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Abstract

This thesis investigates the correlations between short proteidgeptjuences and local tertiary
structures. In particular, it introduces a novel algorithm fatitfming short protein segments
into clusters of local sequence-structure motifs, and demongtnateabese motif clusters contain
useful structural information via two applications to structural ptiufi.

The first application utilizes motif clusters to predictdbprotein tertiary structures. A
novel dynamic programming algorithm that performs comparably witiesof the best existing
algorithms is described.

The second application exploits the capability of motif clustersecognizing regular
secondary structures to improve the performance of secondaoptusér prediction based on
Support Vector Machines. Empirical results show significaprovement in overall prediction
accuracy with no performance degradation in any specific aspect beiagretha

The encouraging results obtained illustrate the great poteftiasing local sequence-
structure motifs to tackle protein structure predictiand possibly other important problems in

computational biology.
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Chapter 1

Introduction

1.1 Importance of Protein Tertiary Structures

Every cell of every eukaryotic organism contains a copph@blueprint for that organism: pairs
of long and massive polymers stored in the form of a twistedble helix calledDNA
(deoxyribonucleic acid). Certain regions along DNA are caliedes Special signals found
inside and in the vicinity of genes flag the cell to transcribe the getod2NA (ribonucleic acid).
While some genes code for RNA that is used directly bycétiefor vital enzymatic purposes,
most genes angrotein-coding That is, the resultant RNA is to be translated into anéihdrof
polymer calledproteins which are ultimately responsible for the large majorityifeffunctions.
Despite their functional variety, all proteins are edaiptcreated by chaining molecules called
amino acidsin different orders. The sequence of amino acids formgrh®ary structureof a
protein. Each amino acid in a protein is calledaanino acid residueor justresidue as its

flanking atoms have been stripped off during the translation process.
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The primary structure does not give the protein the ability thope its functions right
away. Instead, it causes the protein to underfgédang processin which the protein folds into a
particular three dimensional (3D) shape believed to be thé enesgetically stable after taking
into consideration all interactions among its residues. This skafded thetertiary structure
enables the protein to interact with other proteins and/oecqulds in order to achieve its
intended biological functions.

Biologists have long realized the utmost importance of thiagdtructures of proteins.
Simply put, the tertiary structure dictates how well a pnotarries out its activities. Improperly
folded proteins may lose their functions entirely or even assiawebut undesirable ones, as in
the case of Bovine Spongiform Encephalopathy, commonly known as Mad GmagealisOther
common lethal diseases resulting from protein misfolding inclédeheimer’'s disease,
Parkinson’s disease, and type |l diabetes, among others. Thetlaforing the shape of a
protein is not only vital in understanding its biological roled,diso in developing possible cures

should the protein misfold or disappear for any reason.

1.2 Challenges in Protein Tertiary Structure Prediction

It has been shown more than 30 years ago that all the irtfformeeeded for a protein to fold
resides in its amino acid sequehfH. Unfortunately, while current technologies such as gene-
finding and mRNA micro-arrays have given us ample accesevel protein sequences, finding
tertiary structures given the sequences remains a daunting challengeatdugbmethods such as
NMR Microscopy and X-ray Crystallography do exist for fold deteation, but they are

expensive and time-consuming. Even worse, the methods fail f@inzdhat are difficult to

! Exceptions to the rule such as folds created thighaid of chaperons or post-translational modifices
are generally ignored for simplification purposes.
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crystallize, especially membrane proteins. On the compuotdtiside, accurate prediction of
tertiary structure is still out of reach after decadegeskearch. Owing to its urgency and
substantial impact on mankind, protein tertiary structureigtied is considered one of the most
critical problems in computational biology.

A major obstacle for protein tertiary structure predictites lin the complexity of
modeling protein 3D conformations due to the large degree of s@lclkeedom and
sophisticated interactions among residues. Previous computafipmahaehes include a number
of lattice and off-lattice models as surveyed by Yuan e2jlall of which essentially formulate
structural prediction into a large-scale search probleth linited success. Inspired by the
conjecture that a newly created polypeptide forms locdkfol parts before settling to its final
fold [3], a model has recently emerged that treats a protesancasnposition of local structural
motifs. This model manages to reduce the size of protein conformabspace to a point where
many search-based prediction strategies finally becomiblizasis a result, extraction of local
motifs has always been a subject of intense study (see Section @xarfigples).

The tertiary structure of a protein is a concerto of two kindesitlue interactions: long-
range interactions between distant residues such as disuifige$and inter-group charges, and
local interactions among nearby residues. Xu et al. [4] kazated RAPTOR, an innovative
protein tertiary structure predictor based on optimal threp by linear programming.
Unfortunately, as RAPTOR focuses primarily on achieving optighabal mapping between
target and homologous proteins, it lacks a mechanism formgfimutput predictions based on
local sequence patterns. This shortcoming has led to the gatesti of local protein folds and
their potential inab initio local structure predictianthe prediction of tertiary structures of short
protein segments based solely on the sequence information contaitieel $egments (See

Section 2.2 for further details).
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1.3 Some Biology Background

1.3.1 Protein Structure

A protein is a polymer consisting of many repeatedly linked wailed amino acids. All amino
acids (except proline) have the structure shown in Figure 1.general, each amino acid has a
central alpha-carbon atom, Connected to a hydrogen atom, an amino group,)NtHcarboxyl
group (COOH), and aide chaindenoted by R in the diagram. Because the carboxyl group is
characteristic of all organic acids, the simultaneous preserthe amino group and the carboxyl

group gives rise to the name “amino acid”.

i H + H { O :

' H — N T C7T C — O — H:

:\\ /: R I\\ / ”
Aminogroup Carboxyl group

Figure 1.1: General structure of an amino acid (except praline) witlelsiie R

There are 20 standard amino acids distinguished by different side airigurations.
Other non-standard amino acids exist, but they are rare and only fownganisms inhabiting
extreme environments such as volcanoes and ocean bottoms. Thaiefeee non-standard
amino acids are irrelevant as far as the majority of rdsearch, including this thesis, is
concerned. Figure 1.2 lists the names, symbols, and molecular regsufdu all 20 standard

amino acids.
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H H H H H
| S I (o] I o | o | O
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f
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[ H N OH
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(Lys f L) H H H H
H I O I 0 | 0 | 0
/cz H3N*-“C-Cf§: HN*-5C-Cle | HN*.oC.ch H;N*-ﬂc-cia
~ | 0 | ‘o | O | 0
f,C CH, 5 CH, CH, H-C-OH CH,
- | | | |
4+ _ﬂ ol e
N -5C C\O CH, COOH CH, SH
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{(Pro/ P} COOH
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. (Glu{ E) (4sp/ D) (The / T) (Cys / ©)
P
H,N* -5C - C\? H H H H
|0 | o |0 0 | 0
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' | O | "o I o o
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= CH C=0 CH, H, H,
| &N | |
CH, CH; CH, NH, CH,
Methionine Leucine Asparagine Isoleucine Valine
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Figure 1.2: The 20 amino acids (taken from http://en.wikipedia.org/wikit&nacid)
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The difference in side chain configuration induces different ptigseon each amino
acid. For instance, an amino acid canhyerophilic (water-loving) orhydrophobic(water-
repelling), polar or non-polar, charged or neutral, flexiblegidretc. Table 1.1 categorizes the

amino acids based on different properties.

Table 1.1: Properties of standard amino acids

Properties Property Description Amino Acids
Hydrophobic Hydrophobic amino acids V,L I,M,F

- stay inside of a protein, whilé
Hydrophilic hydrophilic ones tend to sta N.E,QHKRD
In-between in the exterior. G A ST, Y,WC,P
Positively charged Oppositely charged amino | R, H, L
Negatively charged acids can form salt bridges. | p g
Polar but not charged Polar amino acids can N,Q,S, T

participate in hydrogen

Non-polar bonding. AGILLMP,V

Guided by a sequence of codons (triplets of nucleotides) in a RNAcuie] a cell
organelle called the ribosome creates a protein by linkinipa acids together witlpeptide
bonds as shown in Figure 1.3. Therefore, a protein is also callpdlygeptidebecause it

consists of many amino acid residues linked together by peptide bonds.

/H H (O I ; Ro \
l oA :
] RN
| ' | ' i
‘\\ Rl ! : ! H H O !
 AAResiduel  Peptide AAResidue 2
bond

Figure 1.3: Peptide bond linking two amino acid (AA) residues
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Although the entire 3D conformation of a protein can be expresshdcadrdinates for
all atoms, it suffices to just consider the coordinates ob#ttkboneatoms, namely the repeating
(N, G, C) chain of atoms in Figure 1.3. Scientists alsodiisedral angledo precisely describe
the shape of a protein. A dihedral angle is defined as the tasipe from one planar surface to

another, as depicted in Figure 1.4. Dihedral angles must be betwéamd8a80 inclusive.

____________________

Figure 1.4: Dihedral angkfrom P, (defined byab andbc) to P, (defined bybc andcd)

There are three types of dihedral angles associated witthatibone of a protein,
namely thephi (o), psi (y), andomega(w) angle. Figure 1.5 depicts the different dihedral angles
along a protein backbone. Note that the diagram also shows thdythes of bonds connecting
the backbone atoms: the C-N bond (i.e. the peptide bond), thebNA@, and the &C bond. If
(b, by) represents the plane defined by non-collinear bopdsdb,, theng is the dihedral angle
from (C-N, N-G) to (N-G,, G,-C), v is the dihedral angle from (N;COC,-C) to (G-C, C-N), and
o is the dihedral angle from (&, C-N) to (C-N, N-G). Since bond lengths and bond angles are
fairly rigid under normal biological conditions [5], the seriesbatkbone dihedral angles are

sufficient to describe the full conformation of a protein.

A RA R RA R

Figure 1.5: Dihedral angles along protein backbone (thick lines deruitdgobonds)



8 CHAPTER 1. INTRODUCTION

Further simplification is possible as peptide bonds can only iexisther thecis (o = @)
or thetrans (o = +180) configuration. Peptide bonds in this configuration are a lot rarer, and
their presence usually indicates special regional #eSvior structures due to their less
energetically favorable nature [6]. Henegangles are often assumed to be°l@tder normal

circumstance, leaving onty andy angles to express the whole protein geometry.

1.3.2 Sequence Profiles

Despite numerous possible mutations and re-arrangement eventin agghes are well
conserved across species after a long period of time dueitantpertant biological functions.
Nevertheless, however conserved the genes are, their negutiéeins could have very different
primary structures. Sander and Schneider [7], for example, deteemined empirically that
structure homology is implied even for proteins with as l0\@5% sequence similarfty Their
study and others alike have confirmed the inadequacy of saeiparing primary structures for
determining if two proteins are evolutionarily related. Therem alternative would be to
compare sequence profiles instead.sefjuence profil®r frequency profileof a protein shows
the probability of observing each amino acid in each position dlemgrotein. It is generated
from a multiple sequence alignment in which the protein is alignéts homologues. The whole
idea is that if two proteins are indeed evolutionarily ezlatthen they must share the same
ancestor and homologous siblings, and therefore similar sequence profiles.

