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Abstract 

This thesis investigates the correlations between short protein peptide sequences and local tertiary 

structures.  In particular, it introduces a novel algorithm for partitioning short protein segments 

into clusters of local sequence-structure motifs, and demonstrates that these motif clusters contain 

useful structural information via two applications to structural prediction. 

The first application utilizes motif clusters to predict local protein tertiary structures.  A 

novel dynamic programming algorithm that performs comparably with some of the best existing 

algorithms is described. 

The second application exploits the capability of motif clusters in recognizing regular 

secondary structures to improve the performance of secondary structure prediction based on 

Support Vector Machines.  Empirical results show significant improvement in overall prediction 

accuracy with no performance degradation in any specific aspect being measured. 

The encouraging results obtained illustrate the great potential of using local sequence-

structure motifs to tackle protein structure predictions and possibly other important problems in 

computational biology. 
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Chapter 1 

Introduction 

1.1 Importance of Protein Tertiary Structures 

Every cell of every eukaryotic organism contains a copy of the blueprint for that organism:  pairs 

of long and massive polymers stored in the form of a twisted double helix called DNA 

(deoxyribonucleic acid).  Certain regions along DNA are called genes.  Special signals found 

inside and in the vicinity of genes flag the cell to transcribe the genes into RNA (ribonucleic acid).  

While some genes code for RNA that is used directly by the cell for vital enzymatic purposes, 

most genes are protein-coding.  That is, the resultant RNA is to be translated into another kind of 

polymer called proteins, which are ultimately responsible for the large majority of life functions.  

Despite their functional variety, all proteins are essentially created by chaining molecules called 

amino acids in different orders.  The sequence of amino acids forms the primary structure of a 

protein.  Each amino acid in a protein is called an amino acid residue or just residue, as its 

flanking atoms have been stripped off during the translation process. 
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The primary structure does not give the protein the ability to perform its functions right 

away.  Instead, it causes the protein to undergo a folding process, in which the protein folds into a 

particular three dimensional (3D) shape believed to be the most energetically stable after taking 

into consideration all interactions among its residues.  This shape, called the tertiary structure, 

enables the protein to interact with other proteins and/or molecules in order to achieve its 

intended biological functions.  

Biologists have long realized the utmost importance of the tertiary structures of proteins.  

Simply put, the tertiary structure dictates how well a protein carries out its activities.  Improperly 

folded proteins may lose their functions entirely or even assume new but undesirable ones, as in 

the case of Bovine Spongiform Encephalopathy, commonly known as Mad Cow disease.  Other 

common lethal diseases resulting from protein misfolding include Alzheimer’s disease, 

Parkinson’s disease, and type II diabetes, among others.  Therefore, knowing the shape of a 

protein is not only vital in understanding its biological roles, but also in developing possible cures 

should the protein misfold or disappear for any reason.   

1.2 Challenges in Protein Tertiary Structure Prediction 

It has been shown more than 30 years ago that all the information needed for a protein to fold 

resides in its amino acid sequence1 [1].  Unfortunately, while current technologies such as gene-

finding and mRNA micro-arrays have given us ample access to novel protein sequences, finding 

tertiary structures given the sequences remains a daunting challenge.  Laboratory methods such as 

NMR Microscopy and X-ray Crystallography do exist for fold determination, but they are 

expensive and time-consuming.  Even worse, the methods fail for proteins that are difficult to 

                                                      
1 Exceptions to the rule such as folds created with the aid of chaperons or post-translational modifications 
are generally ignored for simplification purposes. 
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crystallize, especially membrane proteins.  On the computational side, accurate prediction of 

tertiary structure is still out of reach after decades of research.  Owing to its urgency and 

substantial impact on mankind, protein tertiary structure prediction is considered one of the most 

critical problems in computational biology.   

A major obstacle for protein tertiary structure prediction lies in the complexity of 

modeling protein 3D conformations due to the large degree of structural freedom and 

sophisticated interactions among residues.  Previous computational approaches include a number 

of lattice and off-lattice models as surveyed by Yuan et al. [2], all of which essentially formulate 

structural prediction into a large-scale search problem with limited success.  Inspired by the 

conjecture that a newly created polypeptide forms local folds in parts before settling to its final 

fold [3], a model has recently emerged that treats a protein as a composition of local structural 

motifs.  This model manages to reduce the size of protein conformational space to a point where 

many search-based prediction strategies finally become feasible.  As a result, extraction of local 

motifs has always been a subject of intense study (see Section 2.1 for examples). 

The tertiary structure of a protein is a concerto of two kinds of residue interactions:  long-

range interactions between distant residues such as disulfide bridges and inter-group charges, and 

local interactions among nearby residues.  Xu et al. [4] have created RAPTOR, an innovative 

protein tertiary structure predictor based on optimal threading by linear programming.  

Unfortunately, as RAPTOR focuses primarily on achieving optimal global mapping between 

target and homologous proteins, it lacks a mechanism for refining output predictions based on 

local sequence patterns.  This shortcoming has led to the investigation of local protein folds and 

their potential in ab initio local structure prediction, the prediction of tertiary structures of short 

protein segments based solely on the sequence information contained in the segments (See 

Section 2.2 for further details).   



4 CHAPTER 1.  INTRODUCTION 

 

1.3 Some Biology Background 

1.3.1 Protein Structure 

A protein is a polymer consisting of many repeatedly linked units called amino acids.  All amino 

acids (except proline) have the structure shown in Figure 1.1.  In general, each amino acid has a 

central alpha-carbon atom C�  connected to a hydrogen atom, an amino group (NH2), a carboxyl 

group (COOH), and a side chain denoted by R in the diagram.  Because the carboxyl group is 

characteristic of all organic acids, the simultaneous presence of the amino group and the carboxyl 

group gives rise to the name “amino acid”.   

 

H N 

H 

C�  

H 

C 

O 

R 

O H 

Amino group Carboxyl group 
 

Figure 1.1:  General structure of an amino acid (except praline) with side chain R 

There are 20 standard amino acids distinguished by different side chain configurations.  

Other non-standard amino acids exist, but they are rare and only found in organisms inhabiting 

extreme environments such as volcanoes and ocean bottoms.  Therefore, these non-standard 

amino acids are irrelevant as far as the majority of the research, including this thesis, is 

concerned.  Figure 1.2 lists the names, symbols, and molecular structures for all 20 standard 

amino acids. 
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Figure 1.2:  The 20 amino acids (taken from http://en.wikipedia.org/wiki/Amino_acid) 
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The difference in side chain configuration induces different properties on each amino 

acid.  For instance, an amino acid can be hydrophilic (water-loving) or hydrophobic (water-

repelling), polar or non-polar, charged or neutral, flexible or rigid, etc.  Table 1.1 categorizes the 

amino acids based on different properties. 

Table 1.1:  Properties of standard amino acids 

Properties Property Description Amino Acids 

Hydrophobic V, L, I, M, F 

Hydrophilic N, E, Q, H, K, R, D 

In-between 

Hydrophobic amino acids 
stay inside of a protein, while 
hydrophilic ones tend to stay 
in the exterior.  G, A, S, T, Y, W, C, P 

Positively charged R, H, L 

Negatively charged 

Oppositely charged amino 
acids can form salt bridges. D, E 

Polar but not charged N, Q, S, T 

Non-polar 

Polar amino acids can 
participate in hydrogen 
bonding. A, G, I, L, M, P, V 

 

Guided by a sequence of codons (triplets of nucleotides) in a RNA molecule, a cell 

organelle called the ribosome creates a protein by linking amino acids together with peptide 

bonds, as shown in Figure 1.3.  Therefore, a protein is also called a polypeptide because it 

consists of many amino acid residues linked together by peptide bonds.   

 

… N 

H 

C�  

H 

C 

O 

R1 

N 

H 

C�  

R2 

C 

O H 

… 

AA Residue 1 AA Residue 2 Peptide 
bond 

 

Figure 1.3:  Peptide bond linking two amino acid (AA) residues 
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Although the entire 3D conformation of a protein can be expressed with coordinates for 

all atoms, it suffices to just consider the coordinates of the backbone atoms, namely the repeating 

(N, C� , C) chain of atoms in Figure 1.3.  Scientists also use dihedral angles to precisely describe 

the shape of a protein.  A dihedral angle is defined as the torsion angle from one planar surface to 

another, as depicted in Figure 1.4.  Dihedral angles must be between 180o and -180o inclusive.   

 

 

a 

b 
c 

d 

P1 

P2 

 

Figure 1.4:  Dihedral angle  from P1 (defined by ab and bc) to P2 (defined by bc and cd) 

There are three types of dihedral angles associated with the backbone of a protein, 

namely the phi ( ), psi ( ), and omega ( ) angle.  Figure 1.5 depicts the different dihedral angles 

along a protein backbone.  Note that the diagram also shows the three types of bonds connecting 

the backbone atoms:  the C-N bond (i.e. the peptide bond), the N-C�  bond, and the C� -C bond.  If 

(b1, b2) represents the plane defined by non-collinear bonds b1 and b2, then  is the dihedral angle 

from (C-N, N-C� ) to (N-C� , C� -C),  is the dihedral angle from (N-C� , C� -C) to (C� -C, C-N), and 

 is the dihedral angle from (C� -C, C-N) to (C-N, N-C� ).  Since bond lengths and bond angles are 

fairly rigid under normal biological conditions [5], the series of backbone dihedral angles are 

sufficient to describe the full conformation of a protein. 

