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Abstract

The built-in Energy Management System (EMS) of Plug-in Hybrid Electric Vehicles
(PHEVs) plays an important role in the fuel efficiency of these vehicles. Recently, it has
been revealed that prior knowledge of the upcoming trip can assist EMS to enhance the
distribution of power between the energy sources, i.e. the engine and the motor-generators
used in PHEVs, resulting in lower fuel consumptions. This dissertation intends to further
investigate on a Trip Planning-assisted EMS (TP-assisted EMS), by studying its feasibility
for online implementation, and evaluating its performance and robustness with respect to
the trip data uncertainties in various practical scenarios, to ultimately answer this question:
Does the TP-assisted EMS function as a reliable system for PHEVs which can outperform
conventional methods?

This research starts with improving upon an existing Trip Planning module with an
emphasis on its online integration with the EMS module. In particular, the power-balance
model of PHEVs is introduced, which is computationally inexpensive and yet adequately ac-
curate to be used for the optimizations involved in the Trip Planning module. To speed up
the optimizations, the use of Particle Swarm Optimization (PSO) algorithm is suggested.
These modifications result in the reduction of computational time, making TP-assisted
EMS module suitable for online implementations.

Once the TP-assisted EMS module has been integrated with a high-fidelity model
of the baseline PHEV, namely, 2013 Toyota Prius PHEV, its performance and sensitiv-
ity/robustness have been extensively studied through Monte Carlo simulations, where nu-
merous samples of standard as well as real-world drive cycles have been tested. However,
in order to use these data for Model-in-the-Loop (MIL) and Hardware-in-the-Loop (HIL)
tests, a Micro-trip Generator block has been developed. This block automatically segments
the drive cycles, similar to the way that trip information is obtained in practice, making
the simulation samples compatible with the Trip Planning module.

Statistical analyses of the simulation results show that the TP-assisted EMS is a supe-
rior controller compared to the conventional EMS strategies. Moreover, these simulations
present one of the first sensitivity analyses that have been performed in the context of
TP-assisted EMS for PHEVs, showing that this system is robust despite the existence of
random disturbances and meanwhile has low sensitivity against variations of the design
parameters.
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Chapter 1

Introduction

1.1 Motivation and Challenges

Environmental issues, energy crisis and the ever-rising fuel cost continue to remain among
the major concerns around the globe. To deal with these problems, research communities
have suggested various regulations, some of which enacted by governments and authorities
either regionally or globally, which generally undertake one or more of the following direc-
tions: (1) reduce the fuel consumption and the emission level of the Internal Combustion
Engine (ICE) driven vehicles which use high energy density oil-based fuels but suffer from
low efficiency, (2) restrict transportation activities and automobile purchases, and (3) in-
crease the use of renewable-energy-propelled vehicles. Investigating these strategies, the
first one seems somewhat impractical since improvements on the fuel economy of ICEs are
known to be limited. The second approach is susceptible to distress the automotive indus-
try. The latter advocates development of green vehicles, especially electrical-energy-driven
ones because they provide up to three times greater efficiency compared to ICE-propelled
vehicles. Therefore, the third solution is deemed the most favorable direction to take
[1, 2, 3].

As a result, automotive industry has been enforced to promote the usage of green
vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in
hybrid electric vehicles (PHEVs). It is envisioned that by increasing use of these vehicles,
the annual fuel consumptions and the CO2 emissions will significantly reduce in near future
so that the strict standards of the American Corporate Average Fuel Economy (ACAFE)
will be complied in a certain timeline.
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Nevertheless, the initial price and maintenance cost of the electrically-propelled vehicles
make them less appealing compared to their ICE-based counterpart. It is presently believed
that by improving the fuel-economy and overall performance of electric vehicles, the greater
long-term operational benefits of these vehicles will attract more customers which will lead
to reduction of fossil fuel consumption and emission rates. Along with this line of thought,
while there is an essential need for technological advances on the vehicles’ powertrain
components, there is a more important need to develop efficient control strategies that
optimizes the operation of the state-of-the-art of technology.

Among the three types of electrically-propelled vehicles, EVs rely solely on the electric
energy obtained from the external grid and charged into a battery. The vehicle electrifica-
tion reduces the CO2 emissions as well as preserves the non-renewable oil-based resources
since the electricity can be produced from renewable and cleaner energy resources. This
makes EVs an ideal substitute for ICE-based vehicles; however, their low operating range
coverage (up to 400km) and expensive costs hinders their extensive commercialization.

On the contrary, being accompanied by an ICE, HEVs and PHEVs can extend the
operating range, and at the same time enhance the efficiency levels. However, PHEV
is a more viable and sustainable choice because its battery’s operating range is much
wider than the one of a HEV. A PHEV is nothing but a HEV with the added ability of
substituting electricity from the grid, unlike conventional HEVs that only rely on gasoline.
This reduces the demand for a powerful ICE in PHEV, thus leaving more space for the
electrical powertrain. As a result, PHEVs provide a higher fuel efficiency and lower emission
compared to HEVs. This higher efficiency of PHEVs is greatly reliant on the energy
management strategy that defines the power split ratio between the engine and the battery.

HEVs energy management algorithms are typically use pre-planned optimized maps,
rule-based methods, or instantaneous optimizations in order to minimize fuel consumption
while maintaining the battery state of charge (SOC) within the acceptable range [4, 5].
The instantaneous optimization-based methods require the current vehicles states such
as demanded power and the battery SOC as well as the driving conditions such as the
current vehicle’s speed. Instantaneous optimization methods are implemented as the core
of Equivalent Consumption Minimization Strategies (ECMSs) which first developed by [6]
in an attempt to obtain power distribution ratio. In HEVs energy management systems,
there is a strict constraint on the battery’s SOC to operate within an acceptable limited
range for the entire trip; whereas, in the PHEVs, the SOC operating range is relatively
larger.

The potentials of PHEVs cannot fully be exploited by using exactly the same method-
ologies used for HEVs: the PHEV’s charge depleting characteristic brings significant com-
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plexity to the energy management problems. In fact, the battery’s SOC is known as a
critical state in determining the power distribution between engine and the electric drive.
A PHEV can be run in its charge depleting (CD) mode until it gets to the minimum
allowable battery SOC level; then it goes on the charge-sustaining (CS) mode trying to
maintain the SOC level at its minimum value just like an HEV [7, 8]. This CDCS mode
is known to be sub-optimal for the trips with longer lengths than the all-electric-coverable
distance [9]. On the other hand, it is proved that the blended strategy, which balances
the use of engine and the battery for the entire trip for the battery to get depleted to the
lowest acceptable value by the end of the trip, can capture the PHEV’s maximum energy
economy [8]. The blended-based strategies, however, require future trip data to obtain a
near-optimal solution for the energy management problem [10, 11].

The look-ahead trip can be estimated either: (a) online by using traffic monitoring sys-
tems such as cameras and sensors alongside other technologies such as Global Positioning
System (GPS), Intelligent Transportation System (ITS ), and Internet maps; or (b) offline
by employing some machine learning methods or Markov process over the historical driving
information. Due to the driving’s stochastic nature, acquiring exact future itinerary knowl-
edge is almost unfeasible; however, most, if not all, real-time energy management systems
(EMSs) in the literature neglect the non-deterministic features of the traffic prediction, de-
spite the fact that the external prediction sources are certainly imposing some uncertainties
on the systems including the errors, delays and noises as a matter of mis-communication
and detection limits. Hence, it is essential to analyze the controllers’ performance under
the prediction’s uncertainties with respect to different scenarios. If the controller is proved
to be sensitive to the stochastic nature of the prediction, some modifications can be imple-
mented in the algorithms or the EMS architecture to handle the uncertainties and improve
the robustness [12, 13].

Energy management systems have been extensively studied in the existing literature
and it has been revealed that the adaptive ECMS (A-ECMS) and the Model Predictive
Control (MPC) are superior among others, which can also benefit from incorporation of fu-
ture trip prediction while operating [14]. Furthermore, the hierarchical systems consisting
of more than one module are demonstrated to be even more efficient [15, 9, 16, 17]. In this
particular type of EMS, a supervisory module is usually designed to specifically generate
the SOC reference. This element is provided with the trip information prediction by a
preceding module. Typically, trip information can be integrated in the prediction-derived
EMSs in any of the following ways depending on the algorithms used within the modules:
(1) offline short-range prediction such as the stochastic forecasting that is used within a
stochastic MPC (SMPC) approach; (2) offline long-range prediction that can be imple-
mented within some stochastic approaches like stochastic dynamic programming (SDP);
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(3) online short-range prediction like what is used within a MPC algorithm; (4) online
long-range prediction such as the one which is employed by dynamic programming (DP)
optimization mostly for obtaining the preplanned driving tasks; and (5) a combination
of two of the above-mentioned scenarios within a hierarchical EMS which is usually for-
mulated with deploying at least one online algorithm mostly as the main module for the
real-time power allocation between the energy sources, and a long-term prediction-based
algorithm within the supervisory module for pre-planning the power distribution according
to the long-term trip information through determination of the optimum SOC profile. The
optimum SOC profile is then used within the main energy management module for real-
time power distribution between the battery and the engine. Depending on the algorithm,
the optimum SOC profile can help update an equivalency factor for adaptive-based EMSs
like A-ECMS or it can be used as the final SOC constraint employed in MPC [15, 9].

Each module of the hierarchical energy management systems has its own complexity
and challenges in terms of computation costs, real-time implementation, and robustness
with respect to the uncertainties. This fact alongside the added hierarchy feature makes
this particular EMS a challenging problem with regard to the system’s design, real-time em-
ployment, modules’ effects on each other as well as on the overall EMS’s performance, the
error propagation in the system, and the controllers’ evaluation. This thesis will investigate
these challenges by incorporating different modules into a hierarchical energy management
system, and then, evaluating its performance under different stochastic scenarios through
an extensive sensitivity analysis under model/prediction uncertainties.

1.2 Research Objectives

Since multiple energy sources are being used concurrently within a PHEV, energy manage-
ment has become an important task to determine how to best use the available resources
to achieve optimal fuel efficiency. In [14], it has been reported that using the informa-
tion of the upcoming trip, leads to a better distribution of power between the engine and
motor-generators. By the recent technological advances, the cost of implementing accurate
sensors such as GPS, V2V, radar systems, etc. has been reduced, facilitating the possibil-
ity of online trip data acquisition in vehicles. Therefore, it can be inferred that the use of
future trip data can be an effective way to increase the fuel efficiency of PHEVs in near
future.

However, the results of [14] on the idea of using trip prediction for energy management
are preliminary, in a sense that that trip information has been used in an offline optimiza-
tion procedure but in a reasonable period, and only a few sample of drive cycles have been
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examined. Therefore, there is currently a key gap in the knowledge of feasibility of such
optimization process to be implemented in an online system. Moreover, it is not clear how
such a strategy can be online integrated with the EMS, how the overall setup compares to
the state-of-the-art EMS techniques, and how it will perform in real-world driving condi-
tions where stochastic disturbances and uncertainties are inevitable. Motivated by these
facts, this research has the following objectives:

• Online implementation: Study the integration with the EMS, evaluate the feasibility
of the overall system for online setup and introduce modifications to reduce the
computation time, if needed

• Performance analysis: Examine the performance against numerous real-world sce-
narios and compare to the conventional energy management techniques

• Sensitivity/robustness analysis: Evaluate the effects of trip data uncertainties and
disturbances as well as the effect of variation in design parameters

To achieve the above objectives, a real-time 3-level hierarchical Trip Planning-assiseted
EMS is considered in this research, evaluated for a 2013 Toyota Prius PHEV through
extensive Monte Carlo simulations, where the input samples are collected from standard
and real-world drive cycles.

1.3 Document Organization

This rest of this dissertation is organized as follows: Chapter 2 reviews the state-of-the-
art results on HEVs and PHEVs with an emphasis on energy management and sensitivity
analysis of trip data. Chapter 3 presents the architecture of the energy management
module proposed for online implementations. Chapter 4 investigates the idea of using soft-
computing techniques for modeling of the energy consumption. Chapter 5 is devoted to
the sensitivity analysis. Finally, the concluding remarks and suggestions for future work
are given in Chapter 6.
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Chapter 2

Literature Review

2.1 Energy Management Systems

The fuel economy and the vehicle’s performance are highly reliant on the energy manage-
ment strategy to optimally divide the demanded energy between energy sources. Energy
management strategies can be mathematically divided into two major categories: rule-
based, causal, and nonpredictive methods; and optimization-based, acausal, and predictive
approaches [1, 2, 18, 19]. Rule-based methods, also called heuristic strategies, act upon
a set of rules or pre-defined maps which can usually be simply applied. Preceding trip
information is not employed and the decision makings are based on the current condi-
tions; therefore, they usually do not yield the optimal solution for many scenarios. On the
other hand, optimization-based methods rely on optimizing a cost function including the
energy consumption. Unlike the rule-based methods, prior driving condition is required
within most of the algorithms in this category; hence, some resources call them route-based
methods [14]. Each category has its own shortcomings and benefits as the rule-based ap-
proaches are less computationally expensive, but they cannot achieve the global solution;
on the contrary, the optimization-based methods can lead to near-to-optimal solutions,
but they are computationally expensive.

