, 2007)), in section 6 (step 

7). The comparisons show that the proposed constitutive model can satisfactorily represent the time-

dependent mechanical behaviour of polymers. 

4.2 The Constitutive Model 

Polymeric materials exhibit remarkable time dependent viscous behaviour. It is therefore difficult to 

distinguish an elastic deformation regime from a viscous regime simply from the stress–strain, creep 

or relaxation curves. Part of the elastic deformation is recoverable during and after the unloading while 

some parts are permanent. Experimental observations show that the mechanical behaviour can be 

decomposed into two parts: an elastic and a rate-dependent response (Hasanpour, et al., 2009). In other 

words, the material can be modelled as a combination of elements representing both elastic (spring) 

and viscous (dash-pot) responses. In general, the three-dimensional behaviour of both viscoelastic and 

viscoplastic materials can be described by: 

ሶ௜௝ߝ  ൌ ,௞௟ߪ௜௝ሺߚ  ௞௟ሻ (73)ߝ

which has its basis on the strain hardening phenomenon, and can also be equivalently described by 

the following: 

ሶ௜௝ߝ  ൌ ݃௜௝ሺߪ௞௟,  ሻ (74)ݐ

Where Eq. (74) indicates the time hardening phenomenon. Here ߝሶ௜௝ is the strain rate and ߚ௜௝ and ݃௜௝ 

are functions of stress, ߪ௞௟, and strain ߝ௞௟ or time, ݐ, respectively.  

This constitutive model requires to define the field equations to analyze three-dimensional problems. 

For a viscoelastic domain, ܸ, under a constant sustained load, the solution procedure involves finding 

the displacement and the stress tensor for each point of the domain (ݔଵ, ଶݔ 	∈ 	ܸ) in time ݐ. The 

displacement vector ݑ௜ሺ	ݔଵ, ,	ଶݔ ,ଵݔ	௜௝ሺߪ ሻ and the stress tensorݐ ,	ଶݔ  ሻ need to satisfy the kinematicݐ

relation between strains and displacements and equations of static equilibrium, respectively.  The 

relationship between strains and stresses is governed by  either Eq. (73) or Eq. (74), which is the 

constitutive relation for all times ݐ and ݔଵ, ଶݔ 	∈ 	ܸ. The solution must also satisfy the specified initial 

conditions at time ݐ	 ൌ 	0, the traction boundary conditions, and the displacement boundary conditions 

(Krishnaswami, et al., 1992).  



 

 83 

Nonlinear materials can be categorized by determining whether the effects of stress, ߪ, and time, ݐ, 

on the strain, ߝ, are separable or not. If all observed compliance curves for nonlinear materials have the 

same shape, the material obeys nonlinear-separable model, i. e. same function for all stresses. In this 

case, ߝ is given by the following equation (Krishnaswamy, et al., 1992) 

௜௝ߝ  ൌ ݄௜௝ሺߪ௞௟ሻ݂ሺݐሻ (75) 

where ݄௜௝ is a function of stress and is associated with ߝ௜௝ , and ݂ሺݐሻ represents a function of time. 

Otherwise, if the shapes of compliance curves, at all stress levels, are not similar, then ߝ must be 

represented by a different function of time at each stress level. In this case, the material can only be 

described by the general form of nonlinear non-separable model given by Eq. (74) (Krishnaswamy, et 

al., 1992). For linear materials, the strain is linearly related to the stress. If the variation of the Poisson’s 

ratio with time is negligible, as in the case of ductile polymers, Eq. (74) can be written as: 

௜௝ߝ  ൌ ௜௞ߪ ߯௞௝ሺݐሻ (76) 

 

Figure 29: Strain resultant due to the assumed constant stress increments. Representation of 

superposition Principle. 

where ߯ሺݐሻ is time dependent relaxation compliance. Discretizing the above relation for small 

changes of strain due to a constant stress in a small time interval and for one-dimensional case, yields 

the following formula, which represents the resultant strain shown in Figure 18. 
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ሻݐ௜ሺߝ∆  ൌ ሺ∆ߪ௜ሻ ߯ሺݐሻ (77) 

Here ߝ௜ is a resulting constant strain due to small change in constant stress, ∆ߪ௜.  

Eq. (77) is a representation of Hooke’s law. If a nonlinear material is stretched beyond its elastic 

limit, a plastic deformation contributes in the resultant response, meaning that the material doesn’t 

return to its original shape when the applied force is removed. It will permanently deform and will no 

longer obey Hooke’s law. Polymers do not obey Hooke’s law when they are deformed.  With reference 

to the Boltzmann’s superposition principle, which states that the sum of the strain outputs resulting 

from each component of stress input is the same as the strain output resulting from the combined stress 

input, in discretized model, the time-dependent strain resulting from a nonlinear constant stress may be 

represented by a polynomial as: (Findley, et al., 1976) 

ሻݐ௜ሺߝ  ൌ ሺ∆ߪ௜ሻ߯ଵሺݐሻ ൅ ሺ∆ߪ௜ሻଶ ߯ଶሺݐሻ ൅ ሺ∆ߪ௜ሻଷ ߯ଷሺݐሻ ൅ ⋯ (78) 

This equation is a multi-order discrete constitutive equation and ߯௜ are time dependent material 

functions (with inverse stress unit). By increasing the order of the equation in RHS, the accuracy 

increases. The Eq. (78) can be further expanded to ܰ steps of stress change, as follows: 

 
ሻݐሺߝ ൌ෍ሺ∆ߪ௜ሻ߯ଵሺݐ െ ௜ሻݐ

ே

௜ୀ଴

൅෍෍ሺ∆ߪ௜ሻ൫∆ߪ௝൯߯ଶ൫ݐ െ ,௜ݐ ݐ െ ௝൯ݐ

ே

௝ୀ଴

ே

௜ୀ଴

൅෍෍෍ሺ∆ߪ௜ሻ൫∆ߪ௝൯ሺ∆ߪ௞ሻ߯ଷ൫ݐ െ ,௜ݐ ݐ െ ,௝ݐ ݐ െ ௞൯ݐ

ே

௞ୀ଴

ே

௝ୀ଴

ே

௜ୀ଴

൅ ⋯ 

(79) 

If all ߯௜, except ߯ଵ, vanish for all time arguments, Eq. (79) becomes the Boltzmann linear 

superposition principle. This equation can be considered as an extension of the linear superposition 

principle by adding the nonlinear effect (Findley, et al., 1976). Eq. (79) models only a limited number 

of stress changes, thus the integral form of total resultant strain at current time, ߝሺݐሻ, for the case of 

varying stress, ߪ, for time ݐ, would be (Findley, et al., 1976): 

 
ሻݐሺߝ ൌ න ߯ଵሺݐ െ ሶߪଵሻߦ ሺߦଵሻ݀ߦଵ

௧

଴
൅ න න ߯ଶሺݐ െ ݐଵሻ߯ଶሺߦ െ ሶߪଶሻߦ ሺߦଵሻߪሶሺߦଶሻ݀ߦଵ݀ߦଶ

௧

଴

௧

଴

൅ න න න ߯ଷሺݐ െ ݐଵሻ߯ଷሺߦ െ ݐଶሻ߯ଷሺߦ െ ሶߪଵሻߦሶሺߪଷሻߦ ሺߦଶሻߪሶ ሺߦଷሻ݀ߦଵ݀ߦଶ݀ߦଷ
௧

଴

௧

଴

௧

଴

൅ ⋯ 

(80) 
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which is a multi-integral representation of the constitutive equation (Eq. (76)) in one-dimension 

(uniaxial). Here ߦ is an integration variable (has time unit), and ߪሶሺߦሻ݀ߦ is introduced instead of ݀ߪሺξሻ.  

The resulting uniaxial nonlinear constitutive relation can be extended to a three-dimensional stress 

state by representing the stress tensor as summation of a volumetric stress,	ߪ௩, and the deviatoric stress, 

௜௝ߪ ௜௝, which isݏ ൌ ௜௝ߜ௩ߪ ൅  ௜௝. Therefore, all possible terms of the strain for isotropic materials can beݏ

expressed as volumetric and deviatoric effects. After some mathematical manipulations, the resulting 

relation will be a N-order constitutive equation for creep strain in terms of stress history (see (Findley, 

et al., 1976) for details).  

When a state of stress (or strain) is applied abruptly at time ݐ ൌ 0, and is held constant for a time 

period, then within that period, all time parameters in the kernel functions reduce to ݐ instead of ሺݐ െ  ௜ሻߦ

and the integrals may be evaluated by means of the Dirac delta function ߜሺݐሻ for which ߪሶሺߦሻ ൌ  ሻߦሺߜߪ

for creep (with constant stress) and ߝሶሺߦሻ ൌ  ሻ for relaxation (with constant strain). Applying theseߦሺߜߝ

relations, the following nonlinear relation for creep at multi-dimensional constant stress can be derived 

(Findley, et al., 1976): 

ሻݐሺࢿ  ൌ ሺ࣌ሻݎݐ	ଵܭሺ	ࡵ ൅ ଷܭ ሺ࣌ሻݎݐሺ࣌ሻݎݐ ൅ ସܭ ሺ࣌࣌ሻݎݐ ൅ ଻ܭ ሺ࣌࣌࣌ሻݎݐ ൅

ሻ	ሺ࣌ሻݎݐሺ࣌࣌ሻݎݐ	଼ܭ ൅ ࣌൫ܭଶ ൅ ହܭ ሺ࣌ሻݎݐ ൅ ଽܭ ሺ࣌ሻݎݐሺ࣌ሻݎݐ ൅ ଵ଴ܭ ሺ࣌࣌ሻ൯ݎݐ ൅ ࣌ଶሺܭ଺ ൅

ଵଶܭሺ࣌ሻሻ+࣌ଷݎݐ	ଵଵܭ ൅ ⋯ 

(81) 

where ݎݐሺ࣌ሻ is the trace of the tensor ࣌ and the bold notation indicates three-dimensional tensors. 

Eq. (81) consists of ܰሺܰ ൅ 1ሻ unknown kernel functions, ܭ௜, where ܭ௜ are functions of time: 

௜ܭ  ൌ ݐ௜ሺܭ െ ξଵ, ݐ െ ξଶ, ݐ െ ξଷ, … , ݐ െ ξ୬ሻ ,

݅ ൌ ݊ሺ݊ െ 1ሻ ൅ 1~݊ሺ݊ ൅ 1ሻ 
(82) 

where ݊ indicates the ݊௧௛ term of the polynomial.	ܭ௜ are material parameters, which are defined from 

experiments. 

In the presented superposition model some assumptions are applied, namely the material is taken to 

be isotropic and the stress and strain are zero prior to time ݐ ൌ 0. In addition, the assumption of 

incompressibility is employed which simplifies the equations by decreasing the number of unknown 

Kernel functions, ܭ௜.  An incompressible material is defined as one whose response to stressing or 

straining is insensitive to volumetric type changes in strain or stress. This means the relation between 

the volumetric strain and stress is uncoupled. In the creep formulation, incompressibility implies that 
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1) a volumetric stress ߪ௩ (mean normal stress or negative pressure) has no effect on the total strain, and 

2) the total stress has no effect on volumetric type strain ߝ௩. The stress tensor ߪሺݐሻ may be written in 

terms of the deviatoric stress tensor ݏሺݐሻ and the volumetric stress, ߪ௩ሺݐሻ, which is ߪ௜௝ ൌ ௜௝ߜ௩ߪ ൅  .௜௝ݏ

Also ݎݐ	ݏ ൌ 0 and ߪ௩ ൌ ௞௞/3ߪ ൌ െ݌ and ݌ is the hydrostatic pressure. Therefore: 

 ࣌ ൌ ࢙ ൅  ௩ߪࡵ

ሺ࣌ሻݎݐ ൌ ሺ࢙ሻݎݐ ൅  ௩ߪ3

࣌ଶ ൌ ࢙ଶ ൅ ௩ߪ2࢙ ൅  ௩ଶߪࡵ

ሺ࣌ଶሻݎݐ ൌ ሺ࢙ଶሻݎݐ ൅  ௩ଶߪ3

࣌ଷ ൌ ࢙ଷ ൅ 3࢙ଶߪ௩ ൅ ௩ଶߪ3࢙ ൅  ௩ଷߪࡵ

ሺ࣌ଷሻݎݐ ൌ ሺ࢙ଷሻݎݐ ൅ ௩ߪሺ࢙ଶሻݎݐ3 ൅  ௩ଷߪ3

(83) 

Substituting in Eq. (81) we have 

ሻݐሺࢿ  ൌ ̂ߝࡵ ൅ ଵܭሺ3	ࡵ ൅ ௩ߪଶሻܭ ൅ ଶ࢙ܭ ൅ ࡵ ሺ9ܭଷ ൅ ସܭ3 ൅ ହܭ3 ൅ ௩ଶߪ଺ሻܭ ൅ ሺ3ܭହ ൅

௩ߪ଺ሻ࢙ܭ2 ൅ ሺ࢙ଶሻݎݐସܭ	ࡵ ൅ ଺࢙ଶܭ ൅ ࡵ ሺ3ܭ଻ ൅ ଼ܭ9 ൅ ଽܭ9 ൅ ଵ଴ܭ3 ൅ ଵଵܭ3 ൅

ଽܭ௩ଷ+ሺ9ߪଵଶሻܭ ൅ ଵ଴ܭ3 ൅ ଵଵܭ6 ൅ ଻ܭሺ3	ࡵ	+௩ଶߪଵଶሻ࢙ܭ3 ൅ ଼ܭ3 ൅ ௩ߪଵ଴ሻ࢙ଶܭ ൅

ሺ࢙ଶሻݎݐ	ଵ଴࢙ܭ	+ሺ࢙ଷሻݎݐ଻ܭ	ࡵ ൅ ଵଶܭ ࢙ଷ 

(84) 

where ̂ߝ is any non-stress induced volumetric strain (Findley, et al., 1976). The incompressibility 

assumption requires the coefficients of terms containing ߪ௩ to be zero. This removes all kernel functions 

except ܭଶ, ܭ଺, and ܭଵଶ. Therefore, the final nonlinear relation for constant stress reduces to a simplified 

form of: 

ሻݐሺࢿ  ൌ ࣌ሺܭଶሻ ൅ ࣌ଶሺܭ଺ሻ ൅ ࣌ଷܭଵଶ +… (85) 

Here it is rewritten as 

ሻݐሺࢿ  ൌ ሻݐ଴ሺߖ࣌ ൅ ࣌ଶߖଵሺݐሻ ൅ ࣌ଷߖଶሺݐሻ+… (86) 

This equation represents the contribution of elastic as well as inelastic portions of the behaviour of 

material to the final resultant strain. By removing the higher order terms, the relation simply reduces to 

the linear elastic Hook’s relation ࢿሺݐሻ ൌ  .଴ߖ	࣌



 

 87 

The form given in Eq. (86) is the same as derived by a different method by Locket and Strafford 

(Spencer, et al., 1959). They also found three independent kernel functions are required for calculation 

of finite strain. By observing the trend of terms in Eq. (86) and considering higher orders of nonlinearity 

in Eq. (77), one can come up with the following general relation for incompressible 

viscoelastic/viscoplastic materials 

 
ሻݐሺࢿ ൌ ࣌൭ߖ଴ሺݐሻ ൅෍࣌௡ߖ௡ሺݐሻ

ே

௡ୀଵ

൱ (87) 

ܰ is the order of the nonlinear part.  

The next step is determination of unknown functions which is done by curve fitting of the model to 

one-dimensional creep tests. This yields the nonlinear one-dimensional form of a constitutive equation 

for constant stress. This form will then be used to construct 3-D constitutive equations, which is the 

final goal of this investigation. This procedure will be explained in the following. 

4.3 Determination of material functions 

A number of tests were done by Liu (Liu, 2007) at the University of Waterloo, on high density and 

medium density polyethylene materials. Experiments were performed on five types of PEs and included 

tests on: short term tensile creep (24 hours), long term creep (7 days and 14 days), creep with step 

loading, constant stress rate, constant strain rate, and complex load history tests (Liu, et al., 2008). The 

specimens were produced from resins by melting them and machining, and from pipes by cutting out 

the samples (Table 13). 24-hour creep testing was done at different stress levels to examine time 

dependent and nonlinear behaviour of the materials. The testing showed clear differences in the 

behaviour of different HDPEs. Based on the measured strain values under different stress levels and 

observing creep compliance ܦሺݐሻ ൌ  diagrams versus time (Liu, et al., 2008), it can be inferred ߪ/ሻݐሺߝ

that polyethylenes show high degree of material nonlinearity and time dependency. Comparing the 

compliance curves in terms of similarity reveals that they cannot be separated by two stress dependent 

and time dependent terms. This leads to the conclusion that the final constitutive equation of 

polyethylene is a nonlinear-non-separable relationship (Eq. (74)).  

Such uniaxial creep tests provide a straightforward way to determine the material parameters. The 

method is to minimize the Least Squares Error by fitting Eq. (87) to the experimental results and 
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determining material functions ߖ௜. For this, a one-dimensional form needs to be extracted from Eq. 

(87) which is the following: 

 
ሻݐଵଵሺߝ ൌ ଵଵߪ ൭ߖ଴ሺݐሻ ൅෍ߪଵଵ

௡ ሻݐ௡ሺߖ
ே

௡ୀଵ

൱ (88) 

Subscript “11” indicates the component of the tensor in the axial direction. The first step in 

determination of the material properties is finding a good approximation for the time functions, ߖ௜ሺݐሻ.  

Table	13:	List	of	tested	polyethylene	(Liu,	2007)	

No. Material Type Thickness* 
(mm) 

Width** 
(mm) 

Code (kg/mol)࢝ࡹ  ࢔ࡹ
(kg/mol) 

ESCR 
(h) 

1 HDPE‐PIPE  pipe 5.00  13.05  PIPE  Data not available 

2 HDPE‐resin1  resin 5.80  12.76  RES1  127.5  16.3  4.8 

3 HDPE‐resin2  resin  5.65  12.89  RES2  118.5  15.7  1.2 

4 HDPE‐resin4  resin  6.27  12.42  RES4  79.4  19.7  3.6 

5 MDPE‐PE80  resin  5.04  12.76  PE80  202.1  14.0  198.3 

* േ૙. ૙૜ 

∗∗ േ૙. ૙૞	

The more the “time functions” make sense physically, the more realistic the model will be. 

Understanding the theory behind the behaviour of the investigated material is helpful. Below, 

viscoelastic and viscoplastic approaches are discussed.  In viscoelastic theory, constitutive equations 

are usually formulated using one of the differential or integral forms (Lockett, 1972). In contrast to the 

differential formulation (simulating the behaviour by spring and dash-pot elements configuration), 

which involves only the current values of stress and strain and their current time rates, the integral form 

takes into account the history of loading and is more accurate and strict in nonlinear modelling.  The 

most useful analysis in finite element applications is the spring and dash-pot method of modelling 

described by Flugge (Flugge, 1967). According to the concept of fading memory (Bodner, 1984), the 

material response depends more on recent history than on earlier events. Accordingly, this theory 

considers the exponential formulation for most nonlinear materials, such as HDPE, for which the effects 

of stress and time on the resulting strain are not separable. 
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Another approach is the viscoplastic theory with a nonlinear time dependent power-law function, 

which doesn’t have an asymptote, in contrast to the viscoelastic model, which approaches an asymptotic 

limit. Both the viscoelastic and viscoplastic formulations are usually an extension of the theory, which 

considers permanent residual strain by assuming the rate of total strain as summation of elastic and 

plastic strain rates. In this research, the expressions shown in Eq. (89) and Eq. (90) are considered as 

 :ሻ for both viscoelastic and viscoplastic models, respectivelyݐ௡ሺߖ

ሻݐ଴ሺߖ  ൌ ܺ଴ , ሻݐ௡ሺߖ ൌ ௡൫1ܣ െ ݁ି௧/ఛ೙൯ (89) 

 
ሻݐ଴ሺߖ ൌ ܺ଴ , ሻݐ௡ሺߖ ൌ ௡ܤ ൬

ݐ
ܶ
൰
஼೙

 (90) 

where ܣ௡, ߬௡, ܤ௡ and ܥ௡ are material parameters. ܣ௡ and ܤ௡ have same unit as compliance, and ߬௡ 

and ܶ have time unit, and ܥ௡ has no unit. 

Developing the model for viscoelastic behaviour is done by substituting Eq. (89) in Eq. (88) and then 

the viscoplastic modelling follows by the substitution of Eq. (90). 

By substituting Eq. (89) in Eq. (88) one can find the following constitutive equation for viscoelastic 

uniaxial response.  

ሻݐሺߝ  ൌ ,ݐሺ߰	ߪ ሻߪ ൌ ߪ ൥ܺ଴ ൅෍ܺ௡ሺߪሻ൫1 െ ݁ି௧/ఛ೙൯

ே

௡ୀଵ

൩ (91) 

which ܺ௡ ൌ ,ݐ߰ሺ	௡. In this formulationߪ௡ܣ  ሻ is the creep compliance, ܰ is the number ofߪ

approximation terms that is equivalent to the number of Kelvin units in spring and dash-pot modelling, 

ܺ଴ ൌ ଴ݐ ଴ is the elastic time-independent compliance at timeܧ/1 ൌ 0, which is unknown and is 

obtained from experimental results,  for each test. ܺ௡  and ߬௡ are the equivalent creep compliance and 

the relaxation time, respectively, for the ݊௧௛ Kelvin element (see (Flugge, 1967) for more detail). 

For the uniaxial tension case, the stress in the entire deformation is constant and equal to the applied 

stress ߪ. Hence ܺ଴ and ܺ௡ are constant. In such a case the stress does not vary within the domain, the 

spatial gradients of stress and, hence, compatibility, are automatically satisfied and the stress does not 

redistribute within the domain for a uniaxial tensile specimen. For other geometries, wherein the 

gradients in stresses are small, redistribution of stresses with time may be negligible. However, in 

regions of high stress gradients there may be significant redistribution in stress. Use of the non-
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separable form (where ܺ଴, ܺ௡ and ߬ ௡ are functions of stress) in the constitutive model makes it possible 

to take high stress gradients into account. In the following, a procedure which defines the stress- and 

time-dependent fitting functions is presented. 

Most finite element implementations of this form assume that the creep compliance has the 

exponential form of Eq. (91), which is a form of a Prony series approximation, with 2 ൈ ܰ unknown 

material properties (ܺ௡ and ߬௡). The term ܧ଴ ൌ 1/ܺ଴ is called an independent term. One can obtain 

parameter values using least squares estimation by fitting the Prony series to experimental data by either 

fixing a set of ߬௡ (Hildebrand, 1974) or pre-setting either  ܺ௡ or ߬௡ as power law functions of ݐ ( (Liu, 

et al., 2008) & (Sepiani, et al., 2017)). Thus, it is possible to estimate values for ߬௡  as well as ܺ௡ and 

at the same time secure high degree of accuracy in final governing equations. 

In this research, ܺ ௡ and ߬ ௡ are approximated by power-law functions of stress. To reduce the number 

of material functions, which is equal to 2 ൈ ܰ, all values of ܺ௡ and ߬௡ are obtained using four 

parameters ଵܺ, ߬ଵ, ݉ and ߙ  

௡ܣ  ൌ ቀఙ
௠෥
ቁ
௡ିଵ

ଵ   ,    ߬௡ܣ ൌ  ௡ିଵ߬ଵ (92)ߙ

Here ෥݉  is set to be a function of stress, ෥݉ ൌ  and ݉ are considered to be ߙ ,and for simplicity  ,ߪ݉

stress-independent parameters with no unit dimension. To account for high stress gradients, ܺ଴, ଵܺ and 

߬ଵ  are considered to be in the following form of stress dependent approximation functions. 

 ܺ଴ ൌ ሺܽ଴ ൅ ܽଵ݁൫ି௔మఙෝ
య൯ሻିଵ (93) 

(a) ܣଵ ൌ ߪ ሾܾ଴ ൅ ܾଵ ሺܾଶ݌ݔ݁ െ ܾଷߪො െ ܾସ/ߪොሻሿିଵ 
(94) 

(b) ߬ଵ ൌ ܿ଴ ሺെܿଵ݌ݔ݁ ൅ ܿଶߪො ൅ ܿଷߪොଶ െ ܿସߪොଷሻ 

Here ߪො is ߪ ൈ 10ି଺ for simplicity. ܽ଴ and ܽଵ have unit of compliance and ܽଶ has unit of inverse of 

cubic stress. ܾ଴ and ܾଵ have stress unit, ܾଶ has no unit, ܾଷ has inverse unit of stress and ܾସ has unit of 

stress. ܿ଴ has unit of time, ܿଵ has no unit, ܿଶ has unit of inverse of stress, ܿଷ has unit of inverse of 

squared stress, and ܿ ସ has unit of inverse of cubic stress. The parameters ܽ௜, ܾ ௜, ܿ௜, ݉  and α are obtained 

via minimizing the least squares error for the examined HDPE pipe sample material (Liu, 2007). For 

this a code is developed in MATLAB workspace, which allows fitting the model to the test data with 

an optimization technique, which estimates the fitting parameters from experimental data. The fitting 

parameters ܽ௜, ܾ௜, ܿ௜, ݉ and ߙ are cited in Table 14 and Table 15, for all materials, considering ܰ ൌ 6. 
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Figure 30 and Figure 31 show examples of fitting the proposed model (Eq. (91)) to experimental data 

for PIPE and RES1. 

