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Abstract 

The remediation of soil and groundwater contaminated with multi-component non-aqueous phase 

liquids (NAPLs) such as coal tars from former manufactured gas plants (MGPs) is associated with 

a number of challenges. Due to thermodynamic considerations, the presence of more than one 

compound within multi-component NAPLs (especially when they are structurally dissimilar) can 

restrict intra-NAPL diffusion. Since diffusion is the dominant process in the dissolution of organic 

compounds, any diffusion limitations can restrict mass transfer between the NAPL and the 

aqueous phase. Consequently, the efficiency of conventional water-based remediation methods 

can be restricted. In situ chemical oxidation (ISCO) has been a possible remediation technology 

touted for the treatment of multi-component NAPLs. However, chemical oxidation occurs only in 

the aqueous phase and consequently the mass transfer between NAPLs and the aqueous phase 

indirectly controls the overall treatment efficiency. The primary objective of this research effort 

was to theoretically and experimentally investigate mass transfer processes from complex multi-

component NAPLs subjected to water and chemical oxidants.    

For the purpose of this evaluation, the feasibility of chemical oxidants to degrade MGP residuals 

needs to be quantified. A series of physical model trials supported by a host of aqueous and slurry 

batch experiments were conducted to assess the performance of two chemical oxidants 

(persulfate and permanganate) using impacted sediments collected from a former MGP site. The 

results indicated that dissolved components were readily degraded with persulfate or 

permanganate (except for benzene) in the aqueous batch systems. In addition, in the well-mixed 

slurry systems when contact with the oxidant was achieved, permanganate, unactivated 

persulfate, and alkaline activated persulfate were able to degrade >95%, 45% and 30% of the 

initial mass quantified, respectively. However, insignificant quantifiable mass was lost in all 

physical models under dynamic conditions which are more representative of in situ conditions.     

A simple single-cell numerical model was constrained by the experimental results and used to 

investigate treatment expectations and the potential long-term behaviour of dissolved phase 

concentrations as a result of treatment using 6 pore volumes of oxidant. A specified inlet oxidant 

concentration and NAPL composition (22 compounds (34 %), and  bulk mass (66 %) composed 

of unidentified material) were prescribed, and the effluent concentrations of the known soluble 

constituents were estimated from mass balance considerations. A variety of long-term simulation 

scenarios were performed. In general, for a NAPL saturation of 6 %, the results indicated that the 

effluent profiles over a 10-year period were reduced temporality as a result of the oxidant injection 
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and then rebounded to a profile that was coincident with a no-treatment scenario. Based on a 

sensitivity analyses, neither water velocity or oxidant concentration affected the long-term 

behavior of dissolved phase concentrations; however, increasing the mass transfer rate 

coefficient had a dramatic impact, and chemical oxidant injections were only effective for low 

NAPL saturations (<1 %). 

Intra-NAPL diffusion is one of the most critical processes which can influence NAPL-water mass 

transfer processes. A comprehensive experimental and computational study was performed to 

investigate the role of intra-NAPL diffusion on the mass transfer between multi-component NAPLs 

and water, and to identify some of the controlling situations where this process should be 

considered. A diffusion-based numerical model was developed, and two different physical 

systems were simulated; a spherical single NAPL blob with total surface area available for mass 

transfer, and an isolated rectangular NAPL with only one side available for mass transfer. A series 

of batch and physical model experiments were conducted using coal tars collected from a former 

MGP site to capture multi-component diffusion-limited mass transfer behavior under static and 

dynamic conditions, respectively. This series of experiments was intended to focus on the direct 

interaction of multi-component NAPLs with water and a persulfate solution without the presence 

of sediment. 

The results from the static experiments indicated that under the diffusion-controlled mass transfer 

conditions, the estimated mass transfer rate coefficients were lower than typical mass transfer 

rate coefficients determined under continuous mixed conditions. Although, no overall trend was 

observed between the mass transfer rate coefficients for the various organic compounds 

identified, an inverse dependency between the mass transfer rate coefficient and molecular 

weight was clear but different for BTEX and some PAHs compounds suggesting that the intra-

NAPL diffusion behavior of these two organic compound classes are different. 

The results indicated that molecular weight and concentration of each component are the most 

important parameters affecting intra-NAPL diffusion coefficients. A combination of NAPL 

composition, NAPL geometry, and interphase mass transfer rate may result in the depletion of 

more soluble compounds at the interface which can restrict NAPL-water mass transfer. When the 

main intra-NAPL diffusion coefficients are in the range of the self-diffusion coefficients, dissolution 

is not limited by internal diffusion except for high interphase mass transfer rates or long diffusional 

distances. In the case of complex and highly viscous NAPLs, smaller intra-NAPL diffusion 

coefficients are expected and even the low range of mass transfer rates can result in the depletion 



vi 
 

of more soluble compounds at the NAPL-water interface and diffusion-limited dissolution. 

Depending on the NAPL properties (i.e., constituent components, viscosity, temperature), 

interfacial depletion of the more soluble compounds can vary and influence mass transfer and 

dissolved phase concentrations. The comparison of experimental and simulated results indicated 

that rate-limited intra-NAPL diffusion within complex multi-component NAPLs as well as 

persulfate-NAPL interactions can restrict mass loss and chemical oxidation efficiency compared 

to the no-treatment scenario. It was determined that during 64 days of persulfate injection the 

multi-component mass transfer rate coefficients were ~70 % smaller than those estimated during 

an equivalent water injection period. 

The experimental and computational effort described in this study is the first effort to provide 

comprehensive information about the role of intra-NAPL diffusion on dissolution of multi-

component NAPLs and the direct interaction of persulfate with MGP residuals. The diffusion-

based model developed in this study provides a realistic platform to capture the temporal and 

spatial mass fluxes and compositional changes within complex NAPLs.  While chemical oxidants 

(persulfate or permanganate) are able to degrade MGP residuals in well-mixed conditions, rate-

limited NAPL-water mass transfer restricts treatment in systems more representative of in situ 

conditions. Therefore, methods to overcome the mass transfer limitations and intra-NAPL 

resistances are required for the remediation of complex multi-component NAPLs. 
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Chapter 1 

Introduction 

1.1 GENERAL BACKGROUND 

Soil and groundwater contamination resulting from organic compounds such as coal tar, creosote, 

diesel fuel, and other petroleum-derived compounds is an important environmental issue (Peters 

et al. 1999). Accidental releases and leakage from waste disposal, storage sites, and industrial 

facilities are the most widespread causes of subsurface contamination by these compounds 

(Soga et al. 2004). Due to their low solubility, these contaminants often persist in subsurface 

systems as a separate non-aqueous phase liquid (or NAPL). When groundwater flows through 

the contaminated area containing a NAPL (the NAPL source zone), a small amount of the NAPL 

will dissolve in the aqueous phase which leads to a dissolved plume downgradient of the source 

zone (Soga et al. 2004). The maximum solubility of some organic compounds in a NAPL can be 

more than two-orders of magnitude higher than the regulatory limit resulting in potential risk of 

harmful effects to the surrounding environment and human health (Miller et al. 1990). 

NAPL dissolution is often modeled based on either a local equilibrium assumption or a rate-limited 

mass transfer (Powers et al., 1991). Traditionally it was assumed that the concentration of an 

organic compound in the aqueous phase is equal to the equilibrium concentration of that 

compound in water (Abriola & Pinder, 1985; Sleep & Sykes, 1993). However, field and laboratory 

data (e.g., Powers et al. 1992) indicate that the concentration of organic compounds in 

groundwater is usually less than their corresponding equilibrium concentration which implies that 

some physical and chemical processes impose a resistance to dissolution. 

One of the possible reasons for rate limited mass transfer is the presence of more than one 

compound (especially when they are structurally dissimilar) within the NAPL which can restrict 

intra-NAPL diffusion and hence, influence interfacial NAPL properties and the effective solubility 

of constituent compounds. For example, coal tar from a former manufactured gas plant (MGP) is 

composed of hundreds to thousands of organic compounds with no single predominant 

compound. It is usually possible to identify only a portion of a MGP residual and even analysis of 

the identified portion is extremely complicated (Brown et al. 1999). As MGP residuals are exposed 
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to groundwater, the more soluble compounds will gradually deplete and higher molecular weight 

compounds will remain in the NAPL (a phenomenon called aging or weathering) which can 

change the NAPL composition. Due to these changes a high viscous layer can be formed on the 

NAPL surface which affects diffusion across the NAPL-water interface and consequently, the 

dissolution of organic compounds will be reduced (Ghoshal et al. 2004; Luthy et al. 1993). 

Various physical, chemical and biological methods have been developed for the remediation of 

NAPL contaminated sites. In situ chemical oxidation (ISCO) has been demonstrated as an 

effective technique which is capable of degrading a variety of common organic contaminants and 

relies on the delivery of a chemical oxidant to the contaminated media to degrade the organic 

contaminant into less harmful compounds (Soga et al., 2004; Huling & Pivetz, 2006; Tsitonaki et 

al., 2010). Krembs et al. (2010) reviewed data from 242 ISCO projects and reported that ISCO 

has been used in different subsurface conditions and for a variety of contaminants with chlorinated 

solvents being the most frequent. They also indicated that except at some sites where dense 

NAPLs (DNAPLs) were present, ISCO has typically been able to achieve concentrations below 

the maximum concentration limit (MCL) in the aqueous phase.  

Since ISCO is able to oxidize most of the common organic compounds (Krembs et al., 2010), it 

should be possible to use chemical oxidation for the treatment of MGP residuals. However, 

chemical oxidation occurs only in the aqueous phase and consequently the mass transfer 

between multi-component NAPLs and the aqueous phase indirectly controls the overall treatment 

efficiency. Thus, a comprehensive mass transfer study which incorporates internal and interfacial 

NAPL limitations is required to estimate ISCO treatment efficiency. While intra-NAPL diffusion 

and compositional changes within multi-component NAPLs are critical for mass transfer, they 

have not been considered extensively in simulation studies (Brahma & Harmon, 2003; Holman & 

Javandel, 1996). In addition, studies dealing with the chemical oxidation of multi-component 

NAPLs have been limited in scope with widely varied results (Hauswirth & Miller, 2014).  To the 

best of our knowledge, no study has investigated intra-NAPL diffusion and compositional changes 

in complex multi-component NAPLs, and the direct interaction of MGP NAPLs with chemical 

oxidants. 
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1.2 RESEARCH OBJECTIVES 

The major objectives of this research are: 

1) To investigate the feasibility of different chemical oxidants to degrade MGP residuals in 

well-mixed systems. 

2) To explore the interaction of different chemical oxidants with MGP residuals in systems 

representative of in situ conditions.   

3) To mathematically demonstrate NAPL/water mass transfer and spatial/temporal mass 

fluxes within complex multi-component NAPLs. 

4) To theoretically and experimentally quantify intra-NAPL diffusion and compositional 

changes of organic compounds within MGP NAPLs subjected to water and a chemical 

oxidant.  

1.3 THESIS SCOPE 

The thesis is organized into five chapters. Chapters 2, 3, and 4 are the core chapters that address 

the research objectives. Chapter 1 provides the framework, and Chapter 5 summarizes the major 

conclusions and contributions, and discusses areas for future work. 

To assess the performance of two chemical oxidants (persulfate and permanganate) to degrade 

MGP residuals in a dynamic flow system representative of in situ conditions, a series of physical 

model trials supported by a host of aqueous and slurry batch experiments were conducted. Mass 

loss estimates as well as aqueous concentrations of organic components were used to investigate 

chemical oxidation efficiency. In addition, temporal treatment expectations were explored using a 

single-cell mathematical representation constrained by the treatability test data collected. Chapter 

2 is devoted to a discussion of the experimental and simulation methods and results that address 

Objectives 1 and 2 of this research. 

To investigate the role of intra-NAPL diffusion on mass transfer from multi-component NAPLs and 

interfacial depletion of the more soluble compounds, a diffusion-based numerical model was 

developed. Chapter 3 focuses on the development and application of this numerical model. A 

series of static experiments were conducted using coal tar collected from a former MGP site to 

capture multi-component diffusion-limited mass transfer behavior. These experiments were 

designed to generate relevant model parameters for simulation purposes. The developed model 

was calibrated and then used to simulate temporal discharge, intra-NAPL concentration gradients, 
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and to identify some conditions where these processes need to be considered. Chapter 3 

addresses Objective 3 of this research. 

To determine the role of intra-NAPL diffusion on the dissolution of multi-component NAPLs 

subjected to persulfate, a series of physical model experiments were performed. This series of 

experiments was intended to investigate the direct interaction of NAPLs with persulfate or water 

under controlled conditions in flow through systems without sediments. The experimental results 

were employed to constrain the developed diffusion-based numerical model under dynamic 

conditions. Chapter 4 elucidates the methodology used and results, and addresses Objective 4 

of this research.  

Chapters 2, 3, and 4 were edited by N.R. Thomson and prepared with the intent to submit them 

to the Journal of Contaminant Hydrology, Advances in Water Resources, and Environmental 

Science and Technology, respectively, and hence are written as stand-alone chapters and some 

repetition is unavoidable.  
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Chapter 2 

Realistic Expectations for the Treatment of FMGP 

Residuals by Chemical Oxidants 

OUTLINE 

Methods to remediate soil and groundwater contamination at former manufactured gas plant 

(FMGP) sites are scarce.  The objective of this study was to investigate the ability of two chemical 

oxidants (persulfate and permanganate) to degrade FMGP residuals in a dynamic flow system 

representative of in situ conditions.  A series of physical model trials supported by aqueous and 

slurry batch experiments using impacted sediments collected from a FMGP site were conducted.  

To explore temporal expectations, a single cell numerical model constrained by the experimental 

data was used. The results from the aqueous experiments showed that dissolved components 

(except for benzene) were readily treatable with persulfate or permanganate.  In the well-mixed 

slurry systems, when contact with the oxidant was achieved, 95%, 45% and 30% of the initial 

mass quantified was degraded by permanganate, unactivated persulfate, and alkaline activated 

persulfate, respectively.  In stark contrast, the total mass removed in the physical model trials was 

low for both permanganate (~30%) and persulfate (not significant) irrespective of the bleb or lense 

architecture utilized.  Hence the net benefit of flushing 6 pore volumes of permanganate or 

persulfate at a concentration of 30 g/L under the physical model operating conditions was minimal.  

The long-term simulation results indicated that the concentration of organic compounds in the 

effluent were reduced temporality as a result of oxidant presence and then rebounded to a profile 

that was coincident with a no-treatment scenario.  Neither changes in velocity or oxidant 

concentration affected the long-term behavior of the dissolved phase concentrations; however, 

increasing the mass transfer rate coefficient had a dramatic impact.  The results of this 

investigation indicate that permanganate or persulfate treatment efficiency for FMGP residuals is 

mass transfer limited. 

Key Words: Coal tar, MGP, Persulfate, Permanganate, End-point treatment, Long-term 
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2.1 INTRODUCTION 

Prior to 1950, thousands of manufacturing plants produced a combustible gas from coke, coal or 

oil that was used in urban environments for lighting, heating, and cooking (Hatheway, 2012).  Due 

to poor process operations and residual management practices, there currently exists serious soil 

and groundwater contamination problems at many of these former manufactured gas plant 

(FMGP) sites (Cassidy et al., 2015; Wang et al., 2015; Hauswirth et al., 2012).  FMGP residuals 

are usually found in the subsurface as non-aqueous phase liquids (NAPLs) that are typically 

denser and more viscous relative to water, and composed of hundreds to thousands of organic 

compounds (Mueller et al., 1989). Based on observations from various site characterization 

efforts, the in situ architecture of these coal tar NAPLs range from sheens, stains, tar blebs and 

tar coatings to saturated lenses or pools.  Despite vast advancements in analytical methods, it is 

currently only possible to quantify a portion of the organic compounds present in FMGP coal tars, 

and even the analysis of this identified portion is extremely complicated (Birak & Miller, 2009).  

Moreover, the composition of FMGP tars varies between sites due to differences in source 

material and processing operations (Birak & Miller, 2009).  When FMGP tars are initially exposed 

to groundwater, the more soluble compounds will gradually be depleted over time (a phenomenon 

called aging or weathering) and the higher molecular weight compounds, which are generally the 

less soluble compounds, will remain in the NAPL.  The presence of these FMGP tars in 

subsurface environments may pose a long-term threat to groundwater quality and potentially 

human health if left untreated. 

Remediation initiatives at many FMGP sites have been limited to isolation or removal of the source 

materials (USEPA, 2013; Birak & Miller, 2009; Luthy et al., 1994).  Over the last 15 years, in situ 

chemical oxidation (ISCO) has been growing steadily as a remediation technology used to treat 

a range of environmentally relevant contaminants (Siegrist et al., 2011).  Although different types 

of chemical oxidants have been employed, persulfate and permanganate are the two most 

frequently used as they are typically more persistent in subsurface systems (Petri et al., 2011a,b; 

USEPA, 2006).  Since chemical oxidation has been shown to successfully degrade a number of 

the organic compounds typically present at FMGP sites (polyaromantic hydrocarbons (PAHs); 

benzene, toluene, ethylbenzene, and xylenes (BTEX)) (Krembs et al., 2010), it is speculated that 

it could be a beneficial technology to treat FMGP tars in situ.  

Published studies dealing with the chemical oxidation of FMGP residuals have been diverse in 

scope with varied and often conflicting results (Hauswirth & Miller 2014; Gan et al. 2009).  Table 
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2.1 provides a comprehensive summary of published bench-scale studies which have used either 

persulfate or permanganate to degrade FMGP residuals in batch (i.e., well-mixed slurry) or 

column systems. 

Some of the investigations detailed in Table 2.1 have used impacted aquifer or river sediments 

collected from FMGP sites, while others have used  soils “spiked” with a MGP NAPL (Peng et al., 

2016; Usman et al., 2012; Brown et al., 2003).  Although spiked-soil studies provide valuable 

insight into the chemical reactivity of different oxidants to attack MGP residuals, the use of 

impacted materials collected from FMGP sites better represents the in situ chemical composition.  

Employing a series of batch experiments, Usman et al. (2012) observed that magnetite-activated 

persulfate was able to degrade 70 to 80% of the total PAHs (PAHT) in spiked sand, but no PAH 

mass was removed when a FMGP soil was used.  In contrast, Cassidy et al. (2015) reported mass 

removal of 55 to 65% using alkaline-activated persulfate (~37 g/L) in a batch system for soil 

material with an initial BTEX concentration of 0.58 g/kg, and a PAHT concentration of 3.06 g/kg 

(sum of 18 compounds).  Nadim et al. (2005) observed between 75 to 100% PAHT removal (7 

compounds) using iron-activated persulfate (5 g/L) for a less impacted soil (0.01 g/kg PAHT).  Only 

a few studies have directly compared the effectiveness of different chemical oxidants to degrade 

organic mixtures (Lemaire et al., 2013; Ferrarese et al., 2008; Rivas 2006; Gates-Anderson et al., 

2001).  For example, Ferrarese et al. (2008) identified that a 158 g/L permanganate solution and 

a 120 g/L persulfate solution were able to degrade 96 and 88% of the PAHT present in impacted 

soil with an initial PAHT concentration of 2.8 g/kg, respectively. 

Batch systems normally provide the most ideal environment to maximize treatment due to high 

oxidant dosing (mass of oxidant/mass of contaminant), maximum contact between the oxidant 

and the NAPL (well-mixed), and long reaction times.  In contrast, column systems are often 

considered more representative of a dynamic subsurface situation where preferential pathways 

exist, there is less direct oxidant contact with the NAPL, and the reaction time is controlled by the 

flow system.  For example, despite a PAHT removal of 47% (14 compounds) in a series of batch 

experiments, Richardson et al. (2011) observed no reduction in PAH mass from column 

experiments using a heat-activated persulfate system in spite of a relatively low PAHT 

concentration of ~0.3 g/kg.  In comparison, Hauswirth and Miller (2014) performed column 

experiments using FMGP impacted soils (initial PAHT concentration of 1.99 g/kg of tar; 25 

compounds) and reported a 53% removal of PAHT after injecting 52 pore volumes (PVs) of a 50 

g/L alkaline-activated persulfate solution.  Since a typical field injection event is < 1 PV (Crimi et 
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al., 2011), this high number of PVs is impractical at most field sites and hence the results from 

this experiment should be viewed as highly optimistic. 

In addition to the ability of chemical oxidants to degrade multi-component NAPLs such as FMGP 

residuals, aquifer material and NAPL architecture, in part, dictate contaminant availability and 

consequently treatment effectiveness (Zhang et al. 2007).  The NAPL surface area to volume 

ratio is much less for a lense or pool architecture compared to bleb architecture, and hence the 

relative surface or contact area is lower (Powers et al., 1994).  Moreover, the aqueous hydraulic 

conductivity is reduced within regions with a lense architecture, and thus the ability to flush 

remedial fluids into these areas is limited (Zhang et al., 2008).  This can restrict the efficiency of 

a chemical oxidation system and in such conditions multiple injection episodes to effectively 

degrade the NAPL are required (Petri et al., 2011a). 

Due to complex entrapment and multicomponent aspects of FMGP residuals it is generally not 

possible to remove all of the NAPL mass during treatment with a chemical oxidant (Soga et al., 

2004).  For example, Thomson et al. (2008) monitored the short-term (months) and long-term 

(years) behaviour of a plume originated from a multi-component NAPL source zone after 

treatment with permanganate.  They concluded that, while the short-term organic compound 

concentrations were reduced significantly, there was a rebound of all of the monitored compounds 

after four years post-treatment.  Hence, predicting the long-term behaviour of dissolved phase 

concentrations following chemical oxidation treatment is necessary for the evaluation of post-

treatment behaviour and risk assessment.  The few studies that have investigated the long-term 

behavior of dissolved phase concentrations from FMGP residuals have indicated that dissolution 

kinetics depends on NAPL composition, and the time scale for complete removal can vary 

between weeks to more than thousands of years for different NAPL architectures (Eberhardt & 

Grathwohl, 2002). 

Based on the current literature (Table 2.1), it is unclear what the dissolved phase concentration 

behaviour is following treatment of FMGP tars with different NAPL architectures by various 

chemical oxidants.  The objective of this study was to investigate the performance of two chemical 

oxidants (sodium persulfate (Na2S2O8) and potassium permanganate (KMnO4)) to degrade FMGP 

residuals in a dynamic flow system representative of in situ conditions.  Supported by aqueous 

and slurry batch experiments, a series of physical model trials were conducted using impacted 

sediments collected from a FMGP site.  Each physical model was subjected to three oxidant 

flushing episodes (6 PVs in total) and the effluent was sampled between each episode.  At the 
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termination of each trial, sediment samples were collected from the physical model and analyzed 

for a suite of organic compounds to determine mass removed.  A simple single-cell numerical 

model was constrained by the experimental results and used to investigate treatment 

expectations and the potential long-term behaviour of dissolved phase concentrations as a result 

of treatment using these chemical oxidants. 

2.2 MATERIALS AND METHODS 

2.2.1 Aquifer materials and NAPL 

Impacted groundwater and FMGP residuals used in this study were obtained from the former 

West Florida Natural Gas Company Site located in Ocala, Florida.  From the late 1890s until about 

1953, water gas or carbureted water gas was manufactured at this location by the “Lowe” 

carbonization process or destructive distillation of bituminous coal and coke.  According to 

Brown's directory of North American gas companies (1964), gas production was ~48 x 103 m3/yr 

in 1900 and steadily increased to 900 x 103 m3/yr by 1950.  In 1952, manufacturing stopped at 

the plant and the facility converted to the sale of butane-propane-air.  Residues from the MGP 

process, including tars and oily wastewaters, were deposited in the area of the former gas plant 

facilities during operations. There was an historic coal tar pit or area where residual tars were 

stored prior to sale for off-site use as roofing materials. 

Groundwater samples were collected in 1000 mL amber glass containers from two monitoring 

wells screened from 19.8-21.3 and 36.-39.6 m below ground surface (bgs) utilizing a low flow (< 

0.2 L/min) purge sampling technique.  The samples were placed in coolers maintained at ~4 °C 

and transported to the University of Waterloo where they were stored in a walk-in refrigerator at 

4 °C. 

During extensive drilling activities at the site, both impacted and non-impacted aquifer materials 

were collected from a weathered limestone unit using rotosonic drilling methods.  Cores were 

recovered in 1.5 m runs using a 10.2 cm diameter core barrel with a button-carbide drill bit.  Core 

materials assigned as “impacted weathered limestone unit material” and “non-impacted 

weathered limestone unit material” collected from inside the delineated source zone were used in 

this investigation.  The weathered limestone unit is part of an erosional surface of the Miocene 

Age, and its composition includes clayey limestone, sandy limestone and limey clay.  Impacted 

aquifer material was immediately transferred into 500 mL glass jars, sealed with a self-sealing lid 

held in place with a metal screw-top ring, and stored on-site in a freezer at -20 °C (see Figure 
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A.1(a) in Appendix A).  Non-impacted aquifer material was stored in polyethylene bags (Figure 

A.1(b) in Appendix A).  Samples of impacted aquifer material were collected from two boreholes 

and are representative of depths ranging from 10 to 30 m bgs, while non-impacted aquifer 

materials were collected from five boreholes and are representative of depths ranging from 15 to 

20 m bgs. Sufficient core materials were express shipped to the University of Waterloo on ice.  

Samples of the impacted aquifer materials were stored at -40 °C, while samples of the non-

impacted aquifer materials were stored at 4 °C.  The inventory of impacted aquifer materials 

received was categorized into those useful for slurry treatability experiments and those more 

appropriate for the physical model experiments based on the quantity of NAPL present as 

determined visually (Figure A.2 in Appendix A). 

A NAPL sample (density of 1.04 g/cm3) collected from a well screened from 24 to 27 m bgs within 

the weathered limestone was submitted to Alpha Analytical Laboratories Westborough, MA for 

analyses of BTEX, total petroleum hydrocarbons (TPH), and PAHs.  A summary of these results 

are listed in Table A-1 in Appendix A and indicate that ~34% of the NAPL mass was quantified 

(66% of the NAPL mass was unidentified).  Consistent with the composition of others FMGP 

NAPLs (e.g., Brown et al. 2006) the most abundant compounds in the quantified portion of the 

NAPL are naphthalene (24.6 %), 2-methylnaphthalene (13.7 %), 1-methylnaphthalene (7.5 %), 

and acenaphthene (2.9 %). 

2.2.2 Natural Oxidant Interaction 

Naturally occurring reductants and catalysts can be reactive and thus influence oxidant 

persistence. Typically, the role of the dissolved groundwater species is overshadowed by the 

aquifer solids.  Inorganic species containing iron (Fe), manganese (Mn), sulfur (S), and the natural 

organic matter (NOM) associated with the aquifer solids are of concern.  The possibility of multiple 

inorganic species, as well as a range of NOM, creates an extremely heterogeneous environment 

in which reactions may occur.  The result of the interaction between an oxidant and aquifer 

material leads to either an increase in the consumption of the oxidant by the aquifer solids, or an 

enhancement in the oxidant decomposition rate.  Since the reactive species associated with the 

aquifer solids are finite, the oxidant consumption or natural oxidant demand (NOD) is also finite. 

Once the maximum NOD is satisfied there is minimal additional oxidant aquifer material 

interaction and, thus, any additional oxidant delivered is available to interact with the contaminant. 

Conversely, an enhancement in the oxidant decomposition rate implies that there is infinite 

interaction capacity available. To capture these behavioral differences and the associated 
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underlying processes for all oxidant behavior the term natural oxidant interaction (NOI) is used 

rather than NOD.  

NOI tests were used to estimate the potential in situ interaction of persulfate and permanganate 

with non-impacted aquifer materials from three (3) representative locations.  For these NOI tests 

the oxidant mass to solids ratio ranged from 5 to 40 g/kg (nominal).  NOI tests were conducted 

for three persulfate systems: (1) unactivated persulfate, (2) chelated ferrous iron activated 

persulfate, and (3) alkaline activated persulfate. Details of the experimental procedures employed 

are provided in Appendix A (Tables A.2 and A.3).  

2.2.3 Aqueous Treatability Experiments 

Since the chemical oxidation of organic compounds occurs in the aqueous phase, experiments 

were conducted using impacted groundwater exposed to permanganate or persulfate 

(unactivated, ferrous iron activated (300 mg/L Fe(II) + 0.5 mol citric acid/mol Fe(II)), or alkaline 

activated) to determine aqueous degradation characteristics.  A suite of five (5) tests was executed 

in well-mixed 20 mL batch reactors.  Each test was performed in triplicate at a low (5 g/L) and a 

high (30 g/L) oxidant concentration in conjunction with appropriate experimental controls.  

Impacted groundwater was added to each reactor followed by the activator solution (if required) 

and then the oxidant.  Initial reactor solution volumes were adjusted with Milli -Q water as 

required ensuring the same dilution of groundwater across all tests.  Reactors were shaken gently 

by-hand daily and left in the dark at an ambient temperature of ~20 °C.  Aliquots of the solution 

were taken after a reaction period of 1, 4, 8, 15 and 30 days, and analyzed for the concentrations 

of a suite of 28 organic compounds (Table A.4 in Appendix A) and the oxidant.  The solution pH 

was also determined. 