 N 

C �  

C 

N 

C �  

C 

N 

�  �  �  … … �  �  �  �  �  
 

Figure 1.5:  Dihedral angles along protein backbone (thick lines denote peptide bonds) 
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Further simplification is possible as peptide bonds can only exist in either the cis (  = 0o) 

or the trans (  = ±180o) configuration.  Peptide bonds in the cis configuration are a lot rarer, and 

their presence usually indicates special regional activities or structures due to their less 

energetically favorable nature [6].  Hence,  angles are often assumed to be 180o under normal 

circumstance, leaving only  and  angles to express the whole protein geometry. 

1.3.2 Sequence Profiles 

Despite numerous possible mutations and re-arrangement events, certain genes are well 

conserved across species after a long period of time due to their important biological functions.   

Nevertheless, however conserved the genes are, their resultant proteins could have very different 

primary structures.  Sander and Schneider [7], for example, have determined empirically that 

structure homology is implied even for proteins with as low as 25% sequence similarity2.   Their 

study and others alike have confirmed the inadequacy of solely comparing primary structures for 

determining if two proteins are evolutionarily related.  The correct alternative would be to 

compare sequence profiles instead.  A sequence profile or frequency profile of a protein shows 

the probability of observing each amino acid in each position along the protein.  It is generated 

from a multiple sequence alignment in which the protein is aligned to its homologues.  The whole 

idea is that if two proteins are indeed evolutionarily related, then they must share the same 

ancestor and homologous siblings, and therefore similar sequence profiles. 

There are many methods for generating sequence profiles, two of which are especially 

common in the research community.  The first method is to use a tool called PSI-BLAST [8], a 

brief description of which can be found in Section 2.3.1.  The second method is to generate 

profiles based on alignments available in the HSSP database [7].  Note that this method could 

                                                      
2 Measured in an alignment over a length of 80 residues or longer 
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result in biased profiles as the alignments used might have been heavily populated by proteins 

from certain families but lightly so by others.  Fortunately, many sequence weighting methods 

exist for correcting such unequal representation including simple pseudo-counts, Voronoi weights 

[9], Maximum discrimination weights [10], and Maximum entropy weights [11]. 

 Rost and Sander [12] achieved a 6% increase in prediction accuracy in their neural 

network method when they replaced primary structures with sequence profiles for prediction.  

Improvement resulting from the usage of sequence profiles was also confirmed by de Breven et 

al. [13].  As implied in Jones’ work [14], the quality of sequence profiles has a dramatic impact 

on performance.   

1.4 Protein Motifs 

Within the context of this thesis, a motif is defined as a recurrent feature shared by a significant 

number of segments that are extracted from proteins belonging to different families.  There are 

three main categories of motifs, namely sequence motifs, structural motifs, and sequence-

structure motifs.   

As its name suggests, a sequence motif describes a recurrent sequence pattern found in a 

significant number of protein segments.  Likewise, a structural motif describes a recurrent 

structural pattern.  One might often be misled by intuition that sequence similarity automatically 

implies structural similarity, which would have been true if the folding of protein segments were 

solely determined by local inter-residue interactions within the segments.  Unfortunately, there 

are also long-range interactions such as disulfide bridges, inter-group charges, and hydrophobic 

effects that alter the overall tertiary structure of a protein.  Segments under the influence of such 

global forces would fold differently from other segments even if they share a high degree of 
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sequence similarity.  Since it is ultimately the shape that matters to the protein’s capability, 

sequence motifs tend to be less valuable and much less frequently studied.   

On the contrary, structural motifs are more intensively studied because they constitute the 

conformational search space for many search-based structural prediction algorithms [15, 16, 17].  

Nevertheless, structural motifs neglect specific sequence information that characterizes their 

formation, so their usage in ab initio structural prediction usually requires some sort of external 

guidance such as a global energy function.  

The last category comprises sequence-structure motifs.  Each sequence-structure motif is 

shared by segments that are highly similar in both sequence composition and tertiary structure.  

By definition of motifs, these segments must amount to a significant number and belong to 

proteins from different families, so the observed sequence-structure correlation is almost 

impossible to happen by chance.  As a result, one may deduce with high confidence that for any 

sequence-structure motif, the structure is mostly or even entirely determined by the corresponding 

sequence pattern.  This important concept forms the underlying principle that enables sequence-

structure motifs to map short sequence patterns into relevant structures.  

1.5 Research Overview 

The two main problems being addressed by this thesis are the discovery of sequence-structure 

motifs given a set of non-redundant proteins, and the prediction of protein folds by exploiting the 

motifs’ ability to map sequences to structures.  The rest of this thesis is organized as follows:  

Chapter 2 will present a detailed survey of some of the previous related work, Chapter 3 will 

describe a novel clustering algorithm for extracting sequence-structure motifs, Chapter 4 will 

describe a novel dynamic programming algorithm for ab initio local structure prediction using 
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motif clusters, Chapter 5 will describe a procedure for using motif clusters to enhance secondary 

structure prediction based on Support Vector Machines, and finally Chapter 6 will conclude the 

paper with some final comments and a list of future work. 
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Chapter 2 

Related Work 

The materials presented in this thesis concern three major areas:  motif extraction via clustering, 

ab initio local structure prediction, and secondary structure prediction.  This section will present 

some background and related research in each area. 

2.1 Extraction of Protein Motifs via Clustering 

Clustering is a popular statistical technique for analyzing large data sets through the grouping of 

similar items.  It enables researchers to focus on the general patterns instead of on the individual 

items themselves.  Since motifs are patterns shared by a significant number of segments, their 

extraction can be properly achieved through clustering.  Previous methods for clustering short 

protein segments are generally divided into two categories:  1) those with clustering based on 

structure alone, and 2) those with clustering based on both sequence and structure.  A brief survey 

of six recent methods is presented below, where the first three belong to the first category and the 

rest belong to the second. 
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2.1.1 Clustering using Reference Frame Oxyz 

Wojcik et al. [15] invented a novel orthogonal reference frame called Oxyz for aligning two loop 

segments in order to calculate their structural deviation.  For each loop segment s, the Ox axis was 

the line joining the C�  atoms of the first and last residues in s, Oy axis was defined such that the 

plane formed by Ox and Oy contained the centre of gravity of the backbone of s, and finally Oz 

axis was the vector product of Ox and Oy.  Loop segments of length 3 to 8 residues long were 

extracted and classified using hierarchical clustering based on RMSD (root mean squared 

distance) between backbone atoms positioned in Oxyz.  Each resultant cluster essentially 

represented a structural motif.  The set of all clusters was subsequently used for loop modeling in 

the remainder of the study. 

2.1.2 Clustering using K-means Stimulated Annealing  

Kolodny et al. [16] clustered protein segments of length 4 to 7 residues long using a modified k-

means algorithm called k-means stimulated annealing, which was identical to the original k-

means algorithm [18, 19] except that two clusters were merged and another was split in a Monte 

Carlo fashion at the end of each iteration.  RMSD after superposition was used within the 

algorithm to measure the distance between any two given segments.  The authors claimed that 

their special k-means algorithm improved the handling of segment concentrations and reduced 

sensitivity to the initial choice of cluster centers.  The quality of the resultant clusters was 

evaluated by examining how well the clusters could fit into the structures of certain test proteins. 

2.1.3 Clustering using Hypercosine as Distance Measure 

Although RMSD is a popular measure of inter-segment distances, its usage in large-scale 

clustering could be hindered by its expensive numerical computation.   Hunter et al. [17] thus 
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suggested a new structural distance measure based on hypercosine, which they claimed was a 

good approximation of RMSD while being much more efficient to compute.  To measure the 

structural deviation between two segments, a vector was created from each segment by taking the 

backbone atomic coordinates along the segment after it was aligned in the 3D Cartesian space 

with its first C�  atom at the origin, its last C�  atom on the z axis, and its second C�  atom on the x-z 

plane.  Let u and v be the resultant vectors for the two segments, vu  ,  be their inner product, and 

|u| and |v| be the l2-norm (i.e. the magnitude) of u and v respectively.  The hypercosine between u 

and v, denoted by HCos(u, v), was computed as follows: 

 
 || || 

 ,
  ) ,(

vu

vu
vuHCos =  (2.1) 

The output was a real value in the range [0, 1], with 0 indicating totally structural dissimilarity 

and 1 indicating structural identicalness.  Hunter and his peers tested the efficiency of the new 

method by clustering 150,000 length-7 segments.  The remainder of their study focused on how 

changes in hypercosine threshold affected the quality of the resultant cluster set. 

2.1.4 Protein Blocks 

French scientists de Brevern et al. [13] clustered protein segments of length 5 based on both 

sequence and structure in a two-stage process.  During the first stage, they partitioned segments 

by structure into 16 clusters called Protein Blocks as follows.  Each segment centered at Ci was 

represented as a vector of eight dihedral angles (i-2, i-1, i-1, i, i, i+1, i+1, i+2), and inter-

segment distance was measured by RMSDA (root mean squared distance on angular values).  An 

unsupervised Kohonen network formed the basis of the clustering method.  In short, the method 

was initialized with a fixed number of randomly drawn cluster centroids.  It then assigned each 



16 CHAPTER 2.  RELATED WORK 

 

segment to its closest cluster and updated the cluster’s centroid accordingly.  Once all segments 

had been exhausted, the assignment process restarted with the new centroids.  This was repeated 

for a given number of times to obtain the final set of clusters or Protein Blocks. 