  

Figure 30: Experimental (continuous line) (Liu, 2007), and nonlinear viscoelastic model (dashed 

line) results for 24 hour creep tests (PIPE) 
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Figure 31: Experimental (continuous line) (Liu, 2007), and nonlinear viscoelastic model (dashed 

line) results for 24 hour creep tests (RES1) 

Similar to viscoelasticity, in the theory of viscoplasticity, the total strain rate is considered to be 

decomposable into elastic and inelastic components, which matches our consideration for linear and 

nonlinear portions of behaviour in Eq. (86), which is ߝ௜௝ ൌ ௜௝ߝ
௘ ൅ ௜௝ߝ

௉ . From the literature 

(Krishnaswamy, et al., 1992), a power law function can describe the nonlinear viscoplastic creep 

behaviour. This function is able to model the growing deformation (strain) at decreasing rate, which 

doesn’t approach an asymptotic value and the material remains time-dependent. Here we consider the 

following power-law relationship for resultant strain ( (Krishnaswamy, et al., 1992) & (Liu, et al., 

2008)). 

 
ሻݐሺߝ ൌ ,ݐሺ߰	ߪ ሻߪ ൌ ߪ ൥ܺ଴ ൅෍ܺ௡ሺߪሻ ൬

ݐ
ܶ
൰
஼೔

ே

௡ୀଵ

൩ (95) 

where ܺ௡ ൌ   .௡ߪ	௡ܤ
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Figure 32: Experimental (continuous line) (Liu, 2007), and nonlinear viscoplastic model (dashed 

line) results for 24 hour creep tests (PIPE) 

The formulation parameters are obtained by means of Least Squares approximation method through 

curve fitting process. Here it is considered that: 

௡ܤ  ൌ ቀఙ
௠෥
ቁ
௡ିଵ

௡ܥ    ,   ଵܤ ൌ  ଵ (96)ܥ෤௡ିଵߙ

For simplicity, just two terms of polynomial (ܰ ൌ 1) (Eq. (95)) are taken into account (thus, no need 

to find values for ߙ and ݉෥ ). Through a nonlinearizing process of material parameters for stress gradient 

consideration, based on the experimental observations, the following equations are fitted: 

 

ଵܤ ൌ 	ߪ ቈሺܾଵ ൅ ܾଶߪො ൅ ܾଷߪොଶሻ ቀ
௡ߪ
തߪ
ቁ
൫௕రା௕ఱఙෝା௕లఙෝమ൯

቉ 

ଵܥ ൌ ݉ଵ ൅݉ଶ ൭1 ൅
1
2
݊ܽݐܿݎܽ	 ൬

ොߪ െ ௔ݏ
തߪ

൰൱ 

And             ܶ ൌ ܶ1 ቀ
݊ߪ
ഥߪ
ቁ
݀0

 

(97) 
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Figure 33: Experimental (continuous line) (Liu, 2007), and nonlinear viscoplastic model (dashed 

line) results for 24 hour creep tests (RES1) 

Table	14:	Material	fitting	parameters	for	ܺ଴	(Eq.	(93))

Material	 ܽ଴ (MPa-1)  ܽଵ (MPa-1)  ܽଶ (MPa-2) 

PIPE	 5.33e8  1.36e4  0.1864 

RES1	 7.25e8  2.31e8  0.0029 

RES2	 ‐5.82e13  5.82e13  4.7e‐9 

RES4	 ‐3.83e13  3.83e13  1.9e‐9 

PE80	 ‐5.07e8  1.25e8  4.3e‐4 
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Table	15:	Material	fitting	parameters	for	NVE	model	(Eq.	(92)	&	Eq.	(94))	

	  ܕ હ  ૙ (MPa)܊  ૛܊ ૝ (MPa)܊  ૙ (s)܋  ૛ (MPa‐1)܋ ૝ (MPa‐3)܋

૚ (MPa)܊ ૜ (MPa‐1)܊    ૚܋  ૜ (MPa‐2)܋  

PIPE	 0.5534  18.57  167.6  0.98  0.055  1.78e‐5  ‐0.778  0.00015 

668.6  2.6e‐5    ‐21.0  0.0216   

RES1	 0.4036  35.58  1838  0.00748  ‐3.43  6.87e‐6  ‐0.249  0.00052 

484.9  ‐0.0168    ‐18.52  0.0018   

RES2	 0.7504  18.72  ‐58.96  0.0245  ‐1.08  1.23e‐7  ‐0.418  0.00157 

3061.3  0.111    ‐24.1  0.046   

RES4	 0.1939  76.54  ‐194573  3.127  ‐0.025  0.00071 0.442  0.00325 

8647  ‐2.5e‐10    ‐11.8  ‐0.014   

PE80	 0.7231  44.41  ‐9.7e‐5  0.275  ‐6e‐27  1.18e‐5  ‐0.46  0.00384 

572.1  0.0068    ‐20.1  0.026   

 

 ത is introduced for dimensionalߪ .ଵ has no unitܥ ଴ has unit of inverse of stress, ܶ has time unit andܥ

consistency (in this research we have ߪത ൌ  ,Here, ܾଵ has unit of compliance (inverse of stress) .(ܽܲܯ	1

ܾଶ has unit of inverse of squared stress and ܾଷ has unit of inverse of cubic stress. ܾସ has no unit, ܾହ has 

unit of inverse of stress and ܾ଺ has unit of inverse of squared stress. ݉ଵ, ݉ଶ and ݀଴ have no units. Unit 

of ݏ௔ is same as stress and ଵܶ is time. 

ܺ଴ is found directly from experiments and is the same for viscoelastic and viscoplastic modelling 

(Eq. (93) and Table 14). Fitting parameters for viscoplastic modelling are tabulated in Table 16 for all 

materials from Table 13.  Examples of curve fitting of the presented formulation to experimental data 

is shown in Figure 32 and Figure 33. 
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Table	16:	Material	fitting	parameters	for	NVP	model	(Eq.	(97))	

Material	  ૚܊

(MPa-1) 

 ૛܊

(MPa-2) 

 ૜܊

(MPa-3) 

૝܊ ૞܊

(MPa-1) 

૟܊

(MPa-2) 

૚ܕ ૛ܕ ࢇܛ

(MPa) 

 ૚܂

(s) 

૙܌

PIPE	

‐4
.8
4
E‐
0
4
 

3
.1
0
E‐
0
4
 

‐1
.5
7
E‐
0
5
  0.052 ‐0.223 0.020 0.171 0.053 ‐0.015  39.5  ‐0.0236

RES1	

1
.3
8
E‐
0
3
 

‐2
.8
6
E‐
0
4
 

1
.4
7
E‐
0
5
  ‐0.007 0.048 0.022 0.037 0.140 ‐0.108  ‐15162  ‐0.0483

RES2	

7
.1
4
E‐
0
5
 

1
.1
7
E‐
0
4
 

‐3
.4
0
E‐
0
7
  ‐0.031 ‐0.008 0.001 0.021 0.160 ‐0.165  7503.3  0.0428

RES4	

1
.1
8
E‐
0
5
 

‐1
.9
0
E‐
0
6
 

8
.6
7
E‐
0
8
  ‐0.024 0.024 0.004 ‐0.228 0.325 ‐0.003  0.0  0.0476

PE80	

‐2
.8
2
E‐
0
3
 

‐9
.8
2
E‐
0
4
 

1
.1
1
E‐
0
3
  ‐0.055 ‐0.388 0.025 0.084 0.074 0.018  14562.9  0.0989

	

4.4 Extending the material parameters to longer times frames  

In order to realistically model the service life-time for polymeric structures, long term prediction 

methods are needed within the developed constitutive law. The constitutive laws are normally 

formulated based on available short term tests. 

The nonlinear models described in the previous section are able to represent the response of the 

material within the test time. It is well known that beyond the test time, the response of the viscoelastic 

model (described in Eq. (91)) approaches an asymptotic value equal to ܺ଴ ൅ ∑ ௜ܺ
ே
௜ୀଵ  and the response 

of the viscoplastic model (described in Eq. (95)) increases continuously with a time dependent slope 

equal to ܺ ଵܥଵ	ܶି஼భݐ஼భିଵ. This divergent behaviour clearly suggests that defined models are most likely 
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not valid beyond the curve fitting time periods (which is 24 hours for the experimental data used to 

generate the models in Table 15 and Table 16).   

One method of generating relevant design data is to investigate prototype structures, which in this 

case would be actual long term testing. Prototype testing can be expensive, or impractical, and therefore 

in the following, a solution to this problem is presented, considering that the important point of 

constructing a mathematical model is predicting the response of creep behaviour over extended time 

periods. 

Using the material properties and material fitting parameters (Table 15 and Table 16) results in good 

agreement during the test time interval (24 hours). To examine the validity of the models for an 

extended time, the proposed method is to observe the trend of fitting parameters with respect to test 

time. First, the curve fitting is done for all experiments in different test times, namely: 10, 14, 18, 20, 

22 and 24 hours. This allows one to observe how the material fitting parameters are dependent on test 

time (ߣ).  It is proposed that the parameter change over test time can be represented by the following 

equations for the viscoelastic case: 

(a) ܾ௜ሺߣሻ ൌ ܾ′௜ ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 0, 1, 2 

(98) (b) ܾ௜ሺߣሻ ൌ ܾᇱ௜/ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 3, 4 

(c) ܿ଴ሺߣሻ ൌ ܿ′଴ ሺߣ/ߣ′ሻௗఱ  

′ߣ is introduced for dimensional consistency (in this research we have ′ߣ stands for test time and ߣ ൌ

 .଴,  ܾ′௜  and ݀௜ are fitting parameters independent of the test time used to develop the model′ܿ .(ݎݑ݋݄	1

ܾ′௜ and ܿ′଴ have same units as ܾ௜ and ܿ଴, respectively and ݀௜ have no units. Similarly, when the same 

method is applied to viscoplastic modelling, the following equations for the dependency of parameters 

on ߣ are obtained: 

(a) ܾ௜ሺߣሻ ൌ ܾ′௜ ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 1 െ 6 

(99) 
(b) ݉௜ሺߣሻ ൌ ݉′௝ ሺߣ/ߣ′ሻ

௡ೕ ݎ݋݂ ݅ ൌ 1, 2 

(c) ܽݏሺߣሻ ൌ ௔′ݏ ሺߣ/ߣ′ሻ௦ 

(d) ଵܶሺߣሻ ൌ ܶ′ଵሺߣ/ߣ′ሻ మ் 
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Here, ܾ′௜, ݉′௝, ݏ′௔ and ܶ′ଵ have same units as ܾ௜ , ௝݉, ݏ௔ and ଵܶ, respectively and ݀௜ , ௝݊, ݏ and ଶܶ 

have no units. These parameters are listed in Table 17 for the examined material “PIPE” as reference. 

Table	17:	Material	fitting	parameters	for	long	term	Viscoelastic	(Eq.	(98))	and	Viscoplastic	(Eq.	

(99))	models	for	“PIPE”	material	sample			

VE	 	૙′܊

MPa	

	૚′܊

MPa	

	૛′܊ 	૜′܊

MPa-1	

૝′܊

MPa

૙′܋

s

૙܌ ૚܌ ૛܌ 	૜܌ 	૝܌ ૞܌

‐19972  72.7  6.772  0.543  22.0 2.3e‐6 0.8735 0.4802 ‐1.03 2.795  1.9781  ‐0.206

VP	 	૚′܊

MPa-1	

	૛′܊

MPa-2	

	૜′܊

MPa-3	

	૝′܊ ૞′܊

MPa-1

૟′܊

MPa-2

૚′ܕ ૛′ܕ ࢇ′ܛ

MPa

	૚′܂ 	

‐4.5E‐4  3E‐4  ‐2E‐5  0.052  ‐0.229 0.0210 0.1730 0.0510 ‐0.015 43   

 ૚ࢊ  ૛ࢊ  ૜ࢊ  ૝ࢊ  ૞ࢊ  ૟ࢊ  ૚࢔  ૛࢔ ࢙   ૛ࢀ  

‐0.024  0.025  0.002  ‐0.018  ‐0.002 ‐0.008 ‐0.018 ‐0.004 0.010 0.008   

 

4.5 Implementation in the Finite Element Program ABAQUS 

The finite deformation constitutive model presented in the previous section was implemented in a User 

Subroutine UMAT. The ABAQUS 3-D modelling involves three stages: (1) pre-processing where the 

3-D model is generated and finite element mesh, loads and boundary conditions are assigned, (2) 

analysis where displacements, stresses and strains are computed using material properties, which are 

defined as User Material, and (3) post-processing, where the results are graphically presented. 

ABAQUS user interface is used for defining the model and assigning meshes, loads and boundary 

conditions, while the user material subroutine was developed in Visual Studio workspace for material 

determination. This subroutine is compiled by Fortran software and is called at each increment and 

material calculation point. In the ABAQUS script the *MATERIAL definition includes *USER 

MATERIAL input expression. In each increment this expression invokes the viscoelastic and 

viscoplastic mechanical constitutive models, as described in the previous sections. The subroutine must 

perform two functions: first, it must update the stresses and the solution-dependent state variables to 
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their values at the end of the increment; second, it must provide the elasticity matrix or the so called 

“material Jacobian matrix” ߲ߪ௜௝/߲ߝ௜௝. 

The constitutive model is implemented in a three-dimensional formulation using the material 

parameters obtained by curve fitting and nonlinear optimization (Table 15 and Table 16). All material 

constants are obtained as a function of applied stress for one element, which in one-dimensional tension 

case is equal to ߪଷଷ with the other components of the stress tensor being zero. In one-dimensional 

analysis, ߪଷଷ could be interpreted as the maximum principal stress, von Mises stress or maximum stress 

component in the element. Since there are 6 stress components in the three-dimensional analysis, which 

change through the loading process, some assumptions have to be made. Here it is assumed that all 

time-dependent behaviour is restricted to the deviatoric response and that the dilatational behaviour is 

elastic (Krishnaswamy, et al., 1992). Furthermore, Poisson's ratio ݒ is considered to be time 

independent and equal to 0.45 for HDPE, that is, ݒ → 	0.5. This assumption results in a bulk modulus 

of about 10ସ െ 10଺ which is recommended in the literature ( (Krishnaswamy, et al., 1992) & 

(Hinterhoelzl, et al., 2004)). Based on the assumption of incompressibility in the multiaxial formulation, 

it is obvious that ߝ௞௞ 	ൌ 	0. Therefore, the material properties (ܺ଴, ௜ܺ,	߬௜ and ܥ௜) in the three-

dimensional form are considered to be functions of the effective stress, which is defined as 

ߪ ൌ  ௘௙௙  andߪ

௘௙௙ߪ ൌ .ݔܽ݉ ሼߪଵଵ, ,ଶଶߪ  ଷଷሽߪ
(100) 

In each increment the effective stress is calculated and updated. The full viscoelastic (or viscoplastic) 

boundary value problem is solved in each increment and for each integration point. 

The constitutive equations must be written in an incremental algebraic form. First a fixed system of 

rectangular Cartesian coordinate ሺݔଵ, ,ଶݔ  ଷሻ is considered in which the material point is denoted byݔ

ሺ തܺଵ, തܺଶ, തܺଷሻ. Through the deformation process the new material position is: ݔ௜ሺ തܺ௜,  ሻ. The componentsݐ

of the displacement vector ݑ ൌ ሺݑଵ, ,ଶݑ ௜ݑ  : ଷሻ  areݑ ൌ ௜ݔ െ തܺ௜ , and the components of the velocity 

vector ̅ݒ ൌ ሺ̅ݒଵ, ,ଶݒ̅ ௜ݒ̅ :ଷሻ areݒ̅ ൌ ௜ݑܦ ൌ
డ௨೔
డ௧
ቚ
௑ೕୀ௖௢௡௦௧௔௡௧

, where ܦ denotes the material time derivative. 

In this system the equation of motion, which expresses the balance of linear and angular momentum, 

is: 

௜௝,௝ߪ  ൅ ௝ܨ ൌ ௜ݑଶܦߩ ൌ  ௜ (101)ݒ̅ܦߩ
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which ߩ is material density and ߲ݐ߲/ߩ ൅ ൫ݒ̅ߩ௝൯,௝ ൌ 0. For incompressible material ߩ is constant, so 

௝,௝ݒ̅ ൌ 0. In classical theory of infinitesimal linear elasticity, the additional relations connecting stress 

and displacement are provided through the intermediary of a strain tensor ߝ௜௝ which is defined as ߝ௜௝ ൌ

ሺݑ௜,௝ ൅  ௝,௜ሻ/2.  In linearized theory involving small displacements, no distinction is made between theݑ

independent variables ݔ௜ and ௜ܺ. The constitutive relation for linear elastic material can now be written 

in the form of: 

௞௟ߝ  ൌ ॰௜௝௞௟ߪ௜௝ (102) 

where ॰ is the compliance matrix and inverse of the elastic moduli of the material, ԧ. Eq. (102) is a 

general representation of both viscoelastic and viscoplastic constitutive equations, Eq. (91) and Eq. 

(95), respectively. It takes on a special form since the material is considered isotropic and can be 

rewritten as 

 ॰ ൌ ԧିଵ ൌ ߰ሺݐ, ሻߪ

ۏ
ێ
ێ
ێ
ێ
ۍ 1
െݒ
െݒ
0
0
0

െݒ
1
െݒ
0
0
0

െݒ
െݒ
1
0
0
0

0
0
0

2ሺ1 ൅ ሻݒ
0
0

0
0
0
0

2ሺ1 ൅ ሻݒ
0

0
0
0
0
0

2ሺ1 ൅ ےሻݒ
ۑ
ۑ
ۑ
ۑ
ې

 (103) 

in which the ߰ ሺݐ,  ሻ terms are defined in Eq. (91) and Eq. (95). For simplicity in programming, stressߪ

components in Eq. (102), can be expressed as functions of time- and stress-dependent Lame parameters, 

 as ,ߤ and ߣ

௜௝ߪ  ൌ ௜௝ߜ௏ߝߣ ൅  ௜௝ (104)ߝߤ2

These parameters are related to mechanical properties as: 

 

߰ିଵ ൌ ߣሺ3ߤ ൅ ߣሻ/ሺߤ2 ൅  ሻߤ

ݒ ൌ ߣ2ሺ/ߣ ൅  ሻߤ

ܭ ൌ ߣ ൅
2
3
 ߤ

ߤ ൌ  ܩ

(105) 

The rate of variation in co-rotational description (Jaumann) is 
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ሶ௜௝ߪ  ൌ ௜௝ߜሶ௏ߝߣ ൅ ሶ௜௝ߝߤ2 ൅ ௜௝ߜ௏ߝሶߣ ൅  ௜௝ (106)ߝሶߤ2

	

Using a central difference operator as a stable integration operator for this equation we have 

 

݂ሶ௧ା∆௧/ଶ ൌ
∆݂
ݐ∆

 

௧݂ା∆௧/ଶ ൌ ௧݂ ൅
∆݂
2

 

(107) 

where ݂ is any function. ௧݂ is its value at the beginning of increment, ∆݂ is the change in the function 

over the increment, and ∆ݐ is the time increment. Applying this to Eq. (106) we have: 

 

௜௜ߪ∆
ݐ∆

ൌ ቆߣሺݐሻ ൅
ሻݐሺߣ∆

2
ቇ ቆ

ሻݐ௏ሺߝ∆

ݐ∆
ቇ ൅ 2ቆߤሺݐሻ ൅

ሻݐሺߤ∆

2
ቇቆ

ሻݐ௜௜ሺߝ∆

ݐ∆
ቇ

൅ ቆ
ሻݐሺߣ∆

ݐ∆
ቇ ቆߝ௏ሺݐሻ ൅

ሻݐ௏ሺߝ∆

2
ቇ ൅ 2ቆ

ሻݐሺߤ∆

ݐ∆
ቇ ቆߝ௜௜ሺݐሻ ൅

ሻݐ௜௜ሺߝ∆

2
ቇ 

(108)

for ݅ ∈ ሺݔ, ,ݕ  ሻ andݖ

௜௝ߪ∆
ݐ∆

ൌ 2ቆߤሺݐሻ ൅
ሻݐሺߤ∆

2
ቇቆ

ሻݐ௜௝ሺߝ∆

ݐ∆
ቇ ൅ 2ቆ

ሻݐሺߤ∆

ݐ∆
ቇ ቆߝ௜௝ሺݐሻ ൅

ሻݐ௜௝ሺߝ∆

2
ቇ (109)

for ݆݅ ∈ ሺݕݔ, ,ݖݕ  :ሻ. Thereforeݔݖ

and 

∆࣌ ൌ ԧ ࢿ∆ ൅ ∆ԧ ࢿ∆ ൅ ∆ԧ  ࢿ

࣌௧ ൌ ࣌௧ି∆௧ ൅ ∆࣌ 
(110) 

and finally 

 ࣌௧ ൌ ࣌௧ି∆୲ ൅ ԧ௧ ࢿ∆ ൅ ∆ԧ ࢿ∆ ൅ ∆ԧ  (111) ࢚ࢿ

Here, subscript ሺݐ െ ∆tሻ indicates the value at the beginning of the time increment and subscript ݐ 

refers to the value at the end of the increment. In addition, ∆ԧ ൌ ԧ௧ െ ԧ௧ି∆௧ and ∆ࢿ ൌ ௧ࢿ െ  .௧ି∆௧ࢿ

4.6 Results and Discussion 

To examine the validity of the proposed finite element procedure, the theoretical results are compared 

to test measurements (other than the tests used for calibration of material modelling) by considering 
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one of the materials under investigation (Table 13), the “PIPE” material. The material fitting parameters 

and resulting material constants are based on the creep curves shown in Figure 30 and Figure 32.  

The material constants of the nonlinear viscoelastic and viscoplastic models are tabulated in Table 

18 and Table 19 for three test measurements for different stress levels. These constants are obtained 

from curve fitting described in section 4.3. For this, fitting parameters in Table 15 and Table 16 are 

used in Eqs. (92)~(94) and (96)~(97). Figure 34 compares experimental and simulated data. It is shown 

that the simulated strain data fit well with experimental measurements for both viscoelastic and 

viscoplastic models. An offset in model prediction from actual response can be observed for stress level 

2.97 MPa. This is due to the offset in approximating the measured instantaneous module of elasticity. 

Meaning that if the measured elastic modulus is not accurate, the approximation variation affects the 

whole prediction and shifts the prediction curve of the subject stress level up or down. 

Table	18:	Material	constants	(properties)	for	“PIPE”	(Viscoelastic)	

Stress	(MPa)	 ૚ (GPa)ࡱ ૙ (GPa)ࡱ ૛ (GPa)ࡱ ૜ (GPa)ࡱ ࣎૚ (s) ࣎૛ (s)  ࣎૜ (s) 

2.97	 0.4302  4.7932  2.6233  1.4357  118  1869  29469 

5.47	 0.5332  2.1201  1.1603  0.6350  582  9183  144755 

7.71	 0.5332  2.1180  1.1592  0.6344  200  3163  49865 

 

Table	19:	Material	constants	for	“PIPE”	(Viscoplastic)	

Stress	(MPa)	 ૙ (GPa)ࡱ ૙ (MPa‐1)࡯  (s) ࢀ  ૚࡯

2.97	 0.4302  0.00033  313.1 0.2472

5.47	 0.5332  0.00048  300.7 0.2585

7.71	 0.5332  0.00061  293.9 0.2626
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To examine the validity of the method, a criterion should be chosen for the goodness of fit of the 

theoretical method. This creep curve validation criterion is the root mean square of deviation/error 

(RMSD/RMSE) which is a deviation between the predicted values ߝ௜, and the measured ߝ௜̂ data 

 ቆ∑ ൬
௜ߝ െ ௜̂ߝ
௜̂ߝ

൰
ଶ

ே೟
௜ୀଵ ቇ

ଵ/ଶ

௧ܰ
ൌ  ܧܵܯܴ

(112) 

where ௧ܰ is the number of strain measurements recorded for each creep test. This is a criterion which 

is used to examine how well the FEM results are close to experimental ones. This is the same as the 

criterion used for curve fitting of the models to test data and finding the fitting parameters and material 

functions (see section 4.3). In the curve fitting procedure, least squares error (RMSE) was set to 0.05 

(5%) which provides a “good” fit as per MacCallum et. al (MacCallum, et al., 1996). 

For the information shown in Figure 34 the resulted fitting errors are 4.5%, 3.1% and 3.5% for 

viscoelastic modelling, and 4.3%, 2.1% and 3.2% for viscoplastic one, under 2.97 MPa, 5.47 MPa and 

7.71 MPa, respectively. This states that the accuracy of the results meets the expected “acceptable” 

fitting error criterion (per MacCallum et. al (MacCallum, et al., 1996)). 