A recent work by Padmarajan et al. [19] has claimed to develop a blended rule-based
EMS as a rule-based acausal EMS for the first time which, unlike any other acausal EMS
developed so far, does not need any future trip knowledge; instead, known driving data
and specific energy matrix are employed. The proposed EMS has been evaluated against
the conventional well-tuned rule-based energy management strategy over many real-world
driving scenarios considering the trip uncertainties. Engine operating modes have been
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preset in both approaches, but engine operation duration has been defined by the approxi-
mated energy consumption (delta energy) in the proposed method .Applying the proposed
method has led to the fuel saving improvement up to 18.4% and a nine-time decrease in
the number of engine on-offs compared to the conventional rule-based EMS.

Some other methods such as reinforcement learning-based (RL-based) approaches can
be placed into a separate category between the rule-based methods and the optimization-
based methods to balance the trade-off between optimality and real-time implementation
which has recently attracted a great deal of attention from the researchers [20]. The
idea of using reinforcement learning within the energy management of PHEV was initially
proposed by Liu et al. [21]. The future energy usage which is dependent on the remaining
travel distance is the quantity that the controller aims to learn and optimize during the trip.
It has been concluded that this type of controller can overtake the rule-based controller
with respect to a defined reward function; whereas, it can get worse if it does not reflect
the charging opportunity. In a recent work by Xuewei et al. [20, 18], a new model-free
RL-based method for PHEV EMS has been applied and evaluated which gives the benefit
of being able to control the power-split operations in real time, and at the same time, learn
the optimal control decisions based on the past driving conditions. It has been proved
that for a given real-world drive cycle, the proposed EMS can result in a 12% fuel saving
without considering the charging stations, and an 8% fuel saving with considering the
charging stations. Lin et al. [22] have demonstrated a machine learning-based EMS for
HEVs to minimize the total energy cost. A nested learning algorithm is applied to learn
both the optimal decisions and the SOC range limitations. The inner-loop learning is in
charge of the fuel consumption minimization, while the outer one accounts for the paid off
battery replacement cost. Simulation results have shown that the proposed method can
reduce the operating cost up to 48%.

Optimal EMSs are challenging in terms of real-time implementation since incorporat-
ing the future driving information in the optimization problem adds to the problem’s com-
plexity. Optimization-based HEV/PHEV EMSs have been investigated considerably by
researches [23, 2, 1]. Different optimal control methods such as DP, Stochastic DP (SDP),
Pontryagin’s Minimum Principle (PMP), Model Predictive Control (MPC), Stochastic
MPC (SPC), and Adaptive-ECMS (A-ECMS) have been implemented to boost the EMS.
Incorporating the trip information into the EMS to decrease the fuel consumption and in-
crease the powertrain’s efficiency has been the center of attention for the last two decades
[24, 25]. It has been shown that future trip information integrated with the route-based
EMS can improve the fuel consumption almost 2% to 4% for certain cases [26, 27]. More-
over, it has been demonstrated that the controllers’ efficiency rely on the amount of future
information it is provided with [28, 14]; longer prediction window results in higher fuel econ-
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omy. The future driving data can be fed into the controllers in both forms of short-term
and long-term predictions depending on the controllers’ algorithms and their needs. Specif-
ically, the strategies can be divided into two main groups: 1) long-term prediction-based
algorithms which need the entire trip prediction. Typically, these algorithms include the
global optimization methods such as DP and PMP which can yield the global optimum so-
lution, but they require the exact full knowledge of the future driving cycle, and therefore,
they seem impractical for real-time implementation; and 2) short-term prediction-based
algorithms which take into account the near future driving cycle over a defined short pre-
diction horizon, and therefore, they are better options for online implementation; on the
other hand, they cannot yield the global optimal solution.

Particularly, real-time implementable algorithms seem more attractive to the auto-
motive researches as they are much more practical options in the real-world scenarios.
However, their potentials can be further exploited if they can be accompanied by other
stochastic or global algorithms, so the resultant controller is able to capture more informa-
tion, while it is still real-time implementable. This idea has led to many hierarchical energy
management structures with more than one real-time control module. Typically, the long-
term information is integrated within a preceding module as a supervisory controller, and
the short-term prediction is used within a low-level controller.

The rest of this section is organized as follows: first, a quick review on the literature
of the well-established optimal control algorithms is presented; second, the literature re-
garding the prediction translator module which can be called “trip planning module” is
investigated; then, some of the hierarchical EMSs which have been developed so far are
studied.

2.1.1 Optimization-based Algorithms

Dynamic Programming

The DP is a well-established method among the global dynamic optimization methods. It
requires the full knowledge of the future drive cycle to find the global solution of energy
management which makes it almost impossible for real-time application especially for com-
plex systems due to the computational burden it adds to the system. However, different
actions have been taken into account to take advantage of their optimality and compen-
sate their deficiency in terms of online implementation. One way is to reduce the model
complexity by considering reasonable assumptions such as the cluster-based optimization
algorithm proposed in [14]. Another way is to apply a global optimization method offline,
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and then, tabulate the results in a look-up table for the online decision making use. DP
global minimum results have been utilized to find the near-optimal control rules for the
parallel HEVs EMS. Having applied this method, the authors were able to significantly
improve the fuel economy by finding the optimal energy distribution between the engine
and the battery [29, 30].

Different PHEV energy management approaches during the CD mode including all-
electric range and blended methods have been investigated with respect to the future
trip information level [31]. The authors have shown that in the case of being equipped
with the larger, and consequently, more expensive electric components, all-electric-range
implementation can take advantage of all the luxuries of a full electric vehicle. On the other
hand, it has been proved that the engine-dominant blended mode can result in significant
fuel saving for long distance driving. In [32] it has been stated that optimum battery SOC
profiles for an optimal EMS are the ones that maintain the electrical energy for the entire
trip.

Stochastic Dynamic Programming

In the SDP method, the optimization is done based on the stochastic information gen-
erating from the probabilistic distribution of the driving conditions [33, 34, 35, 36]. In
[34] predicted energy demand has been calculated based on the stochastic information to
establish the PHEV’s EMS. In the other work [35], SDP has been utilized to optimize
the cost function including both fuel consumption and the battery maintenance. It has
been shown that while the battery resistance growth is high at the first part of the trip,
the battery is depleted quickly; afterwards when the SOC is low, blended mode is more
effective.

Pontryagin’s Minimum Principle

As one of the global optimal control methods, PMP finds the global solution by the Hamil-
tonian minimization. The performance index can be minimized in the presence of the
states and input constraints. PMP method has been used in a real-time EMS of a series
HEV [37, 38]. Tuning has been by considering only cruise time and regenerative energy
not the entire drive cycle. Furthermore, the problem complexity has been lessened by
minimizing the instantaneous Hamiltonian instead of the integral cost, which makes the
algorithm real-time implementable. Using a high-fidelity HEV model in MapleSim, the
authors have evaluated the controller, and then, it has been expressed that the approach
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results in considerable fuel saving. In another research by Ebbesen et al. [39], the firstly
claimed state-of-health model for Li-ion batteries has been developed by considering the
battery life in the parallel HEV EMS and using the PMP method. In order to reduce the
problem complexity raised by electrochemical models, the authors have presumed that the
battery’s energy capacity is equivalent to the remaining cycles.

Onari et al. [40] have used an Adaptive PMP (A-PMP) in the online EMS of the plug-
in hybrid GM Chevrolet Volt. Being provided with the trip distance and the average drive
cycle velocity, the controller adapts its parameters based on the SOC feedback. Then, the
controller has been compared against the PMP method and the CD/CS strategy which is
currently used on board in the vehicle. The simulation results have shown more than 20%
improvement in the fuel consumption using the proposed A-PMP.

Equivalent Consumption Minimization Strategy (ECMS)

ECMSs are among the most commonly used optimal control approaches for EMSs. It takes
advantage of minimizing total energy usage including both fuel consumption and electrical
energy usage [41, 42, 43, 44, 45, 6, 46, 47, 11, 48]. Basically, these two types of energy
consumption are not analogous to each other by their natures; therefore, the ECMS uses
an equivalency factor to direct them together in the minimization equation. Two different
approaches including blended and CD methods, have been used within an ECMS by Tulpule
et al. [49] for both series and parallel PHEVs. In another work [50], A-ECMS has been
implemented for parallel HEVs based on the driving conditions that can calculate the
equivalency factor in the ECMS. A-ECMS has been employed for power-split PHEVs [51].
Among the hybrid powertrain configuration for PHEVs, power-split architecture exploits
specific benefits as it enables the engine to work at its highest efficiency by decoupling the
engine crankshaft from the road and letting the electric motors to set the engine operating
mode at the optimum. In [52], it has been demonstrated that near-optimal solution can be
obtained by considering battery SOC depletion as a linear function of the driving distance.
Partial prior knowledge has been applied in terms of distance, and the future velocity
trajectory has not been taken into account.

As a new supervisory EMS controller for all types of PHEVs architecture, a general
ECMS formulation has been used to find the minimum global CO2 emissions, including
both direct and indirectly generated emissions [53]. Then, the PMP method has been
implemented to convert the global problem formulation into local or instantaneous Hamil-
tonian minimization problem which takes significantly less computational effort, so the
power can be optimally divided between the engine and the motor-generators in real time.
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Model Predictive Control

As one of the very popular optimal control methods, model predictive control (MPC) is
able to handle constrained multi-input multi-output problems [54]. This enables taking
advantage of the potential of the state-of-the-art theories while taking into account the
automotive industry needs. MPC has been significantly employed in the HEV/PHEV
EMSs. MPC has been used for real-time control of different types of hybrid architectures
[55]. In [56], the MPC has been utilized for a parallel HEV EMS to find the optimal
torque distribution. In another work by Borhan [57, 58] for a power split HEV, the MPC
has been employed by considering a control-oriented model inside the controller. In this
work, rule-based controller, linearized MPC, and nonlinear MPC have been implemented
and their results have been compared against each other. It has been demonstrated that
the nonlinear MPC can lead to significant fuel savings among others. In [59], MPC has
been employed for a power-split PHEV EMS, and the results have been compared against
the implemented DP as the benchmark. In a recent work by Taghavipour et al. [60], the
MPC-based EMS has been integrated to the high-fidelity model of a power-split PHEV
developed in MapleSim. The simulation results have expressed good improvement in fuel
saving.

Di Cairano et al. [61] have proposed a stochastic MPC with the driver-behavior learning
(SMPCL) for HEVs EMS. It takes into account the online learning of a Markov chain of
the driver’s decisions along with a stochastic scenario-based optimization method and
quadratic programming. Simulation results for both standard and real-world drive cycles
have proved that the proposed SMPCL outperforms original MPC; indeed, the results have
shown close agreement with the results of a MPC with the full prior trip information.

2.1.2 Trip Planning

Future driving conditions can be incorporated into different parts of the powertrain control
systems to improve the vehicle’s overall efficiency and energy consumption. In this sec-
tion, it is aimed to investigate various numbers of studies that have integrated future trip
information into the controllers in different ways. Depending on the type and application
of the controllers, each may need a short-horizon or a long-term trip prediction. Some
algorithms need exact prior knowledge of the trip; others, on the other hand, need ap-
proximate prediction. However, fully deterministic forecasted trip knowledge is not simply
obtainable according to the uncertainties involved with driving. Only partial information
can be acquired through the recent advancements in the navigation systems such as the
geographical information systems (GISs), intelligent transportation systems (ITSs) and
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global positioning systems (GPSs). Also communications systems such as radars, vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity systems along with the
on-board sensors and the potential capability of connecting to the cloud computing sources
can significantly help access to the future trip information. The partial available informa-
tion is too unrefined to be incorporated to the algorithms at once, and it needs to be
processed to be appropriately suitable as either short-term or long-term trip prediction.
Accordingly, many algorithms have been developed to process the coarse information to get
the desired form of the driving conditions. These methodologies can be mainly classified
into two main groups: a) model-based methods; and b) data-driven approaches.

Model-based methods are able to predict the future traffic conditions based on the real-
time traffic simulations and the traffic flow theory. Zulkefli et al. [62] have employed inter-
vehicle-communications (IVC) and vehicle-infrastructure integration (VII) for the route
forecasting along with an EMS based on the PMP method for HEVs. Prior traffic infor-
mation has been obtained using the Gipps’ car following model and the cell-transmission-
model (CTM) for the leading vehicle route prediction. Keulen et al. [63, 64, 65], have used
future driving information to acquire the optimum velocity trajectory which has been then
fed to the cruise controller.