2.2.4 Slurry Treatability Experiments 

A series of experiments were performed to capture the ability of the various oxidant systems 

(permanganate and persulfate) to degrade impacted aquifer sediments.  The impacted weathered 

limestone unit material selected for these slurry treatability experiments were opened, emptied 

onto a sterilized tray and homogenized.  Milli-Q water was added as required to improve mixing.  

Large size particles that were not suitable for this reactor design were removed by-hand during 

mixing.  Random samples from the homogenized mixture were weighted and used without 

additional alteration.  Prior to filling the reactors, five (5) sub-samples from the homogenized 

mixture were collected and used to establish the initial bulk soil concentrations.  A 75 g random 
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sample of the impacted sediments was added to a 125 mL reactor.  A 30 g/L oxidant solution 

(permanganate, unactivated persulfate, and alkaline activated persulfate) was added to achieve 

an oxidant mass to solids ratio of 30 g/kg (nominal).  All reactors were constructed in replicates 

(4), and constantly mixed on a shaker table in the dark at an ambient temperature of ~20 °C.  

Every 7 days for a 35 day period the oxidant concentration and pH were determined, and a 

random sediment sub-sample from each reactor was collected and analysed to determine bulk 

soil concentrations. If the results from a sampling episode indicated that the oxidant concentration 

was depleted, additional oxidant mass was added to achieve a solution concentration of 30 g/L. 

2.2.5 Physical Model Experiments 

For the purpose of the evaluation conducted in this study we assumed that NAPL architecture 

that is characterized as sheens, staining, tar blebs, and tar coatings have a similar architecture 

with respect to the ability of a reagent solution to interact with the NAPL.  When these NAPL forms 

are present in a permeable setting, there is a good likelihood of contact between the reagent 

solution and the NAPL.  However, when the NAPL is present as a NAPL-saturated lense, the ratio 

of NAPL surface area to volume is significantly smaller and hence the reagent contact is at the 

surface of the NAPL and the ability to access NAPL constituents is more problematic.  This ability 

decreases with increases in the thickness of the NAPL saturated lense or zone.  The series of 

small-scale physical model experiments performed were designed with the intention to capture 

the two NAPL architecture end-points: blebs and tar coatings, and saturated lenses.  

The physical model was a 7.7 cm long flow-through chamber with a cross-sectional area of 8.37 

cm2 (3.1 x 2.7 cm) (Figure 2.1).  The influent and effluent ends of the chamber were packed with 

a 0.8 cm long zone of glass beads (diameter 1.6 mm) and a #20 stainless steel mesh to act as a 

flow distributor.  The remaining 6.1 cm length was packed with impacted aquifer sediments. The 

chamber was sufficiently filled that when the lid was fastened it compressed the chamber 

contents, ensuring a seal between the top of the chamber contents and the bottom of the lid (i.e., 

minimized short-circuiting).  For the "bleb" system, impacted materials were packed gradually in 

several 0.5 cm thick layers into the central portion of the physical model. For the "saturated lense" 

system, impacted samples were emptied directly into the bottom of the physical model to a depth 

of ~1.5 cm and the upper ~1.5 cm portion of the chamber was then packed with non-impacted 

material from the same borehole. During the filling process, five sub-samples were taken and 

used to establish the initial bulk soil concentrations. This system was then saturated with Milli-Q 

water and allowed to equilibrate for 7 days.  
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Following the 7-day equilibration period, flow was initiated at a nominal rate of 0.017 mL/min 

(approximate linear velocity of 10 cm/day). A peristaltic pump was connected to the influent end 

and a constant hydraulic head control was established at the outlet end. An in-line sampling 

system allowed aqueous samples to be collected from the effluent as required. A tracer test using 

NaBr was performed on each model system to ensure hydraulic consistency and packing. 

Following the tracer test, three oxidant injection episodes were performed. Between each 

episode, Milli-Q water was used to remove remnant oxidant from the system and facilitate the 

collection of aqueous effluent samples for analysis of organic compounds.  Specifically, each 

physical model system was operated in the following sequence of steps:  

(1) One PV of de-gassed Milli-Q water was injected to displace the pore water and allowed to 

equilibrate in the system for 7 days. 

(2) Three to four PVs of 100 mg/L de-gassed NaBr solution were injected. During the tracer 

test, effluent samples were collected every 4 hours. 

(3) At the end of the tracer test, an effluent sample was collected to establish a baseline effluent 

organic compound concentration signature. 

(4) Two PVs of oxidant (permanganate or persulfate) at a concentration of 30 g/L were injected. 

During each oxidant injection episode, the effluent was sampled at least 4 times for EC, pH, 

and oxidant concentration. 

(5) Three PVs of de-gassed Milli-Q water were injected. The system effluent was monitored for 

electrical conductivity (EC), pH and oxidant concentration during the initial 2 PVs to ensure 

remnant oxidant was removed from the system. During the third PV, an effluent sample was 

collected to determine the concentration of organic compounds in the effluent. 

(6) Steps (4) and (5) were then repeated twice more. 

(7) When the experimental test was concluded, the chamber lid was removed and three sub-

samples equalled spaced along the length of the chamber were collected to establish post-

treatment bulk soil concentrations. For the “saturated lense” system, the sub-samples were 

collected only from the lower ~1.5 cm portion of the chamber that contained impacted 

material.  

Since the system PV and porosity was unknown at the start of each experiment, a nominal PV of 

19.33 mL was used.  This nominal PV was estimated from a porosity of 0.3 determined from a 

set of preliminary experiments, and the packed chamber volume of 64.45 mL (7.7 cm x 2.7 cm x 

3.1 cm).  Four physical systems were constructed for the "bleb" architecture, and four systems 

for the "saturated lense" architecture.  Permanganate (30 g/L) was used for two "bleb" systems 
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(identified as PM-bleb-1 and PM-bleb-2), and two "saturated lense" systems (identified as PM-

lense-1 and PM-lense-2). Persulfate (30 g/L) was used for the remaining two "bleb" systems 

(identified as PS-bleb-1 and PS-bleb-2), and two "saturated lense" systems (identified as PS-

lense-1 and PS-lense-2).  Based on the results from the aqueous and slurry batch experiments, 

persulfate activator systems were not investigated.  In addition, two systems were constructed as 

experimental controls and identified as CO-bleb and CO-lense.  The experimental controls 

received only de-gassed Milli-Q water. 

2.2.6 Reagents and Analytical Methods 

Potassium permanganate (KMnO4, EM Science), sodium persulfate (Na2S2O8, Sigma-Aldrich 

Inc.), sodium hydroxide (NaOH, Fisher Scientific), ferrous sulfate (FeSO4•7H2O, Sigma-Aldrich), 

sodium bromide (NaBr, Sigma-Aldrich), citric acid (C6H8O7, Sigma-Aldrich), and dichloromethane 

(DCM, EMD Millipore) were all reagent grade and used as received.  

For analysis of the organic components in the aqueous phase, a 5 mL sample was mixed with 14 

mL of water in a 20 mL vial. This was followed immediately by the addition of 1.0 mL of DCM 

(containing internal standards metafluoro-toluene (MFT) and fluoro-biphenyl (FBP) at 25 mg/L). 

The vial was quickly resealed and agitated on its side at 350 rpm on a platform shaker for 20 min. 

After shaking, the vial was inverted and the phases were allowed to separate for 30 min.  

Approximately 0.7 mL of the DCM was removed from the inverted vial with a gas tight glass 

syringe through the Teflon septum. The solvent was placed in a 2.0 mL Teflon sealed autosampler 

vial for injection into the gas chromatograph (GC).  For the analysis of the organic components in 

the aquifer sediment, an ~8 g sub-sample was added directly to DCM and shaken for 18 hours. 

Samples were allowed to settle and 1 mL of the DCM was transferred to a 2.0 mL autosampler 

vial and crimp sealed with a Teflon cap.  All aqueous and sediment samples were analyzed using 

a HP 5890 capillary GC, a HP7673A autosampler, and a flame ionization detector. Three (3) mL 

of methylene chloride was injected in splitless mode (purge on 0.5 min, purge off 10 min) onto a 

0.25 mm x 30 m length, DB5 capillary column with a stationary phase film thickness of 0.25 µm. 

The helium column flow rate was 2.0 mL/min with a make-up gas flow rate of 30 mL/min. The 

injection temperature was 275 οC, detector temperature was 325 oC and initial column oven 

temperature was 35 oC held for 0.5 min, then ramped up at 15 oC/min to a final temperature of 

250 oC and held for 2 min. A GC run time was 16 min. Data integration was completed with a SRI 

Model 302 Peak Simple chromatography data system. The method detection limits (MDLs) for 

each compound in the aqueous and sediment phases are presented in Table A.4 in Appendix A.  
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Using these analytical methods we are able to track ~27% of the compounds in the NAPL mass, 

and the behaviour of the compounds that comprise the other ~70% of the NAPL mass is unknown. 

Permanganate concentration was determined by spectrophotometry (Thermo Scientific, 

GENESYS 10S UV-Vis) at 525 nm (MDL of 1.3 mg/L). The spectrophotometer was calibrated 

prior to each sampling episode with a calibration curve (1 to 100 mg/L) generated using 

standardized solutions.  Persulfate analysis was performed following Liang et al. (2008). Bromide 

(Br-) was analyzed using a Dionex ICS2000 Ion Chromatograph equipped with an ion eluent 

generator and conductivity detector. A 25-µL sample was injected using a Dionex AS-40 

Autosampler onto a Dionex Ion Pac AS11-HC (4 × 250 mm) column. The mobile phase was 30 

mM potassium hydroxide (KOH) at a flow rate of 1.0 mL/min. The chromatograph was obtained 

using Dionex Chromeleon software and the MDL was 0.5 mg/L.  An Orion pH meter (model 290A) 

and EC meter (model A122) were used to measure pH and electrical conductivity. 

2.2.7 Screening Model 

To explore the temporal expectations for the treatment of FMGP residuals by chemical oxidants, 

a single-cell screening model was employed.  In this system, a specified mass and composition 

of NAPL is assumed to be present within the sediment, and the aqueous phase is presumed 

completely mixed.  The inlet oxidant concentration is prescribed and the effluent concentrations 

of the known soluble constituents are estimated from mass balance considerations.  The objective 

of this idealized modeling effort was to provide insight into treatment expectations over longer 

time scales and under different operating conditions then those employed in the physical model 

experiments.  It was not our intent to simulate in situ conditions, but rather to investigate what 

might be possible under ideal circumstances and hence yield the most optimistic predictor of field 

behavior. This screening model was deemed an appropriate tool to satisfy this requirement. 

The mass balance of the individual soluble NAPL constituents is given by 
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(2.3) 

and 

(2.4) 

where Ck is concentration of the kth constituent, tr is the system hydraulic residence time, kox,k is 

the second-order reaction rate coefficient with respect to the oxidant for the kth constituent, Cox is 

the oxidant concentration, λk is the lumped mass transfer rate coefficient for the kth constituent, 

Ck
eff  is the effective saturation of the kth constituent, Mk is the NAPL mass associated with the kth 

constituent, θ is the system porosity, Vs is the volume of the system, xk is the mole fraction of the 

kth constituent, ɣk is the activity coefficient of the kth constituent, Sk is the solubility of the kth 

constituent, f.S and f.L are the fugacity of the solid and liquid of the kth constituent, Ls is the system 

length, v is velocity, and q is Darcy flux.  Lee et al. (1992) investigated the aqueous equilibrium 

concentration of PAHs within coal tars and found that a modified form of Raoult’s law (Eq. 2.3) is 

an reasonable estimation of effective concentration.  The associated mass balance for the oxidant 

is given by 

 

(2.5) 
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C  is the inlet oxidant concentration, βk is the stoichiometric mass ratio defined as the 

mass of oxidant consumed per mass of constituent degraded, and NOIΓ  is the rate of oxidant mass 

lost to the natural oxidant interaction sink reactions.  Details of a representative NOIΓ  expression 

for permanganate are provided by Xu and Thomson (2009) and for persulfate by Sra et al. (2010). 

Eqs. 2.1 and 2.5 are coupled and must be solved in association with Eqs. 2.2 and 2.3 numerically.  

The following attributes are inherent is this screening model: (i) a completely mixed system (i.e., 

no preferential flow pathways and infinite dispersion); (ii) mineralization of organic compounds; 

(iii) the generation of by-products (e.g., manganese oxides, carbon dioxide) are ignored; and (iv) 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Batch Experiments 

The NOI profiles (average of replicates) for the selected un-impacted aquifer materials are 

presented in Figure A.3 in Appendix A.  For the three aquifer materials tested, the maximum 

observed consumption of permanganate (expressed as NOD) after 30 days of exposure ranged 

from of 2 to 5 g/kg.  The system pH remained stable between 8 and 9.  The permanganate NOD 

manifested in these batch experiments as an initial rapid increase until Day 7 (NOD7) followed by 

a minor increase until Day 30 as it asymptotically approached NODmax (Figure A.3(a) in Appendix 

A).  The variations between the six series of experiments indicated that, consistent with Xu and 

Thomson (2009), a higher initial permanganate concentration as well as oxidant to solids mass 

ratio (Mox/s) yielded a higher NODmax and a faster permanganate consumption rate. 

For all three of the persulfate systems evaluated (Figures A.3(b-d) in Appendix A), there was very 

little loss of persulfate mass (< 10%) after the 30 day reaction period except for aquifer materials 

from one borehole location (identified as Sample 1) where the maximum change in persulfate 

concentration was ~7 g/L (17.5% decrease).  The stability of persulfate in the presence of these 

aquifer materials implies that there is minimal NOI, and hence persulfate should be persistent in 

situ.  

The data generated from the aqueous treatability experiments indicated that all of the 17 dissolved 

phase compounds detected in the impacted groundwater were readily degraded with persulfate 

or permanganate (except for benzene) to < MDL by Day 10 for the high (30 g/L) oxidant 

concentration systems (see Figure 2.2 for naphthalene and acenaphthene).  As expected, the 

observed reaction rates for the dissolved phase compounds for the low (5 g/L) oxidant 

concentration systems were slower.  While the oxidant concentration was in excess in all the high 

oxidant concentration systems, oxidant consumption followed the order: iron-activated persulfate 

> permanganate > persulfate ≅ alkaline-activated persulfate.  Except for benzene, the order of 

reactivity of the remaining 16 quantified organic compounds was: iron-activated persulfate ≅ 

permanganate > persulfate ≅ alkaline-activated persulfate.  Efforts were undertaken to determine 

a complete set of kinetic parameters (e.g., second-order reaction rate coefficients) for all 17 

compounds from the data set assembled; however, due to limited temporal data only sporadic 

values could be estimated. 



18 
 

Temporal oxidant and the bulk soil concentration profiles for naphthalene and acenaphthene from 

the slurry experimental systems are shown in Figure 2.3.  Although all attempts were made to 

homogenize the impacted materials prior to adding them to the reactors, there was some 

variability in the initial bulk soil concentrations of subsamples collected from the “stock” supply of 

impacted sediments and those emplaced in each reactor.  The oxidant mass in the permanganate 

slurry reactors was replenished at Day 7 and Day 14, while the oxidant mass in the unactivated 

persulfate and alkaline activated persulfate slurry reactors was replenished only at Day 7. 

Following replenishment, permanganate continued to be depleted while the concentration of 

persulfate remained elevated.  Compared to either of the persulfate systems explored, 

permanganate was more effective in treating all the target PAHs (e.g., naphthalene, 1-

methylnaphthalene, 2-methylnaphthalene, and acenaphthene) over the 35-day reaction period.  

For the permanganate, unactivated persulfate, and alkaline activated persulfate systems it was 

estimated that 95%, 45% and 30% of the initial mass quantified was degraded, respectively.  The 

overall bulk stoichiometry for these slurry experiments was estimated as the ratio of 

permanganate or persulfate consumed to the quantified mass degraded.  This estimate varied 

from 100 g-KMnO4/g for the permanganate system and 95 g-NaS2O8/g for the unactivated 

persulfate system to 150 g-NaS2O8/g for the alkaline activated persulfate system.  These 

stoichiometric values are consistent in magnitude with those reported by Sra et al. (2013) for the 

total petroleum hydrocarbon (TPH) of dissolved gasoline degraded by various persulfate systems.  

This data set provides insight into the ability of the investigated oxidant systems to destroy mass 

present in impacted aquifer materials under ideal conditions (i.e., well mixed, excess oxidant, long 

contact time) and hence are the most optimistic. 

2.3.2 Physical Models 

After 1 to 2 PVs of NaBr injection, the effluent concentration of bromide reached ~50% of the 

injected concentration (100 mg/L), and after 3 to 4 PVs reached 100% for all physical models.  

Based on the tracer test breakthrough profiles the effective porosity for CO-bleb and CO-lense 

was 0.26, and 0.38 respectively, and ranged from 0.27 to 0.38 for the treatment bleb physical 

models, and from 0.33 to 0.36 for treatment lense physical models. 

For the control systems (CO-bleb and CO-lense) the effluent pH was steady between 7.5 and 8, 

and the EC was minimal (< 300 μS/cm) as expected.  The concentrations of the detectable organic 

compounds in the effluent from both control systems were relatively constant except for a notable 

decrease in the concentration of benzene.  The final bulk soil concentrations were essentially 
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unchanged from the initial soil concentrations except for benzene.  Benzene was quickly depleted 

from the system as a result of a higher solubility and lower initial soil concentration compared to 

other compounds in the system. 

For both permanganate systems (PM-bleb and PM-lense) the average naphthalene and 

acenaphthene effluent concentrations following each oxidant injection episode (~2 PVs/episode) 

decreased (Figure 2.4(a, b)).  In contrast, the average naphthalene and acenaphthene effluent 

concentrations following each oxidant injection episode (~2 PVs/episode) for the persulfate 

systems either remained relatively constant (PS-bleb) or increased (PS-lense) (Figure 2.4(c, d)).  

These trends were generally consistent for the other monitored compounds except for benzene 

which remained relatively constant following each persulfate injection episode in the PS-bleb and 

PS-lense systems. 

The average maximum permanganate effluent concentration was ~15 g/L during the first injection 

episode and increased to ~17 g/L during the second and third injection episodes for the PM-bleb 

physical models, and was ~17 g/L during the first injection episode and ~20 g/L during the second 

and third injection episodes for the PM-lense systems.  The average maximum persulfate effluent 

concentration for the PS-bleb physical models was ~23 g/L during the first injection episode and 

increased to ~25 g/L during the second and third injection episodes.  For the PS-lense physical 

models the average maximum persulfate effluent concentration was ~25 g/L for all injection 

episodes.  The significant reduction of the effluent permanganate or persulfate concentration to 

near the MDL during the injection of ~3 PVs of de-gassed Milli-Q water (see Figure A.4 in 

Appendix A) indicated that remnant oxidant was removed from the experimental system prior to 

collection of an effluent sample for analyses of organic compounds.  The effluent EC profiles were 

consistent with the permanganate or persulfate effluent profiles.  

The effluent pH for the PM-bleb physical models increased from 7.3 to 9.5 with minor decreases 

when permanganate was present in the system.  In contrast, the effluent pH for the PM-lense 

physical models oscillated between 7.6 and 9.4. The effluent pH remained relatively stable at 7.9 

for the PS-belb and 7.6 for the PS-lense systems. 

An evaluation of the initial and final bulk soil concentration data indicated that for the PM-bleb 

system there was a statistically significant reduction in the total quantifiable mass of ~30%.  This 

reduction was a result of significant reductions in the concentration of naphthalene, 1-

methylnaphthalene, 2-methylnaphthalene, and acenaphthene. While the PS-bleb system also 

experienced a decrease in the total quantifiable mass (~10%), this observed magnitude was not 
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statistically significant at the 5 % level of significance.  The high variability in both the initial and 

final bulk soil concentration data for the PM-lense and PS-lense systems prevented any 

conclusions relating to the mass degraded to be drawn. It is suspected that the inherent variability 

in the soil sub-sampling procedure used and the contaminant heterogeneity present in the lense 

physical models was the root cause. 

Oxidant mass balance calculations for the bleb systems indicated that 50 and 17 % of the 

permanganate and persulfate mass injected was consumed, respectively; while for the lense 

systems 35 and 19 % of the permanganate and persulfate mass injected was consumed, 

respectively. Hence, while persulfate consumption was similar in the bleb and lense systems, 

permanganate consumption in the bleb systems was more significant and can be attributed to 

higher NAPL-aqueous phase contact area. During the 3 oxidant injection episodes (6 PVs total), 

elevated oxidant concentrations (> 5 g/L) were present for a total residence or contact time of ~8 

days.  The oxidant resident time was controlled by the flow rate which was established to yield a 

moderate linear velocity of 10 cm/day. It was not the objective of these physical model 

experiments to degrade all the mass present but rather to determine treatment expectations under 

realistically aggressive conditions.  If the intent was to degrade all the mass present then ~50 g 

of oxidant would have been required to degrade 100 % of the initial quantified mass in either the 

bleb or lenses system. This oxidant demand estimate is based on a stoichiometry ~100 g-

oxidant/g of the initial quantified mass estimated from the slurry experiments. The bulk soil 

concentration of the aquifer material used in the lense system was about 100 % larger than that 

using in the bleb system but only half of the physical model was filled with impacted material.  

Each physical model received a total of ~5 g of oxidant, or about 10 % of the stoichiometric 

requirement delivered in 6 PVs. A typical injection event at the field-scale is less than 1 PV (Crimi 

et al., 2011) so it would be a significant effort involving multiple mobilizations over several months 

to deliver this stoichiometric requirement. 

Overall the data from these experiments indicate that the behavior of the physical models with 

the lense architecture was similar to those with the bleb architecture. Permanganate outperformed 

persulfate in terms of impacting a change to the system effluent concentration and bulk soil 

concentration; albeit this change was minor (there was an insignificant change for persulfate).  

Despite the observation of better efficiency in the permanganate systems, the total mass removal 

was low for both systems and hence the benefit of flushing 6 PVs of permanganate or persulfate 

at a concentration of 30 g/L under the physical model operating conditions was minimal. 
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2.3.3 Screening Model Simulations 

2.3.3.1 Parameterization 

Consistent with the physical model dimensions, the system length and cross-sectional area were 

set equal to 7.7 cm and 8.37 cm2 respectively.  Overall this screening model was able to capture 

the hydraulic and solute transport behaviour observed in the small-scale physical model systems 

well (see Figure A.5 in Appendix A). The effective porosity values estimated were: 0.28 for PM-

bleb, and 0.35 for PM-lense, PS-bleb, and PS-lense.  These porosity values are close to the 

assumed value of 0.3 which was used for the initial nominal PV calculation.  The system velocity 

was assigned a value of 10 cm/day which is consistent with the average flow rate, cross-sectional 

area and effective porosity used for the physical model systems. 

To reduce model complexity, 22 representative organic compounds (Table 2.2) were extracted 

from the NAPL analytical results (Table A.1 in Appendix A) and used to represent the initial NAPL 

composition. These 22 compounds represent 29% of the NAPL mass and the remaining bulk 

NAPL mass include some identified compounds (~5%) and the unidentified fraction (~66%). 

NAPL saturation for each physical model system was estimated from the initial bulk soil 

concentration data, bulk density and NAPL composition.  The average NAPL saturation values 

estimated were: 6.4% for PM-bleb, 6.6% for PM-lense, 4.3% for PS-bleb, and 7.9% for PS-lense. 

Representative NAPL constituent solubility and fugacity data were obtained from the literature 

(Lide 1999; Eberhardt & Grathwohl 2002; Thomson et al. 2008; Peters et al. 1997). 

Since higher treatment efficiency was observed in the physical model systems using 

permanganate, we choose to focus exclusively on permanganate in these screening model 

simulations.  Literature values (Forsey et al., 2010; Forsey, 2004; Thomson et al., 2008) for the 

second-order oxidant reaction rate coefficients for permanganate were used for most of the 22 

representative organic compounds (Table 2.2).  Missing second-order oxidant rate coefficient 

values were assumed based on structure and trends observed from the aqueous batch 

experiments. Theoretical values were used for the permanganate/organic compound 

stoichiometry mass ratio (β) (Table 2.2). 

The lumped mass transfer rate coefficient (λ) captures the complex dissolution process within the 

system reflecting, among other factors, the NAPL architecture. This parameter was determined 

through a calibration procedure that involved the minimization of the sum-of-squares of the 

difference between the observed and simulated baseline concentrations for first sampling episode 
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(Step 3) for the four physical model systems explored (see Figure A.6 in Appendix A for an 

example scatter plot).  The average estimated value for λ was 0.09/day for the PM-bleb systems, 

and 0.14/day for PM-lense system.  The higher λ value for the lense system is presumably due 

to the higher NAPL saturation which results in more NAPL-water contact area and higher 

dissolution rate. 

The observed tracer test behaviour in conjunction with the initial NAPL saturation estimates and 

the lumped mass transfer coefficient values indicate that, despite all attempts to create two distinct 

NAPL architectures, both the bleb and lense systems were very similar. This is consistent with 

the experimental observations. 

2.3.3.2 Benchmarking 

The parameterized model was used to simulate the two permanganate physical model systems 

(PM-bleb, and PM-lense).  The overall mass of permanganate consumed required adjustment so 

that the simulated effluent permanganate concentration profiles matched the observed effluent 

permanganate concentration profiles.  This adjustment involved scaling the mass of oxidant 

consumed at each model time step by a factor of 180.  This scaling resulting in ~1.3 g of additional 

permanganate being consumed likely as a result of NOD reactions (~0.8 g), unsuitable 

permanganate/organic compound stoichiometry mass ratios used, and oxidation of other organic 

compounds that were not considered in the model.  Figures 2.5 and 2.6 show the simulated 

effluent concentrations for permanganate and five representative organic compounds (benzene, 

naphthalene, 1-methylnaphthalene and 2-methylnaphthalene, and acenaphthene) for the PM-

bleb and PM-lense systems, respectively. The concentration of all the organic compounds initially 

decrease from equilibrium conditions as mass is being removed from the system by washout until 

the first permanganate injection episode occurs at 6 PVs. When permanganate is present in the 

system all the reactive compounds are degraded to < MDL and then rebound once the injection 

solution is switched to Milli-Q water. Benzene is not reactive with permanganate and hence 

follows a steady dissolution profile. Since average parameter values were used for the bleb and 

lense systems there is a slight mismatch in timing compared to the effluent observations. The 

developed screening model was able to capture the general behavior (trends and concentration 

magnitude) observed in the small-scale physical model experiments.  
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2.3.3.3 Long-Term Simulations and Sensitivity 

To investigate long-term treatment expectations the constrained screening model was used to 

simulate system behaviour over a 10-year period following treatment.  The following scenarios 

were performed:  

i. Baseline Scenario - representative of the PM-bleb system with 6 PVs of permanganate (30 

g/L) injected in 3 episodes. 

ii. No-treatment/Natural Dissolution Scenario - representative of the CO-bleb system. 

In addition, the sensitivity of the Baseline Scenario to changes in pore velocity, injected oxidant 

concentration, mass transfer rate coefficient, and NAPL saturation were investigated.  In 

particular, the following simulations were performed (the underlined values represent baseline 

conditions): 

i. Pore velocity variation (1, 10 and 100 cm/day)  

ii. Oxidant concentration variation (30 vs 100 g/L)  

iii. Mass transfer rate coefficient (λ) variation (0.09, 0.18, 1.8 /day)  

iv. NAPL saturation (Sn) variation (0.1, 1, 6.4 %)  

Figure 2.7 shows the long-term simulation results for the PM-bleb system with and without 

treatment.  As expected the organic compound concentrations are reduced temporality as a result 

of the injection of 6 PVs of permanganate and then rebound to a profile that is essentially 

coincident with a no-treatment/natural dissolution scenario.  These results indicate that injecting 

6 PVs of permanganate which is considered an aggressive approach will not materially affect the 

long-term behavior of dissolved phase concentrations relative to the No-treatment Scenario. 

The sensitivity of the Baseline Scenario effluent concentrations to changes in pore velocity (1, 10 

and 100 cm/day) is presented in Figure 2.8.  The mismatch in timing of the oxidant injection 

episodes results from the different durations for each PV (i.e., 7.7, 0.77, and 0.077 day).  The 

pore velocity directly affects the contact or system residence time.  For the lower velocity of 1 

cm/day the permanganate effluent concentration reaches a maximum of ~0.04 g/L indicating that 

most of the permanganate mass has been consumed. However, as a result of the increased 

residence time the effluent concentrations of the organic compounds for the velocity of 1 cm/day 

are ~5 times higher than those generated from the Baseline Scenario.  The pore velocity of 100 

cm/day yielded the highest effluent permanganate concentration and the lowest effluent organic 

compound concentrations as a result of the lower residence time.  The mass degraded by 
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permanganate for a velocity of 1 cm/day is 2 and 22 times larger than the mass degraded for a 

velocity of 10 and 100 cm/day, respectively.  The total PVs flushed during 10 years for a velocity 

100 cm/day is 10 and 100 times higher than for a velocity of 10 and 1 cm/day. However, after 10 

years, the effluent organic compound concentrations have not changed significantly with 35, 33, 

and 24% of the initial mass quantified removed for a velocity of 100, 10, and 1 cm/day, 

respectively.  Only 0.04, 0.3, and 1.2% of the total mass loss from the system was degraded by 

permanganate for a velocity of 100, 10, and 1 cm/day, respectively.  Hence, changes in the 

system residence time did not significantly increase the mass removed. 