To study the long term prediction capability of the models, FE results were recorded for 7 days 

analysis (in which ߣ ൌ 180). These results were calculated for the “PIPE” material for both viscoelastic 

and viscoplastic responses. A 3D unit cell was modeled in ABAQUS graphic interface and meshed 

with a single element quadratic hexahedron, C3D20R. Boundary conditions for the single unit 

geometrical model were chosen to be same as the tested sample materials under 6.75 Mpa and 6.89 

Mpa applied constant stresses. In Figure 35, the long term behaviour of the model has been presented 

for viscoelastic and viscoplastic responses as described in this chapter.  The models have been 

developed using the data from 24 hour creep testing. The models showed the ability to predict well the 

independent data from long term testing; they sufficiently describe the variation of strain with time for 

the loading history. The maximum Least Squares error of the model prediction from the experimental 

data is 3.5% for the nonlinear viscoelastic model and 5% for the nonlinear viscoplastic model for both 

loading cases. 
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Figure 34: Viscoelastic (dashed-dotted line -.-.-) and viscoplastic (dashed line - - -) model 

responses compared to 24 HRS test data (solid line) (Liu, 2007), for PIPE material 

 

Figure 35: One week (7 days) viscoelastic  VE (dashed-dotted line -.-.-) and viscoplastic VP 

(dashed line - - -) models responses compared to test data (solid line) (Liu, 2007), for PIPE 

material 



 

 105 

This is also illustrated in Figure 36 which compares long term viscoelastic and viscoplastic 

theoretical responses for 40 hours with experimental observations. Tests have been done on HDPE pipe 

materials under 4.42MPa, 6.08MPa and 8.15MPa applied loads. According to the definition, the 

parameter ߣ (Eq. (98) and Eq. (99)) is set to 40. The errors associated with these results are 2%, 3.0% 

and 7.5% for viscoelastic model, and 3.6%, 1.8% and 6.1% for viscoplastic model, for the 

aforementioned applied stresses, respectively. 

 

Figure 36: Experimental (continuous line) (Liu, 2007), and viscoelastic VE (dotted dashed line) 

and viscoplastic VP (dashed line) models prediction (dashed line) in 40 hours test time (PIPE). 

Analyses done using UMAT in Abaqus. 

Following the previous discussion, the observations for long term response (longer than test time: 24 

hour) from Figure 35 and Figure 36 reveal that the viscoelastic model doesn’t approach an asymptotic 

limit, which is to be expected, since the material properties are updated as the time increases. The 

viscoplastic response also doesn’t obey fully the power-law relationship. These illustrate that the 

proposed viscoelastic long term model realistically predicts actual behaviour. 

Another example is shown in Figure 37.  This figure shows long term predicted responses using the 

developed formulation and also, another approach, where the theoretical 24 hour creep curves are 

directly extended to longer time frames (without adjustment of parameters proposed herein). As 
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expected, the unadjusted viscoelastic and viscoplastic responses obey the regular exponential and 

power-law relations used in material characterization (Eq. (91) and Eq. (95), respectively), as the time 

goes beyond 24 hours. 

The proposed viscoelastic and viscoplastic long term methods lie between these two unadjusted 

curves. In this figure, the curves with rhombus and star markers are the adjusted viscoelastic and 

viscoplastic model predictions, respectively, and the dashed-dotted and dashed curves represent the 

unadjusted viscoelastic and viscoplastic models, respectively. As can be inferred, the unadjusted power 

law model (viscoplastic case) predicts higher values of creep strain than the adjusted model, while in 

contrast, the unadjusted exponential model (viscoelastic case) predicts smaller values of creep strain. 

 

Figure 37: Two weeks (14 days) unadjusted viscoelastic and viscoplastic (dashed-dotted lines -.-

.- and dashed lines - - -, respectively) as well as adjusted viscoelastic and viscoplastic (rhombus 

marked lines -◊-◊- and star marked lines -*-*-, respectively) model responses compared to 24 

HRS test data (solid line) (Liu, 2007), for PIPE material 
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4.7 Conclusions 

Finite element three-dimensional viscoelastic and viscoplasic models for polymers are presented 

herein.  The models can be used to predict the response of a material beyond the experimental time 

period.  

The proposed method utilizes simplification of the constitutive equations in order to obtain a rational 

theory, namely the incompressible behaviour assumption of the material, the superposition of small 

time dependent deformation on large deformation, and the simplifications of material functions. The 

equations are modified for long term time frames based on the measured material properties through 

an empirical approach. The proposed formulations are based on the spring and dash-pot concept, and 

plasticity power-law function for viscoelastic and viscoplastic behaviours, respectively. The 

determination of material properties is based on the non-separable nature of relations for nonlinear 

materials in which the material properties change by stress coupled with time. The validity of the 

models was assessed by comparing the results of the FE procedure with experimental observations (Liu, 

2007) on high density polyethylene (HDPE) specimens under uniaxial loading. Comparisons showed 

that the proposed constitutive model can satisfactorily represent the time-dependent mechanical 

behaviour of polymers. 

The proposed FE formulation has the potential for practical analysis of polymeric structures.  The 

constitutive model can be developed based on few short term creep tests and through the proposed 

method of extension to longer time frames, the multi-integral FE implementation and 3-D assumptions, 

it can be used for the analysis of mechanical and structural components under a variety of loadings. 

Based on the research conducted in this chapter and summarized above, the following specific 

findings and contributions can be mentioned: 

The multiple integral approach, is employed for three-dimensional behaviour analysis. Some 

simplifications are done in order to obtain a particularly useful theory, which are the fully 

incompressible behaviour assumption of the material, the superposition of small time dependent 

deformation on large deformation, and finally the simplifications of the material functions. Differential 

formulation (exponential form), and unified plasticity (power-law function) approximations are used 

for viscoelastic and viscoplastic modellings, respectively. The models are optimized for long-term 

responses which are beyond the test time. Finite element procedures are implemented in the user-

defined material algorithm in Abaqus (UMAT).  
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The developed finite element procedure, allows to model the long term as well as short term 

responses of polymers. For this a code was developed in Fortran workspace, which is linked to 

commercial software ABAQUS. 

The inputs to the developed code include a structural model and a material model. The former is 

done through the ABAQUS user interface and includes 3D solid modelling, boundary conditions, 

loadings, meshing and time discretization. The latter is obtained from experiments and needs material 

analysis. 

The validity of the models is assessed by comparison with experimental observations on high density 

polyethylene (HDPE) for single element specimens under uniaxial loading. 

Here are the conclusions: 

1- A superposition of small deformations can be used to model large deformations, and the multi-

integral description can be simplified for finite element implementation, using the 

incompressibility assumption. 

2- Both viscoelastic and viscoplastic formulations can be implemented in the finite element 

analysis using the linear superposition principle. The developed finite element procedure uses 

the proposed material definition based on experimental data. 

3- Nonlinear Viscoelastic, NVE, and Nonlinear Viscoplastic, NVP, models can be used in 

computational (finite element) methods for predictions of long term material behaviour. In the 

long term, the NVE model in comparison with the NVP model results in smaller fitting errors 

for strain response predictions, and both results are in relatively good correlation with 

experiments (less than 10% error in most cases). Again, similar to material modelling, the 

reason is that the former one has more fitting parameters compared to viscoplasic one which 

results in more flexible fitting to the short term test data, so more accurate short term and long 

term response prediction. It is concluded that with proper material parameters to reflect the 

deformations involved in the mechanical tests, the behaviour observed experimentally can be 

satisfactorily predicted using the FEM simulation. 

4- The proposed FE formulations have the potential for practical analysis of polymeric structures.  

The constitutive model can be developed based on few short term creep tests and through the 

proposed method of extension to longer time frames, the multi-integral FE implementation and 
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3-D assumptions, it can be used for the analysis of mechanical and structural components under 

variety of loadings. 

5- A good correlation (less than 5% error) of model and experimental data is always achievable 

if proper material fitting parameters are obtained from test data. This requires accurate 

experimental measurements, as well as availability of numerous test results in each set of test 

data. 
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Chapter 5 

Constitutive equations and finite element implementation of linear 

modelling for viscoelastic materials 

 

This chapter presents phenomenological three-dimensional linear viscoelastic constitutive model for 

time dependent analysis. Based on Boltzmann linear superposition principle, a linear solution procedure 

has been provided to solve for viscoelastic behaviour. The process uses the Prony series material 

parameters and the constitutive relations are based on the non-separable form of equations. Based on 

the proposed constitutive equations, a finite element (FE) procedure is developed and implemented in 

a User Material FE code in ABAQUS commercial software. The validity of the model is assessed by 

comparison with experimental observations by Liu (Liu, 2007) on high density polyethylene (HDPE) 

for uniaxial loading cases.  A reasonably good correlation was observed between these two sets of 

results and the research shows that the proposed FEM model can reproduce the experimental strain-

time curves accurately. 

5.1 Introduction 

Polymers are increasingly used in many aspects of our lives, including infrastructure, building and 

pipeline construction. Thermoplastic polyethylene (PE) and unplasticised polyvinyl chloride (PVC or 

UPVC) are the predominant materials used for water and sewer pipes (Polak, et al., 2004). Other 

plastics for pipe production are polypropylene (PP), polybutylene (PB) and acrylonitrile-butadiene-

styrene (ABS), which are all thermoplastics (Janson, 2003). Polymeric pipe materials are subjected to 

tensile and bending stresses and deformations during the installation procedures. Furthermore, these 

materials will then be subjected to longer term persistent loadings from environmental conditions, 

which lead to the creep and relaxation phenomena. Although the applied stress and strain under normal 

conditions of application are way lower than the critical yield and ultimate stress and strain, long term 

application of loading causes permanent deformation and/or delayed failure. Hence, theoretical and/or 

numerical modelling of the behaviour of these materials is useful in predicting the material’s response. 

In this research, a method is presented based on experimental data which allows for structural analysis 

of viscoelatic materials. 
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There are two approaches for modelling polymers: micromechanical and macromechanical. In the 

micromechanical approach, time-dependent functions expressing deformation and breakage of links of 

macromolecule chains and deformations of crystalline phase are usually formulated and applied to 

characterize the development of stress and strain ( (Zehsaz, et al., 2014), (Behzadfar, et al., 2013) and 

(Popa, et al., 2014)). Based on this approach, Alvarado et al. (Alvarado, et al., 2010) presented the 

description of a damage-coupled constitutive formulation for the mechanical behaviour of 

semicrystalline polyethylene. 

In the macromechanical modelling, phenomenological models of viscoelastic solids and/or 

irreversible thermodynamics with internal variables are often employed. The theoretical formulation 

results in the evolution equation of stress or strain, which is formulated generally as a linear or nonlinear 

differential equation. The equation can be a function of either time, stress and strain rate (time hardening 

theory) or strain, stress and strain rate (strain hardening). Several constitutive models based on this 

methodology were developed in the past two decades. Various viscoelastic constitutive equations have 

been developed by Bae and Cho (Bae, et al., 2015) to describe nonlinear viscoelastic behaviour. 

Zacharatos and Kontou (Zacharatos, et al., 2015) presented a one-dimensional phenomenological 

constitutive model, representing a viscoelastic behaviour of polymers using a three element standard 

solid model. Hasapour et al. (Hasanpour, et al., 2009) developed a finite element (FE) procedure for 

compressible viscoelastic materials. The work is concerned with the formulation of constitutive 

equations for a finite strain viscoelastic material using multiplicative decomposition in a 

thermodynamically consistent manner. In a similar comprehensive research, a finite element algorithm 

was developed to study time-dependent problems by Krishnaswamy et al. (Krishnaswami, et al., 1992). 

In this research, nonlinear viscoelastic and viscoplastic models were used to study the time-dependent 

deformation and failure of high density polyethylene (HDPE). A practical simplified approach to linear 

and nonlinear modelling of polyethylene, based on creep testing at different stress levels, was proposed 

by Liu et al. (Liu, et al., 2008). Cheng et al. (Cheng, et al., 2011) followed the work by presenting a 

rigorous statistical approach for estimating parameters in modelling creep compliance of PE. In a work 

concerning a class of non-aging isotropic viscoelastic solids, Muliana et al. (Muliana, et al., 2015) 

proposed a model by developing a nonlinear integral formulation, which belongs to the class of quasi-

linear viscoelastic models, for solid-like materials.  A thermodynamically-based constitutive model was 

developed by Krairi and Doghri (Krairi, et al., 2014) for isotropic homogeneous thermoplastic polymers 

under arbitrary multiaxial and non-monotonic loadings. Chan and Ngan (Chan, et al., 2010) 
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demonstrated that, when polyethylene is subject to a tensile test with a jump in the loading rate, an 

elastic modulus, given as the ratio of the jump in stress rate to the resultant jump in strain rate, is 

invariant with respect to the magnitude of jump in the loading rate, at a given strain at which the jump 

is imposed. Muliana (Muliana, 2015) presented analyses of deformations in nonlinear viscoelastic 

beams that experience large displacements and rotations due to mechanical, thermal, and electrical 

stimuli. Nguyen et al. (Nguyen, et al., 2013) proposed a framework which focuses on viscoelasticity, 

as a predominant factor in the high cycle fatigue stress range. For this they derived an isothermal 

nonlinear viscoelastic model for small strains under an irreversible process thermodynamic framework. 

An efficient method of fitting Prony series models to viscoelastic experimental data with power-law 

presmoothing was presented for unsmoothed experimental data by Park and Kim (Park, et al., (2001). 

The same group also investigated and illustrated methods of interconversion between relaxation 

modulus and creep compliance for linear viscoelastic materials using data from asphalt concrete (Park, 

et al., 1999). 

In theoretical modelling of polymers, experimental tests play an important role in the investigation, 

since they offer insight into the material behaviour, namely: linearity and nonlinearity, best fit for 

separable and non-separable forms of equations, and a basis for model validation. The mechanical 

behaviour of polymeric materials depends on both time and temperature and several experimental 

techniques may be used to measure and quantify this behaviour. Zhang and Moore based their models 

on experimental data (Zhang, et al., 1997) and performed extensive experimental work to characterize 

the nonlinear time dependent response of HDPEs under uniaxial loading. Drozdov and Christiansen 

reported their observations on uniaxial tensile tests with constant strain rates at moderate finite 

deformations, as well as in creep and relaxation tests on a thermoplastic elastomer (ethylene–octane 

copolymer) (Drozdof, et al., 2006) and polyethylene (Drozdov, et al., 2003). Dusunceli and Colak 

(Dusunceli, et al., 2008) and Liu et al. (Liu, et al., 2008) presented an approach for modelling the 

mechanical behaviour of polyethylene materials. They developed both viscoelastic and viscoplastic 

models and showed model corroboration by comparing test results of tensile, step-loading, and load-

rate creep with experimental ones. They also presented creep numerical and experimental data for a 

medium density polyethylene (MDPE) pipe material and confirmed the efficiency of the 

macromechanical approach by test results. Ayoub et al. (Ayoub, et al., 2010), Ellyin et al. (Ellyin, et 

al., 2007), Cao et al. (Cao, et al., 2010), Wendlandt et al. (Wendlandt, et al., 2010) and Pan et al. (Pan, 

et al., 2012) also used experimental results to validate proposed theoretical models. 
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This chapter presents a phenomenological three-dimensional viscoelastic constitutive model for 

polymers. The following steps are followed: 

1- Multi Kelvin Solid representation of springs and dash-pots is employed for viscoelastic 

behaviour (section 5.2) 

2- The differential constitutive equation is developed using energy method (section 5.2) 

3- Inelastic creep compliance is estimated by Prony series function (section 5.2) 

4- An integral form of constitutive equation is provided based on the superposition principle 

(section 5.3) 

5- Finite element FE procedure is described (section 5.3) 

6- FE procedure is extended to the multi-dimensional case (section 5.3) 

7- The model is implemented in FE user subroutine (section 5.4) 

8- The presented model results are validated for one dimensional loading of cubic unit cell sample 

materials (section 5.5) 

The method in section 5.2 is based on the small strain assumption, but it is extended to large 

deformation for materials in which the stress-strain relation is time dependent. The constitutive equation 

governing the model response may be derived in a thermodynamically consistent way considering 

linear spring-dashpot elements. The main problem in generalizing constitutive models from small to 

finite deformations is to extend the theory in a thermodynamically consistent way, so that the second 

law of thermodynamics remains satisfied in every admissible step. This chapter presents the 

formulation and constitutive equations for a finite strain viscoelastic material using the superposition 

principle in a thermodynamically consistent manner.  

Based on the proposed constitutive equations, a finite element (FE) procedure developed in section 

5.3, is implemented in the User Material FE code (section 5.4).  

In section 5.5, the previously estimated material parameters are used.  The model is used to predict 

the response of sample materials and the results are compared to experimental ones (Liu, 2007).  A 

reasonably good correlation was seen between these two sets of results. 
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5.2 Constitutive Equations 

In viscoelastic theory, constitutive equations are usually formulated using either the differential or the 

integral forms (Lockett, 1972). In contrast to the differential formulation (simulating the behaviour by 

spring and dash-pot elements configuration), which involves only the current values of stress and strain 

and their current time rates, the integral form takes into account the history of loading and it is more 

accurate and strict in both linear and nonlinear modelling. In this section the integral approach is used 

by means of exponential description of kinematic relations of material properties. The most useful 

analysis in finite element applications is spring and dash-pot method of modelling described by Flugge 

(Flugge, 1967). According to the concept of fading memory (Christensen, 1971), the material response 

depends more on recent history than on earlier events. Accordingly, this theory considers exponential 

formulation for most nonlinear materials, such as HDPE, for which the effects of stress and time on the 

resulting strain are not separable. Similarly, the viscoplastic theory assumes a nonlinear time dependent 

power-law function which doesn’t have an asymptote, in contrast to the viscoelastic model which 

approaches to an asymptotic limit (Brinson, 1973). Both the viscoelastic and viscoplastic formulations 

are usually an extension of the theory which considers permanent residual strain by assuming the rate 

of total strain as the summation of elastic and plastic strain rates. 

ሻݐሶሺߝ  ൌ ሻݐሶ௘ሺߝ ൅  ሻ (113)ݐሶ௜ሺߝ

The dot over the variable shows the time rate. In this equation ߝ௘ can be interpreted as the elastic 

strain, which is recoverable and ߝ௜ denotes the inelastic strain, which results if the stress is infinitely 

fast unloaded from the actual state to the stress free state. This strain decomposition states that every 

linear viscoelastic and viscoplastic solid material is always associated with two moduli, ܧ௘ and ܧ௜ , 

which are the elastic modulus and the viscous one, respectively. This definition of strain may be seen 

to be in a natural way connected with the multi-Kelvin solid, compring of multi spring and dash-pot 

elements. A 3-parameter configuration of Kelvin solid is illustrated in Figure 38 (Model A). The strains 

଴ܧ ௜ belong to the spring with the modulusߝ ௘ andߝ ൌ  ,ଵܧ ௘ and the Kelvin unit with the modulusܧ

respectively. 
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Figure 38: A 3-parameter Model A 

The mechanical response of the Model A configuration is defined by the ordinary differential 

equation (Flugge, 1967) 
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 (114) ߝ

where ߤଵ is the coefficient of viscosity for the first Kelvin unit and ߪሶ  is the rate of change of total 

stress. The free energy function associated with Model A is given as summation of energies associated 

with two strains, ߝ଴ and ߝଵ, which are ߰௘ and ߰௜, respectively  (Guedes, 2004) 
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which implies that the energy can only be stored in the two springs. Considering that the behaviour 

is adiabatic and the isothermal approximation makes the free internal energy ߰  to coincide with energy, 

the Clausius-Planck inequality applies (Huber, et al., 2000) 

 ሶ߰ ஺ ൑  ሻ (116)ݐሶሺߝሻݐሺߪ

which guarantees that the second law of thermodynamics is satisfied. Consequently, using Eq. (113), 

Eq. (115) can be rewritten as 
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Since εሶ  may be chosen as arbitrary, the following are necessary and sufficient conditions for Eq. 

(117) to hold. 
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ቆ
߲߰௘

௘ߝ߲
െ
߲߰௜

௜ߝ߲
ቇ ሶ௜ߝ ൌ ሺߪ െ ሶ௜ߝଵሻߪ ൒ 0 

(119) 

Here ߪ is the total applied stress and ߪଵ is a part of stress affecting the elastic spring of the Kelvin 

unit.   Thus 
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ൌ  ௜ (120)ߝଵܧ

  ሶ௜ߝ ൌ ሶଵߝ ൌ ሺߪ െ  ଵ (121)ߤ/ଵሻߪ

The concept can be extended to a more general case by introducing a multi-Kelvin solid 

configuration, which is illustrated in Figure 39 (Model B). The configuration includes a spring and ܰ 

Kelvin units in series. Similarly, the strains ߝ௘ and ߝ௜ ൌ ∑ ௞ߝ
ே
௡ୀଵ  belong to the spring with modulus 

଴ܧ ൌ  ௘ and the Kelvin units, respectively. The free energy function associated with Model B is givenܧ

by 
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(122) 

Using the Clausius-Planck inequality (Eq. (116)) yields 
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ሶ௡ߝ  ൌ ሺߪ െ  ௡ (125)ߤ/௡ሻߪ
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Figure 39: Multi Kelvin Solid configuration Model B. 

Using Eq. (113) and considering, ߝ௜ ൌ ∑ ௡ߝ
ே
௡ୀଵ  , and using Eqs. (123)~(125), one can come up with 

the following relations 
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so 
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which ܦ଴ is the instantaneous elastic compliance, 1/ܧ଴, and ܦሺݐሻ is the transient creep compliance 

function. Here ߤ௡ and ܧ଴ are properties of the material and ߝ଴ and ߝሶ௡ change by stress and time. To 

simplify the resultant equation and make it ready for finite element implementation, boundary 

conditions are applied. Note that strain at ݐ ൌ 0 equals to instantaneous elastic strain ߝ௘ ൌ  ଴, whileܧ/ߪ

at stable conditions (ݐ → ∞) strain approaches to following 
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which states that the expression ቀ
ఌሶ೙ఓ೙
ாబఌబ

ቁ	can be approximated by a decreasing exponential function 

݁ିሺ௧	ா೙ሻ/ఓ೙, which in turn leads to an exponential form of a Prony series as 

ሻݐሺܦ  ൌ෍ܦ௡ൣ1 െ ݁ି௧/ఛ೙൧
௡

 (128) 
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where ܦ௡ and ߬௡ are the ݊௧௛ creep compliance and relaxation time, respectively, defined as ߬௡ ൌ

௡ܦ ௡ andߤ௡ܧ ൌ ௡ and, 1ܧ/1 ൑ ݊ ൑ ܰ, where ܰ equals to the order of the expression and represents 

the number of Kelvin units in the spring and dash-pot simulation of the material behaviour (for further 

discussion see (Flugge, 1967)). 

5.3 Finite deformation formulation of Model B 

As may be inferred from Eqs. (115) and (122), Model A is a special case of Model B in which ݊ ൌ 1. 

By increasing the number of Kelvin units in the configuration, the number of material parameters 

increases, and the fitting is improved. This is true in all approaches of viscoelastic modelling, in which 

the configuration consists of spring and dash-pot elements (Christensen, 1971).  

The general theory of finite linear viscoelasticity is about finding an approximation function and 

material parameters that best match the test results. This is what one may get from the differential 

approach to vicoelasticity described by Christensen (Christensen, 1971) which introduced a concept of 

fading memory. This concept states that material response depends more on recent history than earlier 

events. In this theory, the stress is decomposed into an equilibrium stress that corresponds to the stress 

response at an infinite slow rate of deformation and a viscosity-induced overstress. The overstress is 

expressed as an integral over the deformation history and a relaxation function is specified as a measure 

for the materials memory. 

Experimental results for PE show a high degree of deformability and strong nonlinearities, which 

states that the constitutive models need to be based on finite strain theories in consistence with the 

natural laws of thermodynamics. In the following, small deformation equations are extended to the 

cases of finite deformations. The approach corresponds to the finite deformation viscoelasticity within 

the framework of the superposition principle. It is aimed to derive the finite deformation viscoelasticity 

model by considering the satisfaction of the second law of thermodynamics in the form of the Clausius–

Duhem inequality ( (Hasanpour, et al., 2009) & (Huber, et al., 2000)). 

The strain produced by the common action of several loads can be calculated using the rule of linear 

superposition (Flugge, 1967) & (Reddy, 2013). If a stress is applied suddenly at time ݐ	 ൌ 	0 (a step 

load), it produces a strain ߝ ൌ  ሻ is the time-dependent tensile creep compliance ofݐሺܦ ሻ, whereݐሺܦ଴ߪ

the material (Figure 40). If the stress ߪ଴ is kept constant, the relation ߝ ൌ  ሻ will describe the strainݐሺܦ଴ߪ

for the entire duration of the step loading. However, if more stress is added at time ݐ	 ൌ  then for ,′ݐ	
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	ݐ ൐  ,′ߪ∆ the material will experience additional strain which is proportional to the increase in stress ′ݐ	

which depends on the creep compliance ܦሺݐሻ; time is measured from the start of the new stress loading 

at ݐ	 ൌ 	ݐ The cumulative strain for any time .’ݐ	 ൌ  is ,’ݐ	

ሻݐሺߝ  ൌ ሻݐሺܦ଴ߪ ൅ ݐሺܦᇱߪ∆ െ  ሻ (129)’ݐ

 

Figure 40:  Applied step-load stress history 

Any arbitrary stress history can now be divided into the initial stress state ߪ଴ and a sequence of 

infinitesimal step functions as shown in Figure 40. The corresponding strain at time t is therefore the 

sum of all the incremental steps that have taken place at time ݐ	 ൌ  giving (Schapery, 1969) ,’ݐ	
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The integral in Eq. (130) is referred to as a hereditary integral and is the governing equation for linear 

viscoelastic behaviour under uniaxial loading. This linearly viscoelastic constitutive equation can be 

written for an isotropic material undergoing uniaxial loading as (Roy, et al., 1988) 

 
௧ߝ ൌ ଴ܦ௧ߪ ൅ න ݐሺܦ െ ሻ’ݐ

’௧ߪ݀

′ݐ݀
′ݐ݀

௧

଴
 (131) 
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Here ߝ௧ and ߪ௧ represent uniaxial strain and the Cauchy stress, respectively, at current time ܦ .ݐ଴ is 

the instantaneous elastic compliance and ܦሺݐሻ represents a transient creep compliance function (Eq. 

