
Efficient Pointer Analysis of Java in

Logic

by

Rei Thiessen

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Rei Thiessen 2017

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner Jingling Xue

Scientia Professor

Supervisor Ondřej Lhoták

Associate Professor

Internal Member Peter Buhr

Associate Professor

Internal Member Brad Lushman

Lecturer

Internal-external Member Derek Rayside

Assistant Professor

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Points-to analysis for Java benefits greatly from context sensitivity. CFL-reachability and

k-limited context strings are two approaches to obtaining context sensitivity with different

advantages: CFL-reachability allows local reasoning about data value flow and thus is

suitable for demand-driven analyses, whereas k-limited analyses allow object sensitivity

which is a superior calling-context abstraction for object-oriented languages. We combine

the advantages of both approaches to obtain a context-sensitive analysis that is as precise

as k-limited context strings, but is more efficient to compute. Our key insight is based on a

novel abstraction of contexts adapted from CFL-reachability, which represents a relation

between two calling contexts as a composition of transformations over contexts.

We formulate pointer analysis in an algebraic structure of context transformations, which

is a set of functions over calling contexts closed under function composition. We show that

the context representation of context-string-based analyses is an explicit enumeration of

all input and output values of context transformations. CFL-reachability-based pointer

analysis is formulated to use call strings as contexts, but the context transformations

concept can be applied to any context abstraction used in k-limited analyses, including

object- and type-sensitive analysis. The result is a more efficient algorithm for computing

context-sensitive pointer information for a wide variety of context configurations.

iv

Acknowledgements

First and foremost, I would like to thank my supervisor, Ondřej Lhoták, for his guidance,

patience, and support during my study. His mentorship was vital to my success.

I would like to thank Peter Buhr, Brad Lushman, Derek Rayside, and Jingling Xue for

serving on my Examining Committee and providing valuable feedback and guidance.

I would also like to thank Magnus Madsen for his support and for the numerous research

discussions we had. You made the last few years of my study much more enjoyable. My

gratitude goes to Marianna Rapoport for organizing lively lab events and to my fellow

graduate students in the PLG lab, past and present, for the many enjoyable discussions.

I am grateful for the funding provided by the University of Waterloo and NSERC.

Last but not least, I would like to thank my parents for their encouragement.

v

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Organization . 4

1.4 Typographical Conventions . 5

2 Background 6

2.1 Introduction to Context Sensitivity . 6

2.1.1 Flavours of Context Sensitivity . 7

2.1.2 Heap Context . 10

2.1.3 Context-string-based Analysis . 10

2.2 Context-free Language Reachability Formulation of Pointer Analysis 12

2.2.1 Intraprocedural Field-sensitive Analysis 14

2.2.2 Context-sensitive Analysis . 15

vi

3 Context Transformations 17

3.1 Intuition . 18

3.2 Context Transformation Domain . 20

3.3 Pointer Analysis using Context Transformations 22

3.3.1 Input Predicates . 22

3.3.2 Deduction Rules . 25

3.4 Parameterized Deduction Rules . 35

3.5 Abstraction . 39

3.5.1 Explicit Strings . 40

3.5.2 Transformer Strings . 44

4 Soundness and Precision 51

4.1 Main Results . 51

4.1.1 Outline of Proofs . 54

4.2 General Properties . 57

4.3 Soundness . 58

4.3.1 Untruncated Concretization . 58

4.3.2 Superset Theorem . 59

4.4 Precision . 62

4.4.1 Consistency . 62

4.4.2 Truncated Concretization . 67

4.4.3 Derivability . 68

4.4.4 Subset Theorem . 78

vii

5 Implementation 88

5.1 Introduction to Datalog . 88

5.2 Complex Terms . 90

5.3 Evaluation . 92

5.4 Stratification . 93

5.5 Syntax and Type System . 96

5.6 Index Declarations and Cost Estimates . 97

5.7 Join Order . 102

5.8 Rule Evaluation and Code Generation . 103

5.9 Inline Predicates . 105

5.9.1 Field-sensitive C Analysis . 106

5.10 Context Transformation Analysis . 111

5.10.1 Explicit String Instantiation . 113

5.10.2 Transformer string Instantiation . 115

5.10.3 Configuration Reduction . 119

6 Evaluation 121

6.1 Experimental Setup . 121

6.2 Analysis Precision . 122

6.3 Analysis Efficiency . 124

6.4 Indexing Efficiency . 128

6.5 Summary . 129

7 Related Work 130

viii

8 Conclusion 136

References 138

ix

List of Tables

6.1 Benchmark metrics collected by a context-insensitive analysis. 122

6.2 Sizes of context-insensitive relations of varying flavours and levels of context

sensitivity. 123

6.3 Number of context-sensitive facts and percentage decrease from using the

transformer string abstraction, as compared to the explicit string abstraction.125

6.4 Analysis times with transformer configuration specialization of relations and

without specialization. 128

x

List of Figures

2.1 Context sensitivity code example. 8

2.2 Graph showing direct data flow in the code in Figure 2.1. 9

2.3 Statements and their graph representations. 12

2.4 Example code and its Pointer Assignment Graph representation. 13

3.1 Input domains and predicates. 23

3.2 Translation of Java constructs to relations. 24

3.3 Parameterized deduction rules for pointer analysis. 36

3.4 Definitions of non-logical symbols in Figure 3.3 under a context transforma-

tion instantiation. 37

3.5 Definitions of non-logical symbols in Figure 3.3 under an explicit string

instantiation. 42

3.6 Definitions of non-logical symbols in Figure 3.3 under a transformer string

instantiation. 47

4.1 Example illustrating the precision difference between the explicit string and

transformer string abstractions using m = 1 and h = 1 levels of call-site

sensitivity. 53

xi

4.2 Example illustrating the precision difference between the explicit string

and transformer string abstractions using m = 2 and h = 1 levels of type

sensitivity (Part 1). 55

4.3 Example illustrating the precision difference between the explicit string

and transformer string abstractions using m = 2 and h = 1 levels of type

sensitivity (Part 2). 56

5.1 Semi-naive evaluation. 93

5.2 Nested index iteration. 104

5.3 Declarative definition of the compt predicate with m = 1 and h = 1 levels of

context sensitivity. 117

5.4 Type declaration, specialized pts predicates, and the first four clauses of the

compt predicate from Figure 5.3. 118

6.1 Points-to relationships from multiple data-flow paths. 127

xii

Chapter 1

Introduction

1.1 Motivation

Pointer analysis is a fundamental static analysis that determines the objects that pointers

may point to. Precise pointer information is essential for program verification, refactoring

tools, and other downstream static analyses. In order to compute precise pointer information,

an analysis must account for different calling contexts of methods.

A method may have different run-time behaviour in each invocation. A context-

insensitive analysis produces a single conservative result that models all invocations. More

precise pointer information can be obtained if methods are analyzed multiple times to

model different calling contexts. A method context represents a set of run-time invocations

of a method in some static and finite partitioning of all invocations of the method during

an execution of a program.

Although context-insensitive pointer analysis scales to the largest of Java programs,

context-sensitive pointer analyses fare less well. Various techniques have been proposed

to improve the scalability of context-sensitive pointer analysis, including but not limited

to using Binary Decision Diagrams to compress analysis data [44, 49, 19], merging of

1

redundant pointer information [46], combining different flavours of context sensitivity [16],

demand-driven algorithms that progressively refine the precision of the analysis based on

the needs of a client [36], and methods of varying the level of context sensitivity of program

elements [35, 47, 20, 21].

The most extensively studied approach to context-sensitive analysis is the abstraction of

contexts as fixed-length (k-limited) strings called context strings. Two families of context-

string-based analyses are call-site-sensitive and object-sensitive analysis : a call-site-sensitive

analysis forms method contexts by the series of call sites that invokes a method; an

object-sensitive analysis forms method contexts out of the heap context of receiver objects.

The heap context of an object is the method context in which the object is allocated.

A disadvantage of context strings is that there is a high amount of redundancy in its

representation of contexts. Local flow of pointer information that is invariant with respect

to a method’s caller (that is, the same points-to relationships hold in all calling contexts of

the method) is represented by explicit duplication of the information for all calling contexts.

One approach to improving the performance of context-sensitive pointer analysis is the

use of Binary Decision Diagrams (BDDs) [6] to represent pointer information [44, 49, 19].

BDDs are compressed representations of sets and can efficiently represent large sets that

contain duplicated information. This thesis proposes an alternative strategy: the usage of

an abstraction that intrinsically does not duplicate invariant points-to relationships.

We have developed a new context abstraction based on insights from the context-free

language reachability (CFL-reachability) formulation of pointer analysis [28, 37, 36, 48]. In

the CFL-reachability formulation of pointer analysis, points-to and aliasing relationships

are identified by paths in a graph representation of Java programs, where nodes represent

variables and heap allocation sites, and edges represent data flow through assignments. The

paths are filtered by strings formed by labels of traversed edges, which are required to be

in the intersection of two context-free languages: one language models data flow across

assignments and heap accesses (i.e., a value stored to a field must be loaded through a

load of the same field, thus forming a language of balanced field accesses), and the other

2

language models data flow through method calls (i.e., a data flow entering a method from

one call site must exit the method from the same call site, thus forming a language of

balanced entries/exits). We identify these paths as transformations over contexts, and show

that the traditional representation of context information is the explicit enumeration of

input-output value pairs of transformations. We introduce an alternative representation of

context transformations that more efficiently represents data. Unlike the CFL-reachability

approach, which is formulated only for call-site sensitivity, our abstraction works under

call-site [32], object [23], and type sensitivity [34].

A new abstraction for context-sensitive pointer information raises theoretical questions

as to its expressiveness: does performing pointer analysis using the new abstraction yield

a different level of precision compared to traditional context strings? In order to make

a meaningful comparison of precision, we formulate an analysis where the representation

of contexts is parameterized such that the analysis may be instantiated with different

abstractions while all other aspects of the analysis are held constant. We present a

parameterized set of deduction rules for pointer analysis that can be instantiated with either

the traditional representation of contexts as context strings, or with our new abstraction.

Our new abstraction is strictly more precise than context strings in theory, and generally is

more efficient than context strings in terms of representation size and analysis time, but

obtains exactly the same precision in practice under call-site and object sensitivity.

A recent trend in the field of static analysis has been an increase in the use of Datalog

to specify analyses [24, 33]. The benefits of specifying an analysis in Datalog include fast

prototyping, correctness, high-analysis performance, and improved reproducibility of results

due to the declarative nature of the specification. An obstacle to specifying static analyses

in Datalog is that complex data-structures and operations required by an static analysis

may not translate well to the tuple-based representation of data in Datalog. We have

developed a new tool, a Datalog engine called DLE, designed to allow concise specification

and efficient evaluation of static analyses. In particular, our new abstraction of context

information takes advantage of features unique to DLE.

3

1.2 Contributions

This thesis makes the following contributions:

• We formulate a pointer analysis using a new algebraic structure of context transfor-

mations. We show that one representation of context transformations is in the form

of k-limited context strings. We propose an alternative representation of context

transformations as a composition of elemental transformations called transformer

strings.

• We present a parameterized set of deduction rules for pointer analysis that can be

instantiated to use either the traditional context string representation or our new

representation. Similar to the Doop framework [5], the rules can be instantiated as a

call-site-, object-, or type-sensitive analysis.

• We evaluate the efficiency and performance of our new abstraction on large programs

in the DaCapo benchmark suite [4]. The greatest improvement obtained is nearly a

3x speedup in analysis time and a 40% reduction in the number of facts computed in

one benchmark when compared to the traditional context string representation.

• We present our new Datalog engine, DLE, which supports efficient representation

of complex abstractions and evaluation of operations used by static analyses. We

describe our technique of implementing the new transformer string abstraction in the

engine that allows for its efficient evaluation.

1.3 Organization

This dissertation is organized as follows. Chapter 2 presents background material on different

types of context-sensitive analysis, the context-free-language formulation of pointer analysis,

4

and context-string-based pointer analysis. Chapter 3 presents our new abstraction of context-

sensitive pointer information. Chapter 4 contains the theorems and proofs that establish

the precision difference between the two representations. Chapter 5 documents DLE:

our new Datalog engine that implements extensions to Datalog designed for performing

static analysis. This chapter also contains a description of how the context transformation

abstractions are implemented in the engine. Chapter 6 contains the evaluation of our new

abstraction and implementation. Chapter 7 surveys literature related to context-sensitive

pointer analysis. Finally, Chapter 8 presents our conclusion and possible directions of future

work.

1.4 Typographical Conventions

Typographical conventions are as follows: Function symbols are italicized and start with a

lowercase letter. Predicate symbols are typeset in sans-serif font and start with a lowercase

letter. Variables that appear as terms in literals start with an uppercase letter. Code

examples are typeset in typewriter font, and references within text to symbols that appear

inside examples are also typeset in typewriter font.

All free variables of a mathematical formula are universally quantified.

Sequences are formed by the concatenation operator ‘ · ’. For clarity, sequences formed

by concatenation may be delimited by square brackets when they appear inline in text (e.g.,

[a·b·c]), but the brackets may be omitted. The operator ‘ · ’ is used to both concatenate

individual letters, and to concatenate sequences. Concatenation of single-letter symbols

may omit the ‘· ’ operator. The following functions manipulate sequences:

• Let prefix i(s) be the prefix of s of length min(‖s‖, i).

• Let dropi(s) be the suffix of s of length ‖s‖ −min(‖s‖, i).

• Let first(s) and last(s) be the first and last letter of a non-empty string s, respectively.

5

Chapter 2

Background

2.1 Introduction to Context Sensitivity

There are two primary variations on context sensitivity for an object-oriented language:

A call-site-sensitive analysis defines contexts by the call sites of invocations, while an

object-sensitive analysis uses the heap allocation site of a receiver object to differentiate

contexts [34, 23]. Type sensitivity can be considered a subclass of object sensitivity, where

heap allocation sites are replaced by class types that contain the methods containing the

allocation sites [34].

The example Java code in Figure 2.1 illustrates the differences between the three types

of context sensitivity. The example contains two identity methods id and id2, where id

returns its parameter directly, and id2 indirectly by calling id. Heap objects are abstracted

by their allocation sites: we say that variable x points to h1 to mean that the value of x, at

run-time, may be the address of an object allocated at h1.

Figure 2.2 illustrates the direct data-flow between allocation sites and variables that

arise from direct assignment, parameter-passing, and return values. Allocation sites are

represented by square nodes and variables are represented by circular nodes. Edges

6

representing interprocedural data flows are labelled by the call sites where the data flows

occur.

2.1.1 Flavours of Context Sensitivity

In a context-insensitive analysis, only one points-to set is maintained for the parameter

p of the method id, and thus the analysis concludes that p points to objects allocated at

h1 and h2. Therefore, x1 and y1 also point to h1 and h2. In a call-site-sensitive analysis,

method id is analyzed in three different method contexts that correspond to the invocations

labelled c1, c2, and c3. The analysis precisely deduces that x1 only points to h1 and y1

only points to h2.

In an object-sensitive analysis, invocations of id using a receiver object allocated at h3

are analyzed in a single context: that of heap allocation site h3. Thus, the points-to sets of

x1 and y1 are imprecise: the analysis concludes that both variables could point to either

h1 or h2. However, the invocations of id2 and id2’s nested invocation of id are analyzed

in two independent contexts: that of allocation sites h4 and h5. Thus, the points-to sets of

x2 and y2 are precise: x2 points only to h1 and y2 points only to h2.

A type-sensitive analysis uses the class type of the method that allocated the receiver

object as the context of non-static methods. Note that the choice of context is not the type

of objects allocated at the heap allocation site, which was empirically determined to be a

poor choice of contexts in terms of analysis precision [34]. Invocations of methods id and

id2 are each analyzed under a single context formed by type T.

In both object- and type-sensitive analysis, the context of an invocation of a static

method reuses the same context in which the invocation occurred.

7

class T {

Object f;

Object id(Object p) {

return p;

}

Object id2(Object q) {

Object u = id(q); // c1

return u;

}

Object m() {

Object v = new T(); // o1

return v;

}

public static void main(String[] args) {

Object x = new Object(); // h1

Object y = new Object(); // h2

Object r = new T(); // h3

Object x1 = r.id(x); // c2

Object y1 = r.id(y); // c3

Object s = new T(); // h4

Object t = new T(); // h5

Object x2 = s.id2(x); // c4

Object y2 = t.id2(y); // c5

T a = s.m(); // c6

T b = t.m(); // c7

a.f = x;

Object z = b.f;

}

}

Figure 2.1: Context sensitivity code example.

8

x

y

r

p

x1

y1

q u

x2

y2

s

t

v

a

b

h1

h2

h3

h4

h5

o1

c2

c4

c3

c5

c2

c3

c
1

c
1

c4

c5

c6

c7

main

id2

id

main

m

main

Figure 2.2: Graph showing direct data flow in the code in Figure 2.1.

9

2.1.2 Heap Context

Method contexts differentiate points-to sets of variables in different invocations, while heap

contexts differentiate objects allocated in different invocations.

In Figure 2.1, without heap contexts, an analysis concludes that a and b may point

to heap objects allocated at o1 in any context of m. Thus, the analysis would imprecisely

conclude that the heap accesses a.f and b.f are aliased, and that z may point to h1.

Annotating points-to relationships with heap contexts removes this imprecision: heap

objects allocated at o1 are differentiated by the method contexts of m, which are c6 and c7

under call-site sensitivity and h4 and h5 under object sensitivity. Either flavour concludes

that a and b do not point to a common object at run-time.

2.1.3 Context-string-based Analysis

Non-demand-driven algorithms for context-sensitive pointer analysis predominantly use a

k-limited representation of method and heap contexts, which are finite strings of elemental

contexts. In a call-site-sensitive analysis, method contexts are call-strings : strings formed

by return locations (call sites) of activation records of a call stack during execution. In a

program with recursive calls, the call-stack has an unbounded length, and thus truncation

to some k length is required to obtain a computable analysis. Context string formulations

exist for a wide variety of contexts, such as call sites, heap allocation sites, class types, and

combinations thereof [16]. We refer to the truncation length of context strings for method

contexts as the level of method context, and similarly the length of context strings for heap

contexts as the level of heap context.

We use the name Ctxt for the set of elemental contexts of a particular flavour of context

sensitivity. For call-site-sensitive analysis, Ctxt is the set of call sites. For object-sensitive

analysis, Ctxt is the set of heap allocation sites. For a type-sensitive analysis, Ctxt is

the set of class types. Context strings are representations of contexts as strings over Ctxt,

10

truncated to a finite length. We use a convention that the “top-most” elemental context

appears first in a context string: for example, method id is invoked from call site c1 in id2,

and id2 is in turn invoked from site c4. The method context for id in a call-site-sensitive

analysis for this sequence of invocations is the string [c1·c4 ·entry], where entry is a

special context for entry points in a program.

In an object-sensitive analysis, the method context for a non-static invocation is the

heap context of the receiver object of the invocation prefixed with the allocation site of

the object [23]. The heap context of an object is the method context in which the heap

allocation occurred. For example, the receiver object of the invocation of id2 at c4 is a

heap object allocated at h4 in method context [entry] (the special method context for

entry points), and thus [h4 ·entry] is the method context for the invocation of id2. The

receiver object for the subsequent invocation of id inside id2 stays the same, and thus id is

invoked with the same method context of [h4·entry]. This approach is a variant of object

sensitivity called full-object sensitivity, which contrasts with plain-object sensitivity [34].

Under plain-object sensitivity, the heap allocation site of a receiver object is prefixed to

the method context of the invocation: in this example, id is invoked with the method

context of [h4 ·h4·entry] under plain-object sensitivity. Full-object sensitivity is the variant

of object sensitivity used throughout this dissertation, because full-object sensitivity has

superior precision and analysis performance compared to plain-object sensitivity [5, 34].

The method context of a static invocation is the same context as the method context in

which the invocation occurred.

Under full-object sensitivity, if method contexts are truncated to length m and heap

contexts are truncated to length h, there are two constraints on m and h: since heap contexts

are constructed from method contexts by optional truncation, we get the constraint h ≤ m;

since method contexts are constructed by prefixing the heap context of a receiver object with

its allocation site, we get the constraint m ≤ h+1. Thus, either h = m or h = m−1. Using

the latter constraint is a significantly better performance/precision trade-off than using

the former, and thus we assume that the truncation lengths used under object sensitivity

11

Statement Edge

x = y; y assign−−−→ x

x.f = y; y store[f]−−−−→ x

x = y.f; y load[f]−−−−→ x

x = new T(); // h h new−−→ x

x = T.m(a1, . . . , an); // c

static U m(f1, . . . , fn)

{... return u; }

ak
assign−−−→

ĉ
fk

u assign−−−→
ĉ

x

Figure 2.3: Statements and their graph representations.

satisfy h = m− 1.

2.2 Context-free Language Reachability Formulation

of Pointer Analysis

A Pointer Assignment Graph (PAG) is a graph representation of a program where nodes

represent variables and heap allocation sites, and edges represent data flow through as-

signments. Figure 2.3 presents a simplified representation of a Java program containing

only assignments, stores to and loads from fields of objects, heap allocations, and static

invocations of methods. Each statement in the program induces an edge in the PAG

labelled as shown in the right-hand column in the table. Interprocedural assignments are

additionally labelled below the arrow by the call sites where the assignments occur due to

argument passing and return values. The label ĉ denotes that the assignment occurs at

the start of an invocation from call site c, and ĉ denotes that the assignment occurs when

returning from an invocation from c. Edges corresponding to a store or a load of a field

have a label that includes the field that is accessed. Statements in Figure 2.3 also induce

inverse edges: For every edge from x to y in the graph labelled l, let there be an edge from

12

class T {

Object f;

static Object id(Object p) {

return p;

}

static Object id2(Object q) {

Object r = id(q); // c1

return r;

}

public static void main(String[] args) {

Object x = new T(); // g

Object z = x;

Object w = x;

Object x = new Object(); // h

z.f = x;

Object y = w.f;

Object u = id2(x); // c2

Object v = id2(x); // c3

}

}

w

z

x

y

q p r

u

v

g

h
new

new

new

st
or
e[
f
]

load[f]

assign

ĉ2

assign

ĉ3

assign

ĉ1

assign

ĉ1

ass
ign

ĉ2

assign̂
c3

Figure 2.4: Example code and its Pointer Assignment Graph representation.

13

y to x in the graph labelled l. Call site labels ĉ become ĉ, and vice-versa. For example, in

a program with edge a1
assign−−−→

ĉ
f1, an implicit edge f1

assign−−−→
ĉ

a1 is present. Figure 2.4 is a

code example with field accesses and invocations of static methods.

The realized string of a path is formed by concatenating the labels of traversed edges.

Given a context-free language L, a path P is an L-path iff the realized string of P is in L.

We use two distinct alphabets in our formulation: one for the labels above edges, and one for

the call site labels below them. When we say P is an L-path, edge labels not in the alphabet

of L are ignored when forming the string realized by P . For example, the two direct paths

from h to u in Figure 2.4 realize the same string [new, assign, assign, assign, assign] over the

alphabet {new, assign}, and realize the strings [ĉ2, ĉ1, ĉ1, ĉ2] and [ĉ3, ĉ1, ĉ1, ĉ2] over the

alphabet {ĉ1, ĉ1, ĉ2, ĉ2, ĉ3, ĉ3}. An all-pairs L-path problem asks whether there exists an

L-path from u to v for each pair of vertices u, v in a graph.

2.2.1 Intraprocedural Field-sensitive Analysis

If a program consisted only of assignments, then pointer analysis would be a simple problem

of computing the transitive closure over assign edges to establish data-flow paths from a

heap allocation site to variables that may point to objects allocated at the site. Handling of

field accesses has been formulated as a CFL-reachability problem over a balanced parentheses

language [37, 36]. An indirect data flow occurs between two variables y and z when the

value of y is stored to a field of an object (e.g. “w.f = y;”), and the value of z is the

result of loading the same field of the same object (e.g. “z = x.f;”, where w and x point

to a common object). Thus, the store and the load form a conceptual pair of balanced

parentheses. Variables w and x must point to the same object, which means there must

be value-flow paths from a common allocation site to w and x. These paths in turn may

involve indirect data flows (nesting of balanced parentheses), and thus a CFL is required to

precisely handle heap accesses.

14

Let ΣF be an alphabet used to define a language that models loads and stores:

ΣF ≡ {assign, assign, store[f], store[f], load[f], load[f], new, new | f ∈ FSig}.

FSig is a set of all field signatures. Let LF be a language over ΣF generated by the

non-terminal flowsTo defined by the following productions:

flowsTo → new flows∗.

flowsTo → flows
∗

new.

alias→ flowsTo flowsTo.

flows → assign | store[f] alias load[f].

flows → assign | load[f] alias store[f].

The variable f ranges over all field signatures in a program. The flowsTo non-terminal

models the flow of values from heap allocation sites to variables.

In Figure 2.4, the direct path from h to y realizes the string [new, store[f], new, new,

load[f]] over ΣF, which is a string generated by flowsTo.

In a context-insensitive points-to analysis, x points-to h iff there exists an LF -path from

h to x [37]. An exhaustive computation of context-insensitive points-to information is an

all-pairs LF -path problem from all heap allocation sites to all variables.

2.2.2 Context-sensitive Analysis

Let ΣC be an alphabet consisting of letters ĉ and ĉ, where c ranges over Inv, the set of

all call sites of a program. Let LC be a language over ΣC generated by the non-terminal

feasible defined by the following productions. The variable c ranges over all call sites in a

15

program:

balanced → ĉ balanced ĉ.

balanced → balanced balanced | ε.

unbal exits → ĉ unbal exits | ε.

unbal entries → ĉ unbal entries | ε.

feasible→ unbal exits balanced unbal entries.

In Figure 2.4, one of the direct paths from h to u realizes the string [ĉ2, ĉ1, ĉ1, ĉ2] over

ΣC, which is a string generated by feasible.

A path P is said to be feasible iff it is an LC-path. An infeasible path characterizes

data flow that cannot occur in practice: for example, data flow that enters a method from

one call site and exits the method from a different call site. In a precise context-sensitive

points-to analysis, x points-to h iff there exists a path from h to x that is both an LF -path

and an LC-path. Computing this relation is an undecidable problem [28]. A computable

analysis can be obtained by approximating one of the languages. One approach is to

collapse all methods in a recursive call cycle into a single method [36]. Then LC becomes a

regular language, and thus LF ∩ LC is a context-free language, and LF ∩ LC-paths can be

computed.

16

Chapter 3

Context Transformations

The context string approach to context sensitivity partitions the unbounded number of

method invocations and object allocations during an execution of a program into some

finite and static partition that forms the abstraction of contexts. Points-to relationships

from a variable Y to an allocation site H are tagged with pairs of strings: the method

context determines the partition containing the invocation in which Y points to an object

o allocated at H, and the heap context determines the partition containing the invocation

that allocated the object o. Our alternative formulation instead relates the context in which

an allocation of an object occurs to the method context in which a variable points to the

object, by tagging pointer information with functions from contexts to contexts.

The organization of this chapter is as follows: Section 3.1 gives a high-level and informal

description of our alternative formulation that uses context transformations to represent

context information, and Section 3.2 gives a formal description of the domain of context

transformations and its properties. Section 3.3 expresses pointer analysis using context

transformations as a set of deduction rules. Each deduction rule models a particular

language construct, such as a field load or a method invocation, and derives data-flow

facts arising from the construct. Section 3.4 presents a set of parameterized deduction

rules that can be instantiated to different analyses: the noncomputable analysis described

17

in Section 3.3, and two computable analyses that uses abstractions over the domain of

context transformations. One abstraction is the explicit string representation of context

transformation, described in Subsection 3.5.1. Instantiating the rules using the explicit

string representation results in a set of deduction rules identical to that of a context-string-

based analysis. The other instantiation uses our new transformer string representation of

context transformations, and is described in Subsection 3.5.2.

