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Abstract

The goal of this work is to understand the application of the evolutionary programming

approach to the problem of quantum circuit design. This problem is motivated by the

following observations:

• In order to keep up with the seemingly insatiable demand for computing power our

computing devices will continue to shrink, all the way down to the atomic scale, at

which point they become quantum mechanical systems. In fact, this event, known

as Moore’s Horizon, is likely to occur in less than 25 years.

• The recent discovery of several quantum algorithms which can solve some interesting

problems more efficiently than any known classical algorithm.

• While we are not yet certain that quantum computers will ever be practical to build,

there do now exist the first few astonishing experimental devices capable of briefly

manipulating small quantities of quantum information. The programming of these

devices is already a nontrivial problem, and as these devices and their algorithms

become more complicated this problem will quickly become a significant challenge.

The Evolutionary Programming (EP) approach to problem solving seeks to mimic the

processes of evolutionary biology which have resulted in the awesome complexity of living

systems, almost all of which are well beyond our current analysis and engineering capabil-

ities. This approach is motivated by the highly successful application of Koza’s Genetic

Programming (GP) approach to a variety of circuit design problems, and specifically the

preliminary reports by Williams and Gray and also Rubinstein who applied GP to quantum

circuit design.

Accompanying this work is software for evolutionary quantum circuit design which

incorporates several advances over previous approaches, including:

• A formal language for describing parallel quantum circuits out of an arbitary elemen-

tary gate set, including gates with one or more parameters.

• A fitness assessment procedure that measures both average case fidelity with a respect

for global phase equivalences, and implementation cost.
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• A Memetic Programming (MP) based reproductive strategy that uses a combination

of global genetic and local memetic searches to effectively search through diverse

circuit topologies and optimize the parameterized gates they contain.

Several benchmark experiments are performed on small problems which support the

conclusion that Evolutionary Programming is a viable approach to quantum circuit design

and that further experiments utilizing more computational resources and more problem

insight can be expected to yield many new and interesting quantum circuits.
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Chapter 1

Introduction

The goal of this work is to understand the application of the evolutionary programming

approach to problem of quantum circuit design.

The first chapter provides a brief overview of quantum computing, including a short in-

troduction to quantum mechanics and computer science. The section concludes with a

discussion of the particular quantum circuit formalism employed by this work, and a for-

mal statement of the quantum circuit design problem that is the focus of this work.

The second chapter provides a brief overview of evolutionary programming, including a

short introduction to evolution, how it can be seen as a search algorithm, and a history of

the main attempts to apply evolutionary concepts to problem solving.

Next is a discussion of the application of genetic programming to the specific problem of

circuit design, known as evolutionary circuit design. This section first examines the highly

successful preliminary work by Koza and others who have evolved many interesting analog

and digital electronic circuits. We then consider the very recent successful applications,

first by Williams and Gray, of evolutionary circuit design to quantum circuits. These clear

and positive reports are the motivation for this work.

Building on the general framework developed by Koza, and guided by the work of Williams

and Gray, the next chapter provides a thorough overview of a proposed approach to evolu-
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2 On the Evolutionary Design of Quantum Circuits

tionary quantum circuit design which is implemented by the accompanying software. The

software is designed to be fast, flexible, and easy to use by a wide audience.

The next chapter contains a report on several experiments that were performed in order to

test the effectiveness of the proposed approach, and to provide benchmarks for comparison

with future approaches. Each experiment yielded a successful solution to a small but still

significant quantum circuit design problem.

The final chapter reflects upon the experimental results, and concludes that the evolution-

ary approach to quantum circuit design is viable. This work ends with a discussion of some

directions for future research, including the need for larger scale experiments.



Chapter 2

What is Quantum Computing?

The theory of computation has traditionally been studied almost entirely in the

abstract, as a topic in pure mathematics. This is to miss the point of it. Com-

puters are physical objects, and computations are physical processes. What

computers can or cannot compute is determined by the laws of physics alone,

and not by pure mathematics.

David Deutsch [12]

Quantum computing is the product of two of the most significant advances in the history

of science: the theory of quantum mechanics, which describes the universe at the smallest

scale with great accuracy, and the theory of computation, which has resulted in digital

computers with exponentially increasing power and many efficient algorithms that are

capable of solving a wide range of interesting problems.

3



4 On the Evolutionary Design of Quantum Circuits

2.1 The Quantum Age

Anybody who is not shocked by quantum theory has not understood it.

Niels Bohr [41]

The 19th century saw many great advances in science and technology that transformed

our understanding of the universe. For a brief period it seemed that all of the natural

world would soon be explained by a compact, intuitive, and deterministic theory based

primarily on Newtonian mechanics and Maxwell’s Electromagnetism, which is now known

retrospectively as classical physics. But at the turn of the 20th century there were three

easily reproducible experiments which were to defy the greatest efforts of those who would

attempt to explain them with the classical physics. The attempt to understand these

anomalous experiments lead directly to the shocking discovery that energy does not exist

in arbitrary amounts, but only in whole multiples of some vanishingly small but finite

quantity, known as a quanta.

2.1.1 Quantum Mechanics

Soon after the momentous discovery of the quanta the work of Schrödinger, Heisenberg, and

Dirac yields a new and more correct theory of physics which entailed an entirely new and

strange description of particles and their behavior. This theory, now known as Quantum

Mechanics, uses the quanta to describe the universe at the smallest scale with astonishing

accuracy, and yet can be broadly characterized with just three relatively simple postulates.

The first postulate, known as the state space postulate, states that any quantum mechanical

system S is mathematically described by a Hilbert space. Each distinct state of the system

is represented by a unit length vector commonly denoted ψ. If a system is composed of two

distinct independant systems, then the state space of this composite system is obtained by

applying the tensor product to the component state spaces.

S = S1 + S2 ⇐⇒ H = H1 ⊗H2 (2.1)
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The second postulate, known as the time evolution postulate, states that for any physically

possible transformation of a closed quantum mechanical system from state ψ1 to state ψ2,

there is a corresponding unitary operator U , known as the time evolution operator, such

that:

ψ2 = Uψ1 (2.2)

The third postulate, known as the measurement postulate, states that for each observ-

able measurement outcome φ of a quantum mechanical system there is a corresponding

measurement operator Mφ, such that if the system is in state ψ then the probability of

observing φ is given by:

Pr(φ) = (Mφψ)†(Mφψ) (2.3)

After measurement, the system is in the state ψ2 which is given by:

ψ2 =
Mφψ
√

Pr(φ)
(2.4)

Despite the relative simplicity of these postulates they imply a fantastically strange picture

of the universe that bares little or no resemblance to everyday experience.

One famous example is the Superposition Principle, which states that while quantum

mechanical systems are always observed to be in a single definite state, when they are not

observed they can also exist in an indefinite blend of states, known as a superposition. This

is the subject of the famous Schrödinger’s Cat parable, in which a live cat is placed in a

box along with a vial of poison, a radioactive substance, and a device that will release the

poison when it detects the radioactive decay of the substance. When the box is open the cat

is known with certainty to be alive. However, once the box is sealed, quantum mechanics

implies that the time at which the radioactive substance will undergo decay cannot be

known with certainty. Therefore we cannot be certain if the poison has been released, and

hence the state of the cat is also uncertain. In fact, the cat must be considered to be both

alive and dead until the box is opened and the cat is observed. While this parable was

originally intended by Schrödinger to dismiss the concept of a superposition as an obvious

absurdity, it is now accepted as a valid consequence of quantum mechanics.
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The discovery of quantum mechanics sent out a shockwave as many philosophical domains

were forced to respond to this strange new understanding of the natural world. Quantum

mechanics has been tested with unprecedented accuracy, making it one of the most suc-

cessful scientific theories in history, but it is not entirely perfect. In particular there as yet

remains no way to represent the force of gravity in such a way as to be consistent with

the other celebrated theory of physics, general relativity. Attempts to unify these theories

have so far been unsuccessful, but it is clear that the question is of the utmost importance

if we are to have a more complete and unified theory of physics.

2.2 The Computing Age

In natural science, Nature has given us a world and we’re just to discover its

laws. In computers, we can stuff laws into them and create a world.

Alan Kay [42]

The beginning of the history of computing is lost in ancient history, and is perhaps as old

as life itself. Humans probably began by representing numbers with fingers, collections

of pebbles, marks pressed into clay, and later symbols written onto paper. The ability

to represent numbers immediately motivated the invention of various tools to aid in the

performance of arithmetic. One of the earliest surviving examples is the abacus, which is a

hand operated calculator that was independently discovered by many ancient civilizations

and is still in use today, over 2800 years later.

The fundamental concept of computation is the algorithm, which is an unambiguous pro-

cedure for constructing a solution to a certain problem. The word algorithm originates

from the name of 9th century Persian mathematician Abu Abdullah Muhammad bin

Musa al-Khwarizmi, who published several seminal scientific texts, including Al-Jabr wa-al-

Muqabilah. This text contains procedures for solving certain linear and quadratic equations

that were studied in Europe for over 500 years, and its title serves as the origin of the term

algebra.
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Over the next millennium the desire to perform ever increasingly complicated calculations

resulted in ever increasingly clever mechanical devices. However these devices all performed

essentially the same fixed set of calculations which were used to solve essentially the same,

albeit larger, arithmetical problems. The first proposal for a general purpose programmable

computer was the analytical engine designed by Babbage in 1831. This design used steam

to power a complex system of gear driven mechanics which processed programs encoded

onto punched cards to generate output on a text printer or graphical curve plotting device.

Unfortunately the analytical engine required such mechanical precision that it was too

expensive to build at the time. This was an early indication of the main obstacle to

large, precise, general purpose computing devices, namely the inevitable minor faults in

the components of the computer. These minor faults quickly multiply and compound to

become major faults which destroy the accuracy of the output. The only technique for

dealing with these faults at the time was to keep the computing device simple, slow, and

as precisely manufactured, and therefore expensive, as possible.

2.2.1 The Formalization of the Algorithm

The effort to raise the study of computation to a fully formalized theory begins with

a challenge made at the turn of the 20th century by Hilbert to clarify the consistency

of arithmetic. In particular, Hilbert’s challenge implies an algorithm to determine the

validity of a mathematical proof, thereby removing the necessity of fallible human intuition.