(128)). Substitution of Eq. (128) in Eq. (131) gives 

 
௧ߝ ൌ ଴ܦ௧ߪ ൅ න ෍ܦ௡ ቈ1 െ ݁

ି
ሺ௧ି ௧’ሻ
ఛ೙ ቉

௡

’௧ߪ݀

′ݐ݀
′ݐ݀

௧

଴
 (132) 

Simplifying yields 

 
௧ߝ ൌ ଴ܦ௧ߪ ൅෍ܦ௡ න

’௧ߪ݀

′ݐ݀
′ݐ݀

௧

଴௡

െ෍ܦ௡ න ݁
ି
ሺ௧ି ௧’ሻ
ఛ೙

’௧ߪ݀

′ݐ݀
′ݐ݀

௧

଴௡

 (133) 

The second integral on the right hand side of the equation is now separated into two parts, the first 

part having limits from zero to ሺt െ ∆tሻ, and the second integral spanning only the current load step, 

that is, from ሺt െ ∆tሻ to t. The first can be written as (Roy, et al., 1988) 

 
න ݁

ି
ሺ௧ି ௧’ሻ
ఛ೙

’௧ߪ݀

′ݐ݀
′ݐ݀

௧ି∆௧

଴
ൌ ݁ିሺ∆௧ሻ/ఛ೙  ௡௧ି∆௧ (134)ݍ

where 

 
௡௧ି∆௧ݍ ൌ න ݁

ି
ሺ௧ି∆௧ି ௧’ሻ

ఛ೙
’௧ߪ݀

′ݐ݀
′ݐ݀

௧ି∆௧

଴
 (135) 

and the second integral is integrated by parts, as follows: 
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௧ି∆௧
ൌ
’௧ߪ݀

′ݐ݀
߬௡݁

ି
ሺ௧ି ௧’ሻ
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ି
ሺ௧ି ௧’ሻ
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݀ଶߪ௧’

ଶ′ݐ݀
′ݐ݀

௧

௧ି∆௧
 

ൌ
ᇱሻݐሺߪ݀
′ݐ݀

߬௡ ቈ1 െ ݁
ି
ሺ௧ି	௧’ሻ
ఛ೙ ቉ 

(136) 

In order to carry out the integration, it is assumed that σ varies linearly over the current time step ∆t 

and its second derivative is zero. This leads to the following equation 

௧ߪ݀ 

ݐ݀
ൌ
௧ߪ െ ௧ି∆௧ߪ

∆t
 (137) 

which simplifies Eq. (136) to  
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න ݁

ି
ሺ௧ି ௧’ሻ
ఛ೙

’௧ߪ݀

′ݐ݀
′ݐ݀

௧

௧ି∆௧
ൌ ൫ߪ௧ െ ௡௧ߚ௧ି∆௧൯ߪ  (138) 

where 

 
௡௧ߚ ൌ

߬௡
ݐ∆
ቆ1 െ ݁

ି
∆௧
ఛ೙ቇ (139) 

Substituting Eq. (134) and Eq. (138) back into Eq. (133), one obtains (Roy, et al., 1988) 

 
௧ߝ ൌ ൥ܦ଴ ൅෍ܦ௡ሺ1 െ ௡௧ሻߚ

௡

൩ ௧ߪ ൅෍ܦ௡ ቆߚ௡௧ߪ௧ି∆௧ െ ݁
ି
∆௧
ఛ೙	ݍ௡௧ି∆௧ቇ

௡

 (140) 

or 

௧ߝ  ൌ ூܦ
௧ߪ௧ ൅  ത௧ (141)ܧ

where 

ூܦ 
௧ ൌ ଴ܦ ൅෍ܦ௡ሺ1 െ ௡௧ሻߚ

௡

 (142) 

 
ത௧ܧ ൌ෍ܦ௡ ቆߚ௡௧ߪ௧ି∆௧ െ ݁

ି
∆௧
ఛ೙ ௡௧ି∆௧ቇݍ

௡

 
(143) 

Here ܦூ
௧ is the instantaneous compliance multiplying the instantaneous stress ߪ௧ and ܧത௧ is the 

hereditary strains. The term ݍ௡௧ି∆௧ is the ݎ௧௛ component of the hereditary integral series at the end of 

the previous load step which is carried over to the current step and is defined as the following recurrence 

formula. 

 
௡௧ݍ ൌ ݁

ି
∆௧
ఛ೙ ௡௧ି∆௧ݍ ൅ ൫ߪ௧ െ ௡௧ߚ௧ି∆௧൯ߪ  (144) 

5.3.1 Extending to Three-Dimensional Viscoelastic Constitutive Relations 

The formulation needs to be generalized to multiaxial stress state in order to be able to sustain a fully 

three-dimensional stress state. It can be shown that the constitutive law for a homogeneous isotropic 

viscoelastic material reduces to the form ( (Schapery, 1969) & (Schapery, 1969)) 

 ݁௜௝
௧ ൌ ሼܬሽ൛ߪ௜௝

௧ ൟ ൅ ሼܦ െ ௠௠௧ߪሽሼܬ ሽߜ௜௝ , ݅, ݆ ൌ 1~3 (145) 
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where ܬ is shear creep compliance and the operator ሼ. ሽሼ. ሽ implies convolution integral as indicated 

below 

 
ሼܬሽ൛ߪ௜௝

௧ ൟ ൌ ௜௝ߪ଴ܬ
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ሼܦ െ ௠௠௧ߪሽሼܬ ሽߜ௜௝ ൌ ሾܦ଴ െ ௠௠௧ߪ଴ሿܬ ൅ න ሾܦሺݐ െ ሻ′ݐ െ ݐሺܬ െ ሻሿ′ݐ

߲
′ݐ߲

൫ߪ௜௝
௧’൯݀ݐ′

௧

଴
 

(147) 

Expanding Eq. (145) term by term for the strains 

 ݁ଵଵ
௧ ൌ ሼܦሽሼߪଵଵ

௧ ሽ ൅ ሼܦ െ ଶଶߪሽሼܬ
௧ ሽ ൅ ሼܦ െ ଷଷߪሽሼܬ

௧ ሽ 

(148) 
 ݁ଶଶ

௧ ൌ ሼܦ െ ଵଵߪሽሼܬ
௧ ሽ ൅ ሼܦሽሼߪଶଶ

௧ ሽ ൅ ሼܦ െ ଷଷߪሽሼܬ
௧ ሽ 

 ݁ଷଷ
௧ ൌ ሼܦ െ ଵଵߪሽሼܬ

௧ ሽ ൅ ሼܦ െ ଶଶߪሽሼܬ
௧ ሽ ൅ ሼܦሽሼߪଷଷ

௧ ሽ 

ଵଶߛ 
௧ ൌ 2ሼܬሽሼߪଵଶ

௧ ሽ , ଶଷߛ
௧ ൌ 2ሼܬሽሼߪଶଷ

௧ ሽ , ଵଷߛ
௧ ൌ 2ሼܬሽሼߪଵଷ

௧ ሽ 

Similar to the transient components of the creep compliances, Eq. (128), the shear compliances can 

be written in the form of a Prony series as 

ሺtሻܬ  ൌ෍ܬ௡ൣ1 െ ݁ି௧/ ೙்൧
௡

 (149) 

where ௡ܶ are the relaxation times in shear. Also ܬ଴ represents the elastic shear compliance at ݐ ൌ 0. 

The axial and shear terms of deformations into Eq. (148) are defined as follows (Roy, et al., 1988) 

 ሼܦሽ൛ߪ௜௝
௧ ൟ ൌ ூܦ

௧ߪ௜௝
௧ ൅ ܳ௜௝

௧  (150) 

where ܦூ
௧ is the instantaneous creep compliance function and ܳ௜௝

௧  represents the hereditary strain 

components due to tensile creep at time t 

ூܦ 
௧ ൌ ଴ܦ ൅෍ܦ௡ሺ1 െ ௡௧ሻߚ

௡

 (151) 

 
ܳ௜௝
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ି
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ఛ೙ ௡,௜௝ݍ
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(152) 

and 
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௡,௜௝ݍ
௧ ൌ ݁

ି
∆௧
ఛ೙ ௡,௜௝ݍ

௧ି∆௧ ൅ ൫ߪ௜௝
௧ െ ௜௝ߪ

௧ି∆௧൯ߚ௡௧  (153) 

Similarly, expressions can be developed for ሼܬሽ൛ߪ௜௝
௧ ൟ. For a fully three-dimensional problem, 

substituting the resultant equations in Eqs. (148) and dropping superscripts, one obtains for the 

viscoelasticity problem the following matrix format (Roy, et al., 1988) 

ࢋ  ൌ ࣌ࡺ ൅  (154) ࡴ

where ܪ is a vector of hereditary strains that contain the entire load history effect (Roy, et al., 1988). 

For a linear three-dimensional viscoelasticity problem note that the left-hand side of Eq. (154) is a 

vector containing the algebraic difference of kinematic strains ߝ and dilatational strains ܫߠ 

்ࢋ  ൌ ሼሺߝଵଵ െ ,ሻߠ ሺߝଵଵ െ ,ሻߠ ሺߝଵଵ െ ,ሻߠ ,ଵଶߛ ,ଶଷߛ  ଵଷሽ (155)ߛ

while ߪ contains the six components of the Cauchy stress tensor. The matrix ܰ is a 6	 ൈ 	6 matrix of 

coefficients given by 
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ێ
ێ
ێ
ێ
ۍ

ூܦ
ሺܦூ െ ூሻܬ
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0
0
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ሺܦூ െ ூሻܬ
ூܦ

ሺܦூ െ ூሻܬ
0
0
0

ሺܦூ െ ூሻܬ
ሺܦூ െ ூሻܬ

ூܦ
0
0
0

0
0
0
ூܬ2
0
0

0
0
0
0
ூܬ2
0

0
0
0
0
0
ےூܬ2
ۑ
ۑ
ۑ
ۑ
ې

 (156) 

Multiplying Eq. (154) by ܰିଵ, an explicit expression for stresses in terms of strains is obtained 

 ࣌ ൌ ࢋଵሺିࡺ െ  ሻ (157)ࡴ

Eq. (157) provides a general viscoelastic constitutive relation that can be applied to three-dimensional 

viscoelasticity problems. Note that the use of tensile creep and shear compliances as a material property 

input allows Poisson's ratio to change with time. Hence, the present formulation is applicable to any 

thermorheologically simple isotropic three-dimensional viscoelastic material over any length of time, 

unlike some other formulations that assume constant Poisson's ratio. 

For the special case where Poisson's ratio is constant with time, then 

ሻݐሺܬ  ൌ ሺ1 ൅  ሻ (158)ݐሺܦሻݒ

which makes the relaxation times in tensile creep and shear to be identical. The matrix N takes the 

simplified form 
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ࡺ ൌ ூܦ ൈ ࡯ ൌ ூܦ

ۏ
ێ
ێ
ێ
ێ
ۍ 1
െݒ
െݒ
0
0
0

െݒ
1
െݒ
0
0
0

െݒ
െݒ
1
0
0
0

0
0
0

2ሺ1 ൅ ሻݒ
0
0

0
0
0
0

2ሺ1 ൅ ሻݒ
0

0
0
0
0
0

2ሺ1 ൅ ےሻݒ
ۑ
ۑ
ۑ
ۑ
ې

 (159) 

5.4 FEM implementation 

To perform finite element analysis, a subroutine is developed in Visual Studio workspace for material 

determination, which defines the viscoelastic mechanical constitutive behaviour of material. The 

subroutine is compiled by Fortran software which is linked to finite element software 

ABAQUS/Standard. The FE software ABAQUS/Standard calls the subroutine in each increment and 

each material calculation point for which the *MATERIAL definition includes *USER MATERIAL 

input expression. The model for which the material is defined by the aforementioned user defined 

material subroutine (UMAT) needs first to be defined in ABAQUS user interface where meshes, loads 

and boundary conditions are defined. Generally, the ABAQUS 3-D modelling involves three stages: 

(1) pre-processing, where the 3-D model is generated and finite element mesh, loads and boundary 

conditions are assigned, (2) analysis, where displacements, stresses and strains are computed by means 

of material properties, which have been defined as User Material in the first stage, and (3) post-

processing, where the results are graphically presented. 

For analyzing time-dependent behaviour of the materials under study by means of the finite element 

method, the three-dimensional finite deformation constitutive model for Model B is implemented in an 

FEM program through a User Subroutine. This model was presented in the previous section. Eq. (157) 

defines the behaviour of Model B. In this equation, the Cauchy stress, ߪ, indicates the stress at the end 

of increment and its components equal to ߪ௜௝
௧ି∆௧ ൅  ௜௝, which is the value at the beginning of theߪ∆

increment,	ߪ௜௝
௧ି∆௧, plus the change due to ∆ݐ. The same applies to the strain tensor, in which ߝ௜௝ ൌ

௜௝ߝ
௧ି∆௧ ൅  ௜௝. Rewriting Eq. (140) in 1-D yieldsߝ∆

ߪ∆  ൌ ூܦ
ିଵߝ௧ି∆௧ ൅ ூܦ

ିଵ∆ߝ

െ ூܦ
ିଵ෍ܦ௡ ቆߚ௡௧ߪ௧ି∆௧ െ ݁

ି
∆௧
ఛ೙ ௡௧ି∆௧ቇݍ െ ௧ି∆௧ߪ

௡

 
(160) 

Differentiating the stress increment, ∆ߪ, versus strain increment, ∆ߝ, provides 
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ߪ∆ 
ߝ∆

ൌ ூܦ
ିଵ ൌ ௧ܧ ൌ ൥ܦ଴ ൅෍ܦ௡ሺ1 െ ௡௧ሻߚ

௡

൩

ିଵ

 (161) 

which is the stiffness modulus and in three-dimensional form represents the elasticity matrix or the 

so called “material Jacobian matrix”, ∂σ୧/ ∂ε୨. This matrix defines the change in the ݅௧௛ stress 

component at the end of the time increment, ∆ݐ, caused by an infinitesimal perturbation of the ݆௧௛ 

component of the strain increment array. As seen, ܧ௧, is defined in each increment by means of the 

time dependent material parameters, as well as the time increment. This tensor has to be updated at the 

end of each increment, as one of two main functions performed by the subroutine. The second function, 

the is that subroutine must update the stresses and the solution-dependent state variables to their values 

at the end of the increment. With the use of Eq. (155), Eq. (157) can be rewritten as 

 ࢚࣌ ൌ ࢚࣌ି∆࢚ ൅ ∆࣌ ൌ ூࡰ
ିଵ൫ି࢚ࢿ∆࢚ െ ࣂ െ ൯ࡴ ൅ ூࡰ

ିଵ∆(162) ࢿ 

This expresses the Cauchy stress tensor at the end of the increment, ߪ௧, and this is passed forward at 

the beginning of the increment, as ߪ௧ି∆௧. Here, the array ܪ is a function of material properties and 

stresses, as well as ݍ௡௧ି∆௧, at the beginning of the increment. Values of ݍ௡௧ି∆௧ are passed forward in the 

from previous increment as a state variable and need to be calculated in each increment. 

5.5 Results, materials and comparison 

In this section, case studies are solved and compared to available experimental data. For this, the 

analysis is performed by concentrating on the multi-Kelvin linear viscoelastic model, which is a general 

configuration of spring and dash-pots (Model B) and is more accurate than the 3-parameter solid 

configuration (Model A, which is a special case (݊ ൌ 1) of the general one, Model B), because it has 

more material parameters, thus a more accurate fit. 

In this case study, the analysis has been conducted on a single 3-D cubic element structure 

representing a beam in uniform tension. The FEM results for the beam under 1-D tension have been 

compared with the experimental ones. The uniaxial tension experiments have been done on dog-bone 

shape structures (Figure 41) by Liu (Liu, 2007), at the University of Waterloo, on high density and 

medium density polyethylene materials. Experiments were performed on numerous types of PEs and 

include tests on short term tensile creep (24 hours). Herein the comparisons are done on short term 

behaviour of three materials. The specimens were produced, from resins by melting them and 



 

 126 

machining and from pipes by cutting out the samples (Table 20). 24-hour creep testing was done at 

different stress levels to examine time dependent and nonlinear behaviour of the materials. The testing 

showed clear differences in the behaviour of different HDPEs. Using these uniaxial creep tests is the 

easiest way to determine the material behaviour. Using the method of minimization of the Least Squares 

Error by fitting the model to the experimental results, the stiffness matrix parameters, Eq. (159), and 

material parameters were determined by Liu (Liu, 2007), and these were used as inputs to the FEM 

analysis. These parameters, which are Prony series parameters, for the sample materials (Table 20), are 

tabulated in Table 21. These parameters are obtained by considering ܰ ൌ 3 in Model B, meaning that 

three Kelvin units are used in constructing the spring and dash-pot configuration. Relaxation times in 

all cases are considered to be fixed and equal to 500s, 10000s and 200000s for ݊ ൌ 1~3. Poisson's ratio 

ݒ ,is considered to be time independent and equal to 0.45 for HDPE, that is ݒ → 	0.5. This assumption 

results in a bulk modulus about 10ସ െ 10଺ which is recommended in the literature (Krishnaswami, et 

al., 1992). 

 

Figure 41: Dog-bone shape material sample test used by Liu (Liu, 2007) 

Table	20:	List	of	tested	polyethylene	(Liu,	2007)	

No.  Material  Type  Thickness* 

(mm) 

Width** 

(mm) 

Code  (kg/mol)࢝ࡹ  ࢔ࡹ

(kg/mol) 

ESCR 

(h) 

1  HDPE‐PIPE  pipe  5.00  13.05  PIPE  Data not available 

2  HDPE‐resin1  resin  5.80  12.76  RES1  127.5  16.3  4.8 

3  HDPE‐resin2  resin  5.65  12.89  RES2  118.5  15.7  1.2 

* േ૙. ૙૜ 

∗∗ േ૙. ૙૞ 
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Table	21:	Prony	series	parameters	(material	parameters)	(Liu,	2007)	

Material  Stress 

(MPa) 

 ૙ࡱ
(MPa) 

 ૚ࡱ
(MPa) 

 ૛ࡱ
(MPa) 

 ૜ࡱ
(MPa) 

࣎૚ (s)  ࣎૛ (s)  ࣎૜ (s) 

HDPE‐PIPE  2.97  650  797.3  2320.

3 

925.1  500  1000

0 

200000 

5.97  580  913.6  1212.

3 

695.0  500  1000

0 

200000 

7.71  520  1224.

8 

1105.

0 

385.9  500  1000

0 

200000 

HDPE‐resin1  2.67  990  2473.

5 

1434.

3 

1.0e8  500  1000

0 

200000 

5.15  830  2153.

6 

1319.

8 

949.4  500  1000

0 

200000 

7.14  790  2614.

5 

993.8  747.7  500  1000

0 

200000 

7.58  770  1771.

7 

959.6  537.9  500  1000

0 

200000 

10.6  730  1153.

4 

706.9  352.5  500  1000

0 

200000 

HDPE‐resin2  2.68  2500  2848.

6 

3650.

6 

1053.

8 

500  1000

0 

200000 

5.58  2300  2125.

6 

1811.

4 

696.3  500  1000

0 

200000 

7.28  1700  1515.

4 

1537.

4 

603.9  500  1000

0 

200000 

10.6  1200  1180.

3 

1111.

9 

405.5  500  1000

0 

200000 

13.7  1100  999.9  810.1  145.0  500  1000

0 

200000 
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Figure 42: Test results (continuous line) (Liu, 2007) vs. present FEA (dashed line) for HDPE-

PIPE material  

 

 

Figure 43: Test results (continuous line) (Liu, 2007) vs. present FEA (dashed line) for HDPE-

RES1 material 
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Figure 44: Test results (continuous line) (Liu, 2007) vs. present FEA (dashed line) for HDPE-

RES2 material 

Figure 42 to Figure 44 compare the experimental measurements of strain vs. time with results 

obtained from finite element analysis. The comparison shows relatively good correlation between these 

two sets of results, except in some cases that an offset is observed (like for stress levels 7.58 MPa and 

10.6 MPa in Figure 43). The author believes that the reason of this offset is error in the first readings 

of the measurements. The first measurement indicates the instantaneous strain and/or compliance and 

plays an important role in predicting the material response in times greater that initial test time. 

Here Model A will be compared to model B. As it was mentioned before, Model A is a simple case 

of Model B in which ܰ ൌ 1, meaning that just one Kelvin unit is considered. So, the number of 

associated moduli of elasticity and relaxation times decrease to one (ܧଵ and ߬ଵ). The method that is 

used by Liu (Liu, 2007) for obtaining the material parameters, is a method of pre-setting the relaxation 

time and finding the associated moduli of elasticity. For more information, readers are referred to 

Chapter 3. Before comparing the two mentioned models together, let’s see how the pre-setting of 

relaxation times affect the results. 

Here Model A is considered and PIPE material is chosen for analysis. To find the material 

parameters, in a similar method to Liu’s, different relaxation times are set and related moduli are 
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obtained. These times are 1000s, 5000s, 15000s and 50000s for different cases of N=1 (1), (2), (3) and 

(4), respectively. The corresponding moduli are 410 MPa, 391 MPa, 352 MPa and 239 MPa. These 

cases and the material parameters for each case are shown in Table 22. Using the developed finite 

element procedure, and setting ܰ ൌ 1, finite element results are obtained for PIPE material under 7.71 

MPa uniaxial loading. The resultant strain curves are shown in Figure 45 for each simulation case. As 

one can see, comparison of FE results with the experimental ones, is not satisfactory. The Least Squares 

Errors (LSE) (see chapter 3 for more information) for each case in Figure 45 are tabulated in Table 22. 

As inferred, the shape of the curves, and the associated errors, are dependent on the choice of relaxation 

time. Therefore, it can be concluded that the model A is not satisfactory, as just one Kelvin unit is used 

and, furthermore, the method of pre-setting material parameters, are not reliable enough, as the results 

are very sensitive to the choice of relaxation times. For accurate results, the method of nonlinear 

optimization (Chapter 3) is highly recommended for ܰ ൏ 3. 

 

Table	22:	Prony	series	parameters	for	PIPE	under	

7.71MPa	uniaxial	force	for	Model	A	(N=1)	

Case	 N=1 (1)	 N=1 (2)	 N=1 (3)	 N=1 (4) 

	૚ࡱ

(MPa)	

410  391  352  239 

࣎૚	(s)	 1000  5000  15000  50000 

Error	

(%)	

15.2  8.9  8.6  12.3 
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Figure 45: Finite element results for PIPE material under 7.71MPa, Model A (N=1) compared 

to experiments, see Table 22 for material parameters for each case 

Table	23:	Prony	series	parameters	for	PIPE	

under	7.71MPa	uniaxial	force	

Case	 Model A 

N=1 (3)	

Model B 

N=2	

Model B 

N=3 

(Liu, 2007)	

	(MPa)	૚ࡱ 352  2297  1225 

	(MPa)	૛ࡱ   449  1105 

	(MPa)	૜ࡱ     386 

࣎૚	(s)	 15000  500  500 

࣎૛	(s)	   10000  10000 

࣎૜	(s)	     200000 

Error	(%)	 8.6  6.7  2.7 
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To see how the number of Kevin units affect the resultant strain curves, three cases are considered: 

Case I: Model A with ߬ ଵ ൌ ܰ and Case II and III: Model B, with ,ݏ15000 ൌ 2 and ܰ ൌ 3, respectively. 

The cases and material parameters are shown in Table 23. Figure 46 shows the resultant finite element 

curves using the material parameters for each case. As seen, by increasing the number of Kelvin units, 

the correlation between simulation and test data improves. This has been illustrated by LS errors 

calculated for each case (Table 23). 

 

Figure 46: Finite element results for PIPE material under 7.71MPa, using Model A (N=1), and 

Model B (N=2 & N=3) compared to experiments (Liu, 2007) 

5.6 Conclusion 

A phenomenological three-dimensional linear viscoelastic constitutive model for time dependent 

analysis was presented. The model was based on Boltzmann linear superposition principle, and 

provided a linear solution procedure to solve viscoelastic behaviour. The Prony series material 

parameters used in the process and the constitutive relations were based on the separable form of 

equations. It was shown that the presented model is suitable for development of a unified computer 

code that can handle linear viscoelastic material behaviour. Based on the proposed constitutive 

equations, a finite element (FE) procedure was developed and implemented in a User Material FE code 
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in ABAQUS. The validity of the model was assessed by comparison with experimental observations 

on high density polyethylene (HDPE) for uniaxial loading cases. For this, the code was used to predict 

the response of a single cubic element sample material. A reasonably good correlation was seen 

between these two sets of results and it is concluded that the proposed FEM model can reproduce the 

experimental strain-time curves quite accurately. 

Based on the research conducted in this chapter and summarized above, the following specific 

findings and contributions can be mentioned: 

The developed finite element procedure, allows to model the long term as well as short term 

responses of polymers. For this a code was developed in Fortran workspace, which is linked to 

commercial software ABAQUS. 

The inputs to the developed code include a structural model and a material model. The former is 

done through the ABAQUS user interface and includes 3D solid modelling, boundary conditions, 

loadings, meshing and time discretization. The latter is obtained from experiments and needs material 

analysis. 