3.1 Intuition

An interpretation of elements of ΣC, the alphabet of method entry/exit labels, is that they

are transformations over call-site context strings. For a given path, its realized string relates

the context at the source of the path to the context at its target. For example, let P be an

LF ∩ LC-path (a feasible data-flow path) from h in main to p in id in Figure 2.4:

P ≡ h new−−→ x assign−−−→
ĉ2

q assign−−−→
ĉ1

p.

This path indicates that an object o is allocated at h, then method id2 is invoked at call

site c2, then method id is invoked at call site c1, and then the variable p in this invocation

of id points to that object o. The realized string of P over ΣC is
[
ĉ2· ĉ1

]
. The string can

be interpreted as a function over method contexts that prefixes c2, then prefixes c1 to its

input. When the function is applied to context [entry] of main, we obtain a context [c1·
c2·entry] for id.

Let P ′ be an LF ∩ LC-path from p in id to u in main:

P ′ ≡ p assign−−−→
ĉ1

r assign−−−→
ĉ2

u.

This path indicates that the value of variable p in method id is returned to the invocation

of id at c1, then the value is returned to the invocation of id2 at c2 and assigned to

variable u in main. Its realized string over ΣC is
[
ĉ1· ĉ2

]
. The string can be interpreted as

18

a function over contexts that drops c1 then drops c2 from the front of its input. Applying

it to context [c1 ·c2·entry] of id yields [entry] for main. We conclude that the path P ·P ′

can be interpreted as an identity function: the path indicates that the variable u points to

an object that is allocated at h in the same invocation of main.

In a traditional context-string-based analysis, the fact that u in context M points to h

allocated in the same context M is redundantly enumerated for all reachable contexts M of

main. This fact can be more compactly represented by representing context information as

functions over contexts: the context in which u points to an object o, and the context in

which o is allocated at h, are related by the identity function over contexts.

We interpret LF -paths as transformations over contexts, which may include feasible paths

(LC-paths) and infeasible paths (non-LC-paths). An infeasible path indicates a data-flow

path that cannot occur during execution, and a precise context-sensitive pointer analysis

must not have points-to relationships that are derived only from infeasible paths. The

following is an example of an infeasible LF -path (the entry ĉ2 and exit ĉ3 are mismatched):

P ′′ ≡ h new−−→ x assign−−−→
ĉ2

q assign−−−→
ĉ1

p assign−−−→
ĉ1

r assign−−−→
ĉ3

v.

To identify infeasible paths, we associate them with the constant-error function: a constant

function whose output value is a special “error context” denoted err. Since a path with a

sub-path that is infeasible is itself infeasible, we require all context transformations to map

err to err. Then, any function composition of context transformations that includes the

constant-error function is itself the constant-error function.

CFL-reachability problems correspond to chain programs, which are a restricted class of

Datalog programs [27]. Section 3.3 encodes derivations of LF -paths from heap allocation

sites to variables as deduction rules, but before that, the domain of context transformations

and its properties are formalized in the next section.

19

3.2 Context Transformation Domain

We define a set of transformations over contexts as an algebraic structure. Although

the previous section defined context transformations as transformations over call-strings,

this section generalizes to any type of context. Let T ≡ {â, â | a ∈ Ctxt} be the set of

primitive context transformations, where â is an entry transformation and â is an exit

transformation. Ctxt is the set of elemental contexts. Let the domain of method contexts

be Ctxts ≡ Ctxt∗ ∪ {err}. The primitive transformations over Ctxts are defined as

follows:

â(M) ≡

a·M if M 6= err

err otherwise.

â(M) ≡

M ′ if M = a ·M ′

err otherwise.

Let the set of context transformations CtxtT be a composition monoid formed by the

closure of T under function composition. Let ε be the identity transformation. We use a

postfix notation for function composition: A ;B ≡ B ◦ A means first apply A then B.

An important notation is the conversion of strings over Ctxt to context transformations.

Given M ≡ m1 · . . . ·mn ∈ Ctxt∗ let M̂ and M̂ be entry and exit transformations of M ,

defined as follows:

M̂ ≡ m̂n ; . . . ; m̂1. M̂ ≡ m̂1 ; . . . ; m̂n.

A source of confusion may be the reversal of composition when a string in Ctxt∗ is

converted into an entry transformation. The advantage of this notation becomes clear when

we characterize the elements of CtxtT in the following paragraphs.

CtxtT can be shown to be an inverse semigroup: that is, for every A ∈ CtxtT, there

exists a unique inverse element (in the semigroup sense) B ∈ CtxtT such that A = A ;B ;A

and B = B ; A ; B. Noting that ĉ is an inverse of ĉ and vice-versa, let ĉ−1 ≡ ĉ and

20

ĉ
−1 ≡ ĉ. Given A ≡ a1; . . . ; an ∈ CtxtT where ai ranges over primitive transformations,

let A−1 ≡ a−1
n ; . . . ; a−1

1 . It is evident that A−1 is an inverse of A, and thus CtxtT forms a

regular semigroup. Showing that the idempotents of CtxtT (elements x such that x ;x = x)

commute is sufficient to establish the uniqueness of inverses.

Noting that (ĉ ; ĉ) is the identity function, and that (ĉ ; ê) where c 6= e is the constant-

error function errF ≡ (λx. err), any composition of primitive transformations containing

a pair of an entry immediately followed by an exit can be simplified to some equivalent

shorter composition of transformations. Thus, all elements of CtxtT are equivalent to

either the composition of a sequence of exit transformations followed by a sequence of

entry transformations, or equal to errF . Thus, non-errF context transformations have the

following specification (let X and E range over Ctxt∗):

X̂ ; Ê ≡ λM .

E ·drop‖X‖(M) if X = prefix ‖X‖(M)

err otherwise.

Thus, the only non-errF idempotents are of the following form:

X̂ ; X̂ = λM .

M if X = prefix ‖X‖(M)

err otherwise.

Then, the composition of two non-errF idempotents have the following specification:

X̂ ; X̂ ; Ŷ ; Ŷ = λM .


M if X = prefix ‖X‖(M)

∧ Y = prefix ‖Y ‖(M)

err otherwise.

Thus, non-errF idempotents commute. Clearly, errF commutes. Thus, all idempotents

of CtxtT commute. And thus, inverses of CtxtT are unique.

Using the observation that all non-errF transformations can be expressed as a composi-

tion of exit transformations followed by a composition of entry transformations, we can

21

decompose any non-errF context transformation A into two strings X,Y ∈ Ctxt∗ such

that X̂ ; Ŷ = A.

3.3 Pointer Analysis using Context Transformations

We express pointer analysis as a set of deduction rules, where each rule models a particular

Java language construct. The premise of the rule describes the state of a program before

execution of a language construct, and the conclusion of the rule must soundly describe

the state of the program after execution of the construct. Rules are motivated by example

dynamic executions of program constructs described using method contexts (unbounded

strings of elemental contexts whose type depends on the flavour of context sensitivity).

From the example dynamic executions, we infer static deduction rules that soundly models

the dynamic behaviour.

The analysis described in this section is not a computable analysis. A computable analysis

is given in Section 3.5. The call string variation of the analysis is as precise as a context

string analysis using unbounded call strings, which is known to be non-computable [31].

The input to our analysis is a set of input relations, which describe the Java program

under analysis. These relations are described in the next subsection.

3.3.1 Input Predicates

Figure 3.1 presents the input domains and predicates used by our analysis. Relations

corresponding to these predicates form the input to our analysis. We use the same input

schema as the Doop Framework [5]: our analysis implementation uses the same fact

generator as that of Doop, which converts a Java class file into relations using the Soot

Framework [42].

22

Domains:
FSig : Static and instance field signatures.
Heap : Heap allocation sites.
Inv : Invocation sites.
Method : Methods definitions.
MSig : Method signatures.
Type : Types.
Var : Variables.

Predicates:
actual ⊆ Var× Inv × Z.
assign ⊆ Var×Var×Method.
assign new ⊆ Heap×Var×Method.
assign return ⊆ Inv ×Var×Method.
formal ⊆ Var×Method× Z.
heap type ⊆ Heap×Type.
implements ⊆Method×Type×MSig.
load ⊆ Var× FSig ×Var×Method.
load s ⊆ FSig ×Var×Method.
return ⊆ Var×Method.
static invoke ⊆ Inv ×Method×Method.
store ⊆ Var× FSig ×Var×Method.
store s ⊆ Var× FSig ×Method.
this var ⊆ Var×Method.
virtual invoke ⊆ Inv ×Var×MSig ×Method.

Figure 3.1: Input domains and predicates.

23

Method definitions:

// Q ≡ <class T: Tret Qid(Ti . . .)>

class T { Tret Qid(Ti fi . . .) {...} } formal(fi, Q, i)

implements(Q, T, S)

this var(Q, this)

Statements (in a method P):

y = z; assign(z, y, P)

y = new T; // H assign new(H, y, P)

heap type(H, T)

// F ≡ <class T: Tf Fid>

y = z.Fid; load(z, F, y, P)

y = z[. . .]; load(z, arr, y, P)

y = T.Fid; load s(F, y, P)

y.Fid = z; store(z, F, y, P)

y[. . .] = z; store(z, arr, y, P)

T.Fid = z; store s(z, F, P)

return z; return(z, P)

// S ≡ <class T: Tret Sid(Ti . . .)>

y = Sid(ai . . .); // I static invoke(I, Q, P)

y = z.Sid(ai . . .); // I virtual invoke(I, z, S, P)

actual(ai, I, i)

assign return(y, I, P)

Figure 3.2: Translation of Java constructs to relations.

24

Figure 3.2 presents the translation of Java language constructs to relations. We differ-

entiate between the names (identifiers) of methods and fields (Qid, Sid, and Fid) and the

signatures of methods and fields (Q, S, and F): different signatures may share the same

identifier. Although most Java language constructs correspond directly to input predicates

(e.g. assignment, load, and store statements), some are deconstructed into lower-level oper-

ations: for example, heap allocation statements such as “y = new T(a);” are converted

into an heap allocation operation (identified by predicate assign new), and an invocation of

T’s constructor method. Invocations of constructor methods differ from static invocations

in that they specify a receiver object and differ from virtual invocations in that they are not

dynamically dispatched. Thus, the implementation uses a separate predicate to describe

special invoke instructions. We omit this detail from this document.

Virtual invocations specify their invoked methods through method signatures. A method

signature consists of a return type, a method name, and a type for each parameter. Although

Java does not permit overloaded methods that differ only by their return types, the Java

Virtual Machine (JVM) [22] permits it and uses it to implement overriding of methods with

covariant return types. The implements relation includes inherited methods: that is, if P

implements method signature S in type T , and T ′ is a direct subclass of T that does not

have a method that overrides signature S, then implements(P ,T ′,S) is true.

Array accesses are handled as field accesses. Our abstract analysis does not distinguish

objects stored to different indices of an array. The “field” being accessed by an array access

of any index is a special field signature “arr”.

3.3.2 Deduction Rules

The result of the analysis is contained in the derived relations pts (points-to relation) and

call (call-graph edge relation). These relations are derived by a set of deduction rules

described in this subsection. The derived relations are described below:

• pts(Y ,H,A) indicates that if an object o is allocated at H in method context M (an

25

unbounded string of elemental contexts), then variable Y may point to o in context

A(M), where A is a context transformation. We say that Y points to H under the

context transformation A.

• call(I,P ,A) indicates that call site I in method context M may invoke method P

with context A(M).

Heap allocation sites and assignments.

The following rule models heap allocations:

assign new(H,Y ,P)

call(,P ,)

pts(Y ,H, ε)

The literal assign new(H,Y ,P) indicates that in the program under analysis, the addresses

of objects allocated at heap allocation site H are assigned to variable Y inside method P .

The derived fact pts(Y ,H, ε) indicates that Y points to an object allocated at H in the same

context as the context in which the object was allocated. The presence of the call(,P ,)

literal in the body ensures that points-to facts are only derived in reachable methods (either

the entry method of a program or a method invoked by a reachable method).

Intraprocedural assignments do not alter the context under which a points-to relationship

holds:
pts(Z,H,A)

assign(Z,Y ,)

pts(Y ,H,A)

assign(Z,Y ,P) indicates that variable Z is assigned to Y in method P .

26

Field accesses of heap objects.

Heap points-to relationships arising from stores to fields of heap objects (instance fields)

can be described as a sequence of events during an execution of a program:

• a pointee object is allocated at an allocation site H in context MH ;

• a base object is allocated at allocation site G in context MG;

• variable X points to the pointee object in context MXZ;

• variable Z, which is in the same method as X, points to the base object in the same

context MXZ;

• and through X and Z, the pointee object is stored to field F of the base object.

Expressed in terms of pts facts, we must have pts(X,H,B) and pts(Z,G,C), such that

B(MH) = MXZ and C(MG) = MXZ. Thus, (B ; C−1)(MH) = MG.

Suppose a variable W points to the base object in context MW . Through W , the value

of field F is loaded and stored into variable Y . Then, Y points to the pointee object. There

must exist D such that pts(W ,G,D) and D(MG) = MW. Then, (B ; C−1 ;D)(MH) = MW.

Thus, we derive the fact pts(Y ,H,B ; C−1 ; D). We infer the following rule for handling

field accesses:
pts(X,H,B)

store(X,F ,Z,)

pts(Z,G,C)

load(W ,F ,Y ,)

pts(W ,G,D)

B ; C−1 ;D 6= errF

pts(Y ,H,B ; C−1 ;D)

27

The following graph illustrates the deduction rule. Derived predicates are depicted with

dashed lines and input predicates are depicted with solid lines. Relations in the premise

are coloured black and the relation in the conclusion is coloured red. The labels above the

edges indicate the types of relationships that the edges convey, and the labels below are

the context transformations associated with the relationships:

X Z G W YH
pts

B

store[F] pts

C

pts

D

load[F]

pts

B;C−1;D

Static field accesses.

Accessing static fields does not require a base object, and thus static fields can be accessed

from any method and from any reachable context of a method. If a variable W points to a

pointee object allocated at allocation site H in context MH , then there must exist a context

transformation B such that pts(W ,H,B) and B(MH) 6= err. Literal store s(W ,F ,)

indicates that the value of W is stored to a static field F , and load s(F ,Z,P) indicates

that static field F is loaded into variable Z in method P . Thus, variable Z may point to

the pointee object in any reachable context of P .

To soundly model static field accesses, we require the derivation of a fact pts(Z,H,A)

such that A(MH) ranges over all reachable method contexts of P . If we let C range over

all context transformations, then (B;C)(MH) ranges over all method contexts. Thus, we

28

infer the following rule for handling static field accesses:

pts(W ,H,B)

store s(W ,F ,)

load s(F ,Z,P)

call(,P ,)

C ∈ CtxtT

B ; C 6= errF

pts(Z,H,B ; C)

The presence of the literal call(,P ,) in the body ensures that points-to facts are not

derived in unreachable methods.

Parameter passing and return values.

Constructing a PAG representation with interprocedural assign edges, as in Figure 2.3,

requires a call graph constructed ahead of time. On-the-fly construction of call graphs is

essential for precise points-to analysis in a language with predominantly dynamic dispatch

of function calls [19]. Our analysis handles parameter passing using the derived predicate

call, instead of using a pre-constructed call graph.

If variable Z in context MZ points to an object o allocated at H in context MH , there

must exist B such that pts(Z,H,B) and B(MH) = MZ . If call site I in context MZ

invokes a method P with context MP , then there must exist C such that call(I,P ,C) and

C(MZ) = MP . If variable Z is the Oth actual argument of I, then the Oth formal argument

29

of P may point to o. Thus, we infer the following rule for handling parameter passing:

pts(Z,H,B)

actual(Z, I,O)

call(I,P ,C)

formal(Y ,P ,O)

B ; C 6= errF

pts(Y ,H,B ; C)

The following graph illustrates the deduction rule. The label actual[O] above the edge

from Z to I indicates that Z is the Oth actual argument of the invocation I, and the label

formal[O] above the edge from P to Y indicates that Y is the Oth formal parameter of the

method P :

Z I P YH
pts

B

actual[O] call

C

formal[O]

pts

B;C

Likewise return values are handled by the following rule:

pts(Z,H,B)

return(Z,P)

call(I,P ,C)

assign return(I,Y ,)

B ; C−1 6= errF

pts(Y ,H,B ; C−1)

Literal return(Z,P) indicates that variable Z is the return value of P , and assign return(I,

Y ,) indicates that the call site I assigns its return value to Y .

The following graph illustrates the deduction rule:

30

Z P I YH
pts

B

return call

C

assign return

pts

B;C−1

Call-graph edge derivation under call-site sensitivity.

Two types of call sites are virtual invokes and static invokes. Under call-site sensitivity,

context transformations for static invocations are easily inferred: for each method context

M of a method P that contains a static invoke I of a method Q, I invokes Q with context

I ·M . Thus, we derive the fact call(I,Q, Î):

static invoke(I,Q,P)

call(,P ,)

call(I,Q, Î)

Handling virtual invocations is more difficult because the methods that they invoke

depend on points-to relationships of their receiver variables, and points-to relationships

are context-dependent. Literal virtual invoke(I,Z,S,P) indicates that call site I in method

P invokes method signature S on the receiver object specified by variable Z. Suppose

that a receiver object is allocated at site H in context MH , and variable Z in method P

points to the object in context MZ . Then, there must exist B such that pts(Z,H,B) and

B(MH) = MZ . Suppose that a virtual invoke I invokes method Q using Z as its receiver

variable. According to the definition of call-site sensitivity, we must derive a fact call(I,Q,D)

such that D(MZ) = I ·MZ . Deriving the same fact call(I,Q, Î) as static invocations is

tempting. However, this derivation leads to imprecise results: suppose W is an actual

argument of I, Y is W ’s corresponding formal argument in the invoked method, and we have

a fact pts(W ,H ′,B′) such that the images of B and B′ are disjoint (excluding err). Then,

deriving pts(Y ,H ′,B′ ; Î) is imprecise because the facts pts(Z,H,B) and pts(W ,H ′,B′) do

not indicate that Z and W points to their respective objects in the same method context.

31

We use the following reasoning to infer the following rule:

• (B−1 ;B)(MZ) = MZ ,

• for all context transformations C such that the images of B and C are disjoint

(excluding err), then C ;B−1 = errF ,

• and thus B−1 ;B ; Î has the desired properties of soundness and precision.

virtual invoke(I,Z,S,P)

pts(Z,H,B)

heap type(H,T)

implements(Q,T ,S)

call(I,Q,B−1 ;B ; Î)

Literal heap type(H,T) indicates that T is the type of the objects allocated at H, and

implements(Q,T ,S) indicates that an invocation of a method signature S on a receiver

object of type T dispatches to method Q.

The following graph illustrates the deduction rule. The label heap type[T] above the node

named H indicates that heap type(H,T) is true. The edge labelled call site merge[T ,S] is a

figurative edge that conveys how method contexts are derived for virtual invocations under

call-site sensitivity. The label call site merge[T ,S] above the edge from I to Q indicates

that virtual invoke(I,Z,S,P) ∧ implements(Q,T ,S) is true.

Z I QH

heap type[T]

pts

B

receiver call site merge[T ,S]

Î

call

B−1;B;Î

32

Call-graph edge derivation under object sensitivity.

The derivation of context transformations for call-graph edges under object-sensitive analysis

is less intuitive than under call-site-sensitive analysis. In an object-sensitive analysis, if a

static invocation I in method P invokes Q in some context, then Q is invoked with the same

context [23]. Deriving call(I,Q, ε) in this scenario is tempting, but is imprecise. Although

I in context M invokes Q with context M for every reachable context M of P , the reverse

is not true: reachable contexts of Q are not necessarily reachable contexts of P . The rule

for handling return values then derives points-to relationships through infeasible paths.

If M is a reachable context of P , then there must exist A such that call(,P ,A) and

A(N) = M for some N . In a similar reasoning as the one used for the case of call-graph

edge derivation under call-site sensitivity, using the context transformation A−1 ; A has

the desired property of being idempotent and filtering out data-flow paths that end in a

method context that is not in the image of A (i.e., not a reachable method context of P).

Thus, we infer the following rule for handling static invocations under object sensitivity:

static invoke(I,Q,P)

call(,P ,A)

call(I,Q,A−1 ; A)

Suppose that a receiver object is allocated at site H in context MH , and variable

Z in method P points to the object in context MZ . Then, there must exist a context

transformation B such that pts(Z,H,B) and B(MH) = MZ . Suppose that a virtual invoke

I invokes method Q using Z as its receiver variable. Then the context of the invoked

method is H ·MH under object sensitivity. A context transformation A is desired such that

A(MZ) = H ·MH and B′ ; A = errF for all B′ that has a disjoint image with respect to B

(excluding err). Since B−1(MZ) = MH , A ≡ B−1 ; Ĥ satisfies these requirements. Thus, we

33

infer the following rule for handling virtual invocations under object sensitivity:

virtual invoke(I,Z,S,P)

pts(Z,H,B)

heap type(H,T)

implements(Q,T ,S)

call(I,Q,B−1 ; Ĥ)

The following graph illustrates the deduction rule. The edge labelled object merge[T ,S]

is a figurative edge that conveys how method contexts are derived for virtual invocations

under object sensitivity. The label object merge[T ,S] above the edge from H to Q indicates

that virtual invoke(I,Z,S,P) ∧ implements(Q,T ,S) is true.

Z I QH

heap type[T]

pts

B

receiver

object merge[T ,S]

Ĥ

call

B−1;Ĥ

Call-graph edge derivation under type sensitivity.

Deduction rules for type-sensitive analysis are similar to that of object sensitive analysis:

The only difference is that the class type containing the method containing the allocation site

of a receiver object is used as context, instead of the allocation site itself. Let classOf (H)

of a heap allocation site H be the class type of the method that contains H:

virtual invoke(I,Z,S,P)

pts(Z,H,B)

heap type(H,T)

implements(Q,T ,S)

call(I,Q,B−1 ; ̂classOf (H))

34

Static invocations are handled by the same deduction rule as in object-sensitive analysis.

The next section summarizes the deduction rules presented above, but in a modified

form: operations on context transformations are refactored as parameters that can be

instantiated with a definition depending on the choice of representation (either explicit

string or transformer string). Furthermore, parts of deduction rules that differ among

different context sensitivities (call-site, object, and type sensitivity) are also refactored in a

design that is similar to Doop [5].

3.4 Parameterized Deduction Rules

Figure 3.3 presents the parameterized deduction rules for a context-sensitive pointer analysis.

The presentation is simplified by omitting rules that handle class initialization, reflection,

native code simulation, and exceptions, but they are present in the evaluated implementation.

These constructs are handled in the same way as they are handled in the Doop framework [5].

Non-logical symbols that are parameters to the deduction rules have a “�” superscript.

Figure 3.4 defines the instantiation of parameters in Figure 3.3 to the context transfor-

mation instantiation, which uses the context transformation domain CtxtT directly, and

is semantically identical to the analysis described in Section 3.3 but differs syntactically.

Rules are refactored to use the four core relations of pointer analysis that frequently appear

in literature to gauge analysis precision and complexity: the points-to, heap points-to, call

graph, and method reachability relations. The following are the differences:

• The rule for handling accesses to instance fields is refactored into two rules using a

heap points-to relation hpts�. A fact hpts�(G,F ,H,A) indicates that if an object o

is allocated at H in method context M , then field F of an object allocated at G in

method context A(M) may point to o.

• A new relation reach� describes the reachable method contexts of methods using

35

assign new(H,Y ,P)

reach�(P ,M)

A ≡ record�(M)

pts�(Y ,H,A)

[New]

pts�(X,H,B)
store(X,F ,Z,)
pts�(Z,G,C)
comp�(B, inv�(C),A)

hpts�(G,F ,H,A)

[Store]

hpts�(G,F ,H,B)
load(W ,F ,Y ,)
pts�(W ,G,C)
comp�(B,C,A)

pts�(Y ,H,A)

[Field]

pts�(Z,H,B)
actual(Z, I,O)

call�(I,P ,C)
formal(Y ,P ,O)
comp�(B,C,A)

pts�(Y ,H,A)

[Param]

static invoke(I,Q,P)

reach�(P ,B)
A ≡ merge s�(I,B)

call�(I,Q,A)

[Static]

call�(I,P ,A)
M ≡ target�(A)

reach�(P ,M)

[Reach]

pts�(Z,H,A)
assign(Z,Y ,)

pts�(Y ,H,A)

[Assign]

pts�(X,H,B)
store s(X,F ,)
load s(F ,Y ,P)

reach�(P ,)
any�(P ,B,A)

pts�(Y ,H,A)

[FieldS]

pts�(Z,H,B)
return(Z,P)

call�(I,P ,C)
assign return(I,Y ,)
comp�(B, inv�(C),A)

pts�(Y ,H,A)

[Return]

virtual invoke(I,Z,S,)
pts�(Z,H,B)
heap type(H,T)
implements(Q,T ,S)
this var(Y ,Q)
C ≡ merge�(H, I,B)
comp�(B,C,A)

pts�(Y ,H,A)

call�(I,Q,C)

[Virt]

reach�(main, [entry])

[Entry]

Figure 3.3: Parameterized deduction rules for pointer analysis.

36

Concrete Context Transformation Instantiation

ptsc ⊆ Var×Heap×CtxtT.

hptsc ⊆ Heap× FSig ×Heap×CtxtT.

callc ⊆ Inv ×Method×CtxtT.

reachc ⊆Method×Ctxts.

compc ⊆ CtxtT×CtxtT×CtxtT.

invc : CtxtT→ CtxtT.

anyc ⊆Method×CtxtT×CtxtT.

targetc : CtxtT→ Ctxts.

recordc : Ctxts→ CtxtT.

mergec� : Heap× Inv ×Ctxts→ CtxtT.

merge sc� : Inv ×Ctxts→ CtxtT.

compc(A,B,A ;B) ⇐⇒ (A ;B) 6= (λx. err).

invc(B) ≡ B−1.

anyc(P ,A,B) ⇐⇒ ∃C ∈ CtxtT,B = A ; C ∧B 6= errF .

targetc(X̂ ; Ŷ) ≡ Y .

recordc() ≡ ε.

Call-site sensitivity:
mergecs(H, I,B) ≡ B−1 ;B ; Î.

merge scs(I,M) ≡ Î.

Object sensitivity:
mergeco(H, I,B) ≡ B−1 ; Ĥ.

merge sco(I,M) ≡ M̂ ; M̂ .

Type sensitivity:
mergecy(H, I,B) ≡ B−1 ; ̂classOf (H).

merge scy(I,M) ≡ M̂ ; M̂ .

Figure 3.4: Definitions of non-logical symbols in Figure 3.3 under a context transformation

instantiation.

37

partial method contexts, which are derived by projecting out information that is

unnecessary from context transformations of call-graph edges.

In Section 3.3, the call� predicate appears in bodies of rules for three purposes:

1. interprocedural data flow (parameter passing and return values),

2. to determine if a method is reachable (for heap allocation sites and static

invocations),

3. and to construct context transformations for static invocations under object and

type sensitivity.

The second case checks only that a call-graph edge exists, disregarding the context

transformation. In the last case, we can obtain an equivalent formulation that does

not require the sequences of exits of context transformations of call-graph edges:

Given a context transformation A, the rule for static invocations under object and

type sensitivity computes A−1 ; A. Let Âx ; Âe ≡ A. Then Âe ; Âe = A−1 ; A.