The sensitivity of the of the Baseline Scenario effluent concentrations to changes in the injected 

permanganate concentration is presented in Figure 2.9. While the effluent permanganate 

concentrations are significantly different, the effluent organic compound concentrations are 

similar over the 10-year simulation period. This confirms that the Baseline Scenario was not 

permanganate mass depleted nor would a higher permanganate concentration increase mass 

removal.  The simulation results show that if oxidizable organic compounds are present in the 

aqueous phase that there is sufficient permanganate mass in the system to degrade them.  

As expected, by increasing the lumped mass transfer rate coefficient the effluent permanganate 

concentration decreases and the effluent organic compound concentrations increase (Figure 

2.10).  Increasing the lumped mass transfer rate coefficient increases the dissolution rate and 

allows more mass of organic compounds to be transferred into the aqueous phase.  A lumped 

mass transfer rate coefficient of 1.8 /day significantly influences the long-term behavior of 

dissolved phase concentrations and after 1000 days the effluent concentrations of organic 

compounds significantly decrease except for benzene which is depleted much faster.  After 10 

years, 33, 48, and 76% of the initial mass quantified was removed for a lumped mass transfer 

rate coefficient of 0.09, 0.18, and 1.8 /day, respectively. Only 0.3, 0.4, and 0.5% of the total mass 

loss from the system was degraded by permanganate for a lumped mass transfer rate coefficients 

of 0.09, 0.18, and 1.8 cm/day, respectively.  

The sensitivity of the Baseline Scenario effluent concentrations to the changes in the initial NAPL 

saturation is presented in Figure 2.11. The effluent permanganate concentration is identical; 

however, the long-term effluent organic compound concentrations are influenced for the initial 

NAPL saturation < 1%. After 10 years, 33, 71, and 94% of the initial mass quantified was removed 

for a NAPL saturation of 6.4, 1.0, and 0.1%, respectively.  Approximately 0.3, 1.0, and 7.2 % of 
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the total mass loss is degraded by permanganate for an initial NAPL saturation of 6.4, 1.0, and 

0.1% respectively. 

These sensitivity results indicate that scenarios that involved a lower velocity (1 cm/day compared 

to 10 cm/day) and a higher oxidant concentration (100 g/L compared to 30 g/L) were unable to 

significantly alter the long-term effluent profiles of the organic compounds. Alternatively, 

increasing the lumped mass transfer rate coefficient from 0.09 to 1.8 can affect the long-term 

behavior of dissolved phase concentrations. These results provide additional evidence that 

treatment efficiency is mass transfer limited in this system. The scenarios investigated clearly 

indicate that chemical oxidant treatment (6 PVs at 30 g/L) may be effective for regions where 

mass is present at low NAPL saturations (< 1%). 

2.4 SUMMARY 

The focus of the research effort reported in the paper was to investigate the performance of 

persulfate and permanganate to degrade FMGP residuals in a dynamic flow system 

representative of in situ conditions, and to explore treatment expectations and the potential long-

term system behavior.  The key findings determined are: 

 Approximately 29% of the NAPL mass was quantified (72% unidentified, labeled as bulk 

NAPL); hence our understanding of the behavior of the bulk NAPL mass is uncertain. However, 

based on analytical data collected the bulk NAPL is generally considered to consist of low 

solubility components and as a result is not readily treated by chemical oxidants. 

 The dissolved phase components were readily treatable with persulfate or permanganate 

(except for benzene) in well-mixed aqueous and slurry batch systems. This demonstrates that 

when organic components are dissolved and in contact with the oxidant they can be readily 

degraded.  

 As a result of the well-mixed conditions employed, the batch experiment results provide the 

most optimistic outcome and can be used to bound the expectations for the effectiveness of 

chemical oxidation of MGP residuals. 

 The physical model experiments were performed to evaluate the effects of 6 PVs of oxidant 

treatment (3 injection episodes at 2 PVs/episode) by a chemical oxidant. This is considered an 

aggressive ISCO approach.  Permanganate outperformed persulfate in terms of impacting a 

change to the system effluent concentration and bulk soil concentration. Despite this 

observation, the total mass removal was low for both systems and hence the benefit of flushing 
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6 PVs of permanganate or persulfate at a concentration of 30 g/L under the physical model 

operating conditions was minimal. 

 The screening model was used to estimate long-term expectations of dissolved phase 

concentrations following ISCO treatment. The model input parameters were constrained by 

literature data and the physical model experimental results. The model projected the following, 

after treatment of blebs or lenses of NAPL with 6 PVs of oxidant: 

- The results from scenarios that involved a NAPL saturation of between approximately 4 and 

8% illustrated that, following the oxidant injection episodes, the long-term effluent profile of 

representative organic compounds were unaffected. 

- Long-term simulation results over a 10-year period indicate that representative organic 

compounds are reduced temporality as a result of the oxidant applications and then rebound 

to a profile that is coincident with a natural dissolution / no-treatment scenario. 

- Scenarios that involved a slower velocity (1 cm/day compared to 10 cm/day) and higher 

oxidant concentration (100 g/L compared to 30 g/L) were unable to significantly alter the 

long-term concentrations of representative organic compounds. 

- The results from scenarios that involved a lower initial NAPL saturation of <1% illustrated 

that the long-term effluent profiles of the representative organic compounds were affected. 

- By increasing the lumped mass transfer rate coefficients (from 0.09 to 1.8 /day) the long-

term effluent profiles of the representative organic compounds were affected and after ~3 

years were < MDL. This evidence is strongly suggestive that successful treatment with 

chemical oxidants is mass transfer limited. 
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Figure 2.1: Schematic of physical model chamber with a length of 7.7 cm and cross-sectional 

area of 8.37 cm2 (3.1 cm x 2.7 cm). The influent and effluent ends were packed with a 0.8 cm 

long zone of glass beads.  The interior 6.1 cm long zone was packed with impacted aquifer 

materials. 
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Figure 2.2: Temporal concentration profiles of (a, c) naphthalene and (b, d) acenaphthene in 

impacted groundwater exposed to various oxidant systems (permanganate (PM), persulfate (PS), 

iron activated persulfate (FePS), and alkaline activated persulfate (AlkPS)) at high (30 g/L) and 

low (5 g/L) concentrations. The error bars represent the standard deviation from triplicate reactors. 
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Figure 2.3: Temporal concentration profiles of (a) oxidant, (b) naphthalene, and (c) acenaphthene 

from the slurry experiments.  The initial oxidant mass to solids ratio was 30 g/kg for the persulfate 

(PS), permanganate (PM), and alkaline activated persulfate (AlkPS) systems.  The initial oxidant 

concentration was 30 g/L for all systems. The error bars represent the standard deviation from 

four replicates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Effluent concentrations for naphthalene (●; left axis) and acenaphthene (■; right axis) 

from the (a) PM-bleb, (b) PM-lense, (c) PS-bleb and (d) PS-lense physical model experiments. 

Each data point represents the average from the duplicate physical models.  The shaded bands 

represent the average PV intervals when permanganate or persulfate was injected into each 

physical model. 
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Figure 2.5: Simulated effluent concentrations for permanganate and five representative organic 

compounds (benzene, naphthalene, 1-methylnaphthalene and 2-methylnaphthalene, and 

acenaphthene) for PM-bleb systems. Also shown are observed effluent concentrations. (Note: 

initial equilibrium concentrations were assumed in the simulations). 

 

 

 

 

 

 

 

 

 

Figure 2.6: Simulated effluent concentrations for permanganate and five representative organic 

compounds (benzene, naphthalene, 1-methylnaphthalene and 2-methylnaphthalene, and 

acenaphthene) for PM-lense systems. Also shown are observed effluent concentrations. (Note: 

initial equilibrium concentrations were assumed in the simulations). 
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Figure 2.7: Simulated long-term effluent concentrations for permanganate and five representative 

organic compounds (benzene, naphthalene, 1-methylnaphthalene and 2-methylnaphthalene, and 

acenaphthene) for the PM-bleb system with and without treatment. Also shown are observed 

concentrations. (Note: initial equilibrium concentrations were assumed in the simulations). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Sensitivity of the simulated long-term effluent concentrations for permanganate and 

five representative organic compounds (benzene, naphthalene, 1-methylnaphthalene and 2-

methylnaphthalene, and acenaphthene) for the PM-bleb system to changes in pore velocity. 

(Note: initial equilibrium concentrations were assumed in the simulations).  
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Figure 2.9: Sensitivity of the simulated long-term effluent concentrations for permanganate and 

five representative organic compounds (benzene, naphthalene, 1-methylnaphthalene and 2-

methylnaphthalene, and acenaphthene) for the PM-bleb system to changes in oxidant (Note: 

initial equilibrium concentrations were assumed in the simulations). 

 

 concentration.  

 

 

 

 

 

 

 

 

Figure 2.10: Sensitivity of the simulated long-term effluent concentrations for permanganate and 

five representative organic compounds (benzene, naphthalene, 1-methylnaphthalene and 2-

methylnaphthalene, and acenaphthene) for the PM-bleb system to changes in mass transfer rate 

coefficient. (Note: initial equilibrium concentrations were assumed in the simulations).  
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Figure 2.11: Sensitivity of the simulated long-term effluent concentrations for permanganate and 

five representative organic compounds (benzene, naphthalene, 1-methylnaphthalene and 2-

methylnaphthalene, and acenaphthene) for the PM-bleb system to changes in NAPL saturation. 

(Note: initial equilibrium concentrations were assumed in the simulations). 
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Table 2.1: Summary of published bench-scale studies which have used either persulfate or permanganate to degrade FMGP 

residuals. 

 

 

  

Source
Experimental 

System
Reaction time or PVs Material Organic Concentration Oxidant System(s) Oxidant Dose Removal in soil [%]

This study
batch

1
,           

physcial model

batch: 5 weeks, physcial 

model: 6 PVs 

FMGP impacted 

aquifer material

BTEX = 0.02 & PAHT  = 3.54 g/kg soil          

(23 compounds)
10

30 g/L permanganate, 30 g/L persulfate 

and 30 g/L alkaline activated persulfate 

batch:~8.5 g oxidant/g PAH,             

physical model:~10 g oxidant/g PAH 

permanganate batch:~95% of PAHT, persulfate 

batch:~70% of PAHT,        physical model: no 

significant PAH removal

Peng et al. (2016) batch
2 120 min spiked soil PAHT

11
 = 6.87 g/kg (20 compounds)

50 g/L ultrasound-heat-activated persulfate 

(80 
ο
C)

~29 g oxidant/g PAH  ~85% of PAHT

Cassidy et al. (2015) batch
3 1 week FMGP impacted soil

 BTEX = 0.58 & PAHT = 3.06 g/kg soil        

(18 compounds)
36.6 g/L alkaline activated persulfate ~5 g oxidant/g PAH 55% of BTEX & 64% of PAHT

Wang et al. (2015) batch
4 3 hr coal tar pitch PAHT = 76.50 g/kg (7 compounds) 31.6 g/L permanganate ~2 g oxidant/g PAH 62.5% of carcinogenicity removed

Hauswirth et al. (2014) column 52 PVs FMGP impacted soil PAHT
12

 = 1.99 g/kg (25 compounds) 50 g/L  persulfate & 0.2 M NaOH ~330 g oxidant/g PAH 53% of PAHT

Usman et al. (2012) batch
5 1 week FMGP impacted soil PAHT = 1.3 g/kg soil (16 compounds) iron-activated persulfate (molar ratio 1:1) not reported no PAH removal 

Ferrarese et al. (2008) batch
7 until consumption of 

oxidant
canal sediment PAHT = 2.8 g/kg soil (16 compounds) 

158 g/L permanganate, and 120 g/L Fe 

activated persulfate                (Fe:oxidant 

molar ratio of 1:25)

          188 g permanganate/g PAH;          

142 g persulfate/g PAH 

            permanganate: 96% of PAHT,          

persulfate: 88% of PAHT

Nadim et al. (2005) batch
8 24 hr FMGP impacted soil PAHT = 0.01 g/kg soil (7 compounds) 5 g/L persulfate + 0.124 g/L Fe-EDTA  ~1500 g oxidant/g PAH 75 to 100% of PAHT 

Brown et al. (2003) batch
9 30 min spiked soil PAHT = 0.73 g/kg soil (6 compounds) 25 g/L permanganate ~68.5 g oxidant/g PAH 8 to 72% of PAHT 

Notes:

1. 125 mL reactors filled with 75 g of impacted material and 75 mL oxidant solution, mixed and left in the dark. 

2. 5 g surficial soil with 100 mg of laboratory grade coal tar added to a 40 mL vial and mixed with 20 mL oxidant solution.

3. 2.5 L reactors filled with 3 kg soil and mixed with a blender. 

4.  20 g crushed coal tar pitch and 100 mL oxidant solution placed in 250 mL reactor and mixed on a shaker.

5. 2 g soil in 20 mL oxidant solution.

6. Batch data not reported.

7. 30 g sediment mixed with 100 mL solution,  reactors periodically shaken.

8. 250 mL  reactor  mixed on a shaker (liquid : soil ratio = 3.33)

9. 250 mL reactor filled with 50 g soil and 100 mL of oxidant solution; continuously stirred. 

10.  Number of quantified PAH compounds. 

11. Estimated from data provided. 

12. Estimated from data provided, and assuming a NAPL density of 1.1 g/mL and a bulk density of 1.7 g/mL. 

                        batch: 47% of PAHT,                             

column: no significant PAH removal
FMGP impacted soil ~91 g oxidant/g PAHRichardson et al. (2011)

batch
6
,                   

column

       batch: 16 days,       

column: 6 PVs
PAHT = 0.295 g/kg soil (14 compounds) 20 g/L  heat-activated persulfate (40 

ο
C) 
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Table 2.2: NAPL composition, molecular weight (MW), solubility, fugacity ratio (fs/fL), permanganate second-order reaction rate 

coefficient (k), and permanganate/constituent stoichiometry (β) for the representative organic compounds using in the model 

simulations. 

 

 

 

 

 

 

 

 

 

Organic Concentration MW Solubility f
S
/f

L k β Comment

Compound [mg/kg] [g/mol] [mg/L] [-] [L/g/day] [g/g]

BTEX

Benzene 2640 78.1 1780 1.00 0 20.2 from Forsey et al. (2010)

Ethylbenzene 4480 106.2 161.2 1.00 3.31 20.8 from Forsey (2004)

Xylene(s) 2618 106.0 173.5 1.00 0.389 20.8 estimate based on toluene

Toluene 32.3 92.1 534.8 1.00 0.389 20.6 estimate based on ethylbenzene

Trimethylbenzenes

Trimethylbenzene(s) 3750 120.2 57.4 1.00 0.288 21.0 estimate based on methylethylbenzene

Methylethylbenzene

Methylethylbenzene(s) 2275 120.2 94 1.00 0.288 21.0 from Forsey (2004)

PAHs

1-Methylnaphthalene 25500 142.2 28.5 1.00 7.34 20.0 from Forsey (2004)

2-Methylnaphthalene 46700 142.2 25.4 0.86 10.5 20.0 from Forsey (2004)

2,6-Dimethylnaphthalene 11500 156.2 2.0 1.00 14.4 20.2 estimate based on methylnaphthalene

Acenaphthene 13300 154.2 3.9 0.20 115 19.8 from Forsey (2004)

Acenaphthylene 4050 152.2 9.8 0.22 6.05 19.4 estimate based on naphthalene

Anthracene 6280 178.2 0.05 0.01 288 16.2 estimate based on phenanthrene

Biphenyl 4990 154.2 7.5 1.00 0 0.0 from Forsey et al. (2010)

Chrysene 2810 228.2 0.002 0.01 6.78 19.4 from Forsey (2004)

Dibenzofuran 1500 168.2 10.0 0.25 0 16.9 from Forsey et al. (2010)

Fluoranthene 7930 202.3 0.26 0.21 475 19.2 from Forsey (2004)

Indane 11200 118.0 109.1 1.00 14.4 20.5 estimate based on methylnaphthalene

Indene 1700 116.2 390 1.00 14.4 20.0 estimate based on methylnaphthalene

Fluorene 7720 166.2 2.0 0.16 230 19.3 from Forsey (2004)

Naphthalene 83800 128.2 31.7 0.30 6.05 19.7 from Forsey (2004)

Phenanthrene 26400 178.2 1.18 0.28 230 16.5 from Forsey (2004)

Pyrene 12900 202.3 0.13 0.11 864 19.2 from Forsey (2004)

Bulk - 280.0 0 1.00 0 0.0 not reactive
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    Chapter 3 

The Role of Intra-NAPL Diffusion on Mass Transfer 

from Multi-Component NAPLs 

OUTLINE 

An experimental and computational study was performed to investigate the role of multi-

component intra-NAPL diffusion on NAPL-water mass transfer under static conditions.  Molecular 

weight and the NAPL component concentrations were determined to be the most important 

parameters affecting intra-NAPL diffusion coefficients. For a spherical NAPL body, a combination 

of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. 

When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients, 

dissolution is not limited by internal diffusion except for high mass transfer rate coefficients. For a 

complex and relatively high viscous NAPL, smaller intra-NAPL diffusion coefficients are expected 

and even low mass transfer rate coefficients can result in diffusion-limited dissolution. 

Key Words: Intra-NAPL diffusion, Rate-limited mass transfer, MGP residuals, Higher viscosity 

layer. 

 

HIGHLIGHTS 

- Inverse dependency between mass transfer rate coefficient and molecular weight 

- Model developed to estimate intra-NAPL diffusion within complex NAPLs 

- Molecular weight and NAPL concentration impact intra-NAPL diffusion coefficients 

- NAPL composition, viscosity, and mass transfer rate can limit intra-NAPL diffusion 
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3.1 INTRODUCTION 

The remediation of soil and groundwater contaminated with multi-component non-aqueous phase 

liquids (NAPLs) such as crude oil, creosote, or coal tars from former manufactured gas plants 

(MGP) is associated with a number of challenges (Birak & Miller, 2009). One of the primary factors 

that restricts the performance of remedial technologies for multi-component NAPLs is the extent 

and rate of NAPL dissolution (Luthy et al., 1994). Mass transfer kinetics at the NAPL-water 

interface is usually described by a stagnant film model (Miller et al., 1990) wherein the dissolution 

of organic components from the NAPL into the aqueous phase is comprised of several mass 

transfer steps (Seagren et al., 1993; Heyse et al., 2002;). The first step involves the diffusion of 

organic molecules towards the NAPL-water interface boundary layer, while the second step is 

diffusion through a rigid or emulsion interface between the water and NAPL. This interface is 

formed due to depletion of more soluble compounds at the NAPL boundary, and can completely 

separate the bulk-aqueous and bulk-NAPL phases by a film composed of either an aqueous film, 

or an interfacial organic film, or both (Peters et al., 2000; Wehrer et al., 2013a). In the third step, 

the organic molecules will dissolve in the bulk-aqueous phase after passing through the aqueous 

film. Each of these mass transfer steps can be limiting since they act in series, and the one with 

the highest resistance will control the overall dissolution of an organic compound into the aqueous 

phase (Ortiz et al., 1999; Wehrer et al., 2013a). 

A substantial body of field and laboratory data (e.g., Hunt et al., 1988; Mercer & Cohen, 1990; 

Powers et al., 1992; Seagren et al., 1999; Mobile et al., 2016) has shown that the concentration 

of organic compounds in groundwater is usually less than their corresponding equilibrium 

concentration at various observation scales. This implies that NAPL architecture, flow bypassing, 

low residual saturation (Powers et al., 1998; Soga et al., 2004), and diffusional transport 

limitations (Luthy et al., 1993; Luthy et al., 1997; Ortiz et al., 1999; Wehrer et al., 2013; Lekmine 

et al., 2014) can impact dissolution. Consequently, dissolution of organic components is usually 

modeled as a rate-limited process with diffusion governing the mass transfer through the NAPL-

water interface. 

Due to thermodynamics, the presence of more than one component within a multi-component 

NAPL may restrict intra-NAPL diffusion (Cussler, 1997; Ortiz et al., 1999). This occurs since the 

diffusion of each component is influenced by its own concentration gradient as well as the 

concentration gradients of the other components present in the organic mixture (Cussler, 1997; 

Zielinski & Hanley, 1999). For example, Mukherji et al. (1997) investigated the aqueous 
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equilibrium concentrations of a continuously-stirred mixture of four synthetic dense NAPLs 

(DNAPLs) composed of structurally similar components that were in direct interaction with an 

aqueous phase. The results demonstrated that experimental equilibrium concentrations were 

within a factor of two compared to values predicted by modified Raoult’s law (Lee et al., 1992) for 

an ideal mixture indicating that non-ideal interactions were not observed between components.  

However, the assumption of a well-mixed ideal mixture with structurally similar components is not 

always applicable in most subsurface systems (Khachikian & Harmon, 2000). Miller et al. (1985) 

reported that non-ideal behaviour will escalate when the molecular size of components are larger 

than octanol, and Banerjee et al. (1984) indicated that the presence of dissimilar molecules in 

organic mixtures resulted in deviation from ideal behaviour.  By extension, it is expected that the 

effects of intra-NAPL diffusion will be more significant in multi-component NAPLs such as MGP 

residuals which are composed of hundreds to thousands of structurally dissimilar organic 

components (Luthy et al., 1993; Brown et al., 1999; Birak & Miller, 2009). When multi-component 

NAPLs are exposed to groundwater, the more soluble components will dissolve leaving the less 

soluble components at the interface (Liu et al., 2009; Peters et al., 2000). Diffusional resistance 

within a multi-component NAPL may then limit the movement of organic molecules toward the 

interface (Ortiz et al., 1999), and hence a new emulsion-like and high viscous interfacial film or a 

skin can be formed on the NAPL surface. This phenomenon is called weathering or aging, and 

affects diffusion across the NAPL-water interface, and consequently the dissolution of organic 

compounds will be reduced (Liu et al., 2009; Wehrer et al., 2013a,b). 

Previous research indicates that coal tar, creosote, and crude oil weathering effects have been 

experimentally observed and attributed to either NAPL composition or inter-molecular interactions 

at the NAPL-water interface (Luthy et al., 1993; Nelson et al., 1996; Mahjoub et al., 2000; Alshafie 

& Ghoshal, 2004; Ghoshal et al., 2004). Luthy et al. (1993) observed the formation of a semi-rigid, 

skin-like layer at the interface of a coal tar drop suspended in water after three days, and this 

layer led to reduced NAPL-water mass transfer and a disequilibrium condition after seven days. 

Ghoshal et al. (2004) reported that a skin layer at a crude oil-water interface reduced the mass 

transfer coefficient by up to 80 percent after 35 days. It has been suggested that crude oil-water 

interfacial films are mostly comprised of asphaltenes and polar resins (Strassner, 1968; Jada & 

Salou, 2002; Ghoshal et al., 2004; Varadaraj & Brons, 2012).  Nelson et al. (1996) hypothesized 

that inter-molecular interactions at a coal tar-water interface resulted in the formation of a semi-

gelatinous film. Barranco and Dawson (1999) reported that even a small fraction of asphaltenic 

components in coal tar can affect interfacial properties. Barranco and Dawson (1999) also 
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indicated that film formation at a coal tar-water interface occurred under acidic to neutral pH rather 

than alkaline conditions. Also at temperatures > 45 οC interfacial film formation is less likely 

(Mohammed et al., 1993). Finally, Powers et al. (1996), and Brown and Neustadter (1980) 

observed that film formation at a crude oil-water interface affected mineral wettability. 

Surprisingly, the role of intra-NAPL diffusion on the dissolution of organic components from NAPL 

sources has received little attention. Holman and Javandel (1996) employed a simplified two-

dimensional intra-NAPL diffusive flux expression with a constant diffusion coefficient to represent 

the dissolution from a light NAPL (LNAPL) pool. In this model the dissolution of each organic 

component was independent of others, and the local equilibrium assumption was considered at 

the LNAPL-water interface. Brahma and Harmon (2003) assessed multi-component diffusion 

within two organic mixture composed of three organic liquids. While this work provides valuable 

insight, the peer-reviewed literature in this area has investigated organic mixtures comprised of 

only a few components. In addition, film formation, concentration profiles, and diffusion limitations 

within a NAPL body have not been thoroughly explored. 

The objective of this study was to determine the role of multi-component intra-NAPL diffusion on 

NAPL-water mass transfer and interfacial depletion of the more soluble compounds, and to 

identify some of the conditions where this process needs to be considered. To support this 

evaluation, a diffusion-based numerical model was developed to simulate mass discharge and 

intra-NAPL concentration gradients under static aqueous conditions. A series of static 

experiments were conducted using coal tar collected from a former MGP site to capture multi-

component diffusion-limited mass transfer behavior.  These experiments were designed to 

generate relevant model parameters (e.g., mass transfer rate coefficients, equilibrium 

concentrations, activity coefficients, and NAPL characteristics) for simulation purposes. 

3.1.1 Intra-NAPL Diffusion Theory 

Diffusive flux within a multi-component NAPL depends on the molecular interactions and relative 

abundance of components present in the system (Cussler, 1997; Weber & DiGiano, 1995). 

According to Fick’s law, a multi-component diffusive flux can be represented as (Cussler, 1997):   

 

−𝐽𝑖 = ∑ 𝐷𝑖𝑗𝛻𝐶𝑗
𝑛−1
𝑗=1                  (3.1) 

 

where 𝑛 is the total number of components with component 𝑛 arbitrarily chosen as the solvent, 

and 𝐷𝑖𝑗 represents multi-component diffusion coefficients employed to approximate diffusivity 



40 
 

within a system of 𝑛 components. The array, 𝐷𝑖𝑗, includes (𝑛 − 1)2 diffusion coefficients where 

the diagonal terms, 𝐷𝑖𝑖, represent the effects of the concentration gradient of component 𝑖 on its 

own flux, and off-diagonal or cross-coefficients, 𝐷𝑖𝑗, reflect the effects of the concentration 

gradients of other components present in the mixture on the flux of component 𝑖 (Zielinski & 

Hanley, 1999).  The off-diagonal diffusion coefficients can be positive or negative indicating that 

diffusion of one component can be enhanced or hindered by other components present in the 

organic mixture (Brahma & Harmon, 2003). 

Few theoretical models have been developed to predict the diffusion coefficients in multi-

component mixtures (Cussler, 1997; Kett & Anderson, 1969a; Leahy-Dios & Firoozabadi, 2007). 

In this study, the multi-component intra-NAPL diffusion coefficients were estimated by the model 

developed by Kett and Anderson (1969a). In this model the hydrodynamic theory of Hartley and 

Crank (1949) was applied to the multi-component Fickian diffusion process in non-associating, 

non-electrolyte solutions of any number of components. The generalized expressions to estimate 

multi-component diffusion coefficients in non-associating solutions were developed (Kett & 

Anderson, 1969a) and validated by experimental evidence (Kett & Anderson, 1969b) using two 

non-associating ternary systems (dodecane-hexadecane-hexane, and toluene-chlorobenzene-

bromobenzene).  

According to hydrodynamic theory (Hartley & Crank, 1949), the diffusive flux consists of two 

different types of motion: intrinsic diffusion (molecular motion), and bulk motion of the medium. 