Data-driven approaches can estimate the upcoming traffic information based on the cur-
rent and the past driving data using either Markov process or machine learning algorithms.
These methods are mostly used within the stochastic methods such as the stochastic dy-
namic programming (SDP) [13, 66] or stochastic model predictive control (SMPC) [61].
According to the literature, artificial neural networks (ANNs) have efficiently shown good
potentials for future prediction as they are easy to implement and accurate enough for sim-
ulation purposes [67]. An artificial neural network has been used to predict the road type
and the traffic congestion (RT and TC) by using the data available from GPS, ITS and GIS
to increase vehicle’s efficiency [68]. Similarly, statistical approaches, specifically Markov
chain models, are also very popular for modeling the future driving condition. Gong et al.
[69, 70] have studied two approaches for integrating the trip information with the EMS:
Gas-kinetic traffic flow model and neural networks, which has been trained by using the
traffic information. The first method includes different parameters which results in model
complexity, while the second method is demonstrated to be accurate and simple enough
for real-time implementation. In a recent study by the authors [71, 72], a Markov chain
model has been applied to find the speed profile which is then used for the controller tuning
and increasing the vehicle’s efficiency. Sun et al. [73] have developed and compared three
different speed forecasters without using any on-board device data for predictive EMSs
in power-split HEVs. These predictors include exponentially varying, stochastic Markov
chains and artificial neural networks (NNs). They have been compared against each other
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in terms of tuning sensitivity, model complexity, forecasting accuracy and fuel consump-
tion improvement. It has been shown that NN-based method outperforms its counterparts
in general.

2.2 Hierarchical Trip Planning-assisted EMSs

In a hierarchical EMS, the main real-time decision maker algorithm is accompanied by one
or two preceding modules to increase the efficiency. The Trip Planning module may be
added to the system for different purposes. It can be implemented to translate the coarse
prediction information into some indexes that are understandable by the energy manage-
ment controllers such as the optimum SOC profile which can be used as the reference for
updating an equivalency factor in an A-ECMS algorithm or as the final-state constraints
in the MPC algorithm. Also, it may be utilized to add some stochastic knowledge to the
real-time decision making process. Typically, the supervisory module is used for updating
a parameter in the case of real-time implementation; therefore, the upper level controller
generally takes advantage of a simpler control-oriented/power-balance system model; along
the same line, the optimal control algorithms used inside the supervisory controller need
to be modified to be fast enough for online applications. These different ways of applying
hierarchical systems that have been studied in the literature are elaborated in details in the
remaining part of this section. Also, it is good to mention that among different hierarchical
architectures, the ones with dynamic traffic feedback data have been proved to be more
efficient because the controller is provided with the real-time traffic information feedback.

Keulen et al. [74] have applied optimal EMS for hybrid electric trucks by using route
information. First, optimal look-ahead speed trajectory has been calculated within a tra-
jectory builder module. Then, the optimum deceleration trajectory has been applied along
with an online EMS to maximize the energy recovered during regenerative braking, which
has resulted in considerable fuel consumption reduction.

In [69, 75], the future power demand has been calculated based on the trip information,
then a two-scale DP method has been used as the energy management strategy to optimize
the battery SOC profile by using a linear battery model. The upper level DP takes into
account the approximation data of the whole trip to find the preplanned battery SOC.
This optimum SOC profile is then segmentally tracked by the lower level short horizon DP
which has more accurate data.

In a comparative study by Bin et al. [76], the classic DP and the two-scale DP have been
compared against each other. The authors have used a regulating segment model to adjust
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the span of the trip segments based on the trip information. This method has reduced
the computational complexity. It has been found that two-scale DP yields effective result,
while it is a less computationally expensive method compared to the classic DP which is
calculating the demanded power and SOC numerically.

The battery SOC profile has been optimized by using the upcoming future driving data
for a power-split PHEV in [77, 78]. Using the PSAT software, a rule-based controller is
applied to follow the optimum SOC. Also, the authors have utilized a different segmentation
method called “receding horizon approach” to reduce the computational burden. The
original path with a lot of segments has been changed to a virtual route in which only
initial segments of the original path are remained, and the other remaining segments of the
original path to the end of the trip are presented by an equivalent segment. DP method has
been used to find the optimum SOC of each of the segments by using the first segment’s
SOC as a reference trajectory.

Du et al. [17] have demonstrated a trip-oriented stochastic EMS for a plug-in hybrid
electric bus. At first, a segment-based stochastic Markov chain model of the trajectory
is constructed by clustering the past driving information of a given trajectory into the
segments with respect to the bus stops. Obtaining the segment-based stochastic model,
the stochastic dynamic programing problem is then used in an offline manner. Afterwards,
its outputs are translated to a 3-dimensional look-up table to be used by the online module
which adopts ECMS. Afterwards, the controller has been evaluated through both model-
in-the-loop and hardware-in-the-loop tests for a real-world trajectory. The results have
shown that the controller can outperform both the ECMS and the rule-based controller.
Also, the near-optimal results have expressed close agreement with the DP results.

Tianheng et al. [15] have proposed a supervisory controller for EMS of the PHEVs
consisting of three consecutive levels with respect to the predicted power demand and
the prior trip knowledge. First, the power demand is predicted using a neural network
method which simplifies the forecasting by converting the entire traffic cycle into some
specified statistical parameters. Next, the predicted power demand is fed to a module
with a mathematical model to obtain the battery SOC reference. At the end, the SOC
reference is used along with an A-ECMS to find the optimal power distribution between
the engine and the motor-generators. It has been shown that the proposed model can lead
to considerable improvement in terms of fuel consumption and other factors compared to
its counterparts including rule-based approach and the ECMS.

Sun et al. [9] have added an upper level SOC planning module to the conventional
MPC-based EMS for a power-split PHEV. The proposed EMS schematic is demonstrated
in Fig. 2.1. The higher level incorporates real-time long-term speed profile along with a
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power balance-based model to be able to find the optimal SOC profile using DP in a real
time fashion which is consistent with the traffic information update rate at every 300 s. The
low level module uses the obtained optimum SOC profile as the terminal state constraint
for the MPC level which applies DP at each time step to solve a constrained nonlinear
energy management problem. Artificial neural networks (ANNs) are used to predict the
short-term velocity profile for the receding horizon employed in the MPC. Three different
cases of traffic information integration have been employed to evaluate the controller: a)
no traffic data is available; b) static speed profile is fed to the controller at the beginning
of the trip in the both forms of the time-dependent and the distance-dependent; and c)
dynamic speed profile is fed to the controller every 300 s over the trip in the both forms
of time-dependent and distance-dependent. The simulation results for a highway driving
case including congestion occasions have shown that the proposed controller can attain
94%-96% fuel saving of the deterministic DP.

Figure 2.1: Control structure of the EMS proposed by Sun et al.

Huang et al. [79] have developed an ECMS for plug-in hybrid electric buses with a
given route. Future speed profiles have been predicted using Markov chain along specific
routes that are supposed to be taken by the buses. Later, an iterative learning optimization
method has been applied to pre-calibrate the equivalency factor to be used by the ECMS

15



for improving the fuel consumption which is proved to be up to 8.4% with the average of
7.3%.

In another hierarchical EMS by Jiang et al. [16], a cyber-physical two-level model has
been proposed for PHEVs. This power management model is presented in Fig. 2.2. The
upper level takes advantage of the real-time entire future trip prediction for the remaining
part of the trip. The online battery usage policies are then obtained using multi-stage
stochastic quadratic programming (MSQP). On the other hand, the low level module uses
the past driving information along with the Markov Decision Process (MDP) to find the
offline power split policies in the form of look-up table. Online EMS decisions are made
by looking up through the extracted table using both the vehicles real-time states and
the online battery SOC level. They evaluate the MSQP-MDP controller against other
methods including quadratic programing MDP (QP-MDP), MDP, CDCS, and Static. The
simulation results have proved that the proposed controller improves the fuel consumption
compared to its mentioned counterparts.

Figure 2.2: Hierarchical model introduced by Jiang et al.
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2.3 Computational Intelligence

Over the past two decades, there has been a remarkable pressure on automotive industri-
alists to improve the quality of their products in terms of different safety and economic
issues [80]. This is mainly due to the serious global regulations contrived by international
associations responsible for issues such as global warming, air pollution and etc. On the
other hand, automotive industrialists are trying their best to comply with economic con-
cerns of their clients. So, automotive engineers are now seeking for some modern and
efficient technologies and strategies which can assist them to further ensure the safety and
convenience of passengers, and at the same time optimize the performance of vehicles in
terms of fuel economy.

With this regard, there have been paramount researches to develop much more efficient
components as well controlling and management tools to make sure the vehicles perform
efficiently on roads [81]. The feedback of the exerted investigations have revealed that in the
early 21st century, automotive engineers were mostly focused on traditional optimization,
modeling and control approaches for improving the performance of vehicles. However, in so
many cases, they have encountered some remarkable challenges due to the complexity of the
problems and the demand for decreasing the computational complexity of the controlling
and management tools to prepare them for real-time applications [82, 83]. As an example,
one of the main challenging problems arising in such applications is the complexity of
the resulting optimization problem at the heart of controlling and performance inspection
algorithms. Usually, the resulting problems are nonlinear, non-convex and highly multi-
modal, with a considerable number of decision variables. This makes the applicability (or
even feasibility) of traditional optimization problems very questionable. This is mainly due
to the fact that most of the traditional optimization algorithms use the gradient information
of the objective function (in the form of Jacobean and Hessian), and this makes them quite
computationally expensive. Also, traditional / statistical identification methods such as
splines and k-nearest neighbour can result in some problems such as over/under fitting,
miss-approximation, etc. [84]. The same story is true for most of the classic controlling
algorithms (such as proportional derivative integral and sliding mode controllers). Indeed,
such controlling methods are unable to calculate the optimum controlling laws, and just
care about tracking a desired trajectory [85].

Due to the abovementioned problems, automotive engineers have shown some interest
to use modern methods, in particular those methods coming from the field of computational
intelligence (CI). As a matter of fact, automotive engineers are not the only society who
appreciate the potential of CI methods. CI is now playing a pivotal role in so many
applications, and interestingly, the feedbacks of the researchers are very positive regarding
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their potentials [86]. Scrutinizing the success of CI for different applications is outside the
scope of the current investigation. However, in what follows this section, it is intended to
mention some of the most prominent and successful research activities that clearly reflect
the potential of tools from CI for crucial automotive problems such as fuel consumption
optimization and control.

By taking a peek into the archived literature pertaining to the application of CI to
automotive problems, one can realize that the flexibility of such techniques have enabled
them to be used for different types of problems, including estimation, optimization, man-
agement and control [87, 88]. In [89], a novel intelligent method was proposed which
uses the mixed integer linear programming and genetic algorithm (GA) optimizer for in-
tegrated production and transportation in multiple vehicles environment. The results of
the simulation indicated that the considered intelligent method can efficiently handle the
considered automotive problem, and at the same time could satisfy a large number of con-
straints, which was not the case when using conventional techniques for the same task.
In [90], a multiobjective optimization technique was developed for optimal driving during
electric vehicle acceleration. The considered objective functions were the consumed energy
and the acceleration duration. It was indicated that conventional optimization techniques
were unable to yield a practical solution to this problem. This was due to the fact that
traditional approaches used a signalized version of the objective function which combined
the mentioned conflicting objectives with some weights. However, intelligent evolutionary
optimizer used its heuristic power to effectively apply the notion of Pareto design to get
an optimal front including non-dominated optimum solutions. In [91], a powerful non-
linear controller was derived using the fuzzy logic concept for robust steering control of
autonomous vehicles. Experiments with a real prototype have endorsed the robustness
of the designed controller. In [92], another powerful fuzzy controller was developed for
efficient control of electric vehicles with continuously variable transmission. By comparing
the results with proportional integral controller, it was observed that fuzzy can do a fas-
cinating job for this application. In [93], an optimal intelligent load frequency controller
was implemented using particle swarm optimization (PSO) and fuzzy logic and goal rep-
resentation adaptive dynamic programming for optimal control of island smart grid with
electric vehicles and renewable resources. In [94], a composite controller was developed
based on sliding mode control and fuzzy logic for simultaneous balancing and trajectory
tracking control of two-wheeled inverted pendulum vehicles. By comparing the results to
traditional controller, it was observed that the intelligent technique was superior. In [95],
artificial neural network (ANN) was adopted for adaptive estimation of an unmanned sur-
face vehicle, and based on the simulation, it was demonstrated that the method was very
robust to measurement noised. In [96], a support vector machine (SVM) was proposed for
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automatic classification of road network files for assisting the driver in unstructured areas.
The results affirm the high potential of soft techniques for the considered task.