Given a context transformation Âx ; Âe of a call-graph edge from call site I to P , we

say that Ae (which is a string over Ctxt) is the partial method context of P , indicated

by a fact reach�(P ,Ae).

The parameterized symbols are described below in terms of the context transformation

instantiation:

• compc performs function composition of context transformations: compc(A,B,C) iff

C = A;B and C is not the constant-error function errF . Composition is expressed as

a predicate instead of a function to prevent the derivation of facts that contain errF ,

which signify points-to, heap points-to, and call-graph edge relationships arising from

infeasible data-flow paths.

• invc is function inverse.

38

• anyc is used to model loads of static fields.

• targetc converts call-graph edges to partial method contexts: given a context transfor-

mation A for a call-graph edge, targetc(A) is a partial method context N such that

for all method contexts M such that A(M) 6= err, N is a prefix of A(M).

• recordc converts partial method contexts into context transformations for points-to

relationships arising at allocation sites. Since a variable that is assigned the result of

a heap allocation always points to an object allocated in the same method context

as the variable, the output of recordc is the identity function. The parameterized

function record� takes a partial method context as a parameter because the explicit

string abstraction defined in Section 3.5.1 requires it.

• mergec� and merge sc� compute abstractions of context transformations for call-

graph edges of virtual and static invocation sites, respectively. A second superscript

differentiates the different flavours of sensitivities: s for call-site sensitivity, o for

object sensitivity, and y for type sensitivity.

The names record , merge, and merge s originate from the Doop framework [5].

A computable analysis requires an abstraction over the context transformation domain.

In the next section, the non-logical symbols above are given definitions under the two

abstractions of context transformations. Superscripts differentiate the two abstractions: e

for the explicit string representation and t for the transformer string representation.

3.5 Abstraction

This section describes the two representations of context transformations: the traditional

explicit string abstraction and our new transformer string abstraction. Recursive call

cycles in a program result in method contexts of unbounded length. A finite abstraction

39

of context transformations requires some form of approximation. Elements of the explicit

string and transformer string abstraction domains abstract sets of context transformations.

We describe abstractions through a concretization function γc that maps elements X of an

abstraction domain to sets of elements in the concrete domain (the context transformation

domain) that are abstracted by X.

3.5.1 Explicit Strings

Pairs of context strings used in traditional points-to analysis can be interpreted as the

explicit enumeration of input and output pairs of context transformations truncated to

certain lengths. Different truncation lengths for the input and output strings determine the

levels of context sensitivity for the method and heap contexts (defined in Section 2.1.3).

The input and output strings of explicit strings form equivalence classes over untruncated

method contexts: a truncated string x represents all strings with a prefix x.

Let CtxtTe
i,j ≡ {(A,B) | A ∈ Ctxt∗,B ∈ Ctxt∗, ‖A‖ ≤ i∧‖B‖ ≤ j} be the domain of

explicit strings, given integers i and j. Given a pair (A,B) in CtxtTe
i,j , let its concretization

into a set of context transformations be defined in the following way:

γc((A,B)) = {Â ; C ; B̂ | C ∈ CtxtT \ {errF}, ‖A‖ = i ∧ ‖B‖ = j}

∪ {Â ; Ê ; B̂ | E ∈ Ctxt∗, ‖A‖ < i ∧ ‖B‖ = j}

∪ {Â ; X̂ ; B̂ | X ∈ Ctxt∗, ‖A‖ = i ∧ ‖B‖ < j}

∪ {Â ; B̂ | ‖A‖ < i ∧ ‖B‖ < j}.

Thus, for all T ∈ γc((A,B)), if a method context M has a prefix A, then T (M) is a method

context with prefix B.

Relations used in pointer analysis use different truncation lengths for explicit strings.

Parameters i and j of a domain CtxtTe
i,j define the truncation lengths of method contexts

at the source and destination of context transformations. For example, pts relates the

context in which an object allocation occurs to the context in which a variable points to

40

the object, and thus, the explicit string abstraction domain for pts is CtxtTe
h,m, where h is

the truncation length of strings that qualify heap allocation sites, and m is the truncation

length of method contexts and strings that qualify local variables. The call-graph relation

call relates a caller method context to a callee method context, and thus uses the domain

Ctxtm,m to represent context information.

The domain CtxtTe
i,j has strings that are shorter than the truncation lengths, but

these strings are only used to represent untruncated method contexts that are shorter than

the truncation lengths. Short untruncated method contexts appear in shallow method

invocations close to the entry point of a program.

Figure 3.5 presents the definitions for the parameterized non-logical symbols in Figure 3.3

using the explicit string abstraction of context transformations. Integers m and h define

the levels of method and heap contexts, respectively, and are a part of the parameters of

an instantiation.

Predicate compe and function inve are polymorphic with respect to their arguments:

for example, the relation compe in the instantiated Store rule in Figure 3.3 is a subset of

CtxtTe
h,m ×CtxtTe

m,h ×CtxtTe
h,h, while in the instantiated Param rule, the relation is

a subset of CtxtTe
h,m ×CtxtTe

m,m ×CtxtTe
h,m.

The interpretations of the ptse, hptse, calle, and reache predicates are as follows:

• A fact ptse(Y ,H, (U ,V)) indicates that variable Y in a method context with prefix

U points to a heap object allocated at H in a method context with prefix V .

• A fact hptse(G,F ,H, (U ,V)) indicates that a heap object allocated at G in a method

context with prefix V has a field F that points to a heap object allocated at H in a

method context with prefix U .

• A fact calle(I,P , (U ,V)) indicates that invoke instruction I in a method context with

prefix U invokes procedure P with a method context with prefix V .

41

Explicit String Instantiation

CtxtTe
i,j ≡ {(A,B) | A ∈ Ctxt∗,B ∈ Ctxt∗, ‖A‖ ≤ i ∧ ‖B‖ ≤ j}.

ptse ⊆ Var×Heap×CtxtTe
h,m.

hptse ⊆ Heap× FSig ×Heap×CtxtTe
h,h.

calle ⊆ Inv ×Method×CtxtTe
m,m.

reache ⊆Method×Ctxts.

compe ⊆ CtxtTe
i,j×CtxtTe

j,k×CtxtTe
i,k.

inve : CtxtTe
i,j → CtxtTe

j,i.

anye ⊆Method×CtxtTe
h,m×CtxtTe

h,m.

targete : CtxtTe
m,m → Ctxts.

recorde : Ctxts→ CtxtTe
h,m.

mergee� : Heap×Inv×Ctxts→CtxtTe
m,m.

merge se� : Inv ×Ctxts→ CtxtTe
m,m.

compe((U ,V), (V ,W), (U ,W)).

inve((U ,V)) ≡ (V ,U).

anye(P , (U ,V), (U ,M)) ⇐⇒ reache(P ,M).

targete((U ,V)) ≡ V .

recorde(M) ≡ (prefixh(M),M).

Call-site sensitivity:
mergees(H, I, (,M)) ≡ (M , I ·prefixm−1(M)).

merge ses(I,M) ≡ (M , I ·prefixm−1(M)).

Object sensitivity:
mergeeo(H, I, (H ′,M)) ≡ (M ,H ·H ′).
merge seo(I,M) ≡ (M ,M).

Type sensitivity:
mergeey(H, I, (H ′,M)) ≡ (M , classOf (H) ·H ′).
merge sey(I,M) ≡ (M ,M).

Figure 3.5: Definitions of non-logical symbols in Figure 3.3 under an explicit string

instantiation.

42

• A fact reache(P ,M) indicates that procedure P is invoked with a method context

with prefix M .

The rules of an explicit string instantiation of Figure 3.3 are identical to the rules of the

traditional context-string-based analysis described in Section 2.1.3.

A redundancy in information representation can be observed in the instantiated rules.

Consider, for example, the New rule where the definition of recorde is inlined into the rule

and terms are unified:
assign new(H,Y ,P)

reache(P ,M)

ptse(Y ,H, (prefixh(M),M))

The rule enumerates all reachable method contexts of a method, when the context transfor-

mation being expressed is simply the identity function.

Another rule that performs redundant enumeration is the FieldS rule, which models

program executions where a heap object is loaded from a static field:

ptse(X,H, (U ,V))

store s(X,F ,)

load s(F ,Y ,P)

reache(P ,M)

ptse(Y ,H, (U ,M))

The variable Y in method P points-to an object allocated at H in context U , in every

method context M of P .

The next subsection introduces our new abstraction that is able to represent context

information with less redundancy.

43

3.5.2 Transformer Strings

This section introduces our abstraction of context transformations as transformer strings.

Proofs of lemmas are at the end of this subsection.

Let TW ≡ {â, â, ∗ | a ∈ Ctxt} be an alphabet that consists of letters representing entry

and exit transformations and a “wildcard” letter “∗” that represents all non-errF context

transformations. The concretization of elements of TW is defined in the following way:

γc(â) ≡ {â}.

γc(â) ≡ {â}.

γc(∗) ≡ CtxtT \ {errF}.

Transformer strings are strings in Ts ≡ T∗W ∪ {⊥}. The special element ⊥ represents errF .

The concretization of transformer strings is defined as

γc(a1 · . . . ·an) ≡ {a′1 ; . . . ; a′n | a′1 ∈ γc(a1), . . . , a′n ∈ γc(an)}.

Naturally, the concretization of an empty string ε is the set containing only the identity

function, and the concretization of ⊥ is the set containing only errF .

We use the following notation (similar to that used for context transformations) to

convert a string M ≡ m1 · . . . ·mn ∈ Ctxt∗ into transformer strings M̂ and M̂ :

M̂ ≡ m̂n · . . . ·m̂1. M̂ ≡ m̂1 · . . . ·m̂n.

The match : Ts→ Ts function defined below reduces the length of a transformer string

44

without modifying its interpretation as a transformation:

match(A· â· â·B) = match(A·B).

match(A· â · b̂·B) ≡ ⊥. (a 6= b)

match(A· â·∗·B) = match(A ·∗·B).

match(A ·∗· â·B) = match(A ·∗·B).

match(A ·∗·∗·B) = match(A ·∗·B).

match(Â·∗·B̂) = Â ·∗·B̂.

match(Â·B̂) = Â ·B̂.

match(⊥) = ⊥.

There is a degree of freedom in how match is applied to strings, but it is evident that all

orderings of applications result in the same final string. The following two lemmas establish

that the three non-recursive outputs of match, strings of the form Â·∗·B̂, Â ·B̂, and ⊥, are

canonical representations of their inputs:

Lemma 3.5.1. For all A ∈ Ts, γc(A) = γc(match(A)).

Lemma 3.5.2. For all A,B ∈ Ts, γc(A) = γc(B) =⇒ match(A) = match(B).

Let CtxtTt ≡ {Â ·w·B̂ | A,B ∈ Ctxt∗, w ∈ {∗, ε}} be the domain of untruncated

canonical transformer strings. The deduction rules of Figure 3.4 filter out the errF

transformation, and thus the ⊥ element from Ts is not present in the CtxtTt domain. Let

CtxtTt
i,j be a subset of Ctxtt that consists of strings with at most i exits and at most j

entries (henceforth, the domain of transformer strings):

CtxtTt
i,j ≡ {Â ·w·B̂ | A,B ∈ Ctxt∗, w ∈ {∗, ε}, ‖A‖ ≤ i ∧ ‖B‖ ≤ j}

Let trunci,j be a truncation function that maps strings from CtxtTt to CtxtTt
i,j.

trunci,j(Â ·w ·B̂) ≡



Â ·w ·B̂ if ‖A‖ ≤ i ∧ ‖B‖ ≤ j

Âi ·∗·B̂j otherwise, where

Ai ≡ prefix i(A) and

Bj ≡ prefix j(B)

45

Note that Âi = prefix i(Â) and B̂j = dropj(B̂).

The following lemma states that truncation is conservative, meaning that context

transformations representing feasible paths are not discarded by truncation:

Lemma 3.5.3. For all A in CtxtTt,

γc(A) ⊆ γc(trunci,j(A)).

A common notation used in this dissertation is the decomposition of a transformer string

into its exit part, wildcard part, and entry part. For example, given a transformer string

A ≡ x̂1 ·x̂2 · ê1 · ê2 and letting Âx ·Aw ·Âe ≡ A, then Ax = x1 ·x2, Aw = ε, and Ae = e2 ·e1.

If A has a wildcard letter, then Aw = ∗.

Figure 3.6 contains the definitions of the parameterized non-logical symbols in Figure 3.3

for an instantiation of the analysis using the transformer string abstraction of context

transformations. For example, the New rule instantiates into the following rule:

assign new(H,Y ,P)

reacht(P ,)

ptst(Y ,H, ε)

The variable that ranges over method contexts of P is no longer used in the conclusion

of the rule, and enumeration of method contexts is unnecessary. The instantiation of the

FieldS rule benefits from the wildcard letter abstraction:

ptst(X,H, B̂x ·Bw ·B̂e)

store s(X,F ,)

load s(F ,Y ,P)

reacht(P ,)

ptst(Y ,H, match(B̂x ·∗))

Since the wildcard letter represents an arbitrary sequence of entries, a single fact is sufficient

to express that an object allocated at H in some method context M such that B̂x(M) 6= err

can be loaded in any method context of method P .

46

Transformer String Instantiation

CtxtTt
i,j ≡ {Âx ·Aw ·Âe | Ax,Ae ∈ Ctxt∗,Aw ∈ {∗, ε}, ‖Ax‖ ≤ i ∧ ‖Ae‖ ≤ j}.

ptst ⊆ Var×Heap×CtxtTt
h,m.

hptst ⊆ Heap× FSig ×Heap×CtxtTt
h,h.

callt ⊆ Inv ×Method×CtxtTt
m,m.

reacht ⊆Method×Ctxts.

compt ⊆ CtxtTt
i,j×CtxtTt

j,k×CtxtTt
i,k.

inv t : CtxtTt
i,j → CtxtTt

j,i.

anyt ⊆Method×CtxtTt
h,m×CtxtTt

h,m.

targett : CtxtTt
m,m → Ctxts.

recordt : Ctxts→ Ctxth,m.

merget� : Heap×Inv×Ctxts→CtxtTt
m,m.

merge st� : Inv ×Ctxts→ CtxtTt
m,m.

compt(A,B, trunci,k(match(A ·B))) ⇐⇒ match(A·B) 6= ⊥.

inv t(B̂x ·Bw ·B̂e) ≡ B̂e ·Bw ·B̂x.

anyt(, B̂x ·Bw ·B̂e, match(B̂x ·∗)).
targett(B̂x ·Bw ·B̂e) ≡ Be.

recordt() ≡ ε.

Call-site sensitivity:
mergetc(H, I, B̂x ·Bw ·B̂e) ≡ truncm,m(B̂e ·B̂e · Î).

merge stc(I,M) ≡ Î.

Object sensitivity:
mergeto(H, I, B̂x ·Bw ·B̂e) ≡ B̂e ·Bw ·B̂x ·Ĥ.

merge sto(I,M) ≡ M̂ ·M̂ .

Type sensitivity:
mergety(H, I, B̂x ·Bw ·B̂e) ≡ B̂e ·Bw ·B̂x · ̂classOf (H).

merge sty(I,M) ≡ M̂ ·M̂ .

Figure 3.6: Definitions of non-logical symbols in Figure 3.3 under a transformer string

instantiation.

47

Proofs

Proof of Lemma 3.5.1

Proof. γc(⊥) = γc(match(⊥)) is a trivial case. For strings in T∗W , use strong induction on

the lengths of strings:

Base case: γc(match(ε)) = γc(ε).

Induction case: Suppose that for all X such that ‖X‖ < n, γc(X) = γc(match(X)).

We must show that for all Y such that ‖Y ‖ = n, γc(Y) = γc(match(Y)).

It is evident that, in Y , there exists either

1. an entry followed by a matching exit,

2. an entry followed by a non-matching exit,

3. an entry followed by a wildcard,

4. a wildcard followed by an exit,

5. a wildcard followed by a wildcard,

or Y can be written as Â·∗·B̂ or Â ·B̂. The five recursive cases are handled below:

1. Case: Y = A · â· â·B.

γc(â· â) = {â ; â} = {ε}. Thus, γc(A· â· â·B) = γc(A ·B). We have γc(A ·B) =

γc(match(A ·B)) from the induction hypothesis. Thus the lemma follows.

2. Case: Y = A· â· b̂·B where a 6= b.

We have γc(â· b̂) = {â ; b̂} = {errF} = γc(⊥). Thus, γc(A · â· b̂·B) = γc(⊥).

3. Case: Y = A · â·∗·B.

We have γc(â·∗) = {â ; C | C ∈ CtxtT \ {errF}}. Let D ∈ CtxtT \ {errF}.

48

There exists M such that D(M) 6= err. Then (â ; D)(a ·M) 6= err and thus â ; D ∈
CtxtT \ {errF}. Thus D ∈ {â ; C | C ∈ CtxtT \ {errF}} because â ; â ; D = D.

Thus, γc(â ·∗) = γc(∗), and using the induction hypothesis, the lemma follows.

4. Case: Y = A ·∗· â·B.

We have γc(∗· â) = {C ; â | C ∈ CtxtT \ {errF}}. Let D ∈ CtxtT \ {errF}.
There exists M such that D(M) 6= err. Then (D ; â)(M) 6= err and thus D ; â ∈
CtxtT \ {errF}. Thus D ∈ {C ; â | C ∈ CtxtT \ {errF}} because D ; â ; â = D.

Thus, γc(∗· â) = γc(∗), and using the induction hypothesis, the lemma follows.

5. Case: Y = A ·∗·∗·B.

Trivially, γc(∗·∗) = γc(∗). Using the induction hypothesis, the lemma follows.

Proof of Lemma 3.5.2

Proof. We will use the following notation to apply a method context to a set of context

transformations to obtain a set of method contexts: Given a set of context transformations

X and M ∈ Ctxt∗, let X(M) ≡ {x(M) | x ∈ X,x(M) 6= err}.

The contrapositive is shown: match(A) 6= match(B) =⇒ γc(A) 6= γc(B).

Let Âx ·Aw ·Âe ≡ match(A), B̂x ·Bw ·B̂e ≡ match(B), and let match(A) 6= match(B).

Clearly, Ae ∈ γc(A)(Ax) and Be ∈ γc(B)(Bx).

If Aw = ε ∧ Bw = ∗, then ‖γc(A)‖ = 1 and ‖γc(B)‖ = ∞ and thus, γc(A) 6= γc(B).

Similarly if Aw = ∗ ∧Bw = ε then γc(A) 6= γc(B).

Suppose Aw = Bw. If Ae 6= Be ∧ ‖Ae‖ ≤ ‖Be‖, then Ae /∈ γc(B)(Ax), because all

strings in γc(B)(Ax) have a prefix that is as long as but not equal to Ae. Similarly, if

Ae 6= Be ∧ ‖Ae‖ ≥ ‖Be‖, then Be /∈ γc(A)(Bx).

49

Suppose Ae = Be. Ae /∈ γc(B)(Ax) implies γc(A) 6= γc(B) because Ae ∈ γc(A)(Ax).

Ae ∈ γc(B)(Ax) implies Bx is a prefix of Ax. A 6= B implies Ax 6= Bx, thus Bx is a proper

prefix of Ax. Then γc(Âx)(Bx) = ∅, and thus γc(A)(Bx) = ∅. Thus γc(A) 6= γc(B).

Proof of Lemma 3.5.3

Proof. Let A ≡ Âx ·Aw ·Âe. If trunci,j(A) = A, then the lemma follows.

Let trunci,j(A) = Ĉx ·∗·Ĉe, where Cx = prefix i(Ax) and Ce = prefix j(Ae). Then Cx ·
dropi(Ax) = Ax and Ce ·dropj(Ae) = Ae. We have

γc(

̂

dropi(Ax) ·Aw · ̂dropj(Ae)) ⊆ CtxtT \ {errF} = γc(∗).

Prefixing Ĉx and appending Ĉe to both sides of γc(

̂

dropi(Ax) ·Aw · ̂dropj(Ae)) ⊆ γc(∗), we

get γc(Âx ·Aw ·Âe) ⊆ γc(Ĉx ·∗·Ĉe).

50

Chapter 4

Soundness and Precision

This chapter presents proofs that pointer analysis using context transformations is sound, the

transformer string abstraction is sound, and compares the precision of the two abstractions

of context transformations.

Section 4.1 defines the meaning of analysis precision, and states the precision difference

between the explicit string and transformer string instantiations of the rules in Figure 3.3.

Section 4.2 presents lemmas that are useful in subsequent sections. Section 4.3 develops the

proof that the context transformation instantiations and the transformer string abstraction

are sound. Section 4.4 develops the proof that the transformer string abstraction is as

precise as the explicit string abstraction under call-site and object sensitivity.

4.1 Main Results

Each of the two abstractions is parameterized by two levels of context sensitivity, m for

method contexts and h for heap contexts, which determine the truncation length of strings

defined in Figures 3.5 and 3.6. When we compare the precision of the two abstractions,

51

we assume that both abstractions have been instantiated with the same values of the

parameters m and h.

Definition 4.1.1. Let the context-sensitive result of an analysis be denoted C��
m,h, and

be a set that consists of pts�, hpts�, call�, and reach� facts in the minimum model of

an instantiation of the rules in Figure 3.3. The first superscript of C is either c, t, e to

indicate an instantiation using the context transformation domain, the transformer string

abstraction, or the explicit string abstraction, respectively. The second superscript is either

s, o, or y to indicate call-site, object, or type sensitivity, respectively. Integers m and h are

levels of method and heap contexts, respectively.

Definition 4.1.2. The context-insensitive projections of an analysis are relations derived

by the following rules, where the context attribute is projected out:

pts�i(Y ,H)⇐ ∃A : pts�(Y ,H,A).

hpts�i(G,F ,H)⇐ ∃A : hpts�(G,F ,H,A).

call�i(I,P)⇐ ∃A : call�(I,P ,A)

reach�i(P)⇐ ∃A : reach�(P ,A)

Let the context-insensitive result of an analysis be denoted A��
m,h and be a set that consists

of pts�i, hpts�i, call�i, and reach�i facts in the minimum model of an instantiation of the

rules in Figure 3.3 and the rules stated above that derive the context-insensitive projections.

The superscripts and subscripts have the same meaning as in the definition of C.

For one instantiation to be as precise compared to another is to have context-insensitive

projections of pts, hpts, and call that are subsets of the other.

We state the main precision result:

Theorem 4.1.1. Call-site- and object-sensitive transformer string instantiations are as

precise as explicit string instantiations at the same levels of method and heap contexts. That

is, for all m and h, At�
m,h ⊆ Ae�

m,h for � ∈ {s, o}.

52

class T {
static T id(T p) { return p; }
static T m() {
T h = new T(); // h1
T r = id(h); // id1
return r;

}
public static void main(String[] args) {
T x = m(); // m1
T y = m(); // m2

}
}

Explicit string Transformer string Rule
reach(main, entry) reach(main, entry) Entry

call(main, m, (entry, m1)) call(main, m, m̂1) Static

call(main, m, (entry, m2)) call(main, m, m̂2) Static
reach(m, m1) reach(m, m1) Reach
reach(m, m2) reach(m, m2) Reach

pts(h, h1, (m1, m1)) pts(h, h1, ε) New
pts(h, h1, (m2, m2)) New

call(m, id, (m1, id1)) call(m, id, îd1) Static
call(m, id, (m2, id1)) Static
reach(id, id1) reach(id, id1) Reach

pts(p, h1, (m1, id1)) pts(p, h1, îd1) Param
pts(p, h1, (m2, id1)) Param

pts(r, h1, (m1, m1)) pts(r, h1, ε) Return
pts(r, h1, (m2, m1)) Return
pts(r, h1, (m1, m2)) Return
pts(r, h1, (m2, m2)) Return

pts(x, h1, (m1, entry)) pts(x, h1, m̂1) Return
pts(x, h1, (m2, entry)) Return

pts(y, h1, (m1, entry)) Return

pts(y, h1, (m2, entry)) pts(y, h1, m̂2) Return

Figure 4.1: Example illustrating the precision difference between the explicit string and
transformer string abstractions using m = 1 and h = 1 levels of call-site sensitivity.

53

The proof is in Section 4.4.

The converse is not true. The counterexample that shows that the explicit string

instantiation is not as precise as the transformer string instantiation is in Figure 4.1, which

uses one level of heap and method contexts under call-site sensitivity. The first and second

columns contain derived facts using the explicit string abstraction and the transformer

string abstraction, respectively. The third column states the deduction rule used in the

derivation. With explicit strings, the heap objects returned from call sites m1 and m2 are

not differentiated.

The precision result holds for call-site- and object-sensitive analysis, but it is not true for

type-sensitive analysis. Figures 4.2 and 4.3 are examples where transformer strings are less

precise than explicit strings under type-sensitive analysis. The derivation of reach facts has

been omitted for brevity. The imprecision arises from multiple allocation sites mapping to

a single type context: that is, classOf is not one-to-one. Section 4.4.3 introduces a concept

called derivability, which is a property satisfied by call-site- and object-sensitive analysis

and used in the proof of the precision result, but is not satisfied by type-sensitive analysis.

4.1.1 Outline of Proofs

In summary, this chapter develops the proofs of the following inequalities:

Ae�
∞,∞ ⊆ Ac� ⊆ At�

m,h ⊆ Ae�
m,h.

Ae�
∞,∞ is the analysis result of a context-sensitive analysis using strings of contexts of

unbounded length. We first show that analysis using context transformations is sound:

that is Ae�
∞,∞ ⊆ Ac�. Then, the result that analysis using transformer strings is sound (i.e.

Ac� ⊆ At�
m,h) follows from the fact that the truncation function defined in Section 3.5.2 is

conservative. The last inequality, At�
m,h ⊆ Ae�

m,h, which expresses the precision difference

between the two abstractions, is true only for call-site- and object-sensitive analysis.

54

class S {

public void s() {

T p = new T(); // Ts

p.g(); // sg

}

}

class T {

public void t() {

T q = new T(); // Tt

q.h(); // th

}

public void g() {

T a = new T(); // Tg

Object x = a.id(a); // gid

}

public void h() {

T b = new T(); // Th

Object y = b.id(b); // hid

}

Object id(Object o) {

return o;

}

}

class M {

public static void main(String[] args) {

S s = new S(); // M1

s.s(); // ms

T t = new T(); // M2

t.t(); // mt

}

}

Figure 4.2: Example illustrating the precision difference between the explicit string and
transformer string abstractions using m = 2 and h = 1 levels of type sensitivity (Part 1).

55

Explicit string Transformer string Rule

pts(s, M1, (entry, entry)) pts(s, M1, ε) New

pts(t, M2, (entry, entry)) pts(t, M2, ε) New

call(ms, s, (entry, M·entry)) call(ms, s, M̂) Virt

call(mt, t, (entry, M·entry)) call(mt, t, M̂) Virt

pts(p, Ss, (M, M·entry)) pts(p, Ss, ε) New

pts(q, Tt, (M, M·entry)) pts(q, Tt, ε) New

call(sg, g, (M·entry, S·M)) call(sg, g, Ŝ) Virt

call(th, h, (M·entry, T·M)) call(th, h, T̂) Virt

pts(a, Tg, (S, S·M)) pts(a, Tg, ε) New

pts(b, Th, (T, T·M)) pts(b, Th, ε) New

call(gid, id, (S·M, T ·S)) call(gid, id, T̂) Virt

call(hid, id, (T·M, T ·T)) call(hid, id, T̂) Virt

pts(o, Tg, (S, T·S)) pts(o, Tg, T̂) Param

pts(o, Th, (T, T·T)) pts(o, Th, T̂) Param

pts(x, Tg, (S, S·M)) pts(x, Tg, ε) Return

pts(x, Th, ε) Return

pts(y, Th, (T, T·M)) pts(y, Th, ε) Return

pts(y, Tg, ε) Return

Figure 4.3: Example illustrating the precision difference between the explicit string and

transformer string abstractions using m = 2 and h = 1 levels of type sensitivity (Part 2).