Intrinsic diffusion is related to the energy of each molecule to move compared to the surrounding 

molecules, and bulk motion results from the flow of other components present in the mixture to 

compensate the accumulation of mass in one section. Kett and Anderson (1969a) described the 

intrinsic diffusion flux by equating the driving and resisting forces imparted on a diffusing molecule 

as: 

 

𝐽𝑖 = −
𝐶𝑖

𝜎𝑖𝜂

𝜕𝜇𝑖

𝜕𝑥
                                                                       (3.2) 

 

where 𝐽𝑖 is the flux of component 𝑖 relative to the medium resulting from intrinsic diffusion, 𝐶𝑖 is 

the concentration in the NAPL, 
𝜕𝜇𝑖

𝜕𝑥
 is the chemical potential gradient, 𝜂 is mixture viscosity, and 

𝜎𝑖 is a proportionality coefficient called the friction factor representing the effects of the shape and 

size of the diffusing molecule. To consider the effects of bulk motion, Eq. 3.2 can be modified by 

incorporating the expressions for the velocity of the medium to yield (Kett & Anderson, 1969a): 
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          𝐽𝑖 = −
𝐶𝑖

𝜎𝑖𝜂

𝜕𝜇𝑖

𝜕𝑥
+ 𝐶𝑖 ∑

𝑉𝑗𝐶𝑗

𝜎𝑗𝜂

𝑛−1
𝑗=1

𝜕𝜇𝑗

𝜕𝑥
                                                             (3.3) 

 

where 𝑛 is the total number of components, and  𝑉𝑗 is the molar volume.  Eq. 3.3 represents the 

flux of component 𝑖 within a mixture with respect to a fixed coordinate system when the molar 

volumes are constant for (𝑛 − 1) independent intra-NAPL fluxes (Kett & Anderson, 1969a). At 

constant pressure and temperature, the chemical potential gradient in Eq. 3.3 can be related to 

the concentration gradient. Consequently, the diffusive flux (Eq. 3.3) is equivalent to the multi-

component version of Fick’s law, and the general expressions for the multi-component diffusion 

coefficients (𝐷𝑖𝑗) can be derived. While Kett and Anderson (1969b) derived the 𝐷𝑖𝑗 expressions 

for a ternary system, in this study the general form of 𝐷𝑖𝑗 for a system of 𝑛 components was 

derived to estimate the intra-NAPL diffusion coefficients within a multi-component NAPL. The 

diagonal terms (𝐷𝑖𝑖) can be represented as: 

 

𝐷𝑖𝑖 =
𝑅𝑇𝐶𝑖

𝜂
{(

1−𝑉𝑖𝐶𝑖

𝜎𝑖
+

𝑉𝑛𝐶𝑖

𝜎𝑛
) [(

𝜕𝑙𝑛𝛾𝑖

𝜕𝐶𝑖
) +

1

𝐶𝑖
−

1

𝐶𝑇
(1 −

𝑉𝑖

𝑉𝑛
)]  

          + ∑ 𝐶𝑘 (
𝑉𝑛

𝜎𝑛
−

𝑉𝑘

𝜎𝑘
) [(

𝜕𝑙𝑛𝛾𝑘

𝜕𝐶𝑖
) −

1

𝐶𝑇
(1 −

𝑉𝑖

𝑉𝑛
)]𝑛−1

𝑘=1,( 𝑘≠𝑖) }                                                 (3.4a) 

 

and the off-diagonal coefficients (𝐷𝑖𝑗,𝑖≠𝑗) can be written as: 

 

𝐷𝑖𝑗 =
𝑅𝑇𝐶𝑖

𝜂
{(

1−𝑉𝑖𝐶𝑖

𝜎𝑖
+

𝑉𝑛𝐶𝑖

𝜎𝑛
) [(

𝜕𝑙𝑛𝛾𝑖

𝜕𝐶𝑗
) −

1

𝐶𝑇
(1 −

𝑉𝑗

𝑉𝑛
)] + 𝐶𝑗 (

𝑉𝑛

𝜎𝑛
−

𝑉𝑗

𝜎𝑗
) [(

𝜕𝑙𝑛𝛾𝑗

𝜕𝐶𝑗
) +

1

𝐶𝑗
−

1

𝐶𝑇
(1 −

𝑉𝑗

𝑉𝑛
)]  

        + ∑ 𝐶𝑘 (
𝑉𝑛

𝜎𝑛
−

𝑉𝑘

𝜎𝑘
) [(

𝜕𝑙𝑛𝛾𝑘

𝜕𝐶𝑗
) −

1

𝐶𝑇
(1 −

𝑉𝑗

𝑉𝑛
)]𝑛−1

𝑘=1,(𝑘≠𝑖,𝑗) }        (3.4b) 

 

where 𝐶𝑇 is the sum of molar concentrations of components present in the mixture, 𝛾 is the activity 

coefficient, 𝑅 is the universal gas constant, and 𝑇 is the absolute temperature. The derivative of 

the activity coefficient with respect to the concentration of each component (
𝜕ln𝛾

𝜕𝐶𝑖
), can be 

estimated using the activity coefficient data by assuming that the concentrations of other 

components present in the system are constant. Kett and Anderson (1969a) suggested that if the 

self-diffusion (𝐷𝑖) and infinite dilution diffusion coefficients (𝐷𝑖𝑗
𝑜 ) for each component are available, 

the local friction factor can be estimated as: 
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𝜎𝑖 = 𝑅𝑇 (
𝑋𝑖

𝐷𝑖𝜂𝑖
+ ∑

𝑋𝑗

𝐷𝑖𝑗
𝑜 𝜂𝑗

𝑛
𝑗=1,𝑗≠𝑖 )                                                            (3.5) 

 

where 𝑋𝑖 is the mole fraction of each component within the NAPL mixture, and 𝜂𝑖 is the viscosity 

of each pure component. Self-diffusion represents the diffusion process of each component in its 

own pure state and is defined by Albright and Miller (1965) as “the special case of intra-diffusion 

for systems that contain no other components than two isotopic forms of a chemical species”. 

Infinite dilution diffusion represents the interactions between two components in a mixture and 

was defined by Kett and Anderson (1969a) as “the mutual-diffusion coefficient of the i j binary at 

infinite dilution of i ”. 

3.2 EXPERIMENTAL INVESTIGATION 

3.2.1 Materials and Methods 

To examine the direct interaction of a multi-component NAPL and an aqueous phase, and to 

investigate diffusion-limited mass transfer and dissolution behavior of organic components, a 

series of static experiments using 10 mL (nominal) Pyrex graduated conical centrifuge vials was 

performed.  

The MGP residuals used in this study were obtained from the former West Florida Natural Gas 

Company Site located in Ocala, Florida. From the late 1890s until about 1953, water gas or 

carbureted water gas was manufactured at this location by the “Lowe” carbonization process or 

destructive distillation of bituminous coal and coke.  According to Brown’s Directory, gas 

production was ~48 x 103 m3/yr in 1900 and steadily increased to 900 x 103 m3/yr by 1950.  In 

1952, manufacturing stopped at the plant and the facility converted to the sale of butane-propane-

air.  Residues from the MGP process, including tars and oily wastewaters, were deposited in the 

area of the former gas plant facilities during operations. There was an historic coal tar pit or area 

where residual tars were stored prior to sale for off-site use as roofing materials.  The MGP 

residual received was obtained from a NAPL collection well screened from 24 to 27 m below 

ground surface in weathered limestone, and was a non-homogeneous mixture composed of a 

LNAPL and DNAPL portion with minor sediment.  For the purpose of this experiment, our focus 

was on the DNAPL portion.  Thus, 10 mL of the MGP residual was mixed with 10 mL Milli-Q water 

in a 40 mL vial and centrifuged at 10,000 rpm for 15 min.  The DNAPL portion was collected after 

centrifuging and again mixed with water and centrifuged. This process was repeated multiple 

times to separate a sufficient mass of DNAPL which was then used. The final DNAPL volume was 
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assumed to be a homogeneous mixture, and the viscosity was determined to be 1.22 g/(cm s) 

using a dilution viscometer (Cannon-Ubbelhode) and the density of NAPL was determined to be 

1.08 g/mL. Table 3.1 provides a summary of the most abundant and soluble components detected 

within the DNAPL portion along with some associated properties. The identified 19 components 

account for ~40 % of the total NAPL mass.  The remainder of the NAPL mass was unidentified 

and assumed to be composed of higher molecular weight and lower soluble components. 

Each 10 mL conical vial was partially filled with Milli-Q water and then 0.1 mL of the homogenised 

NAPL was gradually injected into the bottom of each vial through the water using a 100 µL glass 

syringe (Hamilton, Sigma Aldrich). The vials were then completely filled with Milli-Q water (total 

volume of water was 11.2 mL). The NAPL-water surface area was ~0.10 cm2. A total of 18 vials 

were constructed and left in the dark at an ambient temperature of 20 οC.  The vials were not 

disturbed to ensure that NAPL-water mass transfer was limited only to diffusional transport of 

organic components. Duplicate reactors were sacrificed at each time increment (e.g., 2, 7, 12, 15, 

22, 28, 36, 49, and 61 days). Aliquots of the aqueous solution were taken by a 10 mL glass syringe 

(Hamilton, Sigma Aldrich), and then centrifuged for 15 minutes at 6000 rpm to separate possible 

undissolved MGP residual.  The concentration of organic compounds (Table 3.1) present in the 

aqueous sample along with the solution pH (Orion pH meter, model 290A) was determined.  

For analysis of the organic components in the aqueous phase, a 5 mL sample was mixed with 14 

mL of water in a 20 mL vial. This was followed immediately by the addition of 1.0 mL of methylene 

chloride (containing internal standards metafluoro-toluene (MFT) and fluoro-biphenyl (FBP) at 25 

mg/L). The vial was quickly resealed and agitated on its side at 350 rpm on a platform shaker for 

20 min. After shaking, the vial was inverted and the phases were allowed to separate for 30 min.  

Approximately 0.7 mL of the dichloromethane phase was removed from the inverted vial with a 

gas tight glass syringe through the Teflon septum. The solvent was placed in a 2.0 mL Teflon 

sealed autosampler vial for injection into the gas chromatograph (GC).  For the analysis of the 

DNAPL portion, a sub-sample was added directly to methylene chloride and transferred to a 2.0 

mL autosampler vial and crimp sealed with a Teflon cap. All NAPL and aqueous samples were 

analyzed using a HP 5890 capillary GC, a HP7673A autosampler, and a flame ionization detector. 

Three (3) mL of methylene chloride was injected in splitless mode (purge on 0.5 min, purge off 10 

min) onto a 0.25 mm x 30 m length, DB5 capillary column with a stationary phase film thickness 

of 0.25 µm. The helium column flow rate was 2.0 mL/min with a make-up gas flow rate of 30 

mL/min. The injection temperature was 275 οC, detector temperature was 325 oC and initial 

column oven temperature was 35 oC held for 0.5 min, then ramped up at 15 oC/min to a final 
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temperature of 250 oC and held for 2 min. A GC run time was 16 min. Data integration was 

completed with a SRI Model 302 Peak Simple chromatography data system. The method 

detection limit (MDL) was 20 µg/L for aqueous samples, and 5 mg/kg for NAPL samples. 

3.2.2 Results and Discussion 

A total of nine components were detected in the aqueous phase including BTEX (benzene, 

toluene, ethylbenzene, and xylene), trimethylbenzene, and four polycyclic aromatic hydrocarbons 

(PAHs) (naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, and acenaphthene). The 

other components were < MDL.  The average pH value of the aqueous phase was 5.3 at the start 

of the experiment and decreased gradually to 4.5 by Day 61 likely due to the dissolution of organic 

acids. No physical changes (i.e., color, temperature, precipitate formation) were observed. The 

diffusion-limited dissolution of this MGP residual in water manifested in these static experiments 

as an initial rapid increase of dissolved phase concentrations from Day 2 to Day 10 followed by 

minor fluctuations until Day 61 (Figure 3.1).  Except for naphthalene, xylene and ethylbenzene, 

the detected components appear to reach an equilibrium concentration by Day 61 (Table 3.2). 

Lee et al. (1992) indicated that the aqueous equilibrium concentration of PAHs within coal tars 

can be estimated by employing a modified form of Raoult’s law given by: 

 

𝐶𝑒𝑞,𝑖
𝑤 = 𝑋𝑖

𝑁𝛾𝑖
𝑁 𝑆𝑖

(𝑓𝑖
𝑠 𝑓𝑖

𝑙⁄ )
                                                                   (3.6) 

 

where 𝐶𝑒𝑞,𝑖
𝑤  is aqueous equilibrium concentration of each component, 𝑁 and 𝑤 superscripts refer 

to NAPL and water phase respectively, 𝑆𝑖 is the aqueous solubility, and 𝑓𝑖
𝑠 and 𝑓𝑖

𝑙 are fugacities 

in the pure solid and pure liquid states respectively (Table 3.1).  Naphthalene and benzene due 

to the high mole fraction and solubility values, respectively, have the highest aqueous phase 

concentrations. While ethylbenzene, xylene, toluene, and trimethylbenzene have a higher 

solubility compared to naphthalene, they have lower equilibrium concentrations due to lower mole 

fractions and higher fugacity ratios.  Toluene has the lowest aqueous concentration which is 

proportional to its low mole fraction within the NAPL. 1-methylnaphthalene and 2-

methylnaphthalene show similar behaviour and reach an equilibrium concentration in < 30 days. 

 

The aqueous phase mass balance can be written by employing the stagnant film model for each 

organic component as (Miller et al., 1990): 
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𝑑𝐶𝑖
𝑤

𝑑𝑡
= 𝑘𝑤,𝑖(𝐶𝑒𝑞,𝑖

𝑤 − 𝐶𝑖
𝑤)                                                            (3.7) 

 

where 𝐶𝑖
𝑤 is aqueous concentration, 𝑡 is time, 𝑘𝑤,𝑖 is lumped mass transfer rate coefficient (1/T), 

and 𝐶𝑒𝑞,𝑖
𝑤  is the aqueous equilibrium concentration. To determine the lumped mass transfer rate 

coefficient for each component, Eq. 3.7 can be solved analytically with the initial condition 

specified as an aqueous concentration of zero at 𝑡 = 0, to yield: 

 

ln (1 −
𝐶𝑖

𝑤

𝐶𝑒𝑞,𝑖
𝑤 ) = −𝑘𝑤𝑡                                                               (3.8)       

 

Eq. 3.8 was applied to the experimental data (Figure 3.1) and the lumped mass transfer rate 

coefficient for each component was determined using linear regression. The resulting values 

ranged from 0.036 to 0.1 /day. For naphthalene, xylene and ethylbenzene, the equilibrium 

concentrations were also estimated and presented along with the estimated lumped mass transfer 

data in Table 3.2.  The lumped mass transfer rate coefficients were multiplied by the experimental 

aqueous volume (11.2 mL) and divided by the NAPL-water surface area (0.1 cm2) to estimate 

mass transfer rate coefficients which varied from 4 to 11.2 cm/day with 1-methylnaphthalene and 

2-methylnaphthalene having the highest values (~11.2 cm/day), and toluene and naphthalene the 

lowest values (4 cm/day). 

Ghoshal et al. (1996) reported that the naphthalene mass transfer coefficient from a coal tar 

globule in a gently stirred continuous flow reactor varied from 21 to 26 cm/day.  Mukherji et al. 

(1997) showed that the mass transfer rate coefficients for organic components within four 

synthetic NAPLs were similar, and in the range of 69 to 259 cm/day which is ~20 times higher 

than those determined from this experimental investigation.  They also observed an equilibrium 

period that was 5 to 7 days which is significantly shorter than the 30 to 60-day equilibrium period 

observed in this study. The higher mass transfer rate coefficients and shorter equilibrium period 

is a reflection of the continuous stirred system (both NAPL and aqueous phase) employed by 

Mukherji et al. (1997) compared to the static system used in this study to capture the diffusion-

limited NAPL-water mass transfer. Diffusion-limited dissolution, which can be a predominant 

phenomenon in subsurface systems, results in rate limited mass transfer and longer equilibrium 

times.  

Mukherji et al. (1997) also observed that higher molecular weight compounds have larger mass 

transfer rate coefficients. Wehrer et al. (2013a) placed fresh and aged NAPLs into dialysis tubing 
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and, in contrast to Mukherji et al. (1997), did not mix the NAPL. They determined an inverse 

dependency between molecular weight and intra-NAPL diffusion coefficients by fitting a spherical 

diffusion model to experimental NAPL concentration data implying that higher molecular weight 

and size act as a resisting force for diffusional transport.  Wehrer et al.(2013a) also reported that 

the inverse dependency between diffusion coefficients and molecular weight was much less 

pronounced for aged MGP residuals compared to fresh MGP tars. Similarly, for the MGP residual 

used in this study, no overall trend was observed between molecular weight and mass transfer 

rate coefficient (Figure 3.2).  Rather an inverse dependency of the mass transfer rate coefficient 

on molecular weight is evident for the BTEX components. A similar but separate trend is apparent 

between the mass transfer rate coefficients and the molecular weight for the PAHs (1-

methylnaphthalene, 2-methylnaphthalene and acenaphthene) except for naphthalene (MW = 

128.2 g/mol) which has a smaller kw compared to 1-methylnaphthalene and 2-methylnaphthalene 

(MW = 142 g/mol). The distinct inverse dependency of mass transfer rate coefficient on molecular 

weight for BTEX and PAHs suggests that BTEX and PAHs have different mass transfer behavior. 

3.3 MULTI-COMPONENT INTRA-NAPL DIFFUSION MODEL 

3.3.1 Model Description 

To explore the role of intra-NAPL diffusion on the NAPL-water mass transfer, a temporal-spatial 

diffusion-based mathematical model was developed.  For the purpose of this evaluation, an 

isolated initially homogeneous spherical NAPL blob with the total surface area available for mass 

transfer was considered to be suspended in a well-mixed volume of water (Figure 3.3).  The mass 

balance for each component within the NAPL in a spherical NAPL blob can be written as (Bird et 

al., 2002): 

 

∂Ci

∂t
=

1

𝑟2  
∂

∂r
 (𝑟2 ∑ Dij

∂Cj

∂r

𝑛−1
𝑗=1 )                                   (3.9) 

 

where r is the radial coordination and changes in the mixture density are negligible. If the volume 

of water surrounding the spherical NAPL blob is small, the system will reach to an equilibrium 

condition quickly, while if the volume of water is large, a longer period of time is required to reach 

equilibrium condition and thus the NAPL blob may be depleted.  Eq. 3.9 was subjected to the 

boundary conditions of symmetry (
𝜕𝐶

𝜕𝑟
= 0) at the centre of the NAPL sphere, and the flux (𝐽𝑖) at 
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the external sphere NAPL-water boundary was equated to the first-order mass transfer 

expression (Miller et al., 1990; Weber & DiGiano, 1995) as given by: 

 

𝐽𝑖 = 𝐾(𝐶𝑒𝑞,𝑖
𝑤 − 𝐶𝑖

𝑤)                                           (3.10) 

 

where 𝐾 is the mass transfer rate coefficient (L/T).  The aqueous equilibrium concentration for 

each component (𝐶𝑒𝑞,𝑖
𝑤 ) was estimated by using the modified form of Raoult’s law (Eq. 3.6). To 

account for the film transfer resistance and compositional changes at the NAPL interface, the 

mole fractions in Eq. 3.6 were based on the component concentrations at the external NAPL 

sphere boundary. Activity coefficients (𝛾𝑖) were calculated using the universal Quasi-chemical 

functional group activity coefficient (UNIFAC) (Poling et al., 2001).  

 

Eq 3.9 was solved using a fully-implicit finite volume scheme, and at each time step the equilibrium 

concentration and mass flux of each component was estimated using Eq. 3.10. The shrinkage of 

the NAPL body due to mass loss was handled by assuming that the NAPL sphere shrinks 

uniformly. Since mass transfer and equilibrium concentrations in Eq. 3.10 are related to the 

external boundary control volume attributes, and because unequal spatial discretization near the 

moving boundary results in the loss of accuracy (Crank, 1984), a modified mesh system similar 

to that used by Crank and Gupta (1972) with uniform discretization (except for the control volume 

near r = 0) and fixed time steps were employed.  At each time step, mass loss and shrinkage 

length were determined using the estimated mass flux at the interface (Eq. 3.10), and then the 

length and concentrations within the external boundary control volume were modified. 

Subsequently, by assuming a wall boundary condition (𝐽𝑖 = 0) at the interface, the system of 

equations was solved by incorporating Eq. 3.4 and Eq. 3.9 to update concentration profiles within 

the NAPL sphere. At the end of each time step, the mesh system was modified by shifting the 

mesh toward the centre (r = 0) a distance equal to the shrinkage length and then the 

concentrations at the centroids of new control volumes were interpolated using a cubic spline 

method (Crank & Gupta, 1972). Finally, the average aqueous concentrations (𝐶𝑖
𝑤) in Eq. 3.10 

were calculated using the NAPL-water interface mass flux. 

 

The numerical algorithm used to solve the intra-NAPL diffusional flux mass balance equation 

(Eq.3.9) was verified by comparing the numerical solution with an analytical solution for spherical 

diffusion with a constant flux (F) and diffusion coefficient (D) without shrinkage as given by (Crank, 

1975): 
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𝐷(𝐶𝑜−𝐶 (𝑡,𝑟))

𝐹  𝑅
=

3𝐷𝑡

𝑅2 + 0.5
𝑟2

𝑅2 − 0.3 − 2
𝑅

𝑟
∑

sin(∝𝑛𝑟)

∝𝑛
2 𝑅2 sin(∝𝑛𝑅)

𝑒𝑥𝑝(−𝐷 ∝𝑛
2 𝑡)∞

𝑛=1    (3.11) 

 

where 𝐶𝑜 is initial concentration, 𝑅 is the radius of the sphere, and ∝𝑛 are the positive roots of 

 

(∝𝑛 𝑅) cot(∝𝑛 𝑅) = 1       (3.12) 

 

A visual comparison of the numerical and analytical results is presented in Figure B.1 in Appendix 

B. Estimation of multi-component diffusion coefficients by the Kett and Anderson model (1969a) 

(Eq. 3.4) was verified by comparing the generated values to the experimental diffusion coefficients 

(Kett & Anderson, 1969b) for a ternary mixture composed of dodecane, hexadecane, and hexane 

(Table B.1 in Appendix B).  The estimated values are in agreement with both the experimental 

and model results reported by Kett and Anderson (1969b) in the range of ± 62%. 

3.3.2 Model Parameterization and Investigated Scenarios 

The results from the experimental investigation indicated that diffusion-controlled dissolution 

behavior under static conditions occurred.  In addition, the data from the static experiments were 

used to derive mass transfer rate coefficients, and aqueous equilibrium concentrations for the 

nine detected components associated with the former MGP NAPL employed.  It was not our intent 

here to simulate the experimental conditions, but rather to use the data set assembled to inform 

model parameters so that representative physical and chemical properties are used. 

For the initial condition for Eq. 3.9, a 0.5 g homogenous spherical NAPL blob (radius of ~ 0.48 

cm) surrounded by an aqueous phase was specified, and the initial concentration of organic 

components were assigned to be identical to the former MGP NAPL employed in the static 

experiments (Table 3.1) which contained 19 representative organic compounds (40% of the NAPL 

mass).  The remainder of NAPL mass was considered to be comprised of an unresolved or bulk 

portion composed of higher molecular weight and lower soluble components and assigned 

nominal values (see Table 3.1). Since the focus of this study was to explore intra-NAPL 

compositional changes, 50 L of water was assumed to surround the NAPL blob.  This volume was 

chosen so that the dissolved phase concentrations did not reach equilibrium over the simulation 

period allowing compositional changes within the NAPL to be observed. 
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For the estimation of multi-component intra-NAPL diffusion coefficients (𝐷𝑖𝑗) using Eq. 3.4, a 

temperature of 20 οC was assumed and the mixture viscosity was estimated using the Yon and 

Toor relationship (Kett & Anderson, 1969b): 

 

ln (𝜂) = ∑ 𝑋𝑖ln𝜂𝑖
𝑛
𝑖=1                                                                     (3.13) 

 

The viscosity of each compound (𝜂𝑖) was obtained from the literature (Lide et al., 1999) or 

estimated by using the Orrick and Erbar method (Poling et al., 2001) with an average deviation of 

15% as: 

ln (
𝜂𝑖

100 𝜌𝑖𝑀𝑊
) = 𝐴 +

𝐵

𝑇
                                                                   (3.14) 

 

where 𝑀𝑊 is molecular weight (g/mol), 𝑇 is absolute temperature, 𝐴 and 𝐵 are estimated by a 

group contribution technique, and the units for viscosity and density are g/(cm s), and g/cm3 

respectively. Table 3.1 summarizes the molecular weight, viscosity, and density values of each 

component. For the bulk portion, the molecular weight was assumed, and the density was 

assigned a value of 1.14 g/cm3.  

To estimate the friction factors (Eq. 3.5), the self and infinite dilution diffusion coefficients for PAHs 

with a fugacity ratio less than unity were estimated similar to the other components which are 

liquid at ambient temperature. This approach is plausible since PAHs with a fugacity ratio less 

than unity can exist as liquid due to melting point depression within multi-component mixtures 

(Peters et al. 1997). The infinite dilution diffusion coefficients (𝐷𝑖𝑗
𝑜 ) were determined using a 

modified form of the Tyn and Calus relationship (Poling et al., 2001), and the self-diffusion values 

(𝐷𝑖) were calculated using the Houghton’s Cubic Cell model (Houghton, 1964) as given by: 

 

𝐷𝑖𝑗
𝑜 = 8.93 × 10−10 (

𝑉𝑗,𝑏
0.267

𝑉𝑖,𝑏
0.433)

𝑇

𝜂𝑗
(

𝜏𝑗

𝜏𝑖
)

0.15
                                                  (3.15) 

𝐷𝑖 =
𝑅𝑇𝜌𝑖

6𝜂𝑖𝑀𝑖
(

𝑉𝑖

𝑁
)

2

3
                                                                     (3.16) 

 

where 𝐷𝑖 and 𝐷𝑖𝑗
𝑜  have units of cm2/s, viscosity (𝜂) has units of g/(cm s), density has units of g/cm3, 

𝑀 is molecular weight (g/mol), 𝑅 is universal gas constant (8.314x107 (g cm2)/(s2 K mol)), 𝑁 is 

Avogadro’s number(6.022x1023 1/mol), 𝜏 is surface tension at boiling temperature (g/s2), 𝑉 is 

molar volume (cm3/mol) which can be estimated using density and molecular weight data (𝑀𝑊/𝜌) 
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(Table 3.1), and 𝑉̅𝑏 is molar volume at boiling temperature (cm3/mol) and was estimated using the 

Schroeder relationship (Poling et al., 2001) (Table 3.1). The Schroeder relationship is an additive 

method which accounts for the number of atoms of carbon (C), hydrogen (H), oxygen (O), nitrogen 

(N), halogens (Cl, F, I), sulfur (S), and also the number of carbon double bonds (DB), and triple 

bonds (TB): 

 

𝑉̅𝑏 = 7(𝑁𝐶 + 𝑁𝐻 + 𝑁𝑂 + 𝑁𝑁 + 𝑁𝐷𝐵 + 2𝑁𝑇𝐵) + 31.5𝑁𝐵𝑟 + 24.5𝑁𝐶𝑙 + 10.5𝑁𝐹 + 38.5𝑁𝐼 + 21𝑁𝑆 − 7   (3.17) 

 

where the last term is included only if the component has one or more rings. This method is 

accurate and except for highly associated liquids, gives an average error of 3-4% (Poling et al., 

2001). The surface tension ratio (𝜏𝑗/𝜏𝑖) in Eq. 3.15 was assumed to equal one (Poling et al., 2001). 

All of the estimated self and infinite dilution diffusion values are presented in Table B.2 in Appendix 

B. 𝐷𝑖 and 𝐷𝑖𝑗
𝑜  values for BTEX and methylethylbenzene(s) are in the range of 10-5 (cm2/s), and for 

PAHs are in the range of 10-6 (cm2/s). Since naphthalene is the most predominant component, 𝐷𝑖 

and 𝐷𝑖𝑗
𝑜  values for bulk portion of the NAPL were assumed to be similar to naphthalene.  

NAPL viscosity can significantly affect mass transfer and intra-NAPL diffusional behavior. Ortiz et 

al. (1999) indicated that control on mass transfer can change from aqueous to NAPL resistance 

for high viscous NAPLs. Birak and Miller (2009) reported that the viscosity of MGP residuals 

comprised of coal, water-gas, and oil gas tars can range from 0.091 to 6600 g/(cm s).  In another 

study by Wehrer et al. (2013a) the viscosity of various fresh and aged coal tars at 20 οC varied 

from 0.05 to 2.3 g/(cm s). The viscosity of the former MGP NAPL used in the experiment 

investigation (Section 2) was 1.22 g/(cm s) which lies in the middle of the viscosity range reported 

by Wehrer et al. (2013a).  To explore the effects of NAPL viscosity on internal diffusion and mass 

transfer processes, four NAPL viscosities were investigated: low (0.12 g/(cm s)), medium (1.22 

g/(cm s), high (15 g/(cm s), and very-high (200 g/(cm s)). 

Rather than estimate mass transfer rate coefficients for the 11 organic components that were not 

detected in the aqueous phase during the experimental results, a single mass transfer rate 

coefficient (Eq. 3.10) was assigned for all of the components using a least-squares analysis 

framework in conjunction with the aqueous experimental data for the nine detected components 

(Figure 3.1). The ramifications of this assumption were deemed minor since the focus of this 

modeling study is on the compositional changes within the NAPL body. The best-fit lumped mass 

transfer rate coefficient was equal 0.056 /day and was converted to a mass transfer rate 
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coefficient (𝐾) of 6.16 cm/day using the experimental aqueous volume (11.2 mL) and NAPL-water 

surface area (~0.1 cm2).  

To estimate the activity coefficients using the UNIFAC method, the identified components and 

bulk portion (Table 3.1) were separated into multiple functional groups. Since it is not possible to 

identify the functional groups in the bulk portion, experimental activity coefficients for the nine 

detected components were estimated by dividing the experimental equilibrium concentrations by 

the ideal concentrations determined by modified Raoult’s Law (Table 3.2). The initial experimental 

and UNIFAC activity coefficients were similar (Table 3.1) assuming that the bulk portion contains 

an equal number (9) of all the individual functional groups which represents the identified 19 

components.  

The sphere radius was discretized into 0.005 cm control volumes, and a time step increment of 

0.1 day was adopted. A mesh convergence test indicated that the NAPL concentration generated 

using finer mesh increments and time steps varied by < 1%.  All simulations were run for a time 

of 1000 days which was deemed sufficient to observe changes in intra-NAPL diffusional flux and 

composition. 

3.3.3 Results and Discussion 

3.3.3.1 Medium Viscous NAPL 

The temporal dissolved phase concentration behavior of the two most predominant components 

in the medium viscous NAPL (𝜂 = 1.2 g/(cm s)) are presented on Figure 3.4 (see Figure B.2(a) in 

Appendix B for the other components). After 1000 days of exposure to water the concentration of 

naphthalene and 2-methylnaphthalene reached ~1.0 and ~0.28 mg/L, respectively. These values 

are proportional to their initial NAPL mole fraction and aqueous solubility values (Table 3.1). 