There are many methods for generating sequence profiles, two cf at@ especially
common in the research community. The first method is to tisel @alled PSI-BLAST [8], a
brief description of which can be found in Section 2.3.1. The secorfibchét to generate

profiles based on alignments available in the HSSP database\Nptg that this method could

2 Measured in an alignment over a length of 80 tesicbr longer
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result in biased profiles as the alignments used might bege heavily populated by proteins
from certain families but lightly so by others. Fortunatelgngnsequence weighting methods
exist for correcting such unequal representation including simplelpscounts, Voronoi weights
[9], Maximum discrimination weights [10], and Maximum entropy weight$.[11

Rost and Sander [12] achieved a 6% increase in predictionaagcim their neural
network method when they replaced primary structures with sequenfies for prediction.
Improvement resulting from the usage of sequence profiles isasanfirmed by de Breven et
al. [13]. As implied in Jones’ work [14], the quality of sequepiles has a dramatic impact

on performance.

1.4 Protein Motifs

Within the context of this thesis,raotif is defined as a recurrent feature shared by a significant
number of segments that are extracted from proteins belongitiffaent families. There are
three main categories of motifs, namedgguence motifsstructural motifs and sequence-
structure motifs

As its name suggests, a sequence motif describes a reaggerince pattern found in a
significant number of protein segments. Likewise, a strattorotif describes a recurrent
structural pattern. One might often be misled by intuition skguence similarity automatically
implies structural similarity, which would have been truénd folding of protein segments were
solely determined by local inter-residue interactions withinsggments. Unfortunately, there
are also long-range interactions such as disulfide bridges;group charges, and hydrophobic
effects that alter the overall tertiary structure of @gin. Segments under the influence of such

global forces would fold differently from other segments evethéfy share a high degree of
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sequence similarity. Since it is ultimately the shape thatters to the protein’s capability,
sequence motifs tend to be less valuable and much less frequently studied.

On the contrary, structural motifs are more intensiveldistl because they constitute the
conformational search space for many search-based strugedadtipn algorithms [15, 16, 17].
Nevertheless, structural motifs neglect specific sequenformation that characterizes their
formation, so their usage @b initio structural prediction usually requires some sort of external
guidance such as a global energy function.

The last category comprises sequence-structure motifs. dégclence-structure motif is
shared by segments that are highly similar in both sequence dbompasd tertiary structure.
By definition of motifs, these segments must amount to a signifinumber and belong to
proteins from different families, so the observed sequencessteudorrelation is almost
impossible to happen by chance. As a result, one may deduce whithdnifidence that for any
sequence-structure motif, the structure is mostly or even entirely dsterby the corresponding
sequence pattern. This important concept forms the underlyingjpdei that enables sequence-

structure motifs to map short sequence patterns into relevant stguctu

1.5 Research Overview

The two main problems being addressed by this thesis are ttwvetig of sequence-structure
motifs given a set of non-redundant proteins, and the prediction tefrpfolds by exploiting the
motifs’ ability to map sequences to structures. The reghisfthesis is organized as follows:
Chapter 2 will present a detailed survey of some of the previelated work, Chapter 3 will
describe a novel clustering algorithm for extracting segeestructure motifs, Chapter 4 will

describe a novel dynamic programming algorithmdbrinitio local structure prediction using
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motif clusters, Chapter 5 will describe a procedure for usiotif rrlusters to enhance secondary
structure prediction based on Support Vector Machines, and fighlyter 6 will conclude the

paper with some final comments and a list of future work.






Chapter 2

Related Work

The materials presented in this thesis concern three majas:amotif extraction via clustering,
ab initio local structure prediction, and secondary structure predicilitiis section will present

some background and related research in each area.

2.1 Extraction of Protein Motifs via Clustering

Clustering is a popular statistical technique for analyzimgelalata sets through the grouping of
similar items. It enables researchers to focus on the dgeratarns instead of on the individual
items themselves. Since motifs are patterns shared lgnificant number of segments, their
extraction can be properly achieved through clustering. Previetisods for clustering short
protein segments are generally divided into two categoriesthoke with clustering based on
structure alone, and 2) those with clustering based on both sequence and structigesufvby

of six recent methods is presented below, where the firg beleng to the first category and the

rest belong to the second.

13
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2.1.1 Clustering using Reference Framgy@

Woijcik et al. [15] invented a novel orthogonal referencenéaalled Qyzfor aligning two loop
segments in order to calculate their structural deviation. For eackdgapens, the O axis was

the line joining the Catoms of the first and last residuessiOy axis was defined such that the
plane formed by ®and @ contained the centre of gravity of the backbons, aind finally &

axis was the vector product ox@nd @. Loop segments of length 3 to 8 residues long were
extracted and classified using hierarchical clustering doase RMSD (root mean squared
distance) between backbone atoms positioned xyzO Each resultant cluster essentially
represented a structural motif. The set of all clustesssusequently used for loop modeling in

the remainder of the study.

2.1.2 Clustering using K-means Stimulated Annealing

Kolodny et al. [16] clustered protein segments of length 4 to 7 rediclugsising a modified k-

means algorithm calle-means stimulated annealingthich was identical to the original k-
means algorithm [18, 19] except that two clusters were mergedrantider was split in a Monte
Carlo fashion at the end of each iteration. RMSD after supepositas used within the

algorithm to measure the distance between any two given segmimtsauthors claimed that
their special k-means algorithm improved the handling of segment rdostoens and reduced
sensitivity to the initial choice of cluster centers. Taelity of the resultant clusters was

evaluated by examining how well the clusters could fit into the stestfrcertain test proteins.

2.1.3 Clustering using Hypercosine as Distance Measure

Although RMSD is a popular measure of inter-segment distanisesisage in large-scale

clustering could be hindered by its expensive numerical computatiblunter et al. [17] thus
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suggested a new structural distance measure bashgpencosing which they claimed was a
good approximation of RMSD while being much more efficient to compufo measure the
structural deviation between two segments, a vector veasect from each segment by taking the
backbone atomic coordinates along the segment after it wamedlin the 3D Cartesian space

with its first G, atom at the origin, its last,@tom on the axis, and its second,@tom on the-z
plane. Let andv be the resultant vectors for the two segme(mt,sl> be their inner product, and

lul and y| be thd®*norm (i.e. the magnitude) ofandv respectively. The hypercosine between

andyv, denoted byHCoqu, v), was computed as follows:

{u.v)
HCoqu,v)=——"— (2.1)
[ullv]
The output was a real value in the range [0, 1], with O atiig totally structural dissimilarity
and 1 indicating structural identicalness. Hunter and his pestesitthe efficiency of the new
method by clustering 150,000 length-7 segments. The remainder ro$ttiely focused on how

changes in hypercosine threshold affected the quality of the reslilisier cet.

2.1.4 Protein Blocks

French scientists de Brevern et al. [13] clustered protein segmé length 5 based on both
sequence and structure in a two-stage process. Duringghsetéige, they partitioned segments
by structure into 16 clusters call@dotein Blocksas follows. Each segment centered atwas
represented as a vector of eight dihedral angles i1, Vi1, 0i, Vi, 0is1, Wi+, Qi+2), and inter-
segment distance was measured by RMSDA (root mean squared distaarogular values). An
unsupervised Kohonen network formed the basis of the clustering methatiort, the method

was initialized with a fixed humber of randomly drawn clusterroéd. It then assigned each
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segment to its closest cluster and updated the clusteri®ickatcordingly. Once all segments
had been exhausted, the assignment process restarted with thentmmids. This was repeated
for a given number of times to obtain the final set of clusters or ProteinBlock

Every Protein Block was further sub-divided irequence familiebased on sequence
composition in the second stage. Initially, all segments within each Prdteia\Bere arbitrarily
partitioned into a fixed number of groups, and the consensus sequefitefor each group was
computed. Each segment was then assigned to the group whose peddiéal ythe highest
conditional probability of observing the segment. After all segsnbatd been assigned, new
profiles were generated for the groups and the assignment prnoessrepeated. The whole
procedure stopped when changes to new profiles were minimal.e3hiéant sequence families

from all 16 Protein Blocks ultimately formed the complete set of sequenasure motifs.

2.1.5 I-sites Library

Thel-sites Library created by Bystroff and Baker [20], is a collection ofdifferent sequence-
structure motifs commonly found in proteins. Similar to ProteiocB, the motifs were also
extracted via a two-stage process. In the first stage, s¢gwielength 3 to 15 were partitioned
based on sequence similarity using a custom distance functionhank-rheans clustering
algorithm [18, 19]. A refinement process in the next stage reins@gments whose structures
were different from the paradigm structures of their regpectusters. The remaining segments
in each cluster were combined to form a signature sequencée prefid to further search for
other similar segments in the training database. The segrhahtsdre initially removed from
each cluster formed a new cluster, which then underwent thersfimement process. Because

each repetition isolated segments sharing the paradigm or “peaktuse from the rest, the
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refinement process was callierative peak removalThe end result was a set of 82 clusters that

could be roughly grouped into 13 different sequence-structure motifs.

2.1.6 LPBSP1

Yang and Wang [21] createdl@cal structure-based sequence profilatabase calledPBSP1
Local structure-based sequence profiles are equivaleeigteesce-structure motifs as they both
represent the consensus of a group of segments sharing similar compasitiGtisictures.

Prior to clustering, each segment in the training databaseprepsocessed such that
everyphi andpsi angle pair was converted intobackbone conformational states defined by
Oliva et al. [22]. This preprocessing step essentiallgped the continuous backbone structures
into discrete states needed for subsequent local structure predicti@efton 2.2.3).

Each local structure-based sequence profile was creatdulsbyselecting a segment
known as the seed. To refine the seed, all segments in thiadrdatabase were examined, and
those resembling the seed’s structure were extracted. Thitanesegments were then filtered
using a custom scoring matrix to retain those that were atgeesee-wise similar to the seed.
The final set of segments composed a consensus sequence whifilewas used along with the
seed’s structure to “fish” out other unidentified homologueénttaining database. At the end,
all segments that had been found constituted the sequence-stractifreluster for the seed
segment. The entire process was repeated for all segmefits @atabase, and all resultant
clusters with less than 10 segments were discarded. YahgNVang applied the clustering

method to 213,338 length-9 segments to obtain a final set of 138,604 clusters.
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2.2 Ab Initio Local Structure Prediction

The aim ofab initio local structure prediction is to predict the tertiaryatures of short protein
segments based solely on the sequence information contaitlesl $egments. A main driving
force behind such prediction is its potential in tackling the prdi@ding problem [23], the
resolution of which lends itself to other critical problemshsasab initio prediction of global
tertiary structures and identification of protein misfolding.

Protein folding is very difficult to simulate mainly becaugethe many different ways
residues can interact with their distant counterparts. Tloegerange interactions play a vital
role in guiding polypeptides to fold properly upon their creatioriveiGthe efficiency of the
folding process, however, it is impossible for a polypeptideotwsider all distant interactions or
even a majority of them. As a result, the folding procedselieved to initiate with segments
folding locally, forming structural intermediaries whoseemctions lead to the final shape.
Therefore, the study of local structures and their formations would sieppingstone, if not a
prerequisite, to understanding the folding process.