56

To prove inequalities between different abstractions, specifically, Ae�
∞,∞ ⊆ Ac� and

At�
m,h ⊆ Ae�

m,h, we define and use a concretization function that transforms context transfor-

mations and transformer strings into sets of explicit strings. By showing that a context

transformation instantiation’s analysis result concretizes to a superset of an unbounded ex-

plicit string instantiation’s context-sensitive analysis result, we establish the same inequality

for the context-insensitive analysis results. Likewise, to prove the precision property, we

show that the analysis result of a transformer string instantiation concretizes to a subset of

the analysis result of an explicit string instantiation at the same levels of method and heap

contexts.

4.2 General Properties

This section describes general properties and results that are useful in subsequent sections.

Section 3.5.2 defined a notation for converting a string M ≡ m1 · . . . ·mn ∈ Ctxt∗ into

transformer strings M̂ and M̂ :

M̂ ≡ m̂n · . . . ·m̂1. M̂ ≡ m̂1 · . . . ·m̂n.

A consequence of reversing the order of elements in M̂ is that a string of entries Âe matches

a string of exits B̂x, that is match(Âe ·B̂x) 6= ⊥, if and only if one of Ae and Bx is a prefix

of the other.

Definition 4.2.1. Let X ∼= Y iff X is a prefix of Y or Y is a prefix of X. In other words,

prefixmin(‖X‖,‖Y ‖)(X) = prefixmin(‖X‖,‖Y ‖)(Y).

Lemma 4.2.1. match(Âe ·B̂x) 6= ⊥ iff Ae
∼= Bx.

Proof. By inspection of match.

57

4.3 Soundness

This section shows that pointer analysis using context transformations is sound. We show

that the context transformation instantiations defined in Figure 3.4 concretize to a superset

of their respective untruncated explicit string instantiations.

Pointer analysis using untruncated explicit strings is known to be sound, but the analysis

(including its context-insensitive projections) is not computable in programs with recursive

function calls [31]. Untruncated explicit string instantiations are obtained from Figure 3.5

by letting levels of context sensitivity m and h be ∞ (the function prefix becomes the

identity function).

4.3.1 Untruncated Concretization

Definition 4.3.1. Let γ∞ concretize context transformations into untruncated explicit

strings:

γ∞(A) ≡ {(M ,A(M)) |M ∈ Ctxt∗ ∧ A(M) 6= err}.

Definition 4.3.2. Let γM∞ concretize partial method contexts into untruncated method

contexts:

γM∞ (N) ≡ {N ·M |M ∈ Ctxt∗}.

Definition 4.3.3. Given an interpretation I of derived relations of an untruncated trans-

former string instantiation of the rules in Figure 3.3 (i.e., ptst, hptst, callt, and reacht), let

the untruncated explicit string concretization of the interpretation, denoted γI∞(I), be a set

of facts defined as follows:

γI∞(I) ≡ {ptse(Y ,H,B) | ptst(Y ,H,A) ∧B ∈ γ∞(A)}
∪ {hptse(G,F ,H,B) | hptst(G,F ,H,A) ∧B ∈ γ∞(A)}
∪ {calle(I,Q,B) | callt(I,Q,A) ∧B ∈ γ∞(A)}
∪ {reache(P ,M) | reacht(P ,N) ∧M ∈ γM∞ (N)}

58

Note that the context transformation instantiation never derives an errF transformation,

and for all non-errF transformations A, γ∞(A) 6= ∅. Thus, if γI∞(Cc�) ⊇ Ce�∞,∞, then for any

fact containing an explicit string B in Ce�∞,∞, there must exist a corresponding fact in Cc�

containing a context transformation A such that B ∈ γ∞(A). Likewise, if fact reache(P ,M)

is in Ce�∞,∞, then there must exist a partial method context N such that reachc(P ,N) is in

Cc� and M ∈ γM∞ (N). Thus, γI∞(Cc�) ⊇ Ce�∞,∞ implies Ac� ⊇ Ae�
∞,∞.

4.3.2 Superset Theorem

We show that Cc� and Ce�∞,∞ satisfy γI∞(Cc�) ⊇ Ce�∞,∞ by induction on the derivation of

explicit and transformer strings according to the rules in Figure 3.3. The following are

operations on explicit and transformer strings: functions inv�, target�, record�, merge��,

and merge s��. The first two arguments of any� and comp� literals in Figure 3.3 always

appear as arguments in a different literal in the bodies of rules. Thus, any� and comp� can

be thought of as operations from their first two arguments to their last arguments. We

define convenience functions for concretizing the last arguments of these predicates:

γcomp
∞ (A,B) ≡

⋃
{γ∞(C) | compc(A,B,C)}

γany∞ (P ,A) ≡
⋃
{γ∞(B) | anyc(P ,A,B)}

The next three lemmas state that operations on explicit strings and transformer strings

preserve the superset inequality.

Lemma 4.3.1. For all A ∈ CtxtT and methods P , the following inequalities hold:

1. γ∞(invc(A)) ⊇ {inve(A′) | A′ ∈ γ∞(A)}.

2. γany∞ (P ,A) ⊇ {B | A′ ∈ γ∞(A) ∧ anye(P ,A′,B)}.

3. γM∞ (targetc(A)) ⊇ {targete(B) | B ∈ γ∞(A)}.

Proof.

59

1. We must show that γ∞(A−1) ⊆ {(Y ,X) | (X,Y) ∈ γ∞(A)}:

Let (X,Y) ∈ γ∞(A). Then, A(X) = Y and Y 6= errF . Thus, A−1(Y) = X and

(Y ,X) ∈ γ∞(A−1).

2. We must show that⋃
{γ∞(A ; C) | C ∈ CtxtT} ⊇ {(X,M) | (X,Y) ∈ γ∞(A) ∧ reache(P ,M)}

for any interpretation of predicate reache:

Let (X,Y) ∈ γ∞(A) and let M ∈ Ctxt∗. Then there exists C ∈ CtxtT such that

(A ; C)(X) = M . Thus (X,M) ∈
⋃
{γ∞(A ; C) | C ∈ CtxtT}. Thus,

⋃
{γ∞(A ; C) |

C ∈ CtxtT} ⊇ {(X,M) | (X,Y) ∈ γ∞(A) ∧M ∈ Ctxt∗} and the lemma follows.

3. We must show that γM∞ (Y) ⊇ {Y ′ | (X ′,Y ′) ∈ γ∞(X̂ ; Ŷ)}:

Let (X ′,Y ′) ∈ γ∞(X̂ ; Ŷ). Then X is a prefix of X ′ and Y is a prefix of Y ′. Thus,

Y ′ ∈ γM∞ (Y).

Lemma 4.3.2. For all A,B ∈ CtxtT, the following inequality holds:

γcomp
∞ (A,B) ⊇ {C ′ | A′ ∈ γ∞(A) ∧B′ ∈ γ∞(B) ∧ compe(A′,B′,C ′)}.

Proof. The right-hand-side of the inequality is the set {(X,Z) | (X,Y) ∈ γ∞(A)∧ (Y ,Z) ∈
γ∞(B)}. Let (X,Z) ∈ {(X,Z) | (X,Y) ∈ γ∞(A) ∧ (Y ,Z) ∈ γ∞(B)}. Then there

exists Y such that (X,Y) ∈ γ∞(A) and (Y ,Z) ∈ γ∞(B). Thus (A ; B)(X) = Z and

(X,Z) ∈ γcomp
∞ (A,B).

Lemma 4.3.3. For all B ∈ CtxtT, heap allocation sites H, invocation sites I, and partial

method contexts N ∈ Ctxt∗, the following inequalities hold:

1. γ∞(recordc(N)) ⊇ {recorde(M) |M ∈ γM∞ (N)}.

60

2. γ∞(mergec�(H, I,B)) ⊇ {mergee�(H, I, (X ′,Y ′)) | (X ′,Y ′) ∈ γ∞(B)}.

3. γ∞(merge sc�(I,N)) ⊇ {merge se�(I,M) |M ∈ γM∞ (N)}.

Proof.

1. γ∞(ε) = {(M ,M) | M ∈ Ctxt∗} ⊇ {(M ,M) | M ∈ γM∞ (N)} follows trivially from

Definition 4.3.1.

2. (a) Call-site sensitivity. We must show that γ∞(B−1 ; B ; Î) ⊇ {(Y ′, I ·Y ′) |
(X ′,Y ′) ∈ γ∞(B)}:

Let (Y , I ·Y) ∈ {(Y ′, I ·Y ′) | (X ′,Y ′) ∈ γ∞(B)}. Thus (X,Y) ∈ γ∞(B) for some

X. Thus B(X) = Y and (B−1 ; B)(Y) = Y . Thus (B−1 ; B ; Î)(Y) = I ·Y and

(Y , I ·Y) ∈ γ∞(B−1 ;B ; Î).

(b) Object sensitivity. We must show that γ∞(B−1 ;Ĥ) ⊇ {(Y ′,H ·X ′) |(X ′,Y ′) ∈
γ∞(B)}:

Let (Y ,H ·X) ∈ {(Y ′,H ·X ′) | (X ′,Y ′) ∈ γ∞(B)}. Thus (X,Y) ∈ γ∞(B).

Thus B(X) = Y and (B−1)(Y) = X. Thus (B−1 ; Ĥ)(Y) = H ·X and (Y ,H ·
X) ∈ γ∞(B−1 ; Ĥ).

(c) Type sensitivity: Same reasoning as 2b.

3. (a) Call-site sensitivity: Same reasoning as 2a.

(b) Object sensitivity. We must show that γ∞(N̂ ·N̂) ⊇ {(M ,M) |M ∈ γM∞ (N)}:

Let (Y ,Y) ∈ {(M ,M) | M ∈ γM∞ (N)}. Then, N is a prefix of Y . Thus,

(Y ,Y) ∈ γ∞(N̂ ·N̂).

(c) Type sensitivity: Same reasoning as 3b.

Theorem 4.3.4. Ae�
∞,∞ ⊆ Ac�, for all flavours of context sensitivity.

61

Proof. Ce�∞,∞ ⊆ Cc� follows from Lemmas 4.3.1, 4.3.2, and 4.3.3 by induction on the

derivation of explicit and transformer strings according to the rules in Figure 3.3. Thus

Ae�
∞,∞ ⊆ Ac�.

Theorem 4.3.5. Ac� ⊆ At�
m,h, for all flavours of context sensitivity.

Proof. Follows from the lemmas that match and trunc are conservative with respect to γc

(Lemmas 3.5.1 and 3.5.3) and by inspection of the definitions of non-logical symbols in

Figures 3.4 and 3.6.

4.4 Precision

The proof for the precision theorem proceeds similarly to that of the soundness theorem:

first we define a concretization function and then we show that the operations on explicit

and transformer strings preserve a subset inequality with respect to the concretization

function. However, the two steps are more complicated. In order to prove the subset

inequality, the concretization function must be dependent on the reachable method contexts

of methods (an interpretation of reache). The definition of the concretization function

requires a property of transformer strings called consistency that associates a source and

destination method to all prefixes and suffixes of transformer strings. The proof for the

subset inequality requires another property, called derivability, that is a constraint between

the transformer strings derived by the rules in Figure 3.3 and the partial method contexts

derived by the same rules.

This section applies only to call-site- and object-sensitive analysis.

4.4.1 Consistency

The parent method of a call site or allocation site is the method that contains the site. The

entry point context entry, which technically is neither a call site or an allocation site in a

62

program, requires special treatment:

Definition 4.4.1. entry is a special method context for entry points. Let parent(entry) ≡
entryM, where entryM is a dummy method. We assume that entryM is reachable with

an empty method context in an explicit string instantiation: that is, we have a clause

“reache(entryM, []).” in every explicit string instantiation. When quantifying over all “meth-

ods”, we are quantifying over all methods of a program, which do not include entryM.

Definition 4.4.2. Transformer strings have source and destination methods that are

implied by the relation in which the strings appears:

• In pts(Y ,H,A), the source of A is H’s parent method and the destination is Y ’s

parent method.

• In hpts(G,F ,H,A), the source of A is H’s parent method and the destination is G’s

parent method.

• In call(I,P ,A), the source of A is I’s parent method and the destination is method

P .

Definition 4.4.3. Under call-site and object sensitivity, let the remainder of a partial

method context M of a method P be a method defined as follows:

rem(P ,M) ≡

P if M = ε

parent(last(M)) otherwise
.

Using rem we wish to associate all prefixes and suffixes of a transformer string with

source and destination methods. For example, given a sequence of exit transformations

â· b̂ from P (the source) to Q (the destination), let the following source and destination

methods be implied for each prefix of â· b̂:

• ε from P to rem(P , ε) = P ;

63

• â from P to rem(P , a) = parent(a);

• â· b̂ from P to rem(P , a·b) = parent(b).

For this definition to be consistent, we require parent(b) = Q. In general, for a transformer

string Âx ·Âe from P to Q, we require rem(P ,Ax) = rem(Q,Ae). This restriction does not

apply to strings with a wildcard: that is, the methods on either “sides” of the wildcard do

not have to be the same method.

Definition 4.4.4. A transformer string A ≡ Âx ·Aw ·Âe from method P to Q is consistent if

Aw = ∗, or if rem(P ,Ax) = rem(Q,Ae). If A is consistent and Aw = ε, let base(A,P ,Q) ≡
rem(P ,Ax) = rem(Q,Ae) be A’s base method.

In order to show that all transformer strings derived by the deduction rules are consistent,

we require another property that all derived partial method contexts are non-empty: that

is, we never derive a fact callt(I,P , Âx ·Aw ·Âe) such that ‖Ae‖ = 0. This requirement

is the rationale for having a special entry point method context entry, and deriving

reacht(main, [entry]) instead of reacht(main, []).

Lemma 4.4.1. None of the transformer string instantiations derive an empty partial

method context.

Proof. By inspection of functions merget� and merge st� in Figure 3.6, and the Entry

rule in Figure 3.3.

The next three lemmas state that operations on transformer strings preserve the

consistency property.

Lemma 4.4.2.

1. êntry from entryM to main is consistent.

64

2. For all consistent transformer strings A ∈ CtxtTt
i,j from P to Q, inv t(A) from Q to

P is consistent.

3. For all consistent transformer strings A ∈ CtxtTt
h,m from P to any method, if

anyt(R,A,B) then B from P to R is consistent.

Proof.

1. Follows trivially from Definition 4.4.1.

2. A−1
x = Ae and A−1

e = Ax, and thus the lemma follows.

3. B must have a wildcard letter, and thus the lemma follows.

Lemma 4.4.3. For all consistent transformer strings A ≡ Âx ·Aw ·Âe ∈ CtxtTt
i,j from

P to Q and B ≡ B̂x ·Bw ·B̂e ∈ CtxtTt
j,k from Q to R such that match(A ·B) 6= ⊥,

trunci,k(match(A·B)) is consistent.

Proof. If a transformer string is truncated, then it contains a wildcard, and thus the lemma

follows.

Suppose match(A ·B) is not truncated. Either ‖Ae‖ ≤ ‖Bx‖ or ‖Ae‖ ≥ ‖Bx‖. Suppose

‖Ae‖ ≤ ‖Bx‖. Then, match(A·B) can be written as Âx ·B̂′x ·B̂e, where Ae ·B′x ≡ Bx.

Suppose ‖B′x‖ = 0. Then, Ae = Bx. Then rem(P ,Ax) = rem(Q,Ae) = rem(Q,Bx) =

rem(R,Be) because A and B are consistent. Thus, Âx ·B̂e is consistent.

Suppose ‖B′x‖ > 0. Then, last(Ax ·B′x) = last(Bx). Because B is consistent, we

have rem(Q,Bx) = rem(R,Be). Thus, rem(P ,Ax ·B′x) = rem(R,Be) and Âx ·B̂′x ·B̂e is

consistent.

The case of ‖Ae‖ ≥ ‖Bx‖ follows the same reasoning as above.

65

Lemma 4.4.4. For all consistent transformer strings B ≡ B̂x ·Bw ·B̂e ∈ CtxtTt
h,m from N

to P , heap allocation site H in N , invocation I in P , and M ∈ Ctxt∗ such that ‖M‖ > 0,

1. record t(M) from P to P is consistent,

2. merget�(H, I,B) from P to Q is consistent, and

3. merge st�(I,M) from P to Q is consistent.

Proof.

1. Follows trivially from definitions.

2. (a) Call-site sensitivity. We must show that truncm,m(B̂e ·B̂e · Î) is consistent:

If truncation occurs, then the string is consistent. If Be = ε, rem(P ,Be) = P ,

and rem(Q, I ·Be) = parent(I) = P . Otherwise, rem(P ,Be) = rem(Q, I ·
Be) = parent(last(Be)).

(b) Object sensitivity. We must show that B̂e ·Bw ·B̂x ·Ĥ is consistent:

If Bw = ∗, then the string is consistent. Otherwise, suppose Bw = ε. We have

rem(N ,Bx) = rem(P ,Be) because B is consistent.

Suppose Bx = ε. Then, rem(Q,H ·Bx) = parent(H) = N and rem(P ,Be) =

rem(N ,Bx) = N . Thus, rem(P ,Be) = rem(Q,H ·Bx).

Suppose Bx 6= ε. We have rem(Q,H ·Bx) = parent(last(Bx)) = rem(N ,Bx).

Thus, rem(P ,Be) = rem(Q,H ·Bx).

3. (a) Call-site sensitivity. We must show that Î is consistent:

rem(P , ε) = P and rem(Q, I) = parent(I) = P .

(b) Object sensitivity. We must show that M̂ ·M̂ is consistent:

Since M 6= ε, rem(P ,M) = rem(Q,M) = parent(last(M)).

66

Theorem 4.4.5. All transformer strings in the minimum model of a call-site- or object-

sensitive transformer string instantiation of the rules in Figure 3.3 are consistent.

Proof. Follows from Lemmas 4.4.2, 4.4.3, and 4.4.4 by induction on the derivation of

transformer strings according to the rules in Figure 3.3.

4.4.2 Truncated Concretization

This section presents a mapping from truncated transformer strings to sets of truncated

explicit strings. Unlike the concretization function defined in Section 4.3, the mapping is

dependent on an interpretation of predicate reache. This dependence is required to prove

the precision property. Let m and h, where m > 0 and 0 ≤ h ≤ m, determine the levels of

method and heap contexts, respectively. Under object sensitivity, m and h are constrained

by h = m− 1 (see Section 2.1.3).

Definition 4.4.5. Given i and j and a transformer string A ≡ Âx ·Aw ·Âe from method P

to method Q and an interpretation of predicate reache, let the concretization of A into a

set of explicit strings, a subset of CtxtTe
i,j, be defined as follows:

γi,j(Âx ·Âe,P ,Q) =

{(prefix i(Ax ·M), prefix j(Ae ·M))

| reache(base(A,P ,Q),M)}.
γi,j(Âx ·∗·Âe,P ,Q) =

{(prefix i(Ax ·M), prefix j(Ae ·N))

| reache(rem(P ,Ax),M)

∧ reache(rem(Q,Ae),N)}.

The concretization of partial method contexts is defined as follows:

67

Definition 4.4.6. Given a partial method context M ∈ Ctxtst of a method P and an

interpretation of predicate reache, let the concretization of M into a set of method contexts,

a subset of Ctxtse, be defined as follows:

γM(P ,M) ≡ {prefixm(M ·M ′) | reache(rem(P ,M),M ′)}.

Definition 4.4.7. Given an interpretation I of derived relations of a call-site- or object-

sensitive transformer string instantiation using h and m levels of heap and method context,

of the rules in Figure 3.3, let the explicit string concretization of the interpretation, denoted

γI(I), be a set of facts defined as follows:

γI(I) ≡ {ptse(Y ,H,A′) | ptst(Y ,H,A) ∧ A′ ∈ γh,m(A, parent(H), parent(Y))}
∪ {hptse(G,F ,H,A′) | hptst(G,F ,H,A) ∧ A′ ∈ γh,h(A, parent(H), parent(G))}
∪ {calle(I,Q,A′) | callt(I,Q,A) ∧ A′ ∈ γm,m(A, parent(I),Q)}
∪ {reache(P ,A′) | reacht(P ,A) ∧ A′ ∈ γM(P ,A)}.

4.4.3 Derivability

Definition 4.4.8. M is a reachable method context of a method P with respect to an

interpretation of reache iff reache(P ,M).

Transformer strings have a derivability property with respect to interpretations of reache.

Informally, the derivable property creates a constraint between an interpretation of the

reache predicate and derivable transformer strings: for example, if a transformer string

A ≡ x̂· ŷ · ẑ · â· b̂ · ĉ from P to Q is derivable, then there must be a reachable context of P

with prefix x ·y ·z and a reachable context of Q with prefix c·b ·a. Another property of

derivable transformer strings is that if A is derivable and M is a reachable method context

of P , then for all A′ ∈ γc(A), A′(M) is a reachable method context of Q.

Definition 4.4.9. A transformer string A ≡ Âx ·Aw ·Âe is derivable with respect to an

interpretation of predicate reache if

68

1. there exists a reachable context of rem(P ,Ax),

2. for all reachable contexts M of rem(P ,Ax), for all 0 ≤ l ≤ ‖Ax‖, there exists a

reachable context M ′ of rem(P , prefix l(Ax)) such that M ′ = prefixm(dropl(Ax) ·M),

3. there exists a reachable context of rem(Q,Ae), and

4. for all reachable contexts N of rem(Q,Ae), for all 0 ≤ l ≤ ‖Ae‖, there exists a

reachable context N ′ of rem(Q, prefix l(Ae)) such that N ′ = prefixm(dropl(Ae)·N).

Example. If â· b̂ is a derivable transformer string from P to R, then there must exist a

reachable context of Q ≡ base(â· b̂,P ,R), and for all reachable contexts M of Q, prefixm(a·
M) is a reachable method context of P and prefixm(b·M) is a reachable method context of

R.

Definition 4.4.10. A partial method context M of method P is derivable with respect to

an interpretation of predicate reache if the transformer string M̂ from rem(P ,M) to P is

derivable with respect to the interpretation.

The next five lemmas state that operations on transformer strings preserve the deriv-

ability property.

Lemma 4.4.6.

1. êntry from entryM to main is derivable with respect to an interpretation

I ≡ {reache(main, [entry]), reache(entryM, [])}.

2. For all transformer strings A ∈ CtxtTt
i,j from P to Q that are derivable with respect

to I, inv t(A) from Q to P is derivable with respect to I.

3. For all reachable methods P , Q, and R, for all transformer strings A ∈ CtxtTt
h,m

from P to Q that are derivable with respect to I, and for all B ∈ CtxtTt
h,m such that

anyt(R,A,B), B from P to R is derivable with respect to I.

69

4. For all transformer strings A ∈ CtxtTt
i,j from P to Q that are derivable with respect

to I, targett(A) is derivable with respect to I.

Proof.

1. Follows trivially from definitions.

2. Follows from symmetry of Definition 4.4.9.

3. Let A ≡ Âx ·Aw ·Âe. Then B = Âx ·∗. Definitions 4.4.9.3 and 4.4.9.4 follow trivially

from the fact that R is reachable. Definitions 4.4.9.1 and 4.4.9.2 follow from the fact

that A is derivable.

4. Follows trivially from definitions.

Lemma 4.4.7. For all derivable transformer strings A ≡ Âx ·Aw ·Âe from P to Q and for

all i, j ≥ 0, trunci,j(A) is derivable .

Proof. If truncation does not occur, then the lemma trivially follows. Otherwise, let

Cx ≡ prefix i(Ax) and Ce ≡ prefix j(Ae). Then, trunci,j(A) = Ĉx ·∗·Ĉe. Proof that

trunci,j(A) satisfies Definitions 4.4.9.1 and 4.4.9.2 is presented; Definitions 4.4.9.3 and

4.4.9.4 follow by symmetry.

Because A is derivable, there exists a reachable context N of rem(P ,Ax). Then,

∀l : 0 ≤ l ≤ Ax,∃N ′ : reache(rem(P , prefix l(Ax)),N ′) ∧N ′ = prefixm(dropl(Ax)·N). Since

Cx ·dropi(Ax) = Ax, we get ∀l : 0 ≤ l ≤ ‖Cx‖,∃N ′ : reache(rem(P , prefix l(Cx)),N ′) ∧
N ′ = prefixm(dropl(Cx)·dropi(Ax) ·N). Thus, there exists a reachable context N ′ of

rem(P ,Cx) such that N ′ = prefixm(dropi(Ax)·N). Furthermore, ∀l : 0 ≤ l ≤ ‖Cx‖,∃N ′′ :

reache(rem(P , prefix l(Cx)),N ′′) ∧N ′′ = prefixm(dropl(Cx) ·N ′).

70

Lemma 4.4.8. Let A ≡ Âx ·Aw ·Âe ∈ CtxtTt
i,j from P to Q and B ≡ B̂x ·Bw ·B̂e ∈

CtxtTt
j,k from Q to R be consistent transformer strings derivable with respect to I, where

i, j, k ≤ m. If match(A ·B) 6= ⊥, then match(A·B) is derivable with respect to I.

Proof.

1. Suppose ‖Ae‖ ≤ ‖Bx‖.

2. Ae
∼= Bx.

3. Let B′x ≡ drop‖Ae‖(Bx). [Lemma 4.2.1]

4. Bx = Ae ·B′x.

5. Case: Aw = ε.

(a) match(A ·B) = Âx ·B̂′x ·B̂e.

(b) rem(P ,Ax) = rem(Q,Ae). [A is consistent]

(c) Inst. N : reache(rem(Q,Bx),N). [Def. 4.4.9.1]

(d) B′x = ε→ rem(P ,Ax ·B′x) = rem(Q,Ae) = rem(Q,Ae ·B′x). [5b]

(e) B′x 6= ε→ rem(P ,Ax ·B′x) = last(B′x) = rem(Q,Ae ·B′x).

(f) rem(P ,Ax ·B′x) = rem(Q,Bx).

(g) match(A ·B) satisfies Def. 4.4.9.1.

(h) ∀l : 0 ≤ l ≤ ‖Bx‖,
∃N ′ : reache(rem(Q, prefix l(Bx)),N ′)

∧ N ′ = prefixm(dropl(Bx) ·N). [Def. 4.4.9.2]

(i) Inst. O: reache(rem(R,Be),O). [Def. 4.4.9.3]

(j) match(A ·B) satisfies Def. 4.4.9.3.

71

(k) ∀l : 0 ≤ l ≤ ‖Be‖,
∃N ′ : reache(rem(R, prefix l(Be)),N

′)

∧ N ′ = prefixm(dropl(Be) ·O). [Def. 4.4.9.4]

(l) match(A ·B) satisfies Def. 4.4.9.4.