However, in 1930 Gödel proved the much celebrated Incompleteness Theorem [17], which

states that any consistent formal system of sufficient complexity is necessarily incomplete.

That is, there are some problems for which there do not exist algorithms. Despite this

indication of a fundamental limit, multiple attempts were made to formalize the intuitive

notion of an algorithm. In 1936, Turing published a celebrated result [62] which showed

that all of the different models of computation, including the Universal Turing Machine

(UTM), were in fact completely equivalent. To this day, no fundamentally more powerful

but still practical model of computation has been found, and it is a widely held conjecture,

known as the Church Turing Thesis, that no such models exist.
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The study of the algorithm continued by further classifying them according to their required

amount of computational resources, such as storage space or execution time, as a function

of their input size. The formalization of computational complexity began in the early

1960’s, establishing an important new field of computer science [20] [8] [23]. An algorithm

is defined to be efficient if the amount of resources it requires scales no faster than some

polynomial in the input size, and inefficient if it grows faster than any polynomial. A

computational problem is then defined to be easy if there exists an efficient algorithm to

solve it, and if no such algorithm exists then the problem is hard.

A large class of interesting problems, such as database searching and sorting, much of

algebra, and many engineering simulations turn out to be easy. In addition, in a conjecture

known as the Strong Church Turing Thesis, the emulation of any other algorithmic device

is an easy problem for a UTM. Occasionally, the discovery of the first efficient algorithm for

a problem can change its status from hard to easy, but there is a large class of interesting

problems that appear to be intrinsically hard. The only way we can solve large instances

of hard problems is to build massively powerful computers, or to discover a new and more

powerful model of computation.

2.2.2 The Digital Computer Revolution

The first and only practical, reliable, scalable, and general purpose computing device is the

digital computer. Its invention yielded a sudden availability of ever increasing computing

power that is so significant that it serves as the transition point in history between the

Industrial Age and the Computing Age. The digital computer was itself made possible by

tremendously synergistic breakthroughs in three domains: computability theory, coding

theory, and computer engineering.

The breakthrough in computability theory was the invention of the digital computer. In

1937 Shannon proposed the Digital Circuit Model [54], which showed how to practically

implement the Boolean algebra system using readily available electronic switches. Then

in 1946, von Neumann and others developed the von Neumann Architecture [7] which
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provided a basic framework for the design of scalable and general purpose digital computers

using digital circuits. Nearly every computer ever made has followed this design.

The breakthrough in coding theory was the invention of efficient error correcting digital

circuits which resulted from the work Shannon [55], Hamming [53], and Huffman [22] circa

1950. These techniques made it possible for the first time to build extremely reliable

computing devices out of less reliable parts.

The breakthrough in computer engineering was the invention of the microprocessor. This

began with the invention of the transistor by Shockley, Bardeen, and Brattain at Bell

Laboratories in 1947. The transistor immediately became an important tool for computer

engineering because it could be used as a tiny, reliable, and cost effective digital circuit

component. While the transistor did facilitate several early digital computers, the real

impact wasn’t felt until the introduction of the Intel 4004 digital microprocessor in 1971.

This first microprocessor contained more than 2300 transistors on a 3 by 4 millimeter chip,

and could be used as the core of a reasonably low cost, reliable, and general purpose digital

computer.

2.2.3 Moore’s Law

Since the invention of the microprocessor the demand for computing power has been seem-

ingly insatiable, and has motivated unprecedented levels of research and development in

the rapidly maturing fields of computer science and computer engineering. As a result, the

transistor count of a typical microprocessor is doubling approximately every 18 months,

as shown in 2.5. This trend was first observed by Moore in 1965 [40], and his prediction

that this trend would continue is known as Moore’s Law. The red curve in 2.5 shows the
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extrapolation of this trend to 2006.

1970 1975 1980 1985 1990 1995 2000 2005
year

0.5 B

1.0 B

1.5 B

transistor
count

(2.5)

In practical terms, Moore’s Law means that the amount digital computing power that

can be obtained for a fixed cost is doubling approximately every 18 months. So for as

long as this trend continues, we can expect to solve instances of easy problems that are

twice as large, and slightly larger instances of hard problems. However, to fully realize this

astonishing explosion of computing power requires the design and implementation of ever

increasingly complicated hardware and software devices, and current strategies are already

struggling to keep up.

One profound obstacle is Moore’s Horizon, which refers to the time when transistors will

have been shrunk all the way down to the atomic scale. At that point computing devices will

enter the domain of quantum mechanics. We cannot yet efficiently engineer complicated

devices at that scale, nor is it clear that we will be able to do so anytime soon. In addition,

the error inducing noise that atomic scale elements would be subjected to is radically

different than its current day large scale counterpart, and therefore the current methods

of error correction would no longer work. However, at the current pace Moore’s Horizon

is less than 25 years away. This naturally leads to the question as to whether computing

with quantum mechanical systems will ever be practical, or even advantageous.
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2.3 Quantum Computing

In 1980, Benioff [4] expressed the first ideas relating quantum mechanics to computation.

Shortly thereafter, Feynman [13] and Manin [39] independently observed that while the

simulation of quantum mechanics on a classical computing device was possible, it seemed

to necessarily require the representation and manipulation of exponentially large objects,

and it follows that no classical computing device can perform this simulation efficiently.

Deutsch was the first to explore the possibilities of computing with quantum mechani-

cal systems which resulted in the quantum analog of the UTM, known as the Universal

Quantum Computer (UQC) [12]. Since quantum mechanics can be simulated by classical

computers, the UQC and UTM can solve the same set of problems. However, since the

simulation of quantum mechanics is believed to be a hard problem for classical computers,

this leads to the surprising observation that there are some computations that a UQC

can perform efficiently that a UTM cannot. Therefore the Strong Church Turing Thesis

would appear to be false. It remains an important open question, perhaps best described

as the Strong Church Turing Deutsch Thesis, as to whether or not the UQC can efficiently

simulate all physical systems.

Considerable recent research has explored which other kinds of computations, other than

physical simulations, that a quantum computer might perform more efficiently than a

classical computer. Deutsch gave the first glimpse of the tremendous potential of quantum

algorithms by showing that by framing the problem in terms of quantum mechanics, it was

possible to obtain global parity information about a binary function by only evaluating the

function once, where any classical algorithm must necessarily evaluate the function twice

[12]. While this is not a very interesting problem, it marked the beginning of intensive

research into the area which has resulted in several algorithms that do solve some interesting

problems, including:

• The Quantum Search Algorithm [18] can be expected to find a particular element

in an unstructured list of n elements in only
√
n steps, whereas any classical search

is expected to take n
2

steps. This algorithm can be applied extremely broadly as an

efficiency boosting subroutine.
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• The Quantum Fourier Transform (QFT) [43] can perform the quantum analog of the

Fourier transformation on a n qubit quantum register in only n2 log(n) log(log(n))

steps, which is exponentially faster than the n22n many steps of the classical algo-

rithm. While the QFT does not give all of the information provided by the classical

version, it can still be applied to a wide range of interesting problems, such as the

hidden subgroup problem, order finding in groups, counting, and the discrete log

problem.

• Shor’s Algorithm [57] uses the QFT as a subroutine to efficiently factor large numbers

which remains a hard problem for classical computers. This algorithm is of particular

practical interest because it can be used as part of an effective attack on the popular

RSA encryption protocol.

Most research in quantum algorithms is expressed in the quantum analog of the classical

circuit model first formulated by Deutsch [11], known as quantum circuits. As in the

classical case, quantum circuits are equivalent in power to the UQC, but they are generally

more intuitive to analyze and construct. However, the design of quantum circuits is not

any easier than previously encountered types of circuits. The very first prototype quantum

computers are now appearing in research labs. These experimental devices contain on the

order of 10 qubits and are only capable of implementing very simple quantum circuits

before succumbing to noise. However, even these simple circuits are already non trivial to

design.

It would seem that the only way to know if fully fledged quantum computers are practical

is to continue to try and build them. The next step will be the invention of the quan-

tum transistor, which would provide a low cost, scalable, and sufficiently reliable physical

implementation of quantum information. One major encouragement are the threshold the-

orems [26] [2] [50] which state that if these components can be engineered with sufficient

reliability, then certain known techniques will yield quantum circuits which are extremely

reliable in the presence of quantum noise.

However, quantum engineering faces many profoundly difficult challenges, and the timeline

for quantum computing is seemingly going to be measured in decades. In the meantime
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significant effort is underway to more fully understand the power of quantum computers,

and to use this information to invent new quantum algorithms.

2.4 A Formalization of Quantum Circuits

This section describes the formalization of quantum circuits employed by this work.

2.4.1 Qubits and Quantum Registers

The fundamental object of quantum information is the quantum bit, or qubit, which rep-

resent an abstract quantum mechanical system with two distinct basis states. These states

are labeled in correspondence to the 0 and 1 states of a classical bit, and are represented

as shown in 2.6.

0 =

(

1

0

)

1 =

(

0

1

)

(2.6)

Since a qubit is a quantum mechanical system it can also exist in a superposition of these

two basis states, and so the state space q of a general qubit is as shown in 2.7.

q =

{

α00 + α11

∣

∣

∣

∣

∣

α0, α1 ∈ C
|α0|2 + |α1|2 = 1

}

=

{(

α0

α1

) ∣

∣

∣

∣

∣

α0, α1 ∈ C
|α0|2 + |α1|2 = 1

}

(2.7)

Measurement of a qubit causes the superposition to collapse to a single definite state.

Quantum mechanics only provides a probabilistic description of measurement outcomes,
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as shown in 2.8.