  



 

 134 

Chapter 6 

Constitutive equations and finite element implementation of 

isochronous nonlinear viscoelastic behaviour 

 

Contents of this chapter is based on a paper which will be submitted to the peer reviewed journals. This 

chapter presents phenomenological three-dimensional nonlinear viscoelastic constitutive model for 

time dependent analysis. Based on Schapery's single integral constitutive law, a solution procedure has 

been provided to solve nonlinear viscoelastic behaviour. This procedure is applicable to three 

dimensional problems and uses time- and stress-dependent material properties to characterize the 

nonlinear behaviour of material. The equations describing material behaviour are chosen based on the 

measured material properties in a short test time frame.  This estimation process uses the Prony series 

material parameters and the constitutive relations are based on the non-separable form of equations. 

Material properties are then modified to include the long term response of material. The presented 

model is suitable for development of a unified computer code that can handle both linear as well as 

nonlinear viscoelastic material behaviour. The proposed viscoelastic model is implemented in a user-

defined material algorithm in ABAQUS (UMAT) and the model validity is assessed by comparison 

with experimental observations on polyethylene for three uniaxial loading cases, namely, short term 

loading, long term loading, and step loading. A part of experiments are done by Liu (Liu, 2007), while 

the rest are provided by ExxonMobil, a division of Imperial Oil. The research shows that the proposed 

FEM model can reproduce the experimental strain-time curves accurately, and concludes that with 

proper material properties to reflect the deformation involved in the mechanical tests, the deformation 

behaviour observed experimentally can be accurately predicted using the FEM simulation. 

6.1 Introduction 

Within the context of the development of nonlinear viscoelastic constitutive models, three general 

approaches can be distinguished (Xia, et al., 2006): 1) rheological models in a differential form, 2) non-

equilibrium thermodynamics, and 3) free volume models in an integral formulation. The first class is 

based on a certain configuration of mechanical elements, i.e. springs and dashpots, which reproduce 

the viscoelastic response of real material systems. The most popular combinations are the Burgers, the 

generalized Maxwell and the generalized Kelvin models. (Flugge, 1967).  Non-equilibrium 
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thermodynamics approach has been found helpful in constructing constitutive relations and was 

investigated by several researchers, namely, Schapery (Schapery, 1969); Lustig et al. (Lustig, et al., 

1996) and Weitsman (Weitsman, 1990). The free energy is expressed as a function of current values of 

strain (stress), temperature and other variables such as moisture and physical aging, which could be 

incorporated through a shift factor in reduced time. The nonlinear free volume approach is based on the 

concept of “free volume”, and the linear viscoelastic behaviour for small strains, except that the time 

scale is adjusted to the current free volume state, thereby introducing nonlinearity into the constitutive 

equations. Constitutive models based on this approach can be found in references by Mlekusch 

(Mlekusch, 2001) and Popelar and Liechi (Popelar, et al., 2003), among others. 

In the present study, the focus is on the single integral thermodynamic approach, which is a simplified 

case of the multiple integral method and belongs to the second class of the above mentioned 

methodologies (non-equilibrium thermodynamics). One of the best known nonlinear theories of 

viscoelasticity was proposed by Green and Rivlin (Green, et al., 1957) for homogenous isotropic 

nonlinear viscoelastic materials with memory. It is a multiple integral constitutive law with multiple 

argument functions. These multiple argument functions require a large number of tests, which would 

be costly and unjustifiable. Lockett (Lockett, 1972) proposed constitutive models that uses only a single 

integral and do not require a large experimental effort. It should be noted that this simpler model is 

limited, and it should not be expected that such a theory can be adequate for all situations, like materials 

with high degree of nonlinearity. Alternately, a thermodynamically consistent theory for a single 

integral representation of nonlinear viscoelasticity was first proposed by Schapery (Schapery, 1969) & 

(Schapery, 1969). The law can be derived from fundamental principles using the concepts of 

irreversible thermodynamics. A comprehensive review of the thermodynamics basis of Schapery's 

theory has been presented by Hiel el al. (Hiel, et al., 1983) and Findley et al. (Findley, et al., 1976). 

In contrast to the linear viscoelastic behaviour of a solid, in which the viscoelastic material 

parameters are independent of the state of deformation (or loading), in nonlinear behaviour, viscoelastic 

creep and relaxation depends not only on time but also on the stress (or strain) imposed on the material. 

Hence, the modelling becomes inherently nonlinear because changes in the strain (or stress) alter the 

viscoelastic material properties which, in turn, modify the resultant strain (or stress). Therefore, in this 

work, a three-dimensional finite element model is presented for isochronous nonlinear viscoelastic 

behaviour. The modelling proceeds with the following steps. 
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1- Model definition is done based on Schapery's single integral constitutive law (section 6.2) 

2- Multi Kelvin solid representation of viscoelastic behaviour is employed (section 6.2) 

3- Constitutive equations are extended to the three-dimensional case.  (section 6.3) 

4- Material/kernel functions (݃଴
௧ , ݃ଵ

௧ and ݃ଶ
௧) are defined for long term responses (section 6.4) 

5- An empirical approach is used for defining the fitting parameters (section 6.4) 

6- Model is implemented in FE user subroutine (section 0) 

7- The presented model results are validated for: (section 6.6) 

‐ Short term behaviour 

‐ Long term behaviour 

‐ Step loading 

A nonlinear solution procedure is developed (step 1) which uses Schapery’s single integral 

constitutive law (Schapery, 1969) & (Schapery, 1969). A multi Kelvin solid configuration of spring 

and dash-pot elements is used to construct the constitutive equations (step 2).  The procedure is based 

on the work done by Roy and Reddy (Roy, et al., 1988), in which the time- and stress dependent material 

properties (based on a generalized multi Kelvin simulation) are used to characterize the nonlinear 

behaviour. 

A three-dimensional formulation is developed next (step 3), whereas for the implementation in finite 

element analysis Kernel functions (݃଴
௧ , ݃ଵ

௧ and ݃ଶ
௧) are subsequently defined and the material properties 

are modified to include the long term response of the material (step 4). The equations describing 

material behaviour are modified based on the measured material properties through an empirical 

approach (step 5). 

The presented model is suitable for the development of a unified computer code that can handle both 

linear as well as nonlinear viscoelastic material behaviour. For simplicity, the model doesn’t consider 

the geometric (kinematic) nonlinearity. For more details, readers are referred to Roy and Reddy (Roy, 

et al., 1988) & (Roy, et al., 1988), in which the formulation of a coupled geometrically nonlinear (i.e., 
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including large deflection and rotation of the structure), and nonlinear viscoelastic behaviour can be 

found.   

The proposed viscoelastic model is implemented in a user-defined material algorithm in Abaqus 

(UMAT) (step 6). The current version of the commercial software ABAQUS allows only linear 

viscoelastic modelling and lacks the nonlinear analysis of viscous materials. The validity of the models 

is assessed (step 7) by comparison with experimental observations on polyethylene specimens under 

uniaxial loading. A part of experiments are done by Liu (Liu, 2007), while the rest are provided by 

ExxonMobil, a division of Imperial Oil. The comparisons in section 6 show that the proposed 

constitutive model can satisfactorily represent the time-dependent mechanical behaviour of polymers. 

Steps 2, 4 and 5 (sections 4.36.26.4 and 0), in which deal with constitutive equations and material 

model functions and parameters and nonlinearization for long term prediction, use the information 

provided in Chapter 5 and Chapter 3, respectively, and some formulations, graphs and parameters in 

tables associated with this concept might be repetitions. The repetitions are intentionally, as the author 

intends to keep this chapter independently conveyer of the proposed concept in the chapter. 

6.2 Constitutive Equations 

The uniaxial nonlinear viscoelastic constitutive equation of Schapery (Schapery, 1969) & (Schapery, 

1969) can be written for an isotropic material as 

 
௧ߝ ൌ ݃଴

௧ߪ௧ܦ଴ ൅ ݃ଵ
௧ න ௧ߞ൫ܦ∆ െ ௧’൯ߞ

݀
′ݐ݀

ሾ݃ଶ
௧’ߪ௧’ሿ݀ݐ′

௧

଴
 (163) 

Here ߝ௧ and ߪ௧ represent uniaxial kinematic strain and the Cauchy stress, respectively, at current 

time ܦ .ݐ଴ is the instantaneous elastic compliance and ∆ܦሺݐሻ represents a transient creep compliance 

function. Superscript ݐ denotes the value at current time. The nonlinear factor ݃଴
௧  defines stress and 

temperature effects on the instantaneous elastic compliance and is a measure of state dependent 

reduction (or increase) in stiffness, ݃଴
௧ ൌ ݃଴ሺߪ, ܶሻ. Transient (or creep) compliance factor ݃ଵ

௧ has a 

similar meaning, operating on the creep compliance component. The factor ݃ଶ
௧  accounts for the 

influence of load rate on creep, and depends on stress and temperature. The function ߞ௧  represents a 

reduced time scale parameter defined by: 
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௧ߞ ൌ න

1

൫ܽఙ்
௧’ ൯

′ݐ݀
௧

଴
 (164) 

where ܽఙ்
௧’  is a time scale shift factor. Generally, ܽ ఙ்

௧’ 	ൌ 	 ܽఙ்
௧’ ሺܶ,  ሻ, could be a function of stress andߪ

temperature at time ݐ′, but for thermorheologically simple materials, is a function of temperature, ܶ, 

only. Mathematically,	ܽఙ்
௧’ , shifts the creep data parallel to the time axis relative to a master curve for 

creep strain versus time. This technique is called time-temperature superpositioning and indicates that 

as the temperature increases, the polymer becomes more sensitive to the applied load and reacts sooner 

than at room temperture. Williams, Landal and Ferry (Williams, et al., 1955) applied it to a large 

number of polymers and found the following expression for the shift factor, 

 
ଵ଴݃݋݈ ܽఙ்

௧ ൌ
െܥଵ̅ሺܶ െ ଴ܶሻ
ଶ̅ܥ ൅ ሺܶ െ ଴ܶሻ

 (165) 

where the constants ܥଵ̅ and ܥଶ̅ have the values of 17.44 and 51.6, respectively if the glass transition 

temperature ௚ܶ is used as the reference temperature ଴ܶ. The mentioned equation is known to be only 

valid above the ௚ܶ, because below this temperature the material can no longer be considered a super 

cooled liquid (Williams, et al., 1955). A shift factor below the ௚ܶ has been developed using the 

Arrhenius activation energy equation, which is (Ferry, 1980) 

 
ଵ଴݃݋݈ ܽఙ்

௧ ൌ
௔ܧ

2.303 ܴ
ቆ
1
ܶ
െ
1

௚ܶ
ቇ (166) 

Here an isochronous analysis is assumed, which defines ܽఙ்
௧’ ൌ 1 and consequently, ߰௧ ൌ  .ݐ

In this model, the three material functions (݃଴
௧ , ݃ଵ

௧ and ݃ଶ
௧) are used to characterize the nonlinear 

behaviour (Findley, et al., 1976). These so called kernel functions are obtained by curve fitting of the 

theoretical modelling solution to the test data  

It was shown by Schapery (Schapery, 1969) that the strain, Eq. (73), may be represented 

schematically as a mechanical analogue consisting of nonlinear springs and dashpots, as illustrated in 

Figure 47 (generalized configuration of a multi-Kelvin solid), with the following stress-strain 

relationship 

ߝ  ൌ ௘ߝ ൅ ௜ߝ ൌ ߪ ଴ܦ ൅ ߪ  ሻ (167)ݐሺܦ
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where ߝ௘ is the elastic strain component and ߝ௜ ൌ ∑ ௡ߝ
ே
௡ୀଵ   is the inelastic one. Here ߝ௡ is the strain 

associated with each Kelvin unit and ܦ଴ represents instantaneous elastic compliance, 1/ܧ଴. The 

associated transient creep compliance function, is defined as the following Prony series 

ሻݐሺܦ  ൌ෍ܦ௡ൣ1 െ ݁ି௧/ఛ೙൧
௡

 (168) 

where ܦ௡ and ߬௡ are ݊௧௛ equivalent creep compliance and relaxation time for ݊௧௛ Kelvin unit, 

respectively, and, 1 ൑ ݊ ൑ ܰ, which ܰ equals to the order of expression and represents the number of 

Kelvin units in the spring and dash-pot simulation of material behaviour, Figure 39 (for further 

discussion see (Flugge, 1967)).  

  

Figure 47: Multi Kelvin Solid configuration 

Substituting in Eq. (73) yields 

 
௧ߝ ൌ ݃଴

௧ߪ௧ܦ଴ ൅ ݃ଵ
௧ න ෍ܦ௡ൣ1 െ ݁ିሺ௧ି ௧’ሻ/ఛ೙൧

௡

݀
′ݐ݀

ሾ݃ଶ
௧’ߪ௧’ሿ݀ݐ′

௧

଴
 (169) 

and then  

௧ߝ ൌ ௧݃଴ߪ
௧ܦ଴ ൅ ݃ଵ

௧෍ܦ௡ሺߪሻන
݀ሾ݃ଶ

௧’ߪ௧’ሿ
′ݐ݀

′ݐ݀
௧

଴௡

െ ݃ଵ
௧෍ܦ௡ሺߪሻන ݁

ቀି
௧ି ௧’
ఛ೙

ቁ
	
݀ሾ݃ଶ

௧’ߪ௧’ሿ
′ݐ݀

′ݐ݀
௧

଴௡

 (170)

The second integral on the right hand side of the equation is now separated into two parts, the first 

part having limits from zero to ሺݐ െ  ,ሻ, and the second integral spanning only the current load stepݐ∆

that is, from ሺݐ െ   ݐ ሻ toݐ∆

න ݁
ቀି
௧ି	௧’
ఛ೙

ቁ
	
݀ሾ݃ଶ

௧’ߪ௧’ሿ
′ݐ݀

′ݐ݀
௧

଴
ൌ න ݁

ቀି
௧ି ௧’
ఛ೙

ቁ ݀ሾ݃ଶ
௧’ߪ௧’ሿ
′ݐ݀

′ݐ݀
௧ି∆௧

଴
൅ න ݁

ቀି
௧ି ௧’
ఛ೙

ቁ
	
݀ሾ݃ଶ

௧’ߪ௧’ሿ
′ݐ݀

′ݐ݀
∆௧

௧ି∆௧
 (171)

The first integral can be written as (Findley, et al., 1976) 

E1 E2

E0
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න ݁

ቀି
௧ି ௧’
ఛ೙

ቁ ݀ሾ݃ଶ
௧’ߪ௧’ሿ
′ݐ݀

′ݐ݀
௧ି∆௧

଴
ൌ ݁

ቀି
∆௧
ఛ೙
ቁ
௡௧ି∆௧ (172)ݍ

where 

 
௡௧ି∆௧ݍ ൌ න ݁

ି
ሺ௧ି∆௧ି ௧’ሻ

ఛ೙
݀ሾ݃ଶ

௧’ߪ௧’ሿ
′ݐ݀

′ݐ݀
௧ି∆௧

଴
 (173)

and the second integral is integrated by parts: (Findley, et al., 1976) 

 
න ݁

ି
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ఛ೙ 	

݀ሾ݃ଶ
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′ݐ݀

′ݐ݀
௧
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݀ଶሾ݃ଶ
௧’ߪ௧’ሿ

ଶ′ݐ݀
′ݐ݀

௧

௧ି∆௧
 

ൌ
݀ሾ݃ଶ
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ݐ݀

߬௡ ቈ1 െ ݁
ି
௧
ఛ೙቉ 

(174)

In order to carry out the integration, it is assumed that ݃ଶ
௧ߪ௧ varies linearly over the current time step 

݃ଶ	and its second derivative is zero. In other words, ݐ∆
௧ߪ௧ is assumed to be represented in a piecewise 

linear manner over the entire load history without any loss of generality (Findley, et al., 1976). This 

leads to the following equation 

 ݀ሾ݃ଶ
௧ߪ௧ሿ
ݐ݀

ൌ
݃ଶ
௧ߪ௧ െ ݃ଶ

௧ି∆௧ߪ௧ି∆௧

∆t
 (175)

which simplifies Eq. (136) to  

 
න ݁

ି
ሺ௧ି ௧’ሻ
ఛ೙

݀ሾ݃ଶ
௧’ߪ௧’ሿ
′ݐ݀

′ݐ݀
௧

௧ି∆௧
ൌ ൫݃ଶ

௧ߪ௧ െ ݃ଶ
௧ି∆௧ߪ௧ି∆௧൯ߚ௡௧  (176)

where 

 
௡௧ߚ ൌ

߬௡
ݐ∆
ቆ1 െ ݁

ି
∆௧
ఛ೙ቇ (177)

Substituting Eq. (134) and Eq. (138) back into Eq. (133), one obtains the following single integral 

viscoelastic constitutive law in terms of a stress operator that includes instantaneous compliance and 

hereditary strains (Findley, et al., 1976) 

 
௧ߝ ൌ ൥݃଴

௧ܦ଴ ൅෍݃ଵ
௧݃ଶ

௧ܦ௡ሺ1 െ ௡௧ሻߚ
௡

൩ ௧ߪ ൅ ݃ଵ
௧෍ܦ௡ ቆ݃ଶ

௧ି∆௧ߚ௡௧ߪ௧ି∆௧ െ ݁
ି
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ఛ೙	ݍ௡௧ି∆௧ቇ

௡

 (178)
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or 

௧ߝ  ൌ ூܦ
௧ߪ௧ ൅ ത௧ (179)ܧ

where 

ூܦ 
௧ ൌ ݃଴

௧ܦ଴ ൅ ݃ଵ
௧݃ଶ

௧ ෍ܦ௡ሺ1 െ ௡௧ሻߚ
௡

 (180) 

 
ത௧ܧ ൌ ݃ଵ

௧෍ܦ௡ ቆ݃ଶ
௧ି∆௧ߚ௡௧ߪ௧ି∆௧ െ ݁

ି
∆௧
ఛ೙ ௡௧ି∆௧ቇݍ

௡

 
(181) 

Here ܦூ
௧ is the instantaneous compliance multiplying the instantaneous stress ߪ௧, and ܧത௧ is the 

hereditary strains. The term ݍ௡௧ି∆௧ is the ݎ௧௛ component of the hereditary integral series at the end of 

the previous load step which is carried over to the current step and is defined as the following recurrence 

formula. 

 
௡௧ݍ ൌ ݁

ି
∆௧
ఛ೙ ௡௧ି∆௧ݍ ൅ ൫݃ଶ

௧ߪ௧ െ ݃ଶ
௧ି∆௧ߪ௧ି∆௧൯ߚ௡௧  (182) 

6.3 Extending to Multi-Dimensional Relations 

The formulation needs to be generalized to multiaxial stress state in order to be able to sustain a fully 

three-dimensional stress state. The constitutive law for a homogeneous isotropic viscoelastic material 

can be expressed as ( (Schapery, 1969) & (Schapery, 1969)) 

 ݁௜௝
௧ ൌ ሼܬሽ൛݃ଶ

௧ߪ௜௝
௧ ൟ ൅ ሼܦ െ ሽሼ݃ଶܬ

௧ߪ௠௠௧ ሽߜ௜௝ , ݅, ݆ ൌ 1~3 (183) 

where ܦ and ܬ are tensile and shear compliances, respectively, and the operator ሼ. ሽሼ. ሽ implies the 

convolution integral as indicated below: 
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(185) 

Expanding Eq. (145) term by term for the strains, one obtains: 

 ݁ଵଵ
௧ ൌ ሼܦሽሼ݃ଶ

௧ߪଵଵ
௧ ሽ ൅ ሼܦ െ ሽሼ݃ଶܬ

௧ߪଶଶ
௧ ሽ ൅ ሼܦ െ ሽሼ݃ଶܬ

௧ߪଷଷ
௧ ሽ (186) 
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 ݁ଶଶ
௧ ൌ ሼܦ െ ሽሼ݃ଶܬ

௧ߪଵଵ
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௧ߪଶଶ
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௧ߪଷଷ
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ଵଶߛ 
௧ ൌ 2ሼܬሽሼ݃ଶ

௧ߪଵଶ
௧ ሽ , ଶଷߛ

௧ ൌ 2ሼܬሽሼ݃ଶ
௧ߪଶଷ

௧ ሽ , ଵଷߛ
௧ ൌ 2ሼܬሽሼ݃ଶ

௧ߪଵଷ
௧ ሽ 

Similar to the transient components of the creep compliances, Eq. (168), the shear compliances can 

be written in the form of a Prony series as: 
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where   ௡ܶ (like ߬௡ in tensile) is the relaxation time for shear. Also  ܬ଴ (like ܦ଴ in tensile) represents 

the shear compliance at ݐ ൌ 0. Then Eq. (148) can be simplified to 

 ሼܦሽ൛݃ଶ
௧ߪ௜௝

௧ ൟ ൌ ூܦ
௧ߪ௜௝

௧ ൅ ܳ௜௝
௧  (188) 

where ܦூ
௧ is the instantaneous creep compliance function and ܳ ௜௝

௧  are the hereditary strain components 

due to tensile creep at time ݐ: 

ூܦ 
௧ ൌ ݃଴

௧ܦ଴ ൅ ݃ଵ
௧෍ܦ௡ሺ1 െ ௡௧ሻߚ

௡

 (189) 

 
ܳ௜௝
௧ ൌ ݃ଵ

௧෍ܦ௡ ቆ݃ଶ
௧ߚ௡௧ߪ௜௝

௧ି∆௧ െ ݁
ି
∆௧
ఛ೙ ௡,௜௝ݍ

௧ି∆௧ቇ
௡

 
(190) 

and 

 
௡,௜௝ݍ
௧ ൌ ݁

ି
∆௧
ఛ೙ ௡,௜௝ݍ

௧ି∆௧ ൅ ൫݃ଶ
௧ߪ௜௝

௧ െ ݃ଶ
௧ି∆௧ߪ௜௝

௧ି∆௧൯ߚ௡௧  (191) 

Similar expressions can be developed for ሼܬሽ൛ߪ௜௝
௧ ൟ ( (Schapery, 1969) & (Schapery, 1969)). For a 

fully three-dimensional problem, substituting the resultant relations in Eq. (148) and dropping 

superscripts, one obtains for the viscoelasticity problem the following relation in matrix format:  

ࢋ  ൌ ࣌ࡺ ൅  (192) ࡴ

where ࡴ is defined in (Schapery, 1969) & (Schapery, 1969). For a nonlinear three-dimensional 

viscoelasticity problem, the left-hand side of Eq. (192) is a vector containing the algebraic difference 

of kinematic strains ߝ and dilatational strains ܫߠ 
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்ࢋ  ൌ ሼሺߝଵଵ െ ,ሻߠ ሺߝଵଵ െ ,ሻߠ ሺߝଵଵ െ ,ሻߠ ,ଵଶߛ ,ଶଷߛ  ଵଷሽ (193)ߛ

while ߪ contains six components of Cauchy stress tensor and ܪ is a vector of hereditary strains that 

contains the entire load history effect. The matrix મ is a 6	 ൈ 	6 coefficients matrix given by 

 

ࡺ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

ூܦ
ሺܦூ െ ூሻܬ
ሺܦூ െ ூሻܬ

0
0
0

ሺܦூ െ ூሻܬ
ூܦ

ሺܦூ െ ூሻܬ
0
0
0

ሺܦூ െ ூሻܬ
ሺܦூ െ ூሻܬ

ூܦ
0
0
0

0
0
0
ூܬ2
0
0

0
0
0
0
ூܬ2
0

0
0
0
0
0
ےூܬ2
ۑ
ۑ
ۑ
ۑ
ې

 (194) 

Multiplying Eq. (192) by ିࡺଵ, an explicit expression for stresses in terms of strains is obtained 

 ࣌ ൌ ࢋଵሺିࡺ െ  ሻ (195)ࡴ

Eq. (195) provides a general viscoelastic constitutive relation that can be applied to fully three-

dimensional viscoelasticity problems. Note that the use of tensile creep and shear compliances as a 

material property input allows Poisson's ratio to change with time. Hence, the present formulation is 

applicable to any thermorheologically simple isotropic three-dimensional viscoelastic material over any 

length of time. 

For the special case where Poisson's ratio is a constant with time, then 

ሻݐሺܬ  ൌ ሺ1 ൅  ሻ (196)ݐሺܦሻݒ

which makes the relaxation times in tensile creep and shear to be identical. The matrix ࡺ takes the 

simplified form 

 

ࡺ ൌ ூܦ ൈ ࡯ ൌ ூܦ

ۏ
ێ
ێ
ێ
ێ
ۍ 1
െݒ
െݒ
0
0
0

െݒ
1
െݒ
0
0
0

െݒ
െݒ
1
0
0
0

0
0
0

2ሺ1 ൅ ሻݒ
0
0

0
0
0
0

2ሺ1 ൅ ሻݒ
0

0
0
0
0
0

2ሺ1 ൅ ےሻݒ
ۑ
ۑ
ۑ
ۑ
ې

 (197) 

6.4 Material Properties 

To find a solution for Eq. (195), material properties need to be defined. These properties are obtained 

from test data and include: instantaneous compliance, Poisson’s ratio, and 2 ൈ N unknown creep 

compliances and relaxation times (ܦ௡ and ߬௡) associated with ܰ Kelvin units (Figure 47). Kernel 

functions, (݃଴
௧ , ݃ଵ

௧ and ݃ଶ
௧), that change with respect to stress, ߪ, also need to be defined for the material 
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nonlinearity. Here, ݃ଶ
௧  is considered to be equal to one, for simplicity, meaning that the main source of 

nonlinearity would be the material itself, and most importantly, the stress change in the time discrete 

time interval ∆ݐ is considered to be linear. The relaxation times are also considered to be functions of 

stress; which puts more accuracy in the system and the change of material properties versus stress 

would be more precise. 