(m) Inst. M : reache(rem(Q, prefix ‖Ae‖(Bx)),M)

∧ M = prefixm(drop‖Ae‖(Bx)·N). [5h]

(n) reache(rem(Q,Ae),M) ∧M = prefixm(B′x ·N). [Substitute 4]

(o) reache(rem(P ,Ax),M). [Subst. 5b]

(p) ∀l : 0 ≤ l ≤ ‖Ax‖,
∃M ′ : reache(rem(P , prefix l(Ax)),M ′)

∧ M ′ = prefixm(dropl(Ax)·M). [Def. 4.4.9.2]

(q) ∀l : 0 ≤ l ≤ ‖Bx‖ − ‖Ae‖,
Ae ·prefix l(B

′
x) = prefix l+‖Ae‖(Bx)

∧ dropl(B
′
x) = dropl+‖Ae‖(Bx). [Manipulation of 4]

(r) ∀l : 0 ≤ l ≤ ‖Bx‖ − ‖Ae‖,
∃N ′ : reache(rem(Q,Ae ·prefix l(B

′
x)),N ′)

∧ N ′ = prefixm(dropl(B
′
x) ·N). [Subst. 5q into 5h]

(s) ∀l : 0 ≤ l ≤ ‖Bx‖ − ‖Ae‖,
∃N ′ : reache(rem(P ,Ax ·prefix l(B

′
x)),N ′)

∧ N ′ = prefixm(dropl(B
′
x) ·N). [Subst. 5b]

(t) ∀l : 0 ≤ l ≤ ‖Bx‖ − ‖Ae‖,
Ax ·prefix l(B

′
x) = prefix l+‖Ax‖(Ax ·B′x)

∧ dropl(B
′
x) = dropl+‖Ax‖(Ax ·B′x). [Manip. of prefix and drop]

(u) ∀l : ‖Ax‖ ≤ l ≤ ‖Ax‖+ ‖Bx‖ − ‖Ae‖,
∃N ′ : reache(rem(P , prefix l(Ax ·B′x)),N ′)

∧ N ′ = prefixm(dropl(Ax ·B′x) ·N). [Adjust l; Subst. 5t into 5s]

72

(v) ∀l : 0 ≤ l ≤ ‖Ax ·B′x‖,
∃N ′ : reache(rem(P , prefix l(Ax ·B′x)),N ′)

∧ N ′ = prefixm(dropl(Ax ·B′x) ·N). [5p and 5u]

(w) match(A ·B) satisfies Def. 4.4.9.2.

Case: Aw = ∗.

(a) match(A ·B) = Âx ·∗·B̂e.

(b) ∃M : reache(rem(P ,Ax),M). [Def. 4.4.9.1].

(c) ∃N : reache(rem(R,Be),N). [Def. 4.4.9.3].

(d) ∀l : 0 ≤ l ≤ ‖Ax‖,∃M ′ :

reache(P , prefix l(Ax)) ∧M ′ = prefixm(dropl(Ax)·M). [Def. 4.4.9.2].

(e) ∀l : 0 ≤ l ≤ ‖Be‖, ∃N ′ :
reache(R, prefix l(Be)) ∧N ′ = prefixm(dropl(Be) ·N). [Def. 4.4.9.4].

(f) match(A ·B) satisfies Def. 4.4.9.

6. The case of ‖Ae‖ ≥ ‖Bx‖ follows the same reasoning as above.

Lemma 4.4.9. For all partial method contexts M of P derivable under an interpretation

I, record t(M) from P to P is derivable with respect to I.

Proof. Follows trivially from definitions.

The Static and Virt rules in Figure 3.3 derive a new transformer string for a callt

fact. The callt fact in turn derives a reacht fact. The transformer string for the callt fact

is shown to be derivable with respect to an interpretation of reache, which includes the

concretization of the reacht fact:

73

Lemma 4.4.10. For all consistent transformer strings B ≡ B̂x ·Bw ·B̂e ∈ CtxtTt
h,m from

R to P that are derivable with respect to an interpretation I, heap allocation sites H in R,

and invocations I in P , let I ′ be an interpretation defined as follows:

I ′ ≡ I ∪ {reache(Q,O) | O ∈ γM(Q, target(merget�(H, I,B)))}.

Then, merget�(H, I,B) from P to Q is derivable with respect to I ′.

Proof.

Call-site sensitivity. We must show that truncm,m(B̂e ·B̂e · Î) is derivable:

1. Let C ≡ Ĉx ·Ĉe ≡ B̂e ·B̂e · Î.

2. Inst. M : reache(rem(R,Be),M). [Def. 4.4.9.1]

3. ∀l : 0 ≤ l ≤ ‖Be‖,∃N ′ : reache(rem(R, prefix l(Be)),N
′)

∧ N ′ = prefixm(dropl(Be) ·M). [Def. 4.4.9.2]

4. Inst. N : reache(rem(P ,Be),N). [Def. 4.4.9.3]

5. C satisfies Def. 4.4.9.1.

6. ∀l : 0 ≤ l ≤ ‖Be‖,∃N ′ : reache(rem(P , prefix l(Be)),N
′)

∧ N ′ = prefixm(dropl(Be) ·N). [Def. 4.4.9.4]

7. C satisfies Def. 4.4.9.2.

8. target(C) = Ce.

9. rem(Q,Ce) = rem(P ,Be).

10. prefixm(Ce ·N) ∈ γM(Q,Ce). [Def. 4.4.6, 4, and 9]

11. ∃O : reache(Q,O) ∧O = prefixm(Ce ·N). [Construction of I ′]

74

12. C satisfies Def. 4.4.9.3.

13. rem(Q, prefix 0(Ce)) = Q ∧ drop0(Ce) = Ce.

14. ∃N ′ : reache(rem(Q, prefix 0(Ce)),N
′)

∧ N ′ = prefixm(drop0(Ce) ·N).

15. Let 1 ≤ l′ ≤ ‖Ce‖.

16. ∃N ′ : reache(rem(P , prefix l′−1(Be)),N
′)

∧ N ′ = prefixm(dropl′−1(Be) ·N). [6]

17. rem(Q, I) = P . [Premise]

18. rem(Q, prefix l′(Ce)) = rem(P , prefix l′−1(Be)). [1 and 17]

19. dropl′(Ce) = dropl′−1(Be). [1]

20. ∃N ′ : reache(rem(Q, prefix l(Ce)),N
′).

∧ N ′ = prefixm(dropl′(Ce) ·N). [Subst. into 16]

21. ∀l : 0 ≤ l ≤ ‖Ce‖,∃N ′ : reache(rem(Q, prefix l(Ce)),N
′)

∧ N ′ = prefixm(dropl(Ce)·N). [14 and 20]

22. C satisfies Def. 4.4.9.4.

23. truncm,m(C) is derivable. [Lemma 4.4.8]

Object sensitivity. We must show that B̂e ·B̂x ·Ĥ is derivable:

1. Let C ≡ Ĉx ·Ĉe ≡ B̂e ·B̂x ·Ĥ.

2. Inst. N : reache(rem(R,Bx),N). [Def. 4.4.9.1]

75

3. ∀l : 0 ≤ l ≤ ‖Bx‖,∃N ′ : reache(rem(R, prefix l(Bx)))

∧ N ′ = prefixm(dropl(Bx) ·N). [Def. 4.4.9.2]

4. ∃N ′ : reache(rem(P ,Be)). [Def. 4.4.9.4]

5. C satisfies Def. 4.4.9.1.

6. ∀l : 0 ≤ l ≤ ‖Be‖, ∃N ′ : reache(rem(P , prefix l(Be)))

∧ N ′ = prefixm(dropl(Be) ·N). [Def. 4.4.9.4]

7. C satisfies Def. 4.4.9.2.

8. target(C) = Ce.

9. prefixm(Ce ·N) ∈ γM(Q, target(C)).

10. ∃O : reache(Q,O) ∧O = prefixm(Ce ·N). [Construction of I ′]

11. C satisfies Def. 4.4.9.3.

12. rem(Q, prefix 0(Ce)) = Q ∧ drop0(Ce) = Ce.

13. ∃O : reache(rem(Q, prefix 0(Ce)),O) ∧O = prefixm(drop0(Ce)·N).

14. Let 1 ≤ l′ ≤ ‖Ce‖.

15. rem(Q,H) = R. [Premise]

16. rem(Q, prefix l(Ce)) = rem(R, prefix l′−1(Bx)). [1 and 15]

17. dropl′(Ce) = dropl′−1(Bx).

18. ∃N ′ : reache(rem(R, prefix l′−1(Bx)))

∧ N ′ = prefixm(dropl′−1(Bx) ·N). [3]

76

19. ∃N ′ : reache(rem(Q, prefix l′(Ce)),N
′)

∧ N ′ = prefixm(dropl′(Ce)·N).

20. ∀l : 0 ≤ l ≤ ‖Ce‖,
∃N ′ : reache(rem(Q, prefix l(Ce)),N

′)

∧ N ′ = prefixm(dropl(Ce)·N). [13 and 19]

21. C satisfies Def. 4.4.9.4.

22. C is derivable.

Lemma 4.4.11. For all partial method contexts M of P derivable with respect to an

interpretation I and invocations I in P , let I ′ be an interpretation defined as follows:

I ′ ≡ I ∪ {reache(Q,O) : O ∈ γM(Q, target(merge st�(I,M)))}

Then, merge st�(I,M) from P to Q is derivable with respect to I ′.

Proof.

1. Call-site sensitivity. We must show that Î is derivable:

Let M ′ ∈ γM(M) be a reachable context of P . Then reache(Q, prefixm(I ·M ′)) from

the construction of I ′. Thus, Î is derivable.

2. Object sensitivity. We must show that M̂ ·M̂ is derivable:

By Lemma 4.4.1, M is not empty. Let R = base(M ,P ,Q) = parent(last(M)). M

is derivable, thus there exists a reachable context N of R. Then, ∀l : 0 ≤ l ≤
‖M‖,∃N ′ : reache(rem(P , prefix l(M)),N ′) ∧N ′ = prefixm(dropl(M)·N), because M

is derivable. We have ∀l : 1 ≤ l ≤ ‖M‖, rem(Q, prefix l(M)) = rem(P , prefix l(M)).

From the construction of I ′, we have reache(Q, prefixm(M ·N)). Thus, ∀l : 0 ≤ l ≤
‖M‖,∃N ′ : reache(rem(Q, prefix l(M)),N ′) ∧ N ′ = prefixm(dropl(M)·N). Thus M̂ ·
M̂ is derivable.

77

Theorem 4.4.12. All transformer strings in the minimum model of a call-site- or object-

sensitive transformer string instantiation of the rules in Figure 3.3 are derivable with respect

to the minimum model.

Proof. Follows from Lemmas 4.4.6, 4.4.7, 4.4.8, 4.4.9, 4.4.10, and 4.4.11 by induction on

the derivation of transformer strings according to the rules in Figure 3.3.

4.4.4 Subset Theorem

Let transformer strings be derivable with respect to the minimum model of a call-site- or

object-sensitive transformer string instantiation of the rules in Figure 3.3.

We define convenience functions, similarly to Section 4.3.2, for concretizing the last

arguments of these predicates:

γcomp
i,k (A,B,P ,R) ≡

⋃
{γi,k(C,P ,R) | compt(A,B,C)}.

γanyh,m(A,P ,R) ≡
⋃
{γh,m(B,P ,R) | anyt(R,A,B)}.

The following lemma states that concretization to explicit strings of a particular pair

of lengths is invariant with respect to truncation of transformer strings to the same pair

of lengths. The lemma is used in later lemmas for properties of operations that use the

truncation function:

Lemma 4.4.13. For all consistent transformer strings A ≡ Âx ·Aw ·Âe from P to Q and

i, j ≥ 0, the following equality holds:

γi,j(A,P ,Q) = γi,j(trunci,j(A),P ,Q).

Proof. If ‖Ax‖ < i ∧ ‖Ae‖ < j then the lemma trivially follows. If ‖Ax‖ ≥ i ∧ ‖Ae‖ ≥ j,

then γi,j(A,P ,Q) = {(prefix i(Ax), prefix j(Ae))} = γi,j(trunci,j(A),P ,Q) and the lemma

follows.

78

Suppose ‖Ax‖ ≥ i ∧ ‖Ae‖ < j. Then,

γi,j(A,P ,Q) = {(prefix i(Ax ·N), prefix j(Ae ·N)) | reache(base(A,P ,Q),N)}

= {(prefix i(Ax), prefix j(Ae ·N)) | reache(rem(Q,Ae),N)}.

We have trunci,j(A) =

̂

prefix i(Ax)·∗·Âe. Thus,

γi,j(trunci,j(A),P ,Q) = {(prefix i(Ax), prefix j(Ae ·N)) | reache(rem(Q,Ae),N)}.

The case of ‖Ax‖ < i ∧ ‖Ae‖ ≥ j follows the same reasoning as above.

The next five lemmas state that operations on explicit strings and transformer strings

preserve the subset inequality.

Lemma 4.4.14. For all consistent and derivable transformer strings A ≡ Âx ·Aw ·Âe ∈
CtxtTt

i,j from P to Q, and reachable methods R, the following inequalities hold:

1. γM(main, êntry) ⊆ {entry}.

2. γj,i(inv t(A),Q,P) ⊆ {inve(A′) | A′ ∈ γi,j(A,P ,Q)}.

3. γanyh,m(A,P ,R) ⊆ {B | A′ ∈ γh,m(A,P ,Q) ∧ anye(R,A′,B)}.

4. γM(Q, targett(A)) ⊆ {targete(A′) | A′ ∈ γh,m(A,P ,Q)}.

Proof.

1. Follows trivially from Definition 4.4.1 and 4.4.9.

2. Follows trivially from symmetry of Definition 4.4.9.

79

3. We must show that

γh,m(Âx ·∗,P ,R) ⊆ {(X,M) | (X,Y) ∈ γh,m(A,P ,Q) ∧ reache(R,M)}.

Let (X ′,Y ′) ∈ γh,m(Âx ·∗,P ,R). By Definition 4.4.5, there exists N such that

reache(rem(P ,Ax),N) and X ′ = prefixh(Ax ·N). Furthermore, reache(R,Y ′). Thus,

(X,Y ′′) ∈ γh,m(A,P ,Q) for some Y ′′. Thus, (X ′,Y ′) ∈ {(X,M) | (X,Y) ∈
γh,m(A,P ,Q), reache(R,M)}.

4. We must show that γM(Q,Ae) ⊆ {Y | (X,Y) ∈ γh,m(A,P ,Q)}:

Let Y ′ ∈ γM(Q,Ae). By Definition 4.4.5, there exists N such that reache(rem(Q,Ae),

N) and Y ′ = prefixm(Ae ·N). Thus, (X ′,Y ′) ∈ γM(A,P ,Q) for some X ′. Thus,

Y ′ ∈ {Y | (X,Y) ∈ γh,m(A,P ,Q)}.

Lemma 4.4.15. Let A ≡ Âx ·Aw ·Âe ∈ CtxtTt
i,j from P to Q and B ≡ B̂x ·Bw ·B̂e ∈

CtxtTt
j,k from Q to R be consistent and derivable transformer strings, where i, j, k ≤ m.

Then,

γcomp
i,k (A,B,P ,R) ⊆ {C ′ | A′ ∈ γi,j(A,P ,Q) ∧B′ ∈ γj,k(B,Q,R) ∧ compe(A′,B′,C ′)}.

Proof. The right-hand-side of the inequality is the set

α ≡ {(X,Z) | (X,Y) ∈ γi,j(A,P ,Q) ∧ (Y ,Z) ∈ γj,k(B,Q,R)}.

If match(A ·B) = ⊥, then γcomp
i,k (A,B,P ,R) = ∅ and by Lemma 3.5.1, Ae 6∼= Bx. Thus, if

(U ,V) ∈ γi,j(A,P ,Q) and (X,Y) ∈ γj,k(B,Q,R), V and X have different prefixes. Thus

α = ∅.

Suppose match(A ·B) 6= ⊥. Then, we wish to show the following inequality:

γi,k(match(A·B),P ,R) ⊆ α.

Then, γi,k(trunci,k(match(A·B)),P ,R) ⊆ α follows from Lemma 4.4.13.

80

1. Let (X,Z) ∈ γi,k(match(A ·B),P ,R).

2. Suppose ‖Ae‖ ≤ ‖Bx‖.

3. Ae
∼= Bx.

4. Let B′x ≡ drop‖Ae‖(Bx).

5. Bx = Ae ·B′x.

6. Case: Aw = Bw = ε.

(a) match(A ·B) = Âx ·B̂′x ·B̂e.

(b) Inst. N : reache(rem(R,Be),N)

∧ X = prefix i(Ax ·B′x ·N)

∧ Z = prefix k(Be ·N). [Def. 4.4.5 and 1]

(c) rem(R,Be) = rem(Q,Bx). [B is consistent]

(d) reache(rem(Q,Bx),N).

(e) Inst. M : reache(rem(Q, prefix ‖Ae‖(Bx)),M)

∧ M = prefixm(drop‖Ae‖(Bx)·N). [Def. 4.4.9.2]

(f) reache(rem(Q,Ae),M) ∧M = prefixm(B′x ·N). [4]

(g) X = prefix i(Ax ·M). [i ≤ m, 6b, and 6f]

(h) Let Y ≡ prefix j(Ae ·M).

(i) reache(base(A,P ,Q),M).

(j) (X,Y) ∈ γi,j(Âx ·Âe,P ,Q). [6g, 6h, and 6i]

(k) Y = prefix j(Ae ·B′x ·N). [j ≤ m, 6f, and 6h]

(l) Y = prefix j(Bx ·N).

(m) reache(base(B,Q,R),N).

81

(n) (Y ,Z) ∈ γj,k(B̂x ·B̂e,Q,R). [6b, 6l, and 6m]

(o) (X,Z) ∈ α. [6j and 6n]

Case: Aw = ∗ ∧Bw = ε.

(a) match(A ·B) = Âx ·∗·B̂e.

(b) Inst N : reache(rem(R,Be),N)

∧ Z = prefix k(Be ·N). [Def. 4.4.5 and 1]

(c) Let Y ≡ prefix j(Bx ·N).

(d) reache(base(B,Q,R),N).

(e) (Y ,Z) ∈ γj,k(B̂x ·B̂e,Q,R). [6b, 6c, and 6d]

(f) reache(rem(Q,Bx),N). [B is consistent]

(g) Inst M : reache(rem(Q, prefix ‖Ae‖(Bx)),M)

∧ M = prefixm(drop‖Ae‖(Bx) ·N). [Def. 4.4.9.2]

(h) reache(rem(Q,Ae),M) ∧M = prefixm(B′x ·N). [5]

(i) Y = prefix j(Ae ·B′x ·N).

(j) Y = prefix j(Ae ·M).

(k) ∃M ′ : reache(rem(P ,Ax),M ′) ∧X = prefix i(Ax ·M ′).

(l) (X,Y) ∈ γi,j(Âx ·∗·Âe,P ,Q). [6h, 6j, and 6k]

(m) (X,Z) ∈ α.

Case: Aw = ε ∧Bw = ∗.

(a) match(A ·B) = Âx ·B̂′x ·∗·B̂e.

(b) Inst. M : reache(rem(P ,Ax ·B′x),M)

∧ X = prefix i(Ax ·B′x ·M). [Def. 4.4.5 and 1]

82

(c) Inst. N : reache(rem(R,Be),N)

∧ Z = prefix k(Be ·N). [Def. 4.4.5 and 1]

(d) Inst. M ′: reache(rem(P , prefix ‖Ax‖(Ax ·B′x)),M ′)

∧ M ′ = prefixm(drop‖Ax‖(Ax ·B′x) ·M). [Def. 4.4.9.2]

(e) reache(rem(P ,Ax),M ′) ∧M ′ = prefixm(B′x ·M).

(f) X = prefix i(Ax ·M ′).

(g) Let Y ≡ prefix j(Ae ·M ′).

(h) reache(base(A,P ,Q),M ′).

(i) (X,Y) ∈ γi,j(Âx ·Âe,P ,Q). [6f, 6g, and 6h]

(j) Y = prefix j(Ae ·B′x ·M).

(k) Y = prefix j(Bx ·M).

(l) B′x = ε→ rem(P ,Ax ·B′x) = rem(Q,Ae) = rem(Q,Ae ·B′x). [A is consistent]

(m) B′x 6= ε→ rem(P ,Ax ·B′x) = last(B′x) = rem(Q,Ae ·B′x).

(n) rem(P ,Ax ·B′x) = rem(Q,Bx).

(o) reache(rem(Q,Bx),M).

(p) (Y ,Z) ∈ γj,k(B̂x ·∗·B̂e,Q,R). [6c, 6k, and 6o]

(q) (X,Z) ∈ α.

Case: Aw = ∗ ∧Bw = ∗.

(a) match(A ·B) = Âx ·∗·B̂e.

(b) Inst. M : reache(rem(P ,Ax),M)

∧ X = prefix i(Ax ·M). [Def. 4.4.5 and 1]

(c) Inst. N : reache(rem(R,Be),N)

∧ Z = prefix k(Be ·N). [Def. 4.4.5 and 1]

83

(d) Inst. N ′: reache(rem(Q,Bx),N ′). [Def. 4.4.9.1]

(e) Inst. M ′: reache(rem(Q, prefix ‖Ae‖(Bx)),M ′)

∧ M ′ = prefixm(drop‖Ae‖(Bx)·N ′). [Def. 4.4.9.2]

(f) reache(rem(Q,Ae),M
′) ∧M ′ = prefixm(B′x ·N ′).

(g) Let Y ≡ prefix j(Bx ·N ′).

(h) (Y ,Z) ∈ γj,k(B̂x ·∗·B̂e,Q,R).

(i) Y = prefix j(Ae ·M ′).

(j) (X,Y) ∈ γi,j(Âx ·∗·Âe,P ,Q).

(k) (X,Z) ∈ α.

7. The case of ‖Ae‖ ≥ ‖Bx‖ follows the same reasoning as above.

Lemma 4.4.16. For all methods P ,

γh,m(record t(),P ,P) = {recorde(M ′) | reache(P ,M ′)}.

Proof. Follows trivially from definitions.

Lemma 4.4.17. For all consistent and derivable transformer strings B ≡ B̂x ·Bw ·B̂e ∈
CtxtTt

h,m from R to P , heap allocation sites H in R, and invocations in I in P ,

γm,m(merget(H, I,B),P ,Q) ⊆ {mergee(H, I,B′) : B′ ∈ γh,m(B,R,P)}.

Proof.

Call-site sensitivity. We must show that

γm,m(truncm,m(B̂e ·B̂e · Î),P ,Q)

⊆ {(Y ′, prefixm(I ·Y ′)) : (X ′,Y ′) ∈ γh,m(B̂x ·Bw ·B̂e,R,P)}.

84

1. Let (X,Y) ∈ γm,m(truncm,m(B̂e ·B̂e · Î),P ,Q).

2. Let α ≡ {(Y ′, prefixm(I ·Y ′)) : (X ′,Y ′) ∈ γh,m(B̂x ·Bw ·B̂e,R,P)}.

3. (X,Y) ∈ γm,m(B̂e ·B̂e · Î,P ,Q). [Lemma 4.4.13]

4. Inst. M : reache(rem(P ,Be),M)

∧ X = firstm(Be ·M)

∧ Y = firstm(I ·Be ·M). [Def. 4.4.5]

5. (X ′, firsth(Be ·M)) ∈ γh,m(B̂x ·Bw ·B̂e,R,P). [Def. 4.4.5 and 4]

6. (firstm(Be ·M), firstm(I ·Be ·M)) ∈ α.

7. (X,Y) ∈ α.

Object sensitivity. We must show that

γm,m(B̂e ·Bw ·B̂x ·Ĥ,P ,Q) ⊆ {(Y ′,H ·X ′) : (X ′,Y ′) ∈ γh,m(B̂x ·Bw ·B̂e,R,P)}.

1. Let (X,Y) ∈ γm,m(B̂e ·Bw ·B̂x ·Ĥ,P ,Q).

2. Let α ≡ {(Y ′,H ·X ′) : (X ′,Y ′) ∈ γh,m(B̂x ·Bw ·B̂e,R,P)}.

3. Case: Bw = ε.

(a) Inst. M : X = firstm(Be ·M)

∧ Y = firstm(H ·Bx ·M)

∧ reache(rem(P ,Be),M). [Def. 4.4.5]

(b) (firsth(Bx ·M), firstm(Be ·M)) ∈ γh,m(B̂x ·B̂e,R,P). [Def. 4.4.5 and 3a]

(c) (firstm(Be ·M), firstm(H ·Bx ·M)) ∈ α.

(d) (X,Y) ∈ α.

Case: Bw = ∗.

85

(a) Inst. M : X = firstm(Be ·M) ∧ reache(rem(P ,Be),M). [Def. 4.4.5]

(b) Inst. N : Y = firstm(H ·Bx ·M) ∧ reache(rem(Q,H ·Bx),N). [Def. 4.4.5]

(c) rem(Q,H) = R.

(d) rem(Q,H ·Bx) = rem(R,Bx).

(e) reache(rem(R,Bx),N).

(f) (firsth(Bx ·M), firstm(Be ·N)) ∈ γh,m(B̂x ·∗·B̂e,R,P). [Def. 4.4.5, 3a, and 3b]

(g) (firstm(Be ·M), firstm(H ·Bx ·N)) ∈ α.

(h) (X,Y) ∈ α.

Lemma 4.4.18. For all invocations I in P and derivable partial method context M of P ,

{γm,m(merge st(I,M),P ,Q)} ⊆ {merge se(I,M ′) | reache(P ,M ′)}.

Proof.

Call-site sensitivity. We must show that

γm,m(Î,P ,Q) ⊆ {(M ′, prefixm(I ·M ′)) | reache(P ,M ′)}.

1. Let (X,Y) ∈ γm,m(Î,P ,Q).

2. Let α ≡ {(M ′, prefixm(I ·M ′)) | reache(P ,M ′)}.

3. Inst. N : X = N ∧ Y = prefixm(I ·N) ∧ reache(P ,N). [Def. 4.4.5 and 1]

4. (X,Y) ∈ α.

Object sensitivity. We must show that

γm,m(M̂ ·M̂ ,P ,Q) ⊆ {(M ′,M ′) | reache(P ,M ′)}.

86

1. Let (X,Y) ∈ γm,m(M̂ ·M̂ ,P ,Q).

2. Let α ≡ {(M ′,M ′) | reache(P ,M ′)}.

3. Inst. N : X = Y = prefixm(M ·N) ∧ reache(rem(P ,M),N). [Def. 4.4.5 and 1]

4. reache(P , prefixm(M ·N)). [M is derivable]

5. (X,Y) ∈ α.

Theorem 4.4.19. At�
m,h ⊆ Ae�

m,h, for call-site and object sensitivity.

Proof. Ct�m,h ⊆ Ce�m,h follows from Lemmas 4.4.14, 4.4.15, 4.4.16, 4.4.17, and 4.4.18, by

induction on the derivation of explicit and transformer strings according to the rules in

Figure 3.3. Thus At�
m,h ⊆ Ae�

m,h.

87

Chapter 5

Implementation

This section describes DLE, a Datalog engine designed for concisely expressing and solving

static analyses. DLE supports extensions to Datalog such as complex terms (Section 5.2)

and stratified negation (Section 5.4), supports a rich language for specifying data structures

of relations (Section 5.6), and a mechanism of efficiently evaluating operations used by

static analyses (Section 5.9). DLE compiles Datalog programs into native code using the

LLVM Compiler Infrastructure [17].

5.1 Introduction to Datalog

Variables range over a universe of discourse (universe). Terms are either variables or

constant symbols (constants). An atomic formula (atom) is the smallest syntactic element

that can be assigned a truth value. A literal is an atom of the form “P (t1, . . . , tn)”, where

P is a predicate of arity n, and t1, . . . , tn are terms that are arguments to the predicate. A

Datalog program consists of clauses of the from “P (. . .) :-Q1(. . .), . . . ,Qn(. . .).”, where the

literal “P (. . .)” is called the head of the rule and the sequence of atoms “Q1(. . .), . . . ,Qn(. . .)”

is its body. (An atom may also be a negated literal of the form “¬Q(. . .)”. Negated literals

88

are discussed in the next section. For now, all literals are positive.) A clause with an empty

body is called a fact and is written without the “:-” connective; otherwise a clause is a rule.