2.4 Sensitivity Analysis

Optimization-based EMSs are highly dependent on the trip prediction. According to the
stochastic nature of driving cycles, a perfect prediction of future information is almost
impossible; therefore, the impacts of the imperfect prediction on the EMSs must be taken
into account. Nevertheless, most of the studies have assumed the prediction to be de-
terministic and accurate; hence, this area of research has not been deeply studied so far.
This strengthens the need to consider the effect of errors associated with the trip data
estimation [1, 97].

According to the current applied prediction methods, obtaining a 100% prediction
accuracy is impossible [98, 99]. Some of the developed prediction techniques have up to an
hour prediction window with the update rate of every 5 minutes. In [100], the prediction
algorithm used for traffic speed and volume estimation has demonstrated the accuracy over
85% for a prediction window of 5 minutes up to 60 minutes. Moreover, the real travel time
prediction can be used for urban driving in addition to the highway driving, for which the
relative mean error has been reported to be as small as 10.8% [99].

He et al. [51, 101] have applied A-ECMS for power-split PHEVs. Furthermore, real-
time implementation concerns such as the window sizes for the optimization problem and
the prediction errors effects on the controller’s efficiency have been discussed. The authors
have considered stochastic/random drive cycles with up to 20% energy prediction errors.
The acquired appropriate window size results in considerable improvement in terms of fuel
savings for different driving cycles. Along the same lines, the controller has been proved
to be robust in the case of inaccurate prediction; indeed, although the added error yields
increase of fuel consumption, the controller still provides fuel consumption improvement
compared to the benchmark controller. It is good to mention that there has not been a
specific correlation detected between the error rate and the fuel savings decrease rate.

Fu et al. [102] have developed a real-time MPC-based EMS for HEVs using ITS based
prediction. Then, in order to assess the effects of the speed profile prediction uncertainties
on the different controllers’ performance such as MPC, ECMS, and A-ECMS, a sensitivity
investigation has been done with respect to the noises and errors. Real-world driving
information has been utilized to estimate the speed profile for alternate real-world drive
cycles. It has been demonstrated that equivalent fuel economy gain is obtained for both of
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the imperfect prediction and the perfect one. Simulations have not yielded similar results
for different controllers as the SOC final value and the fuel economy have been reported
differently, but it has been expressed that a net fuel economy is achievable by using A-
ECMS and MPC. It has also been shown that appropriate speed prediction yields negligible
variations in the final SOC and the fuel consumption. Also, the results help clarify the
importance of future trip prediction in the real-time HEV control.

Zulkefli et al. [62] have investigated a sensitivity analysis of a PMP-based EMS for
HEVs. The drive cycle’s prediction error has been expressed as the root mean square value
of the difference between the actual speed and the estimated speed. Both 6-mile and 15-
mile cases with various forecasting update rates have been used to evaluate the controller
performance against a rule-based controller. Simulation results have expressed that in the
case of perfect prediction the fuel saving up to 9.6% miles-per-gallon (MPG) for the 6-mile
case and 7% MPG for the 15-mile case is achievable. These benefits have been recorded
to be 1.6% to 4.3% MPG for the 6-mile case and 2.6% to 3.4% MPG for the 15-mile case
in the case of inaccurate prediction.

D. Asher et al. [103] have utilized one-second incremented DP over a known drive cycle
to find the decision matrix for every possible state and time. Then, this decision matrix
has been used to investigate real-world prediction errors and driving disturbances such
as sudden traffic congestion, unpredicted signals and unplanned route change. In a later
study by the authors [104], the effects of the forecasting signal uncertainties on the resultant
fuel economy (FE) of the predictive EMSs for HEVs have been analyzed. To do so, two
different scenarios have been considered: route type identification errors and hill planning
errors. The simulation results have witnessed that the prediction-derived FE is sensitive
to the prediction quality, but it has been also proved that even mis-estimated predictive
controllers can outperforms the benchmark controller under different circumstances.

A sensitivity analysis on the sensor range has been investigated by Hofstetter et al.
[28]. The authors have proposed a deterministic DP-based EMS for PHEVs which uses the
entire route in the way that part of the trip within the prediction horizon is derived from
the online sensor data; and thus, is dependent to the sensor prediction range; and the rest
of the trip is roughly estimated. It is proved that the fuel economy improvement is not
sensitive to the sensor range prediction as near-global optimal solution is achievable even
by implementing short prediction ranges.

Karbowski et al. [105, 106] have proposed a PMP-based real-time EMS for a PHEV.
According to the fact that only a rough estimation of future driving cycle can be obtained
in real-world driving, a GIS-assisted stochastic trip prediction using Markov process has
been used to create several uncertain drive cycles for a given route. Then, the sensitivity
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of the PMP tuning parameter to the driving cycle has been investigated which helps better
understand the importance of having an adaptive equivalence factor to get updated as the
trip goes forward.

In some other works [107, 108], the effect of different prediction factors such as traffic,
road and weather on the ECMS equivalency factor has been explored. It has been witnessed
that considerable fuel economy improvement is obtainable by using forecasted driving
knowledge in the energy management controller.

2.5 Summary

This chapter surveys the state-of-the-art works in the area of EMS of PHEVs. It finds
that the most efficient strategies suggest including prior trip information, leading to hi-
erarchical structure for the EMS module design. The chapter covers most of the works
that have been done with regards to the hierarchical EMS. Then, it follows with reviewing
the sensitivity analysis works. It reveals that the integration of uncertainties with optimal
energy management has not been well-addressed. In fact, there is no work done using
Monte Carlo simulations and TP-assisted EMS evaluation against stochastic uncertainties
that exist in real-world scenarios.
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Chapter 3

Trip Planning-assisted EMS

This chapter introduces the architecture of the energy management module used in this re-
search. This module is originally adopted from [14]; however, its computational efficiency
has been refined by introducing the power-balance model and also using PSO, both for
optimizations. The chapter then follows with simulation results, where the performance
of the module is verified for standard drive cycles, hilly road and 60 real-world drive cy-
cles through Model-in-the-Loop (MIL) simulations. Further, Hardware-in-the-Loop (HIL)
results are presented verifying the real-time implementation capability of the module.

3.1 Energy Management Architecture

In [109], it has been reported that prior knowledge of the upcoming trip information such
as speed, position, road grade, distance, position of stop sign, etc. can significantly improve
the efficiency of PHEVs. With the recent technological advances in ITS, GPS, GIS and
radar systems, the above-mentioned information has become easily available in real-time.
Therefore, it can be expected that trip preview will become an inevitable part of energy
management system of future PHEVs. Along with this line of thought, this study aimed to
use future driving predictions to generate the optimum battery SOC profile and therefore
achieve optimal power distribution. For this purpose, an intelligent hierarchical TP-assisted
EMS is developed as shown in Fig. 3.1, where there are three main sub-modules: a Micro-
trip Generator, a Trip Planning (TP), and a Route-based Energy Management System
(Route-based EMS). This configuration also uses three different models, depending on the
level of complexity and computational time required for a particular task. These models
are:
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• High-fidelity model: the most sophisticated model suitable for control evaluation and
control-oriented model validation

• Control-oriented model: used in real-time control application, and

• Online optimization power-balance model: a simplified model of the power-split Prius
PHEV used within the TP module.

Figure 3.1: TP-assisted EMS schematic

3.2 Micro-trip Generator

Because of the stochastic nature of the driving cycles and the current limitations on traffic
monitoring systems, it is impossible to make an accurate prediction of the entire trip once
the trip starts. Instead, the prediction should be performed partially where only a small
portion of the upcoming trip is foreseen [106]. In [63], the use of CAN bus is suggested
where for every segment of the entire trip, a particular number of CAN bus messages,
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each carrying real-time map data of short horizons, are collected and fed into the EMS.
Building on this idea, this research introduces a new module for the EMS, the Micro-
trip Generator, which has the duty to automatically segment the driving cycle, both in
spatial and temporal domain, in a way that the predicted trip data is compatible with
the TP algorithm. This segmented trip is referred to as the trip model and each segment
is known as a micro-trip which has a constant speed and road grade. The operation of
Micro-trip Generator starts with the conversion of standard drive cycles, which are usually
in temporal domain, into spatial data. Then, through a mathematical analysis, the speed
and grade change rate over the whole drive cycle is evaluated and the entire route is
divided into individual segments, each have a fixed road grad, maximum permissible speed
and velocity profile. At this stage, every segment initially consists of acceleration, cruise
and deceleration sections; however, they cannot be used by the trip planning algorithm
because it is only compatible with the cruising speed. Therefore, the K-means algorithm
is utilized in an additional step to account for the acceleration and deceleration sections
and come up with a new cruise speed, which compensates for the other two sections and
can be used by the trip planning algorithm. Therefore, the ith segment of a trip can be
uniquely identified by [xinitiali , ∆xci , ∆tci , vci , θci ]

T where xinitiali is the initial location,
∆xci denotes the length, ∆tci indicates the duration, vci is the cruise speed, and θci stands
for the road grade of the segment and i ∈ {1, 2, ..., Nseg} with Nseg being the number of
remaining segments to the end of a given route. The An example of this implementation for
three consecutive standard Highway Fuel Economy Test (HWFET) drive cycle, 3xHWFET,
is shown in Fig. 3.2.

3.3 Trip Planning Module

The TP module receives the long-term prediction as a sequence of upcoming micro trips
in the spatial domain. The schematic of TP module is shown in Fig. 3.3. It uses the real-
time cluster-based optimization (RCO) algorithm adopted from [14] to minimize the total
energy cost of both electrical and fuel subject to the constraints on different components of
the powertrain. This module calculates the fuel consumption and ∆SOC of each segment
and then produces the optimum SOC profile for the predicted drive cycle over the entire
trip, which will be then fed into the Route-based EMS module. With this design, the TP
module produces regular updates along the trip, provides up-to-date optimum SOC profile
for the Route-based EMS and ultimately results in a better efficiency.

Since the above calculations are required to be performed online, the computational
efficiency becomes important. To address this concern, this work uses a simplified power-
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Figure 3.2: Micro-trip Generator module

train model, namely the online optimization power-balance model, to be used solely by the
TP module. Besides, the use of RCO allows fast and relatively accurate solution, removing
the potential bottlenecks that might arise during optimization [110].

3.3.1 Online Optimization Power-balance Model

The use of high-fidelity model, although accurate, is computationally demanding making it
inappropriate for real-time/online applications. For this reason, the power-balance model
is constructed, particularly for optimization purposes, where the main emphasis has put
on fast computations and adequate accuracy.

To derive the power-balance model, using the vehicle’s longitudinal dynamics, the de-
manded power can be derived from Eq. 3.1 as follows

Pd = (
1

2
ρACdv

2 +mgf cos θ +mg sin θ +mv̇).v, (3.1)

where Pd denotes the power demand, θ is the road grade, A, m and v are the vehicle’s
frontal area, mass and speed, respectively, f is the rolling resistance coefficient, Cd indicates
the drag coefficient and g represents the gravity acceleration.
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Figure 3.3: Schematic of the TP module

Power-split Model

The power split between the engine and the battery is defined as follows:

PR =
ηβmPb

Pd

, (3.2)

Pe =
1

ηt
(Pd − ηβmPb) =

Pd(1− PR)

ηt
, (3.3)

where PR is defined as the power ratio, ηβm is the motor-generator efficiency with β = 1
for battery discharging and β = −1 during battery charging, Pb and Pe are the power of
the battery and engine, respectively and ηt is the efficiency of the transmission system.
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Battery Model

The battery state of charge (SOC) is illustrated as the percentage of the current battery
capacity over the maximum allowable capacity.

SȮC(Pb) = − I

Qmax

= −
Voc −

√
V 2
oc − 4PbRb

2RbQmax

, (3.4)

where I is the load current, Qmax is the maximum capacity, Voc is the open circuit voltage
and Rb is the battery internal resistance. It is worth mentioning that Voc and Rb are
assumed to be constant. In addition, SȮC(Pb) can be linearly expressed as below [110]

SȮC(Pb) = −ηb
Pb

Qmax

, (3.5)

where ηb is the equivalent battery discharge power efficiency.

Fuel Consumption Model

According to [14], based on the efficiency map of the baseline PHEV engine, fuel consump-
tion can be approximated by a linear function of the engine power which yields

ṁf (Pe) ≈ m0 + α× Pe, (3.6)
where ṁf is the fuel consumption of the segment, m0 and α are design parameters.