Although phenanthrene also had one of the largest initial NAPL mole fraction values, its lower 

solubility resulted in a final aqueous concentration that was < 0.05 mg/L. The final (after 1000 

days) radial concentration of NAPL components was homogeneous (see Figures 3.5 and B.3 in 

Appendix B) suggesting that mass transfer at the interface was not restricted due to intra-NAPL 

diffusion limitations. The ratio of the final to initial NAPL concentrations are shown in Figure 3.6, 

and indicate, as expected, that the concentration of the more soluble components such as BTEX, 

naphthalene, and 2-methylnaphthalene were depleted while the concentrations of the less soluble 

components such as phenanthrene, pyrene, and the bulk portion were enriched. After 1000 days, 

the viscosity of the NAPL is ~ 6 times higher than its initial value (Figure 3.7) and is attributed to 
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the enrichment of the bulk portion which is composed of higher viscous and insoluble 

components. 

While the initial main intra-NAPL diffusion coefficients (diagonal values) were ~1x10-7 cm2/s 

(Figure B.4 in Appendix B) the final values decreased an order of magnitude to ~1.7x10-8 cm2/s 

as a result of the changes that occurred within the NAPL body. Naphthalene which is present at 

the largest concentration has the highest main diffusion coefficient value. Benzene which has the 

lowest molecular weight has the second highest main diffusion coefficient value. Toluene, xylene, 

and ethylbenzene also have high main diffusion coefficient values due to their low molecular 

weight, density, and viscosity values. 1-methylnaphthalene, 2-methylnaphthalene, and indene 

after naphthalene have the largest main diffusion coefficient values amongst the PAHs. The large 

main diffusion coefficients for 1-methylnaphthalene and 2-methylnaphthalene are attributed to 

their high NAPL concentrations, while for indene its large main diffusion coefficient is due to its 

lower molecular weight compared to the other PAHs. Chrysene with the largest molecular weight, 

density, and viscosity value has the lowest diffusion coefficient value. The ratios of the final to 

initial main intra-NAPL diffusion coefficients (Figure B.5 in Appendix B) indicate that the main 

diffusion coefficient for naphthalene decreased more than the other components since the 

concentration of naphthalene was the most depleted (Figure B.3 in Appendix B). In contrast, the 

main diffusion coefficient for phenanthrene decreased the least as a result of its increase in NAPL 

concentration at 1000 days (Figure 3.6). The initial off-diagonal diffusion coefficient values were 

between one to three orders of magnitude lower than the main diffusion coefficient values (Table 

B.3 in Appendix B). 

The main intra-NAPL diffusion coefficient values are not of the same order of magnitude as those 

reported by others. For example, Ortiz et al. (1999) reported that the diffusion coefficients for 

naphthalene, phenanthrene, and pyrene within transmission oils (viscosity of 8 - 14 g/(cm s)) were 

in the range of 10-9 to 10-12 cm2/s after being exposed to water for ~1 year. Wehrer et al. (2013a) 

also reported that diffusion coefficients for some PAHs (e.g., naphthalene, acenaphthene, and 

pyrene) in MGP residuals were in the range of 10-10 to 10-18 cm2/s. The difference can be attributed 

to the experimental conditions (i.e., NAPL composition, higher viscosity, and larger mass transfer 

rate coefficient) used compared to the experiments performed in this study. 

For a spherical blob composed of a medium viscosity NAPL and with mass < 50 g exposed to 

water under static conditions, interface film formation and diffusion-limited mass transfer due to 

intra-NAPL diffusion are not expected to occur. Concentration gradients at the interface due to 
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dissolution can be quickly compensated by diffusional transport to the interface and the NAPL 

concentration remains homogenous. A sensitivity analyses was conducted to explore potential 

conditions when intra-NAPL diffusion limitations would arise. The results of this analysis indicated 

that when the mass transfer rate coefficient is increased to > 15 cm/day, intra-NAPL concentration 

gradients can be established and hence intra-NAPL diffusion limitations will occur. 

3.3.3.2 Influence of Viscosity 

Similar to the medium viscous NAPL, no concentration gradient was established in the low 

viscous NAPL (𝜂=0.12 g/(cm s)) and mass transfer was not restricted. Hence, the simulated 

aqueous (Figures 3.4 and B.2(a) in Appendix B) and radial NAPL concentrations (Figure B.3 in 

Appendix B) for the low viscous NAPL are essentially identical to those obtained for the medium 

viscous NAPL. A sensitivity analyses indicated that when the mass transfer rate coefficient (Eq. 

3.10) was increased to > 180 cm/day, slight intra-NAPL concentration gradients were established 

for the low viscous NAPL. Mukherji et al. (1997) demonstrated that this range of mass transfer 

conditions are possible under non-static conditions without sediment for a well-mixed NAPL and 

aqueous phase. Therefore, the threshold of the mass transfer rate coefficient which can result in 

interfacial depletion of the more soluble compounds was 15 and 180 cm/day for the NAPL 

viscosities of 1.2 and 0.12 g/(cm s), respectively, that indicate the combination of NAPL properties 

(i.e. viscosity, concentration, temperature) and interphase mass transfer rate can result in internal 

diffusion limitations. It is possible that under some condition increasing the mass transfer rate 

results in the interfacial film formation and thus restricts the mass transfer and dissolution process. 

For example, remediation methods such as pump and treat systems that can increase flow rate 

and hence, increase mass transfer rate can restrict internal diffusion and enhance mass transfer 

limitations. 

For the low viscous NAPL, the initial main intra-NAPL diffusion coefficients were one order of 

magnitude higher (~1.5x10-6 cm/s) compared to those determined for the medium viscous NAPL.  

These initial main intra-NAPL diffusion coefficients are of the same order as the self-diffusion 

coefficients (Eq. 3.16 and Table B.2 in Appendix B), and thus the presence of other organic 

components within this low viscous former MGP NAPL does not restrict internal diffusional flux. 

This condition is similar to organic mixtures composed of miscible organic components which are 

liquids at ambient temperature (similar to the organic mixtures investigated by Kett and Anderson 

(1969b) and Brahma & Harmon (2003)) where intra-NAPL diffusion coefficients of the order of the 

self-diffusion coefficients can be expected. 
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The simulated aqueous concentrations for the high viscous NAPL (𝜂 = 15 g/(cm.s)) at 1000 days 

are slightly different than the results from the medium viscous NAPL (Figures 3.4 and B.2(b) in 

Appendix B). While concentration gradients are established within the high viscous NAPL (Figures 

3.8(a) and B.6 in Appendix B), the rate of the internal diffusional flux does not significantly limit 

dissolution. The simulated NAPL concentration of the bulk portion (Figure 3.5) and lower solubility 

components (i.e., phenanthrene, pyrene, chrysene, fluoranthene) increased at the interface after 

1000 days while the higher soluble components were depleted. The estimated initial main intra-

NAPL diffusion coefficients for the high viscous NAPL are of the order of 7x10-9 cm2/s, and the 

initial off-diagonal diffusion coefficient values are one to three orders of magnitude lower. The 

main intra-NAPL diffusion coefficients are 15 times smaller than those determined for the medium 

viscous NAPL and these smaller values resulted in internal diffusion limitations and concentration 

gradients within the NAPL body. The main intra-NAPL diffusion coefficients after being exposed 

to water for 1000 days decreased by an order of magnitude and were on the order of 6x10-10 

cm2/s.  This decrease can be attributed to the depletion of the more soluble and lower viscous 

components (e.g., BTEX) indicating that over the time internal diffusion limitations can become 

more significant. The final viscosity of the high viscous NAPL is > 10 times larger than the initial 

value (Figure 3.7). The abundance of the bulk portion and lower solubility components at the 

interface causes the viscosity at the NAPL/water interface to be ~ 10% higher than in the centre 

of the NAPL body (Figure 3.7). 

The simulated radial NAPL concentrations at 1000 days within the very-high viscous NAPL (𝜂 = 

200 g/(cm s)) for the most predominant components are shown in Figure 3.8 (b) (see Figure B.6 

in Appendix B for other components). The changes in the NAPL composition are similar to the 

high viscous NAPL (Figure 3.8 (a)) with the higher soluble components depleted at the interface. 

The bulk portion (Figure 3.5) as well as low solubility components (i.e., phenanthrene and pyrene) 

accumulate at the interface. However, for the very-high viscous NAPL, film formation is more 

pronounced compared to the high viscous NAPL. For example, the naphthalene concentration at 

the interface of the very-high viscous NAPL is ~20% of the concentration in the core of the NAPL 

body (Figure 3.8(b)). 

Figure 3.9 shows the temporal variations of the mole fractions at the interface and within the entire 

very-high viscous NAPL body for the most predominant components (see Figure B.7 in Appendix 

B for other components). While naphthalene is the most dominant component within the entire 

very-high viscous NAPL body over the 1000 days simulation period, the interfacial naphthalene 

mole fraction after ~200 days decreased to less than the interfacial mole fraction of phenanthrene 
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and 2-methylnaphthalene. As a result of the accumulation of the bulk portion and lower soluble 

components (phenanthrene and pyrene) at the interface, the aqueous equilibrium concentrations 

(Eq. 3.6) and mass transfer of the higher soluble components decreased. After 1000 days, the 

shrinkage (initial radius minus final radius) of the NAPL body for the high and very-high viscous 

NAPLs are 95 and 65 % of the shrinkage of the medium viscous NAPL body, respectively, 

indicating smaller mass loss due to the interfacial depletion of the more soluble compounds and 

hence, rate-limited mass transfer.  While the simulated aqueous concentrations of the lowest 

soluble components (e.g., fluoranthene, chrysene, and pyrene) for the very high-viscous NAPL 

are 10 to 40 % higher compared to those estimated for the medium viscous NAPL at 1000 days, 

the aqueous concentration of the remainder of the components are 20 to 50 % lower (Figures 3.4 

and B.2(c) in Appendix B). 

The estimated initial main intra-NAPL diffusion coefficients for the very-high viscous NAPL are 

160 times smaller (~ 6x10-10 cm2/s) than those estimated for the medium viscous NAPL.  The 

radial main intra-NAPL diffusion coefficients after being exposed to water for 1000 days (Figure 

3.10) decreased compared to the initial values.  At the NAPL/water interface all of the main intra-

NAPL diffusion coefficients are ~10 times smaller than within the core of the NAPL body as a 

result of the depletion of lower viscous components. The abundance of the bulk portion and higher 

viscous components at the interface causes the viscosity at the NAPL/water interface to increase 

~5 times relative to the centre of the NAPL body (Figure 3.7) at 1000 days, and ~14 times 

compared to the initial viscosity.   

 

3.4 SUMMARY 

A comprehensive experimental and computational study was performed to investigate the role of 

intra-NAPL diffusion on the mass transfer between multi-component NAPLs and water, and to 

identify some of the controlling situations where this process should be considered. A series of 

static experiments was conducted to investigate diffusion-controlled dissolution of organic 

components from former MGP residuals. The results indicated that under the diffusion-controlled 

mass transfer conditions established, the estimated mass transfer rate coefficients were lower 

than typical mass transfer rate coefficients determined under continuous mixed conditions.  

Although, no overall trend was observed between the mass transfer rate coefficients for the 

various organic compounds identified, an inverse dependency between the mass transfer rate 
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coefficient and molecular weight was clear but different for BTEX and some PAHs compounds 

suggesting that the intra-NAPL diffusion behavior of these two organic compound classes are 

different. 

To examine the role of intra-NAPL diffusion on NAPL-water mass transfer, we simulated a 

physical system where an isolated spherical NAPL blob was surrounded by a finite volume of 

water. In this system the initial composition of the NAPL blob was assumed to be homogeneous, 

and the total surface area was available for mass transfer. The experimental data set assembled 

was used to inform the model parameters so that representative physical and chemical properties 

were used. The results indicated that molecular weight and concentration of each component are 

the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with 

different viscosities but the same quantified mass were simulated. For a spherical NAPL body of 

< 50 g under static conditions, the combination of NAPL properties and interphase mass transfer 

rates can result in internal diffusion limitations. If the main intra-NAPL diffusion coefficients are in 

the range of the self-diffusion coefficients (10-5 to 10-6 cm2/s), intra-NAPL diffusion is not limiting 

since NAPL concentration gradients cannot be established except when high mass transfer rates 

are present (>180 cm/day). In the case of complex and highly viscous NAPLs, smaller intra-NAPL 

diffusion coefficients are expected and even the low range of mass transfer rates can result in the 

interfacial depletion of the more soluble compounds and diffusion-limited dissolution.  

In this study we investigated the effect of just one phenomenon (intra-NAPL diffusion) which can 

result in restrict interfacial mass transfer; however, other phenomena such as inter-molecular 

interactions and biofilm formation can also result in film formation and influence NAPL-water mass 

transfer. For example, Mukherji and Weber (1998) reported that interfacial biofilm formation 

limited NAPL-water mass transfer. Possible compositional changes, solidification, and 

precipitation (Peters et al. 1999) as well as interfacial weak bonds between organic components 

and water (Nelson et al., 1996) can also result in skin layer formation and diffusional limitations.  

The diffusion-based model developed in this study provides a suitable platform to capture the 

temporal and spatial compositional changes within complex NAPLs.  The simulation results 

showed that intra-NAPL diffusion can significantly affect mass transfer and dissolved phase 

concentrations, and that increasing the NAPL-water mass transfer rate may result in intra-NAPL 

diffusion limitation and restricted dissolution.  As a result, consideration should be given to the 

role of intra-NAPL diffusion in risk assessment evaluations, and during the design and 

implementation of remediation strategies. 
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Figure 3.1:  Temporal concentration profiles of the nine detected components observed in the 

bulk solution in the static diffusion experiments. 

 

 

 

 

 

 

 

 

Figure 3.2: Lumped mass transfer rate coefficients for each detectable component in the 
aqueous phase versus molecular weight.  The dashed lines represent observed trends for 
BTEX and some PAH compounds. 
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Figure 3.3: Schematic of the physical system simulated. A spherical NAPL blob suspended in a 
well-mixed volume of water. Also shown is the numerical representation associated with Eq. 3.9. 

 

 

Figure 3.4: Aqueous concentration of naphthalene (Nap) and 2-methylnaphthalene (2MN) for 
different initial NAPL viscosities. 
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Figure 3.5: Radial concentration of the bulk portion for different initial NAPL viscosities at 1000 
days. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Ratio of final (1000 days) to initial component concentration within the medium 

viscous NAPL. From left to right: BTEX, TMB, PAHs in alphabetical order, and bulk portion. 
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Figure 3.7: Ratio of final (1000 days) to initial viscosity for the different initial NAPL viscosities 

investigated. 

 

 

Figure 3.8: Simulated NAPL radial composition of the most predominant components at 1000 

days for (a) the high viscous NAPL (ηinitial = 15 g/(cm s)), and (b) the very-high viscous NAPL  

(ηinitial  = 200 g/(cm s)). 

 

(b) 

(a) 
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Figure 3.9: Temporal variation of the mole fractions for the very-high viscous NAPL (ηinitial = 200 

g/(cm s)) at the (a) interface, and (b) within the entire NAPL body. 

 

 

 

 

 

 

 

 

Figure 3.10: The radial distribution of the main intra-NAPL diffusion coefficients for the very-

high viscous NAPL (ηinitial = 200 g/(cm s)) after 1000 days.

(a) 

(b) 
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Table 3.1: Suite of organic components detected in the former MGP NAPL used in this study along with associated properties. 

 

NAPL Mole density Viscosity Vboiling

Identifier Concentration Fraction MW Solubility fS/fL (Eq.14) (Eq.17)

Component [g/L] [-] [g/mol] [mg/L] [-] [g/mL] [g/(cm s)] [cm3/mol] Experimental UNIFAC

Benzene Ben 2.84E+00 6.89E-03 78.1 1780 1 1 1 0.88 6.49E-03 77 0.42 0.25

Ethylbenzene ETB 5.97E+00 1.07E-02 106.2 161.2 1 1 1 0.87 6.78E-03 119 0.49 0.38

Xylene(s) Xyl 3.50E+00 6.27E-03 106 373 1 1 1 0.87 6.97E-03 119 0.41 0.40

Toluene Tol 1.13E+00 2.34E-03 92.1 534.8 1 1 1 0.86 6.00E-03 98 0.04 0.33

Trimethylbenzene(s) TMB 5.78E+00 9.13E-03 120.2 57.4 1 1 1 0.88 8.75E-03 140 0.45 0.47

1-Methylnaphthalene 1MN 3.92E+01 5.23E-02 142.2 28.5 1 1 1 1.02 1.63E-02 140 0.38 0.49

2-Methylnaphthalene 2MN 6.63E+01 8.85E-02 142.2 25.4 1 0.86 1 1.01 1.63E-02 140 0.21 0.49

Acenaphthene Ace 3.16E+01 3.89E-02 154.2 3.9 1 0.2 1 1.22 3.02E-02 147 0.22 0.64

Acenaphthylene ANL 7.89E+00 9.83E-03 154 9.8 1 0.22 1 0.90 2.05E-02 133 - 0.57

Anthracene Ant 8.19E+00 8.72E-03 178.2 0.05 1 0.01 1 1.28 4.10E-02 161 - 0.60

Biphenyl Bip 1.10E+01 1.35E-02 154.2 7.5 2 1 3 1.04 2.08E-02 147 - 0.45

Chrysene Chr 6.90E+00 5.74E-03 228.2 0.002 1 0.0097 1 1.27 9.32E-02 203 - 0.86

Dibenzofuran DBF 4.82E+00 5.44E-03 168.2 10 2 0.25 4 1.09 3.23E-02 140 - 0.55

Fluoranthene FAN 1.81E+01 1.70E-02 202.3 0.26 1 0.21 1 1.25 7.24E-02 175 - 0.86

Indene Inde 2.42E-01 3.95E-04 116.16 390 1 1 3 1.00 1.10E-02 112 - 0.42

Fluorene Flu 1.85E+01 2.11E-02 166.2 2 1 0.16 1 1.20 3.64E-02 154 - 0.63

Naphthalene Nap 1.27E+02 1.88E-01 128.2 31.7 1 0.3 1 1.03 1.32E-02 119 0.35 0.40

Phenanthrene Phen 5.09E+01 5.42E-02 178.2 1.3 1 0.28 1 0.98 3.14E-02 161 - 0.60

Pyrene Pyre 2.59E+01 2.43E-02 202.3 0.13 1 0.11 1 1.27 6.39E-02 175 - 0.86

Bulk Bulk 6.45E+02 4.37E-01 280 5 2.00E-06 5 1.00 1.14 2.37E+02 119 6 - 0.73

1) From Eberhardt & Grathwohl (2002).

2) From Thomson et al. (2008).

3) Not available, assumed equal 1.

4) Mackay et al. (2006).

5) Assumed.

6) Assumed similar to naphthalene.

Initial Activity Coefficient
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Table 3.2: Aqueous equilibrium concentration, and experimental lumped mass transfer rate coefficient (kw) for the nine detected 
components present in the aqueous phase.  

 

 

 

 

Experimental Ideal

Component [1/day] r 2 

Benzene 5200 12300 0.080 0.83

Ethylbenzene 850 1 1720 0.042 0.98

Xylene(s) 450 1 1090 0.036 0.98

Toluene 50 1250 0.061 0.98

Trimethylbenzene(s) 235 524 0.062 0.94

1-Methylnaphthalene 570 1490 0.093 0.91

2-Methylnaphthalene 560 2620 0.104 0.91

Acenaphthene 170 758 0.055 0.83

Naphthalene 7000 1 19800 0.036 0.94

1) Calibrated with a least-squares analyses framework.

k w

[μg/L]

                          Aqueous Equilibrium Concentration
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    Chapter 4 

Intra-NAPL Diffusion and Dissolution of            

Multi-Component NAPLs Subjected to Persulfate  

OUTLINE 

Intra-NAPL diffusion is a critical process that can influence NAPL/water mass transfer. A series 

of physical model experiments was performed to investigate the role of intra-NAPL diffusion on 

the transient dissolution of complex multi-component NAPLs subjected to persulfate. A diffusion-

based numerical model was developed and calibrated using the experimental data. The findings 

showed that a combination of NAPL composition and geometry, and interphase mass transfer 

rate results in intra-NAPL diffusion limitations. Rate-limited intra-NAPL diffusion within complex 

multi-component NAPLs can restrict mass transfer and hence impact treatment efficiency. The 

experimental results indicated that while persulfate was able to completely degrade dissolved 

phase components, mass loss after ~410 pore volumes (PVs) of persulfate injection was less 

than a no treatment scenario. A comparison of experimental and simulated results indicated that 

processes related to persulfate/NAPL interactions restricted mass transfer, and hence the multi-

component mass transfer rate coefficients were ~70 % less than those estimated during an 

equivalent water flushing period. 

4.1 INTRODUCTION 

Mass transfer between water and complex multi-component non-aqueous phase liquids (NAPL) 

such as crude oil, creosote, and coal tars from former manufactured gas plants (MGPs) is a critical 

process that can affect the performance of remediation technologies (Luthy et al., 1994). Field 

and laboratory data indicate that NAPL/water mass transfer is usually limited by NAPL 

architecture, preferential flow, low residual saturation (Powers et al., 1998; Soga et al., 2004), and 

intra-NAPL diffusion (Luthy et al., 1993; Ortiz et al., 1999; Lekmine et al., 2014). 

Intra-NAPL diffusion within a multi-component NAPL is influenced by the concentration gradients 

of all components present in the system (Cussler, 1997). The molecular size of constituent 
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components, presence of structurally dissimilar molecules, and heterogeneity within the organic 

mixture can limit intra-NAPL diffusion (Banerjee, 1984; Miller et al., 1985; Mukherji et al., 1997). 

When complex multi-component NAPLs are exposed to groundwater, the more soluble 

components will be depleted at the NAPL/water interface (Peters et al., 2000; Wehrer et al., 2013). 

This phenomenon is called weathering or ageing and affects dissolution. Weathering effects have 

been reported for coal tar (Luthy et al., 1993; Nelson et al., 1996), crude oil (Jada & Salou, 2002; 

Ghoshal et al., 2004; Varadaraj & Brons, 2012) and creosote (Alshafie & Ghoshal, 2004), and 

have been attributed to NAPL composition or inter-molecular interactions between water and 

organic compounds. 

The low solubility of complex multi-component NAPLs due to compositional complexity and 

weathering effects can restrict the efficiency of water-based remediation methods. Hence, most 

remediation efforts have been limited to isolation and removal of these source materials (Luthy et 

al., 1994; Peters et al., 2000). Since chemical oxidants (i.e., permanganate and persulfate) have 

been able to oxidize most of the environmentally significant organic compounds (Krembs et al., 

2010), it should be theoretically possible to use chemical oxidants to treat these complex multi-

component NAPLs. When oxidants are added to these systems, in addition to the compositional 

complexities of multi-component NAPLs, other factors may also be involved that can influence 

NAPL/water mass transfer and treatment efficiency (Siegrist et al., 2011). For example, side 

reactions can result in the generation of by-products and/or precipitates which may hinder mass 

transfer (Thomson et al., 2008). Surfactant-like compounds that are temporally produced in 

reactions involving persulfate can enhance solubilization and potentially mobilize NAPL by 

decreasing interface tension (Conrad et al., 2002; Corbin et al., 2007; Gryzenia et al., 2009). 

Ndjou’ou and Cassidy (Ndjou’ou & Cassidy, 2006) reported that produced organic surfactants 

decreased surface tension, emulsified hydrocarbons, and eventually were degraded. Blanchard 

(Blanchard, 2010) reported that oxidants (i.e., hydrogen peroxide and ozone) increased MGP tar 

viscosity by degrading volatile components and naphthalene; and thus, indirectly influenced intra-

NAPL diffusion and mass transfer (Ortiz et al., 1999). 

Surprisingly, only a few studies have considered the role of intra-NAPL diffusion on NAPL/water 

mass transfer (Holman & Javandel, 1996; Brahma & Harmon, 2003).  While a number of studies 

have investigated multi-component mass transfer processes (Peters & Luthy, 1993; Wehrer et 

al., 2013) and chemical oxidation of complex multi-component NAPLs (Hauswirth & Miller, 2014; 

Peng et al., 2016; Wang et al., 2015), to the best of our knowledge, no study has investigated 

intra-NAPL diffusion, film formation, and compositional changes of multi-component NAPLs in the 
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presence of a chemical oxidant. Hence the objective of this study was to explore the role of intra-

NAPL diffusion on transient dissolution of multi-component NAPLs subjected to a chemical 

oxidant, and to identify some of the controlling processes which can restrict mass transfer. For 

the purpose of this evaluation, a numerical dissolution model was developed to simulate intra-

NAPL diffusion within a multi-component NAPL exposed to water or oxidant solution.  In addition, 

a series of physical model experiments without sediments was performed to investigate the direct 

interaction between a NAPL and persulfate or water under dynamic conditions.  Changes in the 

NAPL and aqueous phase were monitored over the time and used to determine realistic model 

parameters (i.e., mass transfer rate coefficients, equilibrium concentration of NAPL constituents, 

activity coefficients, and NAPL characteristics). 

4.2 EXPERIMENTAL INVESTIGATION 

4.2.1 Materials and Methods 

The MGP residuals used in this study were collected from the West Florida Natural Gas Company 

site located in Ocala, Florida. For the purpose of this experiment, our focus was on the dense 

portion (DNAPL) of the NAPL which was separated from the sample (see the Appendix C for more 

information). Table 4.1 lists the most abundant and soluble components within the DNAPL portion 

along some associated properties. The identified components account for ~33% of the total 

DNAPL by mass (19 compounds) and the remainder was unidentified.  

The physical model experiments were designed to simulate an isolated rectangular NAPL body 

with only the top available for mass transfer (Figure 4.1). The physical model was a ~7 cm long 

cylindrical flow-through chamber made of glass with a pore volume (PV) of 9.7 mL.  A Teflon 

sleeve was inserted snuggly into the bottom of the chamber and contained a DNAPL reservoir 

with surface area of 0.5 x 2.0 cm2 and depth of ~0.22 cm (Figure C.1 in Appendix C).  DNAPL in 

the reservoir was directly exposed to flowing water or persulfate solution while the NAPL surface 

area remained essentially constant. An in-line sampling system was used to collect aqueous 

samples from the effluent as required.  The temporal mass loss and compositional changes of 

the NAPL was quantified in each system.  Ten physical model experiments were performed. 

Initially, each physical model was flushed by Milli-Q water at a nominal rate of 0.043 mL/min using 

a peristaltic pump. To ensure hydraulic consistency, a tracer test was performed on each model 

system by injecting 4 PVs of 100 mg/L NaBr solution. Following the tracer test, three (3) PVs of 
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Milli-Q water were injected to remove remnant NaBr from the physical model, and then 0.2 mL of 

the DNAPL was injected from the end of the physical model through the water using a 200 μL 

glass syringe (Hamilton, Sigma Aldrich) to completely fill the DNAPL reservoir.  The surface of 

the NAPL within the Teflon reservoir was concave downward. During the filling process, one sub-

sample was collected from the remnant NAPL in the glass syringe to establish the initial NAPL 

composition for each model. 

Five (5) physical models were subsequently flushed with a 20 g/L persulfate solution (identified 

as OX) and five (5) systems were flushed with Milli-Q water as experimental controls (identified 

as CO) at a nominal rate of 0.043 mL/min (velocity of ~51 cm/day).  The physical models were 

covered by aluminum foil and operated at ambient temperature (~20 oC).  Aqueous samples were 

collected daily and analyzed for a suite of organic components (Table 4.1), and persulfate 

concentration. The solution pH was determined and random effluent samples from each physical 

system were also collected for ion analysis. One oxidant and one control physical model was 

sacrificed on Day 7, 14, 30, 45, and 64.  The NAPL from each physical model was homogenized 

and analyzed for the concentration for the suite of organic components (Table 4.1).  

Approximately ~410 PVs were flushed through the physical models sacrificed on Day 64.  

The initial viscosity of the DNAPL was 1.22 g/(cm s) using a dilution viscometer (Cannon-

Ubbelhode), and the initial density was 1.08 g/mL.  Details of all reagents and analytical methods 

used in this study are presented in Appendix C.   

4.2.2 Results and Discussion 

The organic concentrations in the effluent samples collected from the persulfate systems 

indicated that all quantifiable dissolved phase components were < the method detection limit 

(MDL) and thus completely oxidized. However, for the control reactors a total of nine components 

were detected in the effluent including benzene, toluene, ethylbenzene, xylene (BTEX), 

trimethylbenzene(s), and four polycyclic aromatic hydrocarbons (PAHs) (naphthalene, 1-

methylnaphthalene, 2-methylnaphthalene, and acenaphthene).  The aqueous concentrations of 

the other quantifiable components were < MDL. The final NAPL concentrations (after flushing with 

410 PVs) for BTEX was < 30% of the initial values, for naphthalene was ~60%, for 

trimethylbenzene, 1-mthlnaphthalene, 2-methylnaphthalene, and acenaphthene was ≤ 80%, and 

for the rest of components which were not detected in the aqueous phase were ~90% of the initial 

NAPL concentrations. The effluent pH steadily decreased from 5.5 to 4 for the control systems, 
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and from 3.5 to 2.5 for the persulfate systems likely due to the dissolution of organic acids. The 

effluent concentration of persulfate fluctuated around 20 g/L in the persulfate systems. Aside from 

sulfate and sodium present in the effluent from the persulfate systems, no other ions were 

detected.  