All variables that appear in the head of a clause must appear in the body. This requirement

ensures that all facts are ground literals, meaning only constants appear as terms inside

facts. A set of facts of a particular predicate is called a relation.

Intensional database (IDB) predicates represent relations defined by rules, and exten-

sional database (EDB) predicates represent relations provided externally to the Datalog

engine. In the context of Datalog’s application to static analysis, the “Datalog program”

consists of rules that define the analysis, and “the input” is a set of facts derived from an

intermediate representation of a program that is to be analyzed.

The Herbrand universe of a Datalog program is the set of all constants that appear

in the program (including constants in EDB relations). Its Herbrand base is the set of

all ground atoms that can be formed by predicate symbols that appear in the program.

An Herbrand interpretation of the program is a total function that maps elements of the

Herbrand base to true or false values. If there exists an interpretation in any universe of

discourse that satisfies a set of clauses T , then there is a Herbrand interpretation that

satisfies T . Notation-wise, an interpretation is written as a set consisting only of facts that

are true with respect to the interpretation.

A ground substitution (or just substitution) is a function from variables to constants.

Given a clause C and a substitution θ, the application of θ to C, written Cθ, is a ground

clause obtained by replacing variables with constants using θ. Cθ is called a ground instance

of C.

We describe the model-theoretic semantics of a Datalog program. The body of a ground

instance of a Datalog clause is true under an interpretation I iff all literals in the body are

in I. A clause “L :-φ.” is true under an interpretation I iff for all ground substitutions

θ, if φθ is true under I, then Lθ must be in I. An interpretation is a model of a Datalog

program if all clauses of the program are true. The intersection of all Herbrand models of a

89

program defines the unique minimum model of the program [1].

5.2 Complex Terms

Pure Datalog has the desirable property that the Herbrand universe, base, and interpretation

are all finite. When extended with complex terms (uninterpreted functions in logic), this

property is lost, but the extension offers several benefits discussed later in this section.

The following definitions from the previous section are modified to support complex

terms:

• Terms are either variables or complex terms. A complex term is of the form

f(t1, . . . , tn), where f is a n-ary function symbol and t1, . . . , tn are terms that are

arguments of the function. Constants are special cases of complex terms and are 0-ary

functions.

• The Herbrand universe of a program T is defined as the smallest set U that satisfies:

1. U contains all constants in T .

2. If t1, . . . , tn ∈ U and f is a n-ary function symbol in T , then f(t1, . . . , tn) ∈ U .

Under the new definition, the Herbrand universe, base, and interpretation are infinite if the

program contains a function symbol of arity one or greater. If the program does have a

finite minimal model, then DLE computes it, but if it does not, DLE does not terminate

until it runs out of memory. Determining whether a Datalog program with complex terms

has a finite minimal model is an undecidable problem [7]. The onus that a program does

have a finite minimal model is on the writer of the program.

Complex terms offer a notational convenience of forming a new value out of several

components. For example, consider the following example program without complex terms

that computes a lives-together relation, given a lives-at relation:

90

lives_together(Person1,Person2) :-

lives_at(Person1,StreetNo,Street,City),

lives_at(Person2,StreetNo,Street,City).

The program can be improved with better style by identifying that the street number, street

name, and city are components of a higher-level concept of an address, and that rules that

manipulates addresses, but not components of addresses, can be expressed more concisely

using complex terms:

lives_at_address(Person,address(StreetNo,Street,City)) :-

lives_at(Person1,StreetNo,Street,City).

lives_together(Person1,Person2) :-

lives_at_address(Person1,Addr),

lives_at_address(Person2,Addr).

The second use of complex terms is to define data structures. For example, a polymorphic

cons-list data type can be declared as follows:

data list a = cons a (list a) | nil.

a is a type variable. The above declaration declares two data constructors cons and nil

that have types a × list a → list a and list a, respectively. Data constructors are

the function symbols of complex terms. Note that arguments to functions do not curry in

DLE.

Within terms, constants of primitive types (integers and strings) do not require an

empty pair of parenthesis, but 0-ary data constructors of user-defined types require an

empty pair of parenthesis (e.g. nil()).

DLE has a builtin syntax for expressing lists: the term [1,2,3] is equivalent to

cons(1,cons(2,cons(3,nil()))).

91

5.3 Evaluation

DLE uses semi-naive evaluation, a bottom-up evaluation technique for logic programs, to

compute the minimal model of a program. We first describe naive evaluation: Let M0 be

the interpretation of EDB predicates, represented as a set of facts. Given a set of facts M ,

let P (M) be the facts the can be derived from M using a clause from P . Naive evaluation

computes the minimum model, which is the least fixed point of P , by iteration starting

from M0.

The disadvantage of naive evaluation is that it repeatedly derives the same facts: all facts

derived in the nth iteration are re-derived in all iterations after the nth iteration. Semi-naive

evaluation improves upon naive evaluation by ensuring that subsequent derivations of facts

use at least one fact derived from the previous iteration. This approach is accomplished by

recording newly derived facts in delta relations. For every IDB relation Q, let Q∆ record

facts newly derived in the previous iteration and let Qnew record facts derived in the current

iteration.

A program is transformed into a delta-transformed program as follows: Every rule in

the original program is duplicated in the transformed program for every IDB predicate in

its body, where each duplicated rule has an IDB predicate replaced by its corresponding

delta predicate1. For example, a rule “P (. . .) :-Q1(. . .), . . . ,Qm(. . .),R1(. . .), . . . ,Rn(. . .).”,

where Q1, . . . ,Qm are IDB predicates and R1, . . . ,Rn are EDB predicates, is transformed

into the following set of delta rules :

P (. . .) :-Q∆
1 (. . .),Q2(. . .), . . . ,Qm(. . .),R1(. . .), . . . ,Rn(. . .).

P (. . .) :-Q1(. . .),Q∆
2 (. . .), . . . ,Qm(. . .),R1(. . .), . . . ,Rn(. . .).

...

P (. . .) :-Q1(. . .),Q2(. . .), . . . ,Q∆
m(. . .),R1(. . .), . . . ,Rn(. . .).

1For simplicity, we ignore a complication that arises when a relation appears more than once in a

body [1].

92

1: procedure Compute(P)

2: Let P ′ be the delta-transformed program of P .

3: for all EDB clauses R in P ′ do

4: Eval(R).

5: SwapDeltas().

6: while there exists a non-empty relation Qlast do

7: for all delta rules R in P ′ do

8: Eval(R).

9: SwapDeltas().

10:

11: subprocedure SwapDeltas()

12: for all IDB relations Q do

13: Q∆ ← Qnew.

14: Qnew ← ∅.

Figure 5.1: Semi-naive evaluation.

Clauses in the original program without IDB predicates in their bodies are EDB clauses,

and are present in the transformed program intact. All facts are EDB clauses.

Figure 5.1 contains pseudo-code of a semi-naive evaluation algorithm. Relations cor-

responding to predicate symbols in a program, including delta relations, form the global

mutable state of the pseudo-code algorithm. Given a rule R with a head predicate Q,

Eval(R) derives a set of facts that can be derived using R, and inserts the facts into Qnew.

The details of this procedure are given in Section 5.8.

5.4 Stratification

Stratified Datalog extends Datalog by allowing negated literals (e.g. “¬P (. . .)”) as atoms.

93

A stratification of a Datalog program (represented as a set of clauses P) is a partition

P1, . . . ,Pn of P and a stratification mapping τ from predicates in P to 1 . . . n such that

1. τ(Q) = 0 for all EDB predicates Q,

2. all clauses that derive a predicate Q are in Pτ(Q),

3. if Q(. . .) :- . . . S(. . .) . . . is in P then τ(S) ≤ τ(Q),

4. and if Q(. . .) :- . . .¬S(. . .) . . . is in P then τ(S) < τ(Q).

Each Pi is called a stratum of P . A Datalog program with negation is stratifiable if there

exists a stratification of it [1].

The interpretation of a ground body is redefined to support negated literals: a ground

body of a stratified Datalog clause is true under an interpretation I iff all positive literals

are in I and all negative literals are not in I.

The semantics of a stratifiable Datalog program is obtained by defining a sequence of

interpretations for each of its strata. Each stratum Pi can be thought of as a separate and

complete Datalog program, where all predicates Q such that τ(Q) < i are EDB predicates of

Pi. Let Pi(I) be the minimum model of Pi given an interpretation I of EDB predicates of Pi.

Given a stratification of a Datalog program P , define Ii = Ii−1 ∪ Pi(Ii−1) for all 0 < i < n

and let I0 be the interpretations of all EDB predicates of P . Then, the model-theoretic

semantic of P is In. All stratifications of P result in the same minimum model [1].

Giving semantics to negation is not the only purpose of stratification. Stratification also

improves the efficiency of semi-naive evaluation by reducing the number of delta rules in a

program. The reduction occurs because an IDB predicate in stratum i becomes an EDB

predicate in all strata larger than i.

94

For example, consider the following program that computes transitive closure:

edge(X,Y) :- xedge(X,Y).

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), edge(Y,Z).

The program has a single EDB predicate, xedge. Without stratification, the delta-

transformed program is as follows:

edge(X,Y) :- xedge(X,Y).

path(X,Y) :- edge∆(X,Y).

path(X,Z) :- path∆(X,Y), edge(Y,Z).

path(X,Z) :- path(X,Y), edge∆(Y,Z).

The program can be stratified into two strata P1 and P2 where P1 contains the first

rule and P2 contains the remaining two. In P2, edge is a EDB predicate, and thus the

delta-transformed program of P1 and P2 contains three rules in total:

// P1:

edge(X,Y) :- xedge(X,Y).

// P2:

path(X,Y) :- edge(X,Y).

path(X,Z) :- path∆(X,Y), edge(Y,Z).

In general, the reduction in the number of delta rules results in fewer relational joins to

compute the minimal model. Thus, using the most fine-grained stratification is advantageous

in terms of efficiency. Such a stratification is obtained by building a predicate-dependency

graph of a program, which consists of predicates as nodes and a directed edge from p to

q if the program has a rule where p appears in its body, and q appears in its head. The

95

condensation graph (strongly-connected components are merged into a single node) of the

predicate-dependency graph is computed using a strongly-connected-component algorithm.

A post-order traversal of the condensation graph gives a sequence of sets of predicates

R1, . . . ,Rn. Strata P1, . . . ,Pn are formed by placing a rule that derives a predicate Ri into

Pi.

5.5 Syntax and Type System

Type declaration syntax in DLE is based on Haskell’s syntax. For example, the statement

data t = d1 int | d2 char int.

declares a type t with two data constructors: d1 : int→ t and d2 : char× int→ t.

The following is an example predicate declaration:

predicate p(int,int,t).

The above statement declares that the interpretation of p is a ternary relation that is a

subset of int× int× t.

The following is the grammar for rules and facts:

term→ variable.

term→ constant.

term→ identifier ‘(’ term list ‘)’.

term list→ ε | term (‘,’ term)∗.

literal→ identifier ‘(’ term list ‘)’.

atom→ literal | ‘¬’ literal | ‘(’ term ‘)’.

rule→ atom ‘.’.

rule→ atom ‘:-’ atom (‘,’ atom)∗ ‘.’.

96

variable, constant, and identifier are lexical elements, where variable identifiers start with

an uppercase letter and non-variable identifiers start with a lowercase letter. Constants are

either numbers or strings within double quotes.

In addition to uninterpreted functions, DLE supports builtin and user-defined functions.

Builtin functions include arithmetic and relational operations on integer-valued terms.

User-defined functions can be defined in a limited functional-programming-language dialect:

function term→ term.

function term→ ‘if’ term ‘then’ term ‘else’ term.

function defn→ identifier ‘(’ term list ‘)’ ‘=’ function term.

Functions are declared using the function keyword. For example the following statement

declares a function that takes a value of type “list a” (a is a type variable) and returns

an integer:

function count zero :: list a -> int.

A function that counts the number of occurrences of the number ‘0’ in a cons-list can be

defined through pattern matching as follows:

count_zero(nil()) = 0.

count_zero(cons(x,y)) = if x == 0 then

1+count_zero(y) else count_zero(y).

5.6 Index Declarations and Cost Estimates

Similar to the LogicBlox engine used by Doop [12, 5], our Datalog engine exposes indexing

decisions at the language level. Index declarations describe how predicates are materialized

as in-memory data structures by the engine. A single logical relation may be materialized

as multiple physical relations (or indices), all representing the same relation, but different

indices may have different join costs depending on the attributes over which the join is

97

performed. The following grammar describes index declarations:

number list→ ‘[’ number (‘,’ number)∗ ‘]’.

index decl→ index identifier index ‘secondary’ (‘.’)?.

index→ ‘value list’ ‘(’ number ‘)’.

index→ ‘hash set’ ‘(’ number ‘)’.

index→ ‘array map’ ‘(’ number ‘,’ number ‘,’ index ‘)’.

index→ ‘hash map’ ‘(’ number list ‘,’ number ‘,’ index ‘)’.

index→ ‘value’ ‘(’ ‘)’.

Two operations on indices are scans and inserts. Given a literal, a scan operation enumerates

all tuples in an index that unify with the literal, and an insert operation inserts a fact into

an index. When a DLE rule is evaluated, all relations in the body of the rule are joined

through scan operations, and newly derived tuples are inserted into the relation at the head

of the rule. This process is described in more detail in Section 5.8.

An index declaration describes a data structure by the composition of index elements.

value set, hash set, and value are leaf elements, while array map and hash map are outer

elements. Index elements nested within an outer element O are sub-elements of O and

O is a super-element to all its sub-elements. Scan and insert operations on indices are

implemented as a composition of operations on the index elements that compose the index.

Scans of indices are performed with respect to a literal of the predicate (the join literal)

and a set of bound variables. The join literal and set of bound variables determine the

cost of scanning the index. Index elements may specify a set of key attributes (a set of

ordinals that specifies attributes of the predicate) that determines whether scans of the

index element are lookup scans or full scans : if all arguments of the join literal specified as

a key attribute in an index element are either bound or are specified as a key attribute in a

super-element of the index element, then a lookup scan is performed; otherwise a full scan

is performed.

The declaration of an index element specifies a cost estimate, which is a user-specified

and unit-less number that describes the cost of performing a full scan of the index element

98

relative to other indices. The cost of a lookup scan is always 1. The cost estimates determine

a join order, which is a process described in Section 5.7.

Each of the index elements are described below:

• value list(N) specifies a value-list element with a cost estimate of N to perform a

full scan of the index element. Lookup scans are not possible (all scans are full scans).

The value-list element is represented in memory as an array of tuples.

For example, consider the following index declaration for a predicate p:

index p value list(100).

The time to perform a scan of this index is always linearly proportional to the size of

the relation p. The number 100 is the cost estimate of scanning the index.

• hash set(N) specifies a hash-set element with a cost estimate of N to perform a full

scan of the index. All attributes that are not specified as key attributes in a hash-set

element’s super-elements are key attributes of the hash-set element. The hash-set

element is represented in memory as a hash table.

For example, consider the following index declaration:

index p hash list(100).

Scans of this index takes constant time if the join literal is fully bound (all variables

in the literal appear in the set of bound variables), and have a cost estimate of 1.

Otherwise, scans take time proportional to the size of p with a cost estimate of 100.

• array map(A,N , I) specifies an array-map element : the Ath attribute is the element’s

key attribute, N is its cost estimate, and I is its direct sub-element. The array-map

element is represented in memory as an array of its sub-element.

For example, consider the following index declaration:

index p array map(1, 10, value list(100)).

99

The number 1 specifies that the first attribute is used as the key to an associative map,

implemented as an array, that maps to value list elements. If the first attribute is

bound, for example if the join literal is p(5,Y ,Z) and the set of bound variables is

empty, then the scan operation on the index takes time proportional to the number

of tuples in p whose first attribute has the value 5. If the first attribute is not

bound, then the scan operation takes time proportional to the size of p. The cost

estimate of scanning an outer index element is formed by taking the product of the

specified cost estimate of the outer index and the computed cost of scanning the outer

index’s sub-index (i.e., the value list). Thus, if the first attribute is bound, the cost

estimate of scanning the index is 1·100 = 100; if the first attribute is not bound, the

cost estimate is 10·100 = 1000.

• hash map(A,N , I) specifies a hash-map element : A is a list of ordinals that specifies

the element’s key attributes, N is its cost estimate, and I is its direct sub-element.

The array-map element is represented in memory as a hash table that maps to its

sub-element.

For example, consider the following index declaration:

index p hash map([1,2], 5, hash set(100)).

If the join literal is fully bound, then scanning the index takes constant time, and

the cost estimate is 1. If only the first and second attributes of the join literal are

bound, then the cost estimate is 100. If only the third attribute is bound, then the

cost estimate is 5. Otherwise, the cost estimate is 5·100 = 500.

• value() specifies a value element : a data structure that holds only one tuple. An

index with a value element implies a functional dependency from the set of all key

attributes of super-elements of the value element to the remaining non-key attributes.

For example, an index declaration “index p value().” implies that the size of the

relation p is at most one; an index declaration “index q hash map([1,2], 5,

100

value()).” of a 4-ary relation q implies that there is a functional dependency from

the first and second attributes to the third and fourth attributes. Violating a function

dependency produces an assertion error during evaluation of a program.

Predicates may be associated with multiple indices through multiple index declarations.

An index may either be a primary or a secondary index. A relation may have zero or

one primary index and any number of secondary indices. The differentiation between

primary and secondary is irrelevant for joins (scanning) but affects insert operations. Insert

operations on primary indices are unique inserts, meaning that duplicate tuples are not

inserted. Non-unique inserts are performed on secondary indices, meaning that the index

may contain duplicate tuples. If a predicate is associated with a primary index, then

inserts into secondary indices are performed after inserting into the primary index, and

performed only if the tuple being inserted is not a duplicate. If a predicate is not associated

with a primary index, then tuples are inserted into secondary indices unconditionally,

meaning that they may contain duplicates. Unique inserts and non-unique inserts are

algorithmically identical for all index elements except for value lists, and take constant

time. For value lists, unique inserts take linear time and non-unique inserts take constant

time.

The differentiation between primary and secondary indices enables fine-tuning of the

choice of optimal data structures: full scan and non-unique-insert operations on value list

index elements are more efficient than their corresponding operations on hash set index

elements; thus value list index elements are suitable for secondary indices but not for

primary indices due to their linear time unique-insert time complexity. If no duplicate

tuples of a predicate are expected to be derived, then the predicate may be associated only

with secondary indices using value list index elements.

101

5.7 Join Order

A join order of a rule is a total ordering of literals that appear in the body of the rule, where

logical relations are replaced by physical relations (indices). Join orders are determined on

the rules of a delta-transformed program. The join order determines the application order

of binary relational-join operations performed during evaluation: specifically, the joins are

performed in a linear chain of applications, a left fold on the total ordering of indices. For

example, if a join ordering is [p(A,B), q(B,C), r(C,D)], then relational joins (notated with

onx=y where x and y denote the attributes over which the join is performed) are performed

as ((p on2=1 q) on2=1 r).

Join orders are determined by a greedy algorithm. Let L be the set of literals that

appear in a body of a rule. The algorithm to determine the join order of the rule starts

with an initially empty list of literals I, an empty set of joined literals J , and an empty set

of bound variables B.

• If L contains a literal of a delta relation, then the literal is added to I and J , and the

variables that appear in the literal are added to B.

• For each index P ′ of a literal P (⇀x) in L \ J ,

– a cost estimate of scanning P ′ with respect to the set of bound variables B is

tallied;

– the index Q′ with the lowest-tallied cost estimate is determined;

– Q′(⇀x) is appended to I;

– Q(⇀x) is added to J ;

– and the variables that appear in ⇀x are added to B.

• This process repeats until L = J .

102

Variables that appear inside a builtin or user-defined function must be bound before the

literal containing the function can be appended to a join order.

The rationale for choosing the delta relation as the first relation in the join order is

based on an assumption that the delta relation is the smallest relation in the join. This

assumption may not be true in all programs. For example, if a program contains a rule

“p(. . .) :- p(. . .), q(. . .), r(. . .).”, where q and r are EDB relations in the stratum containing the

rule, then the only two join orders admitted by DLE are ((p∆ on q) on r) and ((p∆ on r) on q).

If the join order (p∆ on (q on r)) is desired, then the program must be refactored into two

rules using a new relation:

s(. . .) :- q(. . .), r(. . .).

p(. . .) :- p(. . .), s(. . .).

5.8 Rule Evaluation and Code Generation

Rule evaluation is performed by nested scanning of indices in a join order. Figure 5.2

presents the pseudo-code of the algorithm. Eval(R) evaluates a clause R. If R is a fact,

then it has an empty join order (n = 0). φ is a mapping from variables in a rule to ground

terms. As indices are scanned, φ is updated with new variable mappings, which may

overwrite previous mappings. EvalJoin(k) performs a join of the kth literal in the join

order of R. The function subst applies a variable mapping to a literal and returns a ground

literal (a fact).

DLE uses the LLVM Compiler Infrastructure [17] to generate code that evaluates each

rule. Specifically, for each clause, DLE generates a function that implements the Eval

procedure where the EvalJoin subprocedure is completely unrolled into Eval. Since the

join order, and thus the indices accessed, are known at compile-time when generating the

function for a particular rule, the code for scanning the indices is generated directly in the

function that evaluates the rule. This form of per-rule code generation, as opposed to an

103

1: procedure Eval(R)

2: Let I1, . . . , In be the join order of clause R.

3: Let H be the head literal of R.

4: φ← λx. ⊥.

5: EvalJoin(1).

6:

7: subprocedure EvalJoin(k)

8: if k > n then

9: Let Q(
⇀

t) ≡ subst(H,φ).

10: if Q(
⇀

t) is not in the primary index of Q

11: or if Q does not have a primary index then

12: Insert Q(
⇀

t) into Qnew.

13: Insert Q(
⇀

t) into the primary index and all secondary indices of Q.

14: else

15: for fact f ∈ Scan(subst(Ik,φ)) do

16: Let θ be a substitution of variables in Ik such that

17: the arguments of f and subst(Ik, θ) unify.

18: φ← λx.

θ(x) if θ(x) 6= ⊥

φ(x) otherwise.

19: EvalJoin(k + 1).

Figure 5.2: Nested index iteration.

104

interpreter design, is beneficial performance-wise because accessing certain indices requires

very few machine instructions: for example scanning a value index element is simply a

load from memory.

5.9 Inline Predicates

This section gives a detailed description of a feature of DLE called inline predicates,

which allows efficient evaluation of rules that use complex structured objects, such as the

transformer string abstraction.

The following is a contrived example that computes a relation of pairs of people with

the same last name, that illustrates the use of inline predicates:

data person = person string string.

predicate same_last_name(person,person).

index same_last_name hash_set(100).

predicate people(person).

index people hash_set(100).

same_last_name(person(A,X),person(B,X))

:- people(person(A,X)),people(person(B,X)).

The evaluation of the same last name performs a Cartesian product of all tuples in the

people relation: regardless of whether person(A,X) or person(B,X) is scanned first, the

complex term is only partially bound (only X is bound) for the scan of the second relation.

A simple solution to obtain a more efficient join is to change the people relation to be

a binary relation of strings:

predicate people_s(string,string).

index people hash_map([2],100,hash_set(100)).

105

same_last_name(person(A,X),person(B,X))

:- people_s(A,X),people_s(B,X).

An efficient join is possible using the second attributes of the people s literals. Inline

predicates are a feature that enables DLE to perform this transformation implicitly. An

inline predicate is declared by appending the keyword inline to a predicate declaration.

Rules that derive an inline predicate are called inline rules, and the body of an inline rule is

substituted into every occurrence of the head of the inline rule in a body of a rule, including,

recursively in other inline rules.

For example, the following program has the same join of the person relations as the

program above:

predicate people(person) inline.

predicate people_s(string,string).

index people_s hash_map([2],100,hash_set(100)).

person(person(A,X)) :- person_s(A,X).

same_last_name(person(A,X),person(B,X))

:- people(person(A,X)),people(person(B,X)).

The next subsection contains a larger example that presents a more motivating use of

the feature.

5.9.1 Field-sensitive C Analysis

Consider a static analysis of an intermediate representation of C code. In Java, values stored

in an instance field through a specific field signature can only be loaded through the same

field signature. Field-sensitive analysis of C is more difficult in comparison, because fields

may be assigned to, not just through the member access operator and a field name (e.g.,

106

“x.f”), but also through pointer arithmetic (e.g., “&x+offsetof(struct X,f)”). Pearce et

al. detailed a field-sensitive analysis for C that used type information [25]. In contrast, we

assume no type information is present in our analysis, which makes it more suitable for

analysis of a lower-level representation of code.

Statements are canonicalized into one of three forms: address-of statements “x = &y;”,

store statements “*x = y+z;”, and load statements “x = *y;”. The following program

computes the points-to relation of a program described by the EDB predicates addrof,

store, and load:

// EDB

predicate addrof(var,var). // addrof(X,Y): X = &Y;

predicate store(var,var,int). // store(X,Y,Z): *X = Y+Z;

predicate load(var,var). // load(X,Y): X = *Y;

index addrof value_list(100) secondary.

index store array_map(1,100,value_list(5)) secondary.

index store array_map(2,100,value_list(5)) secondary.

index load array_map(1,100,value_list(5)) secondary.

index load array_map(2,100,value_list(5)) secondary.

We identify specific indices by superscripts that specify the order in which indices are

declared: for example load1 denotes the array map(1,100,value list(5)) index and

load2 denotes the array map(2,100,value list(5)) index.

Values are stored at memory locations that are described by an integer offset within

an object. Theoretically, there is an infinite number of offsets. An important concept in

static analysis is the formulation of lattice-based abstractions that model a problem domain

through approximations [9]. An abstraction is defined by a join lattice (the abstraction

domain) and a concretization function that defines which elements in the concrete (problem)

domain are abstracted by elements in the abstraction domain. Our concrete domain is Z,

the conceptually infinite number of possible offsets within objects that a C program may

store to and load from. Let our abstraction domain be Z∪ {>} with a partial order defined

107

by the following Hasse diagram (this is the same abstraction domain used by the constant

propagation analysis [43]):

>

. . . −1 0 1 . . .

The concretization function γ : Z ∪ {>} → P(Z) is defined as follows:

γ(x) =

Z if x = >

{x} if x ∈ Z

The abstraction domain is expressed as a type called aoff for abstract offset. The

abstract offset type and the points-to relation of the analysis is declared as follows:

type aoff = top | const int.

predicate pts(var,aoff,var,aoff).

index pts array_map(1,100,array_map(2,10,hash_set(100))).

index pts array_map(3,100,array_map(4,10,value_list(100))) secondary.

A fact pts(x, f,h, g) indicates that the memory location with address &x+ f ′ may point

to an address &h+ g′ where f ′ ∈ γ(f) and g′ ∈ γ(g).

The rule that handles address-of statements is trivial:

pts(X,0,Y,0) :- addrof(X,Y).

The “store” statement performs arithmetic on offsets. Addition in the abstraction

domain, denoted ⊕, can be defined as a homomorphism of addition in the concrete domain.

108

However, in order to ensure termination of the analysis, we use a widened operation that

models the concrete domain more loosely:

>⊕ y = >.

x⊕> = >.

x⊕ y = > if x, y 6= > ∧ x 6= 0 ∧ y 6= 0.

x⊕ y = x+ y if x, y 6= > ∧ (x = 0 ∨ y = 0).

Widened addition is defined as a function in DLE using pattern matching:

function add : aoff, aoff -> aoff.

add(top,_) = top.

add(_,top) = top.

add(const(X),const(Y)) = if X == 0 then Y

else if Y == 0 then X

else top.