Segment Modeling

Since the Micro-trip Generator produces the segmented micro trips which mainly consists
of the cruise section, the equations of the cruise section can be finalized as follows

Pdc =
1

2
ρACdvc

3 + (mgµ cos θ +mg sin θ).vc, (3.7)

Pbc =
PR

ηm
Pdc , (3.8)

Pec =
(1− PR)

ηt
Pdc . (3.9)
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The battery discharge can be simply modeled as

∆SOC = SOC0 + SȮC.∆t. (3.10)

Along the same lines, the fuel consumption can be modeled as

∆mf = mf0 + ṁf .∆t, (3.11)
where SOC0 and mf0 are supposed to reflect the segments’ specification such as the acceler-
ation, declaration and cruise sections. However, since these three sections will be processed
altogether to form a single new cruise profile, SOC0 and mf0 are considered to be a func-
tion of cruise speed, thus SOC0 = g1(vc) and mf0 = f1(vc). Moreover, using Eq. 3.5, it
follows that SȮC = g2(Pb). In addition, according to Eq. 3.6, ṁf is initially dependent on
Pe, ṁf = f2(Pe). Nevertheless, these equations are very simple compared to the real-world
energy consumption. Therefore, Eq. 3.10 and Eq. 3.11 should be empirically modified for
better resemblance to the actual model and to compensate the effect of approximating the
segment with an average cruise section. To further improve the accuracy of the model, a
sensitivity analysis has been carried out and it was pointed out that using a linear function
of cruise speed for Eq. 3.10 and a quadratic one for Eq. 3.11 will improve the accuracy of
the energy consumption model. Therefore, the resultant model can be expressed as

∆SOCc(Pbc , vc,∆tc) = l0 + l1vc + (l2 + l3Pbc + l4vc).∆tc, (3.12)

∆mfc(Pec , vc,∆tc) = k0 + k1vc + (k2 + k3Pec + k4vc + k5v
2
c ).∆tc, (3.13)

where vc is the cruise speed and ∆tc represents the cruise duration. The coefficients li and
ki are design variables that can be obtained by parameter estimation such as LS method
[14]. A detailed discussion on this topic is given in Chapter 4.

3.3.2 TP Module Overall Configuration

As shown in the block diagram in Fig. 3.3, the TP module receives two sets of information,
the updated segmented trip estimation from the micro-trip generator and the current states
of the vehicle, which generally include speed, location and SOC. These data are then used
to calculate the power demand of each trip segment. The TP module uses power demand
as the basis for partitioning the trip segments into Nc clusters. This will facilitate the
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optimization process because every cluster is uniquely identified by a particular power
ratio and the optimization algorithm will be required to seek the clusters instead of all the
trip segments, potentially saving a lot of computations [110]. For the optimization, the
RCO algorithm is employed which has the duty to minimize the total energy cost of both
electrical grid energy and fuel consumption. In particular, it calculates the cost of each
segment using Eq. 3.12 and Eq. 3.13, adds the obtained costs for all of the segments to
formulate the objective function.

Finally, the acquired optimum power ratio along with the first predicted segment’s
specifications such as power demand and cruise speed are used to find the optimal SOC
profile for the first estimated segment of the remaining part of the trip. This functions as
the reference for updating the equivalency factor used in the Route-based EMS module, in
order to optimally distribute the power between the engine and the motor-generators.

3.3.3 Optimization Problem

Optimization problem can be expressed as minimization of

min J =

Nseg∑
i=1

fi(PRi), (3.14)

f(PR) = ∆mfc(PR)−∆SOCc(PR), (3.15)

subject to

Pemin
≤ Pe ≤ Pemax

, (3.16)

Pbmin
≤ Pb ≤ Pbmax

, (3.17)

Pbmin
≤ Pb ≤ Pbmax

, (3.18)

0 ≤ PR ≤ 1, (3.19)

SOCmin ≤ SOC ≤ SOCmax, (3.20)
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where Nseg is the number of remaining segments to the end of the trip, the subscript i
stands for each of the segments, i ∈ {1, 2, ..., Nseg}, Pemin

and Pemax
are the upper and

lower bounds of the engine’s power. Similarly, Pbmin
and Pbmax

show the allowable bounds
on the battery’s power. In addition, SOCmin and SOCmax indicate the acceptable range of
the battery’s SOC which can be expressed as follows

SOCinitial(tupdate) =

{
SOCcurent tupdate > 0
SOC0 tupdate = 0

, (3.21)

SOCfinal(tupdate) = SOCinitial(tupdate) +

Nseg∑
i=1

∆SOCci(PRi), (3.22)

SOCfinal(tupdate) = SOCf , (3.23)

where tupdate indicates the update time i.e. the time that the TP module gets updated
and the optimization problem should be solved, SOCcurrent is the current SOC of the vehicle
and SOC0 shows the initial battery charge. The predicted final SOC (SOCfinal(tupdate))
is calculated using Eq.3.22 which should meet the final desirable SOC (SOCf ) subject to
the constraint Eq.3.23.

To solve the above optimization problem, the PSO algorithm is utilized which is de-
scribed in the next sub-section.

3.3.4 Partcile Swarm Optimization

Proposed by Eberhart and Kennedy [111], Particle Swarm Optimization (PSO) is one of the
fundamental variants of swarm intelligent based techniques which simulates the collective
behavior of self-organizing species (in particular fish schooling). As a heuristic search
method, PSO’s searching strategy is based on the interaction of particles in a local region
and also with the leading particle. This provides the algorithm with a balance between
intensification and diversification of search which often leads the particles escaping from
local traps and finding the global (or a qualified) optimum solution. This algorithm has
been used in various optimization problems in engineering; see [112, 113, 114] and references
therein. Also, in the context of EMS module design for PHEVs, it is mentioned that PSO
leads to faster optimizations when compared to other derivative-free algorithms [115].

As a stochastic iterative solution, PSO follows a number of steps and certain updating
rules to optimize the objective function. At iteration t, the position of the ith particle can
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be defined as x̄t
i = [xt

i (1) , x
t
i (2) , ..., x

t
i (D)]

T where D is the dimension of the optimization
problem. If the population of swarms hosts m particles, the population matrix can be
denoted as X = [x̄t

1, ..., x̄
t
m]

T . There are two important elements in the algorithmic func-
tioning of PSO which guide the search, i.e. the local best solution lbest and the global best
gbest solution. Let lbest and gbest vectors described by l̄ i = [li (1) , li (2) , ..., li (D)]T and
ḡ = [g (1) , g (2) , ..., g (D)]T , respectively. At iteration t, the velocity of the ith particle is
defined as v̄t

i = [vti (1) , v
t
i (2) , ..., v

t
i (D)]

T . The updating rule of PSO can be defined as

v̄t
i = ω v̄t−1

i + c1r1
(̄
l i − x̄t−1

i

)
+ c2r2

(
ḡ − x̄t−1

i

)
, (3.24)

where ω is the inertia weight, c1 and c2 are two positive constants and r1 and r2 are two
random parameters within [0, 1]. The above updating rule calculates the particle’s new
velocity based on the local best, global best, and distance. After updating the velocity of
each particle, the following equation is used

x̄t
i = x̄t−1

i + v̄t
i. (3.25)

To further assist the search of PSO, the following updating rule is considered for the
inertia weight

ω = ωmax −
t

T
(ωmax − ωmin) , (3.26)

where ωmin, ωmax, and T are the design paramters.

3.4 Route-based EMS

3.4.1 Control-oriented Model

The control-oriented model is identical to the power-balance model in terms of power-split
model (Eq. 3.2 , Eq. 3.3), battery model (Eq. 3.5), and fuel consumption model (Eq.
3.6), but in terms of power demand, it uses the instantaneous power demand based on the
driver’s command instead of using the predicted speed.
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3.4.2 Route-based ECMS

This module divides the power demand between the engine and the motor-generators
by using the momentary demanded power. For this purpose, the Route-based Equivalent
Consumption Minimization Strategy (R-ECMS) [116] is employed within this module. This
method has fundamentally exploited the ideas from the Adaptive Equivalent Consumption
Minimization Strategy (A-ECMS) [117]. A-ECMS utilizes a linear reference SOC profile
in terms of the trip length to adaptively adjust the equivalency factor between the energy
sources.

Figure 3.4: Schematic of the Route-based EMS

Fig. 3.4 presents the Route-based EMS schematic. R-ECMS obtains the optimum
predicted SOC and uses it as a reference SOC (SOCref ) along with a PID controller to
update the equivalency factor during the trip. The obtained optimum SOC profile enables
the Route-based EMS to optimally distribute the power between the engine and motor-
generators in a real-time fashion. The cost function should include both fuel consumption
and the electrical energy which can be defined as:

Cost = Cfṁf − CeηchQmaxSȮC, (3.27)
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where ṁf is the fuel consumption, ηch indicates the charger efficiency, Qmax represents the
maximum battery capacity, Cf , and Ce are the unit price of gas and grid electrical energy,
respectively. By considering the PR as an input, SOC as a system state, and the above
cost function, the optimal control problem can be formulated as follows

J =

tf∫
0

(
Cfṁf − CeηchQmaxSȮC

)
dt, (3.28)

Subject to:

SOC (0) = SOC0, (3.29)

SOC (tf ) = SOCf , (3.30)

SOCmin ≤ SOC ≤ SOCmax, (3.31)

Pb,min ≤ Pb ≤ Pb,max, (3.32)

Pe,min ≤ Pe ≤ Pe,max, (3.33)

To solve the optimal control problem, first, the real-time algorithm based on equivalent
consumption minimization strategy (ECMS) can be developed as

J =

tf∫
0

(Cfṁf − SCeηchηbPb)dt, (3.34)

where S is the equivalency factor defined to adjust the supply and demand of the battery as
a matter of capacity limitation. This equivalency factor is highly dependent on the future
drive cycle. To deal with this issue, an adaptive ECMS (A-ECMS) is employed which uses
the optimal SOC profile provided by the previous module as the reference SOC along with
a PID controller to obtain the equivalency factor S.
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Table 3.1: Toyota Prius PHEV characteristic

Parameter Symbol Value Unit
Vehicle mass m 1525 kg
Frontal area A 2.25 m2

Drag coefficient Cd 0.26 -
Motor power Pm 50 kW
Generator power Pg 30 kW
Engine power Pe 73 kW
Battery nominal capacity Q 21 Ah
Battery cell nominal voltage V 3.7 V
Number of battery cells Nb 56 -
Wheel radius r 0.3 m

3.5 Powertrain High-fidelity Model

3.5.1 2013 Toyota Prius PHEV Powertrain Structure

This study has been carried out for a 2013 Toyota Prius PHEV. Table 3.1 presents the
characteristics of this vehicle [14]. As illustrated in Fig. 3.5, an IC engine and two electric
machines that can be used as either a motor or a generator are the main components of
the vehicle’s powertrain. Two planetary gear sets linking the two electrical motors, called
MG-1 and MG-2 to the wheels create a power-split transmission system.

The first planetary gear’s sun gear and courier are coupled to the MG-1 and the engine,
whereas, in the second set, the sun gear and courier are coupled to the MG-2 and the chassis.
Also, the wheels are coupled to the ring gears of both sets. By means of this power-split
structure, the operation of the engine can be adjusted to achieve maximum fuel efficiency.
In fact, the main objective of the EMS is the minimization of fuel consumption and can be
obtained by managing the functionality of MG-1 and MG-2. The power distribution occurs
based on some rules, e.g. it is better for the fuel economy that in the case of low speed and
driving from standstill the engine be turned off; therefore, the thrusting should take place
through use of MGs. Also, the engine’s power can be distributed in two power streams,
one is used for the vehicle propulsion, and the other one is fed into the MG-1 which acts
as a generator to produce the electricity. The electricity, will then be transmitted to MG-2
to generate mechanical power at the final drive.
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Figure 3.5: Powertrain layout of Prius 2013

3.5.2 Autonomie Model

The high-fidelity model used throughout this work has been constructed by using the
Autonomie software produced by Argonne National Lab. This model has been validated
in [60] and mainly consists of the model of the engine, MG-1, MG-2 and the battery pack.

Fig. 3.6 shows the Simulink model of the PHEV in Autonomie. It includes four
main blocks as the environment, driver, vehicle powertrain controller (VPC), and vehicle
powertrain architecture (VPA). These blocks communicate through buses with the main
one leaving VPA once it collects all the data from VPA, then it transfers the signals to the
other three blocks [118].

It should be pointed out that the Autonomie model originally contains a rule-based
EMS, which is used as the benchmark in this research. On the other hand, our desired
system is created by replacing the rule-based EMS with the TP-assisted EMS within the
VPC block for controller evaluation purposes.