No physical changes (i.e., color, temperature, precipitation) were observed in the control systems 

over the 64-day experimental period.  In all the persulfate systems, the DNAPL was mobilized 

and spread out of the reservoir in the Teflon sleeve. After one week of flushing with the persulfate 

solution the NAPL/water surface area had increased by ~50% (Figure C.2 in Appendix C).  This 

mobilization is likely related to changes in wettability and interfacial tension that did not occur in 

the control systems.  Surfactants have been reported to be produced during chemical oxidation 

of hydrocarbons (Ndjou’ou & Cassidy, 2006; Gryzenia et al., 2009) and thus impact interfacial 

tension.  In addition, the acidic condition in the persulfate physical models can have altered the 

wettability of the MGP NAPL (Barranco & Dawson, 1999; Zheng & Powers, 1999). Also the higher 

density of the persulfate solution compared to water in the control systems can have enhanced 

DNAPL mobilization. Thus, the observed NAPL mobilization in the persulfate systems is related 

to a lower interfacial tension, acidic condition and wettability of the system, and a higher density 

of the flushing solution.  

Except for benzene and toluene, the effluent concentrations of the other seven (7) detectable 

components from control systems remained > MDL but steadily decreased (Figure 4.2). 

Naphthalene had the highest initial effluent concentration of ~1000 μg/L and decreased to ~600 

μg/L after flushing with ~410 PVs of water.  The effluent concentrations of other the PAHs (i.e., 

2-methylnaphthalene and 1-methylnaphthalene) were relatively constant but significantly lower 

than naphthalene.  While BTEX and trimethylbenzene have higher solubility’s compared to PAHs, 

their effluent concentrations were lower due to their lower mole fractions and higher fugacity 

ratios. Benzene and toluene, which are the most soluble components, initially had a high effluent 

concentration but decreased to < MDL after flushing ~160 and ~100 PVs of water, respectfully. 

The concentrations of organic components in the NAPL (Figure 4.3) decreased over the 

experimental period and were proportional to the decreasing trend of dissolved phase 

concentrations. The toluene NAPL concentration in the control systems remained > 1 g/kg after 

flushing ~300 PVs of water. However, toluene aqueous concentration decreased < MDL after 

flushing 100 PVs of water. Hence, while toluene has been present in the NAPL after flushing 100 

PVs of water, the aqueous concentration of toluene was < MDL. This can be attributed to the 
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potential depletion of toluene at the interface that prevented toluene dissolution. In addition, 

benzene concentration in the NAPL fluctuated around 0.1 mg/g (close to MDL) after flushing 50 

PVs of water, however, its aqueous concentration reached < MDL after flushing 160 PVs of water. 

Consequently, after 410 PVs of water flushing the two most soluble components were depleted. 

The xylene and ethylbenzene concentrations within NAPL also reached to ~1 g/kg and were close 

to be depleted. 

The concentrations of organic components within the NAPL from the oxidant systems were higher 

than those values from control systems except for benzene and toluene which were depleted 

(Figure 4.3). The component concentrations within the NAPL from each physical model were 

divided by the associated initial values to determine normalized NAPL concentrations. The results 

indicated that after 410 PVs of flushing, the average normalized NAPL concentrations from the 

oxidant systems were ~5% higher than the associated values from the control systems. Hence, 

the NAPL/water mass transfer rate was larger in the control systems compared to the oxidant 

systems. Based on theoretical considerations, including the increased NAPL/water surface area 

due to NAPL mobilization, enhanced mass transfer and lower NAPL concentrations were 

expected in the oxidant systems.  For this reduced mass transfer to occur when persulfate was 

present, some physical or chemical processes (e.g., interfacial interactions (Nelson et al., 1996), 

NAPL compositional changes (Peters et al., 2000), skin layer formation (Ghoshal et al., 2004), 

and precipitation (Thomson et al., 2008)) connected to the interaction between persulfate and 

MGP residuals restricted mass transfer in the oxidant systems compared to the control systems.  

Toluene was the only component that had a lower NAPL concentration in the oxidant systems 

compared to the control systems (Figure 4.3). This difference was more pronounced after the first 

50 PVs, and hence toluene dissolution appears to have been enhanced during the persulfate 

flush. However, due to restricted mass transfer, toluene concentration fluctuated around 1.2 g/kg 

within the persulfate systems until the end of experimental period. Since there was no limiting 

process in the control systems, the toluene concentration gradually decreased and eventually 

was less than the toluene concentration in the oxidant systems (Figure 4.3). 

Despite efforts to ensure a homogeneous DNAPL was used in all physicals models, some data 

variability is evident in the assembled experimental results especially for components which have 

lower NAPL concentrations (e.g., BTEX). However, for the purpose of this study, the accumulated 

experimental data set was sufficient to provide information about the direct interaction of multi-



70 
 

component NAPLs with water or persulfate, and to generate the required input parameters for 

simulation purposes. 

4.3 MULTI-COMPONENT INTRA-NAPL DIFFUSION MODEL 

4.3.1 Model Description 

To investigate the role of intra-NAPL diffusion on transient dissolution of multi-component NAPLs 

subjected to persulfate, a temporal-spatial numerical dissolution model was developed. For the 

purpose of this evaluation, an isolated rectangular NAPL body with uniform initial concentration 

and only one side available for mass transfer was considered (Figure 4.1). The mass balance for 

each component within the NAPL can be written as (Bird et al., 2002):  

∂Ci
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=  

∂
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 (∑ Dij
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𝑛−1
𝑗=1 )                                      (4.1) 

where 𝑛 is the total number of species with component 𝑛 chosen as the bulk portion of the NAPL, 

𝜕𝐶𝑗

∂x
 is concentration gradient within the NAPL, 𝑡 is time, and 𝐷𝑖𝑗 are intra-NAPL diffusion 

coefficients which were estimated by employing Kett and Anderson method (Kett & Anderson, 

1969a). The diagonal terms of multi-component diffusion coefficients or main coefficients (𝐷𝑖𝑖) 

can be represented as: 
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and off-diagonal coefficients (𝐷𝑖𝑗,𝑖≠𝑗) can be written as: 
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where 𝐶𝑇 is the sum of molar concentrations of constituent components present in the mixture, 𝛾 

is the activity coefficient, 𝑅 is the universal gas constant, 𝑉 is the molar volume, 𝜎𝑖 is the friction 

factor, 𝑇 is the absolute temperature, and 𝜂 is mixture viscosity.  
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The rectangular NAPL body was subjected to impermeable boundary conditions at external 

boundaries except at NAPL/water interface (Figure 4.1) which was subjected to the first-order 

mass transfer flux (𝐽𝑖) (Miller et al., 1990; Weber & DiGiano, 1995) as given by: 

𝐽𝑖 = 𝐾(𝐶𝑒𝑞,𝑖
𝑤 − 𝐶𝑖

𝑤)                                           (4.3) 

where 𝐾 is mass transfer rate coefficient (L/T), 𝐶𝑒𝑞,𝑖
𝑤  is the aqueous equilibrium concentration of 

each component, and 𝐶𝑖
𝑤is the aqueous concentration.  The aqueous equilibrium concentration 

for each component (𝐶𝑒𝑞,𝑖
𝑤 ) was estimated by using a modified form of Raoult’s law (Lee et al., 

1992) as:    
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𝑁 𝑆𝑖
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where 𝑁 and 𝑤 superscripts refer to NAPL and water phase respectively, 𝑆𝑖 is the aqueous 

solubility of each component, and 𝑓𝑖
𝑠 and 𝑓𝑖

𝑙 are fugacities in the pure solid and pure liquid states, 

respectively (Table 4.1). To account for the film transfer resistances and compositional changes 

at the NAPL/water interface, the mole fractions in Eq. 4.4 were calculated based on the 

component concentrations at the NAPL/water boundary of the rectangular NAPL body.  

 

To simulate aqueous concentrations along the cylindrical chamber (Figure 4.1), Eq. 4.1 was linked 

to the following one-dimensional advection-dispersion-reactive expression (Weber & DiGiano, 

1995): 
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where 𝜈 is the aqueous velocity, 𝑑 is the depth of each cell, 𝐷 is dispersion coefficient, 𝐶𝑜𝑥 is the 

oxidant concentration, and 𝑘𝑜𝑥,𝑖 is the second-order oxidation rate coefficient with respect to the 

oxidant for the 𝑖𝑡ℎ constituent.  The third term on right-hand side of Eq. 4.5 is active when NAPL 

is present. The oxidant concentration (𝐶𝑜𝑥) was calculated by employing a mass balance equation 

as (Weber & DiGiano, 1995):  
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where 𝛽𝑖 is the stoichiometric mass ratio defined as the mass of oxidant consumed per mass of 

constituent degraded. The numerical model was coded and implemented in MATLAB 2014b (see 

Appendix C for details). 

4.3.2 Model Parameterization and Investigated Scenarios 

For the initial condition, a 0.2 g well-mixed rectangular NAPL body was specified and the initial 

concentrations of constituent components were assigned to be identical to the former MGP NAPL 

employed in the physical model experiments (Table 4.1) along with associated solubility, fugacity, 

and 𝛽𝑖 values. Similar to the physical models (Figure 4.1), the rectangular NAPL body was 

assumed to be in the middle of a cylindrical chamber with a length of 8 cm and cross surface area 

of ~1.2 cm2.  The NAPL body was in contact with the aqueous phase only on the top.  A flow rate 

of 0.043 mL/min was used. Three different scenarios were considered: (1) water flushing scenario 

(identified as W) which is similar to the control system, (2) oxidant flushing scenario (identified as 

OX) which is the persulfate system, and (3) mobilized NAPL scenario (identified as Mob) which 

is persulfate system with increased NAPL/water contact area. The NAPL/water contact area was 

assigned 2.0 x 0.5 cm2 for the water and oxidant scenarios. For the mobilized NAPL scenario, the 

NAPL/water interface was increased by 50% (2.0 x 0.75 cm2) to be consistent with the 

experimental observations. Unfortunately, only a few second-order oxidation rate coefficients are 

available for persulfate in the literature (Sra et al., 2013) and therefore a single constant kox of 1 

L/(g day) was assigned for all of the components.  To reduce the concentration of all dissolved 

components to ~MDL to be in agreement with the experimental results. The inlet oxidant 

concentration was set as 20 g/L for OX and Mob scenarios for the initial 410 PVs (64 days). The 

dispersion coefficient was determined to be 0.03 cm2/day by fitting the simulated effluent 

concentrations to the tracer test results. 

To estimate intra-NAPL diffusion coefficients (Eq. 4.2), the mixture viscosity (𝜂) was estimated by 

using the Yon and Toor relationship (Kett & Anderson, 1969b). Activity coefficients were estimated 

using the universal Quasi-chemical functional group activity coefficient (UNIFAC) method (Poling 

et al., 2001) by assuming that the bulk portion of the NAPL is composed of an equal numbers (9) 

of individual functional groups within the identified components (Table 4.1) similar to Chapter 2. 

Kett and Anderson (1969a) suggested that if the self-diffusion (𝐷𝑖) and infinite dilution diffusion 

coefficients (𝐷𝑖𝑗
𝑜 ) for each component are available, the local friction factor can be estimated as: 

𝜎𝑖 = 𝑅𝑇 (
𝑋𝑖
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where 𝑋𝑖 is the mole fraction of each component within mixture, and 𝜂𝑗 is the viscosity of each 

pure component. For the purpose of this investigation, the viscosity of each component (𝜂𝑖) was 

obtained from the literature (Lide, 1999) or estimated by using Orrick and Erbar method (Poling 

et al., 2001). Table 4.1 lists the molecular weight, viscosity, and density for each component. To 

estimate the friction factors (Eq. 4.7), the self and infinite dilution diffusion coefficients are 

required.  Since most of the organic components are liquid in their pure state at ambient 

temperature their self and infinite dilution diffusion coefficients can be estimated with proposed 

relationships in the literature.  PAHs with a fugacity ratio less than unity are solid at ambient 

temperature and estimation of their self and infinite diffusion coefficients requires consideration.  

In this modeling effort two different approaches were employed to estimate the self-diffusion 

coefficients for PAHs with a fugacity ratio less than unity as well as the infinite dilution diffusion 

coefficients of the remaining components within these PAHs. 

In the first approach, identified as regular diffusion (RD) approach, the self and infinite dilution 

diffusion coefficients for PAHs with a fugacity ratio less than unity were estimated similar to the 

other components which are liquid at ambient temperature. This approach is plausible since PAHs 

with a fugacity ratio less than unity can exist as liquid due to melting point depression within multi-

component mixtures (Peters et al., 1997). In the RD approach, self and infinite dilution diffusion 

coefficients were determined using estimation methods for organic liquids. The infinite dilution 

diffusion coefficients (𝐷𝑖𝑗
𝑜 ) were estimated by a modified form of Tyn and Calus relationship (Poling 

et al., 2001), and self-diffusion data (𝐷𝑖) were calculated using Houghton’s Cubic Cell model 

(Houghton, 1964).  The self and infinite dilution diffusion coefficients (range between 10-5 to 10-6 

cm2/s) used in this study are presented in Table C.1 in Appendix C. 

To address the pure state of PAHs with a fugacity ratio less than unity that are solid at ambient 

temperature, the second approach, identified as modified diffusion approach (MD), was 

employed. In the MD approach the self and infinite dilution diffusion coefficients (Table C.1 in 

Appendix C) were modified for PAHs with a fugacity ratio less than unity so they are in the range 

as the self-diffusion coefficients in the crystal form. Unfortunately, there are only a few self-

diffusion coefficients available for the crystal forms of PAHs and they are in the range of 10-10 to 

10-13 cm2/s (Burns & Sherwood, 1972a, 1972b; Sherwood & Thomson, 1960; Sherwood & White, 

1967). Thus, to investigate the complete range of self-diffusion coefficients for the crystal forms 

of PAHs with a fugacity ratio < 1, their self and infinite diffusion coefficients (which are in the same 

order for each component (Table C.1 in Appendix C)) were multiplied by 10-2, 10-3, and 10-6 cm2/s 

and identified as MD2, MD3, and MD6, respectively. This modification will decrease all of the 
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intra-NAPL diffusion coefficients by affecting the associated friction factors (Eq. 4.7). Hence, in 

this study four (4) different approaches (RD, MD2, MD3, and MD6) were employed and calibrated 

using the experimental NAPL and effluent concentrations from the physical model experiments. 

NAPL viscosity can control mass transfer process and intra-NAPL diffusion (Ortiz et al., 1999). 

Birak and Miller (Birak & Miller, 2009) reported that the viscosity of MGP tars comprised of coal, 

water-gas, and oil gas tars can range from 0.091 to 6600 g/(cm s). To investigate the effect of 

viscosity on intra-NAPL diffusion within complex NAPLs subjected to chemical oxidation, a high 

viscous NAPL (viscosity of 200 g/(cm s)) was also simulated in addition to the NAPL used in the 

physical model experiments (viscosity of 1.2 g/(cm s)). 

4.3.3 Results and Discussion 

4.3.3.1 Water Flushing Scenario Calibration 

Since the focus of this study was on the intra-NAPL conditions and diffusion resistance, a single 

constant mass transfer rate coefficient (Eq. 4.3) for each approach (RD, MD2, MD3, and MD6) 

for the water flushing scenario was determined. A least-squares analysis framework was used in 

conjunction with the experimental effluent concentrations from the control systems (Figure 4.2) 

for all detectable components except benzene and toluene.  Benzene and toluene were excluded 

from the least-squares analysis since their aqueous concentrations where < MDL during the 

experimental period and this would influence the calibration results. The mass transfer rate 

coefficients for benzene (KBen) and toluene (KTol) were determined separately.  

The comparison of the experimental and simulation results (Figure 4.2) for the water flushing 

scenario indicates that while the MD6 approach was in agreement with the effluent concentration 

for toluene which had low aqueous and NAPL concentrations, the RD approach captured the 

effluent concentration of the other components better. The results from the MD2 to MD6 

approaches gradually deviate from the experimental results. Hence the RD approach which 

assumes that all the organic components are liquid within the MGP NAPL better represents intra-

NAPL diffusion. As expected, the calibration framework employed was controlled with the most 

dominant components. For example, the naphthalene aqueous concentration is 5 times higher 

compared to the rest of the components. Thus, while the simulated results match the observed 

naphthalene concentration profile, they are slightly dissimilar for the other components (Figure 

4.2). 
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The RD approach matched the experimental aqueous concentrations the best and was chosen 

for the long-term simulations. The best-fit mass transfer rate coefficient was 9.6 cm/day for all 

components expect for benzene (KBen = 24.5 cm/day) and toluene (KTol = 0.6 cm/day).  These 

calibrated mass transfer rate coefficients for the water flushing scenario using RD approach were 

identified by Kw. 

4.3.3.2 Calibration of Oxidant Flushing and Mobilized NAPL Scenarios 

The experimental results indicated that in the physical models that were flushed with persulfate 

the NAPL was mobilized and the overall mass transfer was less than the control systems. To 

address these issues, the mass transfer rate coefficients during persulfate flushing using the RD 

approach (identified as Kox) were estimated so that the simulated NAPL concentrations for the 

Mob scenario (equivalent to the experimental persulfate systems) were higher than those for the 

W scenario (equivalent to the experimental control systems) to be consistent with the 

experimental observations (Figure 4.3). 

The experimental NAPL concentrations from both the persulfate and control systems after 410 

PVs of flushing (final concentrations) were divided by the associated initial concentrations to 

determine the final experimental normalized NAPL concentrations (identified as Cox-N for the 

persulfate systems and Cco-N for the control systems). Then, the ratio of Cox-N to Cco-N were 

calculated and identified as Rexp. In addition, the ratio of the simulated NAPL concentrations from 

the Mob scenario after 410 PVs to those from the W scenario were also determined (identified as 

Rsim). A least-squares analysis framework was used to determine the best-fit Kox values so that 

Rsim matched Rexp. Only the most dominant components (naphthalene, 1-methylnaphthalene, 2-

methylnaphthalene) were used in this calibration procedure. The results from this calibration 

exercise indicate that the best-fit Kox values are 70% smaller than the Kw values (Figure 4.3) which 

is consistent with the experimental observations that persulfate/NAPL interactions inhibited 

interphase mass transfer.  

4.3.3.3 Long-term Simulations 

To investigate treatment expectations and compare temporal compositional changes within the 

complex NAPLs following persulfate or water flushing, a series of long-term simulations were 

performed. The long-term simulations were run arbitrarily for 6400 PVs (1000 days) which was 

deemed sufficient to observe changes in intra-NAPL diffusional flux and composition. Because it 

is possible that at the end of an oxidant flushing episode Kox values might increase to the Kw 
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values the long-term simulations of the oxidant and mobilized NAPL scenarios were performed 

using two different methods. Hence, a total of five scenarios were simulated: 

i. Water flushing scenario with NAPL/water contact area of 2.0 x 0.5 cm2 using Kw values during 

the 6400 PV flushing period, identified as W, representative of the experimental control 

systems.  

ii. Mobilized NAPL scenario with NAPL/water contact area of 2.0 x 0.75 cm2 using Kox values 

during the 6400 PV flushing period, identified as Mobox.  

iii. Mobilized NAPL scenario with NAPL/water contact area of 2.0 x 0.75 cm2 using Kox values 

during the persulfate flushing period (initial 410 PVs) and then Kox values were replaced 

with Kw values, identified as Mobox-w.  

iv. Oxidant flushing scenario with NAPL/water contact area of 2.0 x 0. 5 cm2 using Kox values 

during the 6400 PV flushing period, identified as OXox.  

v. Oxidant flushing scenario with NAPL/water contact area of 2.0 x 0. 5 cm2 using Kox values 

during the persulfate flushing period (initial 410 PVs) and then Kox values were replaced 

with Kw values, identified as OXox-w. 

 

Similar to the experimental aqueous results (Figure 4.2), naphthalene had the highest initial 

simulated aqueous concentration in the effluent. The long-term temporal expectations for 

naphthalene effluent concentrations are presented in Figure 4.4 for all the five scenarios. The 

initial naphthalene aqueous concentration for the W scenario was ~0.85 mg/L and gradually 

decreased to < 0.1 mg/L. Following 410 PVs of persulfate flushing the aqueous concentrations 

rebounded for both the Mob and OX scenarios. The highest naphthalene aqueous concentration 

following persulfate injection as well as the lowest value after 6400 PVs was produced from the 

Mobox-w scenario. This is attributed to the larger NAPL/water contact area as well as the large 

mass transfer rate coefficients (Kw). The aqueous concentration of naphthalene for the OXox-w 

scenario following persulfate flushing was similar to that from the W scenario due to similar contact 

area and mass transfer rate coefficient. The lowest naphthalene aqueous concentrations after 

persulfate flushing was produced from the Mobox and OXox scenarios due to smaller mass transfer 

rate coefficient. Hence, if the persulfate/NAPL interactions which restricted interphase mass 

transfer remain after persulfate flushing, the dissolved phase concentrations after treatment 

period will be initially lower than those from the no-treatment (W) scenario. However, in the long-

term, aqueous concentrations from the treatment scenarios will be higher than those from the no-



77 
 

treatment scenario. If the mass transfer rate coefficients increase following persulfate flushing, no 

significant difference can be expected between treatment and no-treatment scenarios. 

The final NAPL concentrations after 6400 PVs of flushing for the W scenario (Figure C.3 in 

Appendix C) indicate that naphthalene and 2-methylnaphthalene concentrations decreased 

considerably while phenanthrene concentration increased. However, no concentration gradient 

was established and the NAPL body was homogeneous. The initial estimated main intra-NAPL 

diffusion coefficients were in the range of 1x10-7 cm2/s, and internal diffusion did not restrict mass 

transfer at the NAPL/water boundary. A sensitivity analyses was performed to explore potential 

conditions when intra-NAPL diffusion limitations would arise. The findings indicated that when the 

mass transfer rate coefficient (Eq. 4.3) was increased to > 30 cm/day, or the NAPL depth 

increased to > 1 cm (mass of >1 g and surface area of ~1 cm2), intra-NAPL concentration 

gradients were established. Thus, a combination of NAPL composition, NAPL geometry, and 

interphase mass transfer rate can result in intra-NAPL diffusion limitations. Numerous flushing-

based remediation technologies that rely on an elevated system flow rate to increase mass 

transfer rate will therefore restrict internal diffusion and enhance mass transfer limitations. 

Due to larger NAPL/water contact area and hence larger mass transfer rate, the NAPL 

concentrations from the Mobox-w after 6400 PVs of flushing are lower than those from the W 

scenario (Figure 4.5). However, the NAPL concentrations from the Mobox scenario after 6400 PVs 

of flushing are higher than those from the W scenario and  can be attributed to the smaller mass 

transfer rate coefficients (Kox) used for the Mobox scenario compared to those (Kw) used for the W 

scenario. This impact is significant for the more soluble components (i.e., naphthalene, 

ethylbenzene, and xylene) except for benzene and toluene. Benzene was depleted due to higher 

solubility and mass transfer rate coefficient.  The toluene mass transfer rate coefficient was 

significantly smaller than for other organic components. After 6400 PVs of flushing for the W, 

Mobox-w, and Mobox scenarios, 60%, 65%, and 40% of the initial mass quantified was removed, 

respectively. The final NAPL concentrations from the OXox-w scenario (Figure C.4 in Appendix C) 

are the same (within 1%) as the results from the W scenario indicating that persulfate flushing did 

not enhance mass transfer. The final NAPL concentrations from the OXox scenario (Figure C.4 in 

Appendix C) are significantly higher than those from the Mobox scenario (Figure 4.5). After 6400 

PVs of flushing  60% and 40% of the initial mass quantified was removed for the OXox-w and OXox 

scenarios, respectively. If the persulfate/NAPL interactions which restricted interphase mass 

transfer remain following persulfate flushing, the water flushing (no-treatment) scenario would be 

more efficient compared to 410 PVs (64 days) persulfate flushing. Even if the mass transfer rate 
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coefficients increase following persulfate flushing, chemical oxidation without mobilization effects 

would be similar to the no-treatment scenario. However, if NAPL mobilization occurs, it can 

enhance mass removal. 

4.3.3.4 High Viscous NAPL 

The initial naphthalene aqueous concentration for the high viscous NAPL (Figure C.5 in Appendix 

C) is similar to that for the low viscous NAPL; however, naphthalene aqueous concentration for 

the high viscous NAPL for all five scenarios decreased faster than that for the low viscous NAPL. 

The simulated NAPL concentrations indicate that due to the high viscosity, concentration 

gradients are established even for the thin NAPL body simulated (Figure 4.6 and C.6 in Appendix 

C). After 6400 PVs of water flushing using W scenario, the interfacial naphthalene concentration 

within the high viscous NAPL is similar to that for the low viscous NAPL (Figure C.3 in Appendix 

C). However, naphthalene has the highest concentration at the bottom of the high viscous NAPL 

indicating the effects of rate-limited intra-NAPL diffusion. After 6400 PVs of flushing, 40 and 60% 

of the initial mass quantified was removed from the high viscous and low viscous NAPLs; 

respectively, for the W scenario indicating restricted mass transfer for the high viscous NAPL. The 

initial main intra-NAPL diffusion coefficients for the high viscous NAPL were ~5x10-10 cm2/s which 

result in internal diffusion limitations for this system. 

While the NAPL concentrations after 6400 PVs of flushing for the OXox-w scenario are similar to 

the W scenario (Figure 4.6(a)), the results from the OXox scenario indicate that more soluble 

components have higher concentrations (Figure 4.6(b)) and  can be attributed to the lower mass 

transfer rate coefficients. It was demonstrated that 40% and 25% of the initial mass quantified 

was removed with the OXox-w and OXox, respectively. In addition, 50 and 35% of the initial mass 

quantified was removed in the Mobox-w and Mobox scenarios, respectively. Hence, if the mass 

transfer rate coefficients do not increase following persulfate flushing even the larger contact area 

cannot compensate for mass transfer limitations.  

4.3.3.5 Environmental Implications 

The experimental and computational effort described here is the first effort to provide information 

regarding the role of intra-NAPL diffusion on the dissolution of MGP NAPLs subjected to 

persulfate. The diffusion-based model developed provides an appropriate platform to capture the 

temporal and spatial mass flux and compositional changes within complex NAPLs. It was 

demonstrated that a combination of NAPL composition, NAPL geometry, and interphase mass 
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transfer can result in intra-NAPL diffusion limitations; hence, increasing mass transfer by 

remediation activities or the presence of thick NAPL pools may result in internal concentration 

gradients and film formation. Therefore, methods to overcome mass transfer limitations and intra-

NAPL resistance are required for the effective remediation of complex multi-component NAPLs. 
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Figure 4.1: Schematic of the physical model system. The outer glass chamber is cylindrical and 
a sleeve which contains a DNAPL reservoir is inserted into the bottom of the chamber. The 
insert shows the numerical representation associated with Eq. 4.1. 

 

 

Figure 4.2: Effluent aqueous concentrations from the control systems and simulated results 

under the water flushing scenario using different approaches.  
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Figure 4.3: NAPL concentrations from the control (red symbols) and persulfate (black symbols) 

physical models, and simulated results (lines) for the water flushing and mobilized NAPL 

scenarios using the RD approach.  

 

 

Figure 4.4: Naphthalene effluent concentration for the low viscous NAPL for the water flushing 

(W), mobilized NAPL (Mob), and oxidant flushing (OX) scenarios. 
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Figure 4.5: Ratios of the NAPL concentrations from the mobilized NAPL scenario (CMob) to the 

water flushing scenario (Cw) after 6400 PVs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: High viscous NAPL concentrations of the most predominant components after 6400 

PVs of flushing: a) water and OXox scenarios, b) OXox scenario, c) Mobox-w scenario, d) Mobox 

scenario.
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Table 4.1: Suite of organic components detected in the NAPL along with associated properties. 

NAPL Mole 

Identifier Concentration Fraction MW Solubility fS/fL Density Viscosity Beta

Compound [g/L] [-] [g/mol] [mg/L] [-] [g/mL] [g/(cm.sec)] [g/g]

Benzene Ben 2.57E+00 6.57E-03 78.1 1780 1 1 1 0.88 6.49E-03 45.74

Ethylbenzene ETB 4.72E+00 8.86E-03 106.2 161.2 1 1 1 0.87 6.78E-03 47.12

Xylene(s) Xyl 2.52E+00 4.74E-03 106 173 1 1 1 0.87 6.97E-03 47.12

Toluene Tol 1.51E+00 3.27E-03 92.1 534.8 1 1 1 0.86 6.00E-03 46.53

Trimethylbenzene(s) TMB 4.40E+00 7.30E-03 120.2 57.4 1 1 1 0.88 8.75E-03 47.56

1-Methylnaphthalene 1MN 3.11E+01 4.37E-02 142.2 28.5 1 1 1 1.02 1.63E-02 45.23

2-Methylnaphthalene 2MN 5.32E+01 7.46E-02 142.2 25.4 1 0.86 1 1.01 1.63E-02 45.23

Acenaphthene Ace 2.55E+01 3.30E-02 154.2 3.9 1 0.2 1 1.22 3.02E-02 44.79

Acenaphthylene ANL 6.25E+00 8.19E-03 154 9.8 1 0.22 1 0.90 2.05E-02 43.82

Anthracene Ant 7.25E+00 8.13E-03 178.2 0.05 1 0.01 1 1.28 4.10E-02 44.1

Biphenyl Bip 8.45E+00 1.09E-02 154.2 7.5 2 1 3 1.04 2.08E-02 44.79

Chrysene Chr 5.42E+00 4.74E-03 228.2 0.002 1 0.0097 1 1.27 9.32E-02 43.83

Dibenzofuran DBF 4.14E+00 4.91E-03 168.2 10 2 0.25 4 1.09 3.23E-02 38.24

Fluoranthene FAN 1.44E+01 1.42E-02 202.3 0.26 1 0.21 1 1.25 7.24E-02 43.57

Indene Inde 4.03E-01 6.92E-04 116.16 390 1 1 3 1.00 1.10E-02 45.11

Fluorene Flu 1.56E+01 1.87E-02 166.2 2 1 0.16 1 1.20 3.64E-02 44.42

Naphthalene Nap 1.01E+02 1.58E-01 128.2 31.7 1 0.3 1 1.03 1.32E-02 44.6

Phenanthrene Phen 4.08E+01 4.57E-02 178.2 1.3 1 0.28 1 0.98 3.14E-02 44.1

Pyrene Pyre 2.06E+01 2.04E-02 202.3 0.13 1 0.11 1 1.27 6.39E-02 43.58

Bulk Bulk 7.34E+02 5.23E-01 280 5 2.00E-06 5 1.00 1.14 5.25E+01 0

1) From Eberhardt & Grathwohl (2002).