Macromolecular structure repositories such as the BrookhawtaiPDatabank (PDB)
have enabled researchers to discover a number of local situtintifs, such as the Schellman
motif [24], the hydrophobic staple [25], the extended capping box [26], aalig beta-hairpin
structures [27, 28]. The values of local motifs to structprabdiction have been noted in a
number of studies including Bonneau et al. [29], Fidelis et al. [8@],Rooman et al. [31]. The
following sub-sections descrila® initio local structure prediction using Protein Blocks (Section

2.1.4), the I-sites Library (Section 2.1.5), and LPBSP1 (Section 2.1.6).
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2.2.1 Prediction using Protein Blocks

After discovering Protein Blocks and sequence families, de Breateal. [13] went on to apply
them to local structure prediction. In their prediction mettfrdtein Blockb was assigned to a
target segmers if sequence family [J b yielded the largest ratio= P | s) / Pf) among all
sequence familiés The ratior was calculated using only the sequence profilebaofds. To
predict the local structure of a target protpjrthe method simply assigned the optimal protein
block (i.e. the one yielding the largest ratjoto each overlapping segmentpn During the
evaluation process, an assignment involving Protein Blm@nd segmens was considered
correct ifb was also the Protein Block structurally closest to the ¢ordormation ofs. The
overall prediction accuracy, evaluated as the percentage oftcassignments over the total, was
40.7%. The authors subsequently claimed better accuracies by cogsidettiple top-scoring
Protein Blocks, instead of just the optimal one, for each segmUnfortunately, those results
were practically meaningless because the authors faiiedttact which Protein Block was to be

chosen should the true structures be unavailable for comparison, aairpeediction scenario.

2.2.2 Prediction using the I-sites Library

As described in Section 2.1.5, the I-sites library is a cidle of 82 clusters grouped into 13
sequence-structure motifs. Recall that during the extractiocegs, Bystroff and Baker [20]
utilized a custom distance function to cluster segments baseghjoarse similarity. The same
distance function was used to score sequence similarity betavekister and a given segment
during local structure prediction. Since different clusteese of different lengths, the similarity

scores were not directly comparable. As a remedy, BystndfiBaker mapped each score into a

® P() is the probability of observing and Px |y) is the probability of observinggiven the presence gf
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confidence value, which stood for the likelihood of the segment héivingtructure of the cluster
given the score. The mapping was derived empirically through a cradatios procedure.

The prediction method first computed the confidence values of alapping segments
in the target protein versus all 82 clusters. The set akeglnent-cluster pairs were then sorted
by confidence values in descending order. The first segmastecipair was processed by
assigning the consensus dihedral angles of the cluster to dideie® in the segment. Each
subsequent segment-cluster pair was processed only if the consensia difgids of the cluster
did not conflict with the ones previously assigned to the segment.

A residue was correctly predicted if it was found in at least length-8 segment whose
predicted structure was within 1.4 A in RMSD of the truecstme. The overall prediction

accuracy, evaluated as the percentage of correctly predictddagsiver the total, was 50%.

2.2.3 Prediction using LPBSP1

LIBSP1 [21], a collection of 138,604 sequence-structure motif (sedo8 2.1.6), was created
specifically for local structure prediction. The sequewomposition for each motif was
represented by a position specific scoring matrix (PSSMYexteaith the Bayesian prediction
pseudo-count method [32]. To predict the structure of a lengh-9 segméang and Wang
searched through LIBSP1 to obtain the\&etf all motifs whose PSSMs yielded high similarity
scores fors, and assigned the structure of the motif located at the cant®rto s. The above
process was repeated for each overlapping length-9 segmenttedagget protein. At the end,

the final prediction for each residue was taken to be therityagonformation found in the 9
overlapping predictions covering the residue. Yang and Wang dedetopevaluation scheme
called RMSDaccuracy which they claimed was comparable to the RMSD measure used by

Bystroff and Baker [20]. Their published result under the scheme was 62.1%.
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Unfortunately, the method did not achieve high accuracy without ddstause of the
need to find the majority conformation, the continuous backbone dihaugks were mapped
into discrete states, as described in Section 2.1.6. The final predicted striasumemessed as a
string of only four states {A, B, G, E}, so it was at besbagh approximation. In other words,

there had been a trade-off between prediction accuracy and precisemnestctdgh structures.

2.3 Enhancement to Secondary Structure Prediction

The tertiary structure of a protein can be seen as a spatalgement of three types of 3D sub-
structures known as helices, strands, and coils. The digirilnftthese sub-structures along a
protein is referred to as tteecondary structuref the protein. Whileab initio prediction of
tertiary structure is difficult, that of secondary struetisgr a lot simpler because the latter projects
the complicated 3D structures onto a linear sequence of H (hElix3trand), and C (coil).
Knowledge of secondary structures is often used as a constrééntidoy structure prediction or
as part of fold recognition methods [33]. There are numeatufitio secondary structure
prediction methods such as BRNN [34], DSC [35], NNSSP [36], P37p PREDATOR [38],
SVM [39], and Zpred [40]. Given the array of methods, a more pahaiation would be to
enhance the performance of the best in the herd. Two exampigp@tt® be described in this

section are PSIPRED [14] and PMSVM [41].

2.3.1 PSIPRED

PSIPRED [14] is considered an improved version of PHD [37], digice widely recognized for
its supreme accuracy. The main improvement comes from ¢hefysosition specific scoring
matrices (PSSMs) generated by PSI-BLAST [8]. Given aygsequence, PSI-BLAST searches

for high-scoring homologues from a non-redundant protein databastssceeprofile from the
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homologues, and repeats the search with the new profile. Thesgriasts for a specified
number of iterations. The utilization of PSI-BLAST profiles mageased the accuracy (os @
be exact, see Section 5.4) by about 5% on average, from around 73% to7@%undt present,

PSIPRED remains one of the most reliable secondary structure predietioods available.

2.3.2 PMSVM

Support Vector Maching42], or SVM for short, is a powerful statistical method for data
classification. The most common use of SVM is as a binasgsifier. In a nutshell, training a
binary SVM classifier involves computing the separating hypeneplthat divides the training
data points in such a way as to achieve maximal margin dimakimize the gap between the
plane and the closest data points on either side). Oncediraie@ data points are classified to
either category depending on which side of the hyper-plane they land on.

Hua and Sun [39] invented a secondary structure predictitmohdased on SVM, and
achieved prediction accuracies that rivaled PHD, if not bettdotivated by the success of
PSIPRED, Guo et al. [41] set out to improve the SVM predicti@thod of Hua and Sun.
Besides utilizing PSI-BLAST profiles, they introduced a secovilll rediction layer to produce
a dual-layer SVM predictor called PMSVM. The second layes meant to refine the output of
the first by considering the patterns of surrounding secondaststes for each residue. Guo et
al. reported around 79% as the average prediction accurgcfof@MSVM, an improvement of

about 5% over the single-layer SVM approach.



Chapter 3

Discovery of Sequence-Structure Motifs

Clustering of short protein segments will be used as tmeapyi approach for the discovery, or
extraction, of sequence-structure motifs. Many of the previmibods, such as those described
in Section 2.1.4 and Section 2.1.5, perform clustering in two stagesobfem associated with a
two-stage approach is that segments with similar sequerteengatind folds might not as clearly
reveal such a relationship when one looks at sequence and stregparately. Those segments
are likely to get misclassified in either or both stag&his section presents a novel one-stage
method intended to eliminate the deficiency by considering both sesjaen structure together
throughout the whole clustering process. Specifically, thisosedescribes the inter-segment
distance measure, segment preparation and filtration, the materahg algorithm, and the

experiments conducted and results gathered.

3.1 Segment Attributes

All protein segments are assumed to be of the same lendivery segment is represented as an

array ofL records, each of which stores information for one residue. fbnedsinformation

23
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includes the occurrence frequencies for all 20 amino acidsettundary structure label (H, E, or
C), and all three backbone dihedral angles in degrees. Backiimméc coordinates are not
explicitly stored, but are calculated as needed from the dihadgéds. Table 3.1 below lists the

values of bond lengths and bond angles determined empirically by Engh and Huber [43].

Table 3.1: Bond lengths and bond angles along protein backbone

N-C, bond length 1.458 A
C,-C bond length 1.525 A
C-N bond length 1.329 A
N-C,-C bond angle 11192
C,-C-N bond angle 116°2
C-N-C, bond angle 121°%7

3.2 Measure of Inter-Segment Distance

Each of the 20 amino acids is represented by a unique index imtie@do 19 inclusive. The
exact index assignment is irrelevant but it must be consiterughout the study. Let andy;

be thephi andpsi angles in degrees at positiprandf; be the frequency of observing amino acid
with indexj at the same position. Note that the condifigg 1o fj = 1 must hold for ali. Given

segments andy, both of length_, their distanc®(x, y) is computed as follows:

i=0

L-1 A¢i2 A[//iz 19 ,) |
D(x,y)= Z{[%J +[%J +;)Afij if max(Ag,,Ay;)<0 Oi 3.0)

oo otherwise

SymbolA denotes the absolute difference in the associated quavttye 6 is L-dependent and
it limits the largest dihedral angle difference allowedote that Equation (3.1) has two ideal

properties as a distance function. First, it encompasses difésrén both sequence patterns and
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structures, hence allowing one-stage clustering. Secondhé Euclidean distance between two
points in a 2R-dimensional Cartesian space and therefore satisfies itheyular inequality,
making it acceptable for use in clustering [44].

The validity of Equation (3.2) below justifies the assumption tltributions from
differences in structure and in sequence have equal weightssegbied condition as well as the

tightness of both bounds can all be proven trivially.

2 2 19
0< (2% 4 (2% ) < 5ando< 3 a2 <2 Oido,L-1] (3.2)
360 360 T

3.3 Cluster Radius

Besides a distance function, a threshold calladter radiusis needed to tell if two segments are
sufficiently close to be grouped together. The choice ofarmatlius is crucial: being too small
yields a handful of clusters capturing only the most conservedsmatiile being too big yields
coarse clusters contaminated with irrelevant segmentsyst&raatic way exists to determine a
suitable radius for a given segment length. First, segmentsbfength are extracted from a
large database of non-redundant proteins whose structures are kAowideal choice for the
database would be PDB Select 25 [45, 46]. The set of all segme then divided in half, and
distances between segments in different halves are computed. re$ultant figures form a
normal distribution with mean and standard deviatian as shown in Figure 3.1 for segments of
length 8. The radius is set io— 35, corresponding to a confidence interval of 99.73%. This

choice of radius is found to consistently deliver clusters of reasonaddleygu
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Figure 3.1: Normal distribution for inter-segment distances obtaineddriange
sample of length-8 segments, with mgan 2.42 and standard deviatierr 0.41
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The cluster radii are larger for longer segments because hhee to account for
differences between more residues. Intuitively, once the sedaragtih doubles, so does the
radius for having to account for differences between twicenasy residues. Therefore, a
roughly linear relationship is expected between the radius armgktiment length. Our empirical
method for radius determination seems legitimate in that & doeduce results that agree with
expectation. Figure 3.2 shows the increase in cluster radiegmgst length increases from 5 to

13 inclusive.

3.4 Segment Preparation and Filtration

The distance function shown in Equation (3.1) requires sequence pralildboth segments
stating the occurrence frequency of each amino acid at evetioposthe profiles in this study
are generated from multiple sequence alignments available iIH3ISP database [7], and post-
processed with the Voronoi Monte Carlo algorithm [9] to correctuftgqual representations.
Aside from profiles, secondary structure labels are also gathered rahdtfthe DSSP secondary
structure labeling [47] is chosen due to its popularity.