3.6 MIL Testing

Three main test scenarios are considered for evaluation of the developed TP-assisted EMS.
In first set of simulations, the performance of the controller over a hilly road is evaluated.
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Figure 3.6: PHEV Autonomie blocks

The second subsection illustrates the controller’s performance under standard drive cycles,
and the last set of simulations have been carried out over real-world drive cycles. It should
be pointed out that the trip length of all of the drive cycles considered here is more than
the full electric range of the baseline vehicle to ensure that the battery is fully discharged
at the end of the trip, and therefore, the engine gets the chance to drive the vehicle.
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Table 3.2: Comparison between different EMS strategies

Standard Drive Cycles TP-assisted EMS Linear SOCref A-ECMS Rule-based Autonomie
3xUDDS 108.27 104.7 97.7
3xSFTP 60.04 58.4 52.1
2xWLTP 79.12 78 72.7

EPA_UHU 102.04 98.3 95.1
3xHWFET 93.7 92.8 79.3

3.6.1 Road Grade Testing

This section presents the simulation results of a drive cycle over a section of Calgary to
Vancouver route, in Canada. The road elevation has imported from Google Earth, and
a constant speed of 25 m/s is considered to be followed. Fig. 3.7 illustrates the energy
consumption over the mentioned trip. It is shown the TP-assisted EMS can help maintain
the battery charge to the end of the trip, and therefore, results in a lower fuel consumption.

3.6.2 Standard Drive Cycles

It is aimed to evaluate the developed TP-asssietd EMS performance with respect to its
counterparts such as rule-based EMS and A-ECMS. Figs. 3.8-3.10 show the simulation
results for three standard drive cycles. The first drive cycle, 3xHWFET, consists of three
standard HWFET drive cycles. Similarly, the second drive cycle, 3xUDDS, consists of
three standard Urban Dynamometer Driving Schedule (UDDS) drive cycles. The third
drive cycle, EPA-UHU, consists of two standard UDDS drive cycles at the start and end,
and a HWFET drive cycle at the middle of the trip. These figures illustrate that the
TP-assisted EMS is superior in terms of fuel consumption improvement. Also, the results
of the EMS methods for different standard drive cycles are shown in Table 3.2 showing
that in all scenarios, the best result are obtained by TP-assisted EMS.

3.6.3 Real-world Drive Cycles

In order to further examine the performance of the devised TP-assisted EMS, an extensive
simulation have been carried out using real-world data provided by Chargecar [119] which
include 60 different real-world drive cycles belonging to a verity of routes from all different
locations in North America. Both TP-assisted EMS and rule-based EMS have been tested
for all of these 60 drive cycles. Figs. 3.11-3.12 show the probability distribution function
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Figure 3.7: Simulation results for Prius equipped with TP-assisted EMS traveling a section
of Calgary-Vancouver road
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Figure 3.8: Simulation results for Prius equipped with TP-assisted EMS traveling 3xH-
WFET drive cycle
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Figure 3.9: Simulation results for Prius equipped with TP-assisted EMS traveling 3xUDDS
drive cycle
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Figure 3.10: Simulation results for Prius equipped with TP-assisted EMS traveling EPA-
UHU drive cycle
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Figure 3.13: Comparison between TP-assisted EMS and Rule-based EMS

(PDF) of the fuel consumption for both methods where the MATLAB’s allfitdist function
is used to fit all valid parametric probability distributions to data. These figures show that
TP-assisted EMS and rule-based EMS function similarly.

These results are also numerically presented in Table 3.3 where µ, σ, and cv indicate
the average, standard deviation and the coefficient of variation of the fuel consumption of
the 60 drive cycles, respectively. The coefficient of variation is defined as

cv =
σ

µ
. (3.35)

Table 3.3: Fuel consumption(L) for 60 real-world drive cycles

EMS µ σ cv

TP-assisted EMS 5.1359 4.4129 0.8592
Rule-based Autonomie 6.2736 5.5451 0.8839

Furthermore, the difference between the fuel consumption of these two EMSs is depicted
in Fig. 3.13. It is important to note that the TP-assisted EMS outperforms rule-based
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EMS when fuel consumption is higher which refers to longer drive cycles. This highlights
the effect of maintaining the battery’s charge over the trip while in the rule-based the
battery is depleted all in once almost at the beginning of the trip.

3.7 HIL Testing

In the automotive industry, the embedded systems that communicate with various sensors
and actuators to control different parts of the vehicles are referred as Electronic Con-
trol Units (ECUs). They are extensively utilized in various control applications including
control of vehicle components such as transmission, engine, brake and suspension, cruise
control and driver assistance systems. The number of applied ECUs in a modernized ve-
hicle can be up to 80 [120]. This significant number of applied ECUs in vehicles requires
reliable test benches to be used for both development and validation. As accurate, practical
and cost-effective test benches for assisting the real-time control evaluation, HIL simula-
tions can be considered for rapid prototyping of ECUs especially at their early development
stages and before the real-time controller employment.

This work uses a HIL simulation to evaluate the real-time implementation capabilities
of the TP-assisted EMS controller. A real-time simulator and two ECUs are the three main
parts of the applied HIL set-up which are interconnected via a Controller Area Network
(CAN). The high-fidelity model is implemented by the simulator, in this case, a DS1006
processor board and the TP module as well as the Route-based EMS controller are imple-
mented by two MicroAutoBox II ECUs. Defining the time step to be the response time
of the system or the update-rate of the input signals, the desired time step for the Route-
based EMS controller is 1 ms. As for the TP module, the update rate is limited to the
update rate of the traffic data, which is considered to be 100 s in our problem; therefore
the time step is set 100 s. The HIL results for 3xHWFET drive cycle with six segments
in total and the above time steps are demonstrated in Fig. 3.14 which confirms the con-
sistency of the HIL results with those of MIL. One important factor in evaluation of the
real-time feasibility is the turnaround time of the controller which must be smaller than
the time step. The turnaround time is known as the time interval to perform the control
computations and generate the ECU outputs. As shown in Fig. 3.14, this value does not
exceeded 5 ms for the whole trip. This, compared to the update rate of the TP module
(once per 100 seconds), confirms the real-time feasibility of the TP-assisted EMS. The HIL
results also reveal that the turnaround time remains constant for each individual segment;
however, it decreases over the time from one segment to the other. The reason is that
the information of all the upcoming segments are required for optimizations. As the trip
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Figure 3.14: HIL results for Prius equipped with TP-assisted EMS traveling 3xHWFET
drive cycle. Different background colors show disparate segments.
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progresses, there will be a fewer number of the upcoming segments which results in a lower
computational load for the optimization. Furthermore, it is noted that the turnaround
time for the Route-based EMS is less than 35 µs which is much less than the defined time
step (1 ms).

The results meet the requirements of the real-time implementation, and therefore, verify
the feasibility of the proposed TP-assisted EMS controller to be used in the real-world
problems.

3.8 Summary

This chapter presented the architecture of the TP-assisted EMS module suitable for online
implementation in a PHEV. It is shown that the use of power-balance model and PSO for
optimization purposes will improve the computational efficiency of the module so that it
can be implemented in an online setup. This has been verified through HIL testing. The
performance of the module in improving the fuel efficiency has been also tested in various
scenarios including standard drive cycles, hilly road and 60 real-world scenarios, which
verifies the effectiveness of the design. Throughout these tests, it has been revealed that
the TP-assisted EMS provides better fuel efficiency compared to A-ECMS and rule-based
EMS, two conventional energy management strategies in the present PHEVs.
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Chapter 4

Soft-computing based Trip Planning

This chapter incorporates soft-computing techniques for trip planning of PHEVs, studying
the impact of these methods on modeling of energy consumption and how they will reflect
in SOC profile predication. The chapter starts with a description of data generation to be
used for both training and validation purposes. Building upon this data set, a gray-box
as well as a black-box model have been developed. For the gray-box case, the model-
ing task is translated into an optimization problem and the Particle Swarm Optimization
(PSO) algorithm is employed to find the optimum solution. In case of black-box modeling,
the advantages of fuzzy inference systems and neural networks have been harnessed in an
adaptive neuro-fuzzy inference system (ANFIS) to develop an accurate and computation-
ally inexpensive model. Several numerical simulations have been carried out and statistical
analyses have been presented to compare the methods and verify their effectiveness.

4.1 Data Set Generation

The first step for modeling is to generate an appropriate data set, to be used in both
model identification and validation phases, such that along with the soft-computing tech-
niques lead to a realistic description of the energy consumption. The key for proper data
generation is to use the high-fidelity model. With this in mind, two data sets of the in-
put segmented trip information are generated, with the intention to include most, if not
all, of the possible scenarios that can be experienced in a micro trip. Therefore, differ-
ent segment’s characteristics such as various initial/final speeds, cruise speed, segment’s
length/time, etc. are taken into account. These data sets are then fed into the Autonomie
high-fidelity model and the output is acquired in two separate sets, one for testing and
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the other for training purposes. This forms two inclusive collections of data which both
contain randomized yet realistic inputs paired with their expected outputs.

4.2 Gray-box Modeling of Energy Consumption

The gray-box modeling uses a partially known mathematical structure of the system and
implements optimization techniques to estimate the system parameters in order to en-
hance the formerly known mathematical model. Since the underlying equations of energy
consumption are already derived in Chapter 3, the gray-box modeling is a feasible candi-
date to estimate the system parameters and consequently model the energy consumption
accurately.

As discussed earlier, Eq. 3.12 on page 28 and Eq. 3.13 on page 28 have been empirically
developed to find out the amount of battery discharge, ∆SOCc, and the fuel consumption,
∆mfc , in each of the segments during online optimization. These equations include various
coefficients which are not accurately known. The gray-box modeling translates the problem
into an optimization formulation where it is desired to find the most optimum values for the
decision vector Φ̄ =

[
l0 l1 l2 l3 l4 k0 k1 k2 k3 k4 k5

]T such that the modeling
error is minimized.

Having established the decision vector, the empirical model can be rewritten in a linear
parametric form as

ρ = f(θ, Φ̄) (4.1)
where ρ and θ refer to the output and input in each pair of the data set introduced in
Section 4.1. The cost function utilized in the optimization is RMSE defined as

RMSE =

√√√√ N∑
j=1

(ρ(j)− θ(j)Φ̂)
2
, (4.2)

where N is the data set size and Φ̂ is an estimation of Φ̄. The PSO algorithm explained
in Chapter 3 is used to find the global minimum of Eq. 4.2.

4.3 Black-box Modeling of Energy Consumption

Black-box modeling is based on the assumption that no prior knowledge of the system
model is available. A set of input-output data is then used to tune a mathematical model
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that mimics the system behavior. There are various tools available to implement the
mathematical model. However, since the the goal of this chapter is to investigate the
application of soft-computing techniques, an ANFIS structure has been employed.

ANFIS is a variant of fuzzy inference systems that takes advantage of the learning
strategy used in ANN to optimally tune the identifiable parameters. Performance of AN-
FIS has been verified through extensive theoretical and practical studies published in the
literature; see [121, 122] and references therein. Such high estimation accuracy is because
ANFIS integrates the approximation capability and robustness of fuzzy inference systems
with the adaptability of neural networks that is mainly due to the learning algorithms.

Implementation of ANFIS requires a systematic stepwise procedure described below:
Step 1: Fuzzification of the input features which can be done via transferring the crisp

input vectors to Ki fuzzy linguistic expressions {A1(j), A2(j), ..., AKi(j)}, where j = 1, ..., r.
Based on a prior sensitivity analysis, Gaussian functions are deemed the best membership
functions to be used for modeling in this study.

Step 2: Once the structure of antecedent rules has been fixed, the linguistic terms are
fed to the neurons of hidden layers (each neuron represents a single rule of the rule base)
to form a set of rules. ANFIS uses Takagi Seugeno Kang (TSK) technique to build up the
rule base [123] as

R =
r∏

j=1

kj. (4.3)

The ith rule (i = 1, ...,m) in the rule base can be represented as

R(i) : IF x1 isA
(r)
i1

AND ... AND xr isA
(r)
ir

THEN y(i) = g(i). (4.4)

It is worth mentioning that the consequent part of fuzzy rules is set to be a constant ω.
Step 3: The firing rate of each rule is defined as

µi(x) =
r∏

j=1

µ
(i)
ij
(xj). (4.5)

Step 4: The overall crisp output can be obtained using weighting average (WA) de-
fuzzification technique given by

yo =
m∑
i=1

µi(x)
m∑
i=1

µi(x)
.g(i). (4.6)
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To train ANFIS, the classic back propagation (BP) algorithm has been implemented which
requires the following steps. Assume that N samples are available to train the model. Then,
the prediction error can be calculated as

e = yd − ypred =
N∑
j=1

gj.(yd,j − ypred,j). (4.7)

Based on the calculated error, the adjustable parameters of ANFIS (including consequent
and antecedent parts of the rule base) can be optimized using steepest descend updating
rule [124]

Cj(t+ 1, i) = γCj(t, i)− ηe(j)gj(yd,j − ypred,j)

(
xi − Cj(t, i)

σ2
j (t)

)
, (4.8)

σj(t+ 1) = γσj(t)− ηe(j)gj(yd,j − ypred,j)


2∑

i=1

(xi − Cj(t, i))
2

σ3
j (t)

 , (4.9)

wj(t+ 1) = γwj(t)− ηe(j)gj, (4.10)
where η stands for the learning rate, γ represents the momentum, yd,j denotes the jth

desired output, ypred,j indicates the prediction of ANFIS for jth sample, i is the ith feature
of the input vector, and t is the tth step of BP learning. As a rule of thumb, the momentum
is added to the updating rule to prevent the premature convergence of training process.