M0 =

(

1 0

0 0

)

M1 =

(

0 0

0 1

)

Pr(1 is observed) = (M1q)
†(M1q) = |α1|2

Pr(0 is observed) = (M0q)
†(M0q) = |α0|2

(2.8)

Not all qubit states are distinct. Two qubits q1 and q2 are global phase equivalent if one

can be written as a complex phase multiple of the other, as shown in 2.9. Such qubits

cannot be distinguished by any physical procedure, and so they are for all purposes the

same state.

q1 ≡ q2 ⇐⇒ ∃θ ∈ R ∋ q1 = eiθq2 (2.9)

A qubit has another equivalent representation, known as the Bloch Sphere. This geomet-

rical representation is defined by the identity shown in 2.10 which induces the diagram

shown in 2.11. The θ degree of freedom determines the probability of observing each of the

basis states upon measurement. States located in the upper hemisphere are more likely

to obtain a measurement result of 0, and states located in the lower hemisphere are more

likely to obtain 1. The φ degree of freedom is also known as phase. This quantity has no

classical counterpart, and can only be observed indirectly, but it does play an important

role in the dynamics of qubits.

q =

{(

α0

α1

) ∣

∣

∣

∣

∣

α0, α1 ∈ C
|α0|2 + |α1|2 = 1

}

≡
{(

cos( θ
2
)eiφ sin( θ
2
)

)∣

∣

∣

∣

∣

θ, φ ∈ R} (2.10)
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x

y

z

θ

φ

q

0

1

(2.11)

Multiple qubits can be joined into a larger system known as a quantum register. The state

space Q(n) of a quantum register containing n qubits is obtained by applying the tensor

product to the state spaces of the component qubits, as shown in 2.12.

Q(n) =

n−1
⊗

i=0

qi (2.12)

Each of the n qubits can be observed to be either 0 or 1, and therefore a quantum register

can be observed in any of 2n many possible configurations. These configurations can be

interpreted as the number i in binary, and each configuration corresponds to the quan-

tum register basis state labled i, and is represented by a 2n component vector with zeros
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everywhere except a 1 in position i, as shown in 2.13.

register configuration state label state representation

00 . . . 00 0

















1

0

0
...

0

















00 . . . 01 1

















0

1

0
...

0

















...
...

...

11 . . . 11 2n − 1
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(2.13)

Since a quantum register is a quantum mechanical system it can also exist in a superposition

of its 2n many basis states, and so the state space Q(n) of a general quantum register can

be explicity defined as shown in 2.14.

Q(n) =
n−1
⊗

i=0

qi =











2
n−1
∑

i=0

αi i

∣

∣

∣

∣

∣

∣

∣

αi ∈ C
2n−1
∑

i=0

|αi|2 = 1











=















































α0

α1

α2

...

α2n−1

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αi ∈ C
2n−1
∑

i=0

|αi|2 = 1































(2.14)
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Quantum registers fall into the same global phase equivalence classes as qubits. Two

quantum registers Q1 and Q2 are global phase equivalent if one can be written as a complex

phase multiple of the other, as shown in 2.15.

Q1 ≡ Q2 ⇐⇒ ∃ θ ∈ R ∋ Q1 = eiθQ2 (2.15)

2.4.2 Quantum Gates

Each 2n by 2n unitary matrix U defines a quantum transformation of a n qubit quantum

register Q, known as a quantum gate. The result of applying U to Q is given by the matrix

vector multiplication UQ.

The Bloch Sphere provides an intuitive understanding of the possible transformations of

a single qubit, since any possible transformation of points on the sphere is equivalent to a

rotation by a particular angle around a particular axis. It is always possible to express any

such transformation as the product of up to two rotations around the coordinate system

axes, commonly known as Rx(θ), Ry(θ), and Rz(θ).

Quantum gates also fall into the same global equivalence classes as qubits and quantum

registers. Two quantum gates U1 and U2 are global phase equivalent if one can be written

as a complex phase multiple of the other, as shown in 2.16.

U1 ≡ U2 ⇐⇒ ∃ θ ∈ R ∋ U1 = eiθU2 (2.16)

Perhaps the most commonly used two qubit transformation is the controlled not, or

CNOT, which performs the quantum analog of classical conditional logic on two qubits.

The effect of the CNOT depends on the state of the first of the two qubits that it is

applied to, known as the control, and only ever acts upon the second qubit, known as the

target. If the control is in the 0 state, then both qubits are left unchanged. If the control

is in the state 1, the target qubit is negated by rotating it around the x axis by an angle
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of π. In the case general case where the control is in a superposition, then the target will

be transformed into some superposition of having been rotated and not.

The TOFFOLI is a simple generalization of the CNOT that operates with two control

qubits instead of one. The TOFFOLI is significant because Toffoli [15] showed that it was

capable of emulating the NAND and FANOUT operations which are sufficient to perform

all classical computations. This intuitively establishes that classical computing is a subset

of quantum computing.

The definitions of several common quantum gates are to be found in appendix A.

2.4.3 Quantum Circuits

In general, quantum computers are able to apply multiple gates simultaneously, and such

a collection of gates in parallel is known as a step. A program for a quantum computer

is defined by a sequence of steps, known as a quantum circuit. A quantum circuit C is

typically represented in diagramatic form, as shown in 2.17. The transformation λ(C)

which is effected by C can be represented as a composition of unitary matrices, as shown

in 2.18, or the single unitary matrix shown in 2.19. This particular circuit was designed

by Brassard [5] to perform the send part of the now well known quantum teleportation
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experiment.

C = Ry(π/2)

Ry(3π/2)

X

X

(2.17)

≡ λ(C) = (1⊗Ry(1.57) ⊗ 1)(1⊗CNOT)(CNOT ⊗ 1)(Ry(4.71) ⊗ 1⊗ 1) (2.18)

=































1 0 -1 0 0 1 0 1

0 1 0 -1 1 0 1 0

0 1 0 1 1 0 -1 0

1 0 1 0 0 1 0 -1

-1 0 1 0 0 1 0 1

0 -1 0 1 1 0 1 0

0 -1 0 -1 1 0 -1 0

-1 0 -1 0 0 1 0 -1































= TELEPORTSEND (2.19)

The effect applying a quantum circuit C to a quantum register Q is obtained by the matrix

vector multiplication λ(C)Q. After the circuit is complete, the entire quantum register

is observed. The measurement outcome is probabilistic, with the relative probabilities of
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each configuration as shown in 2.20.

i = bnbn−1 . . . b0 in binary

Mi = Mbn
⊗Mbn−1

⊗ . . .⊗ Mb0

Pr(i is observed) = (MiQ)† (MiQ) = |αi|2
(2.20)

Any quantum gate can always be expressed as a circuit composed from certain small sets of

gates, known as universal gate sets. In fact, certain small sets of nonparametric gates have

been shown to be sufficient to approximate any gate to arbitrary precision [44]. Perhaps

the most intuitive universal set is CNOT and the single qubit rotations Rx(θ), Ry(θ),

and Rz(θ).

2.4.4 Quantum Computers

A particular quantum computer QC is defined by specifying its four components:

• the number of qubits n which QC contains in its quantum register.

• the set of elementary gates E which QC can perform natively.

• a circuit feasibility predicate feasible? which determines if QC can implement a given

quantum circuit.

• a circuit cost function cost which determines the amount of resources required to

implement a given quantum circuit on QC.
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2.5 The Quantum Circuit Design Problem

Given

A quantum computer with:

• n qubits

• elementary gate set E

• circuit feasibility predicate feasible?

• circuit cost function cost

A quantum gate G which is to be performed on the quantum computer.

Find

A quantum circuit C such that:

• C is composed only from the gates contained in E

• The transformation λ(C) effected by C is G

• feasible? (C) is true

• cost(C) is minimal
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2.5.1 Discussion

The quantum circuit design problem is extremely difficult, for at least the following reasons:

• Since quantum computing contains classical computing, it follows that quantum cir-

cuit design is at least as hard as classical circuit design, which is a known hard

problem.

• The problem requires the simultaneous solution of two extremely complicated and

interdependent subproblems. The first problem is to choose the discrete topology of

the circuit, as defined by the assignment of gates to qubits. The second problem is

to optimize all of the numerical gate parameters in the chosen circuit topology.

• The assessment of a trial solution requires that a simulation of quantum mechanics

be performed, and in general these simulations are believed to necessarily be hard

problems for classical computers.

• The local structure of quantum circuits is vastly complicated and poorly understood

at best. A small change in the topology or tuning of a circuit can have a large and

difficult to predict effect on the feasibility, cost, and transformation that the circuit

performs.

• It is unclear what, if anything, can be said in general about minimal circuit costs.



Chapter 3

What is Evolutionary Programming?

There is grandeur in this view of life, with its several powers, having been orig-

inally breathed into a few forms or into one; and that, whilst this planet has

gone cycling on according to the fixed law of gravity, from so simple a begin-

ning endless forms most beautiful and most wonderful have been, and are being,

evolved.

Charles Darwin [9]

Despite all of the brilliant successes of algorithms and computing devices there are many

interesting problems that remain beyond our reach. Recently, an entirely new approach to

problem solving has been studied which seeks to mimic the process of Evolution that has

produced the vast and wondrous diversity of life on Earth, nearly all of which is far more

complicated than any human artifact. In particular, the human brain is profoundly more

powerful than any computer yet built, and is perhaps the most complicated object in the

known universe.

23
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3.1 Evolution is a Search Algorithm

Recently we have begun to understand the process of Evolution as a billions of years old

search for ever increasingly well adapted forms of life. This understanding is based on the

discovery that almost all life is described in the same genetic language which is encoded

into configurations of the deoxyribonucleic acid (DNA) molecule. The genetic description

of an organism is known as its genotype and is composed of a sequence of genetic building

blocks known as genes. Organisms are created via an astonishingly complex developmental

process that interprets their genotype as vast collection of sequential and parallel chemical

engineering instructions. The collective description of the body and behavior characteris-

tics of an organism is known as its phenotype. The relationships between genotypes and

phenotypes are extremely complicated and largely remains a mystery.

Organisms are in a fierce competition for reproductive resources commonly referred to

as “the survival of the fittest”. In a process known as natural selection, the amount of

reproductive resources an organism receives is proportionate to the relative merits of its

phenotype. Therefore the genes associated with successful phenotypes tend to proliferate,

and those genes associated with unsuccessful phenotypes are eventually made extinct.

The process of natural selection is provided with a continually renewing vast diversity

of genotypes for evaluation by the reproductive processes of genetic recombination and

mutation.