As discussed, the strain may be represented schematically by a mechanical analogue consisting of 

nonlinear springs and dashpots. A generalized configuration of a multi-Kelvin solid, Figure 47, is 

chosen, with the following stress-strain relationship for the applied stress at current time, ߪ௧ 

ߝ  ൌ ௘ߝ ൅ ௜ߝ ൌ ௧ߪ ߰଴ሺߪሻ ൅ ௧ߪ ߰ሺߪ,  ሻ (198)ݐ

The transient creep compliance function for this case would be 

 
߰ሺߪ, ሻݐ ൌ෍ܺ௡ሺߪሻ ቈ1 െ ݁

ቀି
௧
ఛ೙
ቁ
቉

௡

 (199) 

which is a nonlinear representation of Eq. (168). 

The process of defining the unknown material properties and kernel functions is curve fitting of the 

developed model to experimental results. Using uniaxial creep results is the easiest way to determine 

the material behaviour, as it’s the most convenient method of testing. Tests conducted by Liu (Liu, 

2007)  at the University of Waterloo, on high density and medium density polyethylene materials were 

used as the basis. Experiments were performed on five types of PEs and included tests on: short term 

tensile creep (24 hours), long term creep (7 days and 14 days) and creep with step loading. The 

specimens were produced from resins by melting them and machining, and from pipes by cutting out 

the samples (Table 24). 24-hour creep testing was done at different stress levels to examine time 

dependent and nonlinear behaviour of the materials. Furthermore, more creep tests have been 

performed by ExxonMobil Chemical Canada, a division of Canada Imperial Oil Limited. The materials 

are Low Density (LDPE), High Density (HDPE) and cross-liked (PEX) polyethylene (Table 25), all 

used in the rotomolding process. Each material is tested in three different temperatures, forming nine 

sets of uniaxial creep experiments, and each set contains strain measurements under four applied 

constant stresses. The test time duration is 1007 hours and just a short term portion of results (50 hours) 

is used for material parameters development. Thus, the method of material definition is to minimize the 

Least Squares Error by fitting Eq. (198) to the experimental results noting that: 
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 ߰଴ ൌ ܺ଴ ൌ ݃଴
௧ሺߪሻ  ଴ܦ

ܺ௡ ൌ ݃ଵ
௧ሺߪሻ	ܦ௡ 

݃ଶ
௧ ൌ 1 

߬௡ ൌ ߬௡ሺߪሻ 

(200) 

Furthermore, the Poisson's ratio ݒ is considered to be time independent and equal to 0.45 for HDPE, 

that is, ݒ → 	0.5. This assumption results in a bulk modulus of about 10ସ െ 10଺ which is recommended 

in the literature ( (Krishnaswamy, et al., 1992) & (Hinterhoelzl, et al., 2004)). Therefore, the aim is to 

find ܺ଴, ܺ୬ and ߬௡, where the first describes the elastic portion of the behaviour and the latter two are 

related to inelastic response. 

Here ܺ଴, ܺ୬ and ߬௡ are approximated by power-law functions of stress. This follows the formulation 

presented in (Sepiani, et al., 2017), To reduce the number of inelastic material functions, which are 

equal to 2 ൈ ܰ, all values of ܺ୬ and ߬௡ are obtained using four parameters ଵܺ, ߬ଵ, ݉ and ߙ 

 ܺ଴ ൌ ሺܽ଴ ൅ ܽଵ݁൫ି௔మఙෝ
య൯ሻିଵ (201) 

 ଵܺ
ିଵ ൌ ܾ଴ ൅ ܾଵ ሺܾଶ݌ݔ݁ െ ܾଷߪො െ ܾସ/ߪොሻ (202) 

 ߬ଵ ൌ ܿ଴ ሺെܿଵ݌ݔ݁ ൅ ܿଶߪ ൅ ܿଷߪଶ െ ܿସߪଷሻ (203) 

 ܺ௡ ൌ ݉ଵି௡
ଵܺ (204) 

 ߬௡ ൌ  ௡ିଵ߬ଵ (205)ߙ

Parameters ݉ and ߙ are considered to be stress-independent, as are several other fitting parameters 

ܽ௜ , ܾ௜ and ܿ௜, and ߪො ൌ ߪ ൈ 10ି଺ , where ߪ is the applied stress for a given creep curve. Here, ܽ଴ and 

ܽଵ have unit of compliance and ܽଶ has unit of inverse of cubic stress, while ߙ and ݉ have no units. ܾ଴ 

and ܾଵ have stress unit, ܾଶ has no unit, ܾଷ has inverse unit of stress and ܾସ has unit of stress. ܿ଴ has unit 

of time, ܿଵ has no unit, ܿଶ has unit of inverse of stress, ܿଷ has unit of inverse of squared stress, and ܿସ 

has unit of inverse of cubic stress. 

The modelling fitting parameters are further updated to make the model able to predict the material 

behaviour in an extended time period.  In order to realistically model the service life-time for polymeric 

structures, long term prediction methods are needed within the developed constitutive law. The 

proposed method is to observe the trend of material fitting parameters with respect to test time.  
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Table	24:	List	of	tested	polyethylene	materials	(dog‐bone	shape	samples)	by	Liu	(Liu,	2007)	

No. Material Type Thickness* 
(mm) 

Width* 
(mm) 

Code (kg/mol)࢝ࡹ  ࢔ࡹ
(kg/mol) 

ESCR 
(h) 

1 HDPE‐PIPE  pipe 5.00  13.05  PIPE  Data not available 

2 HDPE‐resin1  resin 5.80  12.76  RES1  127.5  16.3  4.8 

3 HDPE‐resin2  resin  5.65  12.89  RES2  118.5  15.7  1.2 

4 HDPE‐resin4  resin  6.27  12.42  RES4  79.4  19.7  3.6 

5 MDPE‐PE80  resin  5.04  12.76  PE80  202.1  14.0  198.3 

* These represent dogbone dimensions; allowance for thickness is േ૙. ૙૜, and േ૙. ૙૞ for width 

 

Table	25:	List	of	tested	polyethylene*	(from	ExxonMobil	Chemical	Canada)	

No. Material Temperature (°C) Code Density (g/cc) 

1 LLPE  23  LL8461‐23  0.938 

2 LLPE  50  LL8461‐50  0.938 

3 LLPE  60  LL8461‐60  0.938 

4 HDPE  23  HD8660‐23  0.942 

5 HDPE  50  HD8660‐50  0.942 

6 HDPE  60  HD8660‐60  0.942 

7 PEX  23  Paxon7004‐23  ‐ 

8 PEX  50  Paxon7004‐50  ‐ 

9 PEX  60  Paxon7004‐60  ‐ 

* All materials are used in rotomolding process 
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Table	26:	Fitting	parameters	for	materials	listed	in	Table	24	

Material	 HDPE‐PIPE  HDPE‐RES1 HDPE‐RES2 HDPE‐RES4 MDPE‐PE80

N  3  3  3  3  3 

v  0.45  0.45  0.45  0.45  0.45 

a0 (MPa-1)  533.2325  725.6315 ‐7.2E+07 ‐3.7E+07 ‐507.715

a1 (MPa-1)  0.0001  231.5424 72260542 37202291 1248.756

a2 (MPa-2)  0.183892  0.002946 3.79E‐09 1.23E‐09 4.32E‐04

m  0.540456  0.5467 0.387638 0.601929 0.406989

a  20.0403  29.98126 40.49517 24.46203 89.94696

b0' (MPa)  ‐14034.7  13460.95 6442.475 ‐15059.4 5130.081

b1' (MPa)  718.8153  1058.728 1891.629 2644.639 283.3042

b2'  3.690799  1.388991 ‐2.39479 4.860857 6.037886

b3' (MPa-1)  1.102456  0.135361 1.749268 1.555322 ‐0.16663

b4' (MPa)  47.36683  159.7381 105.288 1.47E‐13 1.18E+02

c0' (s)  9.43E‐07  5.67E‐06 1.31E‐10 8.09E‐07 8.31E‐06

c1'  ‐22.3282  ‐18.3079 ‐30.9412 ‐20.7033 ‐18.7169

c2'  ‐0.63894  0.117145 ‐0.38184 ‐0.22939 ‐0.56437

c3'  0.008102  ‐0.01922 ‐0.02906 ‐0.00517 0.019896

c4'  ‐1.62E‐04  ‐0.0013 ‐0.00163 0.00035 0.005194

d0'  ‐0.73126  ‐3.0538 ‐0.79544 ‐1.73155 ‐1.26327

d1'  0.078264  0.176628 0.05793 ‐0.20256 0.107159

d2'  ‐0.33487  ‐0.14866 ‐1.20575 ‐1.8171 ‐2.08471

d3'	 4.609743  0.017361 4.427899 6.860456 0.06555

d4'	 2.817401  3.20358 3.040402 ‐8.06257 2.29108

d5'	 0.391291  ‐0.28303 0.376139 0.471621 0.750257
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Table	27:	Fitting	parameters	for	materials	listed	in	Table	25	

Materia

l	
LL‐8461  HD‐8660  Paxon‐7004 

Temp
.	

23°C  50°C  60°C  23°C  50°C  60°C  23°C  50°C  60°C 

N  6  6  8  4  6  8  8  8  4 

v  0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.45 

a0 

(MPa-

1) 

460.482
2 

134.01
5 

125.09
5

‐9.E+6 ‐103 141.69
8

4.60E+
2 

65.948  128.1
7

a1 

(MPa-

1) 

486.482  175.8  66.399
6

9.5E+
6

402.96 376.14 4.86E+
2 

344.81  94.54
9

a2 

(MPa-

2) 

0.2103  0.0933  0.0048 1.1E‐7 0.0025 0.0925 2.10E‐1  0.0088  0.030
1

m  0.8333  1.1724  0.248 0.005
1

1.2038 0.4282 0.8333  0.6166  0.005
7

a  8.7739  3.9807  8.7093 0.232 8.0545 6.1101 8.7739  21.631  0.037

b0' 

(MPa) 

1.43E+3  454.8  4.61E+
6

1.7E+
9

133.08 7.58E+
4

1.43E+
3 

‐1.8E+5  ‐2.E+8

b1' 

(MPa) 

5.81E+9  3.3E+1
0 

4.94E+
6

1.5E+
7

3.0344 3.5E+1
1

5.81E+
9 

310.86
5 

7.2E+
8

b2'  28.181  5.8534  ‐0.8744 8.654
4

2.9668 ‐80.675 28.181  9.106  1.315
3

b3' 

(MPa-

1) 

15.3112  7.8408  0.3755 0.923
6

‐0.3147 ‐13.434 15.311  0.6777  0.121
5

b4' 

(MPa) 

27.815  16.343
1 

‐1.9153 1.507 ‐1.8918 3.1907 27.815  3.8627  0.207
9

c0' (s)  88.8217  1.8E‐11  10.971
8

0.107
3

2.7E+0
3

76.265
8

8.88E+
1 

285.17
6 

1.6E+
4



 

 149 

c1'  ‐0.6786  ‐25.880  8.4374 ‐24.67 1.9927 11.625
2

‐0.6786  21.302
7

‐7.355

c2'  ‐1.2337  ‐2.4988  ‐3.9044 ‐10.57 0.193 5.306 ‐1.2337  0.1032 ‐1.852

c3'  0.9775  1.0777  1.1849 3.704
1

‐0.043 ‐2.2016 0.9775  ‐0.2979 0.803
4

c4'  0.1482  0.1111  0.1051 0.395
3

‐0.0045 ‐0.2721 0.1482  ‐0.0453 0.093
5

d0'  ‐0.034  ‐0.1527  ‐0.1114 ‐0.057 ‐0.0501 3.7E‐11 ‐3.4E‐2  ‐1.5841 ‐0.253

d1'  ‐0.0839  ‐0.0081  ‐0.0921 ‐0.178 ‐0.002 ‐2E‐12 ‐8.E‐02  ‐0.359 ‐0.113

d2'  0.0  0.0  0.0 0.0 0.0 0.0 0.0  0.0 0.0

d3'	 0.0  0.0  0.0 0.0 0.0 0.0 0.0  0.0 0.0

d4'	 0.0  0.0  0.0 0.0 0.0 0.0 0.0  0.0 0.0

d5'	 0.1954  1.2002  0.7971 0.094
5

0.0779 6.0E‐09 0.1954  1.8135 0.486
5

 

First, the curve fitting is done for all experiments in different test times, namely: 10, 14, 18, 20, 22 

and 24 hours. This allows one to observe how the model fitting parameters are dependent on test time 

 It is proposed that the parameter change over test time can be represented by the following .(ߣ)

equations for the viscoelastic case (Sepiani, et al., 2017): 

(a) ܾ௜ሺߣሻ ൌ ܾ′௜ ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 0, 1, 2 

(206) (b) ܾ௜ሺߣሻ ൌ ܾᇱ௜/ሺߣ/ߣ′ሻௗ೔ ݎ݋݂ ݅ ൌ 3, 4 

(c) ܿ଴ሺߣሻ ൌ ܿ′଴ ሺߣ/ߣ′ሻௗఱ  

 is introduced for dimensional consistency (in this research we have ′ߣ stands for test time and ߣ

′ߣ ൌ   ,Here, ܾ′௜ and ܿ′଴ have same units as ܾ௜ and ܿ଴, respectively and ݀௜ have no units. ܿ′଴ .(ݎݑ݋݄	1

ܾ′௜  and ݀௜ are fitting parameters independent of the test time. The results of this curve fitting method 

are tabulated in Table 26. 

6.5 FEM implementation 

For FEA analysis, the developed subroutine is implemented into the nonlinear finite element software 

ABAQUS/Standard using solid elements. The ABAQUS 3-D modelling starts with pre-processing 
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where the 3-D model is generated and finite element mesh, loads and boundary conditions are assigned, 

then analysis is done where displacements, stresses and strains are computed by means of material 

properties, which are defined as User Material; subsequently, the modelling continues with post-

processing where the results are graphically presented. The model definition and assigning meshes, 

loads and boundary conditions, are done through the ABAQUS user interface while the user material 

subroutine is developed in Visual Studio workspace for material determination. The subroutine is 

compiled by Fortran software linked to ABAQUS software. ABAQUS invokes the subroutine at each 

increment and material calculation point, for which the *MATERIAL definition includes *USER 

MATERIAL input expression and includes the viscoelastic mechanical constitutive behaviour of 

material. 

To perform the analysis of time-dependent behaviour of the materials under study via the finite 

element method, the three-dimensional finite deformation constitutive equations presented in the 

previous section are implemented in an FEM program through a User Material Subroutine. Eq. (157) 

defines the stress-strain relation. In Eq. (157) the Cauchy stress, ߪ, indicates the stress at the end of 

increment and its components are equal to ߪ௜௝
௧ି∆௧ ൅  ௜௝, which is the value at  the beginning of theߪ∆

increment,	ߪ௜௝
௧ି∆௧, plus the change due to ∆ݐ. The same happens to the strain tensor in which ߝ௜௝ ൌ

௜௝ߝ
௧ି∆௧ ൅  :௜௝. Rewriting Eq. (140) in 1-D yieldsߝ∆

 
௧ି∆௧ߝ ൅ ߝ∆ ൌ ൥ܺ଴ ൅෍ܺ௡ሺ1 െ ௡௧ሻߚ

௡

൩ ൫ߪ௧ି∆௧ ൅ ൯ߪ∆

൅෍ܺ௡ ቆߚ௡௧ߪ௧ି∆௧ െ ݁
ି
∆௧
ఛ೙ ௡௧ି∆௧ቇݍ

௡

 

(207) 

One can simplify the equation as: 

 
ߪ∆ ൌ ௧ି∆௧ߝ௧ܧ ൅ ߝ∆௧ܧ െ ௡ߖ௧෍ܧ ቆߚ௡௧ߪ௧ି∆௧ െ ݁

ି
∆௧
ఛ೙ ௡௧ି∆௧ቇݍ െ ௧ି∆௧ߪ

௡

 (208)

Here ܧ௧ ൌ ூܦ
ିଵ. Differentiating the stress increment, ∆ߪ, versus the strain increment, ∆ߝ, provides: 

ߪ∆ 
ߝ∆

ൌ ூܦ
ିଵ ൌ ௧ܧ ൌ ൥ܺ଴ ൅෍ܺ௡ሺ1 െ ௡௧ሻߚ

௡

൩

ିଵ

 (209)
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which is the stiffness modulus and in three-dimensional form represents the elasticity matrix or the 

so called “material Jacobian matrix”, ∂σ୧/ ∂ε୨. This matrix defines the change in the ݅௧௛ stress 

component at the end of the time increment, ∆ݐ, caused by an infinitesimal perturbation of the ݆௧௛ 

component of the strain increment array. As it is seen, ܧ௧, is defined in each increment by means of 

time dependent material properties, as well as the time increment. This tensor has to be updated at the 

end of each increment, as one of two main functions performed by the subroutine. As the second 

function, the subroutine must update the stresses and the solution-dependent state variables to their 

values at the end of the increment. With the use of Eq. (155), Eq. (157) can be rewritten as: 

 ࢚࣌ ൌ ࢚࣌ି∆࢚ ൅ ∆࣌ ൌ ூࡰ
ିଵ൫ି࢚ࢿ∆࢚ െ ࣂ െ ൯ࡴ ൅ ூࡰ

ିଵ∆(210) ࢿ 

This expresses the Cauchy stress tensor at the end of the increment, ߪ௧, and is passed forward to the 

beginning of the increment, as ߪ௧ି∆௧. Here, the array ܪ is a function of material properties and stresses, 

as well as ݍ௡௧ି∆௧, at the beginning of the increment. Values of ݍ௡௧ି∆௧ are passed forward from previous 

increment as a state variable and needs to be calculated in each increment. 

The modified Quasi-Newton, built-in ABAQUS/Standard numerical method, is used as a numerical 

technique for solving the nonlinear equilibrium equations. The convergence rate obtained by using this 

method is satisfactory.   

6.6 Results and comparisons 

In this section, FEA results are compared to the available experimental data. In the following 

paragraphs, comparisons are conducted with three different cases of loading on a single 3D element 

(Figure 48), namely, 1) short term axial tension, 2) long term axial tension and 3) step loading. 

6.6.1 Case 1: Short term loading 

In the first case study, the analysis has been conducted on a 3-D unit cell element structure representing 

a beam in tension. The study is performed to see how the finite element results match the short term 

test data. The materials from Liu (Liu, 2007) are chosen for this section. The dimensions and fitting 

parameters for the five materials are shown in Table 24 and Table 26, respectively. As expected, 

material properties change with respect to applied stress. The application of load lasts for 24 hours, 

which is a short term loading case. During the FEM analysis ܰ is considered to be equal to 3. Figure 

49 to Figure 53 show the comparison between test results and present work. Table 28 tabulates the least 
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squares error, associated with each applied constant stress. Also, the average error for each material is 

shown. As seen, material RES1 yields an error less than 3%, which is classified as “excellent” 

correlation with experiments. PIPE and RES2, have less than 5% error, which is said to be “good” 

correlation, and others (RES4 and PE80) result in “acceptable” correlation, which means less than 10% 

error. For more details on error classifications, refer to Chapter 3. 

 

Figure 48: Single 3D element made in ABAQUS and meshed by one quadratic hexahedron solid 

element, C3D20R 
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Table	28:	Error	(%)	for	the	readings	of	strain	(FE	model	vs.	experiment)	for	short	term	

prediction	

Material	   PIPE    RES1    RES2    RES4    PE80 

Error (%)/ 

Stress (MPa) 

  2.05 

(2.97) 

  4.30 

(2.67) 

  4.58 

(2.68) 

  3.20 

(2.59) 

  4.89 

(3.05) 

  5.11 

(5.47) 

  1.52 

(5.15) 

  4.54 

(5.58) 

  4.81 

(6.73) 

  4.34 

(6.14) 

  2.06 

(6.70) 

  0.77 

(7.14) 

  4.69 

(7.28) 

  10.2 

(9.71) 

  7.88 

(8.37) 

  4.90 

(7.71) 

  0.85 

(7.58) 

  2.74 

(8.23) 

      10.11 

(10.2) 

      1.04 

(10.6) 

  5.32 

(10.6) 

       

Average (%)    3.53 1.69 4.37 6.07    6.8

 

 

Figure 49: Short term (24 hour) results comparison for PIPE material between test data (solid 

lines) (Liu, 2007) and present FEA (dashed lines) 
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Figure 50: Short term (24 hour) results comparison for RES1 material between test data (solid 

lines) (Liu, 2007) and present FEA (dashed lines) 

 

 

Figure 51: Short term (24 hour) results comparison for RES2 material between test data (solid 

lines) (Liu, 2007) and present FEA (dashed lines) 
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Figure 52: Short term (24 hour) results comparison for RES4 material between test data (solid 

lines) (Liu, 2007) and present FEA (dashed lines) 

 

 

Figure 53: Short term (24 hour) results comparison for PE80 material between test data (solid 

lines) (Liu, 2007) and present FEA (dashed lines) 
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6.6.2 Case 2: Long term loading 

In this case study, the long term response of the polyethylene is studied. Long term test data for PIPE 

material (Table 24) as well as for LL-8461, HD-8660 and Paxon-7004 are available (Table 25). The 

analysis is done in two steps: 

1- The material model fitting parameters are obtained, for each material and test temperature, 

using the developed material model (results in Table 26 and Table 27). 

2- The finite element long term responses are obtained for each test curve, using the fitting 

parameters from step 1, by means of the developed finite element procedure (Figure 54 to 

Figure 64). 

First, the available test data for PIPE material (experiments conducted by Liu (Liu, 2007)) are used 

for the comparison with numerical predictions. These experiments investigated long term behaviour of 

high density polyethylene for two loading times which are 40 hours and 170 hours. Figure 54 shows 

the model prediction for 40 hours test time (ߣ ൌ 40) for three stress levels, 4.42 MPa, 6.08 MPa and 

8.15 MPa. Similarly, Figure 55 depicts the same results for 170 hours test time (ߣ ൌ 170) for two stress 

levels 6.75 MPa and 6.89 MPa. Both figures show the validity of the modelling and its capability in 

predicting the long term responses of the nonlinear viscoelastic material. 

Table 29 depicts the prediction errors for each test. The average error for 40 hour prediction is 

10.44%, while the results for 170 hour prediction show 2.33% offset from experiments. In spite of our 

expectation, we see a smaller error for 170 hour test time, compared to 40 hour test time. Author 

believes that it might be because the tests in 40 hour are not as accurate and realistic as the 170 hour 

tests. 
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Figure 54: Long term (40 hour) response prediction for PIPE material, test data (solid lines) 

(Liu, 2007) and present FEA (dashed lines) 

 

 

Figure 55: Long term (170 hour) response prediction for PIPE material, test data (solid lines) 

(Liu, 2007) and present FEA (dashed lines) 
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Table	29:	Error	(%)	for	the	readings	of	strain	(FE	model	vs.	experiment)	for	long	term	

predictions	(40	hour	and	170	hour)	based	on	24	hour	material	parameters	for	PIPE	material	

	 Test time, ࣅ (hr)    170    40   

  Error(%)/ 

Stress (MPa) 

  17.50 

(4.42) 

  2.32 

(6.75) 

 

    6.45 

(6.08) 

  2.34 

(6.89) 

 

    7.38 

(8.15) 

     

  Average(%)  10.44    2.33 

             

 

In the subsequent analysis, the long term Nonlinear Viscoelastic investigation proceeded with three 

different polyethylene materials from our industrial partner. The method is to look at short term 50 hour 

creep testing and observing the correlation to the longer term (1007 hour) creep data. Finite element 

analyses have been done and the results are compared to experimental observations. The experimental 

tests have been provided by ExxonMobil Chemical Canada, a division of Canada Imperial Oil Limited. 

The three materials under investigation, are shown in Table 25. Creep curves have been plotted by 

measuring the resultant strains versus time, for 1007 hours. Each material is tested in three different 

temperatures of 23°C, 50°C and 60°C. Thus, nine sets of experiments are available for analysis. Each 

set of experiment includes tests under four constant stresses, which are 1 MPa, 2 MPa, 4 MPa and 4.87 

MPa. For the analysis, material fitting parameters from Table 27 are used as input to the finite element 

procedure. 

Figure 56 to Figure 64 show the comparison between finite element results with experimental ones 

for 1007 hour test time. To see how the model is correlated to the test data, the errors associated to each 

test (creep curve) and the average error for each set of tests are tabulated in Table 30. Since the goal of 
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the research is to predict the strain at the end of the time duration, the values of strain at time = 1007 

hour are considered for error calculation. 

Looking at the average errors for each set of results (Table 30), it is seen that in one set (LL-8461 at 

50°C) an error less than 5% (3.98%) is obtained, which shows a “good” forecast. In the other four sets 

(LL-8461 at 23°C, HD-8660 at 50°C, HD-8660 at 60°C and Paxon-7004 at 60°C) errors less than 8% 

(and more than 5%) are observed, which are “acceptable”. For the remaining sets, the errors are more 

than 8%, which are not “acceptable” (as per MacCallum et. al. see Chapter 3 for more details). 

Scrutinizing the experimental measurements further, author believes that the two sets of test data 

(LL-8461 at 60°C and HD-8660 at 23°C) show unsmooth behaviour after about 100 hours test, which 

might be due to erroneous test process. since the prediction is based on short term observations, the 

proposed model is not able to predict that uneven behaviour, and we prefer removing these two sets of 

erroneous experiments from analysis. By ignoring these two sets of results, it can be concluded that the 

proposed Nonlinear Viscoelastic model is able to predict the long term behaviour of 5 sets of material 

test (out of 7 sets) with good correlation (which is more than 70%). 