2) From Thomson et al. (2008).

3) Not available, assumed equal 1.

4) Mackay et al. (2006).

5) Assumed.
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Chapter 5 

Closure 

5.1 CONCLUSION AND CONTRIBUTIONS 

The primary goal of this research was to provide an understanding of mass transfer from multi-

component NAPLs subjected to chemical oxidants. A series of static and physical model 

experiments were performed to investigate the performance of two chemical oxidants to degrade 

MGP residuals, assess the diffusion-limited multi-component mass transfer behavior, and 

determine the effects of chemical oxidation on multi-component mass transfer processes. In 

addition, numerical simulations were employed to assess the long-term behavior of dissolved 

phase concentrations following chemical oxidation of MGP residuals and capture some of the 

controlling situations where multi-component mass transfer processes can be restricted by intra-

NAPL diffusion.  

The significant contributions of this research are: 

- The experimental study described in Chapter 2 is the first investigation to compare the 

feasibility and performance of two important chemical oxidants under both static and 

dynamic conditions to degrade MGP residuals. The developed screening model is the first 

study that investigates the long-term behaviour of 22 dissolved components following 

ISCO treatment. The results provide a data set that can be used to define end-point 

expectations of chemical oxidation of MGP residuals and distinguish the most important 

parameters which can influence treatment efficiency.   

- The modeling study described in Chapter 3 is the first effort to simulate the temporal and 

spatial compositional changes within complex NAPLs. The role of multi-component intra-

NAPL diffusion on NAPL-water mass transfer processes was investigated to identify some 

of the controlling conditions where this process needs to be considered. The model 

provides an appropriate platform in which the complex processes involved in NAPL-water 

mass transfer and internal diffusional fluxes are captured.        

- The experimental and computational study described in Chapter 4 is the first effort that 

provides comprehensive information about the role of intra-NAPL diffusion on dissolution 
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of a MGP NAPL which is directly in contact with persulfate under controlled conditions. 

The lessons learned have applicable aspects for remediation of complex NAPLs.  

The major conclusions of this research are: 

- Dissolved phase organic components were readily degraded with persulfate or 

permanganate (except for benzene) in well-mixed aqueous systems. In well-mixed slurry 

systems, permanganate, unactivated persulfate, and alkaline activated persulfate were 

able to degrade >95%, 45% and 30% of the initial mass quantified, respectively. The 

results demonstrate that when constituent components are dissolved, chemical oxidants 

were powerful enough to degrade MGP mass. Due to the well-mixed conditions in the 

batch experiments, the oxidant/NAPL contact was optimal and hence, the findings provide 

an optimistic view of the end point expectations of chemical oxidation of MGP residuals. 

- There was no net benefit of flushing 6 PVs of permanganate or persulfate at a 

concentration of 30 g/L through MGP impacted soil under the physical model operating 

conditions. The results provided a more realistic picture of the potential for ISCO treatment 

of MGP residuals. The comparison of the initial and final bulk soil concentration data 

indicated that both persulfate and permanganate had lower efficiency in the physical 

model experiments compared to the well-mixed slurry batch experiments. Permanganate 

outperformed persulfate in terms of impacting a change to the system effluent 

concentration and bulk soil concentration; albeit this change was minor.  

- Long-term simulation results that involved a NAPL saturation of between 4% and 8% 

indicated that the effluent profiles were reduced temporality as a result of the injection of 

6 PVs of oxidant and then rebounded to a profile that was coincident with a no-

treatment/natural dissolution scenario. Oxidant treatment (6 PVs at 30 g/L) was only 

effective at low NAPL saturations (<1%) and factors such as oxidant concentration and 

water velocity were unable to significantly alter the long-term effluent profiles, however, 

increasing the mass transfer rate coefficient from 0.09 to 1.8 /day significantly affected the 

long-term dissolved phase concentrations. 

- Experimental results indicated that under diffusion-controlled mass transfer conditions, the 

estimated mass transfer rate coefficients were lower than typical mass transfer rate 

coefficients determined under continuous stirring conditions. No overall trend was 

observed between the mass transfer rate coefficients for the various organic compounds 

identified, however, an inverse dependency between the mass transfer rate coefficient 

and molecular weight was clear but different for BTEX and some PAHs compounds 
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suggesting that the intra-NAPL diffusion behavior of these two organic compound classes 

are different. 

- It was demonstrated that a combination of NAPL composition, NAPL geometry, and 

interphase mass transfer rate can result in intra-NAPL diffusion limitations. Diffusion-

limited mass transfer can result in an interfacial depletion of the more soluble compounds 

which restricts dissolution. When the main intra-NAPL diffusion coefficients were in the 

range of the self-diffusion coefficients (10-5 to 10-6 cm2/s), intra-NAPL diffusion was not 

limiting since NAPL concentration gradients could not be established except when high 

mass transfer rates were present. The threshold of the mass transfer rate coefficient which 

could result in intra-NAPL diffusion limitations was 15 and 180 cm/day for the medium 

(𝜂 = 1.2 g/(cm s)), and low viscous (𝜂 = 0.12 g/(cm s)) NAPLs, respectively. In the case 

of complex and highly viscous NAPLs, smaller intra-NAPL diffusion coefficients are 

expected and even the low range of mass transfer rates can result in the diffusion-limited 

dissolution.   

- Two different approaches were employed to estimate intra-NAPL diffusion coefficients: 1) 

regular diffusion (RD) approach, and 2) modified diffusion approach. It was indicated that 

the RD approach which assumed all the organic components exist as liquid, better match 

the experimental results. It was demonstrated that the intra-NAPL diffusion coefficient of 

each NAPL component is proportional to its NAPL concentration and has an inverse 

dependency on its molecular weight.     

- Rate-limited intra-NAPL diffusion within complex multi-component NAPLs can result in 

interfacial depletion of the more soluble compounds which restricts mass transfer 

processes and hence impacts chemical oxidation. The experimental results indicated that 

while chemical oxidation was able to completely degrade dissolved phase components 

and mobilize the NAPL, mass loss after ~410 PVs of persulfate injection was slightly less 

than a no-treatment scenario. The comparison of experimental and simulated results 

indicated that some limiting processes related to persulfate-NAPL interactions can restrict 

NAPL-water mass transfer. It was determined that during 410 PVs of persulfate flushing 

the multi-component mass transfer rate coefficients were ~70 % smaller than those 

estimated during an equivalent water injection period. 



87 
 

5.2 RECOMMENDATIONS FOR FUTURE WORK 

While important conclusions were drawn and significant contributions were made at the end of 

this study, some questions remained unanswered and some interesting research topics raised 

during the course of this endeavor. The opportunities for further research are summarized as 

follows: 

- To better assess multi-component NAPL-water mass transfer processes, it is 

recommended to experimentally investigate the role of the most important parameters (i.e. 

NAPL composition, NAPL geometry, and interphase mass transfer) which could result in 

intra-NAPL diffusion limitations. Designing an experimental apparatus which allows multi-

level NAPL sampling is required to distinguish internal concentration gradients, NAPL 

viscosity, and interfacial compositional changes.  

- While in the present study the direct interaction of MGP residuals with unactivated 

persulfate was demonstrated, investigating the impact of using different oxidants as well 

as different persulfate activation methods (i.e. permanganate, hydrogen peroxide, alkaline 

activation, and heat activation) on the mass transfer process under both static and 

dynamic conditions is recommended to compare the interactions of different oxidants with 

complex multi-component NAPLs. 

- Development/application of experimental methods is recommended to determine intra-

NAPL diffusion coefficients within synthetic and field collected complex multi-component 

NAPLs. Therefore, the role of the most important parameters which could influence intra-

NAPL diffusion coefficients (i.e. molecular weight and NAPL component concentrations) 

can be investigated experimentally. The experimental results can be used to confirm the 

developed model for the estimation of intra-NAPL diffusion coefficients.  

- There is no clear understanding of the root cause of the MGP NAPL-persulfate interactions 

observed and hence, the physical/chemical processes which restricted mass transfer 

during persulfate injection compared to the equivalent water injection are unknown. 

Therefore, further research is recommended to conduct controlled experiments to identify 

the interactions of persulfate with MGP NAPLs and determine the limiting processes. 

- In the present study it was demonstrated that while chemical oxidation is able to degrade 

MGP residuals in well-mixed conditions, rate-limited NAPL-water mass transfer restricts 
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treatment in systems more representative of in situ conditions. It is also possible that under 

some conditions implementation of remediation strategies results in the interfacial film 

formation and thus restrict the mass transfer and dissolution process. Therefore, methods 

to overcome the mass transfer limitations are required for the remediation of complex 

multi-component NAPLs.   

- In the present study some of the parameters (i.e. NAPL composition, NAPL geometry, and 

interphase mass transfer) which could result in intra-NAPL diffusion limitations were 

identified. To better assess the interactions of these parameter, it is recommended to 

conduct a comprehensive series of sensitivity analysis to determine critical conditions 

resulting from the combination of these parameters.  

- In this study we investigated the effect of just one phenomenon (intra-NAPL diffusion) 

which can result in mass transfer limitation at the NAPL-water boundary; however, other 

phenomena such as interfacial inter molecular interactions, biofilm formation, precipitation, 

and pH of the system can also influence film formation and mass transfer at NAPL-water 

interface that is required to be further investigated. Moreover, it is recommended to 

enhance the developed diffusion-based model to capture the effects of other phenomena 

which can result in film formation and mass transfer limitations.    
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Appendix A:  

Supplementary Material for Chapter 2 

Natural Oxidant Interaction – Experimental Procedures 

Material Handling 

Aquifer material each location as completely air-dried at 80 oC in an incubator oven 

(Gallenkamp, 1H-100) to constant weight, and then allowed to cool to room temperature.  Dried 

materials were separated into three size fractions (< 250 μm, between 250 μm and 2 mm, and > 

2 mm) using No. 10 and No. 60 U.S. Standard mesh size sieves.  The fine fraction (< 250 μm) 

was not used in these experiments since it interfered with the spectrophotometric analytical 

methods used.  Composite samples blended from the > 250 µm and the < 2 mm, and from the > 

2 mm mass fractions were used in these NOI tests pro-rated by the respective mass fractions 

observed.  Following the sieving procedure, the aquifer material for each of the selected locations 

was homogenized for each mass fraction in large sterilized tubs by gently mixing by hand.  Care 

was taken to avoid excess abrasion that might lead to grinding or pulverizing of sediment particles.  

After mixing, the material was transferred to high density polyethylene (HDPE) bags (Cole-

Parmer, 60104), sealed and stored at 4 oC.  As required, sub-samples were selected at random 

from the re-mixed stored material and air dried at 80 oC to a constant mass again prior to use.   

 

Permanganate NOI Procedure 

A series of six (6) tests were performed on the composite aquifer material samples from each 

location (see Table SM-2) using well-mixed 125 mL wide-mouth batch reactors.  The NOI for an 

oxidant mass to solids ratio of 5, 20, 30 and 40 g/kg (nominal) using an initial permanganate 

concentration of 5, 20, 30 and 40 g-KMnO4/L respectively were investigated (denoted as Series 

1 to 4).  For the remaining two series of tests (Series 5 and 6) the initial permanganate 

concentration was held constant at 30 g-KMnO4/L and the mass of solids was varied to achieve 

a nominal oxidant mass to solids ratio of 20 and 50 g/kg. To each batch reactor the required mass 

of solids was added followed by the required volume of the reagent stock solution.  Reactors were 

shaken gently by hand and left in the dark at an ambient temperature of ~20 oC.  All reactors were 

constructed in triplicate including controls (no solids added).  Aliquots of the supernatant were 

sampled after a reaction period of 1, 4, 8, 15 and 30 days.  Following sampling, each reactor was 

shaken gently by hand.  Reagent stock solutions were prepared by adding analytical grade 

KMnO4 (EM Science) to Milli-Q water and boiling for ~1 hour.  The cooled solution was filtered 
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(0.75 μm glass fibre, Pall Corporation) and standardized by titration into a sulphuric acid and 

sodium oxalate solution (APHA, 1998).  At the specified times each reactor was sampled by 

removing an aliquot (2.3 mL) of the solution and determining the KMnO4 concentration (500 times 

dilution factor) by spectrophotometry (Milton Roy Company, Spectronic 20D) at 525 nm (method 

detection limit (MDL) of 1.3 mg/L).  The spectrophotometer was calibrated prior to each sampling 

episode and a permanganate calibration curve (1 to 100 mg/L) using a standardized solution was 

prepared.  The decrease in permanganate concentration and the initial mass of aquifer material 

was used to estimate the NOI (NOD) following Xu and Thomson (2009). 

 

Persulfate NOI Procedure 

NOI tests were conducted for three persulfate systems: (1) unactivated persulfate, (2) chelated 

ferrous iron activated persulfate and (3) alkaline activated persulfate.  The general experimental 

design was identical for each of these persulfate systems except that for the latter two an activator 

stock solution was added.  Well-mixed 125 mL wide-mouth batch reactors were used.  A series 

of six (6) tests were performed for the unactivated persulfate system (see Table SM-3).  The NOI 

for an oxidant mass to solids ratio of 5, 20, 30 and 40 g/kg (nominal) using an initial persulfate 

concentration of 5, 20, 30 and 40 g-Na2S2O8/L, respectively, were investigated (denoted as Series 

1 to 4). For the remaining two series of tests (Series 5 and 6) the initial persulfate concentration 

was held constant at 30 g-Na2S2O8/L and the mass of solids was varied to achieve a nominal 

oxidant mass to solids ratio of 20 and 50 g/kg.  To each batch reactor the required mass of solids 

was added followed by the required volume of the persulfate stock solution.  A specified volume 

of the activator stock solution was then added to the reactors (if required). Reactors were shaken 

gently by hand and left in the dark at an ambient temperature of ~20 oC.  All reactors were 

constructed in triplicate including controls (no solids added).  Aliquots of the supernatant (2.3 mL) 

were sampled after a reaction period of 1, 4, 8, 15 and 30 days.  Following sampling, each reactor 

was shaken gently by hand. 

For the chelated ferrous iron activated persulfate tests, the initial reactor conditions were: 50 g 

of solids and 50 mL of solution with a concentration of 30 g-Na2S2O8/L, 300 mg/L Fe(II) and 0.5 

moles of citric acid/mole Fe(II).  Two series of controls were included: (Ctrl-1) 50 mL of solution 

with a concentration of 30 g-Na2S2O8/L, 300 mg/L Fe(II) and 0.5 moles of citric acid/mole Fe(II) 

without solids, and (Ctrl-2) 50 mL of a 30 g-NaS2O8/L persulfate solution without solids. 

For the alkaline activated persulfate tests, the initial reactor conditions were: 50 mL of 30 g-

Na2S2O8/L, 50 g of solids, and pH of 11.  The mass of sodium hydroxide (NaOH) added to achieve 

an initial reactor solution pH of 11 was based on the results from the alkaline buffering capacity 
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tests (data not shown).  Two series of controls were included: (Ctrl-1) 50 mL of a 30 g-Na2S2O8/L 

persulfate solution at a pH of 11 without solids, and (Ctrl-2) 50 mL of a 30 g-Na2S2O8/L persulfate 

solution without solids. 

Reagent stock solutions were prepared by adding sufficient analytical grade Na2S2O8 (purity 

>98%, Aldrich Chem. Co., Milwaukee) to Milli-Q water to reach the required concentrations.  

Activator solutions for ferrous sulfate heptahydrate (FeSO4•7H2O) (J.T.Baker, Phillipsbourg, NJ) 

and citric acid (C6H8O7, Fischer, Fair Lawns, NJ), or sodium hydroxide (NaOH, Fischer, Fair 

Lawns, NJ) were prepared to the required concentrations using Milli-Q water.  Persulfate 

analytical reagents were prepared using ACS grade ferrous ammonium sulfate (FAS) 

(Fe(NH4)2(SO4)2·6H2O) (EMD, Gibbstown, NJ), ammonium thiocyanate (NH4SCN) (J.T. Baker, 

Phillipsbourg, NJ) and sulfuric acid (H2SO4) (EMD, Gibbstown, NJ) in Milli-Q water.  Persulfate 

analysis was performed following Huang et al. (2002).  For the ferrous iron activated persulfate 

tests, some modifications to this persulfate analysis method were employed to capture 

interference by Fe(III) that is produced in the citric acid/Fe(II) activation systems.  In this case, 

two samples were taken during each sampling episode.  The first one was measured following 

Huang et al. (2002), and the second one was measured in a similar manner but without addition 

of the FAS solution.  This second measurement represents the Fe(III) concentration remaining 

from the citric acid/Fe(II) activation system.  The final concentration of persulfate was taken as 

the difference between those two measurements. 
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Supplementary Material Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-1(a).  Image of impacted core materials from the weathered limestone unit stored on 
site in freezer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-1(b).  Image of some of the selected un-impacted core material.  
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Figure A-2. Impacted aquifer material samples used for (a) slurry experiments and the “bleb” 

architecture physical model experiments, and (b) the “saturated lense” architecture physical 

model experiments. 

  

(a)

(b)
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Figure A-3. (a) Permanganate NOI profiles expressed as NOD (g/kg) for the 3 samples examined 

(see Table A-2 for experimental details); (b) Unactivated persulfate NOI profiles for the 3 samples 

examined (see Table A-3 for experimental details); (c) Persulfate profiles from the Fe(II) activated 

persulfate NOI tests (see text in Appendix section for details); and (d) Persulfate profiles from the 

alkaline activated persulfate NOI tests (see text in Appendix section for details).  The depth 

interval that the samples were collected from is also indicated. 
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Figure A-4.  Effluent concentration of (a) permanganate from the PM-bleb physical models and 

(b) persulfate from the PS-bleb physical models. 
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Figure A-5.  Tracer test results: calibrated model BTC and observed BTCs for (a) bleb reactors 

upper panels, and (b) lense reactors lower panels. 

  



112 
 

 

 

 

 

 

 

 

Figure A-6.  Scatter plot from PS-bleb-1 of the simulated and observed concentrations for 

benzene, toluene, trimethylbenzene, acenaphthene, 1-methylnaphthalene, 2-

methylnaphthalene, ethylbenzene, and naphthalene).  The solid line has a slope of 1:1. 
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Supplementary Material Tables 

Table A-1.  NAPL composition of sample obtained from 24 to 27 m bgs within the weathered 

limestone unit (data from Alpha Analytical Laboratories Westborough, MA). 

 

 

Organic Concentration MDL Percent of

Compound mg/kg mg/kg Identified

BTEX

Benzene 2640 11.40 0.77

Ethylbenzene 4480 8.09 1.32

m-Xylene & p-Xylene 1880 8.09 0.55

o-Xylene 738 7.83 0.22

Toluene 32.3 10.10 0.01

Trimethylbenzenes

1,2,3-Trimethylbenzene 734 8.35 0.22

1,2,4-Trimethylbenzene 2260 7.75 0.66

1,3,5-Trimethylbenzene 756 8.61 0.22

Methylethylbenzene

1-Methyl-2-ethylbenzene 395 6.37 0.12

1-Methyl-3-ethylbenzene 2200 11.8 0.65

1-Methyl-4-ethylbenzene 1660 10.6 0.49

Hydrocarbons

Dodecane 880 41.7 0.26

Hexadecane 11200 28.8 3.29

Nonacosane 1610 128 0.47

Octadecane 1940 38.4 0.57

Pentacosane 3060 101 0.90

Pentadecane 16400 22.8 4.81

Tetradecane 1740 28.8 0.51

Tridecane 560 52.2 0.16

Undecane 1360 57.2 0.40

PAHs

1-Methylnaphthalene 25500 1100 7.49

2-Methylnaphthalene 46700 990 13.71

2,6-Dimethylnaphthalene 11500 3 3.38

2,3,5-Trimethylnaphthalene 1000 2.35 0.29

Acenaphthene 13300 2.53 3.90

Acenaphthylene 4050 2.74 1.19

Anthracene 6280 2.96 1.84

Benz (a) anthracene 3180 2.93 0.93

Benzo(a)fluoranthene 702 2.85 0.21

Benzo (a) pyrene 3160 4.10 0.93

Benz (b, k) fluoranthene 2890 2.85 0.85

Benzo(b)fluorene 1450 4.16 0.43

Benzo (g,h,i) perylene 1230 3.82 0.36

Benzothiophene 883 4.50 0.26

Biphenyl 4990 4.44 1.46

Carbazole 61 4.70 0.02

Chrysene 2810 2.90 0.82

Dibenzofuran 1500 4.52 0.44

Fluoranthene 7930 4.56 2.33

Indane 11200 92.1 3.29

Indene 1700 4.34 0.50

Fluorene 7720 3.83 2.27

Indeno[1,2,3-c,d] pyrene + Dibenz [a,h] 

anthracene
1309 3.90 0.38

Naphthalene 83800 625 24.60

Phenanthrene 26400 23.8 7.75

Pyrene 12900 3.78 3.79

 Total (identified) 340670
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Cox Vsol Mox Msolids Vsolids Mox/s Vtotal Csolids Porosity Vheadspace

[g-KMnO4/L] [mL] [g-KMnO4] [g-solids] [mL] [g-KMnO4/kg-solids] [mL] [kg/L] [ - ] [mL]

1 5 50 0.25 50 18.9 5 68.9 0.73 0.73 56.1

2 20 50 1 50 18.9 20 68.9 0.73 0.73 56.1

3 30 50 1.5 50 18.9 30 68.9 0.73 0.73 56.1

4 40 50 2 50 18.9 40 68.9 0.73 0.73 56.1

5 30 50 1.5 75 28.3 20 78.3 0.96 0.64 46.7

6 30 67 2.01 40 15.1 50 82.1 0.49 0.82 42.9

Cox - permanagnate concentration

Vsol - volume of oxidant solution

Mox - mass of oxdiant

Msolids - mass of solids

Vsolids - estimated volume of solids

Mox/s - mass of oxdiant to solids ratio

Vtotal - estimated total volume

Csolids - estimated solids concentration

Porosity - estimated porosity

Vheadspace - estimated headspace in 125 mL reactor

Series

Table A-2.  Design details for the permanganate NOI tests. 
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Cox Vsol Mox Msolids Vsolids Mox/s Vtotal Csolids Porosity Vheadspace

[g-Na2S2O8/L] [mL] [g-Na2S2O8] [g-solids] [mL] [g-Na2S2O8/kg-solids] [mL] [kg/L] [ - ] [mL]

1 5 50 0.25 50 18.9 5 68.9 0.73 0.73 56.1

2 20 50 1 50 18.9 20 68.9 0.73 0.73 56.1

3 30 50 1.5 50 18.9 30 68.9 0.73 0.73 56.1

4 40 50 2 50 18.9 40 68.9 0.73 0.73 56.1

5 30 50 1.5 75 28.3 20 78.3 0.96 0.64 46.7

6 30 67 2.01 40 15.1 50 82.1 0.49 0.82 42.9

Cox - persulfate concentration

Vsol - volume of oxidant solution

Mox - mass of oxdiant

Msolids - mass of solids

Vsolids - estimated volume of solids

Mox/s - mass of oxdiant to solids ratio

Vtotal - estimated total volume

Csolids - estimated solids concentration

Porosity - estimated porosity

Vheadspace - estimated headspace in 125 mL reactor

Series

Table A-3.  Design details for the unactivated persulfate NOI tests. 
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Organic Aqueous Soil

Compound μg/L mg/kg

BTEX

Benzene 1.11 0.0264

Ethylbenzene 0.77 0.0183

m-Xylene & p-Xylene 1.46 0.0347

o-Xylene 0.37 0.0088

Toluene 0.83 0.0197

Trimethylbenzenes

1,2,3-Trimethylbenzene 0.76 0.0181

1,2,4-Trimethylbenzene 0.82 0.0195

1,3,5-Trimethylbenzene 0.74 0.0176

PAHs

1-Methylnaphthalene 1.31 0.0311

2-Methylnaphthalene 4.27 0.101

Acenaphthene 1.83 0.0435

Acenaphthylene 1.53 0.0363

Anthracene 5.53 0.131

Benz [a] anthracene 4.77 0.113

Benzo [a] pyrene 13.3 0.317

Benz [b, k] fluoranthene 5.62 0.133

Benzo [g,h,i] perylene 11.5 0.273

Biphenyl 1.09 0.0258

Carbazole 2.39 0.0568

Chrysene 5.75 0.137

Dibenzofuran 1.10 0.0262

Fluoranthene 1.80 0.0428

Fluorene 1.88 0.0447

Indole 2.12 0.0504

Indeno[1,2,3-c,d] pyrene + 

Dibenz [a,h] anthracene
18.7 0.444

Naphthalene 2.20 0.0523

Phenanthrene 3.78 0.0898

Pyrene 1.60 0.0381

Table A-4. Suite of organic compounds determined in this investigation and associated method 
detection limits (MDLs).  The bulk soil concentration MDL is based on 8 g of soil and 10 mL of 
solvent. 
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Appendix B:  

Supplementary Material for Chapter 3 

Supplementary Material Figures 

 

 

 

 

Figure B-1: Comparison of numerical and analytical model results for an initial concentration 

(𝐶0) of 3.5 mol/L, flux (F) of 1.9x10-4 mmol/(cm2 day), radius (R) of 0.49 cm, mesh size = 0.005 

cm, Δt = 0.1 day, and diffusion coefficient (𝐷) of 10-5 cm2/s, at: (a) 1 day; (b) 500 days, and (c) 

1000 days. 

(c) 

(b) 

(a) 
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Figure B-2: Temporal aqueous concentrations from the (a) low and medium viscous NAPLs, (b) 

high viscous NAPL, and (c) very high viscous NAPL. (Note: left figures are the most 

predominant compounds and right figures are less predominant compounds) 

(b) 

(c) 

(a) 
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Figure B-3: Radial component concentration in the low and medium viscous NAPLs at 1000 

days. (left: most predominant compounds, Right: less predominant compounds).  

 

 

Figure B.4: Initial main intra-NAPL diffusion coefficients for the medium viscous NAPL.   

 

Figure B.5:  Ratio of final to initial main intra-NAPL diffusion coefficients for the medium viscous 

NAPL.   
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Figure B.6: Simulated NAPL radial composition at 1000 days for the less predominant 

components for a) the high viscous NAPL, and b) the very-high viscous NAPL. 
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Figure B.7: Temporal a) interfacial, and b) total mole fractions for the less predominant 

components for the very-high viscous NAPL.   

 

(a) 

(b) 
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Supplementary Material Tables 

Table B-1: Comparison of intra-NAPL diffusion coefficients from this study with experimental and modeling results (Kett & Anderson, 

1969b) for a ternary mixture composed of 1) dodecane, 2) hexadecane, and 3) hexane.  