 Every Protein Block was further sub-divided into sequence families based on sequence 

composition in the second stage.  Initially, all segments within each Protein Block were arbitrarily 

partitioned into a fixed number of groups, and the consensus sequence profile for each group was 

computed.  Each segment was then assigned to the group whose profile yielded the highest 

conditional probability of observing the segment.  After all segments had been assigned, new 

profiles were generated for the groups and the assignment process was repeated.  The whole 

procedure stopped when changes to new profiles were minimal.  The resultant sequence families 

from all 16 Protein Blocks ultimately formed the complete set of sequence-structure motifs. 

2.1.5 I-sites Library 

The I-sites Library, created by Bystroff and Baker [20], is a collection of 13 different sequence-

structure motifs commonly found in proteins.  Similar to Protein Blocks, the motifs were also 

extracted via a two-stage process.  In the first stage, segments of length 3 to 15 were partitioned 

based on sequence similarity using a custom distance function and the k-means clustering 

algorithm [18, 19].  A refinement process in the next stage removed segments whose structures 

were different from the paradigm structures of their respective clusters.  The remaining segments 

in each cluster were combined to form a signature sequence profile used to further search for 

other similar segments in the training database.  The segments that were initially removed from 

each cluster formed a new cluster, which then underwent the same refinement process.  Because 

each repetition isolated segments sharing the paradigm or “peak” structure from the rest, the 
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refinement process was called iterative peak removal.  The end result was a set of 82 clusters that 

could be roughly grouped into 13 different sequence-structure motifs. 

2.1.6 LPBSP1 

Yang and Wang [21] created a local structure-based sequence profile database called LPBSP1.  

Local structure-based sequence profiles are equivalent to sequence-structure motifs as they both 

represent the consensus of a group of segments sharing similar compositions and structures.   

Prior to clustering, each segment in the training database was preprocessed such that 

every phi and psi angle pair was converted into a backbone conformational state as defined by 

Oliva et al. [22].  This preprocessing step essentially mapped the continuous backbone structures 

into discrete states needed for subsequent local structure prediction (see Section 2.2.3). 

Each local structure-based sequence profile was created by first selecting a segment 

known as the seed.  To refine the seed, all segments in the training database were examined, and 

those resembling the seed’s structure were extracted.  The resultant segments were then filtered 

using a custom scoring matrix to retain those that were also sequence-wise similar to the seed.  

The final set of segments composed a consensus sequence profile, which was used along with the 

seed’s structure to “fish” out other unidentified homologues in the training database.  At the end, 

all segments that had been found constituted the sequence-structure motif cluster for the seed 

segment.  The entire process was repeated for all segments in the database, and all resultant 

clusters with less than 10 segments were discarded.  Yang and Wang applied the clustering 

method to 213,338 length-9 segments to obtain a final set of 138,604 clusters. 
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2.2 Ab Initio Local Structure Prediction 

The aim of ab initio local structure prediction is to predict the tertiary structures of short protein 

segments based solely on the sequence information contained in the segments.  A main driving 

force behind such prediction is its potential in tackling the protein folding problem [23], the 

resolution of which lends itself to other critical problems such as ab initio prediction of global 

tertiary structures and identification of protein misfolding. 

Protein folding is very difficult to simulate mainly because of the many different ways 

residues can interact with their distant counterparts.  These long-range interactions play a vital 

role in guiding polypeptides to fold properly upon their creation.  Given the efficiency of the 

folding process, however, it is impossible for a polypeptide to consider all distant interactions or 

even a majority of them.  As a result, the folding process is believed to initiate with segments 

folding locally, forming structural intermediaries whose interactions lead to the final shape.  

Therefore, the study of local structures and their formations would be a steppingstone, if not a 

prerequisite, to understanding the folding process. 

Macromolecular structure repositories such as the Brookhaven Protein Databank (PDB) 

have enabled researchers to discover a number of local structural motifs, such as the Schellman 

motif [24], the hydrophobic staple [25], the extended capping box [26], and various beta-hairpin 

structures [27, 28].  The values of local motifs to structural prediction have been noted in a 

number of studies including Bonneau et al. [29], Fidelis et al. [30], and Rooman et al. [31].  The 

following sub-sections describe ab initio local structure prediction using Protein Blocks (Section 

2.1.4), the I-sites Library (Section 2.1.5), and LPBSP1 (Section 2.1.6).   
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2.2.1 Prediction using Protein Blocks 

After discovering Protein Blocks and sequence families, de Brevern et al. [13] went on to apply 

them to local structure prediction.  In their prediction method, Protein Block b was assigned to a 

target segment s if sequence family f ⊆  b yielded the largest ratio r = P(f | s) / P(f) among all 

sequence families3.  The ratio r was calculated using only the sequence profiles of f and s.  To 

predict the local structure of a target protein p, the method simply assigned the optimal protein 

block (i.e. the one yielding the largest ratio r) to each overlapping segment in p.  During the 

evaluation process, an assignment involving Protein Block b and segment s was considered 

correct if b was also the Protein Block structurally closest to the true conformation of s.  The 

overall prediction accuracy, evaluated as the percentage of correct assignments over the total, was 

40.7%.  The authors subsequently claimed better accuracies by considering multiple top-scoring 

Protein Blocks, instead of just the optimal one, for each segment.  Unfortunately, those results 

were practically meaningless because the authors failed to instruct which Protein Block was to be 

chosen should the true structures be unavailable for comparison, as in a real prediction scenario. 

2.2.2 Prediction using the I-sites Library 

As described in Section 2.1.5, the I-sites library is a collection of 82 clusters grouped into 13 

sequence-structure motifs.  Recall that during the extraction process, Bystroff and Baker [20] 

utilized a custom distance function to cluster segments based on sequence similarity.  The same 

distance function was used to score sequence similarity between a cluster and a given segment 

during local structure prediction.  Since different clusters were of different lengths, the similarity 

scores were not directly comparable.  As a remedy, Bystroff and Baker mapped each score into a 

                                                      
3 P(x) is the probability of observing x, and P(x | y) is the probability of observing x given the presence of y.   
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confidence value, which stood for the likelihood of the segment having the structure of the cluster 

given the score.  The mapping was derived empirically through a cross-validation procedure.   

The prediction method first computed the confidence values of all overlapping segments 

in the target protein versus all 82 clusters.  The set of all segment-cluster pairs were then sorted 

by confidence values in descending order.  The first segment-cluster pair was processed by 

assigning the consensus dihedral angles of the cluster to the residues in the segment.  Each 

subsequent segment-cluster pair was processed only if the consensus dihedral angles of the cluster 

did not conflict with the ones previously assigned to the segment.   

A residue was correctly predicted if it was found in at least one length-8 segment whose 

predicted structure was within 1.4 Å in RMSD of the true structure.  The overall prediction 

accuracy, evaluated as the percentage of correctly predicted residues over the total, was 50%. 

2.2.3 Prediction using LPBSP1 

LIBSP1 [21], a collection of 138,604 sequence-structure motif (see Section 2.1.6), was created 

specifically for local structure prediction.  The sequence composition for each motif was 

represented by a position specific scoring matrix (PSSM) created with the Bayesian prediction 

pseudo-count method [32].  To predict the structure of a lengh-9 segment s, Yang and Wang 

searched through LIBSP1 to obtain the set W of all motifs whose PSSMs yielded high similarity 

scores for s, and assigned the structure of the motif located at the center of W to s.  The above 

process was repeated for each overlapping length-9 segment along the target protein.  At the end, 

the final prediction for each residue was taken to be the majority conformation found in the 9 

overlapping predictions covering the residue.  Yang and Wang developed an evaluation scheme 

called RMSDaccuracy, which they claimed was comparable to the RMSD measure used by 

Bystroff and Baker [20].  Their published result under the scheme was 62.1%.   
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Unfortunately, the method did not achieve high accuracy without cost.  Because of the 

need to find the majority conformation, the continuous backbone dihedral angles were mapped 

into discrete states, as described in Section 2.1.6.  The final predicted structure was expressed as a 

string of only four states {A, B, G, E}, so it was at best a rough approximation.  In other words, 

there had been a trade-off between prediction accuracy and preciseness of predicted structures. 

2.3 Enhancement to Secondary Structure Prediction 

The tertiary structure of a protein can be seen as a spatial arrangement of three types of 3D sub-

structures known as helices, strands, and coils.   The distribution of these sub-structures along a 

protein is referred to as the secondary structure of the protein.  While ab initio prediction of 

tertiary structure is difficult, that of secondary structure is a lot simpler because the latter projects 

the complicated 3D structures onto a linear sequence of H (helix), E (strand), and C (coil).  

Knowledge of secondary structures is often used as a constraint to tertiary structure prediction or 

as part of fold recognition methods [33].  There are numerous ab initio secondary structure 

prediction methods such as BRNN [34], DSC [35], NNSSP [36], PHD [37], PREDATOR [38], 

SVM [39], and Zpred [40].  Given the array of methods, a more practical option would be to 

enhance the performance of the best in the herd.  Two example attempts to be described in this 

section are PSIPRED [14] and PMSVM [41]. 

2.3.1 PSIPRED 

PSIPRED [14] is considered an improved version of PHD [37], a predictor widely recognized for 

its supreme accuracy.  The main improvement comes from the use of position specific scoring 

matrices (PSSMs) generated by PSI-BLAST [8].  Given a query sequence, PSI-BLAST searches 

for high-scoring homologues from a non-redundant protein database, creates a profile from the 
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homologues, and repeats the search with the new profile.  The process lasts for a specified 

number of iterations.  The utilization of PSI-BLAST profiles has increased the accuracy (or Q3 to 

be exact, see Section 5.4) by about 5% on average, from around 73% to around 78%.  At present, 

PSIPRED remains one of the most reliable secondary structure prediction methods available. 