A filtration process is in place to ensure the legitimatgegments used for clustering.
Specifically, a segment is not qualified unless it meéthede requirements: it must be aligned
to at least 20 proteins in the HSSP database, comprise onlyrstaesi@ues, and contain only
trans peptide bonds between residues (see Section 1.3.1). Overlappimgnse are then

extracted from protein peptides satisfying all the requirements.
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3.5 Clustering Algorithm

The k-means algorithm [18, 19] is the ideal method for clusterintgipr segments due to the
large input volume. Unfortunately, there are several isthesmust first be resolved. The
foremost is the requirement to specify the number of cluktérsadvance. Some studies have
suggested that the numbers of sequence-structure motif clatarsthe hundreds, while others
have suggested numbers in the thousands or even as much as oveflTh&@ide range makes
estimating the number of clusters a groundless act. Moreaside from knowing that a larger k
generally results in finer clusters, there is not a preziseelation between k and the degree of
segment similarity in each cluster. Finally, the original éams algorithm would fit every
segment into its closest cluster, even if that clustemityreowhere near the segment at all. This
would end up contaminating the resultant sequence-structure rustiérs, making them less
representative and degrading their capacity to recognize homologous SquateEITEs.

The novel clustering algorithm, outlined in Figure 3.3, is intended olge sthe
aforementioned problems. It is derived from the k-means algomtidnmodified to allow a
variable number of clusters [48]. An input to the algorithmhés dluster radius, such that a
segment either goes to its closest cluster if the distanaitiin r, or starts a new cluster
otherwise. The input eliminates the need to estimate and fix the number of clusitres a
more direct control over the cluster quality, and preventmeets from being forcibly added to
faraway clusters. The algorithm also uses a special cleatled theresidue clusteto hold all
outliner segments that cannot be clustered due to their uniquers® patterns or shapes. Since
segments in the residue cluster are considered outlinersatbgyrohibited from initiating new
clusters in subsequent iterations. This measure has &gnificant runtime improvement as it

effectively prevents the creation of tiny miscellaneous clusters.
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Protein Segment Clustering Algorithm
Input: cluster radius, minimum sizan, segment se maximum trial count
Create empty residue clustegs
Repeat until no changestarials have been exhausted
For each segmest]Sdo

Find cluster closest $por set distance to if none exists yet

1
2
3
4
5. If distance< r then moves to new cluster and update old cluster
6 Otherwise, i§ JC.s then create new cluster wigtas centroid

7 Merge all nearby clusters (with distance 0.5

8 For each cluster smaller thardo

9 Eliminate cluster and transfer all its segmen@Ggo

10. Return the final set of clusters

Figure 3.3: Outline of algorithm for clustering protein segments

3.6 Experiments and Results

The algorithm presented in Section 3.5 has been applied to itlgsteset of 396 non-redundant
proteins selected by Cuff and Barton (CB396) [49]. Segment léngts set to 8, a value small
enough to allow clusters of reasonable size but large enough twechymal residue interactions.
Results reported by Bystroff et al. [3] have shown that setpraf length 8 are very effective at
preserving local sequence-dependent information. The chastieis was set to 1.2 based on the
method described in Section 3.3. Both the minimum cluster size axichuma trial count were
set to 5. Symbob in Equation (3.1) was set to 2@&n arbitrary but reasonable choice for
segments of length 8. A total of 47,907 overlapping segments wieeter from qualified
protein peptides (see Section 3.4).

The output consisted of 357 clusters, but the number of disinattural motifs was

much less since many clusters either had the same fold, erowerlapping images of the same
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motif. For instance, 89 clusters were helices, showing the 'snabfindance and its variety in
sequence patterns. In short, all motifs in the I-sites lij20y50] had been discovered together
with some new ones. Four examples of new motifs are shown in Figure 3.4 and Figuret@5. M

examples are shown in Appendix A. For each motif, the following informationpgkagéed:

Segment count This is the size of the cluster capturing the motif. Triusnber might
seem small because it only includes segments that are Isighitar to

the motif in terms of both sequence and structure.

Dihedral angle plot The plot shows th@hi andpsi angles for each position along the motif

and facilitates comparison between structures of different motifs.

Log-odds profile For positioni and amino acid, entry v; in the log-odds profile is
calculated front; (the corresponding entry in frequency profile) dnd

(the background frequency for amino agids follows: v = log(fj / by).

Backbone drawing 3D drawing of backbone conformation using Protein Explorer, where the

N-terminus is labeled ‘N’ and the C-terminus is labeled ‘C’.

The motif in Figure 3.4(a) represents a turn between two hetihagacterized by a MET
at position 2, a preference for hydrophobic residues at position 3, angem@oa to them at
position 4. In general, positions prior to and including position 3 termtefer hydrophobic
residues while the others tend prefer hydrophilic ones, infeaipgssible emergence from the
protein interior to the surface. The motif in Figure 3.4¢bAlso a turn flanked by helices. It is
characterized by a GLY at position 3, a conserved hydrophobic eeaichosition 4, and finally
an ASX (i.e. ASN or ASP) at position 5. Hydrophilic residuesgareerally preferred throughout

the motif, potentially suggesting that the entire motif is exposed to tl®asjgurrounding.
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(a) Found in 44 segments
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Figure 3.4. Dihedral angles, log-odds profiles, and 3D backbonengi@vior two novel
motifs not listed in the I-sites Library. Dot (-) represents backgraeaddncy.



32 CHAPTER 3. DISCOVERY OF SEQUENCE-STRUCTURE MOTIFS

(a) Found in 25 segments (b) Found in 21 segments
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Figure 3.5: Dihedral angles, log-odds profiles, and 3D backbone drafainga&o other
novel motifs not listed in the I-sites Library. Dot (-) representkdraand frequency.
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On the other hand, the motif in Figure 3.5(a) is very similatheo PDG beta-hairpin
listed in the I-sites library. While both motifs possess ¢hnserved sequence ASX-GLY, the
PDG hairpin has an additional conserved PRO prefixing the sequediodlar to the PDG
hairpin, this motif also forms a hairpin by having two anti-paraltehnds connected by a U-
shaped turn. Finally, the motif in Figure 3.5(b) represents a tuiingjrkstrand and a helix. Itis
characterized by a conserved hydrophilic residue at positiord4aa ASX at position 5. The
preceding strand positions are mostly hydrophobic, indicating thabaki€is likely to protrude
from the protein interior.

These examples illustrate the competency of the clusteretbod at discovering local
protein motifs, revealing their unique compositions, and identifthieg relative locations within
proteins. Note that it is difficult to conduct a fair compamidetween clustering methods due to
the vastly different settings. Nevertheless, given thantdwel method was able to discover all
motifs in the I-sites Library and more, one may conclude thatdbmparable, if not better, than

the method of Bystroff and Baker [20].






Chapter 4

Local Tertiary Structure Prediction

The first application of sequence-structure motif clusterainsed at the prediction of local
tertiary structures based on sequence composition alone, andlalgovithm based on dynamic
programming (DP) has been invented for that purpose. Thissd&gins with the definition of
cluster assignmerdandassignment rankiwo important concepts appearing in the algorithm. It
then describes the two preprocessing steps taken to improyeettietion capacity of a given
cluster set, namely the removal ridise clusterand the enhancement to the cluster assignment
scoring function. Finally, the prediction algorithm is coveredetail, and performance results

gathered from a comprehensive experiment are presented.

4.1 Cluster Assignment and Assignment Rank

Scoring functiorK(s), shown in Equation (4.1), computes the likelihood of a lehgtkgment
belonging to clustec based on sequence composition. It is derived from the log-oddsfrti®

probability of observing givenc to the background probability. Symbaisandc; denote the

35
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frequency of amino acipat positioni ons andc’s centroid respectively. Symbbj denotes the

background frequency for amino agid

L-1 19

|‘125u Gj
1=0j=0

K¢(s) = log, | 55 (4.1)

|‘125u b;
1=0j=0

The main purpose of the scoring function is for malkshgster assignments Another
related concept that is equally important is daksignment rank Both concepts are central to the
algorithm for predicting local tertiary structure (Section 4B)l enhancing secondary structure

prediction (Section 5.1). Their definitions are as follows.

Definition 4.1.1 (Cluster assignment). A cluster assignmenor justassignmentrefers to an
instance when a cluster is assigned to a segment basedcoreacemputed via Equation
(4.1). The assignment is said to cover the segment andidseges Each assignment has
three basic attributes: the cluster being assigned, the sebeiag covered, and the score

associated with the pair.

Definition 4.1.2 (Assignment rank).  An algorithm utilizing arassignment rankor justrank,
of R means that th® highest scoring assignments are made to each segment faskhat

hand. The highest scoring assignment is at rank 1, the second highest at rank ®nand s

4.2 Evaluation of Local Structure Prediction

The evaluation scheme for local tertiary structure priegicvas invented by Lesk [51]. It takes

two parameters, a window size and a RMSD threshold Given a true structure and its
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prediction, the scheme computes the percentage of residues ifolengthw segments whose
predicted structures are withtnof the true structure after superposition [52]. The parameters

used by Bystroff and Baker [20] are selected to facilitate compaiisow € 8 andt = 1.4 A).

4.3 Noise Cluster Elimination

In a large cluster set, some weak clusters capturingmwatiés possess similar sequence profiles
as do the significant clusters capturing more common motifs. eTheak clusters tend to
compete with the significant clusters for sequence sirilarth target segments during cluster
assignment, degrading prediction accuracy. Because theg creige that disturbs prediction,
those weak clusters are calledise clusterand should be eliminated.

Clusters produced by the algorithm described in Section 3.5 areniofitnn sizem. If m
is set too small, many noise clusters arise. If it ide® large, significant clusters are lost. To

determinem maximizing the predictive power for a set of clusters, the following methaoskis.

Noise Cluster Elimination
Input: cluster se€C, protein seP, minimum size bound, my]
. For eachmin range in, mj]
Remove clusters of size less tmafrom C to obtainC’
Get average prediction accuracyRausingC’ as follows:

For each proteip[1P do

1
2
3
4
5. Assign highest scoring cluster to each overlappingesggnp
6 Sort all assignments by score

7 Assign structures pafrom highest scoring assignments

8 Evaluate prediction as described in Section 4.2

9

. ReturnmandC'’ resulting in highest average prediction accuracy

Figure 4.1: Outline of procedure for eliminating noise clusters
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Figure 4.2 shows the fluctuation in prediction accuracynascreased from 5 to 25
inclusive. While the prediction accuracy remained rather constahe middle stretch, it rose
and fell sharply at both ends. Prediction was compromised hyéisence of noise clusters for
small m (< 8) and the absence of significant clusters for lange 20). The optimal minimum

cluster size was = 16, yielding a prediction accuracy of 54.66%.

57.00%

55.00% -+

53.00% -+

51.00% -+

Prediction Accuracy

49.00%

4700% T T T T T T T T T T T T T T T T T T T
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M inimum Cluster Size (m)

Figure 4.2: Fluctuation in prediction accuracy as minimum clusternsiises from 5 to 25

4.4 An Enhanced Cluster Likelihood Function

As described in Section 4.1, cluster assignments are made basiedlaritys scores computed
via the likelihood function shown in Equation (4.1). This section im@de function with the

addition of a new term, as shown in Equation (4.2) below.