In the process of genetic recombination, a new child genotype is formed when two parent

organisms recombine their genotypes. This recombination process respects their common

genotype to phenotype mappings, and so the child inherits a mixture of parental phenotype

characteristics. Recombination can be seen as a search through phenotype space which

tends to be local to the parents.

The process of genetic mutation results from the action of external chemical, radiological,

or physical influences which corrupts the genotype encoded into a DNA molecule. In

particular, these mutations tend to occur when a new child genotype is under construction.

These mutations may yield small or large structural changes in a genotype depending on

the strength of the corrupting influence. Almost all mutations are harmful and many are
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lethal, but beneficial mutations can occur. Mutation can be seen as a random search

through genotype space.

3.2 Evolutionary Programming

The idea of applying evolutionary techniques to problem solving was first explored by

Turing in his celebrated 1950 paper [63], in which he suggests that an evolutionary in-

spired approach to automatic program design as one of three viable directions for artificial

intelligence research. Turing was concerned with creating computer programs which are

represented using a genetic encoding. Beginning with a seed solution, the vast solution

space of possible programs is explored by a sequence of solutions which are obtained by

applying small random mutations to the current solution. The effect of each mutation is

judged by a human expert, and only those mutations which are deemed to be beneficial

are accepted. While Turing never implemented this technique, he proposed that given

sufficient time such programs could learn intelligence from their human judges.

3.2.1 The Genetic Algorithm

The first actual implementation of Evolutionary Programming was the Genetic Algorithm

(GA) developed by Holland [21] in 1975. In contrast to Turing’s proposal, Holland’s work

was not directly concerned with designing computer programs, but of finding optimal con-

figurations of fixed length binary vectors which encode solutions to optimization problems.

Such a representation is essentially equivalent to DNA molecules, and provides a natural

representation for a large class of problems.

Rather than the slow and manual process of merit assessment by a human expert, Holland

proposed that the merits of a solution be evaluated by a computational procedure known

as the fitness function. Therefore the GA is a fully automatic problem solving system that

executes at machine hardware speeds. Even more importantly, Holland proposed that new

solutions be obtained not only by a simple random mutation, but in an analogous fashion
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to genetic recombination. To achieve this the algorithm maintains not just one, but a

collection of solutions which are collectively referred to as a population. The population

serves as a vastly complicated genetic memory of promising solutions.

The algorithm begins with an initial population of randomly generated solutions. Each

step of the algorithm, known as a generation, reproduces the current population to form

a new population for the next generation. Each new population is constructed by directly

propagating certain number of solutions from the current population, and by creating a

certain number of children by recombination.

Recombination begins by selecting two solutions from the current population to serve as

parents. The selection process is performed in accordance with the principle of natural

selection in that the probability that a given solution is selected is in some way propor-

tionate to its fitness. Once selected, the parents are spliced into segments, known as genes,

as shown in 3.1. The genes serve as the building blocks for the child.
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(3.1)

Next, the child is formed by crossing over the genes of the parents into a new genotype, as
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shown in 3.2.
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(3.2)

Before the child is added to the new population it is first subjected to a small mutation,

typically in the form of a single random gene being flipped with some small probability.

Since mutations tend to create children which are very unlike their parents, the process

of mutation actually frustrates natural selection. However, mutations serve the critical

purpose of continually injecting new genes into the population, and thereby preventing

genetic stagnation.

The generational loop continues until a termination condition is reached, at which point

the algorithm yields the solution that is best individual in the final population, known as

the elite.

3.2.2 Genetic Programming

In 1992 Koza [27] proposed Genetic Programming (GP), which makes a single but critical

improvement upon the GA by considering the representation of solutions by variable sized

tree structures, which are typically used to encode expressions in some formal language. A

common representation example is the tree encoding of polynomials shown in 3.3 and 3.4.
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Koza extended the procedures for recombination and mutation to the domain of trees. To

perform recombination, each parent is first spliced into two subtrees, which serve as genes,

by cutting it at a random edge as shown in 3.3.
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Next, the child is formed by crossing over the genes to form a new genotype as shown in

3.4. Mutation is performed by randomly replacing some subtree of the child with a random

subtree with some low probability.
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Koza also developed an extremely simple and efficient parallelization technique for GP,

known as the Island Model, which is suitable for implementation on highly scalable and

cost effective cluster computers. In this model each node in the cluster is known as an

island and maintains its own discrete evolutionary simulation. The sole means of com-

munication between islands occurs when one occasionally broadcasts a small number of

randomly chosen individuals from their population which are considered for adoption by

their neighboring islands. This low level of communication increases the global genetic

diversity since while a local extremum may take over its own island rather quickly, it takes

a long time for one solution to take over all other islands, and this gives other solutions a

chance to compete.

Since the publication of the first volume, Genetic Programming has expanded to 3 ad-

ditional volumes [28][30][33] which detail advances in Koza’s Evolutionary Programming

approach, and many reports of successful applications in diverse problem domains.

3.2.3 Memetic Programming

The term Memetic Programming is a very recent invention that broadly refers to any

Genetic Programming approach that also incorporate concepts from outside of genetics,

such as physics or combinatorial optimization, to form a hybrid approach.

Several recent advances in Evolutionary Programming are in response to an evolutionary

theory of culture proposed by Dawkins [10], known as memetics. This theory extends the

theory of genetic evolution to the domain of human culture. Dawkins defines the meme to

be the unit of imitation in cultural transmission analogous to the gene, and gives examples

such as “tunes, ideas, catch-phrases, clothes fashions, ways of making pots or of building

arches”. Whereas genetic evolution has been searching through configurations of genes that

describe organisms that are well adapted to their physical environment, memetic evolution

has been searching through configuration of memes that describe ideas that are highly

adapted to their cultural environment.

One important distinction between genetic and memetic evolution is that mutations in the

genetic domain take the form of small random structural variations, but the mutations
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in the memetic domain take the form of small nonrandom semantic variations, typically

becoming simpler or more expressive. Therefore memetic approaches extends the previous

concept of mutation to include not only random structural mutations, but more compli-

cated local search procedures which utilize insight into the problem domain in hopes of

performing a beneficial mutation.

Memetic Programming is only a few years old, but has already produced significantly better

than previous evolutionary approaches on some problems. Of particular note are the highly

competitive results from GASAT [19] algorithm for the boolean satisfiability problem, a

problem that had previously been thought poorly suited to evolutionary approaches.

3.3 Why Use Evolutionary Programming?

. . . biological principles, from evolution and genetics to neurobiology and ecol-

ogy, are informing computer scientist and engineers in designing software and

hardware . . . and that holds tremendous promise for the future.

Rich Lenski [48]

There are several reasons why an EP approach should be considered as an approach to

solving hard problems.

• Simplicity. The basic algorithm is easily understood and can be easily implemented

in any programming environment. The application to a new problem domain can be

expected to only require a minimal amount of new code to be written.

• The minimal requirement for problem specification. All that is required to apply

the algorithm to a specific problem is a representation scheme for solutions that is

amenable to recombination and mutation, and a fitness assessment procedure. This

minimality of requirements can allow Evolutionary Programming to discover highly

novel solutions that would otherwise never be considered.
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• The ease of utilization of problem insight. One common technique is to reduce

the search space by preventing certain genotype patterns which are believed to be

undesirable from ever entering the population. Also, knowledge of the local space of

solutions may suggest a memetic style local search mutation. These technique can

greatly speed up the evolutionary process.

• Scalability. The vast majority of computational resources are spent on the fitness

assessment procedure, and so a reasonable amount of optimization effort can yield

excellent run time performance. Also, many fitness assessment procedures can be

cost effectively implemented on the commodity hardware that benefits the most from

Moore’s Law. In addition, the Island Model has proven to be a simple yet extremely

effective technique for the distribution of large evolutionary programming problems

across a very large cluster of inexpensive computers.

• Evolutionary Programming is an active academic and industrial research area with

a large body of successful results. It has been used in such diverse problem domains

such as:

• Bioinformatics, including the problems of drug design, genome sequencing, and

protein folding [14].

• Game theory, including foundational work on the origin of cooperative economic

behaviors[3].

• The arts, including the evolution of aesthetic computer graphics [58], poetry

[65], and improvisational jazz [49].

• Robotics, including the evolution of walking, swimming, and game playing vir-

tual creatures [59], some of which are now being physically constructed [37].

• Combinatorial optimization, including the highly competitive GASAT algorithm

[19] for the SAT problem.

• Circuit design, which is perhaps the most successful application of Evolutionary

Programming [33].
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3.4 The Limitations of Evolutionary Programming

Evolutionary Programming is a very intuitive and promising problem solving technique, but

there is little formal understanding of how it works and of how to use it most efficiently. Any

implementation of an Evolutionary Programming algorithm will require the specification

of various parameters, such as population size, mutation rate, and maximum run time, as

well as the design of selection, recombination, and mutation procedures. Finding effective

choices for these is itself a hard problem with little to no theoretical support. In practice

researchers must rely on any available anecdotal reports from related problems, and lots

of trial and error.



Chapter 4

Evolutionary Circuit Design

Analog circuit design is known to be a knowledge-intensive, multiphase, iterative

task, which usually stretches over a significant period of time and is performed

by designers with a large portfolio of skills. It is therefore considered by many

to be a form of art rather than a science.

Aaserud and Nielsen [1]

. . . a biologically motivated algorithm (genetic programming) is capable of au-

tomatically synthesizing the design of both the topology of complex graphical

structures and optimal or near-optimal numerical values for all elements of the

structure possessing paramaters.

John R. Koza [29]

4.1 Classical Circuit Design

Koza and others have amassed a sizable body of research [29] [33] [31] [32] which demon-

strates that the Genetic Programming approach is capable of automatically synthesizing

33
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both the topology and numerical parameters of a variety of forms of computational circuits

which meet a set of high level design goals. Their approach entailed:

• A family of simple formal languages to serve as the genotype of the particular

kind of circuit, including analog, digital, or mixed electric circuits, neural networks,

metabolic pathways, or gene expression networks.