2.3.2 PMSVM 

Support Vector Machine [42], or SVM for short, is a powerful statistical method for data 

classification.  The most common use of SVM is as a binary classifier.  In a nutshell, training a 

binary SVM classifier involves computing the separating hyper-plane that divides the training 

data points in such a way as to achieve maximal margin (i.e. to maximize the gap between the 

plane and the closest data points on either side).  Once trained, new data points are classified to 

either category depending on which side of the hyper-plane they land on. 

Hua and Sun [39] invented a secondary structure prediction method based on SVM, and 

achieved prediction accuracies that rivaled PHD, if not better.  Motivated by the success of 

PSIPRED, Guo et al. [41] set out to improve the SVM prediction method of Hua and Sun.  

Besides utilizing PSI-BLAST profiles, they introduced a second SVM prediction layer to produce 

a dual-layer SVM predictor called PMSVM.  The second layer was meant to refine the output of 

the first by considering the patterns of surrounding secondary structures for each residue.  Guo et 

al. reported around 79% as the average prediction accuracy (Q3) for PMSVM, an improvement of 

about 5% over the single-layer SVM approach.   
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Chapter 3 

Discovery of Sequence-Structure Motifs 

Clustering of short protein segments will be used as the primary approach for the discovery, or 

extraction, of sequence-structure motifs.  Many of the previous methods, such as those described 

in Section 2.1.4 and Section 2.1.5, perform clustering in two stages.  A problem associated with a 

two-stage approach is that segments with similar sequence patterns and folds might not as clearly 

reveal such a relationship when one looks at sequence and structure separately.  Those segments 

are likely to get misclassified in either or both stages.  This section presents a novel one-stage 

method intended to eliminate the deficiency by considering both sequence and structure together 

throughout the whole clustering process.  Specifically, this section describes the inter-segment 

distance measure, segment preparation and filtration, the main clustering algorithm, and the 

experiments conducted and results gathered. 

3.1 Segment Attributes 

All protein segments are assumed to be of the same length L.  Every segment is represented as an 

array of L records, each of which stores information for one residue.  The stored information 
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includes the occurrence frequencies for all 20 amino acids, the secondary structure label (H, E, or 

C), and all three backbone dihedral angles in degrees.  Backbone atomic coordinates are not 

explicitly stored, but are calculated as needed from the dihedral angles.  Table 3.1 below lists the 

values of bond lengths and bond angles determined empirically by Engh and Huber [43]. 

Table 3.1:  Bond lengths and bond angles along protein backbone  

N-C�  bond length 1.458 Å 

C� -C bond length 1.525 Å 

C-N bond length 1.329 Å 

N-C� -C bond angle 111.2o 

C� -C-N bond angle 116.2o 

C-N-C�  bond angle 121.7o 

3.2 Measure of Inter-Segment Distance  

Each of the 20 amino acids is represented by a unique index in the range 0 to 19 inclusive.  The 

exact index assignment is irrelevant but it must be consistent throughout the study.  Let �
i and � i 

be the phi and psi angles in degrees at position i, and fij be the frequency of observing amino acid 

with index j at the same position.  Note that the condition j=0,19 fij = 1 must hold for all i.  Given 

segments x and y, both of length L, their distance D(x, y) is computed as follows: 
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Symbol  denotes the absolute difference in the associated quantity.  Value �  is L-dependent and 

it limits the largest dihedral angle difference allowed.  Note that Equation (3.1) has two ideal 

properties as a distance function.  First, it encompasses differences in both sequence patterns and 
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structures, hence allowing one-stage clustering.  Second, it is the Euclidean distance between two 

points in a 22L-dimensional Cartesian space and therefore satisfies the triangular inequality, 

making it acceptable for use in clustering [44].   

The validity of Equation (3.2) below justifies the assumption that contributions from 

differences in structure and in sequence have equal weights.  The second condition as well as the 

tightness of both bounds can all be proven trivially.  
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3.3 Cluster Radius 

Besides a distance function, a threshold called cluster radius is needed to tell if two segments are 

sufficiently close to be grouped together.  The choice of cluster radius is crucial:  being too small 

yields a handful of clusters capturing only the most conserved motifs, while being too big yields 

coarse clusters contaminated with irrelevant segments.  A systematic way exists to determine a 

suitable radius for a given segment length.  First, segments of that length are extracted from a 

large database of non-redundant proteins whose structures are known.  An ideal choice for the 

database would be PDB Select 25 [45, 46].  The set of all segments are then divided in half, and 

distances between segments in different halves are computed.  The resultant figures form a 

normal distribution with mean �  and standard deviation � , as shown in Figure 3.1 for segments of 

length 8.  The radius is set to �  – 3� , corresponding to a confidence interval of 99.73%.  This 

choice of radius is found to consistently deliver clusters of reasonable quality. 
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Figure 3.1: Normal distribution for inter-segment distances obtained from a large 
sample of length-8 segments, with mean �  = 2.42 and standard deviation �  = 0.41 
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Figure 3.2: Fluctuation in cluster radius as segment length increases from 5 to 13 
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The cluster radii are larger for longer segments because they have to account for 

differences between more residues.  Intuitively, once the segment length doubles, so does the 

radius for having to account for differences between twice as many residues.  Therefore, a 

roughly linear relationship is expected between the radius and the segment length.  Our empirical 

method for radius determination seems legitimate in that it does produce results that agree with 

expectation.  Figure 3.2 shows the increase in cluster radius as segment length increases from 5 to 

13 inclusive. 

3.4 Segment Preparation and Filtration 

The distance function shown in Equation (3.1) requires sequence profiles for both segments 

stating the occurrence frequency of each amino acid at every position.  The profiles in this study 

are generated from multiple sequence alignments available in the HSSP database [7], and post-

processed with the Voronoi Monte Carlo algorithm [9] to correct for unequal representations.  

Aside from profiles, secondary structure labels are also gathered, and for that the DSSP secondary 

structure labeling [47] is chosen due to its popularity.   

A filtration process is in place to ensure the legitimacy of segments used for clustering.  

Specifically, a segment is not qualified unless it meets all three requirements:  it must be aligned 

to at least 20 proteins in the HSSP database, comprise only standard residues, and contain only 

trans peptide bonds between residues (see Section 1.3.1).  Overlapping segments are then 

extracted from protein peptides satisfying all the requirements. 
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3.5 Clustering Algorithm 

The k-means algorithm [18, 19] is the ideal method for clustering protein segments due to the 

large input volume.  Unfortunately, there are several issues that must first be resolved.  The 

foremost is the requirement to specify the number of clusters k in advance.  Some studies have 

suggested that the numbers of sequence-structure motif clusters are in the hundreds, while others 

have suggested numbers in the thousands or even as much as over 100K.  The wide range makes 

estimating the number of clusters a groundless act.  Moreover, aside from knowing that a larger k 

generally results in finer clusters, there is not a precise correlation between k and the degree of 

segment similarity in each cluster.  Finally, the original k-means algorithm would fit every 

segment into its closest cluster, even if that cluster is really nowhere near the segment at all.  This 

would end up contaminating the resultant sequence-structure motif clusters, making them less 

representative and degrading their capacity to recognize homologous sequence patterns. 

The novel clustering algorithm, outlined in Figure 3.3, is intended to solve the 

aforementioned problems.  It is derived from the k-means algorithm and modified to allow a 

variable number of clusters [48].  An input to the algorithm is the cluster radius r, such that a 

segment either goes to its closest cluster if the distance is within r, or starts a new cluster 

otherwise.  The input r eliminates the need to estimate and fix the number of clusters, allows a 

more direct control over the cluster quality, and prevents segments from being forcibly added to 

faraway clusters.  The algorithm also uses a special cluster called the residue cluster to hold all 

outliner segments that cannot be clustered due to their unique sequence patterns or shapes.  Since 

segments in the residue cluster are considered outliners, they are prohibited from initiating new 

clusters in subsequent iterations.  This measure has led to significant runtime improvement as it 

effectively prevents the creation of tiny miscellaneous clusters.  
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 Protein Segment Clustering Algorithm 

Input:  cluster radius r, minimum size m, segment set S, maximum trial count t 

1. Create empty residue cluster Cres 

2. Repeat until no changes or t trials have been exhausted 

3.     For each segment s ∈S do    

4.         Find cluster closest to s, or set distance to 	 if none exists yet 

5.         If distance 
 r then move s to new cluster and update old cluster 

6.         Otherwise, if s ∉Cres then create new cluster with s as centroid 

7.     Merge all nearby clusters (with distance < 0.5r) 

8.     For each cluster smaller than m do 

9.         Eliminate cluster and transfer all its segments to Cres 

10. Return the final set of clusters 
 

Figure 3.3:  Outline of algorithm for clustering protein segments 

3.6 Experiments and Results 

The algorithm presented in Section 3.5 has been applied to clustering a set of 396 non-redundant 

proteins selected by Cuff and Barton (CB396) [49].  Segment length L was set to 8, a value small 

enough to allow clusters of reasonable size but large enough to capture local residue interactions.  

Results reported by Bystroff et al. [3] have shown that segments of length 8 are very effective at 

preserving local sequence-dependent information.  The cluster radius was set to 1.2 based on the 

method described in Section 3.3.  Both the minimum cluster size and maximum trial count were 

set to 5.  Symbol �  in Equation (3.1) was set to 120o, an arbitrary but reasonable choice for 

segments of length 8.  A total of 47,907 overlapping segments were extracted from qualified 

protein peptides (see Section 3.4). 