L-1 19

rlZSu i
1=0j=0

KC(S) = |092 Ta1 19 'baSQ (42)

1=0j=0
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The new ternmbase represents theluster-specific base cutofér clusterc. Equation
(4.1) simply assumes a cutoff of 0 for all clusters, an intuitive ctiordeg-odds. The derivation
of cluster-specific base cutoffs is based on a simple obgarvatThe rarer the motif a cluster
represents, the more likely that segments classified tduktecare false positives jFand the
higher the cutoff has to be raised to avoid a higmae. In contrast, if a cluster represents a
common motif, then segments not classified to it are likely to ke fadgatives (I, so the cutoff
has to be lowered to suppress thadte. The derivation procedure for the cutoffs is shown in

Figure 4.3, whersign(x) returns 1 ifx> 0 or -1 otherwise.

Derivation of Cluster-Specific Base Cutoff
Input: cluster se€C, protein segment s& small positive value
1. For each segment 1C do

2. T ={sJS|sis most likely to belong to based on (3) AND
s andc share similar structures}

3. F* ={sLUS|sis most likely to belong to based on (3) AND
s andc have different structures}

basg=0

While f * andf ~ are not sufficiently close do

f* = # segments iR * with likelihood score from (3} base

4
5
6. f~=# segments ifi * with likelihood score from (3) base
7
8 base =basg + sign(f " —f7) * ¢

9.

Return the set dfasg1cLIC

Figure 4.3: Outline of derivation procedure for cluster-specific baséfsut

Recall from Figure 4.2 that the highest accuracy reachedb#66% form = 16. Once
switched to Equation (4.2), the accuracy climbed to 56.7%. Natéhehdorthcoming definition
is to override Definition 4.1.1 for the remainder of this thesighe only difference is that

Definition 4.1.1 refers to Equation (4.1) while the new definition refers tottequét.2).
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Definition 4.4.1 (Cluster assignment). A cluster assignmenor justassignmentrefers to an
instance when a cluster is assigned to a segment basedcoreacemputed via Equation
(4.2). The assignment is said to cover the segment andidseges Each assignment has
three basic attributes: the cluster being assigned, the sebeiag covered, and the score

associated with the pair.

4.5 Local Structure Prediction using Dynamic Prograngnin

Let R be the assignment rank,be the segment length, apde the target protein of length
The initial setup for the algorithm involves making Réiighest scoring cluster assignments to
each overlapping length-segment along. Leta, denote the assignment at ranktarting at
positioni, where 1<r < Rand 0<i < n-L. DefineA = {a,0r} and A = {a,}. The setA,

depicted in Figure 4.4(a), forms the entire search space for the algorithm

a)

b)

Figure 4.4: (a) Assignment sét consists of all individual assignmenrag of lengthL
covering target proteip of lengthn. Assignment ranR is 2, the number of assignments
made to each overlapping lendttrsegment im. Each assignmerm;, represented as a big
dot (e) with a dotted tail, covers residueso i+L—1 inclusive. (b)X is a subset oA that
covers all residues ip, formed by linking adjoining assignments together.
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The goal is to compute a subsét LI A such thatX* covers all residues ip and
maximizes a certain objective function. An example of aitegie candidate subsk¥tis shown
in Figure 4.4(b). The objective function is derived in light ob wbservations. First, the cluster
assignment most appropriately capturing the shape of a segmémntnmigilways be the optimal
(i.e. highest scoring) one but a sub-optimal one. Second, ifappénly assignments have serious
structural conflicts among themselves, then they should natlbpted together. Having taken
both factors into consideration, Equation (4.3) is proposed as theiwdjfectction for measuring

the quality of an assignment sétvhen used to form a prediction for a protein of lemgth

n-1 n-1
F(X) = qucore{X,i) -Zconflict(X,i) (4.3)
i=0 i=0

Function F(X) returns the objective score for assignmentXetSymbolq is a non-negative
constant for balancing the two parts representing the tota soot conflict induced b¥. It is
set to 70 in this study, a value found empirically to yield onth@foest predictions. Functions

scordX, i) andconflict(X, i) are defined in Equation (4.4) and Equation (4.5) respectively.

scoreof highestscoringassignmenin X coveringresidue,or

score(X,i)={ (4.4)

0if noassignmenin X coversresidue

Dg + Ay betweerall pairsof assignmergtin X atpositions
conflict(X,i) = coveringresidue,or (4.5)
0if atmostlassignmenin X coversresiduea

SymboIsA_¢ and @ denote the mean absolute differenceplim and psi angles respectively.

Now, the algorithm is to take a dynamic programming (DP) apprmacbmpute the assignment

setX* that covers all residues nand is optimal (i.e. maximizing objective functibn
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Assignment sets are built starting from the heagllmf appending or concatenating to the
end one adjoining assignment at a time. Note that simply extetiwngurrent optimal set by
adding to its tail the best available adjoining assignment doeguarantee optimality for the
resultant set. The assignment just added may overlap exitting assignments in the set,
introducing new conflicts that must be fixed by replacing thosgm®esnts, which in turn may
cause more new conflicts with their prior overlapping assiEnts and necessitate further
replacements. To avoid such propagation of conflict, a more involved DRtalg® needed.

When any assignmentl1A is appended to the end of assignmenXsétwould come in
contact with one or more trailing assignmentsXin The relative arrangement of these trailing
assignments and their ranks collectively form tdieconfigurationfor X with respect tax LIA,
denoted byail;(X). Note thatail;(X) is defined to be aampty tail configurationf X is too short
to reach any assignment# For formulation purposesail;(X) is allowed forj > n—L as if A
actually existed. Figure 4.5 shows the set of all possible nptydail configurations fot. = 3

andR = 1 with respect ta, the assignment to be appended.

Figure 4.5: All seven unique non-empty tail configurationsLfer 3 andR = 1. Each line
denotes an assignment. In each cageplid line) is the assignment to be appended to a set
X, and the set of all trailing assignmentsXntouched bya (dotted lines) forms the tail
configuration w.r.ta.

For each positiom starting from the head @ the algorithm computeg, the set of all

optimal assignment se¥swith unique non-empttail;.1(X). The DP recurrence for the algorithm

is stated in Figure 4.6.
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DP Recurrencefor Local Tertiary Structure Prediction
Initial condition:
Vo ={{a} Ua LA}
Inductive hypothesis for positioni,8i<n-—L:
V; = {All optimal assignment sefs with unique non-emptiail;.;(X)}
Recurrence:
LetV/ ={WU{a} OWLV; anda LIA.}
For each unique non-empty tail configuratton
Vs =X L{WLOV, U V' [1ailio(W) =t} s.t. F(X) is maximized
Let Vis = {Vis1r}
Final solution:
X* =X L{WUV, |Whas an assignment M} s.t. F(X) is maximized

Figure 4.6: DP recurrence for local tertiary structure prediction

The recurrence ensures the optimality for e¥ghy, and the uniqueness and non-
emptiness of the associated tail configuratigrso the inductive hypothesis holds for position

i+1. Finally, dihedral angles are assigned to the residuebyirback-tracking the creation Xf.

4.6 Time Complexity of DP Algorithm

A bound on the size of, is required in order to analyze the time complexity of theal@Brithm
just described. By definition)] is at most the total number of all unique non-empty tail
configurations. Figure 4.5 lists all seven possible unique non-etaptgonfigurations for
segment length = 3 and assignment rafk= 1 with respect to assignment For general and

R, note that whew is appended to an assignmentX§eit could be touching anywhere from 1 to
L trailing assignments i, each of which is selected from a pool of $keFurther, the trailing

assignments being touched could be krout of a total ofL. Let T, represent the number of
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unique non-empty tail configurations compriskgssignments. It can be computed as follows

according to basic counting principles:

T, =(Lj R¥ (4.6)

T = ZL:T = i("} R¢ = ZL:(LJ RA1%K-1= (R+1)" -1 (4.7)
“ k k '

k=0

Consequently, the bound||< T = (R+1)" — 1 holds. For each positionthe algorithm calculates
the objective value folV|| * R new assignment sets, where each calculation take$ iDtlone
carefully. Hence, the total runtime isfQ¥;| R L) = O( L® (R+1)-"Y) for all n positions. Despite
the exponential term, typical values fRrandL are small enough to make the algorithm feasible

(e.g.R=3 andL = 8 in this study).

4.7 Experiments and Results

4.7.1 Rotation Test

The four protein sets used for training and testing in thisntest the testing set of 55 proteins
used by Bystroff and Baker (BB55) [20], the training set26 proteins introduced by Rost and
Sander (RS126) [37], the testing set of 187 proteins for PSIPRED8Y) [14], and finally the
testing set of 396 proteins selected by Cuff and Barton (CB39%) |A listing of the proteins in

each data set can be found in Appendix B.



The test method started by picking one set to be the trainirfgrsguster creation and
using the rest as testing sets. After gathering reghiésmethod rotated the sets such that a
different set became the training set and the others leetesting sets. The method continued
until all sets had been used for training. Doing such rotation dhelpeid biased results due to

dataset-dependency and test data insufficiency. AssignmenRrasals set to 3 throughout the
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test. The results are summarized in Table 4.1.

Table 4.1: Prediction accuracy of the DP algorithm obtained finennotation test, evaluated
using the scheme described in Section 4.2. “Min. Size” refers to the optimaiumi size as
described in Section 4.3, and “# Clusters” refers to the numbeusterd with at least the

minimum size.

Train- Min. Size/ | Testing Helix Strand Cail Overall Average
ing Set # Clusters Set Accuracy | Accuracy | Accuracy | Accuracy
RS126 81.39% 55.05% 43.25% 58.35%
BB55 7140 PP187 78.56% 51.71% 41.61% 56.86% 58.00%
CB396 80.26% 52.95% 43.219 58.78%
BB55 79.37% 54.01% 40.61% 57.74%
RS126 10/58 PP187 80.80% 52.43% 41.61% 57.81% 58.32%
CB396 82.52% 53.03% 42.759 59.42%
BB55 79.26% 49.18% 41.83% 57.22%
PP187 7/161 RS126 83.95% 51.75% 43.46% 58.49% 58.52%
CB396 83.28% 50.47% 44.519 59.84%
BB55 84.58% 46.31% 43.71% 59.39%
CB396 16 /164 RS126 87.69% 48.05% 45.41% 59.69% 59.88%
PP187 87.17% 48.56% 44.96% 60.55%
Average 82.40% 51.13% 43.08% 58.68%

4.7.2 Jackknife Test

Since the data sets used in the rotation test (i.e. PP55, RFAWE,,”Rind CB396) were selected
independently, members in different sets might be highly similar or evencalerSuch overlaps

could have inflated the prediction accuracy and thus preventedtti®omn test from impartially
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evaluating the performance of the algorithm. As a remedy, a jackkstfernisuring absolutely no
overlaps between training and testing sets was conducted.

The jackknife test was performed on CB396 [49], a set of 396 peptitsded through a
very stringent procedure to ensure non-redundancy between menither®ntire test consisted
of 10 iterations, each of which involved splitting CB396 into twoaitigjsubsets in 80/20 ratio
by residue count. The larger subset was then used for training amaather ®ne for testing.