A trivial property of ⊕ is that its result is either one of its operands, or >. Thus, an

analysis that uses ⊕ only derives facts containing either > or a const(X) term where X

appears in a fact in an EDB relation, and thus termination is guaranteed.

Using the widened addition operator, the rule that models store statements is as follows:

pts(G,Gf,H,add(Hf,Z)) :- store(X,Y,Z), pts(X,0,G,Gf), pts(Y,0,H,Hf).

The rule to handle a load statement “x = *y;” must derive facts pts(x, 0, z, g) if y

points to an offset f within an object b, and the offset f within b points to offset g within

object z. Reasoning with abstract offsets, if y points to an abstract offset f within b, then

it may load an abstract offset f ′ within b if γ(f) ∩ γ(f ′) 6= ∅. We define a new function

to model this behaviour: Let overlap(X,Y) be true if γ(X) ∩ γ(Y) 6= ∅. overlap can be

defined as a Boolean-valued function in DLE:

109

function overlap : aoff, aoff -> bool.

overlap(top,_) = true.

overlap(_,top) = true.

overlap(const(A),const(B)) = A == B.

Boolean-valued terms are permitted in place of atoms, and thus loads from memory can be

modelled soundly by a single rule:

pts(X,0,H,Hf) :- load(X,Y), pts(Y,0,G,Gf), pts(G,Gf2,H,Hf),

overlap(Gf,Gf2).

User-defined functions that appear in atoms can only be evaluated after all variables

that appear in them are bound. Consider the first delta rule of the rule. The following

joins are performed before evaluating the function overlap:

[pts∆(Y, 0, G, Gf), load2(X, Y), pts1(G, Gf2, H, Hf)]

Note that the join of pts1 is performed over one attribute because G is the only bound term

when evaluating the join.

A more efficient program replaces the function overlap with an inline predicate:

predicate overlap(aoff,aoff) inline.

overlap(top,_).

overlap(_,top).

overlap(const(A),const(A)).

Note that these clauses are not permitted in pure Datalog because variables (A and the

anonymous variables) are not bound by the (empty) body of the clauses. Since overlap

is an inline predicate, DLE permits such clauses if all variables are bound after inline

predicates have been inlined.

Before a join order is determined, DLE inlines the overlap predicate and performs

first-order term unification. Then, a join order is determined for the following expanded

rules:

110

pts(X,0,H,Hf) :- load(X,Y), pts(Y,0,G,top()), pts(G,_,H,Hf).

pts(X,0,H,Hf) :- load(X,Y), pts(Y,0,G,_), pts(G,top(),H,Hf).

pts(X,0,H,Hf) :- load(X,Y), pts(Y,0,G,const(X)), pts(G,const(X),H,Hf).

The join between the pts relations in the third expanded rule is performed over two

attributes, which is more efficient than performing the join over one attribute.

In this simplistic example, the inlining of the overlap predicate resulted in one rule

becoming three rules. The increase in the number of rules is modest because overlap is

a Boolean-valued function with a trivial declarative definition. The next section applies

the technique above to pointer analysis using the explicit string and transformer string

abstractions, where the number of rules increases by an order of magnitude.

5.10 Context Transformation Analysis

This section describes the transformation of the deduction rules presented in Figure 3.3

into plain Datalog rules under different instantiations. For explanatory purposes, the

transformation of the Store and Field rules in particular are described in detail because

these rules are the most expensive to evaluate in a pointer analysis.

Functions merge��, and merge s�� are transformed into function-style predicates merge

and merge s. Given a n-ary function f , its expression as a function-style predicate P is

defined as P (t1, . . . , tn, r) ⇐⇒ f(t1, . . . , tn) = r.

The symbols comp�, inv�, any�, merge��, and merge s�� are declared as inline predi-

cates compose, compose inv, any, merge, merge s. Since the function inv� always appears

together with predicate comp�, they are folded into one predicate: let compose inv(A,B,C)

have the same meaning as comp�(A, inv(B),C). The predicates pts�, hpts�, call�, and

reach� are also declared as inline predicates. Different instantiations are obtained by

providing different sets of inline rules for these predicates. The inline rules are presented in

the following subsections.

111

The domains of context abstractions have different definitions depending on the in-

stantiation, and are given definitions in the following subsections: let context hm and

context hh represent the types of context transformation domains Ctxt�h,m and Ctxt�h,h,

respectively.

Although the semantics of DLE is purely declarative, rules require refactoring for

efficient evaluation. There are numerous data structure designs for pointer analysis [18],

and the scheme that we use is the same as the one used by Doop and Soot, which is to

refactor the Store and Field rules in Figure 3.3 using an additional predicate, “hload”.

The following is a partial listing of our pointer analysis implemented in DLE that is

relevant to the explanations in the subsections that follow:

predicate pts(variable,heap,context_hm) inline.

predicate hpts(heap,field_sig,heap,context_hh) inline.

predicate hload(heap,field_sig,variable,context_hm) inline.

...

predicate compose(context_hh,context_hm,context_hh) inline.

predicate compose_inv(context_hm,context_hm,context_hh) inline.

...

hpts(G,F,H,A) :- // Store

pts(W,H,B),

store(W,F,Z,_),

pts(Z,G,C),

compose_inv(B,C,A).

pts(Y,H,A) :- // Field

hpts(W,F,H,B),

hload(W,F,Y,C),

compose(B,C,A).

hload(G,F,Y,A) :- // Load

pts(W,G,A),

load(W,F,Y,_).

112

5.10.1 Explicit String Instantiation

Under an explicit string instantiation, the context transformation attribute within predicates

is flattened into two attributes. The two attributes represent input-output value pairs of

context transformations. Let type ctxt be the type of elemental contexts in a particular

flavour of context sensitivity: invoke for call-site sensitivity, heap for object sensitivity,

and class for type sensitivity.

The data type declarations of context hm and context hh are presented below. Values

of type context hm consist of pairs consisting of a string of length h and a string of length

m, and values of type context hh consist of pairs consisting of strings of length h. Strings

shorter than the truncation lengths are padded with dummy elements.

data hctxt = hctxt ctxt... (h times).
data mctxt = mctxt ctxt... (m times).

data context_hm = context_hm hctxt mctxt.

data context_hh = context hh hctxt hctxt.

The following inline rules for pts, hpts, and hload unwrap complex terms context hm

and context hh into two separate terms and replace the predicates with pts c, hpts c,

and hload c, respectively.

predicate pts_c(variable, heap, hctxt, mctxt).

predicate hpts_c(heap, field_sig, heap, hctxt, hctxt).

predicate hload_c(invoke, method, mctxt, mctxt).

...

pts(Y,H,context_hm(A,B)) :- pts_c(Y,H,A,B).

hpts(G,F,H,context_hh(A,B)) :- hpts_c(G,F,H,A,B).

hload(G,F,Y,context_hm(A,B)) :- hload_c(G,F,Y,A,B).

The order of attributes in pts c, hpts c, and hload c may be confusing because points-to

relates a pointer to a pointee, while context transformations relate a pointee context to a

pointer context. For example, in pts c(Y ,H,U ,V), V is a method context of Y , and U is

a heap context for H.

113

The explicit string representation enumerates the input-output pairs of context trans-

formations, and thus function composition is defined simply as follows:

compose(context_hh(H1,H2),context_hm(H2,M1),context_hm(H1,M1)).

compose_inv(context_hm(H1,M1),context_hm(H2,M1),context_hh(H1,H2)).

Consider the Store, Field, and Load rules from the previous section after the compose

and compose inv predicates are inlined into their bodies and term unification is performed:

hpts(G,F,H,context_hh(A1,A2)) :- // Store

pts(W,H,context_hm(A1,B)),

store(W,F,Z,_),

pts(Z,G,context_hm(A2,B)).

pts(Y,H,A,B) :- // Field

hpts(W,F,H,context_hh(A,AB)),

hload(W,F,Y,context_hm(AB,B)).

hload_c(G,F,Y,A,B) :- // Load

pts(W,G,context_hm(A,B)),

load(W,F,Y,_).

Inlining the rules for pts, hpts, and hload results in the following rules:

hpts_c(G,F,H,A1,A2) :- // Store

pts_c(W,H,A1,B),

store(W,F,Z,_),

pts_c(Z,G,A2,B).

pts_c(Y,H,A,B) :- // Field

hpts_c(W,F,H,A,AB),

hload_c(W,F,Y,AB,B).

hload_c(G,F,Y,A,B) :- // Load

pts_c(W,G,A,B),

load(W,F,Y,_).

In the Field rule, an obvious indexing scheme for efficiently evaluating the join between

114

the hpts c and hload c is to build indices on their shared variables: the first, second, and

fifth attributes of hpts c and the first, second, and fourth attributes of hload c.

5.10.2 Transformer string Instantiation

We represent transformer strings in DLE by classifying them into configurations : a config-

uration of a transformer string specifies its number of exits, entries, and whether it has

a wildcard letter. For example, the domain of transformer strings for the pts relation,

CtxtTt
h,m, in a 2-method-1-heap (that is, m = 2 and h = 1) call-site-sensitive instantiation,

has 12 configurations arising from the following combinatorial choices: two choices for the

number of exits, three choices for the number of entries, and two choices of whether the

string contains a wildcard letter. Relations specialized to a particular configuration are

tagged with subscripts that characterize the configuration: strings generated by the regular

expression “x∗w?e∗”, where the number of “x” letters determines the number of exits, the

presence of a “w” letter specifies that the transformer string contains a wildcard, and the

number of “e” letters determines the number of entries.

The following is the data type corresponding to a CtxtTt
h,m domain in a 1-method-1-

heap analysis. The definition of type ctxt determines the flavour of context sensitivity:

data context_hm =

context_ // epsilon

| context_e ctxt

| context_x ctxt

| context_xe ctxt ctxt

| context_w // wildcard

| context_we ctxt

| context_xw ctxt

| context_xwe ctxt ctxt.

A naive method of implementing a transformer string instantiation is to implement

the two formulas “match(A·B) 6= ⊥” and “trunci,k(match(A ·B))” of compt as a function

check match that takes two values A and B as input, checks if match(A·B) 6= ⊥, and

115

returns trunci,k(match(A·B)). The performance of such an implementation is significantly

slower than a explicit string instantiation. The reason for the lower performance can be

understood by inspecting the joins performed when evaluating the Field rule:

pts_c(Y,H,match_and_trunc(A,B)) :- // Field

hpts_c(W,F,H,A),

hload_c(W,F,Y,B),

check_match(A,B).

The term check match(A,B) cannot be evaluated until the variables A and B are bound,

thus the join between hpts c and hload c must be performed over two attributes instead

of over three attributes in the explicit string instantiations.

A more efficient indexing scheme can be obtained by specializing the derived relations

to every transformer string configuration. The arity of a specialized predicate for a

transformer string configuration is dependent on the number of entries and exits present

in the transformer string. For example, ppts xxwe is a subset of Var×Heap×Ctxt×
Ctxt×Ctxt, and a fact pts(Y ,H, X̂1 ·X̂2 ·∗·Ê1), becomes ppts xxwe(Y ,H,X1,X2,E1).

The compt predicate has a declarative specification: the third attribute can be computed

for every possible transformer string configuration of the first two attributes of the predicate.

For example, Figure 5.3 contains all the true clauses (all variables are universally quantified)

of the compt predicate in an m = 1 and h = 1 instantiation.

Each rule is duplicated for every possible replacement of inline predicates with specialized

relations. Figure 5.4 contains the declaration and inline rules for the specialized relations

of pts, and the first four clauses of the compt predicate from Figure 5.3. After all inline

predicates have been replaced by their specializations, complex terms do not appear in the

resulting rules. For example, one such transformed rule is as follows:

pts_xe(Y,H,X,E) :- // Field

hpts_xe(W,F,H,X,M),

hload_xe(W,F,Y,M,E).

116

compt(ε, ε, ε). compt(X̂, ε, X̂). compt(∗, ε, ∗). compt(X̂∗, ε, X̂∗).

compt(ε, Ê, Ê). compt(X̂, Ê, X̂Ê). compt(∗, Ê, ∗Ê). compt(X̂∗, Ê, X̂∗Ê).

compt(ε, X̂, X̂). compt(X̂, Ẑ, X̂∗). compt(∗, X̂, ∗). compt(X̂∗, Ẑ, X̂∗).

compt(ε, X̂Ê, X̂Ê). compt(X̂, ẐÊ, X̂∗Ê). compt(∗, X̂Ê, ∗Ê). compt(X̂∗, ẐÊ, X̂∗Ê).

compt(Ê, ε, Ê). compt(X̂Ê, ε, X̂Ê). compt(∗Ê, ε, ∗Ê). compt(X̂∗Ê, ε, X̂∗Ê).

compt(Ẑ, Ê, ∗Ê). compt(X̂Ẑ, Ê, X̂∗Ê). compt(∗Ẑ, Ê, ∗Ê). compt(X̂∗Ẑ, Ê, X̂∗Ê).

compt(M̂ , M̂ , ε). compt(X̂M̂ , M̂ , X̂). compt(∗M̂ , M̂ , ∗). compt(X̂∗M̂ , M̂ , X̂∗).

compt(M̂ , M̂Ê, Ê). compt(X̂M̂ , M̂Ê, X̂Ê). compt(∗M̂ , M̂Ê, ∗Ê). compt(X̂∗M̂ , M̂Ê, X̂∗Ê).

compt(ε, ∗, ∗). compt(X̂, ∗, X̂∗). compt(∗, ∗, ∗). compt(X̂∗, ∗, X̂∗).

compt(ε, ∗Ê, ∗Ê). compt(X̂, ∗Ê, X̂∗Ê). compt(∗, ∗Ê, ∗Ê). compt(X̂∗, ∗Ê, X̂∗Ê).

compt(ε, ∗X̂, ∗X̂). compt(X̂, ∗Ẑ, X̂∗). compt(∗, ∗X̂, ∗). compt(X̂∗, ∗Ẑ, X̂∗).

compt(ε, X̂∗Ê, X̂∗Ê). compt(X̂, Ẑ∗Ê, X̂∗Ê). compt(∗, X̂∗Ê, ∗Ê). compt(X̂∗, Ẑ∗Ê, X̂∗Ê).

compt(Ê, ∗, ∗). compt(X̂Ê, ∗, X̂∗). compt(∗Ê, ∗, ∗). compt(X̂∗Ê, ∗, X̂∗).

compt(Ẑ, ∗Ê, ∗Ê). compt(X̂Ẑ, ∗Ê, X̂∗Ê). compt(∗Ẑ, ∗Ê, ∗Ê). compt(X̂∗Ẑ, ∗Ê, X̂∗Ê).

compt(M̂ , M̂∗, ∗). compt(X̂M̂ , M̂∗, X̂∗). compt(∗M̂ , M̂∗, ∗). compt(X̂∗M̂ , M̂∗, X̂∗).

compt(M̂ , M̂∗Ê, ∗Ê). compt(X̂M̂ , M̂∗Ê, X̂∗Ê). compt(∗M̂ , M̂∗Ê, ∗Ê). compt(X̂∗M̂ , M̂∗Ê, X̂∗Ê).

Figure 5.3: Declarative definition of the compt predicate with m = 1 and h = 1 levels of
context sensitivity.

117

predicate pts_(variable,heap).

predicate pts_e(variable,heap,ctxt).

predicate pts_x(variable,heap,ctxt).

predicate pts_xe(variable,heap,ctxt,ctxt).

predicate pts_w(variable,heap).

predicate pts_we(variable,heap,ctxt).

predicate pts_xw(variable,heap,ctxt).

predicate pts_xwe(variable,heap,ctxt,ctxt).

...

pts(Y,H,context_()) :- pts_(Y,H).

pts(Y,H,context_e(E)) :- pts_e(Y,H,E).

pts(Y,H,context_x(X)) :- pts_x(Y,H,X).

pts(Y,H,context_xe(X,E)) :- pts_xe(Y,H,X,E).

pts(Y,H,context_w()) :- pts_w(Y,H).

pts(Y,H,context_we(E)) :- pts_we(Y,H,E).

pts(Y,H,context_xw(X)) :- pts_xw(Y,H,X).

pts(Y,H,context_xwe(X,E)) :- pts_xwe(Y,H,X,E).

...

compose(context_(),context_(),context_()).

compose(context_(),context_e(E),context_e(E)).

compose(context_(),context_x(X),context_x(X)).

compose(context_(),context_xe(X,E),context_xe(X,E)).

...

Figure 5.4: Type declaration, specialized pts predicates, and the first four clauses of the

compt predicate from Figure 5.3.

118

The join of hpts xe and hload xe is performed over three common attributes (W, F, and

M), attaining the same indexing efficiency as the explicit string instantiation. Section 6.4

evaluates the difference in efficiency between an analysis that uses the technique described

above, and an analysis that implements the comp predicate as a function and does not

specialize relations to every transformer string configuration.

The functions anyt, record t, merget�, and merge st� are inlined into rules using the

same method as the inlining of the “compt” predicate. The inline rules (e.g., the compt

clauses in Figure 5.3) for a particular instantiation are generated by an external tool

that outputs a DLE program fragment containing the rules. This program fragment is

concatenated with the DLE program that implements the deduction rules in Figure 3.3 to

form a complete program for a particular instantiation.

5.10.3 Configuration Reduction

DLE uses LLVM to generate a custom piece of code for every rule, which is problematic

because the transformer string instantiation generates a sizable number of rules. For a

2-method-1-heap transformer string instantiation, code generation with code optimizations

takes 10 minutes, but with the following configuration reduction scheme, code generation

time is reduced to 2 minutes.

The number of configurations of transformer strings can be reduced while still preserving

the precision property established in Chapter 4. Given a transformer string A ≡ Âx ·Aw ·
Âe in CtxtTt

i,j, we say A is bottomed-out if ‖Ax‖ = i or ‖Ae‖ = j. We can observe that

the concretization of transformer strings remains the same if the wildcard letter is always

added to bottomed-out transformer strings:

simplify(Âx ·Aw ·Âe) ≡

Âx ·Aw ·Âe if ‖Ax‖ < i ∧ ‖Ae‖ < j

Âx ·∗·Âe otherwise

For all A, γi,j(A) = γi,j(simplify(A)) (γi,j is defined in Section 4.4.2). Thus, the theorems

119

about the relative precision of the transformer string and the explicit string abstractions

still hold even when simplify is applied to the output of all transformer string operations:

that is, the transformer string abstraction is as precise as the explicit string abstraction

when truncated to the same levels of context sensitivity. In theory, applying the simplify

function may reduce the precision of the transformer string abstraction, but even with this

reduced precision, the simplified transformer string abstraction is still more precise than

the explicit string abstraction. Performing the reduction has no impact on the precision in

any of the evaluated instantiations and analyzed programs in Chapter 6.

Although the reduction in the number of transformer string configurations is modest

(from 12 to 8 for CtxtTt
2,1), the reduction in the number of instantiated rules is substantial

(from 4031 to 1669 in an instantiation with m = 2 and h = 1 levels of context sensitivity).

120

Chapter 6

Evaluation

The experimental evaluation compares the transformer string instantiation of the pointer

analysis described so far with the traditional explicit string instantiation. The analyses are

compared in call-site-, object-, and type-sensitive configurations.

6.1 Experimental Setup

The analyzed programs are from the DaCapo benchmark suite (v.2006-10-MR2) under JDK

1.6.0 43 [4]. We use the same fact generator as Doop [5], which transforms Java bytecode

to a set of relations using the Soot [42] framework. Table 6.1 presents size metrics of the

benchmark programs that are relevant to pointer analysis. The first column contains the

names of analyzed programs. The next three columns contain the number of initialized

classes, reachable methods, and call-graph edges, computed by a context-insensitive analysis.

The next two columns contain the number of variables and allocation sites in reachable

methods. The last two columns contain the number of loads and stores (accesses of instance

fields, array indices, and static fields) in reachable methods. jython and hsqldb are not

evaluated because context-sensitive analyses of the two programs do not scale due to overly

121

Name Initialized Methods CG edges Variables Allocations Loads Stores

antlr 1391 8605 54466 77260 17728 13985 6549

bloat 1582 10149 72842 89923 18197 16037 7066

chart 2463 15878 87126 134195 31434 24523 15971

eclipse 1570 9425 56011 80452 17451 13862 6833

luindex 1356 7882 43391 64655 14613 11292 6131

pmd 1551 9317 50543 75699 16232 12998 6970

xalan 1566 8992 49607 73084 16267 12326 6886

Table 6.1: Benchmark metrics collected by a context-insensitive analysis.

conservative handling of Java reflections. lusearch is not evaluated because it is too similar

to luindex.

We evaluate five different flavours of context sensitivity: 1-call, 1-call+H, 1-object,

2-object+H, and 2-type+H. The first number indicates the level of method contexts m, and

“+H” indicates that h = 1 (h = 0 otherwise).

The experiments were performed on an Intel i7-2600K processor with 16GiB of RAM.

DLE is single-threaded.

6.2 Analysis Precision

Table 6.2 presents relation sizes of context-insensitive projections of different flavours and

levels of context sensitivity. These numbers highlight the precision differences of the different

instantiations.

Although transformer strings are theoretically more precise than explicit strings under

call-site- and object-sensitive analysis, the two abstractions have exactly the same precision

(compute the same sets of context-insensitive facts) when evaluated on this set of benchmark

programs.

122

1-call 1-call+H 1-object 2-object+H 2-type+H (c) 2-type+H (t)

an
tl

r

reach 8436 8436 8391 8161 8189 8189

pts 2.04M 2.03M 1.69M 0.441M 1.031M 1.035M

hpts 258k 257k 153k 67.4k 87.3k 88.6k

call 52223 52223 51336 46655 47023 47023

b
lo

at

reach 9964 9964 9919 9646 9714 9714

pts 4.08M 4.08M 3.82M 1.15M 1.43M 1.43M

hpts 457k 457k 413k 207k 261k 264k

call 69646 69646 68520 59752 61203 61203

ch
ar

t

reach 15474 15474 15705 12222 13339 13344

pts 6.11M 6.11M 5.88M 0.539M 0.882M 0.886M

hpts 357k 356k 282k 76.5k 143k 147k

call 81719 81719 82930 58073 62843 62856

ec
li

p
se

reach 9125 9125 9073 8769 8807 8807

pts 1.86M 1.85M 1.60M 0.439M 0.625M 0.633M

hpts 182k 181k 116k 68.8k 99.2k 102k

call 52162 52157 50905 43515 44074 44074

lu
in

d
ex

reach 7713 7713 7666 7434 7462 7462

pts 1.20M 1.19M 1.01M 0.285M 0.383M 0.386M

hpts 113k 113k 75.4k 49.5k 63.9k 65.2k

call 41164 41164 40193 35615 36012 36012

p
m

d

reach 9147 9147 9095 8834 8865 8865

pts 1.56M 1.55M 1.35M 0.341M 0.460M 0.463M

hpts 138k 138k 96.1k 63.7k 80.1k 81.5k

call 48285 48285 47353 42117 42536 42536

x
al

an

reach 8810 8810 8770 8553 8566 8566

pts 1.81M 1.80M 1.56M 0.392M 0.530M 0.533M

hpts 227k 226k 168k 115k 156k 158k

call 47003 47003 46044 41035 41536 41536

Table 6.2: Sizes of context-insensitive relations of varying flavours and levels of context

sensitivity.

123

Under type-sensitive analysis (column 2-type+H), the transformer string abstraction

is less precise, and larger relations are highlighted in bold typeface. The decrease in

precision when type-sensitive analysis is performed using the transformer string abstraction

is marginal: an average 1% and 2% increase in the number of context-insensitive pts and

hpts facts, respectively. Only the chart benchmark has an increase in the number of

context-insensitive call-graph edges.

6.3 Analysis Efficiency

Table 6.3 presents the efficiency difference between the transformer string and explicit string

instantiations in terms of the analysis time and sizes of relations. The first numbers in each

column state the sizes of the context-sensitive ptse, hptse, and calle relations, the sum of the

sizes of the three relations, and the analysis time, using the explicit string abstraction. The

time measurements do not include the time to perform the preprocessing steps of pointer

analysis, such as reading the input relations from disk and constructing the virtual dispatch

table, because the work performed is invariant with respect to different instantiations of

our analysis. The preprocessing steps take less than 10 seconds for all benchmarks. The

percentage number that follows is the decrease in relation size and analysis time using the

transformer string abstraction, as compared to the explicit string abstraction.

No reduction in the size of the hpts relation is present under 1-call and 1-object

configurations because the relation is context-insensitive (no heap contexts) and the two

abstractions empirically have the same precision.

In the instantiations where transformer strings are as precise as explicit strings (call-site

and object sensitivity), the numbers of facts decrease across all benchmarks. The chart

benchmark under 2-object+H analysis has the greatest decrease in the number of facts and

analysis time.

In general, the decrease in analysis time is less than the decrease in the number of

124

1-call 1-call+H 1-object 2-object+H 2-type+H

an
tl

r

pts 13.3M 6.4% 41.5M 14.1% 11.6M 11.3% 17.6M 29.2% 4.1M 20.1%

hpts 279k — 2349k 32.0% 170k — 368k 18.9% 206k 5.4%

call 377k 15.6% 377k 15.5% 1885k 9.2% 4402k 25.4% 542k 27.8%

Total 13.9M 6.5% 44.2M 15.1% 13.6M 10.8% 22.4M 28.3% 4.8M 20.4%

Time 7.7s 6.2% 33.5s 1.3% 11.2s 0.9% 15.1s 18.6% 4.0s 17.5%

b
lo

a
t

pts 34.0M 3.1% 149.6M 8.4% 23.4M 5.9% 152.7M 4.0% 10.7M -12.5%

hpts 475k — 11802k 13.4% 429k — 4028k 1.8% 526k -43.9%

call 559k 16.5% 559k 16.5% 2791k 6.0% 39212k 3.7% 1078k 7.4%

Total 35.1M 3.3% 161.9M 8.8% 26.6M 5.8% 195.9M 3.9% 12.3M -12.1%

Time 20.8s 9.3% 149.7s -36.3% 42.5s 10.9% 878.8s -7.2% 11.1s -53.6%

ch
a
rt

pts 50.0M 6.2% 115.1M 23.8% 65.9M 16.1% 56.1M 41.9% 11.5M 32.7%

hpts 419k — 4235k 44.4% 345k — 721k 42.3% 431k 4.0%

call 541k 17.4% 541k 17.4% 5094k 7.9% 15520k 49.5% 1379k 35.5%

Total 50.9M 6.3% 119.9M 24.5% 71.3M 15.4% 72.4M 43.6% 13.3M 32.1%

Time 27.2s 7.2% 87.9s 8.0% 157.6s 9.7% 92.9s 64.3% 11.4s 29.8%

ec
li

p
se

pts 13.0M 7.9% 60.1M 17.5% 11.0M 9.3% 44.3M 30.1% 18.7M 17.9%

hpts 205k — 3722k 38.3% 136k — 806k 28.3% 731k 5.3%

call 433k 16.7% 433k 16.7% 1579k 9.2% 9757k 27.0% 2564k 14.3%

Total 13.6M 8.0% 64.2M 18.7% 12.7M 9.2% 54.9M 29.5% 22.0M 17.0%

Time 7.8s 11.6% 50.9s -0.8% 14.0s 12.2% 58.1s 40.3% 21.2s 16.1%

lu
in

d
ex

pts 8.3M 7.3% 25.7M 19.2% 6.2M 10.7% 10.5M 29.2% 3.3M 26.2%

hpts 125k — 1219k 34.8% 86k — 248k 26.0% 179k 8.0%

call 330k 14.4% 330k 14.4% 880k 10.7% 2711k 26.1% 527k 29.2%

Total 8.7M 7.4% 27.3M 19.9% 7.2M 10.6% 13.5M 28.5% 4.0M 25.8%

Time 4.9s 8.3% 19.6s 9.9% 6.8s 10.6% 9.8s 23.7% 3.9s 26.6%

p
m

d

pts 11.9M 5.8% 35.4M 16.8% 8.8M 8.9% 13.6M 26.4% 3.9M 24.8%

hpts 151k — 1499k 33.5% 108k — 443k 15.9% 298k 5.1%

call 363k 14.4% 363k 14.4% 1117k 8.7% 3309k 23.6% 580k 27.5%

Total 12.4M 6.0% 37.3M 17.5% 10.1M 8.8% 17.3M 25.6% 4.8M 23.9%

Time 6.4s 8.0% 24.0s 5.3% 11.5s 9.0% 12.1s 21.1% 4.3s 23.3%

x
al

an

pts 12.7M 6.2% 35.1M 16.3% 15.1M 7.5% 173.8M 40.0% 5.2M 27.9%

hpts 243k — 2176k 36.2% 183k — 6053k 4.7% 336k 5.9%

call 364k 14.3% 364k 14.3% 1866k 8.1% 49297k 30.4% 816k 30.3%

Total 13.3M 6.3% 37.7M 17.4% 17.2M 7.5% 229.2M 37.0% 6.3M 27.1%

Time 7.0s 10.3% 30.7s 1.3% 16.2s 7.5% 897.0s 2.3% 5.5s 22.9%

Table 6.3: Number of context-sensitive facts and percentage decrease from using the

transformer string abstraction, as compared to the explicit string abstraction.