 

Figure 56: Finite element (solid lines) vs. experimental (dashed lines) (by Imperial Oil), creep 

results for LL-8461 at 23°C 
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Figure 57: Finite element (solid lines) vs. experimental (dashed lines) (by Imperial Oil), creep 

results for LL-8461 at 50°C 

 

Figure 58: Finite element (solid lines) vs. experimental (dashed lines) (by Imperial Oil), creep 

results for LL-8461 at 60°C 



 

 161 

 

Figure 59: Finite element (solid lines) vs. experimental (dashed lines) (by Imperial Oil), creep 

results for HD-8660 at 23°C 

 

 

Figure 60: Finite element (solid lines) vs. experimental (dashed lines) (by Imperial Oil), creep 

results for HD-8660 at 50°C 
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Figure 61: Finite element (solid lines) vs. experimental (dashed lines) (by Imperial Oil), creep 

results for HD-8660 at 60°C 

 

 

Figure 62: Finite element (solid lines) vs. experimental (dashed lines) (by Imperial Oil), creep 

results for Paxon-7004 at 23°C 
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Figure 63: Finite element (solid lines) vs. experimental (dashed lines) (by Imperial Oil), creep 

results for Paxon-7004 at 50°C 

 

 

Figure 64: Finite element (solid lines) vs. experimental (dashed lines) (by Imperial Oil), creep 

results for Paxon-7004 at 60°C 
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Table	30:	Error	(%)	for	the	readings	of	strain	(FE	model	vs.	experiment)	at	time	=	1007	hr	

Material	 LL‐8461  HD‐8660  Paxon‐7004 

Temp.	 23°C  50°C  60°C  23°C  50°C  60°C  23°C  50°C  60°C 

1 MPa  4.42  4.73  27.00 24.38 3.58 4.82 13.05  106.73  5.99

2 MPa  9.71  7.66  34.05 30.12 16.64 6.30 12.29  13.95  1.98

4 MPa  3.21  2.72  5.98 13.01 2.11 3.56 12.93  41.64  3.78

4.87 MPa  6.07  0.81  26.21 14.24 4.10 6.30 17.74  39.05  13.99

Average  5.85  3.98  23.31 20.44 6.61 5.24 14.00  50.34  6.43

 

Another note which is worth mentioning here is that, looking at results for Paxon-7004 material 

(Table 30), one can infer that this material shows higher errors compared to other two materials. Noting 

that Paxon-7004 is a crossslinkable polyethylene while the other two (LL-8461 and HD-8660) are 

hexane copolymers, one may conclude that the present model is more accurate for hexane copolymers 

compared to crosslinkable polyethylene. This is a results that the author believes needs more 

experimental observations to be proved as a exactly determined outcome. 

6.6.3 Case 3: Step loading 

In the third case study by Liu (Liu, 2007), the material is subjected to abrupt stress changes. In Figure 

65, HDPE-PIPE material is subjected to axial tension load of 5.33 MPa, which lasts for 5 hours and 

then by adding 2.98 MPa, the material deforms under 8.31 MPa for another 19 hours. Similarly, Figure 

66 shows the same material behaviour under 2.9 MPa and 8.7 MPa, which last for one and four hours, 

respectively. In another study (Figure 67), the material experienced several abrupt changes in applied 

stress. The presented FEA model is compared with the experimental results, for all stress variation 

levels which start with 1.46 MPa. Following steps continue with the addition of 1.46 MPa applied stress 

to the previous step, which results in six loading steps. Each step lasts for almost two hours. Figure 68 

also shows the stress change process by adding 2.89 MPa stress to the previous step. The last step shows 
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a process of unloading. In all figures, relatively good correlation can be seen between experimental and 

FEA results. 

 

Figure 65: Two step loading for PIPE material, test data (solid lines) (Liu, 2007) and present 

FEA (dashed lines) 
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Figure 66: Two step loading for PIPE material, test data (solid lines) (Liu, 2007) and present 

FEA (dashed lines) 

 

Figure 67: Multi step loading for PIPE material, test data (solid lines) (Liu, 2007) and present 

FEA (dashed lines) 
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Figure 68: Multi step loading and unloading for PIPE material, test data (solid lines) (Liu, 

2007) and present FEA (dashed lines) 

6.7 Conclusions 

Based on Schapery's single integral constitutive law, a nonlinear solution procedure was provided for 

viscoelastic materials to solve problems involving material nonlinearity. The procedure is based on the 

work done by Roy and Reddy (Roy, et al., 1988). The proposed procedure considers time- and stress-

dependent material properties based on the generalized multi Kelvin simulation to characterize the 

nonlinear behaviour and it is applicable to three dimensional analysis.  The material properties are also 

modified to include long term response of a material. The equations include material constants based 

on the measured material properties through an empirical fitting of the model to 24 hour uniaxial tension 

test results. These constitutive equations have exponential forms, which are adjustable to current time, 

meaning that they change as a function of current time. The material properties change with stress and 

time. The material functions obtained from short term test fittings are adjusted to predict the response 

of the material in longer time frames.   

In order to conduct the proposed FEA, a unified computer code (user-defined material algorithm, 

UMAT) was generated. The validity of the models was assessed by comparison with experimental 

observations on polyethylenes for three uniaxial loading cases, which are short term loading, long term 

loading, and step loading.  
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24-hour test results for five different PE materials were used to predict the short term response of 

materials. Multiple strain-time curves were available for each material. For the long term, PIPE material 

test data for 40 hours and 170 hours as well as measurements on Low Density, High Density and 

Crossed-linked PE for 1007 hours duration, were used. The model can be used for prediction of the 

response with relatively good agreement to experimental results. The author believe that a good 

correlation (less than 5% average error) of model and experimental data is always achievable if proper 

material fitting parameters are obtained from test data. This requires accurate experimental 

measurements, as well as availability of numerous test results in each set of test data. Multiple step 

loading and unloading results were also compared with experimental data for the PIPE material. For all 

these theoretical results, a unit cell element sample model was created in Abaqus work space which 

invokes the developed UMAT code in each increment for material definition. The results showed that 

the proposed FEM model could reproduce the experimental results accurately, and it is concluded that 

with proper material properties to reflect the deformation involved in the mechanical tests, the 

deformation behaviour observed experimentally can be accurately predicted using the FEM simulation. 

Based on the research conducted in this chapter and summarized above, the following specific 

findings and contributions can be mentioned: 

Based on Schapery's single integral constitutive law a nonlinear solution procedure is used to solve 

problems involving material nonlinearity. To simulate the viscoelastic behaviour of materials, a multi 

Kelvin Solid configuration of spring and dash-pot elements is used to construct the constitutive 

equations. Time- and stress dependent material properties (based on generalized multi Kelvin 

simulation) are used to characterize the nonlinear behaviour of a material. The proposed viscoelastic 

model is implemented in a user-defined material algorithm in Abaqus (UMAT). The developed finite 

element procedure, allows to model the long term as well as short term responses of polymers. For this 

a code was developed in Fortran workspace, which is linked to commercial software ABAQUS. 

The inputs to the developed code include a structural model and a material model. The former is 

done through the ABAQUS user interface and includes 3D solid modelling, boundary conditions, 

loadings, meshing and time discretization. The latter is obtained from experiments and needs material 

analysis. 

The validity of the models is assessed by comparison with experimental observations. 

Here are the conclusions: 
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1- The proposed single integral Nonlinear Viscoelastic model is able to predict the long term 

behaviour of material with “good” correlation (in more than 70% of the tested materials). 

2- A good correlation (less than 5% error) of model and experimental data is always achievable 

if proper material fitting parameters are obtained from test data. This requires accurate 

experimental measurements, as well as availability of numerous test results in each set of test 

data. 
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Chapter 7 

A Review on Failure Analysis of Viscoelastic Materials 

 

7.1 Introduction 

One of the most important functions of engineering design is to be able to predict the performance of a 

structure over its design lifetime. Necessarily, mechanical behaviour of materials used in a structure 

must also be known over the intended life of the structure. For engineering design based upon linear 

elasticity, it is assumed that no intrinsic change in mechanical properties occurs over time. However, 

the molecular structure of polymers gives rise to mechanical properties that do change over time. 

As engineering structures are often designed to last as long as 20 to 50 years (but often are then 

expected to last longer e.g. 100 years), there is a compelling reason to develop experimental and 

analytical approaches for polymer based materials that will allow the prediction of long term properties 

from relatively short term test data. Long term testing on the order of years to determine fundamental 

polymer properties, such as the relaxation modulus, ܧሺݐሻ, or creep compliance, ܦሺݐሻ, are quite 

impractical. Fortunately, the relationship between property changes of a polymer with time and 

property changes of a polymer with environmental effects like temperature, and environmental stress 

cracking can be utilized to develop accelerated test methods. These methods, like the one is discussed 

in this chapter, can assist in the difficult task of estimating life time of polymer-based materials from 

short term tests. In this chapter, an energy method based on delayed failure approach will be presented 

and then implemented in the finite element analysis for numerical applications. 

It is worth mentioning that there are many other failure modes which take part in failure of polymeric 

materials, which are not the main concern of this chapter and can be further investigated for finite 

element implementation. One of them is Environmental Stress Cracking (ESC) which can occur after 

period of time when a polymer is subjected to stress below its yield point and is simultaneously exposed 

to a chemical medium. This will result in a reduction of the time to failure. The other mechanism is 

yield, which is failure due to exertion of limit load on the material. Polymers have a significant variation 

in the yield. As a result, various rate dependent plasticity theories have been developed for polymers 

that use yielding point as a reference point. The other mechanism is failure by rupture or separation 

rather than by yielding. For failures of this type, the fracture process begins at small microscopic defects 
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or flaws in the material. If a stress field around these flaws is increased to a certain limit, additional 

cracks will be produced near the tip of the flaw. There will be many of these micro-cracks and 

eventually one dominant crack will propagate and a tensile specimen will fail. This has led some 

researchers to consider the fracture process to be a stochastic event which resulted in development of 

statistical tools for the evaluation of viscoelastic fracture processes. 

7.2 Delayed Failure 

In contrast to an elastic material where all the energy of deformation is stored as strain energy, in 

viscoelastic materials, only a part of the total deformation energy is stored, and the rest of the energy is 

dissipated. Reiner and Weisenberg (Reiner, et al., 1939) showed that the main reason for the transition 

from viscoelastic response to yield in ductile materials or fracture in brittle ones is the time-dependent 

energy storage capacity. According to this theory, failure occurs when the stored deviatoric strain 

energy per unit volume in a body exceeds a certain maximum value called the resilience, which is a 

material property (Roy, et al., 1988). This theory may be used to predict failure in a nonlinearly 

viscoelastic material. When there is no dissipation, i.e., if the material is elastic, the Reiner-Weisenberg 

criterion becomes identical to the von Mises criterion. 

The applicability of an energy criterion to model creep rupture of thermoplastics has been 

investigated by many researchers.  In this regard, Bruller ( (Bruller, 1973), (Bruller, 1981) and (Bruller, 

1978)) applied the Reiner–Weissenberg (R-W) theory with success to determine the failure in linear 

viscoelastic materials. They proposed a modification of the R–W theory for the prediction of fracture. 

This modification states that only the total time-dependent energy contributes for the creep rupture, 

provided the stress level is lower than the static rupture stress. Then failure occurs when this time-

dependent energy reaches a limit value, which is considered a material property. They also established 

the conditions for creep and stress relaxation failure, demonstrated by experimental evidence. Theo et 

al. ( (Theo, 1990)- (Theoh, et al., 1992)) and Boey et al. (Boey, et al., 1990) also presented an 

application of the R–W criterion to a three-element mechanical model, to describe the creep rupture of 

polymers. The disadvantage of this theory is the uncoupling of the creep model and creep rupture 

model. Nevertheless, the predictions produced by such a creep rupture model were in good agreement 

with the experimental data for several tested polymers. Furthermore, the model appears to be able to 

determine the upper stress limit (immediate failure) and lower stress limit (no failure). More recently 

Brinson (Brinson, 1999) reviewed the state of the art regarding the time dependent failure of polymer 
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matrix composites. Brinson states that the R–W criterion could simplify the procedure to predict the 

delayed failures in structural polymers without loosing the necessary accuracy. 

Hiel (Hiel, et al., 1983) described the concepts of free energy using a generalized Kelvin model to 

describe the linear viscoelastic behaviour. In this case, free energy is defined as the sum of the energies 

stored in all springs. Using this simple concept and following the work developed by Bruller ( (Bruller, 

1973), (Bruller, 1981) and (Bruller, 1978)), Hiel (Hiel, et al., 1983) determined the free energy 

accumulation during creep. The energy can be separated into a deviatoric and a dilatational part. The 

R–W theory (Reiner, et al., 1939) suggests the stored deviatoric free energy is responsible for failure. 

However, as Brinson (Brinson, 1999) cited, Bruller demonstrated that the deviatoric stored energy, 

assuming constant Poisson’s ratio, represents 93% of the total free energy in a uniaxial tensile test. 

Nevertheless, in some 3D cases, the dilatational energy could be much more important than total free 

energy. Many polymers are very sensitive to properties like total free energy, as it shows the status of 

the material in general, for that reason Brinson (Brinson, 1999) assumes that the total free energy could 

be a better indicator for failure prediction. 

Guedes (Guedes, 2004) has also done remarkable work on investigating the R-W method. He 

explored the time-dependent failure criteria for viscoelastic materials based on concepts proposed by 

Reiner and Weissenberg (Reiner, et al., 1939). This criterion is based on the stored energy and on the 

limit for this energy, which is considered a material constant (Guedes, 2004). Guedes used the 

methodology to predict delayed failure of multi-directional polymer matrix composites based on a non-

linear viscoelastic model (Guedes, 2004). He also investigated the relationship between lifetime under 

creep and constant stress rate for polymer-matrix composites (Guedes, 2009). He analyzed the delayed 

fracture criterion for lifetime prediction of viscoelastic polymer materials by applying a multi-axial 

yield/failure model for viscoelastic/plastic materials and predicted long term creep rupture of polymers 

( (Guedes, 2012) and (Guedes, 2012)). In a general review, Guedes proposed several theoretical 

approaches for lifetime predictions for polymer and polymer-based matrix composites. All those 

theories can be classified as global and homogenous approaches. He believed that, regarding 

engineering applications, the global and homogeneous analyses are more convenient. He presented 

fracture mechanics, damage mechanics and energy-based failure criteria and illustrated those with 

published experimental data. 
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Here, based on Schapery's single integral constitutive law (Schapery, 1969) & (Schapery, 1969), an 

energy based method of delayed failure, following the works by Hiel (Hiel, et al., 1983), and Roy and 

Reddy (Roy, et al., 1988) & (Roy, et al., 1988), is provided to solve polymer time to failure prediction 

involving material nonlinearity. This approach could also be applied to viscoplastic behaviour. The 

approach works with limiting the strain energy of the material to a boundary, which is the resilience 

limit. This limit is found from experimental results and observations for each material. Here a multi 

Kelvin solid model of viscoelastic material with exponential constitutive equation is considered for 

further investigation. For the power law constitutive equation describing a viscoplastic material, readers 

are refered to Guedes (Guedes, 2004).  The resulting formulation is implemented in the developed finite 

element model presented in previous chapters. The presented failure results are then compared to the 

experimental results found in literature. 

7.2.1 Uniaxial Delayed Failure 

Several definitions and formulas for the free energy appear in the literature for viscoelastic materials. 

Here a solid Kelvin configuration of spring and dash-pot is shown in Figure 69. ߝ଴ is the instantaneous 

strain while ߝ௡ are strains associated with the ݊௧௛ Kelvin unit. Under isothermal conditions and applied 

stress ߪሺݐሻ, the total strain response ߝሺݐሻ can be divided into two parts: the elastic instantaneous 

response ߝ଴ ൌ  .௜ߝ ௘ and the inelastic transient responseߝ

 
ሻݐሺߝ ൌ ௘ߝ ൅ ௜ߝ ൌ ଴ߝ ൅෍ ௡ߝ

ே

௡ୀଵ

 (211) 

Here, 1 ൑ ݊ ൑ ܰ, where ܰ equals to the order of the expression and represents the number of Kelvin 

units in spring and dash-pot simulation of material behaviour, Figure 69.  

The stress-strain representation of Eq. (211), which is a generalized configuration of a multi-Kelvin 

solid, would be 

ߝ  ൌ ߪ ଴ܦ ൅ ߪ  ሻ (212)ݐሺܦ

where ߪ	ܦ଴ is the elastic strain component and ߪ	ܦሺݐሻ  is the inelastic one. ܦ଴ represents the 

instantaneous elastic compliance, 1/ܧ଴ and ܦሺݐሻ is the associated transient creep compliance function, 

which is defined by the following Prony series: 
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Figure 69: Multi Kelvin Solid configuration subject to uniaxial stress. 

 

ሻݐሺܦ  ൌ෍ܦ௡ൣ1 െ ݁ି௧/ఛ೙൧
௡

 (213) 

where ܦ௡ and ߬௡ are ݊௧௛ creep compliance and relaxation time for ݊௧௛ Kelvin unit, respectively (for 

further discussion see (Flugge, 1967)).  In Eq. (211), the uniaxial stress using the representation of a 

unit step function ܪሺݐሻ is given as 

ሻݐሺߪ  ൌ ଵߪ  ሻ (214)ݐሺܪ

where subscript 1 is associated with direction ݔଵ. 

Substituting Eq. (168) and Eq. (214) into Schapery’s single integral representation of nonlinear 

viscoelastic constitutive equation for isotropic materials (Schapery, 1969) & (Schapery, 1969) (see 

Chapter 6), yields the following relation for isothermal condition (߰௧ ൌ  ଵݔ in direction (ݐ

 
௧ߝ ൌ ݃଴

௧ߪଵ
௧ܦ଴ ൅ ݃ଵ

௧ න ෍ܦ௡ൣ1 െ ݁ିሺ௧ି ௧’ሻ/ఛ೙൧
௡

݀
′ݐ݀

ሾ݃ଶ
௧’ߪଵ

௧’ሿ݀ݐ′
௧

଴
 (215) 

Superscript ݐ indicates the value at time ݐ. ݃୧
௧ are material functions (see chapter 6 for details). 

Comparing with Eq. (211) yields that 

଴ߝ  ൌ ݃଴
௧ߪଵ

௧ܦ଴ (216) 

E1 E2

E0

e i
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Consequently, the associated developed stress in each spring can be expressed as 

ଵ଴ߪ 
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݃଴
௧ܦ଴
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(217) 

where second subscripts 0 and ݊ denote the instantaneous elastic spring and springs associated with 

the ݊௧௛ Kelvin unit. The first subscript denotes the uniaxial direction 1. It is obvious that ߪଵ଴ ൌ  .ଵߪ

From Hiel et al (Hiel, et al., 1983), the total energy ܹ௦ stored in all springs is: 
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or 
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According to the Reiner-Weisenberg hypothesis, failure occurs when the stored energy ܹ௦ equals 

or exceeds the resilience of the material. Denoting the resilience as ܴ, the expression for the time 

dependent failure stress obtained from Eq. (219) for the uniaxial stress state is (Hiel, et al., 1983): 
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7.2.2 Multi-axial Failure 

The failure criterion for uniaxial loading is extended to the multi-axial one. Let’s say the principal 

stresses at each point in an isotropic viscoelastic material are ߪଵ, ߪଶ and ߪଷ. Then by definition, the 

shear stresses are zero on the principal planes. To construct the multi-axial configuration, it is assumed 

that the viscoelastic material is represented by a multi Kelvin solid model (Figure 69) in each principal 
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direction (Roy, et al., 1988). Then the applied multi-axial creep stresses in the material principal 

directions are given by 

ሺଵሻߪ  ൌ ଵߪ  ሻݐሺܪ

ሺଶሻߪ ൌ  ሻݐሺܪ	ଶߪ

σሺଷሻ ൌ ଷߪ  ሻݐሺܪ

(221) 

 are material parameters. Again, substituting into Schapery’s single integral representation of the ܪ

constitutive equation for a nonlinear viscoelastic isotropic material (Schapery, 1969) & (Schapery, 

1969), and considering the shear effect of stress-strain relations in multi dimensions we have: 
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Here ܩ଴ is the instantaneous shear compliance and ܩ௜ are shear compliances for the ݅௧௛ Kelvin unit. 

Thus, the effective stresses developed in the spring with compliance ܦ଴, and the nonlinear springs with 

compliance ܦ௡ acting in the principal direction 1, are given by 

 
ଵ଴ߪ
௘ ൌ ଵ݃ଶߪ ൅ ൬1 െ

଴ܩ
଴ܦ
൰ ଶ݃ଶߪ ൅ ൬1 െ

଴ܩ
଴ܦ
൰  ଷ݃ଶߪ

ଵ௡ߪ
௘ ൌ σଵ݃ଶ ቆ1 െ ݁

ିቀ
௧
ఛ೙
ቁ
ቇ ൅ ଶ݃ଶߪ ቈቆ1 െ ݁

ିቀ
௧
ఛ೙
ቁ
ቇ െ

௡ܩ
௡ܦ

ቆ1 െ ݁
ିቀ

௧
ఊ೙
ቁ
ቇ቉

൅ ଷ݃ଶߪ ቈቆ1 െ ݁
ିቀ

௧
ఛ೙
ቁ
ቇ െ

௡ܩ
௡ܦ

ቆ1 െ ݁
ିቀ

௧
ఊ೙
ቁ
ቇ቉ 

(223) 

As before, on the left-hand side of Eqs. (223), the first subscript indicates the principal direction in 

which the effective stress acts, and the second subscript determines the spring number (associated with 

the Kelvin unit number). The total energy, ଵܹ
௦ , stored in all springs in the material principal direction 

1 over time ݐ, can now be obtained by using Eq. (219) (Guedes, 2004) 
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where ܦ෩଴ ൌ ݃଴ܦ଴ , ܦ෩௡ ൌ ݃ଵܦ௡ , and 
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In these equations, repeated indices imply summation, and ߜ௜௝ is the Kronecker delta operator. Also, 

for computational convenience, the Prony series for the creep and shear compliance is assumed to have 

the same number of terms. Eq.s (224), (225), and (226) define the energy stored in the ݆௧௛ principal 

direction in an isotropic viscoelastic material. Therefore, according to the Reiner-Weisenberg failure 

theory, the criterion for creep rupture in the ݆௧௛ principal direction is given as (Guedes, 2004) 

 ௝ܹ
௦ ൒ ܴ (227) 

where ܴ is the resilience of the isotropic nonlinear viscoelastic material under isothermal conditions. 

For a viscoelastic material with a constant Poisson's ratio ܩ ,ݒሺݐሻ is given by 

ሻݐሺܩ  ൌ ሺ1 ൅  ሻ (228)ݐሺܦሻݒ

which simplifies Eq.s (225), and (226) to 
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7.2.3 FEM implementation 

The presented method is implemented in the finite element analysis. For this, principal stresses in each 

increment and each element and integration point are calculated. The model is developed for 

isothermally isotropic materials with constant Poisson’s ratio ݒ (see previous chapters). Thus, the 

effective stress in each time will be calculated using Eq. (229). Finally, the resultant deviatoric strain 
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energy in each principal plane is calculated based on Eq. (224). By means of the criterion defined in 

Eq. (227), energy strains in each principal direction are limited to the pre-set value of ܴ . Failure happens 

once the criterion (Eq. (227)) is satisfied. 

 

Figure 70: A cubic single element solid model made in ABAQUS and meshed by one quadratic 

hexahedron solid element, C3D20R 

A cubic solid model is made and meshed by one quadratic hexahedron solid element, C3D20R, in 

the finite element software ABAQUS linked to pre-developed viscoelastic user material subroutine (see 

Chapter 6). The FE model is fixed at one end and constant uniaxial stress is applied to the other end 

(Figure 70). The software is run for 24 hours. Deviatoric strain energies in both axial and transverse 

directions are calculated in each time increment and are depicted in Figure 71 and Figure 72, 

respectively. As shown, deviatoric strain energy increases with time. It is also proportional to the 

applied stress, as expected. As the applied stress increases, the material is most likely to reach the 

maximum deviatoric energy, ܴ, and fail. Thus, to obtain the “time to failure”, one needs to know the 

other side of Eq. (227), which is the resilience, ܴ. This is a material property, which is obtained from 

experiments. 
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Figure 71: Axial deviatoric free energy (W1) per time for PIPE material 

 

 

Figure 72: Transverse deviatoric free energy (W2) per time for PIPE material 



 

 180 

McKenna and Pen have investigated the time dependent failure of polyethylene and polymethyl 

methacrylate (PMMA) by introducing a cumulative damage model (McKenna, et al., 1980). They 

compared their theory with experimental results and presented the time to failure of the discussed 

material versus applied stress. The results are depicted in Figure 73 in which shows a good correlation 

between these two sets of data. The polyethylene material tested by McKenna and Pen was a linear 

High Density Polyethylene (HDPE) with a number-average molecular weight of 15,600 and a weight-

average molecular weight of 99,000. The material was moulded in a platen press at 160°C into 1.00 

mm thick sheets which were then allowed to cool down to 90°C and subsequently removed from the 

mold. The material was allowed to lie in the laboratory for a minimum of one week prior to testing. 