Note that testing sets containing more helices tend to yigliehiaccuracies than those
containing more coils. Consequently, for results to be consistetasting sets should contain
similar proportions of each secondary structure (SS). Teoagtee such condition, the back-
ground proportion of each SS was first estimated from the wrBB9& Each repetition of the
jackknife test then produced 50 pairs of training and testingaadsused the pair whose testing
set exhibited SS proportions most closely resembling the baokgirones. Table 4.2 shows the
results from the jackknife test, using the same assignment ramé agdtion test (i.dR = 3).

Table 4.2: Prediction accuracy of the DP algorithm obtainam fi ten-iteration jackknife
test and evaluated using the scheme described in Section 4.2.

Jackknife Test Helix Strand Coil Overall
Iteration # Accuracy Accuracy Accuracy Accuracy
1 86.22% 44.91% 40.58% 58.51%
2 84.54% 39.61% 40.52% 56.19%
3 84.27% 44.71% 41.07% 58.03%
4 84.65% 43.22% 40.19% 57.45%
5 86.12% 43.63% 42.87% 59.15%
6 88.11% 42.92% 43.05% 59.69%
7 84.83% 44.35% 40.99% 57.76%
8 84.94% 43.98% 42.90% 58.83%
9 86.09% 43.22% 42.78% 58.86%
10 83.68% 45.30% 40.61% 57.62%
Average 85.35% 43.59% 41.56% 58.21%
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Average accuracy obtained in the rotation test (i.e. 58.68%) is higrethat obtained in
the jackknife test (i.e. 58.21%). If overlaps between daggete responsible for the slight
difference of 0.47%, then this test would confirm the negligibdityhe overlaps and uphold the
validity of the results in the rotation test. Additionallysthést has also illustrated the consistent

performance of the algorithm as similar accuracies were obsacvesks all iterations.

4.7.3 Discussion

Both tests have shown that over 58% of all residues on avemgdaund in at least one length-
8 segment whose predicted structure was within 1.4 A of thestrueture, measured in RMSD.
This is significant considering that the prediction reliedIgad@ sequence information, without
taking into account global forces such as disulfide bridges, hydropledfigicts, inter-group
charges, and so on. The result is also a great improvement avpultiashed by Bystroff and
Baker [20], which was 50% (see Section 2.2.2). Although the methd¢ang and Yang [21]
produced better numerical results, it used over 100K motif ctuated yielded only approximate
predictions (see Section 2.2.3). The algorithm described herexdéonple, used at most 164
clusters in the rotation test and produced predictions with prdmskbone conformations.
Taking all the factors into consideration, both methods would be very much comparable
While all four training sets yielded similar results adiog to Table 4.1, a general trend
existed in which the more clusters the training involved, thieenithe average accuracy reached.
Besides overlaps between data sets, which have been deeniedaingal by the jackknife test,
another possible reason would be that a larger cluster settatealsta larger conformational
search space and consequently contributed to better predictibasedl surprising observation,
however, is that the number of clusters had only minimal eftactthe prediction accuracy. For

instance, using a set of 40 clusters (created from BB5%)egeb8% accuracy, while using
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another with 164 clusters (created from CB396) yielded 60% accurdtiyough the difference
of nearly 2% was significant, one might have expected more tfieetarge deviation in cluster
counts. The likely explanation is that the larger clustenrewalready sufficient to account for the
common structures in the test proteins, leaving the smallstecsuto handle only the rarer
shapes. This in turn confirms the effectiveness of theerlngtmethod described in Chapter 3,
as the larger clusters produced were indeed able to capture theynudjprotein conformations.

A breakdown in overall prediction accuracy in both tests by secorstiargture states
reveals the real strengths and weaknesses of prediction aisgtgrs. Helices were by far the
most accurately predicted because they were the most cedsand abundant local motifs.
Strands, albeit well conserved, were a lot harder to pradlittieir formation involved long-range
residue interactions, something not captured by local motifechistCoils were the most difficult

to predict since most of them lacked virtually any kind of detectable m@uspatterns.



Chapter 5

Secondary Structure Prediction

The second application of sequence-structure motif clusesms dvith enhancing secondary
structure (SS) prediction. The target predictor [39] isothe based on Support Vector Machines
(SVM) [42], so selected because it is one of the best awvailadé an overview, the procedure
involves building e&Secondary Structure Confidence ProflBSCP and using it as additional data

for training and classification.

5.1 Secondary Structure Confidence Profile (SSCP)

The SSCP of a protein shows the confidence, or probability,chf esidue being in each of the
three SS states, namely helix (H), strand (E), and coil &gure 5.1 shows the SSCP for a

section of the protein identified as 1LCL in PDB.

Se P Y T E A A S L S T G S T \% T
Helix 040 046 036 036 031 028 022 021 0.09 0.040500.03 0.03 0.03 0.03 ..
Strand 027 032 029 031 031 033 038 030 0.14 0.101100.20 0.84 0.89 0.90

Coil 033 022 035 033 038 039 040 049 0.77 0.86840 0.77 0.13 0.08 0.07

Figure 5.1: Secondary structure confidence profile (SSCP) for a sectiootahdLCL

49
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Let R be the assignment rank apde the target protein. The procedure for generating
SSCP starts by making the highest scoring assignments to each overlapping segmgmt in
Then, for each residueand SS labed LI{H, E, C}, it computesscorg by summing the scores of
all assignments covering with label s at the covering position. The valseorg is then
normalized to obtairssg, the SS confidence farbelonging to state. That is,ssg = scores /

(scorgy + score: + scorges). The set of albsg constitutes the SSCP fpr

5.2 Training of SVM Binary Classifiers

The training procedure is similar to the one used by Hua and SunHBOa window half-width

h such that each residue is represented by the sequence prafitengp(d + 1) columns, with
the said residue in the middle. Each column is coded using 21 entries,thénextra entry is set
when the window is extended beyond the ends of a protein [53]. Togedlhl residue is coded
by a total of (& + 1) * 21 entries. When SSCP is incorporated into training, eakehmn is
coded with four additional entries. Each of the first three hiblelsSSSCP confidence value for a
different SS state, and the last is again set for thevelase the window is extended beyond the
ends of a protein. Hence, each residue is now coded by a tofd 6f1) * 25 entries. The

conceptual view of training with and without SSCP is shown in Figure 5.2.

5.3 SVM Predictor Construction

Hua and Sun [39] have demonstrated that the arrangement of vl classifiers has a
significant impact on the performance of the resultant S8iqtoee. This study has adopted an
arrangement calleBVM MAX one of the most effective arrangements among those Hua and Sun

have considered. SVM MAX comprises three SVM binary classjfitamely H/~H, E/~E, and
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C/~C. Each target residue is fed in parallel to akehclassifiers, and assigned the SS label
corresponding to the one giving the largest decision value. Hamabgirediction, the half-width

h for the three classifiers is set to 5, 4, and 3 respectively.

a) h _ h

I

S T G s T V T I K G R
A 0.00 5.4210.89 14.14 12.85 8;40 0.00 0.00 4.13 0.00 0.00 0.00 6.12 0.00 0.00 0.00 0.0 019.64 0.00
R 0.00 4.62 5.42 0.00 0.00 0.0D 6.35 0.00 8.66 0.00 0.00 5.35 0.00 0.00 0.00 0.00 9.0 8 0.00 12.05
N 0.00 0.00 0.00 0.00 5.35 ZAEL 0.00 0.00 2.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.0 4 0.00 7.17
D 0.00 0.00 0.00 0.00 0.00 7.7 0.00 0.00 4.0518.26 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.0D 0.00 0.00 4.63 0.00 7.17 0.00 13.45 0.00 0.00 0.00 0.0 0 0.00 0.00
Q 4.69 4.45 0.00 7.26 13.44 0.@0 9.08 0.00 2 4.38 0.00 0.00 0.00 9.04 0.00 0.00 0.0029.8 7 0.00 0.00
E 5.42 6.44 0.00 3.10 7.0012.91 0.00 0.00 0.00 4.40 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0 0.00 5.35
G 0.0022.81 0.00 4.66 7.88 4791 55.51 0.00 5.35 0.0092.78 0.00 0.00 0.00 0.00 0.00 0.0 080.31 0.00
H 0.00 0.00 0.00 0.00 0.00 OAOE) 0.00 0.00 0.00 000 0NN 459 0.00 0.00 0.00 0.00 0.0 0 0.00 9.08
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Figure 5.2: Conceptual view of training SVM binary classifar SS prediction{ = 5).
(a) Training with sequence profile alone. (b) Training with sequenditepaind SSCP.
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5.4 Evaluation of Secondary Structure Prediction

The following metrics are used to measure the quality of SS prediction:

1. The Three-state Single Residue Accuracy med&u4jehas four components denoted by, Q
Qe Qc, and Q. ForsU{H, E, C}, Qs is the percentage of correctly predicted residues over
all residues with observed lak®l Q; is the overall accuracy calculated as the percentage of
correctly predicted residues over the total in all three SSsstate

2. The Matthew’s Correlation Coefficient®ICC) [54] has three components denoted hy G
and G. Each of them is calculated from a formula that accdiantboth over- and under-
predictions. A perfect prediction yields a value of 1, whitaradom prediction yields a near
zero or even negative value.

3. The Segment OverldB0V) is designed to evaluate SS prediction on a non-per-residue basis
The original version, invented in 1994 by Rost et al. [55], has twouseproblems. First, it
yields un-normalized values that have no defined upper-bound, makinffidguld for
comparison. Second, the extension faét@ miscalculated, resulting in inflated values that
do not truly reflect the prediction quality. Fortunately, both pmobkléave been corrected in
a re-definition of SOV in 1999 [56] by Zemla et al. Unless #igelcotherwise, the corrected

version is intended whenever SOV is mentioned in the remainder of this thesi

5.5 Experiments and Results

5.5.1 Rotation Test

The data sets and method for the rotation test were as déseriBection 4.7.1, except that the

training set was also used for SSCP generation and SVMngain addition to motif cluster



CHAPTER 5. SECONDARY STRUCTURE PREDICTION

53

creation. Assignment rarlR was set to 6. Parameters for SVM binary classifierewes for

error trade-off and 0.1 farin the radial basis function used as the kernel [42]. $V[57] was

extensively used throughout the experiment. The results are fistedblie 5.1.