• A genotype to phenotype mapping that translates the high level description of the

circuit into native format of the SPICE [51] circuit simulation software with modifi-

cations as described in [30].

• A SPICE program which performs fitness assessment by applying a reference signal

to the input of the circuit, and measuring the difference between the expected output

and the simulated output.

Using this approach, a variety of 20th century circuit design patents were duplicated using

relatively little problem insight. Recent work utilizing up to 206 hours of a 1000 node

cluster computer resulted in six duplicated patents that were all less than a few years old

[34]. The routineness of their approach and the direct benefit of Moore’s Law that it enjoys

suggest that this approach to circuit design will soon compete with, and possibly surpass,

current circuit design strategies, and will yield new patentable inventions.

4.2 Quantum Circuit Design

The application of the Genetic Programming approach to the design of quantum circuits

is motivated by the observation that quantum circuits are simply another special case of

the family of circuit design problems that have already been studied. All that is required

is a formal language for describing the quantum variant of circuit, and a fitness assessment

procedure.

The first report on evolutionary quantum circuit design was given by Williams and Gray

[66]. They outlined a representation scheme for arbitrary sequential quantum circuits
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composed from an arbitrary set of elementary quantum gates, including gates with one or

more numerical parameters. Their fitness assessment approach utilized the “component

wise difference” metric on unitary matrices, shown in 4.1.

f(A,B) =
∑

i,j

|Ai,j − Bi,j| (4.1)

While this fitness assessment does give zero when the two unitary matrices are exactly

equal, it does not give zero if two unitary matrices are equivalent up to a global phase

factor, and so this fitness assessment does not properly respect global phase equivalences.

This means that the algorithm is required to find the exact equivalence class representative

specified by the problem, and not any of the uncountably infinitely many other equivalent

forms which are physically indistinguishable.

Williams and Gray completed their report with a demonstration of the viability of Genetic

Programming by evolving elegant and completely correct quantum circuits to perform

the send and receive parts of the quantum teleportation protocol. The search space was

reduced by an educated guess that a certain small, non universal, and non parameterized

elementary gate would be sufficient.

Rubinstein provided a follow up report [52] which explored a more traditional genetic

algorithm approach. This approach represented quantum circuits using variable length

bit vectors, and utilized a case based fitness assessment procedure. This report contained

successful experimental results which consisted of elegant and completely correct quantum

circuits using 2, 3, 4, and 5 qubits. The search space was reduced by an educated guess

that it would be sufficient to utilize a non universal elementary gate set consisting of the

Hadamard gate, and a generalized form of CNOT which can operate on arbitrary control

and target qubits.

The profound successes of the Genetic Programming approach which has routinely deliv-

ered high return human competitive solutions to circuit design problems, in conjunction

with the successful preliminary reports describing the application of these techniques to
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quantum circuits, has provided the motivation for the further study of Evolutionary Pro-

gramming approaches to quantum circuit design.



Chapter 5

wabisabi: A Toolkit for the

Evolutionary Design of Quantum

Circuits

wabisabi is a toolkit for the implementation of Evolutionary Programming approaches to

quantum circuit design problems. The toolkit is designed to be fast, flexible, and easy to

use by a wide audience. wabisabi is a japanese term that is not directly translatable, but

means essentially “the natural beauty in all things”.

The toolkit is written in pure functional scheme [24] targeted for the CHICKEN [67] scheme

compiler, and utilizes the high performance BLAS [36] matrix algebra package to perform

the core numerical operations at near theoretical peak performance. The software runs on

a wide variety of hardware, and includes support for the island model of parallelization.

5.1 Representation

This section contains an specification of the formal language used in this work to describe

quantum circuits.

37
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The fundamental object of a quantum circuit is the gate, which is represented as a list

beginning with a gate symbol and ending with an optional list of parameters. Several gate

expressions and their corresponding unitary representations are seen in 5.1.

(Id) ≡ 1
(Ry 1.57) ≡ Ry(1.57)

(CNOT) ≡ CNOT

(5.1)

A collection of gates operating in parallel is known as step. A step is represented as an

association list containing one association per gate operating during that step. The keys in

this association are a specification of which qubits in the register that this gate is applied

to, known as its domain. The corresponding values are gate expressions that operate on

that domain, and each qubit must be involved in exactly one gate per step. Several step

expressions and their corresponding unitary representations are shown in 5.2.

(((1) Id) ((2) Ry 1.57) ((3) Id)) ≡ 1 ⊗ Ry(1.57) ⊗ 1
(((1) Id) ((2 3) CNOT)) ≡ 1 ⊗ CNOT

(((1 2) CNOT) ((3) Id)) ≡ CNOT ⊗ 1
(((1) Ry 4.71) ((2) Id) ((3) Id)) ≡ Ry(4.71) ⊗ 1 ⊗ 1 (5.2)

A quantum circuit C is simply represented as an ordered list of step expressions, as shown

in the example circuit expression in 5.3, which is equivalent to the diagram shown in 5.4.

The first step in the circuit is the first element of the circuit expression, and the left most

step in the diagram.

The gate that corresponds to the action of C is given by λ(C), which can be represented as

a composition of unitary matrices as shown in 5.5, which equals the single unitary matrix

in 5.6.
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C =

((((1) Id) ((2) Ry 1.57) ((3) Id))

(((1) Id) ((2 3) CNOT))

(((1 2) CNOT) ((3) Id))

(((1) Ry 4.71) ((2) Id) ((3) Id)))

(5.3)

C ≡ Ry(π/2)

Ry(3π/2)

X

X

(5.4)

C ≡ λ(C) = (1⊗ Ry(1.57) ⊗ 1)(1⊗ CNOT)(CNOT⊗ 1)(Ry(4.71) ⊗ 1⊗ 1) (5.5)

λ(C) =































1 0 -1 0 0 1 0 1

0 1 0 -1 1 0 1 0

0 1 0 1 1 0 -1 0

1 0 1 0 0 1 0 -1

-1 0 1 0 0 1 0 1

0 -1 0 1 1 0 1 0

0 -1 0 -1 1 0 -1 0

-1 0 -1 0 0 1 0 -1































= TELEPORTSEND (5.6)
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5.2 Fitness Assessment

Fitness assessment of a quantum circuit C utilizes the following three procedures: correct-

ness, cost, and feasible?.

The correctness procedure rates how well C performs the goal gate G. The procedure

used in this work calculates the average case fidelity between λ(C) and the goal gate G,

as shown in 5.7. The values are scaled to range over [0,1] such that higher is better, and a

correctness of 1 indicates that λ(C) = G.

correctness(C) =
|tr(G†

λ(C))|
2n

(5.7)

An important property of this choice of correctness calculation is that it respects global

phase equivalences, as discussed in 2.15. If λ(C) and G differ only by a complex phase

factor, then C is assigned a correctness of 1, as shown in 5.8.

correctness(C) =
|tr(G†

λ(C))|
2n

=
|tr(G†eiθG)|

2n
=

|eiθtr(G†G)|
2n

=
|eiθ||tr(1)|

2n
= 1 (5.8)

Since the matrices G and λ(C) are of size 2n by 2n the correctness procedure clearly requires

amounts of time and space resources that are exponential in n. However unfortunate, this

is to be expected of any procedure that performs a simulation of quantum mechanics. This

motivates the use the BLAS libraries to perform highly optimized matrix operations.

The cost procedure determines the complexity of implementing C. Perhaps the most basic

measures of complexity of a circuit is its length, and a slightly more useful measure is to

count the number of non identity gates contained in the circuit. The cost measure used in

this work assigns each gate its own particular cost of implementation, and to cost a circuit

as the sum of the cost of its gates.

The feasible? procedure indicates if a given quantum circuit C is implementable on a given

quantum computer. The simple definition of feasibility used in this work is that the circuit
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has less than some maximum cost, but more than some minimum cost. More complicated

definitions can be used to better characterize a particular quantum computer.

5.3 Reproductive Strategy

The reproductive strategy begins with a population of population size many randomly

generated individuals, each of which contains between 1 and maximum initial length steps.

The algorithm proceeds by iteratively reproducing the current population, where each iter-

ation represents a generation. Each new population is created by first creating population

size many children, then merging them with the current population, and finally taking

the best population size many, as shown in 5.9. The generation loop continues until a

termination condition is reached, upon which the best individual of the last population,

known as the elite, is returned as the final result.

winners

losers

survivalcurrent
population

next
populationchildren

reproduction

(5.9)

5.3.1 The Temperature Heuristic

The temperature heuristic from the Simulated Annealing [25] algorithm is borrowed in

an effort to avoid the local maxima which plague complicated search spaces. Associated

with each generation is a temperature that is used to blend two contrasting reproductive

strategies, known as exploration and exploitation. The goal of the exploration strategy is to

perform a broad search of circuit topologies by performing weakly discriminating selection,

random recombination, and only topology affecting mutations. The goal of the exploitation

strategy is to optimize the parameters of the topology chosen by the exploration strategy
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by performing discriminating selection, an order preserving recombination, and only local

search mutations which do not affect circuit topology.

The temperature begins as 1, which corresponds to a pure exploration strategy, and after

each generation the temperature is slowly cooled by scaling it by a cooling rate parameter,

but never below the threshold value equal to the correctness of the elite. The threshold

serves to guarantee that the algorithm will only attempt to optimize a sufficiently correct

solution, and the slow rate of cooling gives the algorithm time to explore many topologies

before choosing one for the exploitation strategy.