The output consisted of 357 clusters, but the number of distinct structural motifs was 

much less since many clusters either had the same fold, or were overlapping images of the same 
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motif.  For instance, 89 clusters were helices, showing the motif’s abundance and its variety in 

sequence patterns.  In short, all motifs in the I-sites library [20, 50] had been discovered together 

with some new ones.  Four examples of new motifs are shown in Figure 3.4 and Figure 3.5.  More 

examples are shown in Appendix A.  For each motif, the following information is displayed: 

Segment count This is the size of the cluster capturing the motif.  This number might 

seem small because it only includes segments that are highly similar to 

the motif in terms of both sequence and structure. 

Dihedral angle plot The plot shows the phi and psi angles for each position along the motif 

and facilitates comparison between structures of different motifs. 

Log-odds profile For position i and amino acid j, entry vij in the log-odds profile is 

calculated from fij (the corresponding entry in frequency profile) and bj 

(the background frequency for amino acid j) as follows:  vij = log2(fij / bj). 

Backbone drawing 3D drawing of backbone conformation using Protein Explorer, where the 

N-terminus is labeled ‘N’ and the C-terminus is labeled ‘C’. 

The motif in Figure 3.4(a) represents a turn between two helices, characterized by a MET 

at position 2, a preference for hydrophobic residues at position 3, and an aversion to them at 

position 4.  In general, positions prior to and including position 3 tend to prefer hydrophobic 

residues while the others tend prefer hydrophilic ones, inferring a possible emergence from the 

protein interior to the surface.  The motif in Figure 3.4(b) is also a turn flanked by helices.  It is 

characterized by a GLY at position 3, a conserved hydrophobic residue at position 4, and finally 

an ASX (i.e. ASN or ASP) at position 5.  Hydrophilic residues are generally preferred throughout 

the motif, potentially suggesting that the entire motif is exposed to the aqueous surrounding. 
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     0   1   2   3   4   5   6   7 
A   ·   1    ·   ·  -1    ·   ·   ·  
R  -1   1    ·  -1  -1    ·  -1   ·  
N  -1   ·    ·   ·   1    ·   ·   ·  
D  -1   1    ·   ·   2    ·   1   1  
C   ·  -3    ·   ·  -1   - 3  -2   ·  
Q   ·   ·    ·   ·   ·    ·   1   1  
E   ·   1    ·  -1   ·    ·   1   1  
G  -1  -1   - 1  -1   ·   - 1  -1  -1  
H  -2   ·    ·   ·   ·   - 1  -1   ·  
I   ·  -1    ·   1  -2    ·  -2  -2  
L   1  -1    ·   1  -1    ·  -1  -1  
K   ·   1    ·  -1   ·    ·   ·   ·  
M   1   ·    1   1  -1    ·  -2  -1  
F   ·  -1    ·   ·  -2   - 1  -2  -1  
P   ·   ·   - 2  -2   2    1   ·  -1  
S   ·   ·    ·   ·   1    ·   ·   ·  
T   ·   ·    ·   ·   ·    ·   ·   1  
W   1  -2    ·  -1  -2   - 1  -2   ·  
Y   ·  -1    ·   ·  -1    ·  -1   ·  
V   ·  -1    ·   1  -1   - 1  -1   ·  

 

 

(b) Found in 36 segments 
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     0   1   2   3   4   5   6   7 
A   ·   1    1  -1  -1   - 1   ·   ·  
R   1   ·    ·  -1   ·   - 1   ·   1  
N   ·   ·    ·   1  -2    1   ·   ·  
D   ·   ·   - 1   ·  -2    2  -1   1  
C  -2  -2   - 2  -2   ·   - 2  -1  -1  
Q   ·   1    ·   ·   ·   - 2  -1   ·  
E   1   1    ·  -1  -1    ·   ·   1  
G  -2  -1   - 1   3  -2    ·  -1  -1  
H   ·   ·    1  -1  -1   - 1   ·   ·  
I  -1  -1   - 1  -3   1   - 3   ·  -2  
L  -1  -1    1  -2   1   - 2   1  -1  
K   2   1    ·   ·   ·    ·   ·   1  
M  -1  -1    1  -1   1   - 2   ·  -1  
F  -2  -2    1  -2   1   - 1   1  -2  
P  -2  -2   - 4  -2   ·    1   2   ·  
S   ·   ·   - 1  -1  -2    1  -1   ·  
T  -1   ·    ·  -3  -1    1  -1  -1  
W  -1   ·   - 1  -1   1   - 1   ·  -1  
Y  -1  -2    1  -2   1   - 1   ·  -1  
V  -1  -1   - 2  -3   1   - 2   ·  -1  
  

 

Figure 3.4:  Dihedral angles, log-odds profiles, and 3D backbone drawings for two novel 
motifs not listed in the I-sites Library.  Dot (·) represents background frequency. 
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     0   1   2   3   4   5   6   7 
A   ·   ·   -1  -1  -1    ·  -1  -1  
R   ·   ·    ·   ·   ·    1  -1   1  
N  -1   ·    ·   2   1    1  -1  -1  
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Q   ·   1    ·   ·  -1    1   ·   ·  
E  -1   ·    ·   ·   ·    1   ·   ·  
G  -2  -1    ·   1   2    ·  -1  -2  
H  -1   ·    ·  -1  -1    ·  -2   ·  
I   1   ·    ·  -3  -2   -2   1   1  
L   ·   ·    ·  -3  -2   -2   1   ·  
K  -1   ·    ·   1   ·    2   ·   ·  
M   ·   ·    ·  -2  -3   -1   ·  -1  
F   1   ·    ·  -2  -2   -1   ·   1  
P  -1  -2   -1  -1  -1   -1   ·  -2  
S  -1   ·    ·   ·   ·    ·  -1  -1  
T   1   ·    ·  -1  -1    ·   1   ·  
W  -2   1    2  -4  -2   -2   1  -1  
Y   1   ·    1  -2  -1    ·   ·   1  
V   1   1    ·  -3  -1    ·   1   1  

 

 

(b) Found in 21 segments 
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     0   1   2   3   4   5   6   7 
A   ·   ·    ·   ·   ·   - 1   ·   ·  
R  -1   ·    ·  -2   ·   - 1   ·   ·  
N  -1  -1    ·  -2   ·    2  -1   1  
D  -1  -1   - 1  -2   1    2   ·   1  
C   ·  -1   - 2   ·  -3   - 2  -2  -3  
Q  -1   1   - 1  -1  -1   - 1   ·   ·  
E   ·   ·    ·  -2   1    ·   ·   2  
G  -1  -2   - 1  -2  -1    ·  -1  -1  
H   ·   1   - 1   ·   ·    ·  -1  -1  
I   ·   1    ·   1  -1   - 3   ·  -2  
L   ·   1    ·   ·   ·   - 2   ·  -1  
K   ·  -1    ·  -2   1   - 1   1   ·  
M  -1  -1    ·  -1  -1   - 3  -1  -2  
F   1   ·   - 1   ·  -1   - 2  -1  -1  
P   ·  -1    1  -1   1   - 1   1  -1  
S  -1  -1    ·  -1   ·    1   ·   ·  
T   ·  -1    1   ·   ·    ·   ·   ·  
W  -1  -1    ·   ·   ·   - 2   ·  -1  
Y   1   1    ·   ·   ·   - 2  -1  -2  
V   1   1    1   2   ·   - 2   ·  -2  

 

 

Figure 3.5:  Dihedral angles, log-odds profiles, and 3D backbone drawings for two other 
novel motifs not listed in the I-sites Library.  Dot (·) represents background frequency. 
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On the other hand, the motif in Figure 3.5(a) is very similar to the PDG beta-hairpin 

listed in the I-sites library.  While both motifs possess the conserved sequence ASX-GLY, the 

PDG hairpin has an additional conserved PRO prefixing the sequence.  Similar to the PDG 

hairpin, this motif also forms a hairpin by having two anti-parallel strands connected by a U-

shaped turn.  Finally, the motif in Figure 3.5(b) represents a turn linking a strand and a helix.  It is 

characterized by a conserved hydrophilic residue at position 4 and an ASX at position 5.  The 

preceding strand positions are mostly hydrophobic, indicating that the motif is likely to protrude 

from the protein interior. 

These examples illustrate the competency of the clustering method at discovering local 

protein motifs, revealing their unique compositions, and identifying their relative locations within 

proteins.  Note that it is difficult to conduct a fair comparison between clustering methods due to 

the vastly different settings.  Nevertheless, given that the novel method was able to discover all 

motifs in the I-sites Library and more, one may conclude that it is comparable, if not better, than 

the method of Bystroff and Baker [20].  
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Chapter 4 

Local Tertiary Structure Prediction 

The first application of sequence-structure motif clusters is aimed at the prediction of local 

tertiary structures based on sequence composition alone, and a novel algorithm based on dynamic 

programming (DP) has been invented for that purpose.  This section begins with the definition of 

cluster assignment and assignment rank, two important concepts appearing in the algorithm.  It 

then describes the two preprocessing steps taken to improve the prediction capacity of a given 

cluster set, namely the removal of noise clusters and the enhancement to the cluster assignment 

scoring function.  Finally, the prediction algorithm is covered in detail, and performance results 

gathered from a comprehensive experiment are presented. 