Table 5.1: Prediction accuracy of SVM MAX trained with@B8CP (top values) and trained
with SSCP (bottom values) in the rotation test. Bolded paiiss(@nces) indicate a drop in
accuracy after SSCP was used. A positive delta on therdastindicates an average
improvement with SSCP (delta = average bottom value — average top value

_Trajn' Testing Qs Qn Qe Qc Cy Ce Ce SOV
ing Set Set (%) (%) (%) (%) (%)
RS126 70.28 75.56 | 45.54 | 78.59 0.59 0.48 0.51 63.07

73.01 79.61 53.80 77.44 0.65 0.55 0.53 67.82

855 | PP187 | 7000 T | soat | veve | o6e | 052 | oos | oot
CB396 71.08 78.85 | 44.42 78.62 0.60 0.49 0.54 68.51

73.05 81.35 50.13 78.03 0.65 0.53 0.55 69.37

BB55 70.47 71.85 52.70 77.84 0.58 0.48 0.53 67.53

7226 | 72.28 | 5890 | 78.76 | 063 | 053 | 053 | 69.47

Rs126 | PP1s7 | 1| o] o0 | eoao | oor | ose | oss | coa1
CB396 70.87 | 75.13 | 50.97 | 77.91 0.60 0.49 0.53 68.35

73.55 77.52 57.02 78.99 0.67 0.54 0.54 70.45

BB55 73.41 76.26 57.48 78.49 0.63 0.54 0.56 70.64

75.37 77.62 61.85 79.85 0.67 0.58 0.58 72.05

73.65 | 78.05 | 56.89 | 78.61 0.66 0.55 0.55 68.09

PP187 RS126 75.78 80.39 61.91 79.10 0.71 0.58 0.56 71.14
CB396 7391 | 78.98 | 56.30 | 78.94 0.65 0.55 0.56 71.19

76.24 | 81.36 61.12 79.86 0.71 0.60 0.58 72.62

BB55 75.73 | 78.47 | 59.55 | 81.03 0.67 0.59 0.59 73.30

77.04 | 78.63 64.11 81.85 0.70 0.61 0.60 74.03

72.96 76.47 56.51 78.50 0.65 0.54 0.53 67.15

CB396 RS126 75.14 | 78.82 62.59 78.56 0.69 0.58 0.56 70.44
PP187 75.47 | 78.58 | 58.42 | 81.96 0.69 0.58 0.58 71.39

77.28 79.55 64.19 82.37 0.72 0.61 0.60 72.67

Average 72.50 76.61 52.85 79.17 0.63 0.52 0.55 68.71
7459 | 78.56 | 58.60 | 79.50 0.68 0.56 0.56 70.69
Delta 2.09 1.95 5.75 0.33 0.05 0.04 0.01 1.98
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5.5.2 Jackknife Test

As described in Section 4.7.2, data sets in the rotation testlikelyeto contain overlaps and
yield unjust results, so a jackknife test was needed to @gate genuine contribution of SSCP.
The data set (i.e. CB396) and method were as described inr54cti2, except once again that
each training set was used to generate SSCP and traincBégBlfiers in addition to creating
motif clusters. Assignment rariR and all parameters for SVM classifiers remained the same
The results from the jackknife test and their averages are showhl:5.a.

Table 5.2: Prediction accuracy of SVM MAX trained with@8CP (top values) and trained

with SSCP (bottom values) in a ten-iteration jackknife.teBolded pairs (3 instances)

indicate a drop in accuracy after SSCP was used. A positive delta ort tlosviasdicates an
average improvement with SSCP (delta = average bottom value gatepavalue).

Iteration | Qz(%) | Qu (%) | Qe (%) | Qc (%) Ch Ce Cc SOV (%)

L 72.15 | 7430 | 5544 | 7849 | 063 | 051 | 053 68.57

7410 | 76.34 | 60.90 | 78.60 | 0.68 | 055 | 055 70.63

5 74.44 | 7903 | 57.33 | 79.07 | 066 | 056 | 057 69.77

75.97 | 7885 | 63.39 | 79.86 | 069 | 059 | 058 71.58

3 71.94 | 8036 | 50.26 | 76.87 | 064 | 051 | 053 69.50

7435 | 8157 | 5577 | 7858 | 0.69 | 056 | 055 70.15

A 7161 | 7637 | 5278 | 77.18 | 062 | 051 | 053 68.37

73.29 | 76.92 | 5807 | 77.99 | 065 | 054 | 054 70.52

c 7236 | 77.21 | 5296 | 7832 | 065 | 051 | 054 70.23

7423 | 7913 | 5854 | 7810 | 068 | 055 | 055 71.43

6 7357 | 7972 | 5668 | 77.05 | 065 | 055 | 055 71.58

75.84 | 81.89 | 6196 | 77.79 | 071 | 059 | 057 73.01

; 72.09 | 7823 | 5207 | 7762 | 064 | 051 | 053 70.11

7356 | 79.25 | 55.06 | 78.65 | 0.67 | 053 | 055 71.61

g 70.81 | 7623 | 5123 | 7656 | 062 | 050 | 051 66.54

72.86 | 7750 | 56.07 | 77.80 | 0.66 | 053 | 053 68.57

9 7313 | 7625 | 56.36 | 7952 | 0.64 | 055 | 055 70.78

75.01 | 77.82 | 6251 | 7933 | 068 | 059 | 056 72.92

10 70.70 | 74.93 | 5048 | 77.72 | 061 | 049 | 052 66.34

72.86 | 77.24 | 56.39 | 77.72 | 065 | 053 | 054 67.97

Average| 7228 | 77.26 | 5356 | 77.84 | 064 | 052 | 053 69.18

9| 7421 | 7865 | 5887 | 78.44 | 068 | 056 | 0.55 70.84
Delta 1.93 1.39 5.31 0.60 0.04 0.04  0.02 1.66
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The improvements (i.e. the deltas) in Table 5.1 are generadjgriéinan those in Table
5.2. This is within expectation as overlaps between trainingestithg sets in the rotation test
helped generate more reliable SSCP, which in turn contributgdetder improvements in SS
prediction. The differences, however, are not significant. msamce, there has been a drop of
only 8% in Q and 16% in SOV going from the rotation test to the jackknige télence, while

being slightly biased, results from the rotation test can be considied

5.5.3 Discussion

Both tests have shown that by combining SSCP with sequence piafiléraining and
classification, SVM MAX predictor showed improvements in af] ICC and SOV measures.
Specifically, SSCP contributed to an average iQprovement of 2.09% (from 72.50% to
74.59%) in the rotation test and 1.93% (from 72.28% to 74.21%) in the jéck&st. It did so
by boosting the prediction accuracy for helixes and strandsatte In particular. In other
words, SSCP helped the predictor be more certain when detegniira residue was part of a
helix or strand. Moreover, the use of SSCP also resultegiliiesimprovements in all aspects of
MCC and SOV, regardless of tests and data sets.

Unfortunately, improvements tocand G were only minimal. After all, clusters could
only capture regions with strong sequence-structure correlatoesndition excluding most
coils. Consequently, cluster assignments made to segments cibrmggions were mostly
incorrect, leading to unreliable SS confidence values and sulglygiie negligible increase in

coil prediction accuracies.






Chapter 6

Conclusion and Future Work

6.1 Approximation Algorithm for Tertiary Structure Pietion

Recall from Section 4.6 that the DP algorithm for locaiagy structure prediction has a runtime
of O(n L® (R+1)-"), wheren is the length of the target proteinjs the segment length, aftlis
the assignment rank. The exponential term restRdis a small value such as 3 in this study.
Note that a largeR means a larger conformational search space (see Figuag) 4d¢ possibly
better predictions as a result. Unfortunately, while a large valReso€h as 10 or more might be
desirable, it would lead to a prohibitive execution time.

To draw a balance, a viable option would be to develop an approxipRagdgorithm
that sacrifices optimality for an execution time allowiagger values oR. An example that has
been considered is a “greedy” DP algorithm. For each assignmémtbe appended, the
algorithm keeps track of thR * L assignment sets such that the last assignment in every set
touchesa. The greedy nature comes in wheis appended to the set such that the resultant set

yields the highest objective score. While the optimality for the firediption is lost, the runtime

57
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requirement is only @FL%. Unfortunately, the option has not been further investigatem si

proving an approximation guarantee for the algorithm would be another resgsaccbrt its own.

6.2 A Better DP Objective Function

There is one aspect regarding the current DP objective dun(ite. Equation (4.3)) that might
require some major refinement. For convenience, the objdcination is restated in Equation

(6.1) below. Please refer to Section 4.5 for further details.

n-1 n-1
F(X) = qucore{X,i) -Zconflict(X,i) (6.1)
i=0 i=0

Function conflict might not always have appropriately reflected the structdisdgreement
between overlapping assignments in some circumstance. Renalbection 4.5 thatonflict(X,

i) returns the average dihedral angle difference betwlepaigs of overlapping assignmentsXn
covering position. Assume for now that there are only two assignmenémnda, in X covering
positioni, and at that position thehi angles are Vand 100 for a; anda, respectivel. By
definition, conflict(X, i) returns |100— (| / 1 = 100. If another assignmei is subsequently
appended tX to produceX’ such that it covers positiarwith aphi angle of 56, thenconflict(X’,

i) only returns (|]100- | + |106 — 50| + |50 — @|) / 3 = 66.67. In other words, the addition of
asz has “harmonizedé; anda, by partially hiding their serious structural disagreemehichvis
certainly flawed. Improving the objective function by minimiziog even eliminating the

deficiency is the key to achieving better predictions.

* WLOG, psiangles have been ignored for simplicity.
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6.3 Prediction using PSI-BLAST Profiles

Aside from HSSP-derived sequence profiles, this study hasbalsn conducted using PSI-
BLAST profiles, but only briefly because of a restriction imgbbg the clustering algorithm
described in Chapter 3. The distance function shown in Equationa&sines that all profile
entries are non-negative and all entries for every residoeto 1. Unfortunately, PSI-BLAST
profiles contain log-odds entries that violate all these assongoti Although PSI-BLAST does
provide a frequency profile in its output as depicted in Figute using the frequency profile for
clustering and prediction have only produced results similar teitlee obtained with HSSP-
derived profiles. A possible reason for the disappointmehaisthe real strength of PSI-BLAST
lies in its sophisticated mechanism behind generating unbiased lograditiss. Consequently,
PSI-BLAST will not contribute to any significant improvementasd the clustering algorithm
can be made to take advantage of its log-odds profiles. Beapjiromising direction for

enhancement, it is not pursued at present as it requires making substantjakcha

ARNDCQEGHILKMFPS TWYV Aé%NDCQEGHILKM FPSTWYV
M-3-3-4-5-3-3-4-5-404-38-1-4-4- 3-3-3-1 00:0000000043057 0000000
K03-1-3-563-1-30-1-46-3-5-3-2- 1-5-4-3 91220016 00140540 0002000
L-20-5-5-30-4-5-425-40-2-5-2- 3-4-3-1 35:0006000146800 0040000
F310241-31-2-1-20-1241 0-4-1-3 0100520701014472 1122105020
A2-3-2-25-3-14-202-3-2-3-10- 2-4-2123132213040162600 03510111
Q011-101043-5-40-4-4-1-2 0-40-4 98:822653370140 0306030
G-31212-104-3-2-22-4-5-4-1- 2-5-5-4 0711752540025120 0031000
T-36-2-2-5-1-301-3-3320-4-3- 2001 144:1120206301165 40021310
$-2-2-3-30-11-3-2032-1110 1-4-31 1131121911427161 6668009

[N
.

Figure 6.1: PSI-BLAST profiles in a PSP output file, whitve dotted line separates log-
odds profile (left) from frequency profile (right)

6.4 Motifs Capturing Long-Range Residue Interactions

The current sequence-structure motifs can only capture local intduedsteractions, so they are
not very helpful for beta-sheet prediction. In the long run, dtetien is to study non-local

motifs formed primarily by interactions between distantdess. Conceptually, a non-local
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motif of sizen would comprisen local sequence-structure motifs and upndgn-1)/2 interactions

among then motifs. Figure 6.2 shows an instance of non-local maiffsizen = 2.

motif x~~ .