5.3.2 Selection

The first step in the reproduction process is to select two parents in accordance with natural

selection. First the population is sorted by correctness, and then by cost. The parents are

chosen from the population according to a temperature dependant approximately normal

distribution. The relative probability of selection depends on population rank, as shown

in 5.10. At high temperatures, as represented by the redder bars, the selection is liberal,

and low ranked individuals have some chance to reproduce. As the temperature cools, as

represented by the bluer bars, the selection becomes increasingly more discriminating and

only the best individuals are reproduced.

parent

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))
(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))
(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))
(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))
(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))
(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))
(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))
(((1 2) J 0.12) ((3) Id))

parent

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))
(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))
(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))
(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))
(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))
(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))
(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))
(((1 2) J 0.12) ((3) Id))

(((1) Rx 5.71) ((2) Rx 1.68))
(((1) Rz 1.75) ((2) Id))
(((2 1) J 2.61))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Id) ((2) Ry 4.09))
(((2 1) J 2.35))

(((1) Rx 5.71) ((2) Rx 1.68))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Rz 1.75) ((2) Id))
(((2 1) J 2.61))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Id) ((2) Ry 4.09))
(((2 1) J 2.35))

(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Id) ((2 3) J 4.08))
(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))
(((1 2) J 0.12) ((3) Id))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Id) ((2) Ry 4.09))
(((2 1) J 2.35))

(((1) Ry 3.24) ((2 3) J 1.13))
(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))
(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))
(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1 3) J 4.39) ((2) Rz 3.97))
(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Ry 1.24) ((2 3) J 1.13))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Rz 2.84))
(((1) Id) ((2) Ry 4.09))
(((2 1) J 2.15))
(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Rz 1.75) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((2 1) J 2.61))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Id) ((2) Ry 4.09))

(((1 2) J 0.12) ((3) Id))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Id) ((2) Ry 4.09))
(((1) Id) ((2 3) J 4.08))
(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))
(((1 2) J 0.12) ((3) Id))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Rx 5.71) ((2) Rx 1.68))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))

(((1) Rx 5.71) ((2) Rx 1.68))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Rz 1.75) ((2) Id))
(((2 1) J 2.61))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Id) ((2) Ry 4.09))
(((2 1) J 2.35))

(((1) Rx 5.71) ((2) Rx 1.68))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Rz 1.75) ((2) Id))
(((2 1) J 2.61))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Id) ((2) Ry 4.09))
(((2 1) J 2.35))

(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Rz 1.75) ((2) Id))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((1) Id) ((2 3) J 4.08))
(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))
(((1 2) J 0.12) ((3) Id))
(((1) Rz 2.74) ((2) Ry 0.84))
(((1) Id) ((2) Ry 4.09))
(((2 1) J 2.35))
(((2 1) J 2.61))
(((2 1) J 2.96))
(((1) Id) ((2) Id))
(((1) Rz 0.98) ((2) Rx 2.72))
(((2 1) J 2.35))

selection

selection

current population

(5.10)
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5.3.3 Recombination

Once two parents have been selected they are recombined to form a child. First the

parents are spliced into genes, then these genes are recombined, then the recombined genes

are subjected to mutation, and finally they are assembled into the completed child.

Splicing

The first step in the recombination process is to splice the parents into the same random

number of intervals, as shown in 5.11. These intervals serve as the genes that will be the

building blocks used to construct the child.

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))
(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))
(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))
(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))
(((1 2) J 0.12) ((3) Id))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))
(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))
(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))
(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))

(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))

(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))

(((1 2) J 0.12) ((3) Id))

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))

(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))

parent parentgenes

(5.11)

Multipoint Crossover

Once the parents have been spliced into a number of genes, the next step is to choose

half of them to form the child using a temperature dependent multipoint crossover, as

shown in 5.12. The child is constructed in sequence, choosing one gene at a time until the

child has the same number of genes as the parents. At high temperatures, as indicated

by redder crossover arrows, the genes are chosen randomly from a random parent. At

low temperatures, as indicated by the bluer crossover arrows, the genes are chosen from a

random parent, but from the position of the parent that corresponds to the current position

in the child.
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(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))

(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))

(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))

(((1 2) J 0.12) ((3) Id))

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))

(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))

(((1 2) J 0.12) ((3) Id))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))

(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))

(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))

(((1 2) J 0.12) ((3) Id))

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))

(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))

(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))

(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))

(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))

(((1 2) J 0.12) ((3) Id))

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))

(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))

(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))

(((1 2) J 4.98) ((3) Id))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))

(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))

(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))

(((1 2) J 0.12) ((3) Id))

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))

(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))
(((2 1) J 4.32) ((3) Ry 2.21))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))

(((1) Rx 2.54) ((2) Rx 2.44) ((3) Id))
(((1) Id) ((2 3) J 4.08))

(((1) Rx 3.05) ((2) Rz 3.18) ((3) Ry 1.33))

(((1 2) J 0.12) ((3) Id))

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 5.47) ((2) Id) ((3) Rz 2.66))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.84) ((2 3) J 1.24))

(((1) Rx 0.75) ((2) Ry 5.89) ((3) Ry 4.97))
(((1) Rx 2.54) ((2) Rx 2.98) ((3) Id))
(((1) Id) ((2 3) J 4.08))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 0.37) ((3) Id))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 4.21) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1 2) J 0.43) ((3) Id))

(((1) Id) ((2) Ry 1.13) ((3) Ry 1.57))
(((1) Rx 5.17) ((2 3) J 1.24))

child

child

child

child

child

mutation

mutation

mutation

(5.12)
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Mutations

Each gene inherited by a child is potentially subjected to one of several mutations with a

frequency determined by the mutation rate parameter, as shown in 5.13.

At high temperatures only the add, drop, and replace mutations tend to be applied. The

add mutation inserts a new random step into the gene, the drop mutation removes a

random step from the gene, and the replace mutation first removes a random step from the

gene and then inserts a new random step in its place. These mutations perform small but

topologically significant changes to the gene which are used by the exploration strategy to

find improved circuit topologies.

At low temperatures, only the tune and simplify mutations are applied. The tune mutation

selects a random parameter in the gene and perturbs it by a small amount, and the simplify

mutation performs algebraic simplification on the gene in an effort to reduce its cost. These

mutations are utilized by the exploitation strategy in the attempt to optimize the topology

of a circuit.

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))

(((1 2) J 4.98) ((3) Id))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))

(((1) Rz 3.04) ((2 3) J 5.13))
(((1 2) J 1.39) ((3) Rz 6.05))
(((1) Id) ((2 3) J 4.62))
(((2 1) J 4.32) ((3) Ry 2.21))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 0.37) ((3) Id))

(((1 3) J 4.39) ((2) Rz 3.97))
(((2 1) J 3.82) ((3) Rz 5.34))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1 3) J 4.39) ((2) Rz 3.97))
(((1) Ry 2.01) ((2) Id) ((3) Rz .028))
(((1 3) J 1.93) ((2) Rz 2.99))

(((1) Id) ((2) Id) ((3) Ry 2.37))
(((1) Rz 3.88) ((2) Id) ((3) Rz 2.66))

add

drop

replace

tune

simplify

(((1) Id) ((2) Rz 0.64) ((3) Ry 4.40))
(((1) Id) ((2) Ry 0.11) ((3) Rz 1.92))
(((1 2) J 4.98) ((3) Id))

(((1) Rz 2.68) ((2 3) J 2.25))
(((1) Id) ((2) Ry 2.86) ((3) Id))

(((1) Rz 1.41) ((2) Id) ((3) Ry 2.37))
(((1) Rz 2.47) ((2) Id) ((3) Rz 2.66))

(5.13)
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Assembly

The final stage of the construction of the child is to assemble it from its list of genes into a

new individual. Before a child is added to the child population it is tested by the feasible?

predicate. If the child is feasible then it has its correctness and cost assessed and is added

to the child population, otherwise the child is discarded and the reproductive process tries

again.

5.4 Termination Conditions

The generation loop continues until one of three termination conditions is met.

• The success condition occurs if the elite of the population is sufficiently correct, as

specified by the goal correctness parameter.

• A failure condition occurs if a sufficient amount of time has elapsed since the begin-

ning of the experiment, as specified by the maximum time parameter. This condition

guarantees an upper bound the amount of time resources that any one experiment

may consume.

• A failure condition also occurs if the temperature remains at the threshold level

for a sufficiently large number of generations, as specified by the maximum dwell

parameter. This termination condition is an attempt to recognize when the algorithm

has become stuck in a local maximum and is not worthy of further computational

resources.
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5.5 Algorithmic Parameters

The algorithm depends on the specification of the following parameters.

• G is the goal quantum gate.

• elementary gate set determines which elementary gates will be used in the construc-

tion of quantum circuits. Each of these gates must have an associated cost, to be

used by the feasible? predicate.

• population size determines the number of individuals contained in the population.

Very little is known in general about optimal population sizes. Larger values surely

increase genetic diversity which can avoid premature convergence on local extremum,

but also slows down the algorithm. A minimal useful value appears to be 100, and

some experiments use millions.

• maximum individual length determines the largest quantum circuit allowed in the

initial population. Longer values increase genetic diversity but can slow down the

algorithm.

• mutation rate determines the frequency of mutation during the reproductive process.

Commonly used values are in the range between 0.001 and 0.2, and sufficiently higher

values will reduce the algorithm to a blind search.

• cooling rate is used in conjunction with the fitness of the elite to determine the

temperature for the next generation. Commonly used values are in the range between

.9 and .999.

• minimum cost is used by the feasible? predicate to prevent solutions which are too

simple from entering the population.

• maximum cost is used by the feasible? predicate to prevent solutions which are too

complicated from entering the population.

• goal correctness determines the minimum correctness for a success condition.
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• maximum time determines the maximum amount of time that may elapse during

an experiment before a failure condition occurs. This can be used to ensure that a

minimum number of experiments are performed in a fixed time.

• maximum dwell determines the maximum number of successive generations that

may occur such that the temperature remains at the threshold level before a failure

condition occurs. Values in the range of 100 to 1000 have been useful.



Chapter 6

Experiments

This section reports on several experiments that were performed in order to test the vi-

ability of the evolutionary approach to practical quantum circuit design problems. All

experiments utilized a single 2.6 Ghz Pentium4 system, and required no more than 10MB

of RAM.

Each experiment consists of several trials, and the trial results are summarized by a scatter

plot diagram of cost against trial duration. The red dots represent trials which were

terminated by a failure condition, and the green dots represent those which were terminated

by a success condition.

For all experiments, goal correctness was set to 0.999 and the minimum cost was 10. The

maximum cost and the maximum time were set sufficiently high as to not be a factor.

Each experiment utilized one of three elementary gate sets. The liquid state NMR

set shown in 6.1 represents a generic liquid state nuclear magnetic resonance quantum

computer [64], which features discrete X and Y rotations, an inexpensive parameterized Z

49
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rotation, and an expensive J gate.