4.1 Cluster Assignment and Assignment Rank 

Scoring function Kc(s), shown in Equation (4.1), computes the likelihood of a length-L segment s 

belonging to cluster c based on sequence composition.  It is derived from the log-odds ratio of the 

probability of observing s given c to the background probability.  Symbols sij and cij denote the 
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frequency of amino acid j at position i on s and c’s centroid respectively.  Symbol bj denotes the 

background frequency for amino acid j.   
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The main purpose of the scoring function is for making cluster assignments.  Another 

related concept that is equally important is the assignment rank.  Both concepts are central to the 

algorithm for predicting local tertiary structure (Section 4.5) and enhancing secondary structure 

prediction (Section 5.1).  Their definitions are as follows. 

Definition 4.1.1 (Cluster assignment). A cluster assignment, or just assignment, refers to an 

instance when a cluster is assigned to a segment based on a score computed via Equation 

(4.1).  The assignment is said to cover the segment and its residues.  Each assignment has 

three basic attributes:  the cluster being assigned, the segment being covered, and the score 

associated with the pair. 

Definition 4.1.2 (Assignment rank). An algorithm utilizing an assignment rank, or just rank, 

of R means that the R highest scoring assignments are made to each segment for the task at 

hand.  The highest scoring assignment is at rank 1, the second highest at rank 2, and so on.   

4.2 Evaluation of Local Structure Prediction 

The evaluation scheme for local tertiary structure prediction was invented by Lesk [51].  It takes 

two parameters, a window size w and a RMSD threshold t.  Given a true structure and its 
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prediction, the scheme computes the percentage of residues found in length-w segments whose 

predicted structures are within t of the true structure after superposition [52].  The parameters 

used by Bystroff and Baker [20] are selected to facilitate comparison (i.e. w = 8 and t = 1.4 Å). 

4.3 Noise Cluster Elimination 

In a large cluster set, some weak clusters capturing rare motifs possess similar sequence profiles 

as do the significant clusters capturing more common motifs.  Those weak clusters tend to 

compete with the significant clusters for sequence similarity with target segments during cluster 

assignment, degrading prediction accuracy.  Because they create noise that disturbs prediction, 

those weak clusters are called noise clusters and should be eliminated. 

Clusters produced by the algorithm described in Section 3.5 are of minimum size m.  If m 

is set too small, many noise clusters arise.  If it is set too large, significant clusters are lost.  To 

determine m maximizing the predictive power for a set of clusters, the following method is used.   

 Noise Cluster Elimination 

Input:  cluster set C, protein set P, minimum size bound [ml, mh] 

1. For each m in range [ml, mh] 

2.     Remove clusters of size less than m from C to obtain C’ 

3.     Get average prediction accuracy for P using C’ as follows: 

4.         For each protein p ∈P do 

5.             Assign highest scoring cluster to each overlapping segment in p 

6.             Sort all assignments by score 

7.             Assign structures to p from highest scoring assignments 

8.             Evaluate prediction as described in Section 4.2 

9. Return m and C’ resulting in highest average prediction accuracy 
 

Figure 4.1:  Outline of procedure for eliminating noise clusters 



38 CHAPTER 4.  LOCAL TERTIARY STRUCTURE PREDICTION 

 

Figure 4.2 shows the fluctuation in prediction accuracy as m increased from 5 to 25 

inclusive.  While the prediction accuracy remained rather constant in the middle stretch, it rose 

and fell sharply at both ends.  Prediction was compromised by the presence of noise clusters for 

small m (< 8) and the absence of significant clusters for large m (> 20).  The optimal minimum 

cluster size was m = 16, yielding a prediction accuracy of 54.66%. 
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Figure 4.2:  Fluctuation in prediction accuracy as minimum cluster size m rises from 5 to 25 

4.4 An Enhanced Cluster Likelihood Function 

As described in Section 4.1, cluster assignments are made based on similarity scores computed 

via the likelihood function shown in Equation (4.1).  This section improves the function with the 

addition of a new term, as shown in Equation (4.2) below. 

 cL
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The new term basec represents the cluster-specific base cutoff for cluster c.  Equation 

(4.1) simply assumes a cutoff of 0 for all clusters, an intuitive choice for log-odds.  The derivation 

of cluster-specific base cutoffs is based on a simple observation.  The rarer the motif a cluster 

represents, the more likely that segments classified to the cluster are false positives (F+), and the 

higher the cutoff has to be raised to avoid a high F+ rate.  In contrast, if a cluster represents a 

common motif, then segments not classified to it are likely to be false negatives (F–), so the cutoff 

has to be lowered to suppress the F– rate.  The derivation procedure for the cutoffs is shown in 

Figure 4.3, where sign(x) returns 1 if x � 0 or -1 otherwise.   

 Derivation of Cluster-Specific Base Cutoff 

Input:  cluster set C, protein segment set S, small positive value �  

1. For each segment c ∈C do 

2. T + = {s ∈S | s is most likely to belong to c based on (3) AND  
                                 s and c share similar structures} 

3. F + = {s ∈S | s is most likely to belong to c based on (3) AND  
                                s and c have different structures} 

4. basec = 0 

5. While f + and f – are not sufficiently close do  

6. f – = # segments in T + with likelihood score from (3) < basec 

7. f + = # segments in F + with likelihood score from (3) � basec 

8. basec = basec + sign(f + – f –) * �  

9. Return the set of basec∀ c ∈C 
 

Figure 4.3:  Outline of derivation procedure for cluster-specific base cutoffs 

Recall from Figure 4.2 that the highest accuracy reached was 54.66% for m = 16.  Once 

switched to Equation (4.2), the accuracy climbed to 56.7%.  Note that the forthcoming definition 

is to override Definition 4.1.1 for the remainder of this thesis.  The only difference is that 

Definition 4.1.1 refers to Equation (4.1) while the new definition refers to Equation (4.2).   
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Definition 4.4.1 (Cluster assignment). A cluster assignment, or just assignment, refers to an 

instance when a cluster is assigned to a segment based on a score computed via Equation 

(4.2).  The assignment is said to cover the segment and its residues.  Each assignment has 

three basic attributes:  the cluster being assigned, the segment being covered, and the score 

associated with the pair. 

4.5 Local Structure Prediction using Dynamic Programming 

Let R be the assignment rank, L be the segment length, and p be the target protein of length n.  

The initial setup for the algorithm involves making the R highest scoring cluster assignments to 

each overlapping length-L segment along p.  Let air denote the assignment at rank r starting at 

position i, where 1 
 r 
 R and 0 
 i 
 n–L.  Define Ai = {air ∀ r} and A = {air}.  The set A, 

depicted in Figure 4.4(a), forms the entire search space for the algorithm. 

 

p 

A = 

air 

L n 

p 

X = 

n 

a) 

b) 

 

Figure 4.4:  (a) Assignment set A consists of all individual assignments air of length L 
covering target protein p of length n.  Assignment rank R is 2, the number of assignments 
made to each overlapping length-L segment in p.  Each assignment air, represented as a big 
dot (�) with a dotted tail, covers residues i to i+L–1 inclusive.  (b) X is a subset of A that 
covers all residues in p, formed by linking adjoining assignments together. 
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The goal is to compute a subset X* ⊆  A such that X* covers all residues in p and 

maximizes a certain objective function.  An example of a legitimate candidate subset X is shown 

in Figure 4.4(b).  The objective function is derived in light of two observations.  First, the cluster 

assignment most appropriately capturing the shape of a segment might not always be the optimal 

(i.e. highest scoring) one but a sub-optimal one.  Second, if overlapping assignments have serious 

structural conflicts among themselves, then they should not be adopted together.  Having taken 

both factors into consideration, Equation (4.3) is proposed as the objective function for measuring 

the quality of an assignment set X when used to form a prediction for a protein of length n. 

 ��
==

=
1 - 

0  

1 - 

0  

) ,(   ) ,(     )(
n

i

n

i

iXconflict-iXscoreqXF  (4.3) 

Function F(X) returns the objective score for assignment set X.  Symbol q is a non-negative 

constant for balancing the two parts representing the total score and conflict induced by X.  It is 

set to 70 in this study, a value found empirically to yield one of the best predictions.  Functions 

score(X, i) and conflict(X, i) are defined in Equation (4.4) and Equation (4.5) respectively. 
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Symbols ϕ∆  and ψ∆  denote the mean absolute difference in phi and psi angles respectively.  

Now, the algorithm is to take a dynamic programming (DP) approach to compute the assignment 

set X* that covers all residues in p and is optimal (i.e. maximizing objective function F). 



42 CHAPTER 4.  LOCAL TERTIARY STRUCTURE PREDICTION 

 

Assignment sets are built starting from the head of p by appending or concatenating to the 

end one adjoining assignment at a time.  Note that simply extending the current optimal set by 

adding to its tail the best available adjoining assignment does not guarantee optimality for the 

resultant set.  The assignment just added may overlap with existing assignments in the set, 

introducing new conflicts that must be fixed by replacing those assignments, which in turn may 

cause more new conflicts with their prior overlapping assignments and necessitate further 

replacements.  To avoid such propagation of conflict, a more involved DP algorithm is needed. 

When any assignment �
 ∈Ai is appended to the end of assignment set X, it would come in 

contact with one or more trailing assignments in X.  The relative arrangement of these trailing 

assignments and their ranks collectively form the tail configuration for X with respect to �
 ∈Ai, 

denoted by tail i(X).  Note that tail i(X) is defined to be an empty tail configuration if X is too short 

to reach any assignment in Ai.  For formulation purposes, tail j(X) is allowed for j > n–L as if Aj 

actually existed.  Figure 4.5 shows the set of all possible non-empty tail configurations for L = 3 

and R = 1 with respect to � , the assignment to be appended.  