 

Figure 73: Time to fail vs. stress for A) polyethylene, T=296K and B) polymethyl methacrylate 

(PMMA), T=297K (McKenna, et al., 1980) 

Here we are using the test results from McKenna et al (McKenna, et al., 1980) to find out the 

resilience factor for the polyethylene material that they have tested. Then this information will be used 

to predict the time to failure (TTF) of our polyethylene material sample. The chosen material sample 
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needs to have as close as possible material properties to the one that has been investigated by McKenna 

et al. The purpose is to show how the method works and how the resilient factor can be obtained from 

experimental observations and used for predicting the time to failure of same material. Thus, it is not 

suggested to use the test data from literature, unless it is exactly same material as what is under analysis 

for TTF.  

For our investigation, a similar material was chosen. From those used in this research (see material 

list in chapter 3), Resin 2 can be considered similar to what McKenna and Pen have used. Although 

this similarity does not guarantee the accuracy of the outcome, it is just used for illustrating the 

methodology and the results are not reflecting the exact failure behaviour of the Resin 2 (as this requires 

accurate failure experiments on the material). 

Considering this material and running some trial analysis it is found that, based on results in Figure 

73, a resilient factor ܴ is equal to 370500 MPa. To find this value, software was run in two cases of 

applied stresses, 11.7 MPa and 13.7 Mpa. Run time was set to 5000 hours. The reason these two stresses 

were chosen is that these two are closer to the range of stresses in Figure 73. The software was set to 

report the value of deviatoric energy in each time increment. From Figure 73, the material is expected 

to fail after 335 ൈ 10ଷ	ݏ for 11.7 MPa and 115 ൈ 10ଷ	ݏ for 13.7 MPa. Using Eq. (224) and Eq. (227), 

the resilience factor for 11.7 MPa at 335 ൈ 10ଷ	ݏ  found to be 370000 MPa and for 13.7 MPa  at 115 ൈ

10ଷ	ݏ found to be 371000 MPa. We chose the average of these two resilience factors as the limit value, 

ܴ, for the material under investigation (Resin 2), which equals to 370500 MPa. This value was used to 

determine the “time to failure” for other stress levels and the results are shown in Table 31. Figure 74 

and Figure 75, depict same result that is the failure time versus stress in normal scale and logarithmic 

scale, respectively. 

Table	31:	TTF	(Time	To	Failure)	for	Resin	2,	based	on	delayed	failure	approach	

Stress 
(MPa) 

2.67  5.58  7.28  8.23  10.6  11.7  13.7 

Time To 
Failure 
(s/hrs) 

40.5E+6 

/11263 

8.6E+6 

/2400 

3.5E+6 

/972 

2.1E+6 

/587 

600E+3 

/167 

335E+3 

/93 

115E+3 

/32 
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Figure 74: Time to failure (hrs) vs. applied stress for material Resin 2, using the delayed failure 

approach 

 

 

Figure 75: Logarithmic time to failure (hrs) vs. applied stress for material Resin 2, using the 

delayed failure approach 
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7.3 Conclusions 

This chapter presents an approach (energy method based delayed failure) implemented in the finite 

element analysis for a numerical application. 

The energy method  based on Schapery's single integral constitutive law (Schapery, 1969) & 

(Schapery, 1969) was presented, and following the work by Hiel (Hiel, et al., 1983), and Roy and Reddy 

(Roy, et al., 1988) & (Roy, et al., 1988), an energy based method of delated failure, was shown. The 

method was implemented in the previously developed FE procedure in Chapter 6. The principle stresses 

are obtained through the procedure and the strain energy in three principle directions are computed for 

each element at every time increment. Each strain energy is compared to the maximum limit (resilience 

factor, ܴ). If the strain energy is greater than the limit, the material is failing in that element and time. 

The time in which the strain energy gets greater than the resilience factor is called “time to failure”. 

The FE procedure is developed for nonlinear case (Chapter 6) meaning that the resultant “time to 

failure” prediction considers the nonlinearity of the material. This approach could be applied in 

viscoelastic situations. The approach works with limiting the strain energy of the material to a boundary 

which is the resilience limit. 

Based on the research conducted in this chapter and summarized above, the following specific 

findings and contributions can be mentioned: 

The developed code is able to predict the time to failure of materials based on delayed failure 

theorem. For failure analysis, a formulation is employed to develop the failure model. Out of many 

failure criteria, the maximum strain energy is chosen for finite element application. The method is 

implemented in developed material subroutine. 

It was concluded that the delayed failure formulation can be implemented in the finite element 

analysis to find time to failure, and needs the resilience factor of the material (stored strain energy at 

time of failure), obtained from experiments. 
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Chapter 8 

Conclusions and Future Work 

 

8.1 Conclusions 

This study addresses a need to predict material behaviour response under multi-axial loadings for 

viscoelastic and/or viscoplastic materials. A finite element procedure was developed, which allows to 

model the long term as well as short term responses of polymers. A code was developed in Fortran 

workspace, which is linked to commercial software ABAQUS. Moreover, the code is able to predict 

the time to failure of materials based on delayed failure theorem. 

The inputs to the developed code include a structural model and a material model. The former is done 

through the ABAQUS user interface and includes 3D solid modelling, boundary conditions, loadings, 

meshing and time discretization. The latter is obtained from experiments and needs material analysis. 

A nonlinear optimization method of finding material parameters has been used in this research. 

The procedures are all detailed within the chapters of this dissertation. The manuscript starts with a 

description on the research significance and justification, as well as objectives and outline of the 

research. Later, a discussion on viscoelastic and viscoplastic materials, their application, and 

micromolecular and macromolecular characteristics, are provided. An introduction to the modelling 

methods is presented and the theoretical approaches adopted in the thesis are explained in detail. To 

construct the material models, a theoretical optimization method of finding material properties using 

experimental uniaxial creep test results developed for short term investigation. Differential formulation 

as well as unified plasticity theory is used for development of 1-D nonlinear viscoelastic and 

viscoplastic models, respectively. Material models are then extended to long terms. Materials 

parameters are obtained using nonlinear optimization technique, which is a minimization technique of 

error function. For this a code was developed in MATLAB workspace. 

For the macromechanical modelling two approaches are employed. The first is the multi integral 

approach which is used for both nonlinear viscoelastic and viscoplastic modelling, and single integral 

approach which is used for nonlinear viscoelastic modelling. The multiple integral approach, is 

essentially an extension of the Boltzmann’s linear superposition principle to nonlinear range, and is 
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employed for three-dimensional behaviour analysis. Some simplifications are done in order to obtain a 

particularly useful theory, which are the fully incompressible behaviour assumption of the material, the 

superposition of small time dependent deformation on large deformation, and finally the simplifications 

of the material functions. Differential formulation (exponential form), and unified plasticity (power-

law function) approximations are used for viscoelastic and viscoplastic modellings, respectively. The 

models are optimized for long-term responses which are beyond the test time. Finite element procedures 

are implemented in the user-defined material algorithm in Abaqus (UMAT). The validity of the models 

is assessed by comparison with experimental observations on high density polyethylene (HDPE) for 

single element specimens under uniaxial loading. The single integral approach, in other hand, is 

developed by schapery and is a simpler form of the multi integral one. based on Schapery's single 

integral constitutive law a nonlinear solution procedure is used to solve problems involving material 

nonlinearity. To simulate the viscoelastic behaviour of materials, a multi Kelvin Solid configuration of 

spring and dash-pot elements is used to construct the constitutive equations. Time- and stress dependent 

material properties (based on generalized multi Kelvin simulation) are used to characterize the 

nonlinear behaviour of a material. The proposed viscoelastic model is implemented in a user-defined 

material algorithm in Abaqus (UMAT). The validity of the models is assessed by comparison with 

experimental observations. For failure analysis, a formulation is employed to develop the failure model. 

Out of many failure criteria, the maximum strain energy is chosen for finite element application. The 

method is implemented in developed material subroutine. 

Based on the research described in this thesis and summarized above, the following specific 

conclusions can be offered: 

1- The Prony’s series approach, and the associated multi-Kelvin solid modelling, is able to 

determine viscoelastic material parameters, while plastic theory is able to determine 

viscoplastic model parameters. The developed nonlinear optimization method allows for 

effective and fast parameter optimization and the development of constitutive modelling for 

time-dependent and nonlinear polymeric materials, and it is more efficient than linear methods. 

2- Beyond the short term test time, the response of the viscoelastic model (exponential 

formulation) approaches an asymptotic value and the response of the viscoplastic model (power 

law formulation) increases continuously with a time dependent slope. This difference in the 

two modelling approaches clearly suggests that the models are most likely not valid beyond 
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the curve fitting time period. The result of the proposed long term formulation (which simulates 

the long term behaviour), lies between the curves which are the extension of viscoelastic and 

viscoplastic models beyond the short term period. 

3- The proposed material models are able to detect erroneous creep test curve. It is because the 

developed material models are able to predict creep behaviour at another stress level, meaning 

that the models give an estimation of the creep curve which its applied stress level is between 

the two available ones. One can thus do effective process “trouble-shooting” and “detect” a 

potential abnormality in the data. In other words, the developed formulation, through the 

estimation of material parameters that should follow predetermined trends, can also be used to 

eliminate erroneous experimental data sets from constitutive modelling. 

4- The comparisons show that the proposed constitutive model can satisfactorily represent the 

time-dependent mechanical behaviour of polymers in short term analysis. Both theoretically 

presented models are able to predict short term responses with less than 5% error (in most 

cases). 

5- Fitting results for both viscoelastic and viscoplastic material models show that the viscoelastic 

one yields a better fit for both short and long term modelling, and the reason is that the former 

one has more fitting parameters compared to viscoplasic one which results in more flexible 

fitting to the short term test data, so more accurate short term and long term response prediction. 

6- A superposition of small deformations can be used to model large deformations, and the multi-

integral description can be simplified for finite element implementation, using the 

incompressibility assumption. 

7- Both viscoelastic and viscoplastic formulations can be implemented in the finite element 

analysis using the linear superposition principle. The developed finite element procedure uses 

the proposed material definition based on experimental data. 

8- Nonlinear Viscoelastic, NVE, and Nonlinear Viscoplastic, NVP, models can be used in 

computational (finite element) methods for predictions of long term material behaviour. In the 

long term, the NVE model in comparison with the NVP model results in smaller fitting errors 

for strain response predictions, and both results are in relatively good correlation with 

experiments (less than 10% error in most cases). Again, similar to material modelling, the 
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reason is that the former one has more fitting parameters compared to viscoplasic one which 

results in more flexible fitting to the short term test data, so more accurate short term and long 

term response prediction. It is concluded that with proper material parameters to reflect the 

deformations involved in the mechanical tests, the behaviour observed experimentally can be 

satisfactorily predicted using the FEM simulation. 

9- The proposed FE formulations have the potential for practical analysis of polymeric structures.  

The constitutive model can be developed based on few short term creep tests and through the 

proposed method of extension to longer time frames, the multi-integral FE implementation and 

3-D assumptions, it can be used for the analysis of mechanical and structural components under 

variety of loadings. 

10- The proposed single integral Nonlinear Viscoelastic model is able to predict the long term 

behaviour of material with “good” correlation (in more than 70% of the tested materials). 

11- A good correlation (less than 5% error) of model and experimental data is always achievable 

if proper material fitting parameters are obtained from test data. This requires accurate 

experimental measurements, as well as availability of numerous test results in each set of test 

data. 

12- Delayed failure formulation can be implemented in the finite element analysis to find time to 

failure, and needs the resilience factor of the material (stored strain energy at time of failure), 

obtained from experiments. 

 

 

8.2 Future Work 

It is believed that the present research topic is an area which can further be investigated. Although 

material model, macromechanical models, and failure model, are done within the framework of this 

research, more suggestions can be offered as future work. These suggestions can be categorized in two 

major classes of work which are: further improvement and optimization of proposed models and 

procedures, and filling the existent gaps in this area not covered in this work. 
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Since only polyethylene was used in material modelling, studying materials other than polyethylene 

can help further optimization of models. Using different materials, Like ETFE, Teflon, unplasticised 

polyvinyl chloride (PVC or UPVC), polypropylene (PP), Polybutylene (PB) and acrylonitrile-

butadiene-styrene (ABS), can help to better understand the sensitivity of the proposed formulation to 

the material itself. Although the proposed formulation and procedure is generally applicable to all 

viscoelastic/viscoplastic materials, there might be some limitations which are not clear to the author. 

In addition to the application of different materials, different methods of experiments can be 

employed. Although we have used one dimensional tensile tests for obtaining the material properties 

and validating the results, multi dimensional as well as compression tests are suggested. Uniaxial 

compression test would be useful to see how the material reacts to the compression versus tension. 

Generally, one dimensional tests are more common as they are easier to do and just a simple uniaxial 

test machine is sufficient. This type of test includes tension, compression and creep shear tests. On the 

other hand, multiaxial tests are very valuable but need more complicated test machines. In this category, 

biaxial tensile test is helpful in understanding the response of the material to applied forced in different 

direction. The most important benefit is that one can understand which stress is more effective in 

defining material properties, which leads to definition of effective (equivalent) stress for the material 

parameter dependency to the stress. In more complex and more accurate investigation, the three 

dimensional loading test would help also the understanding of the geometrical nonlinearities of the 

material and optimizing the three dimensional finite element model and theoretical formulations. 

The nonlinear optimization method of model parameters, which has been used in material model 

development, has always been a challenging task for the researchers. This method requires a guess of 

first set of fitting parameters, and the outcome is highly sensitive to these values. Although it’s been 

tried to use the best guesses for fitting parameters in this research, further optimization of these guessed 

values can be considered as an improvement to the model. It should be noted that a bad guess could 

even cause the optimization procedure to diverge. A built-in formulation of nonlinear optimization 

procedure in MATLAB (Derivative Free Method) is used to find a minimum to the fitting formulations. 

As another future work, other available numerical methods of minimization like: Descent method, 

Gradient descent method, Steepest descent method, Newton’s method, etc., can be used and 

programmed for further investigation on improvement of efficiency of optimization. 
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Although multi-Kevin solid configuration of spring and dash-pots are used for viscoelastic 

modelling, other configurations can also be investigated. Multi-Kevin solid works well for 

polyethylene, but other configurations like: Elastic solid, Viscous fluid, Maxwell fluid, 3-parameter 

and 4-parameter solids and fluids, etc., might work better for other materials. 

A one term approximation of power law function has been used for viscoplastic modelling. It can be 

further developed and optimized by increasing the terms using a repeatable form, similar to what is 

used in viscoelastic modelling. 

Studying failure criteria other than the used delayed failure (such as Enlivenment Stress Cracking 

Resistance (ESC), yield and rupture) and their implementation in the proposed finite element procedure, 

is another area which would be an improvement to the current work. Also, performing experimental 

failure test and studying the resilience factor (ultimate strain energy at time of failure) for polyethylene 

and other polymers, could be a future work which requires a vast elaboration. 

In addition to the discussed items on the improvement of the proposed research, there are gaps which 

need to be filled as future work to the current one. One area is using the Modified Superposition 

Principle (MSP), instead of the used linear superposition principle. The implementation of the MSP 

approach into the modellings/formulations and then into the finite element procedure could be 

considered as a novel research. In addition, investigating the effects of temperature on the short and 

long term behaviour would be an interesting work. Introducing the temperature to the proposed 

modelling, could increase the capability of the finite element procedure in predicting the response of 

material. Comparing the outcome of this modification and comparing the results with those available 

on Time-Temperature Superposition Principle (TTSP) in the literature, could lead to an interesting area 

of study. 
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Appendix A 

Viscous Material Analysis Instructions 

This analysis has two steps: 

1- Finding material properties (constants/fitting parameters) based on experimental data using 

FITTEST program, a code developed in Matlab workspace 

2- Finite element analysis of the material model in ABAQUS software, based on material 

properties obtained from the first step, using VISCOMAT, a user defined material sobroutine, 

UMAT, developed in Fortran workspace 

 

Finding Material Properties using FITTEST 

Two steps have to be followed for obtaining the proper material constants. First material test results 

must be stored in an excel file. Let’s call it testdata.xlsx. then FITTEST program must be run. Storing 

the data in the excel file are described following. Then FITTEST has to be run considering the tips that 

will be explained latter.  

Storing material test results in total.xlsx file. 

While performing one dimensional tension creep experiment on any polymeric material, the axial 

deformations are recorded in each time interval. For each constant stress level, the resultant axial strain 

is computed. Test information that will be stored in the file testdata.xlsx are: 

1- number of creep tests (curves) 

2- Applied constant stress for each test 

3- Measurements of strain for each test 

4- Time (in second) in which each strain is measured 

A sample of test data storage is shown in the following figure. 
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The first cell in testdata.xlsx (A1) indicates the number of creep tests on the material. Here the value 

of 4 means four creep test under constant stresses are being used. These stress values are mentioned in 

the remaining cells of first row. Here values in cells B1, C1, D1 and E1 show the stress values for each 

test. The first column (starting the second row, A2), contains the time intervals, and other columns, 

starting the second row, contain strain measurement. Each strain is associated with the time in the same 

row and first column, the stress at the first row of the same column. The number of data is not limited, 

meaning that any number of tests and time intervals can be entered. 

If more than one material is tested, data for each material needs to be entered in a separate excel 

sheet. 
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The sample file (above figure) shows different sheets for different material tests as: Pipe material for 

24 hour test time, Pipe material for 7 day test time, Pipe material for two week test time, Material Res1, 

Material Res2, etc. 

Running FIITEST 

To start, in MATLAB workspace type guide. This activates the GUI mode in which FITTEST file 

can be opened. Then press the Figure button (    ) to run the program. The program window appears as 

following 

  

First step analysis starts with the Input Experimental Data Excel File. In this section press Browse 

button and locate/open the testdata.xlsx file. The name and file address will appear beside the Browse 

button. Use the drop/down option beside Select Sheet to choose one of the sheets within the uploaded 

data file which contains the experimental results of the material. 

Press Get Data. The program uploads the test data and plots the strain vs time for all available stresses 

(following figure for sample test). Other information also are depicted which are: number of tests, 

instantaneous elastic modulus, minimum stress level, maximum stress level and test time (hr). 

Three information regarding this material tests need to be given for analysis, as following. 

Poisson’s ratio: which a material property and is provided by material supplier. If not available, it is 

recommended to be set equal to 0.45  
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Number of Units, Ntav: which is the number of Kelvin units in Kelvin-Solid configuration model 

and is interpreted as the order of final expression 

Pre-Smoothing factor [5~100]: which reduces the number of measured items and needs to be an 

integer number between 5 and 100. For example, entering 20 means that the program takes one data 

from each 20 available data. This has two benefits. First the run time reduces, second, the noises will 

be removed and the curve fitting will be more smooth. 

 

Now the data are uploaded into the program FITTEST. The next step is performing the analysis. Two 

methods are introduce. Voscoelastic (VE) and Viscoplastic (VP). The first uses the exponential 

relations based on spring and dash-pot configuration and the second is based on the power law relations 

of plasticity theorem. 

In Viscoelastic/Viscoplastic Analysis box choose one of either Viscoelastic (VE) or Viscoplastic 

(VP) analysis. Press RUN ANALYSIS button. 

VE parameters 

By running VE analysis, the program calculates fitting parameters and a table of these parameters will 

be provided (following figure). Also mean fitting error which is the average of Mean Least Squares 

Deviations for all tests (curves) will be presented. 
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In right hand side the tool box Property trend in long term is provided which plots the behavior of 

two parameters E_1 (first viscoelastic modulus) and τ_1 (first relaxation time). For this, one of either 

two following options needs to be chosen. 

 E1 vs Test-time (hr) for different stresses 

 T1 vs Test-time (hr) for different stresses 

 By pressing the Plot button, the curves will be plotted. These curves serve as indicators of how the 

fitting suits for long term prediction. Since the analysis is a nonlinear optimization of finding the best 

fit, it would be a trial process and the analysis may need to be run for few times (refer to paper #1 for 

more details on the optimization process). This justifies the use of these plots as indicators of long term 

suitability of the fitting parameters.  Following you see some example for different values of Ntav and 

Pre-smoothing factor. 
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Case I: For Ntav = 3 & Pre-smoothing factor = 20 

    

Case II: For Ntav = 3 & Pre-smoothing factor = 50 
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Case III: For Ntav = 5 & Pre-smoothing factor = 50 

Three cases are presented above which show how different values of Ntav and Pre-smoothing factor 

affect the materials behavior for long term prediction. Each curve represents results for stresses which 

are 2.68, 3.2, 4, 5.1, 5.58, 6.8, 8, 12 and 17. In Case I, curves for ܧଵ for all stresses are identical and ߬ଵ 

increases versus test time. Same behavior can be observed in Case II, except ܧଵ depends on stresses. In 

both cases, ܧଵ decreases and ߬ଵ increases versus test time, which means that parameters of both cases 

are able to be used for long term prediction. In Cases III, we see different behavior of material 

parameters (increase of ܧଵ and decrease of ߬ଵ versus test time) which means that the parameters are not 

acceptable. 
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VP parameters 

By running VP analysis, the program calculates fitting parameters and a table of 

these parameters will be provided (following figure). Also mean fitting error which 

is the average of Mean Least Squares Deviations for all tests (curves) will be 

presented. 

 

In Property trend in long term tool box the behavior of two parameters ܥ଴ and ܥଵ 

can be plotted. For this, one of either two following options needs to be chosen. 

‐ C_0 vs Test-time (hr) for different stresses 

‐ C_1 vs Test-time (hr) for different stresses 

 

By pressing the Plot button, the curves will be plotted. Similar to VE analysis, these 

curves serve as indicators that show how the fitting suits for long term prediction. 

Following you see some examples for different values of Pre-smoothing factor. 

For VP analysis, Ntav represents the number of nonlinear term in constitutive 

equation and is set to be equal to one. 

Here, decreasing both parameters of ܥ଴ and ܥଵ versus test time is a good sign and indication of 

suitability of fitting parameters for long term behavior prediction (Case I). 

    

Case I: For Pre-smoothing factor = 20 
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Case II: For Pre-smoothing factor = 100 

    

Case III: For Pre-smoothing factor = 10 

Finite Element Analysis using VISCOMAT 

This step includes modeling the structure in ABAQUS software and invoking the VISCOMAT 

UMAT for analysis. 

Material Definition 

Material needs to be defined based on the actual material properties. In Material Manager a new 

material is created. For this a Name has to be defined. For the material behavior. Two parts, Depvar 

and User Material, need to be defined from General subsection. For Depvar, number of solution-

dependent state variables is set to 200. 
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User material properties depend on the analysis types which are specified by the name of the material. 

Name of the material must follow specified rules. The starting four letters define the type of the analysis 

and must match the definitions in UMAT library. This letters are: 

NVE 

These letters stand for Nonlinear ViscoElastic and is used for analyzing the nonlinear viscoelastic 

behavior. This material definition is used when Long term analysis is expected, using long term 

properties of material obtained from the FITTEST program. It needs 21 material constants as following: 

PROPS(1)=E0 , instantanous module of elasticity 
PROPS(2)=v , Poisson’s ratio 
PROPS(3)=n , number of Kelvin units 
PROPS(4)=m , scale factor for module of elasticity of each Kelvin unit 
PROPS(5)=a , scale factor for relaxation time of each Kelvin unit 
PROPS(6)=b0' 
PROPS(7)=b1' 
PROPS(8)=b2' 
PROPS(9)=b3' 
PROPS(10)=b4' 
PROPS(11)=c0' 
PROPS(12)=c1' 
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PROPS(13)=c2' 
PROPS(14)=c3' 
PROPS(15)=c4' 
PROPS(16)=d0' 
PROPS(17)=d1' 
PROPS(18)=d2' 
PROPS(19)=d3' 
PROPS(20)=d4' 
PROPS(21)=d5' 
 

Non-defined properties, above, are fitting constants. 

NVP 

These letters stand for Nonlinear ViscoPlastic and is used for analyzing the nonlinear viscoplastic 

behavior. This material definition is used when Long term analysis is expected, using long term 

properties of material obtained from the FITTEST program. It needs 24 material constants as following: 

PROPS(1)=E0 , instantanous module of elasticity 
PROPS(2)=v , Poisson’s ratio 
PROPS(3)=n , number of Kelvin units 
PROPS(4)=b1 
PROPS(5)=b2 
PROPS(6)=b3 
PROPS(7)=b4 
PROPS(8)=b5 
PROPS(9)=b6 
PROPS(10)=m1 
PROPS(11)=m2 
PROPS(12)=sa 
PROPS(13)=T1 
PROPS(14)=d0 
PROPS(15)=d1 
PROPS(16)=d2 
PROPS(17)=d3 
PROPS(18)=d4 
PROPS(19)=d5 
PROPS(20)=d6 
PROPS(21)=d7 
PROPS(22)=d8 
PROPS(23)=d9 
PROPS(24)=T2 
 

Non-defined properties, above, are fitting constants. 

LVEP 
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These letters stand for Linear ViscoElastic Prony and is used for analyzing the linear viscoelastic 

behavior. This material definition is used when material properties of material are available in the form 

of Prony series. It needs at least 5 material constants as following: 

PROPS(1)=E0 , instantanous module of elasticity 
PROPS(2)=v , Poisson’s ratio 
PROPS(3)=n , number of Kelvin units 
PROPS(4)=E1 , module of elasticity for first Kelvin unit 
PROPS(5)=T1 , relaxation time for first Kelvin unit 
PROPS(6)=E2 , module of elasticity for second Kelvin unit 
PROPS(7)=T2 , relaxation time for second Kelvin unit 
PROPS(8)=E3 , module of elasticity for third Kelvin unit 
PROPS(9)=T3 , relaxation time for third Kelvin unit 
PROPS(10)=... 
 

Constants for up to 20 Kelvin units can be used. 