Gate Cost

1 0

X1 1

Y1 1

Rz(θ) .1

J(θ) 10

(6.1)

The standard universal set shown in 6.2 contains the parameterized rotations and an

expensive CNOT gate.

Gate Cost

1 0

Rx(θ) 1

Ry(θ) 1

Rz(θ) .1

CNOT 10

(6.2)

The parameterized universal set shown in 6.3 contains the parameterized rotations and

an expensive J gate.

Gate Cost

1 0

Rx(θ) 1

Ry(θ) 1

Rz(θ) 1

J(θ) 10

(6.3)

The definitions of all quantum gates are to be found in Appendix A.
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6.1 CNOT

This experiment was performed with the experimental parameters as described in 6.4.

G = CNOT

Elementary Gate Set = liquid state NMR

Population Size = 500

Maximum Initial Length = 10

Maximum Dwell = 100

Mutation Rate = .2

Cooling Rate = .95

(6.4)

A total of 100 experiments were performed and the results are summarized in 6.5. The

success rate was .79 and the average experiment duration was 67 seconds.

40 60 80 100 120 140 160
time in seconds

10

20

30

40

cost

(6.5)
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The best circuit over all experiments has a cost of 12.2 and is shown in 6.6 and 6.7.

((((1) Id) ((2) Rz 1.59308814194286))

(((1) Rz 1.59746615368844) ((2) X1))

(((2 1) J 5.53125259570381))

(((1) Id) ((2) Y1)))

(6.6)

Rz(1.59)

Rz(1.60)

X1

J(5.53)

J(5.53) Y1

(6.7)

One commonly utilized circuit [35], which has a cost of 15.1, is shown in 6.8.

Rz(π/2)

X1

J(π/4)

J(π/4) Y1Y1 Y1Y1

(6.8)
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6.2 CPHASE

This experiment was performed with the experimental parameters as described in 6.9.

G = CPHASE

Elementary Gate Set = liquid state NMR

Population Size = 500

Maximum Initial Length = 10

Maximum Dwell = 100

Mutation Rate = .2

Cooling Rate = .95

(6.9)

A total of 100 experiments were performed and the results are summarized in 6.10. The

success rate was 1.0 and the average experiment duration was 18 seconds.

10 20 30 40 50 60 70
time in seconds

10

20

30

40

cost

(6.10)
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The best circuit over all experiments has a cost of 10.2 and is shown in 6.11 and 6.12.

((((1 2) J 5.89156133505902))

(((1) Rz 0.755255117203258) ((2) Rz 0.776411795935828)))
(6.11)

Rz(0.78)

Rz(0.76)J(5.89)

J(5.89)

(6.12)

There is no commonly utilized circuit for comparison, but since the CSIGN causes a non-

trivial interaction between the qubits it operates on, any CSIGN circuit must contain at

least one J gate, and so this result is certainly near optimal.
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6.3 CPHASE 2

This experiment was performed with the experimental parameters as described in 6.13.

G = CPHASE

Elementary Gate Set = standard universal

Population Size = 500

Maximum Initial Length = 20

Maximum Dwell = 200

Mutation Rate = .2

Cooling Rate = .99

(6.13)

A total of 122 experiments were performed and the results are summarized in 6.14. The

success rate was .19 and the average experiment duration was 93.7 seconds.

100 200 300 400 500 600 700
time in seconds

10

20

30

40

cost

(6.14)
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The best circuit over all experiments has a cost of 20.3 and is shown in 6.15 and 6.16.

(((1) Rz 0.718624942221927) ((2) Rz 0.839817285381341))

(((2 1) CNOT))

(((1) Rz 5.51723684487596) ((2) Id))

(((2 1) CNOT))

(6.15)

Rz(.72) Rz(5.52)

Rz(.84)

X X

(6.16)

There is no commonly utilized circuit for comparison. There may exist a circuit containing

only a single CNOT.
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6.4 SWAP

This experiment was performed with the experimental parameters as described in 6.17.

G = SWAP

Elementary Gate Set = liquid state NMR

Population Size = 500

Maximum Initial Length = 10

Maximum Dwell = 100

Mutation Rate = .2

Cooling Rate = .95

(6.17)

A total of 100 experiments were performed and the results are summarized in 6.18. The

success rate was 0.81 and the average experiment duration was 76 seconds.

25 50 75 100 125 150 175
time in seconds

10

20

30

40

50

cost

(6.18)
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The best circuit over all experiments has a cost of 36.0 and is shown in 6.19 and 6.20.

((((1 2) J 0.769001845694298))

(((1) X1) ((2) Y1))

(((1 2) J 0.746729562208523))

(((1) Y1) ((2) X1))

(((1 2) J 0.773203898342641))

(((1) X1) ((2) Y1)))

(6.19)

J(0.77)

J(0.77)

J(0.75)

J(0.75)

J(0.77)

J(0.77)

X1

X1

X1

Y1

Y1

Y1

(6.20)

The commonly utilized circuit [45] is shown in 6.21. Using the CNOT circuit obtained in

6.6 this circuit has a cost of 36.6.

X X

X

(6.21)
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6.5 QFT2

This experiment was performed with the experimental parameters as described in 6.22.

G = QFT2

Elementary Gate Set = standard universal

Population Size = 500

Maximum Initial Length = 20

Maximum Dwell = 100

Mutation Rate = .2

Cooling Rate = .99

(6.22)

A total of 62 experiments were performed and the results are summarized in 6.23. The

success rate was 0.21 and the average experiment duration was 848 seconds.

1000 2000 3000 4000
time in seconds

20

40

60

80

100

120

cost

(6.23)
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The best circuit over all experiments has a cost of 33.5 and is shown in 6.24 and 6.25.

((((1) Rz 4.68604458152085) ((2) Rz 5.53675597122988))

(((1) Rx 4.71780632828402) ((2) Rx 3.21191271479259))

(((2 1) CNOT))

(((1) Rz 0.753993811897859) ((2) Id))

(((1 2) CNOT))

(((1) Rx 1.48863515925529) ((2) Rz 5.47527777340135))

(((2 1) CNOT))

(((1) Rz 4.6855792798612) ((2) Id)))

(6.24)

Rx(4.72)

Rx(3.21)

Rx(1.49)Rz(4.69)

Rz(5.54)

Rz(0.75)

Rz(5.48)

Rz(4.69)

X

X

X

(6.25)

The commonly utilized circuit [46] is shown in 6.26. Using the CPHASE circuit obtained
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in 6.15 this circuit has a cost of 55.2.

Rz(π) Ry(π/2)

Rz(π) Ry(π/2)Z1 X

X

X

(6.26)
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6.6 SQRTSWAP

This experiment was performed with the experimental parameters as described in 6.27.

G = SQRTSWAP

Elementary Gate Set = liquid state NMR

Population Size = 500

Maximum Initial Length = 10

Maximum Dwell = 100

Mutation Rate = .2

Cooling Rate = .95

(6.27)

A total of 100 experiments were performed and the results are summarized in 6.28. The

success rate was 0.01 and the average experiment duration was 76 seconds.

25 50 75 100 125 150 175
time in seconds
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40

50

cost

(6.28)
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The best circuit over all experiments has a cost of 48.0 and is shown in 6.29 and 6.30.

(((1 2) J 1.96145491877727))

(((1) Y1) ((2) Y1))

(((1 2) J 1.3585650864218))

(((1) X1) ((2) X1))

(((2 1) J 1.98073896253607))

(((1) X1) ((2) X1))

(((1 2) J 5.32633592052147))

(((1) Y1) ((2) Y1))

(6.29)

X1

X1

X1

X1

Y1

Y1

Y1

Y1

J(1.36)

J(1.36)

J(1.96)

J(1.96)

J(1.98)

J(1.98)

J(5.33)

J(5.33)

(6.30)

There is no common circuit for comparison. However, the application of two SQRTSWAP

gates acts exactly as the SWAP gate at a cost of 96, but the SWAP circuit found in 6.19

has a cost of 36, and so it would seem that this result is far from optimal.
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6.7 TELEPORTSEND

This experiment was performed with the experimental parameters as described in 6.31.

G = TELEPORTSEND

Elementary Gate Set = standard universal

Population Size = 500

Maximum Initial Length = 20

Maximum Dwell = 100

Mutation Rate = .2

Cooling Rate = .99

(6.31)

A total of 50 experiments were performed and the results are summarized in 6.32. The

success rate was 0.58 and the average experiment duration was 623 seconds.

500 1000 1500 2000 2500
time in seconds
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50

cost

(6.32)
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The best circuit over all experiments has a cost of 22.0 and is shown in 6.33 and 6.34.

((((1) Id) ((2) Ry 1.5360537360157) ((3) Id))

(((1) Id) ((2 3) CNOT))

(((1 2) CNOT) ((3) Id))

(((1) Ry 4.74616188483069) ((2) Id) ((3) Id)))

(6.33)

Ry(1.54)

Ry(4.75)

X

X

(6.34)

This is exactly the same circuit as the original invention by Brassard, as shown in 2.18.

This circuit was also obtained by Williams and Gray [66].
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6.8 TELEPORTRECEIVE

This experiment was performed with the experimental parameters as described in 6.35.

G = TELEPORTRECEIVE

Elementary Gate Set = standard universal

Population Size = 500

Maximum Initial Length = 20

Maximum Dwell = 100

Mutation Rate = .2

Cooling Rate = .99

(6.35)

A total of 100 experiments were performed and the results are summarized in 6.36. The

success rate was 0.02 and the average experiment duration was 271 seconds.

200 300 400 500 600
time in seconds

5

10

15

20

25

30

cost

(6.36)
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The best circuit over all experiments has a cost of 22.0 and is shown in 6.37 and 6.38.

((((1) Id) ((2 3) CNOT))

(((1) Id) ((2) Id) ((3) Ry 4.77414915092167))

(((1 3) CNOT) ((2) Id))

(((1) Id) ((2) Id) ((3) Ry 1.60820981184512)))

(6.37)

Ry(1.61)Ry(4.77) XX

(6.38)

This result is exactly the same as that which was obtained by Williams and Gray [66] and

is less expensive than the original invention by Brassard, as shown in 6.39, which has a

cost of 30.2.