 

1 2 3 4 5 6 7 

�  �  �  �  �  �  �  

 

Figure 4.5:  All seven unique non-empty tail configurations for L = 3 and R = 1.  Each line 
denotes an assignment.  In each case, �  (solid line) is the assignment to be appended to a set 
X, and the set of all trailing assignments in X touched by �  (dotted lines) forms the tail 
configuration w.r.t. � . 

For each position i starting from the head of p, the algorithm computes Vi, the set of all 

optimal assignment sets X with unique non-empty tail i+1(X).  The DP recurrence for the algorithm 

is stated in Figure 4.6. 
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 DP Recurrence for Local Tertiary Structure Prediction 

Initial condition: 

V0 = {{ � } ∀ �  ∈A0} 

Inductive hypothesis for position i, 0 � i � n – L: 

Vi = {All optimal assignment sets X with unique non-empty tail i+1(X)} 

Recurrence: 

Let Vi’  = {W U{ � } ∀ W ∈Vi and �  ∈Ai+1} 

For each unique non-empty tail configuration t’   

V(i+1)t’ = X ∈{ W ∈Vi U Vi’  | tail i+2(W) = t’ } s.t. F(X) is maximized 

Let Vi+1 = {V(i+1)t’} 

Final solution: 

X* = X ∈{ W ∈Vn–L | W has an assignment in An–L} s.t. F(X) is maximized 
 

Figure 4.6:  DP recurrence for local tertiary structure prediction 

  The recurrence ensures the optimality for each V(i+1)t’, and the uniqueness and non-

emptiness of the associated tail configuration t’ , so the inductive hypothesis holds for position 

i+1.  Finally, dihedral angles are assigned to the residues in p by back-tracking the creation of X*. 

4.6 Time Complexity of DP Algorithm 

A bound on the size of Vi is required in order to analyze the time complexity of the DP algorithm 

just described.  By definition, |Vi| is at most the total number of all unique non-empty tail 

configurations.  Figure 4.5 lists all seven possible unique non-empty tail configurations for 

segment length L = 3 and assignment rank R = 1 with respect to assignment � .  For general L and 

R, note that when �  is appended to an assignment set X, it could be touching anywhere from 1 to 

L trailing assignments in X, each of which is selected from a pool of size R.  Further, the k trailing 

assignments being touched could be any k out of a total of L.  Let Tk represent the number of 
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unique non-empty tail configurations comprising k assignments.  It can be computed as follows 

according to basic counting principles: 
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Summing all Tk gives the total number of unique non-empty tail configurations T: 
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Consequently, the bound |Vi| 
 T = (R+1)L – 1 holds.  For each position i, the algorithm calculates 

the objective value for |Vi| * R new assignment sets, where each calculation takes O(L3) if done 

carefully.  Hence, the total runtime is O(n |Vi| R L3) = O(n L3 (R+1)L+1) for all n positions.  Despite 

the exponential term, typical values for R and L are small enough to make the algorithm feasible 

(e.g. R = 3 and L = 8 in this study). 

4.7 Experiments and Results 

4.7.1 Rotation Test 

The four protein sets used for training and testing in this test were the testing set of 55 proteins 

used by Bystroff and Baker (BB55) [20], the training set of 126 proteins introduced by Rost and 

Sander (RS126) [37], the testing set of 187 proteins for PSIPRED (PP187) [14], and finally the 

testing set of 396 proteins selected by Cuff and Barton (CB396) [49].  A listing of the proteins in 

each data set can be found in Appendix B. 



 CHAPTER 4.  LOCAL TERTIARY STRUCTURE PREDICTION 45 

 

The test method started by picking one set to be the training set for cluster creation and 

using the rest as testing sets.  After gathering results, the method rotated the sets such that a 

different set became the training set and the others became testing sets.  The method continued 

until all sets had been used for training.  Doing such rotation helped avoid biased results due to 

dataset-dependency and test data insufficiency.  Assignment rank R was set to 3 throughout the 

test.  The results are summarized in Table 4.1. 

Table 4.1:  Prediction accuracy of the DP algorithm obtained from the rotation test, evaluated 
using the scheme described in Section 4.2.  “Min. Size” refers to the optimal minimum size as 
described in Section 4.3, and “# Clusters” refers to the number of clusters with at least the 
minimum size. 

Train-
ing Set 

Min. Size / 
# Clusters 

Testing 
Set 

Helix 
Accuracy 

Strand 
Accuracy 

Coil 
Accuracy 

Overall 
Accuracy 

Average 

RS126 81.39% 55.05% 43.25% 58.35% 

PP187 78.56% 51.71% 41.61% 56.86% BB55 7 / 40 

CB396 80.26% 52.95% 43.21% 58.78% 

58.00% 

BB55 79.37% 54.01% 40.61% 57.74% 

PP187 80.80% 52.43% 41.61% 57.81% RS126 10 / 58 

CB396 82.52% 53.03% 42.75% 59.42% 

58.32% 

BB55 79.26% 49.18% 41.83% 57.22% 

RS126 83.95% 51.75% 43.46% 58.49% PP187 7 / 161 

CB396 83.28% 50.47% 44.51% 59.84% 

58.52% 

BB55 84.58% 46.31% 43.71% 59.39% 

RS126 87.69% 48.05% 45.41% 59.69% CB396 16 / 164 

PP187 87.17% 48.56% 44.96% 60.55% 

59.88% 

Average 82.40% 51.13% 43.08% 58.68%  

 

4.7.2 Jackknife Test 

Since the data sets used in the rotation test (i.e. PP55, RS126, PP187, and CB396) were selected 

independently, members in different sets might be highly similar or even identical.  Such overlaps 

could have inflated the prediction accuracy and thus prevented the rotation test from impartially 
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evaluating the performance of the algorithm.  As a remedy, a jackknife test ensuring absolutely no 

overlaps between training and testing sets was conducted. 

The jackknife test was performed on CB396 [49], a set of 396 peptides selected through a 

very stringent procedure to ensure non-redundancy between members.  The entire test consisted 

of 10 iterations, each of which involved splitting CB396 into two disjoint subsets in 80/20 ratio 

by residue count.  The larger subset was then used for training and the smaller one for testing. 

Note that testing sets containing more helices tend to yield higher accuracies than those 

containing more coils.  Consequently, for results to be consistent, all testing sets should contain 

similar proportions of each secondary structure (SS).  To guarantee such condition, the back-

ground proportion of each SS was first estimated from the whole CB396.  Each repetition of the 

jackknife test then produced 50 pairs of training and testing sets, and used the pair whose testing 

set exhibited SS proportions most closely resembling the background ones.  Table 4.2 shows the 

results from the jackknife test, using the same assignment rank as the rotation test (i.e. R = 3). 

Table 4.2:  Prediction accuracy of the DP algorithm obtained from a ten-iteration jackknife 
test and evaluated using the scheme described in Section 4.2. 

Jackknife Test 
Iteration # 

Helix  
Accuracy 

Strand 
Accuracy 

Coil  
Accuracy 

Overall 
Accuracy 

1 86.22% 44.91% 40.58% 58.51% 

2 84.54% 39.61% 40.52% 56.19% 

3 84.27% 44.71% 41.07% 58.03% 

4 84.65% 43.22% 40.19% 57.45% 

5 86.12% 43.63% 42.87% 59.15% 

6 88.11% 42.92% 43.05% 59.69% 

7 84.83% 44.35% 40.99% 57.76% 

8 84.94% 43.98% 42.90% 58.83% 

9 86.09% 43.22% 42.78% 58.86% 

10 83.68% 45.30% 40.61% 57.62% 

Average 85.35% 43.59% 41.56% 58.21% 
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Average accuracy obtained in the rotation test (i.e. 58.68%) is higher than that obtained in 

the jackknife test (i.e. 58.21%).  If overlaps between data sets were responsible for the slight 

difference of 0.47%, then this test would confirm the negligibility of the overlaps and uphold the 

validity of the results in the rotation test.  Additionally, this test has also illustrated the consistent 

performance of the algorithm as similar accuracies were observed across all iterations. 

4.7.3 Discussion 

Both tests have shown that over 58% of all residues on average were found in at least one length-

8 segment whose predicted structure was within 1.4 Å of the true structure, measured in RMSD.  

This is significant considering that the prediction relied solely on sequence information, without 

taking into account global forces such as disulfide bridges, hydrophobic effects, inter-group 

charges, and so on.  The result is also a great improvement over that published by Bystroff and 

Baker [20], which was 50% (see Section 2.2.2).   Although the method of Wang and Yang [21] 

produced better numerical results, it used over 100K motif clusters and yielded only approximate 

predictions (see Section 2.2.3).  The algorithm described here, for example, used at most 164 

clusters in the rotation test and produced predictions with precise backbone conformations.  

Taking all the factors into consideration, both methods would be very much comparable. 

While all four training sets yielded similar results according to Table 4.1, a general trend 

existed in which the more clusters the training involved, the higher the average accuracy reached.  

Besides overlaps between data sets, which have been deemed insubstantial by the jackknife test, 

another possible reason would be that a larger cluster set constituted a larger conformational 

search space and consequently contributed to better predictions.  The real surprising observation, 

however, is that the number of clusters had only minimal effects on the prediction accuracy.  For 

instance, using a set of 40 clusters (created from BB55) yielded 58% accuracy, while using 
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another with 164 clusters (created from CB396) yielded 60% accuracy.  Although the difference 

of nearly 2% was significant, one might have expected more given the large deviation in cluster 

counts.  The likely explanation is that the larger clusters were already sufficient to account for the 

common structures in the test proteins, leaving the smaller clusters to handle only the rarer 

shapes.  This in turn confirms the effectiveness of the clustering method described in Chapter 3, 

as the larger clusters produced were indeed able to capture the majority of protein conformations. 