125

facts. This is due to the occurrence of subsuming facts: two facts are derived where the

concretization (the implied context information of transformer strings as explicit strings)

of one is a superset of the other. An example are facts pts(X,H, ∗), pts(X,H, M̂1 ·∗),
pts(X,H, ∗·M̂2), and pts(X,H, M̂1 ·∗·M̂2). Fact pts(X,H, ∗) subsumes facts pts(X,H,A)

for all A. Facts pts(X,H, M̂1 ·∗) and pts(X,H, ∗·M̂2) subsume pts(X,H, M̂1 ·∗·M̂2).

Figure 6.1 illustrates how subsuming facts may arise in a 1-call+H analysis. The variable

v points to an object allocated at allocation site h1 through two data-flow paths, one local

and one context-dependent : the first path is a direct assignment from the allocation site,

resulting in an ε transformer string. The second path is through an instance field of the

receiver object of the invocation of m, resulting in a ĉ1· ĉ1 transformer string. Since all

invocations of m have a receiver object, pts(v, h1, Ĉ ·Ĉ) will be inferred for all method

contexts C of m, resulting in the same explicit enumeration of contexts as the explicit string

representation. Although pts(t, h2, ε) is just one additional fact in the transformer string

representation compared to the explicit string representation, all facts that can be derived

using pts(v, h1, Ĉ ·Ĉ) for some C can also be derived using pts(t, h2, ε) as well, doubling

the amount of work performed by our Datalog engine.

The benchmark bloat suffers the most from subsuming facts that arise from multiple

data-flow paths. A significant number of points-to facts in bloat belong to code that

manipulates objects of an abstract syntax tree. Whenever a node n is allocated (the tree is

constructed bottom-up), the children of n have their “parent” field set to n inside a method

invoked from n’s constructor, which results in heap-points-to facts with transformer strings

of a “we” configuration under 1-call+H analysis (because n was passed as a parameter

through multiple invocations). Thus, loading n from the “parent” field results in points-to

facts with transformer strings of a “we” configuration. n is also passed as a parameter to

a push call of a stack data structure. The receiver variable for the push call points to an

object with transformer strings of a “xwe” configuration. Thus, loading n from the data

structure also results in points-to facts with transformer strings of an “xwe” configuration.

Variables pointing to n do so through data-flow paths (arising partly due to imprecision

126

class T {

Object f;

void m() {

Object v = new Object(); // h1

if(...) {

f = v;

v = f;

}

}

public static void main(String[] args) {

Object t = new T(); // h2

t.m(); // c1

}

}

Transformer string Rule

reach(main, entry) Entry

pts(t, h2, ε) New

call(c1, m, ĉ1) Virt

pts(thism, h2, ĉ1) Virt

reach(m, c1) Reach

pts(v, h1, ε) New

hpts(h2, f, h1, ĉ1) Store

hload(h2, f, v, ĉ1) Load

pts(v, h1, ĉ1 · ĉ1) Ind

Figure 6.1: Points-to relationships from multiple data-flow paths.

127

inherent to a 1-call+H analysis) through both the “parent” field and through the stack data

structure, resulting in a large number of subsuming facts between the two configurations,

which leads to an increase in the analysis time in the 1-call+H analysis of bloat.

6.4 Indexing Efficiency

1-call 1-call+H 1-object 2-object+H 2-type+H

antlr 7.3s 127.7s 33.0s 945.1s 11.1s 215.3s 12.2s 380.0s 3.3s 17.6s

bloat 18.9s 241.7s 204.0s N/A 37.9s 1111.3s 942.2s N/A 17.1s 172.0s

chart 25.2s 398.1s 80.9s 2587.8s 142.4s N/A 33.1s 2210.8s 8.0s 96.2s

eclipse 6.9s 86.2s 51.3s 1949.5s 12.3s 300.9s 34.7s 1033.8s 17.8s 224.6s

luindex 4.5s 56.9s 17.6s 391.5s 6.1s 113.4s 7.5s 131.9s 2.9s 16.0s

pmd 5.9s 72.4s 22.7s 561.2s 10.5s 227.7s 9.6s 446.3s 3.3s 21.0s

xalan 6.3s 78.1s 30.4s 1139.6s 15.0s 425.0s 876.2s N/A 4.2s 33.7s

Table 6.4: Analysis times with transformer configuration specialization of relations and

without specialization.

Inlining of the declarative definition of the compt predicate greatly increases the number

of Datalog rules: the explicit string instantiations have 59 rules for all flavours and levels

of context sensitivity; using the transformer string abstraction, the 1-call and 1-object

instantiations have 162 rules, the 1-call+H instantiation has 566 rules, and the 2-object+H

and 2-type+H instantiations have 1669 rules.

However, the analysis becomes significantly slower if inlining is not performed. Table 6.4

records the analysis times of analyses that use the predicate inlining technique described in

Section 5.10.2 (first columns), and analysis times of analyses that implement the compt

predicate as a function (second columns). Entries marked as N/A are analyses that did not

terminate within one hour.

128

6.5 Summary

The new transformer string abstraction represents the same context information as the

explicit string abstraction using fewer facts: the geometric mean reductions in the numbers

of facts over the seven benchmarks are 6.3%, 17.5%, 9.8%, 28.9%, and 20.1% for 1-call,

1-call+H, 1-object, 2-object+H and 2-type+H configurations, respectively. Using the

techniques described in Section 5.10.2, the more efficient data representation translates

to improved analysis times in general: the geometric mean reductions in analysis times

are 8.7%, -0.7%, 8.8%, 27.1%, and 14.9%, respectively, for the configurations listed above.

The 2-object+H configuration, which is the most precise configuration that scales to large

programs, has the greatest improvement in analysis efficiency.

129

Chapter 7

Related Work

Our deduction rules are adapted from the rules in the Doop Framework for Java Pointer

Analysis [5]. Doop supports various flavours of context sensitivity, including call-site,

object, type sensitivity, and combinations thereof [16]. Doop uses the proprietary Datalog

engine LogicBlox [12]. Our exception analysis, reflection analysis, and handling of native

methods are straight translations of Doop’s rules, written in LogicBlox’s dialect of Datalog,

to the dialect of our Datalog engine.

There are several cost/precision trade-offs in pointer analysis [15]: A unification-based

(also called Steensgaard’s or bi-directional analysis) models assignments with equivalence

constraints (a statement “p=q;” also has the effects of “q=p;”). Points-to relations can

be expressed as equivalence classes on variables, and pointer analysis can be performed in

near-linear time [38]. An inclusion-based analysis (also called Andersen’s or uni-directional

analysis) models assignments using inclusion constraints [2, 11], which is the type of analysis

presented in this dissertation.

Our analysis is flow-insensitive meaning that the analysis conservatively assumes that

statements in a program may be executed in any order. This assumption allows computation

of points-to facts that are conservative for all program points in a program. A simple ap-

130

proach to adding flow-sensitivity to a flow-insensitive pointer analysis is to add a component

to the points-to relation that indicates the program point of the points-to relationship. This

is described as a dense data-flow analysis because data-flow facts that are not affected by a

particular statement are still replicated before and after every statement. A sparse analysis

strives to represent information only at program points where it changes. Wegman and

Zadeck formulated a sparse constant propagation algorithm in [43], using the Static Single

Assignment (SSA) form [10] of a program. The SSA form of a program has the property

that all variables are assigned exactly once. Hardekopf and Lin presented a semi-sparse

pointer analysis for C/C++ where points-to facts of top-level variables (objects that are

not indirectly referenced) are propagated sparsely but points-to facts of other objects

(address-taken stack objects and heap objects that may be referenced through pointers) are

propagated densely [13]. Yu et al. partition objects into levels, where pointers that may

reference an object are at the same or higher level as the object, which allows sparse analysis

of more objects than just the top-level objects. Some of the benefits of flow-sensitivity can

be obtained by transforming the input program into SSA form. Kastrinis and Smaragdakis

noted only a marginal improvement in precision from transforming Java programs into SSA

form when analyzed using Doop [16]. We do not apply the SSA transformation to input

programs in our analysis.

The two primary approaches to context-sensitive data-flow analysis are the call-string

approach and the functional (or summary-based) approach [31]. Both aim to improve the

precision of an analysis by preventing data-flow facts from one call site from propagating to

another. A functional approach summarizes the effect of a procedure as a mapping from

data-flow facts before a procedure invocation to data-flow facts after the invocation. Our

analysis uses the call-string approach. Originally, the call-string approach was formulated

to use call sites as contexts, but analysis of object-oriented languages have the benefit

of using better choices of contexts: object- and type-sensitive analyses have a better

performance-to-precision trade-off than call-site sensitivity [23, 19, 34].

If a data-flow analysis has distributive transfer functions, then the functional approach

131

has the precision of a call-string approach with unbounded call-strings [31]. Pointer analysis

(and its simpler cousin: constant-propagation analysis) has a non-distributive transfer

function. The functional approach to pointer analysis is complicated by the need to abstract

the unbounded number of heap objects at the start of an invocation of a procedure (the

heap objects reachable by dereferencing parameters), and the unbounded number of heap

objects the procedure may allocate itself. One approach to the first problem is to identify

heap objects by abstract access paths starting from a parameter: for example, all objects

pointed-to by field f of a parameter p are abstracted by an abstract object identified by

the access path “p.f”. A complication is that objects may be reachable through multiple

access paths and thus potentially abstracted by multiple abstract objects. Chatterjee et

al. address this issue in their Relevant Context Inference analysis by predicating points-to

tuples with propositional formulas that describe the aliasing relationships of parameters [8].

Sui et al. use Steensgaard’s analysis as a pre-analysis to determine potentially aliasing

access-paths [39], and merge them into a single abstract object. Wilson and Lam detect

aliasing access paths and merge abstract objects during the analysis [45]. The three analyses

described above are for C/C++.

Sălcianu and Rinard presented a summary-based pointer analysis for Java that identifies

pure methods (a method is pure if it does not mutate any object that exists before the

method’s invocation) and various properties of parameters (whether any objects accessible

through a parameter are mutated by a method) [29]. They measure the precision of their

analysis by the percentage of methods that were identified as being pure.

Sridharan and Bod́ık proposed a CFL-reachability-based demand-driven context-sensitive

analysis for Java [36]. Their analysis incorporates two approximations: recursive methods

are handled context-insensitively and field accesses are initially assumed to alias without

checking whether they access a common object. Their refinement technique attempts to

increase precision by gradually removing the second assumption until a client of the analysis

is satisfied by answers to a given alias query. They build a context-sensitive call-graph and

their analysis is call-site-sensitive.

132

Xu and Rountev presented an analysis that reduces the complexity of context-sensitive

pointer analysis through a technique similar to the one used in our analysis [46]. They

identify a flowing point of a points-to fact, which is a method where cloning points-to

facts into the callers of the method results in redundant context information. In our

analysis, given a points-to fact pts(Z,H, Âx ·Âe) of a call-site-sensitive instantiation, the

base method of Âx ·Âe (defined in Section 4.4.1) is the flowing point as defined by Xu

and Rountev. Their analysis is implemented as a procedural algorithm that inlines the

points-to graphs of callee methods into their callers. Our contribution is that we formally

define an algebraic structure of context transformations that does not enumerate redundant

context information, and show that a common set of parameterized deduction rules can

be instantiated, using either the explicit string or transformer string abstractions, into

efficient Datalog programs. Comparing the precision of Xu and Rountev’s analysis to our

analysis is difficult: they analyze the benchmark programs under JDK version 1.3, which is

significantly smaller than the JDK analyzed by DOOP and our analysis. For example, they

report 4451 virtual call sites in antlr out of which 3611 resolve to a single target using an

1-obj+H analysis. In comparison, our analysis reports 26744 reachable virtual call sites out

of which 24895 resolve to a single target under context-insensitive analysis. The magnitude

of the size difference makes comparative analysis between the two algorithms difficult.

Binary decision diagrams (BDDs) have been extensively studied as a technique for

improving the scalability of context-sensitive pointer analysis [44, 49, 19]. The ability of

BDDs to merge redundant context information is heavily dependent on a chosen variable

ordering. A variable ordering that minimizes the number of BDD nodes used to represent

the points-to relation has been experimentally determined to yield the best performance. A

consequence of this choice is that although the facts-to-BDD-nodes ratio for the points-to

relation can be as low as 100:1 (indicating a very high level of compression), the ratio

for other relations, such as the call-graph edge relation, can be as high as 1:8 [5]. The

choice to optimize variable ordering for the points-to relation is based on the observation

that for call-site-sensitive analyses and for object-sensitive analyses with less than two

133

method contexts, points-to facts greatly outnumber other inferred facts. For example, in

a 1-object-1-heap analysis of the luindex benchmark, non-points-to facts constitute less

than 15% of all inferred facts. The highest level of object sensitivity in which BDD-based

algorithms have scaled is 1-object-1-heap analysis. There is a peculiar change in relation

sizes between 1-object-1-heap and 2-object-1-heap analysis. The size of the context-sensitive

points-to relation decreases in size by approximately a third, which is surprising because an

exponential increase is typically expected when increasing the level of context sensitivity.

Moreover, the size of the context-sensitive call-graph relation increases three-fold. The

proportion of non-points-to facts to all inferred facts doubles to approximately 30%. Thus,

the choice of relation to use to optimize the variable ordering becomes less clear-cut.

In contrast, the transformer string abstraction decreases the sizes of all relations, and

the reduction is most pronounced in the 2-object-1-heap analysis, which is presently the

cutting-edge analysis for Java in terms of precision that scales to moderately sized programs.

Analysis performance can be improved by varying the level of context sensitivity of

program elements. For example, allocation sites of containers (e.g. Java’s ArrayList class)

are quintessential targets of higher levels of heap contexts, because heap contexts allow finer

static differentiation of elements stored in different containers during run-time. In contrast,

heap contexts are useless to allocation sites of Java’s String class, because the class has

no instance fields. Our analysis implementation is hard-coded to treat allocation sites of

Strings context-insensitively, which is standard practice in Java pointer analysis [19, 5].

Smaragdakis et al. presented an analysis where pointer analysis is performed twice: the

first run is context-insensitive, and heuristics applied to the metrics collected from the first

run determine which allocation and invocation sites are treated context-sensitively in the

second run [34]. Zhang et al. presented an analysis where a SAT solver is used to determine

whether a certain level of context sensitivity is able to resolve a pointer analysis query [47].

Tan et al.’s analysis uses the result of a pre-analysis to construct an object allocation

graph [40]: similar to how paths in a call-graph form the reachable method contexts of a

call-site-sensitive analysis, paths in an object allocation graph form the reachable method

134

context of an object-sensitive analysis. Using this graph, redundant context elements are

identified: nodes in the graph that can be merged without merging distinct paths. Thus

their analysis attains a higher precision for a given truncation length of context strings.

A demand-driven algorithm attempts to improve performance by only computing pointer

information that is relevant to a given query [48, 37, 36, 14, 30]. An exhaustive analysis

expressed as a logic program can be transformed into a demand-driven analysis using the

magic sets transformation [3, 26, 41]. The various algorithms differ in their caching scheme

of partial points-to information (e.g. caching path fragments of CFL-reachability queries).

Sridharan and Bod́ık caches LF ∩ LC-paths (see Section 2.2) together with the call-strings

corresponding to the beginnings and ends of the paths [36]. These pairs of call stacks have

the same interpretation as pairs of strings in an explicit string abstraction.

One of the earliest uses of Datalog in static analysis was Whaley and Lam’s formulation

of context-sensitive analysis in a BDD-based Datalog engine bddbddb [44]. Zhang et

al. [47] also utilized bddbddb. Chord is Java analysis framework that supports static

analyses written in either Java or in Datalog [24]. Doop is implemented in DatalogLB, a

dialect of Datalog for the proprietary Datalog engine LogicBlox [12], which has an extensive

number of features including negation, complex terms, and constraints on values. LogicBlox

is freely available for research use.

135

Chapter 8

Conclusion

We have presented a formulation of pointer analysis based on an algebraic structure of

context transformations, where the predominant abstraction of contexts, that of context

strings, is shown to be one representation of transformations. Our formulation of pointer

analysis is a unification of the concepts used in the representation of context information

in context-string-based analyses and in CFL-based analyses, and we state the theoretical

precision differences of the two representations.

The ideal of representing local flow of pointer information in a form that is invariant

with respect to the calling contexts of a method, a concept that forms the backbone of

summary-based pointer analysis, is embodied by our new abstraction. The result is a new

abstraction of pointer information that empirically has less redundancy than the context

string abstraction. Less redundancies allow precise context-sensitive analysis to take less

time and memory.

Recently, implementing static analyses in Datalog has become popular. The benefits of

using Datalog include rapid prototyping, and more importantly, better reproducibility of

an analysis. However, there may be aspects of an analysis that appear to be incompatible

with the use of a Datalog engine. In particular, static analyses use lattices as abstractions

136

and may require the computation of join, meet, and other operations. If implemented

naively in a Datalog engine, the analysis may have an unacceptably poor performance,

and without a systemic translation, implementing an efficient program by hand may be a

daunting task (for example, the transformer string instantiation has thousands of rules).

We have presented an idea of how static analyses that use complex abstractions can be

translated into an efficient Datalog program.

A direction of future work is to evaluate the efficiency difference between the explicit

string and transformer string abstractions under demand-driven workloads. Datalog pro-

grams that exhaustively compute information can be converted to a demand-driven program

through the magic sets transformation [3]. There may be synergy between demand-driven

workloads and the transformer string abstraction’s ability to represent local pointer infor-

mation of a method without enumerating all reachable contexts of the method.

137

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of Databases:

The Logical Level. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1st edition, 1995.

[2] Lars Ole Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, University of Copenhagen, 1994.

[3] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. Magic

sets and other strange ways to implement logic programs (extended abstract). In

Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database

Systems, PODS ’86, pages 1–15, New York, NY, USA, 1986. ACM.

[4] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.

Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish

Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben

Wiedermann. The DaCapo benchmarks: Java benchmarking development and analysis.

In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented

Programming Systems, Languages, and Applications, OOPSLA ’06, pages 169–190,

New York, NY, USA, 2006. ACM.

[5] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of

sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN Conference

138

on Object Oriented Programming Systems Languages and Applications, OOPSLA ’09,

pages 243–262, New York, NY, USA, 2009. ACM.

[6] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Comput. Surv., 24(3):293–318, September 1992.

[7] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Datalog

(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering,

1(1):146–166, March 1989.

[8] Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. Relevant context

inference. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL ’99, pages 133–146, New York, NY, USA,

1999. ACM.

[9] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In Pro-

ceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, pages 238–252. ACM, 1977.

[10] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck.

An efficient method of computing static single assignment form. In Proceedings of the

16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 25–35. ACM, 1989.

[11] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interproce-

dural points-to analysis in the presence of function pointers. In Proceedings of the ACM

SIGPLAN 1994 Conference on Programming Language Design and Implementation,

PLDI ’94, pages 242–256, New York, NY, USA, 1994. ACM.

[12] Todd J. Green, Molham Aref, and Grigoris Karvounarakis. LogicBlox, platform

and language: A tutorial. In Proceedings of the Second International Conference on

139

Datalog in Academia and Industry, Datalog 2.0’12, pages 1–8, Berlin, Heidelberg, 2012.

Springer-Verlag.

[13] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In Pro-

ceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’09, pages 226–238, New York, NY, USA, 2009. ACM.

[14] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In ACM SIGPLAN

Notices, volume 36, pages 24–34. ACM, 2001.

[15] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings

of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, PASTE ’01, pages 54–61, New York, NY, USA, 2001. ACM.

[16] George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to

analysis. In Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’13, pages 423–434, New York, NY, USA,

2013. ACM.

[17] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the International Symposium on Code

Generation and Optimization: Feedback-directed and Runtime Optimization, CGO ’04,

pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[18] Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java. Master’s

thesis, McGill University, December 2002.

[19] Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive

points-to analysis using a BDD-based implementation. ACM Transactions on Software

Engineering and Methodology, 18(1):3:1–3:53, October 2008.

140

[20] Percy Liang and Mayur Naik. Scaling abstraction refinement via pruning. In Proceedings

of the 32Nd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’11, pages 590–601, New York, NY, USA, 2011. ACM.

[21] Percy Liang, Omer Tripp, and Mayur Naik. Learning minimal abstractions. In

Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’11, pages 31–42, New York, NY, USA, 2011. ACM.

[22] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[23] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensi-

tivity for points-to analysis for Java. ACM Transactions on Software Engineering and

Methodology, 14(1):1–41, January 2005.

[24] Mayur Naik. Chord: A versatile platform for program analysis. In Tutorial at ACM

Conference on Programming Language Design and Implementation, 2011.

[25] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Efficient field-sensitive pointer

analysis of c. ACM Trans. Program. Lang. Syst., 30(1), November 2007.

[26] Thomas Reps. Solving demand versions of interprocedural analysis problems. In

International Conference on Compiler Construction, pages 389–403. Springer, 1994.

[27] Thomas Reps. Program analysis via graph reachability. Information and Software

Technology, 40(11-12):701–726, 1998.

[28] Thomas Reps. Undecidability of context-sensitive data-dependence analysis. ACM

Transactions on Programming Languages and Systems, 22(1):162–186, January 2000.

[29] Alexandru Sălcianu and Martin Rinard. Purity and side effect analysis for java

programs. In International Workshop on Verification, Model Checking, and Abstract

Interpretation, pages 199–215. Springer, 2005.

141

[30] Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-based points-

to analysis. In Proceedings of the Tenth International Symposium on Code Generation

and Optimization, pages 264–274. ACM, 2012.

[31] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis,

chapter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[32] Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Citeseer,

1991.

[33] Yannis Smaragdakis and Martin Bravenboer. Using datalog for fast and easy program

analysis. In Datalog Reloaded, pages 245–251. Springer, 2011.

[34] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. Pick your contexts well:

Understanding object-sensitivity. In Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’11, pages 17–30,

New York, NY, USA, 2011. ACM.

[35] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:

Context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’14, pages

485–495, New York, NY, USA, 2014. ACM.

[36] Manu Sridharan and Rastislav Bod́ık. Refinement-based context-sensitive points-

to analysis for Java. In Proceedings of the 27th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’06, pages 387–400, New

York, NY, USA, 2006. ACM.

[37] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bod́ık. Demand-driven

points-to analysis for Java. In Proceedings of the 20th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications,

OOPSLA ’05, pages 59–76, New York, NY, USA, 2005. ACM.

142

[38] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the

23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’96, pages 32–41, New York, NY, USA, 1996. ACM.

[39] Yulei Sui, Sen Ye, Jingling Xue, and Jie Zhang. Making context-sensitive inclusion-

based pointer analysis practical for compilers using parameterised summarisation.

Softw. Pract. Exper., 44(12):1485–1510, December 2014.

[40] Tian Tan, Yue Li, and Jingling Xue. Making k-object-sensitive pointer analysis more

precise with still k-limiting. In International Static Analysis Symposium, pages 489–510.

Springer, 2016.

[41] K Tuncay Tekle and Yanhong A Liu. More efficient datalog queries: subsumptive

tabling beats magic sets. In Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data, pages 661–672. ACM, 2011.

[42] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay

Sundaresan. Soot - a Java bytecode optimization framework. In Proceedings of the 1999

Conference of the Centre for Advanced Studies on Collaborative Research, CASCON

’99, pages 13–. IBM Press, 1999.

[43] Mark N Wegman and F Kenneth Zadeck. Constant propagation with conditional

branches. ACM Transactions on Programming Languages and Systems (TOPLAS),

13(2):181–210, 1991.

[44] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference

on Programming Language Design and Implementation, PLDI ’04, pages 131–144, New

York, NY, USA, 2004. ACM.

[45] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis for c

programs. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming

143

Language Design and Implementation, PLDI ’95, pages 1–12, New York, NY, USA,

1995. ACM.

[46] Guoqing Xu and Atanas Rountev. Merging equivalent contexts for scalable heap-cloning-

based context-sensitive points-to analysis. In Proceedings of the 2008 International

Symposium on Software Testing and Analysis, ISSTA ’08, pages 225–236, New York,

NY, USA, 2008. ACM.

[47] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. On

abstraction refinement for program analyses in Datalog. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’14, pages 239–248, New York, NY, USA, 2014. ACM.

[48] Xin Zheng and Radu Rugina. Demand-driven alias analysis for C. In Proceedings of

the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’08, pages 197–208, New York, NY, USA, 2008. ACM.

[49] Jianwen Zhu and Silvian Calman. Symbolic pointer analysis revisited. In Proceed-

ings of the ACM SIGPLAN 2004 Conference on Programming Language Design and

Implementation, PLDI ’04, pages 145–157, New York, NY, USA, 2004. ACM.

144

	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Organization
	Typographical Conventions

	Background
	Introduction to Context Sensitivity
	Flavours of Context Sensitivity
	Heap Context
	Context-string-based Analysis

	Context-free Language Reachability Formulation of Pointer Analysis
	Intraprocedural Field-sensitive Analysis
	Context-sensitive Analysis

	Context Transformations
	Intuition
	Context Transformation Domain
	Pointer Analysis using Context Transformations
	Input Predicates
	Deduction Rules

	Parameterized Deduction Rules
	Abstraction
	Explicit Strings
	Transformer Strings

	Soundness and Precision
	Main Results
	Outline of Proofs

	General Properties
	Soundness
	Untruncated Concretization
	Superset Theorem

	Precision
	Consistency
	Truncated Concretization
	Derivability
	Subset Theorem

	Implementation
	Introduction to Datalog
	Complex Terms
	Evaluation
	Stratification
	Syntax and Type System
	Index Declarations and Cost Estimates
	Join Order
	Rule Evaluation and Code Generation
	Inline Predicates
	Field-sensitive C Analysis

	Context Transformation Analysis
	Explicit String Instantiation
	Transformer string Instantiation
	Configuration Reduction

	Evaluation
	Experimental Setup
	Analysis Precision
	Analysis Efficiency
	Indexing Efficiency
	Summary

	Related Work
	Conclusion
	References