Rz(3π/2) Rz(3π/2)

Rz(π/2)

X X

X

(6.39)
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6.9 TOFFOLI

This experiment was performed with the experimental parameters as described in 6.40.

G = TOFFOLI

Elementary Gate Set = parameterized universal

Population Size = 1000

Maximum Initial Length = 25

Maximum Dwell = 200

Mutation Rate = .02

Cooling Rate = .99

(6.40)

Note: Since this circuit is believed to require six 2 qubit gates the minimum cost was set

to 60.

A total of 27 experiments were performed and the results are summarized in 6.41. The

success rate was 0.07 and the average experiment duration was 14951 seconds.

10000 20000 30000 40000 50000 60000 70000
time in seconds
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100
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(6.41)
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The best circuit over all experiments has a cost of 194.0 and is shown in 6.42 and 6.43.

((((1) Ry 3.12967987957023) ((2 3) J 1.25464021954367))

(((1) Rz 4.58646779678745) ((2) Id) ((3) Rz 5.51543629905162))

(((1) Ry 3.12669986224446) ((2 3) J 1.17884461735261))

(((1) Rz 5.48217127021923) ((2) Id) ((3) Rx 5.10716987748223))

(((1 3) J 2.57612911903958) ((2) Rz 5.50194516093045))

(((1 2) J 2.21621622323029) ((3) Rz 1.03436155284308))

(((1) Rz 5.45744280505076) ((2 3) J 1.1448986896617))

(((1 3) J 2.98051013216298) ((2) Id))

(((1) Id) ((2) Id) ((3) Rz 6.05131697131327))

(((1) Id) ((2) Id) ((3) Rx 1.84559021089618))

(((1) Id) ((2) Id) ((3) Rz 1.11837092474942))

(((1 3) J 3.09169255103958) ((2) Id))

(((1) Id) ((2) Rz 2.60726474913167) ((3) Rx 3.18479495058295))

(((1 2) J 2.24501687259656) ((3) Rz 0.971893438567361))

(((1 3) J 2.54265748084369) ((2) Id))

(((1) Id) ((2) Id) ((3) Rz 5.40540031951163))

(((1) Id) ((2) Rz 3.98210072591016) ((3) Rx 0.801043779048809))

(((1) Ry 3.13580259904846) ((2 3) J 1.39167435673733))

(((1) Rz 4.57507383459652) ((2) Id) ((3) Rz 5.45062409266207))

(((1) Ry 3.13041969826293) ((2 3) J 1.30283513771296))

(((1) Rz 5.48094910349731) ((2) Id) ((3) Rx 1.94550725137229))

(((1 3) J 3.00429172210091) ((2) Rz 2.58963614336956))

(((1 2) J 2.2159439333902) ((3) Rx 3.21362344257537))

(((1) Ry 3.12630551259164) ((2) Id) ((3) Rz 4.74627777770301))

(((1 3) J 1.79832799648728) ((2) Rz 3.68099971660999))

(((1) Id) ((2 3) J 1.27786959439254))

(((1) Ry 3.12792100079302) ((2) Id) ((3) Rx 6.16507069205455))

(((1 3) J 2.60259886024991) ((2) Id))

(((1) Rz 4.53362753376377) ((2) Rz 2.83795135688103) ((3) Rz 0.29517)))

(6.42)
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Rx(5.11)

Rx(1.85)

Rz(4.59)

Rz(5.52)

Rz(5.48)

Rz(5.50)

Rz(1.03)

Rz(5.46)

Rz(6.05) Rz(1.12)

Ry(3.13) Ry(3.13)

J(1.25) J(1.18)

J(2.58)

J(2.22)

J(1.14)

J(2.98)

J(1.25) J(1.18) J(2.58)

J(2.22)

J(1.14) J(2.98)

Rx(3.18) Rx(0.80)

Rz(2.61)

Rz(0.97) Rz(5.41)

Rz(3.98)

J(3.09) J(2.25) J(2.54)

J(3.09)

J(2.25)

J(2.54)

(6.43)
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Rx(3.21) Rx(6.17)Rz(4.75)

Rz(3.68)

Rz(4.53)

Rz(2.84)

Rz(0.30)

Ry(3.13) Ry(3.13)J(2.22) J(1.80)

J(2.60)

J(2.22)

J(1.80)

J(2.60)

J(1.28)

J(1.68)

Rx(1.95)

Rz(4.58)

Rz(5.45)

Rz(5.48)

Rz(2.59)

Ry(3.14) Ry(3.13)

J(1.39) J(1.30)

J(3.00)

J(1.39) J(1.30) J(3.00)

The commonly utilized circuit [47] is shown in 6.44. Using the CNOT circuit obtained in 6.6 this
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circuit has a cost of 76.2.

Rz(π/2)

Rz(π/4)

Rz(π/4)

Rz(π/4)Rz(7π/4)

Rz(7π/4)Rz(7π/4)

Rz(7π/4)

Rx(π) Ry(π/2)

Rx(π) Ry(π/2)

X

X

X

X

X

X

(6.44)



Chapter 7

Conclusion

This work has explored the Evolutionary Programming approach to quantum circuit design

that is directly based upon the phenomenally successful study of evolutionary circuit design

provided by Koza [33], as well as the successful preliminary application to quantum circuits

performed by Williams and Gray [66] and Rubinstein [52]. The software associated with

this work provides a general purpose experimental platform for the evolutionary design of

quantum circuits, and develops the previous approaches in a number of important ways,

including:

• A symbolic representation scheme for describing parallel quantum circuits constructed

out of an arbitrary elementary gate set, including gates with one or more parameters.

• A highly optimized fitness assessment procedure which measures average case cor-

rectness with proper respect for global phase equivalence.

• A feasibility assessment procedure which disallows certain forms of quantum circuits,

facilitating the characterization of particular quantum computers, and also the ap-

plication of any available problem insight.

• A cost assessment procedure which measures the difficulty of implementing a quan-

tum circuit on a particular quantum computing architecture.
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• Local search mutations which can optimize the numerical parameters of a quantum

circuit, and perform peephole simplification.

The experimental results consider significantly more difficult problems than previously

studied, and show that the EP approach is capable of producing both correct and practical

solutions to circuit design problems, even when little problem insight is available. These

results will be useful for quantitative comparison with future approaches.

7.1 Future Directions

There are five main directions for future research which are expected to facilitate the

application of the EP approach to larger and more complicated quantum circuit design

problems:

7.1.1 Developmental Representation of Quantum Circuits

Early work by Spector and Stoffel [61][60] and recent work by Koza et al. [33] has explored

the incorporation of the astonishingly complicated processes of developmental physiology

into the evolutionary programming approach. In this approach, the genotype does not

directly describe a single solution, but rather a recursive process to build a parametric

class of solutions. In the case of quantum circuits, the developmental genotype could

describe a process for building an efficient circuit which emulates a parametric gate, such

as Rx(θ), even out of a small discrete elementary gate set. These parametric circuits would

be very useful, but would clearly require significant computational resources.

7.1.2 Worst Case Correctness Assessment

The correctness function used in this work is an average case measure, and the experi-

ments show that it provides enough information for the algorithm to perform satisfactorily.
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However, there are many distinct quantum gates which are very similar on average. For

example, the TOFFOLI gate acts exactly like the identity on 3

4
of its domain, and so

there are a great many trivial quantum circuits which act very similar to the TOFFOLI.

To properly distinguish between those gates which are highly similar on average requires

a measurement of the worst case. Recent work by Gilchrist, Langford, and Nielsen [16]

provides a highly informative discussion on the still open question as to how to best mea-

sure the distance between quantum gates, and they propose two techniques for worst case

measurement. While these worst case techniques are significantly more complex than the

average case used in this work, it seems highly likely that they would pay off by providing

the algorithm with more power to distinguish between local and global optimums.

7.1.3 Fault Tolerance

Quantum error correction is perhaps the most successful aspect of quantum computing so

far, but since one of the fundamental strengths of evolutionary programming is its ability

to operate with minimal or no bias with regards to the design of solutions, it would be

interesting to see if it could be used to discover new techniques. A simple Monte Carlo

approach to this would be modify the genotype to phenotype transformation so that a

noise step is inserted after each step in the circuit. The noise step simulates the effect of

noise on the operation of the previous step. For example, a simple noise step could consist

of random single qubit rotations applied to each qubit, where the angles are sampled from

a normal distribution with zero mean and some small variance. Therefore each time a

circuit is performed the outcome is slightly different, and its correctness would then be

obtained as some statistical function over a sufficiently large number of samples.

7.1.4 Problem Insight

Any new insights into the local and global structure of quantum circuits may yield general

heuristics which could be put to use to improve the quality of the results and reduce

the required amount of computational resources. Work done by Lomont [38] has produced
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about a thousand useful quantum circuit simplification rules which could be used to greatly

expand on the peephole simplification used in this work. Other work by Bullock, O’Leary,

and Brennen [6] and Shends, Bullock, and Markov [56] provides insight into how and why

some circuits are easier to construct than others. These insights could lead to a solid

theoretical basis for feasibility conditions which could be used to significantly reduce the

search space, and hence accelerate the search.

7.1.5 Larger Scale Experiments

The experimental results in this work were obtained in a relatively short period of time

using a single small computer, and provide clear motivation for larger scale experiments

using greater computational resources. The scalability of evolutionary programming has

been established by Koza, who recently performed several massive experiments which em-

ployed the use of over 600 hours of a 1000 node cluster computer [31] [32]. The experiments

resulted in six electronic circuits, all of which had only been first invented by human en-

gineers and patented less than three years ago. These results indicate that evolutionary

programming is a viable approach to large and difficult real world circuit design problems

that is poised to enter the mainstream. Since quantum circuits are so much less under-

stood than electronic circuits, it seems quite likely that the application of even moderately

greater computational resources will yield several new and interesting quantum circuits.
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Appendix A

Quantum Gate Definitions

Rx(θ) =

(
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CNOT =
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TELEPORTSEND =
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