4.4 Simulation Results

This section presents the numerical studies that have been performed for gray-box and
black-box modeling of energy consumption following by a statistical analysis and detailed
discussion of the results.

Throughout the simulations the design parameters were set based on the reports given
in the literature as well as the assessments made in the sensitivity analysis. For the PSO
algorithm, the iteration number is set to 50. The value of ωmax is set to 1.72. The
parameters c1 and c2 are both equal to 2. Also, the number of particles used in the
optimization is 10. Based on the sensitivity analysis results, 7 membership functions (MFs)
of Gaussian type are considered in implementations of the ANFIS model and BP is used
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Figure 4.1: Evolution of global best solution of PSO over the optimization process

for training. Each simulation scenario has been carried out in 30 independent runs, and
the statistical results are reported by means of mean value and standard deviation (std.)
metrics. This can be mathematically expressed as

Mean ObjV al =
1

PS

PS∑
i=1

ObjV al(Xi), (4.11)

where PS shows the population size. Also, std. value can be obtained by calculating the
square root of variance.

The gray-box model has been obtained by using PSO optimization and its accuracy is
evaluated by means of mean square error (MSE) obtained during both training and testing
steps. To evaluate the robustness of PSO, three different initial points are considered to
start the optimization, and for each initialization the optimization is repeated 10 times
in order to have 30 independent runs. The mean performance of each test was calculated
and presented in Fig. 4.1. As observed, PSO requires less than 10 iterations to solve the
optimization problem. Furthermore, the results indicate repeatability despite variation of
the initial conditions. More importantly, all the trajectories converge to a unique solution
without any deviation, implying the robustness of the results against the randomness of
the test data.
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For the black-box model identification, the learning data set has been used to train
ANFIS and its modeling accuracy has then compared against the PSO results in Tables.
4.1 and 4.2. These results show that ANFIS has up to one order of magnitude smaller
MSE compared to PSO and meanwhile exhibits lower std., too. In addition, the training
time for ANFIS was measured less than 3 seconds which is two order of magnitude faster
than the computation time required for PSO. This is particularly important in online trip
planning module where SOC trajectories need to be quickly generated. Therefore, better
accuracy and computational efficiency of ANFIS makes it a superior choice for modeling
of energy consumption over PSO.

Table 4.1: Comparison of different estimation algorithms for ∆SOCc

Method MSE Train MSE Test std. Train std. Test
ANFIS (black-box) 0.0056 0.0751 0.0170 0.1149

PSO (gray-box) 0.0313 0.1203 0.0527 0.1323

Table 4.2: Comparison of different estimation algorithms for ∆mfc

Method MSE Train MSE Test std. Train std. Test
ANFIS (black-box) 0.0143 0.1198 0.0240 0.1470

PSO (gray-box) 0.1483 0.2913 0.0883 0.1763

The prediction error for fuel consumption and SOC when the ANFIS model has been
used are represented in Fig. 4.2 and Fig. 4.3, respectively. Additionally, Fig. 4.4 and
Fig. 4.5 represent the correlation of ANFIS and high-fidelity data which all verify high
estimation accuracy. It is worth mentioning that in Fig. 4.3, there are two data-points that
are not identified by ANFIS. Apparently, these two points have a considerable deviation
from the rest of the data, which can be due to the outlier phenomenon that might happen
during collecting data. This can happen because of measurement noises and/or numerical
deficiencies during data acquisition from any high-fidelity software.

This part of simulation studies intends to conduct a sensitivity analysis to evaluate
ANFIS performance for a variety of MFs and also different number of antecedents for
fuzzification of the crisp data. To this aim, the Gaussian, bell-shape and triangular MFs
with 5 and 7 antecedents are considered. As shown in Table 4.3 and Table 4.4, the Gaussian
and bell-shape MFs outperform the triangular type, with Gaussian being slightly superior.
This observation might be because of the linearity of triangular MF which abates the in-
terpolation power of rule base inference system. Moreover, the sensitivity analysis revealed

52



0 50 100 150 200 250

Data number

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
S

ta
te

 o
f 

c
h

a
rg

e

Train Data

ANFIS Output

Figure 4.2: ANFIS prediction performance (∆SOCc)
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that 7 is an optimum number of linguistic rules and more than that can decline the esti-
mation accuracy. Further, a mixture of Gaussian and bell-shape MFs were also examined
but it did not exhibit any significant effect on the performance.

Table 4.3: Statistical results of training and testing ANFIS for ∆SOCc estimation

MF Shape Number of MFs MSE Train MSE Test std. Train std. Test
G−G 5−5 0.0058 0.0764 0.0172 0.1157
G−G 7−7 0.0056 0.0751 0.0170 0.1149
B−B 5−5 0.0061 0.0786 0.0187 0.1208
B−B 7−7 0.0057 0.0757 0.0171 0.1153
T−T 5−5 0.0061 0.0785 0.0178 0.1182
T−T 7−7 0.0058 0.0762 0.0187 0.1216
G−B 5−5 0.0061 0.0785 0.0188 0.1210
B−G 5−5 0.0057 0.0756 0.0168 0.1143

G: Gaussian MF, B: Bell-shaped MF, T: Triangular MF

Table 4.4: Statistical results of training and testing ANFIS for ∆mfc estimation

MF Shape Number of MFs MSE Train MSE Test std. Train std. Test
G−G 5−5 0.0186 0.1367 0.0295 0.1624
G−G 7−7 0.0143 0.1198 0.0240 0.1470
B−B 5−5 0.0184 0.1360 0.0288 0.1607
B−B 7−7 0.0179 0.1343 0.0280 0.1588
T−T 5−5 0.0194 0.1395 0.0298 0.1637
T−T 7−7 0.0189 0.1378 0.0301 0.1644
G−B 5−5 0.0183 0.1354 0.0286 0.1601
B−G 5−5 0.0183 0.1355 0.0287 0.1603

4.5 Summary

This chapter attempted to investigate the potential application of intelligent techniques
in trip planning of PHEVs. A particular emphasis was on the use of PSO and ANFIS to
perform gray-box and black-box modeling of energy consumption and in turn evaluate the
impact of using such models in SOC prediction. For the gray-box model, the classical em-
pirical model has been used but the parameters - which generally suffer from uncertainties
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- were optimized by using PSO. Numerous simulations verified fast convergence, robust-
ness and uniqueness of the solution. For the black-box model, an ANFIS model has been
identified and it has been revealed that this model is up to one order of magnitude more
accurate than the PSO-based model in addition to being up to two order of magnitude
faster in terms of computations.
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Chapter 5

Sensitivity/Robustness Analysis

The TP-assisted EMS introduced in the previous chapters has shown to be effective in
optimal power distributions between energy sources, rendering significant reduction in
fuel consumptions. However, the previous analysis was based on the assumption that
the system under consideration is nominal and the trip conditions are deterministic. In
practice, there exists a wide range of uncertainties that might affect the control system.
This chapter carries out a sensitivity analysis of the TP-assisted EMS to answer this
fundamental question: how well the TP-assisted EMS will function in a real-world scenario
where unknown measurement uncertainties and disturbances are inevitable?

5.1 Sources of Uncertainties

Before beginning the sensitivity analysis, it is important to identify the major sources of
uncertainties and disturbances that can affect the performance of the TP-assisted EMS
module.

The input to the TP-assisted module is the prediction of the drive cycle; therefore, un-
certainties can be induced to this module from various sources, those that mainly deal with
the collection of trip information. Since the drive cycle has a stochastic nature, one imme-
diate source of uncertainty is the poor estimations that might occur during trip prediction.
In addition, external disturbances such as wrong traffic light scheduling, pedestrian push-
to-walk buttons, sudden pedestrian crossing or abrupt braking of the preceding vehicle
introduce a higher level of unpredictability to the drive cycle, not to mention possible
failure of connections to traffic monitoring systems. Measurement noise that always exists
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on sensors such as GPS, radar, V2V, etc. is another unavoidable uncertainty term that is
added to the input signal. It is worth mentioning that sensors have limited accuracy; there-
fore, measurement errors is another source of signal deterioration. Moreover, there can be
communication faults during data exchanges which result in momentary information loss.

It is also important to note that the strength of the TP-assisted EMS in suppression
of the above uncertainties and disturbances depends heavily on how well the design pa-
rameters are being tuned. Therefore, a proper sensitivity analysis requires an additional
evaluation of the module’s performance for variations of the design parameters. This will
provide an understanding of the parameters’ impact on the performance and the robustness
of the TP-assisted module. With this in mind, this chapter is concerned about a sensitivity
analysis with respect to uncertainties as well as the design parameters.

5.2 Monte Carlo Simulation (MCS)

As the TP-assisted EMS decision making is exposed to a significant information uncer-
tainty, it is aimed to investigate uncertainty modeling methods that can work best for our
problem. Different ways of uncertainty modeling including probabilistic techniques, robust
optimization, interval based analysis methods, etc., have been developed and used in var-
ious applications [125]. Basically, the techniques used for expressing the input variables’
uncertainty in their algorithms distinguish the methods from each other. As an exam-
ple, the uncertainties due to trip information is modeled by membership functions to be
used within a fuzzy uncertainty handling method, while the probability density function
(PDF) is known as the main feature for describing the input’s uncertainty in a probabilistic
method. Monte Carlo simulation is known as one of the probabilistic uncertainty modeling
approaches. Dantzig et al. has carried out one of the first investigations in probabilistic
uncertainty handling in 1995 [126].

A probabilistic analysis is formed based on the notion that the input variables are
random parameters with known PDFs. Assume that z is a multivariate function of a
vector X = [x1, x2, ..., xm] in the form of z = g(X); indeed, X is the input vector of the
model with uncertain random variables (e.g. the stochastic predicted drive cycle), function
g presents the system model, and z is the output of the system (e.g. the fuel consumption).
A probabilistic approach is trying to identify the PDF of z while the PDFs of the random
parameters x1 to xm are known.

Specifically, the Monte Carlo method uses the repeated random samplings to find the
output’s performance under the uncertainties imposed to the model through the input
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variables x1 to xm. This method is executed by taking a sequence of steps [127]: first,
since each input’s PDF is assumed to be known, it is possible to generate a sample, xp

q ,
for each input xq, q ∈ {1, 2, ...,m}, by using its PDF. A sample of the output, zp, is then
produced by utilizing the system model as zp = g(Xp) where Xp = [xp

1, x
p
2
, ..., xp

m
]. These

steps are repeated for a certain number of scenarios, NMC , to assure that all the possible
scenarios are included: p ∈ {1, 2, ..., NMC}. Thereafter, a set of stochastic outcomes is
produced which can be analyzed statistically by utilizing performance metrics, confidence
intervals, histograms, etc. Particularly, in this research, the coefficient of variation, which
is defined by Eq. 5.1, is used as the performance index of system’s robustness under inputs’
uncertainties.

cv =
σ

µ
=

σ(Mp
f )

µ(Mp
f )

(5.1)

where cv is the outputs’ coefficient of variation, σ is the standard deviation of the outputs,
and µ is the expected value of the outputs. In particular, µ(Mp

f ) and σ(Mp
f ) respectively

represent the expected value and the standard deviation of the outcome fuel consumption,
Mf , of the vehicle for all of the scenarios p ∈ {1, 2, . . . , NMC}.

5.3 Scenario Generation

Proper Monte Carlo simulations require samples of stochastic inputs. This work considers
two mains categories of samples, one is generated from probabilistic modeling of standard
drive cycles, and the other one is real-world driving scenarios.

5.3.1 Probabilistic Modeling

While driving on a straight road, assuming homogeneous traffic conditions, the vehicle
speed can be described by a normal distribution, as follows [128, 129, 130]

PG(v;x, t) =
1√

2πσ(x, t)
exp

(
(v − V (x, t))2

2σ(x, t)

)
, (5.2)

where V (x, t) = ∆v, in which ∆ denotes the mean velocity value and σ(x, t) = ∆(v − V (x, t))2

with ∆ representing the velocity variance. These two factors of the distribution can be
determined in a particular itinerary by using traffic conditions. The standard deviation
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Figure 5.1: Stochastic prediction samples of a given standard drive cycle

of the distribution can be estimated. As pointed out in [131, 132], the standard deviation
can be estimated, ranging from 1.4 m/s (5 km/h, near to free flow condition) to 5.6 m/s
(20 km/h, near to pulsed condition). In fact, in case of free flow condition, vehicles are
moving with a constant speed; thus, a small variance value. On the contrary, the pulsed
continuous flow condition is associated with a higher variance value.