N
N
N

Figure 6.2: Motif x capturing the distant interaction betwéea stretches of the same
protein, where ‘N’ and ‘C’ denote the N and C termini respectively

One method for discovering non-local motifs of sizés to extract all local sequence-
structure motifs, select atttuples of mutually interacting local motifs, and performstéring on
the resultanh-tuples. The primary issue with the extraction of non-local magifthat there
might not be sufficient training data (i.e. resolved protein structure$)aaige to any significant
motifs, even fom = 2. Other issues may also arise such as those concernimgaisarement of
distances betweemtuples of segments and the determination of a suitable simitargshold.
In spite of all the issues, extraction of non-local motifs dstkvexploring as a systemic way for
categorizing and analyzing long-range interactions. In the futorelocal motifs might even be

combined with the local ones to directly predict global tertiary strusture

6.5 Conclusion

The partition of short protein segments into clusters of Iseguence-structure motifs has

profound applications. It effectively reveals the compositimh fald characterizing each motif,
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enabling the inference of structural formation and functional r@esides biological studies,
these motif clusters achieve discretization of protein camdtional space and provide an
adequate mapping between sequence and structure, all contribmtithg success of their
employment to both secondary and tertiary structure prediclitve. promising results obtained
in this study could mark the beginning of a wide range of potexgijaications for motif clusters,
which include fold recognition, domain detection, functional annotationstnctural correction

for NMR and X-ray Crystallography.






Appendix A

Listing of Sequence-Structure Motifs

This appendix presents some significant sequence-structures misitbvered by clustering the
set of proteins known as CB396 [49]. Each entry shows the numkeguofents exhibiting the
motif, the dihedral angle plot, the log-odds profile, and the 3klmaee drawing. In each
dihedral angle plot, thehi angle is denoted by a blue (dark) line andgsiengle is denoted by a

magenta (light) line. Please refer to Section 3.6 for further details.
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Appendix B

Listing of Protein Data Sets

This appendix lists the proteins found in all data sets usedsdrstidy, which include BB55,
RS126, PP187, and CB396. Each protein is represented by its PDB tihandD (if exist).
Note that there are only 317 proteins in CB396 as some of thangréieve been split into

multiple disjoint peptides to make up a total of 396 entries.

BB55 selected by Bystroff and Baker [20]:

1ANV 1APY A 1AYL 1BMFA 1BMFD 1BMFG 1BROA 1CEM
1CPO 1DEK A 1DIV IFIEA 1FRVA 1FRVB 1GAL 1GND
1GPL 1GTMA 1HAVA 1HLRA 1HTP IHTTA 1HXPA 1IGNA
1IHF B 1KXU 1LBD 1LBU 1LCL 1LNH IMSPA 10TGA
10XY 1QBA 1IREQA 1RIE 1SFE ISTMA 1TAQ 1TFE
1TFR 1vCC IVHIA 1VNC 1WHI 1IXEL 1IXSM IXVA A
1ZYM A 2AYH 2EBN 2ENG 2STV 4KBP A

RS126 selected by Rost and Sander [37]:
1A45 1ACX 1AZU 1BBP A 1BDS 1BKSA 1BKSB 1BMV1

1BMV 2 1CBH 1CC5 1CDTA 1CRN 1CSEIl 1CYO 1DUR A
1ECA 1ETU 1IFC2C 1FDLH 1FKF 1FND 1IFXIA 1G6N A
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1GD1 O
1LMB 3
1RBP
2AAT
2GLS A
2MHU
2STV
3CD4
3RNT
4RHV 1
5CYTR
6CTS
8ADH

APPENDIX B. LISTING OF PROTEIN DATA SETS

1GDJ 1GP1 A
IMCPL 1IMRT
1RHD 1S01
2AK3 A 2ALP
2GN5 2HMZ A
20R1L 2PABA
2TGP1  2TMV P
3CLA 3CLN
3TIMA 4BP2
4RHV 3 4RHV 4
5ER2ZE 5HVPA
6DFR 6HIR
9API A  9APIB

PP187 selected by Jones[14]:

1A34 A
1AMM
1AVM A
1CEL A
1CUK
1ECL
1FUA
1GPR
IHTR P
1JBC
1LDG
IMRK
INP4
10TF A
1PTY
1RPO
1STM A
1TYV
1VHH
1WHI
2BAA
2ERL
2RAN
4RHN

1ACI 1AE9 A
1IAMUA 1AOH B
1AYL 1BFD
1CEM 1CHM A
1ICYNA 1CYO
1EMA 1ESF A
1FVK A 1GAl
1GZI 1HAN
1HXN 1HXP A
1JDW 1KAP P
1LIS 1LMB 3
1IMSK IMTY D
10BWB 10IS
1PBE 1PGS
1QBA 1QNF
1RSS 1SFT A
1SVB 1TFE
1UBSB 1UCH
1VIE 1VJS
IWJDB 1XIK A
2CBA 2CCY A
2ILK 2LTN B
2RN2 2sIC |
5CYTR 8RUCK

CB396 selected by Cuff and Barton [46]:

154L
1AOR B

1AAZ B
1A0Z B

1ADD
1ASW

1HIP 1lILBA 1IQZA 1L58 1LAP
10VO A 1PAZ 1PPT 1PYP 1R09 2
1SH1 1ITGSI 1TNFA 1UBQ 256B A
2CAB 2CCYA 2CYP 2FOX 2GBP
211B 2LHB 2LTNA 2LTNB 2MEV 4
2PCY 2PHH 2RSP A 2SNS 2S0D B
2TSCA 2UTGA 2WRPR 3AIT 3BLM
3EBX 3HMG A 3HMGB 3ICB 3PGM
4CMS 4CPA | 4CPV 4GR1 4PFK
4RXN 4SDHA 4SGBI 4TS1A 4XIA A
5LDH 5LYZ 6ACN 6CPA 6CPP
6TMNE 7CATA 7ICD 7RSA 8ABP
9INSB 9PAP OWGA A
1IAFW B 1AH7 1AJZ 1AKO 1ALV A
1A0P 1A0OZ A 1ARS 1ARU 1ATO
1BGF 1BQUB 1CAA 1CBN 1CEl
1CLC 1CMBA 1COY 1CPO 1CSH
1IDAAA 1DJA 1DMB 1DMR 1DUP A
1IEXTA 1EZM 1FKF 1IFLE| 1FMK
1GD1 O 1GLQA 1GND 1GOF 1GPB
1HCZ 1HFC 1HPM IHRDA 1HSBA
1HYP 11GD 1IOW 11SO 1ISU A
1KID 1KNB 1IKPTA 1KVDA 1LAM
ILTSA 1MDL 1IMLA 1IMML 1IMOL A
IMTYG 1IMUGA 1NAH INNC INOX
10NC 1O0NR A 10PC 10RC 10SP O
1PK4 1PMI IPNKA 1PNKB 1PPN
1RA9 1IREG X 1RHS 1RIE 1RKD
1SGP | 1SJU 1SKZ 1ISLUA 1SRIA
1THG 1THV ITVDA 1TX4 A 1TYS
1UDG 1UTG 1UXY 1vCC 1VHB A
1VOM 1IVPS A 1VPT 1WBA 1IWER
1YGE IYTBA 1ZNBA 2ABK 2ARC A
2CMD 2CTC 2CY3 2END 2ENG
2MSB A 2NLLB 20HXA 2PHY 2PSP A
2TGlI 2VPFB 3CLA 3PTE 4BCL
1ADEB 1AHB 1ALKB 1AMG 1AMP
1ATPI 1AVHB 1AYAB 1BAM 1BCX



1BDO
1CBG
1CFR
1CNS B
1CTF
1DAR
1DLC
1ECL
1ESE
1FUA
1GKY
1GPM D
1HIW S
IHTR P
1IRK
1KRC B
1LIB
1MDAJ
1IMRR B
INGA
10VB
1PGA
1POW B
1REGY
1RSY
1SMN B
1TAB |
1TIF
1TRK B
1VCAB
1VOK B
1ZNB B
2BLT B
2END
2MTAC
2RSL A
3BCL
4FIS B

APPENDIX B. LISTING OF PROTEIN DATA SETS

1BET 1BFG 1IBNCB 1BOVB 1BPHA 1BRSE 1BSDB
1CDL G 1CEl 1CELB 1CEM 1CEO 1CEWI 1CFB
1CGU 1CHBE 1CHD 1CHKB 1CHMB 1CKSC 1CLC
1COl 1CoOLB 1COMC 1CPCL 1CPN 1CQA 1CSM B
1CTHB 1CTM 1CTN 1CTU ICXS A 1CYX 1DAA B
1DELB 1DFRJI 1DFNB 1DIH 1DIK 1DIN 1DKZ A
IDNPB 1DPGB 1DSBB 1DTS 1IDUP A 1DYNB 1ECEB
1ECP F 1EDD 1EDM C 1EDN 1EFT 1IEFUD 1EPBB
1ESL 1EUU 1IFBAB 1FBL 1FDT IFIND 1FJMB
1IFUQ B 1GAL 1GCB 1GCM C 1GEP 1GFLB 1GHSB
1GLN 1GMP B 1GND 1GOG 1GP2A 1GP2G 1GPC
1GRJ 1GTMC 1GTQB 1GYM 1HAN IHCGB 1HCRA
1HIRD 1HMPB 1HMY 1HNF 1IHORB 1HPLB 1HSLB
1HUP 1HVQ 1HXN 1HYP 1IIGNB 1ILK 1INP
1ISAB 1lIsuB 1JUD 1KINB 1KNB 1IKPTB 1KRCA
1KTE 1KTQ 1KUH 1LATB 1LBA 1LBU 1LEH B
1LIS 1LKI 1LPBA 1LPE 1IMAI IMASB 1MCTI
IMDAM 1MDTA 1MJC IMLA IMMOH 1MNS 1IMOF
IMSPB 1NAL4 1NAR INBAC 1INCG INDH INFP
INLKL 1INOL INOX INOZB 10ACB 10ONRB 10TGC
10XY 10YC 1PBP 1PBW B 1PDA 1IPDNC 1PDO
1PHT 1PII 1IPKY C 1PMI IPNM B 1PNT 1POC
1PPI 1PTR 1PTX 1IPYTA 1QBB 1QRDB 1REC
IREQC 1RHGC 1RIE 1RIS IRLD S 1RLR 1RPO
IRvWZ 1SCUD 1SCUE 1SEIB 1SESA 1SFE 1SFT B
1ISMP1 1SPBP 1SRA ISRJA 1STFI 1STME 1SVB
1TAQ 1ITCBA 1TCRA 1TFR ITHT B 1THX 1TIE
1TIG 1TncC 1TML ITNDB 1TPLB 1TRB 1TRH
1TSP 1ITSSB 1TUL 1ITUPC 1uBDC 1UDH 1UuMuU B
1vCC 1VHH 1VHR B 1VID IAVAR 1VMO B 1VNC
1VPT IWAPV 1WFBB 1WHI IXVAB 1YPTB 1YRNA
1ZYMB 2AAIB 2ABK 2ADM B 2AFNC 2ASR 2BAT
2BOP A 2CMD 2CPO 2DKB 2DLN 2DNJA 2EBN
2ERL 2GSQ 2HFT 2HHM B 2HIPB 2HPR 2MLT B
2NAD B  2NPX 20LBA 2PGD 2PHY 2POLB 2REB
2SCP B 2SIL 2SPT 2TGlI 2TMDB 2TRT 2YHX
3CHY 3COX 3ECAB 3INKD 3MDDB 3PGK 3PMG B
5S8ICI 6RLXC 6RLXD 821P
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