 

 

 

 

 

 

 

 

 

 

 

 

Experiment

Dij [cm2/s] ×105 [cm2/s] ×10-5 Error (%) [cm2/s] ×10-5 Error (%)

D11 0.968 1.099 13.5 1.006 3.9

D12 0.266 0.366 37.5 0.211 20.7

D21 0.225 0.187 16.9 0.085 62

D22 1.031 1.007 2.3 0.955 7.4

Modeling by Kett & Anderson (1969b) Modeling in this study
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Table B-2: Estimated self and infinite dilution diffusion coefficients (cm2/s) using Eqs (15) and (16) 

   

 

 

 

 

 

 

 

Di

Organic Eq. 13

Component (i) [cm2/s] Ben ETB Xyl Tol TMB 1MN 2MN Ace ANL Ant Bip Chr DBF FAN Inde Flu Nap Phen Pyre Bulk

Benzene 1.97E-05 - 2.11E-05 2.05E-05 2.26E-05 1.71E-05 9.18E-06 9.18E-06 5.01E-06 7.18E-06 3.78E-06 7.26E-06 1.77E-06 4.62E-06 2.19E-06 1.27E-05 4.21E-06 1.08E-05 4.94E-06 2.48E-06 1.17E-07

Ethylbenzene 1.69E-05 1.62E-05 - 1.70E-05 1.87E-05 1.41E-05 7.60E-06 7.60E-06 4.15E-06 5.95E-06 3.13E-06 6.01E-06 1.47E-06 3.82E-06 1.81E-06 1.06E-05 3.49E-06 8.95E-06 4.09E-06 2.06E-06 9.71E-08

Xylene(s) 1.65E-05 1.62E-05 1.75E-05 - 1.87E-05 1.41E-05 7.60E-06 7.60E-06 4.15E-06 5.95E-06 3.13E-06 6.01E-06 1.47E-06 3.82E-06 1.81E-06 1.06E-05 3.49E-06 8.95E-06 4.09E-06 2.06E-06 9.71E-08

Toluene 2.00E-05 1.77E-05 1.90E-05 1.85E-05 - 1.54E-05 8.27E-06 8.27E-06 4.51E-06 6.47E-06 3.41E-06 6.54E-06 1.59E-06 4.16E-06 1.97E-06 1.15E-05 3.79E-06 9.74E-06 4.45E-06 2.24E-06 1.06E-07

Trimethylbenzene(s) 1.26E-05 1.51E-05 1.63E-05 1.58E-05 1.75E-05 - 7.08E-06 7.08E-06 3.87E-06 5.55E-06 2.92E-06 5.60E-06 1.37E-06 3.56E-06 1.69E-06 9.84E-06 3.25E-06 8.34E-06 3.81E-06 1.92E-06 9.05E-08

1-Methylnaphthalene 6.75E-06 1.51E-05 1.63E-05 1.58E-05 1.75E-05 1.32E-05 - 7.08E-06 3.87E-06 5.55E-06 2.92E-06 5.60E-06 1.37E-06 3.56E-06 1.69E-06 9.84E-06 3.25E-06 8.34E-06 3.81E-06 1.92E-06 9.05E-08

2-Methylnaphthalene 6.72E-06 1.51E-05 1.63E-05 1.58E-05 1.75E-05 1.32E-05 7.08E-06 - 3.87E-06 5.55E-06 2.92E-06 5.60E-06 1.37E-06 3.56E-06 1.69E-06 9.84E-06 3.25E-06 8.34E-06 3.81E-06 1.92E-06 9.05E-08

Acenaphthene 3.76E-06 1.48E-05 1.59E-05 1.55E-05 1.71E-05 1.29E-05 6.94E-06 6.94E-06 - 5.43E-06 2.86E-06 5.48E-06 1.34E-06 3.49E-06 1.65E-06 9.63E-06 3.18E-06 8.17E-06 3.73E-06 1.88E-06 8.86E-08

Acenaphthylene 5.02E-06 1.55E-05 1.66E-05 1.62E-05 1.79E-05 1.35E-05 7.24E-06 7.24E-06 3.95E-06 - 2.99E-06 5.73E-06 1.40E-06 3.64E-06 1.73E-06 1.01E-05 3.32E-06 8.53E-06 3.90E-06 1.96E-06 9.25E-08

Anthracene 2.68E-06 1.43E-05 1.53E-05 1.49E-05 1.64E-05 1.24E-05 6.67E-06 6.67E-06 3.64E-06 5.22E-06 - 5.27E-06 1.29E-06 3.35E-06 1.59E-06 9.26E-06 3.06E-06 7.85E-06 3.59E-06 1.80E-06 8.52E-08

Biphenyl 5.16E-06 1.48E-05 1.59E-05 1.55E-05 1.71E-05 1.29E-05 6.94E-06 6.94E-06 3.79E-06 5.43E-06 2.86E-06 - 1.34E-06 3.49E-06 1.65E-06 9.63E-06 3.18E-06 8.17E-06 3.73E-06 1.88E-06 8.86E-08

Chrysene 1.08E-06 1.29E-05 1.39E-05 1.35E-05 1.49E-05 1.12E-05 6.03E-06 6.03E-06 3.29E-06 4.72E-06 2.49E-06 4.77E-06 - 3.03E-06 1.44E-06 8.37E-06 2.77E-06 7.10E-06 3.25E-06 1.63E-06 7.70E-08

Dibenzofuran 3.28E-06 1.51E-05 1.63E-05 1.58E-05 1.75E-05 1.32E-05 7.08E-06 7.08E-06 3.87E-06 5.55E-06 2.92E-06 5.60E-06 1.37E-06 - 1.69E-06 9.84E-06 3.25E-06 8.34E-06 3.81E-06 1.92E-06 9.05E-08

Fluoranthene 1.44E-06 1.37E-05 1.48E-05 1.44E-05 1.59E-05 1.20E-05 6.43E-06 6.43E-06 3.51E-06 5.04E-06 2.65E-06 5.09E-06 1.24E-06 3.24E-06 - 8.93E-06 2.95E-06 7.57E-06 3.46E-06 1.74E-06 8.21E-08

Indene 1.06E-05 1.67E-05 1.79E-05 1.74E-05 1.92E-05 1.45E-05 7.80E-06 7.80E-06 4.26E-06 6.11E-06 3.22E-06 6.17E-06 1.50E-06 3.93E-06 1.86E-06 - 3.58E-06 9.19E-06 4.20E-06 2.11E-06 9.96E-08

Fluorene 3.03E-06 1.45E-05 1.56E-05 1.52E-05 1.68E-05 1.26E-05 6.80E-06 6.80E-06 3.71E-06 5.32E-06 2.80E-06 5.38E-06 1.31E-06 3.42E-06 1.62E-06 9.44E-06 - 8.00E-06 3.66E-06 1.84E-06 8.68E-08

Naphthalene 8.61E-06 1.62E-05 1.75E-05 1.70E-05 1.87E-05 1.41E-05 7.60E-06 7.60E-06 4.15E-06 5.95E-06 3.13E-06 6.01E-06 1.47E-06 3.82E-06 1.81E-06 1.06E-05 3.49E-06 - 4.09E-06 2.06E-06 9.71E-08

Phenanthrene 3.21E-06 1.43E-05 1.53E-05 1.49E-05 1.64E-05 1.24E-05 6.67E-06 6.67E-06 3.64E-06 5.22E-06 2.75E-06 5.27E-06 1.29E-06 3.35E-06 1.59E-06 9.26E-06 3.06E-06 7.85E-06 - 1.80E-06 8.52E-08

Pyrene 1.65E-06 1.37E-05 1.48E-05 1.44E-05 1.59E-05 1.20E-05 6.43E-06 6.43E-06 3.51E-06 5.04E-06 2.65E-06 5.09E-06 1.24E-06 3.24E-06 1.53E-06 8.93E-06 2.95E-06 7.57E-06 3.46E-06 - 8.21E-08

Bulk 8.61E-06 1.62E-05 1.75E-05 1.70E-05 1.87E-05 1.41E-05 7.60E-06 7.60E-06 4.15E-06 5.95E-06 3.13E-06 6.01E-06 1.47E-06 3.82E-06 1.81E-06 1.06E-05 3.49E-06 8.95E-06 4.09E-06 2.06E-06 -

j

Infinite-dilution diffusion coef.  (Eq.12)
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Table B-3: Estimated initial main and off-diagonal intra-NAPL diffusion coefficients using the RD approach (cm2/s) for the medium 

viscous NAPL  

 

 

 

 

 

 

Organic

Component (i) Ben ETB Xyl Tol TMB 1MN 2MN Ace ANL Ant Bip Chr DBF FAN Inde Flu Nap Phen Pyre

Benzene 1.26E-07 1.62E-09 1.57E-09 1.61E-09 1.53E-09 1.57E-09 1.56E-09 1.51E-09 1.51E-09 1.56E-09 1.61E-09 1.52E-09 1.58E-09 1.51E-09 1.58E-09 1.54E-09 1.60E-09 1.57E-09 1.51E-09

Ethylbenzene 2.45E-09 1.05E-07 2.32E-09 2.38E-09 2.25E-09 2.30E-09 2.29E-09 2.23E-09 2.18E-09 2.29E-09 2.36E-09 2.21E-09 2.34E-09 2.20E-09 2.32E-09 2.25E-09 2.35E-09 2.26E-09 2.20E-09

Xylene(s) 1.42E-09 1.38E-09 1.04E-07 1.39E-09 1.33E-09 1.33E-09 1.33E-09 1.30E-09 1.24E-09 1.32E-09 1.36E-09 1.26E-09 1.36E-09 1.26E-09 1.35E-09 1.30E-09 1.36E-09 1.30E-09 1.26E-09

Toluene 5.43E-10 5.30E-10 5.19E-10 1.12E-07 5.07E-10 5.11E-10 5.11E-10 4.95E-10 4.83E-10 5.07E-10 5.23E-10 4.89E-10 5.18E-10 4.88E-10 5.16E-10 5.01E-10 5.21E-10 5.04E-10 4.88E-10

Trimethylbenzene(s) 2.03E-09 1.97E-09 1.95E-09 1.99E-09 9.75E-08 1.89E-09 1.89E-09 1.85E-09 1.73E-09 1.86E-09 1.91E-09 1.76E-09 1.94E-09 1.77E-09 1.91E-09 1.85E-09 1.92E-09 1.82E-09 1.77E-09

1-Methylnaphthalene 1.17E-08 1.14E-08 1.11E-08 1.14E-08 1.08E-08 1.06E-07 1.08E-08 1.04E-08 1.02E-08 1.07E-08 1.12E-08 1.02E-08 1.11E-08 1.01E-08 1.10E-08 1.05E-08 1.11E-08 1.06E-08 1.02E-08

2-Methylnaphthalene 1.97E-08 1.92E-08 1.87E-08 1.92E-08 1.83E-08 1.84E-08 1.14E-07 1.76E-08 1.73E-08 1.81E-08 1.89E-08 1.73E-08 1.88E-08 1.72E-08 1.85E-08 1.78E-08 1.87E-08 1.80E-08 1.72E-08

Acenaphthene 8.63E-09 8.38E-09 8.18E-09 8.40E-09 7.97E-09 7.89E-09 7.87E-09 1.01E-07 7.24E-09 7.67E-09 8.07E-09 7.15E-09 8.11E-09 7.16E-09 8.00E-09 7.57E-09 8.06E-09 7.54E-09 7.17E-09

Acenaphthylene 2.20E-09 2.12E-09 2.03E-09 2.12E-09 1.95E-09 2.00E-09 1.99E-09 1.88E-09 9.95E-08 1.98E-09 2.08E-09 1.86E-09 2.08E-09 1.85E-09 2.02E-09 1.93E-09 2.07E-09 1.95E-09 1.85E-09

Anthracene 1.95E-09 1.89E-09 1.82E-09 1.89E-09 1.76E-09 1.77E-09 1.77E-09 1.68E-09 1.66E-09 9.17E-08 1.84E-09 1.64E-09 1.81E-09 1.63E-09 1.81E-09 1.71E-09 1.83E-09 1.71E-09 1.63E-09

Biphenyl 3.07E-09 2.98E-09 2.88E-09 2.97E-09 2.78E-09 2.83E-09 2.83E-09 2.71E-09 2.68E-09 2.83E-09 9.65E-08 2.68E-09 2.87E-09 2.67E-09 2.87E-09 2.76E-09 2.91E-09 2.77E-09 2.67E-09

Chrysene 1.26E-09 1.21E-09 1.16E-09 1.21E-09 1.12E-09 1.12E-09 1.12E-09 1.06E-09 1.04E-09 1.10E-09 1.17E-09 8.24E-08 1.15E-09 1.01E-09 1.15E-09 1.08E-09 1.16E-09 1.07E-09 1.01E-09

Dibenzofuran 1.22E-09 1.20E-09 1.17E-09 1.19E-09 1.15E-09 1.14E-09 1.14E-09 1.11E-09 1.09E-09 1.13E-09 1.17E-09 1.08E-09 9.67E-08 1.08E-09 1.17E-09 1.12E-09 1.16E-09 1.11E-09 1.08E-09

Fluoranthene 3.75E-09 3.62E-09 3.49E-09 3.62E-09 3.37E-09 3.36E-09 3.36E-09 3.16E-09 3.10E-09 3.28E-09 3.49E-09 3.02E-09 3.45E-09 8.98E-08 3.43E-09 3.21E-09 3.47E-09 3.20E-09 3.02E-09

Indene 9.07E-11 8.80E-11 8.56E-11 8.81E-11 8.30E-11 8.38E-11 8.37E-11 8.04E-11 7.84E-11 8.28E-11 8.63E-11 7.86E-11 8.62E-11 7.86E-11 1.05E-07 8.15E-11 8.59E-11 8.18E-11 7.86E-11

Fluorene 4.71E-09 4.56E-09 4.43E-09 4.57E-09 4.29E-09 4.29E-09 4.28E-09 4.08E-09 3.97E-09 4.20E-09 4.42E-09 3.92E-09 4.39E-09 3.92E-09 4.36E-09 9.58E-08 4.41E-09 4.12E-09 3.92E-09

Naphthalene 4.24E-08 4.20E-08 4.06E-08 4.15E-08 3.98E-08 4.04E-08 4.04E-08 3.83E-08 3.90E-08 4.00E-08 4.19E-08 3.91E-08 4.12E-08 3.85E-08 4.04E-08 3.92E-08 1.43E-07 4.05E-08 3.85E-08

Phenanthrene 1.20E-08 1.16E-08 1.12E-08 1.16E-08 1.08E-08 1.10E-08 1.09E-08 1.04E-08 1.03E-08 1.08E-08 1.14E-08 1.01E-08 1.12E-08 1.01E-08 1.11E-08 1.06E-08 1.13E-08 1.00E-07 1.01E-08

Pyrene 5.34E-09 5.17E-09 4.98E-09 5.15E-09 4.80E-09 4.80E-09 4.79E-09 4.50E-09 4.43E-09 4.68E-09 4.97E-09 4.31E-09 4.92E-09 4.30E-09 4.89E-09 4.58E-09 4.95E-09 4.56E-09 9.10E-08

j

 Dij  [cm2/s] 
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Appendix C:  

Supplementary Material for Chapter 4 

MGP Site and NAPL Separation Method 

The MGP residuals used in this study were obtained from the former West Florida Natural Gas 

Company Site located in Ocala, Florida. From the late 1890s until about 1953, water gas or 

carbureted water gas was manufactured at the Site by the “Lowe” carbonization process or 

destructive distillation of bituminous coal and coke.  According to Brown’s Directory, gas 

production was ~48 x 103 m3/yr in 1900 and steadily increased to 900 x 103 m3/yr by 1950.  In 

1952, manufacturing stopped at the plant and the facility converted to the sale of butane-propane-

air.  Residues from the MGP plant process, including tars and oily wastewaters, were deposited 

in the area of the former gas plant facilities during operations. There was an historic coal tar pit 

or area where residual tars were stored prior to sale for off-site use as roofing materials.  The 

MGP residual received was obtained from a NAPL collection well screened from 24 to 27 m below 

ground surface in weathered limestone, and was a non-homogeneous mixture composed of a 

LNAPL and DNAPL component with minor sediment.  For the purpose of this experiment, our 

focus was on the DNAPL component.  Thus, 10 mL of the MGP residuals was mixed with 10 mL 

Milli-Q water in a 40 mL vial and centrifuged at 10,000 rpm for 15 min.  The DNAPL portion was 

collected after centrifuging and again mixed with water and centrifuged. This process was 

repeated multiple times to separate a sufficient mass of DNAPL which was then used. The final 

DNAPL volume was assumed to be a homogeneous mixture. 

 

Reagents and Analytical Methods 

Sodium persulfate (Na2S2O8, Sigma-Aldrich Inc., St. Louis, MO), sodium bromide (NaBr, Sigma-

Aldrich), and methylene chloride (CH2Cl2, EMD Millipore) were all reagent grade and used as 

received. 

Due to large difference in the concentrations of organic component within NAPL and aqueous 

phase, different analytical methods were employed to analyze aqueous and NAPL samples. For 

organic analysis of aqueous phase, 19 mL sample was collected and mixed by 1.0 ml of 

methylene chloride (containing internal standards metafluoro-toluene and fluoro-biphenyl at 25 

mg/L). The vial was quickly resealed and agitated on its side at 350 rpm on a platform shaker for 
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20 min. After shaking, the vial was inverted and the phases were allowed to separate for 30 min. 

Approximately 0.7 ml of the dichloromethane phase was removed from the inverted vial with a 

gas tight glass syringe, through the Teflon septum. The solvent was placed in a Teflon sealed 

autosampler vial for injection into the gas chromatograph.  

In the case of NAPL organic analysis, samples were added directly to methylene chloride such 

that the concentration was within the calibration range and transferred to a 2 mL autosampler vial 

and crimp sealed with a Teflon cap. All NAPL and aqueous samples were analyzed using a HP 

5890 capillary gas chromatograph (GC), a HP7673A autosampler, and a flame ionization 

detector. Three microliters of methylene chloride was injected in splitless mode (purge on 0.5 min, 

purge off 10 min) onto a 0.25mm x 30m length, DB5 capillary column with a stationary phase film 

thickness of 0.25µm. Helium column flow rate was 2 mL/min with a make-up gas flow rate of  30 

mL/min. Injection temperature was 275οC, detector temperature was 325oC and initial column 

oven temperature was 35oC held for 0.5 min, then ramped at 15oC/min to a final temperature of  

250oC and held for 2 min. Chromatographic run time was 16 min. Data integration was completed 

with a SRI Model 302 Peak Simple chromatography data system. Method detection limit (MDL) 

for aqueous samples was 20 ug/L and for NAPL samples was 0.01 g/kg.  

Anions/cations were analyzed using a Dionex® ICS2000 Ion Chromatograph equipped with an 

ioneluent generator and conductivity detector. For anions, a 25-μL sample was injected using a 

Dionex AS-40 Autosampler onto a Dionex® Ion Pac AS11-HC (4 × 250 mm) column. The mobile 

phase was 30 mM potassium hydroxide (KOH) at a flow rate of 1.0 mL/min. For cations, a 25 μL 

sample was injected using a Dionex IonPac® CS-12A column (4 × 250 mm). The mobile phase 

used was a 22.5 mM methanesulfonic Acid (MSA) at a flow rate of 1.0 mL/min. The 

chromatograph was obtained using Dionex Chromeleon software®. The MDL for anions was 0.5 

mg/L, while for cations it ranged from 0.8 to 1.1 mg/L.  

Persulfate analysis was performed following Liang et al. (Liang et al., 2008) with MDL of zero (0) 

M. An Orion pH meter (model 290A) was used to measure pH.  

 

Numerical Solution Method 

Eq.1 and Eq.5 were solved decoupled using a fully-implicit finite volume scheme and linked by 

the mass transfer term (Eq.5) and the boundary condition (Eq.3). At each time step, equilibrium 

concentration (Eq.4), aqueous concentrations (Eq.5), and mass flux (Eq.3) of each component 

was determined. The shrinkage of the NAPL body due to mass loss was handled by assuming 
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the rectangular NAPL can shrink bottom-up. A modified grid system with uniform space interval 

(except for the control volume at 𝐿 = 0) and a fixed time step was chosen. At each time step, 

mass loss and shrinkage length were determined using the estimated mass flux data at the 

interface (Eq.3), and then the length and constituent concentrations within the external boundary 

control volume were modified. Subsequently, by assuming an impermeable boundary condition 

(𝐽𝑖 = 0) at the interface the system of equations was solved by incorporating Eq.1 and Eq.2 to 

update concentration profiles within the NAPL. At the end of each time step, the whole grid system 

was modified by moving the mesh toward the bottom (𝐿 = 0) a distance equal to the shrinkage 

length and concentrations at the centroids of new control volumes were interpolated using cubic 

spline method (J Crank & Gupta, 1972). In addition, at the end of each time step oxidant 

concentration was updated using Eq.6. 

Intra-NAPL diffusion mass balance algorithm (Eq.1) was verified by comparing it with an analytical 

solution for plane diffusion (John Crank, 1975). Multi-component diffusion coefficients estimation 

method was also verified by comparing the generated values to the experimental diffusion 

coefficients (T.K. Kett & Anderson, 1969) for a ternary mixture composed of dodecane, 

hexadecane, and hexane (Table C.2).  

The rectangular NAPL depth in Eq.1 and aqueous phase (Eq.5) were discretized into control 

volumes with 0.005 cm and 0.025 cm length, respectively, and time step equal to 0.025 day. A 

mesh convergence test indicated that the concentrations for finer mesh increments and time steps 

varied by < 1%.   
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Supplementary Material Figures 

 

 

 

 

Figure C.1: a) Constructed physical model, b) Teflon sleeve and glass cylinder, c) Swagelok 

reducing union (¼” to ¾”) (part# SS-1210-6-4) and ferrules front/back for ¾”.  

 

 

 

 

 

 

 

 

Figure C.2: a) control (CO) and persulfate (OX) physical models, b) Concave downward 

surface of MGP NAPL within Teflon sleeve.   

 

 

 

 

 

 

Figure C.3: Simulated NAPL concentrations for the water flushing scenario for the low viscous 

NAPL after 6400 PV.  

(a) (b) (c) 

(b) (a) 
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Figure C.4: Ratio of the NAPL concentrations for the oxidant flushing scenario (COX) to the 

water flushing scenario (CW) after 6400 PVs. 

 

 

Figure C.5: Naphthalene effluent concentration for the high viscous NAPL for the water flushing 

(w), mobilized NAPL (Mob), and oxidant flushing (OX) scenarios.      
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Figure C.6: High viscous NAPL concentrations for the less predominant components after 6400 

PVs; a) water and OXox scenarios, b) OXox scenario, c) Mobox-w scenario, d) Mobox scenario.      

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Supplementary Material Tables 

Table C-1: Estimated self and infinite dilution diffusion coefficients (cm2/s)  

 

 

Table C-2: Comparison of intra-NAPL diffusion coefficients from this study with experimental and modeling results (Kett & Anderson, 

1969b) for a ternary mixture composed of 1) dodecane, 2) hexadecane, and 3) hexane.  

 

Dself

Organic

Component (i) [cm2/s] Ben ETB Xyl Tol TMB 1MN 2MN Ace ANL Ant Bip Chr DBF FAN Inde Flu Nap Phen Pyre Bulk

Benzene 1.97E-05 - 2.11E-05 2.05E-05 2.26E-05 1.71E-05 9.18E-06 9.18E-06 5.01E-06 7.18E-06 3.78E-06 7.26E-06 1.77E-06 4.62E-06 2.19E-06 1.27E-05 4.21E-06 1.08E-05 4.94E-06 2.48E-06 1.17E-07

Ethylbenzene 1.69E-05 1.62E-05 - 1.70E-05 1.87E-05 1.41E-05 7.60E-06 7.60E-06 4.15E-06 5.95E-06 3.13E-06 6.01E-06 1.47E-06 3.82E-06 1.81E-06 1.06E-05 3.49E-06 8.95E-06 4.09E-06 2.06E-06 9.71E-08

Xylene(s) 1.65E-05 1.62E-05 1.75E-05 - 1.87E-05 1.41E-05 7.60E-06 7.60E-06 4.15E-06 5.95E-06 3.13E-06 6.01E-06 1.47E-06 3.82E-06 1.81E-06 1.06E-05 3.49E-06 8.95E-06 4.09E-06 2.06E-06 9.71E-08

Toluene 2.00E-05 1.77E-05 1.90E-05 1.85E-05 - 1.54E-05 8.27E-06 8.27E-06 4.51E-06 6.47E-06 3.41E-06 6.54E-06 1.59E-06 4.16E-06 1.97E-06 1.15E-05 3.79E-06 9.74E-06 4.45E-06 2.24E-06 1.06E-07

Trimethylbenzene(s) 1.26E-05 1.51E-05 1.63E-05 1.58E-05 1.75E-05 - 7.08E-06 7.08E-06 3.87E-06 5.55E-06 2.92E-06 5.60E-06 1.37E-06 3.56E-06 1.69E-06 9.84E-06 3.25E-06 8.34E-06 3.81E-06 1.92E-06 9.05E-08

1-Methylnaphthalene 6.75E-06 1.51E-05 1.63E-05 1.58E-05 1.75E-05 1.32E-05 - 7.08E-06 3.87E-06 5.55E-06 2.92E-06 5.60E-06 1.37E-06 3.56E-06 1.69E-06 9.84E-06 3.25E-06 8.34E-06 3.81E-06 1.92E-06 9.05E-08

2-Methylnaphthalene 6.72E-06 1.51E-05 1.63E-05 1.58E-05 1.75E-05 1.32E-05 7.08E-06 - 3.87E-06 5.55E-06 2.92E-06 5.60E-06 1.37E-06 3.56E-06 1.69E-06 9.84E-06 3.25E-06 8.34E-06 3.81E-06 1.92E-06 9.05E-08

Acenaphthene 3.76E-06 1.48E-05 1.59E-05 1.55E-05 1.71E-05 1.29E-05 6.94E-06 6.94E-06 - 5.43E-06 2.86E-06 5.48E-06 1.34E-06 3.49E-06 1.65E-06 9.63E-06 3.18E-06 8.17E-06 3.73E-06 1.88E-06 8.86E-08

Acenaphthylene 5.02E-06 1.55E-05 1.66E-05 1.62E-05 1.79E-05 1.35E-05 7.24E-06 7.24E-06 3.95E-06 - 2.99E-06 5.73E-06 1.40E-06 3.64E-06 1.73E-06 1.01E-05 3.32E-06 8.53E-06 3.90E-06 1.96E-06 9.25E-08

Anthracene 2.68E-06 1.43E-05 1.53E-05 1.49E-05 1.64E-05 1.24E-05 6.67E-06 6.67E-06 3.64E-06 5.22E-06 - 5.27E-06 1.29E-06 3.35E-06 1.59E-06 9.26E-06 3.06E-06 7.85E-06 3.59E-06 1.80E-06 8.52E-08

Biphenyl 5.16E-06 1.48E-05 1.59E-05 1.55E-05 1.71E-05 1.29E-05 6.94E-06 6.94E-06 3.79E-06 5.43E-06 2.86E-06 - 1.34E-06 3.49E-06 1.65E-06 9.63E-06 3.18E-06 8.17E-06 3.73E-06 1.88E-06 8.86E-08

Chrysene 1.08E-06 1.29E-05 1.39E-05 1.35E-05 1.49E-05 1.12E-05 6.03E-06 6.03E-06 3.29E-06 4.72E-06 2.49E-06 4.77E-06 - 3.03E-06 1.44E-06 8.37E-06 2.77E-06 7.10E-06 3.25E-06 1.63E-06 7.70E-08

Dibenzofuran 3.28E-06 1.51E-05 1.63E-05 1.58E-05 1.75E-05 1.32E-05 7.08E-06 7.08E-06 3.87E-06 5.55E-06 2.92E-06 5.60E-06 1.37E-06 - 1.69E-06 9.84E-06 3.25E-06 8.34E-06 3.81E-06 1.92E-06 9.05E-08

Fluoranthene 1.44E-06 1.37E-05 1.48E-05 1.44E-05 1.59E-05 1.20E-05 6.43E-06 6.43E-06 3.51E-06 5.04E-06 2.65E-06 5.09E-06 1.24E-06 3.24E-06 - 8.93E-06 2.95E-06 7.57E-06 3.46E-06 1.74E-06 8.21E-08

Indene 1.06E-05 1.67E-05 1.79E-05 1.74E-05 1.92E-05 1.45E-05 7.80E-06 7.80E-06 4.26E-06 6.11E-06 3.22E-06 6.17E-06 1.50E-06 3.93E-06 1.86E-06 - 3.58E-06 9.19E-06 4.20E-06 2.11E-06 9.96E-08

Fluorene 3.03E-06 1.45E-05 1.56E-05 1.52E-05 1.68E-05 1.26E-05 6.80E-06 6.80E-06 3.71E-06 5.32E-06 2.80E-06 5.38E-06 1.31E-06 3.42E-06 1.62E-06 9.44E-06 - 8.00E-06 3.66E-06 1.84E-06 8.68E-08

Naphthalene 8.61E-06 1.62E-05 1.75E-05 1.70E-05 1.87E-05 1.41E-05 7.60E-06 7.60E-06 4.15E-06 5.95E-06 3.13E-06 6.01E-06 1.47E-06 3.82E-06 1.81E-06 1.06E-05 3.49E-06 - 4.09E-06 2.06E-06 9.71E-08

Phenanthrene 3.21E-06 1.43E-05 1.53E-05 1.49E-05 1.64E-05 1.24E-05 6.67E-06 6.67E-06 3.64E-06 5.22E-06 2.75E-06 5.27E-06 1.29E-06 3.35E-06 1.59E-06 9.26E-06 3.06E-06 7.85E-06 - 1.80E-06 8.52E-08

Pyrene 1.65E-06 1.37E-05 1.48E-05 1.44E-05 1.59E-05 1.20E-05 6.43E-06 6.43E-06 3.51E-06 5.04E-06 2.65E-06 5.09E-06 1.24E-06 3.24E-06 1.53E-06 8.93E-06 2.95E-06 7.57E-06 3.46E-06 - 8.21E-08

Bulk 8.61E-06 1.62E-05 1.75E-05 1.70E-05 1.87E-05 1.41E-05 7.60E-06 7.60E-06 4.15E-06 5.95E-06 3.13E-06 6.01E-06 1.47E-06 3.82E-06 1.81E-06 1.06E-05 3.49E-06 8.95E-06 4.09E-06 2.06E-06 -

j

Infinite-dilution diffusion coef.  

Experiment

Dij [cm2/s] ×105 [cm2/s] ×10-5 Error (%) [cm2/s] ×10-5 Error (%)

D11 0.968 1.099 13.5 1.006 3.9

D12 0.266 0.366 37.5 0.211 20.7

D21 0.225 0.187 16.9 0.085 62

D22 1.031 1.007 2.3 0.955 7.4

Modeling by Kett & Anderson (1969b) Modeling in this study