For a given standard drive cycle, the samples are generated using the MATLAB normrnd
function with mean value of drive cycle’s speed, vdrivecycle(x, t), and the standard devia-
tion equal to 1.4 < σ < 5.6. These samples are fed to the Micro-trip Generator module
to generate drive cycle segments, which will be used by the TP module, to evaluate the
system’s performance under possible mispredictions, while the driver is experiencing the
given standard drive cycle in all of the cases. As an example, Fig. 5.1 demonstrates three
random segmented samples of 3xHWFET drive cycle.

5.3.2 Real-world Stochastic Drive Cycles

The goal of the Monte Carlo simulations is to examine the effectiveness of the trip planning
algorithm against stochastic events that occur during a real-world driving. The drive
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Figure 5.2: Stochastic prediction samples of a given Chargecar itinerary

cycles used in the simulations are real-world scenarios retrieved from [119]. These samples
are driving cycles of different routes, each have been driven numerous times, whose the
following factors vary randomly:

• Driver

• Travel Time (Day/Night)

• Travel Duration

• Road Conditions

• Weather

• Traffic Type

• Route Type

• GPS Device
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By using these samples, the trip planning algorithm will go through real-world scenarios
where its robustness will be examined against several stochastic events in a given trip.

Similar to the standard drive cycles, real-world samples are passed to the Micro-trip
Generator module in order to segment the drive cycles, which will be then used within the
TP module. Fig. 5.2 shows three random Chargecar drive cycles that are segmented.

5.4 MCSs of Trip Information Uncertainties

5.4.1 Different Standard Deviations

In order to evaluate the effect of velocity standard deviation for sample generations, two
sets of 1000 stochastic predictions have been generated, using the 3xHWFET drive cycle,
one for σ = 1.4m/s and the other one for σ = 5.6m/s. The Monte Carlo simulations are
then implemented for both samples, generating the samples of the fuel consumption, whose
probability distribution function are depicted by Figs. 5.3 and 5.4, and the MATLAB’s
allfitdist function is used to fit all valid parametric probability distributions to the data.
The statistical metrics of these results are given in Table. 5.1, showing small values for
cv in both cases. It is also important to note that the standard deviations of the fuel
consumptions are three order of magnitude smaller than the inputs. As a result, upon
a large change of standard deviations in the inputs (from 1.4 to 5.6), the TP-assisted
EMS exhibits a uniform performance where the standard deviation of fuel consumption
changes by 0.0064. This can be verified by the five number summary (minimum, first
quartile, median, third quartile, and maximum) plot illustrated in Fig. 5.5. Therefore, the
robustness of the system against trip information uncertainties is verified.

Table 5.1: Fuel consumption(L) of two different samples

Sample µ(Mf ) σ(Mf ) cv(Mf ) min(Mf ) max(Mf )

σ(v) = 1.4m/s 1.2373 0.0165 0.0133 1.2065 1.2694
σ(v) = 5.6m/s 1.2291 0.0220 0.0179 1.1787 1.3672

5.4.2 Synthesized Stochastic Samples

To further evaluate the system, different standard drive cycles with a fixed standard de-
viation σ = 1.4 is used for Monte Carlo simulations. Note that the previous simulations
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Figure 5.5: Fuel consumption of stochastic predictions for two different samples

revealed that the different standard deviations in input does have a little effect on the out-
put; therefore, similar results are expected if the input samples are generated for σ = 5.6 .
Simulation results are presented in Table 5.2 where the cv values are once again found to
be small. The results of all the stochastic samples are not far from the actual prediction
case, which is the results for a drive cycle that refers to the average of all the samples.
Table. 5.2 also compares the Monte Carlo simulation results with the results of A-ECMS
and rule-based EMS. It follows that the TP-assisted EMS is a superior method, even for
the worst prediction scenario that the TP-assisted EMS has a minimal contribution, the
fuel consumption is lower than the other two methods.

5.4.3 Real-world Stochastic Samples

In this section, two sets of real-world drive cycles are used as Monte Carlo input samples.
Both itineraries are located in Wisconsin, USA, one set belongs to Milaca, and the other
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Table 5.2: MCSs of different drive cycles

Fuel Consumption(MPG)

Standard
Drive Cycles

TP-assisted EMS(Optimal SOCref ) A-ECMS
(Linear
SOCref )

Rule-based
EMSSensitivity Analysis

(Sample of Stochastic Drive Cycles) Actual
Prediction

µ σ cv max min

3xUDDS 108.22 0.3317 0.0031 109.06 107.56 108.27 104.7 97.7
3xSFTP 59.86 0.0833 0.0014 60.04 59.72 60.04 58.4 52.1
2xWLTP 79.01 0.5151 0.0065 79.91 78.41 79.12 78 72.7

EPA_UHU 101.52 0.3354 0.0033 102.10 100.94 102.04 98.3 95.1
3xHWFET 93.28 0.4572 0.0049 94.05 93.01 93.7 92.8 79.3

belongs to Little Canada. The statistical measures of the simulation results are given in
Table. 5.3 followed by the five number summary illustrated in Fig. 5.6. As the cv values
are small for data sets, it is easy to infer that the TP-assisted EMS presents robustness in
real-world driving scenarios when there exist various stochastic uncertainties in the drive
cycles.

Table 5.3: Fuel consumption(L) of two different itineraries

Itinerary µ(Mf ) σ(Mf ) cv(Mf ) min(Mf ) max(Mf )

Milaca 4.2321 0.0058 0.0014 4.2232 4.2450
Little Canada 4.2802 0.0074 0.0017 4.2663 4.2892

5.5 MCSs of Design Parameters Variations

5.5.1 Different Number of Clusters

This section aims to investigate the effect of the number of clusters Nc in the optimization
algorithm, as one of the design parameters, on the performance of the TP-assisted EMS.
The stochastic samples used in section 5.4.2 are employed for Monte Carlo simulations.
Table 5.4 shows the simulation results where small values of cv confirms the low sensitivity
of the model against the variation Nc.
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Figure 5.6: Fuel consumption of stochastic predictions for two different itineraries

Table 5.4: Sensitivity analysis for different number of clusters

Drive Cycle Number of Clusters
Fuel Consumption (MPG)_Sample

of Stochastic Drive Cycles
Actual µ σ cv min max

3xHWFET
4 93.70 93.41 0.4572 0.0049 92.7 94.06
7 93.76 93.36 0.4621 0.0049 92.74 93.95
10 93.90 93.52 0.5769 0.0062 92.14 94.08

3xUDDS
4 108.27 108.21 0.3317 0.0031 107.56 109.06
7 108.15 108.15 0.3433 0.0032 107.61 108.75
10 108.00 108.20 0.4662 0.0043 107.70 108.99

UHU
4 102.02 101.49 0.3354 0.0033 101.20 102.02
7 101.58 101.58 0.2689 0.0026 101.07 101.93
10 101.25 101.34 0.2299 0.0023 100.87 101.68
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5.5.2 Different Update Rates

Similarly, for the synthesized stochastic samples in section 5.4.2, the effect of update rates
tupdate in the optimization algorithm is discussed through Monte Carlo simulation. As
given in Table. 5.5, the cv values are still small, showing consistent performances of the
TP-assisted EMS upon variations of tupdate.

Table 5.5: Sensitivity analysis for different update rates

Drive Cycle Update Rate
Fuel Consumption (MPG)_Sample

of Stochastic Drive Cycles
Actual µ σ cv min max

3xHWFET
100 93.70 93.28 0.4572 0.0049 92.7 94.05
150 93.66 93.52 0.3817 0.0041 92.88 94.01
200 93.54 93.32 0.4263 0.0046 92.44 93.83

3xUDDS
100 108.27 108.21 0.3317 0.0031 107.56 109.06
150 107.52 107.99 0.5758 0.0053 106.85 109.16
200 108.48 108.66 0.3040 0.0028 107.90 109.22

UHU
100 102.02 101.51 0.3354 0.0033 100.94 102.10
150 101.99 102.17 0.4153 0.0041 101.46 102.80
200 101.92 101.51 0.7385 0.0073 100.38 102.95

5.6 Summary

The Monte Carlo simulation studies have examined the TP-assisted EMS against various
random uncertainties, both in standard and real-world drive cycles, revealing small cv in all
scenarios. Moreover, simulations have been carried out for variations of design parameters
such as Nc and tupdate, achieving small cv values again. These verify the repeatability of
the TP-assisted EMS which can exhibit high performance in various driving conditions.
Equally important, the Monte Carlo simulations showed that in all these random scenarios,
the TP-assisted EMS outperforms A-ECMS and rule-based EMS. These are evident enough
to conclude that the integration of trip planning with energy management system of PHEVs
not only presents consistent performances upon variations of trip conditions and design
parameters, but also leads to lower fuel consumptions compared to the existing methods.
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Chapter 6

Conclusions and Future Work

This dissertation has concerned with several knowledge gaps related to using trip pre-
dictions for proper management of the energy sources in PHEVs which pose formidable
challenges in practical usage of this strategy. This idea has been initially proposed by
[14] and a pilot study had been presented to proof the concept. However, there was lit-
tle knowledge on the capacity of the method to be implemented online. Nor was there
a comprehensive study on the performance and robustness of this technique in case of
real scenarios, where there exist stochastic uncertainties and disturbances. This research
attempted to address the above gaps by introducing the TP-assisted EMS module and
evaluating its behaviour in various scenarios.

Chapter 3 presented the architecture of the TP-assisted EMS module, which compared
to the preliminary design presented in [14], enjoys an efficient PHEV model, namely the
power-balance model, which had been derived using first-principles and empirical methods.
This model is computationally simple while being sufficiently accurate. In order to speed
up of the optimization itself, the PSO algorithm has been utilized. These modifications
resulted in reductions of the computation time to below 1 ms, as tested via HIL simulation,
verifying the adequacy of the method for online implementations.

Moreover, Chapter 3 presented test results where the performance of the TP-assisted
EMS module had been examined in various scenarios and compared to Adaptive-ECMS
and Rule-based EMS strategies. The MIL tests carried out for standard drive cycles, hilly
road and 60 real-world drive cycles obtained from [119], has verified that TP-assisted EMS
is a superior methodology in a sense that it leads to higher MPGs. It is also important to
mention that during the experiments, the drive cycles had to processed to be used by the
trip planning module. This research has developed the Micro-trip Generator module for
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this purpose.
Chapter 4 attempted to enhance the TP-assisted EMS module by incorporating soft-

computing techniques. In particular, PSO-based gray box modeling and ANFIS-based
black box modeling of the energy consumption has been carried out. It has been revealed
ANFIS modeling provides more accurate and computationally efficient results compared to
the PSO-based one. However, it requires careful considerations in construction of proper
learning data sets.

Chapter 5 presented, for the first time, the sensitivity analysis of the TP-assisted EMS
module, by using Monte Carlo simulations. In these analyses, the robustness of the module
against stochastic uncertainties originating from randomness of the drive cycles has been
tested. Moreover, the sensitivity of fuel efficiency with respect to design parameters has
been evaluated. All in all, it has been revealed that the module is robust and upon a large
change in the standard deviations of the input samples, the standard deviation of the fuel
consumption preserves a consistent behaviour.

6.1 Summary of Contributions

In summary, the major contributions of the research can be mentioned as follows:

• Developed the power-balance model for online optimizations performed within the
TP-assisted EMS module

• Refined the initial method of energy management using trip predictions [14] and
introduced the TP-assisted EMS module

• Verified feasibility of the TP-assisted EMS for online implementations

• Examined the performance of the module and verified it superiority over conventional
energy management methods

• Performed Monte Carlo sensitivity analysis of the TP-assisted EMS, for the first time
and has shown the robustness of the system against uncertainties and disturbances
as well as design parameter variations
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6.2 Future Work

The present work can be extended in various directions. One potential way is the model
improvement, in particular, the control-oriented model, to take the engine transient states
into account. Further, the ANFIS identified model has shown promising performance
with regards to accuracy and computational efficiency. As ANFIS inherits the robustness
of fuzzy inference systems, it will be valuable to carry out a sensitivity analysis for the
ANFIS-augmented TP-assisted EMS module. In terms of the energy management, the
current Route-based Equivalent Consumption Minimization Strategy does not account for
short horizons predictions. One alternative can be nonlinear model predictive control whose
impacts on TP-assisted EMS have not been investigated thoroughly yet.
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