A breakdown in overall prediction accuracy in both tests by secondary structure states 

reveals the real strengths and weaknesses of prediction using clusters.  Helices were by far the 

most accurately predicted because they were the most conserved and abundant local motifs.  

Strands, albeit well conserved, were a lot harder to predict as their formation involved long-range 

residue interactions, something not captured by local motif clusters.  Coils were the most difficult 

to predict since most of them lacked virtually any kind of detectable conserved patterns. 
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Chapter 5 

Secondary Structure Prediction 

The second application of sequence-structure motif clusters deals with enhancing secondary 

structure (SS) prediction.  The target predictor [39] is the one based on Support Vector Machines 

(SVM) [42], so selected because it is one of the best available.  As an overview, the procedure 

involves building a Secondary Structure Confidence Profile (SSCP) and using it as additional data 

for training and classification. 

5.1 Secondary Structure Confidence Profile (SSCP) 

The SSCP of a protein shows the confidence, or probability, of each residue being in each of the 

three SS states, namely helix (H), strand (E), and coil (C).  Figure 5.1 shows the SSCP for a 

section of the protein identified as 1LCL in PDB. 

 Seq P Y T E A A S L S T G S T V T … 
Helix 0.40 0.46 0.36 0.36 0.31 0.28 0.22 0.21 0.09 0.04 0.05 0.03 0.03 0.03 0.03 … 
Strand 0.27 0.32 0.29 0.31 0.31 0.33 0.38 0.30 0.14 0.10 0.11 0.20 0.84 0.89 0.90 … 
Coil 0.33 0.22 0.35 0.33 0.38 0.39 0.40 0.49 0.77 0.86 0.84 0.77 0.13 0.08 0.07 … 

  

Figure 5.1:  Secondary structure confidence profile (SSCP) for a section of protein 1LCL 
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Let R be the assignment rank and p be the target protein.  The procedure for generating 

SSCP starts by making the R highest scoring assignments to each overlapping segment in p.  

Then, for each residue i and SS label s ∈{H, E, C}, it computes scoreis by summing the scores of 

all assignments covering i with label s at the covering position.  The value scoreis is then 

normalized to obtain sscis, the SS confidence for i belonging to state s.  That is, sscis = scoreis / 

(scoreiH + scoreiE + scoreiCs).  The set of all sscis constitutes the SSCP for p.   

5.2 Training of SVM Binary Classifiers 

The training procedure is similar to the one used by Hua and Sun [39].  Fix a window half-width 

h such that each residue is represented by the sequence profile spanning (2h + 1) columns, with 

the said residue in the middle.  Each column is coded using 21 entries, where the extra entry is set 

when the window is extended beyond the ends of a protein [53].  Together, each residue is coded 

by a total of (2h + 1) * 21 entries.  When SSCP is incorporated into training, each column is 

coded with four additional entries.  Each of the first three holds the SSCP confidence value for a 

different SS state, and the last is again set for the case when the window is extended beyond the 

ends of a protein.  Hence, each residue is now coded by a total of (2h + 1) * 25 entries.  The 

conceptual view of training with and without SSCP is shown in Figure 5.2. 

5.3 SVM Predictor Construction 

Hua and Sun [39] have demonstrated that the arrangement of SVM binary classifiers has a 

significant impact on the performance of the resultant SS predictor.  This study has adopted an 

arrangement called SVM MAX, one of the most effective arrangements among those Hua and Sun 

have considered.  SVM MAX comprises three SVM binary classifiers, namely H/~H, E/~E, and 
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C/~C.  Each target residue is fed in parallel to all three classifiers, and assigned the SS label 

corresponding to the one giving the largest decision value.  For optimal prediction, the half-width 

h for the three classifiers is set to 5, 4, and 3 respectively. 

    P     Y     T     E     A     A     S     L     S     T     G     S     T     V     T     I     K     G     R      
A  0.00  5.42 10.89 14.14 12.85  8.40  0.00  0.00  4.13  0.00  0.00  0.00  6.12  0.00  0.00  0.00  0.0 0 19.64  0.00 
R  0.00  4.62  5.42  0.00  0.00  0.00  6.35  0.00  8.66  0.00  0.00  5.35  0.00  0.00  0.00  0.00  9.0 8  0.00 12.05 
N  0.00  0.00  0.00  0.00  5.35  2.41  0.00  0.00  2.09  0.00  0.00  0.00  0.00  0.00  0.00  0.00  9.0 4  0.00  7.17 
D  0.00  0.00  0.00  0.00  0.00  7.72  0.00  0.00  4.05 18.26  0.00  0.00  0.00  0.00  0.00  0.00  0.0 0  0.00  0.00 
C  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  4.63  0.00  7.17  0.00 13.45  0.00  0.00  0.00  0.0 0  0.00  0.00 
Q  4.69  4.45  0.00  7.26 13.44  0.00  9.08  0.00 2 4.38  0.00  0.00  0.00  9.04  0.00  0.00  0.00 29.8 7  0.00  0.00 
E  5.42  6.44  0.00  3.10  7.00 12.91  0.00  0.00  0.00  4.40  0.00  0.00  0.00  0.00  0.00  0.00  0.0 0  0.00  5.35 
G  0.00 22.81  0.00  4.66  7.88 47.91 55.51  0.00  5.35  0.00 92.78  0.00  0.00  0.00  0.00  0.00  0.0 0 80.31  0.00 
H  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  4.59  0.00  0.00  0.00  0.00  0.0 0  0.00  9.08 
I  0.00  0.00  6.16 45.33  0.00  0.00  0.00  4.63  2.41  0.00  0.00  0.00  0.00 24.09 13.45 74.56  0.0 0  0.00 12.05 
L  0.00  0.00 15.24 25.47  4.63  0.00  0.00 89.97  0.00  2.30  0.00  9.04  9.08 13.96  0.00 10.10  0.0 0  0.00  0.00 
K  6.95  2.57  4.16  0.00  0.00  0.00  0.00  0.00  5.03  0.00  0.00 22.99  9.23  0.00  7.17  0.00 19.6 8  0.00  0.00 
M  0.00  0.00  6.22  0.00  0.00  0.00  0.00  5.35  0.00  0.00  0.00 18.89  7.17  0.00  0.00  0.00  4.5 9  0.00  6.81 
F  0.00  4.66  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.22  0.00  0.00  4.1 4  0.00  4.64 
P 42.77  0.00 11.64  0.00 36.62  0.00  0.00  0.00  9.35 28.38  0.00  0.00  0.00  0.00  0.00  0.00  0.0 0  0.00  0.00 
S  2.94  4.69  4.46  0.00  7.17  0.00 29.02  0.00 1 9.05  0.00  0.00 27.88 16.52  0.00  0.00  0.00  0.0 0  0.00  0.00 
T 16.88  6.20 29.34  0.00  5.03  0.00  0.00  0.00  7.17  9.41  0.00  4.05 23.01  0.00 36.20  0.00 13.7 5  0.00 29.77 
W  0.00  0.00  6.43  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  6.35  0.00  0.00  0.00  0.0 0  0.00  0.00 
Y  4.69 38.12  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  7.17  0.00  0.00 16.52  0.00  9.8 2  0.00  0.00 
V 15.63  0.01  0.01  0.01  0.01 20.62  0.01  0.01  3.68 37.21  0.01  0.01  0.01 60.70 26.63 15.30  0.0 1  0.01 13.05 

h h 
i 

Sequence 
Profile 

training data for residue i 

SVM Binary Classifier 

    P     Y     T     E     A     A     S     L     S     T     G     S     T     V     T     I     K     G     R      
A  0.00  5.42 10.89 14.14 12.85  8.40  0.00  0.00  4.13  0.00  0.00  0.00  6.12  0.00  0.00  0.00  0.0 0 19.64  0.00 
R  0.00  4.62  5.42  0.00  0.00  0.00  6.35  0.00  8.66  0.00  0.00  5.35  0.00  0.00  0.00  0.00  9.0 8  0.00 12.05 
N  0.00  0.00  0.00  0.00  5.35  2.41  0.00  0.00  2.09  0.00  0.00  0.00  0.00  0.00  0.00  0.00  9.0 4  0.00  7.17 
D  0.00  0.00  0.00  0.00  0.00  7.72  0.00  0.00  4.05 18.26  0.00  0.00  0.00  0.00  0.00  0.00  0.0 0  0.00  0.00 
C  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  4.63  0.00  7.17  0.00 13.45  0.00  0.00  0.00  0.0 0  0.00  0.00 
Q  4.69  4.45  0.00  7.26 13.44  0.00  9.08  0.00 2 4.38  0.00  0.00  0.00  9.04  0.00  0.00  0.00 29.8 7  0.00  0.00 
E  5.42  6.44  0.00  3.10  7.00 12.91  0.00  0.00  0.00  4.40  0.00  0.00  0.00  0.00  0.00  0.00  0.0 0  0.00  5.35 
G  0.00 22.81  0.00  4.66  7.88 47.91 55.51  0.00  5.35  0.00 92.78  0.00  0.00  0.00  0.00  0.00  0.0 0 80.31  0.00 
H  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  4.59  0.00  0.00  0.00  0.00  0.0 0  0.00  9.08 
I  0.00  0.00  6.16 45.33  0.00  0.00  0.00  4.63  2.41  0.00  0.00  0.00  0.00 24.09 13.45 74.56  0.0 0  0.00 12.05 
L  0.00  0.00 15.24 25.47  4.63  0.00  0.00 89.97  0.00  2.30  0.00  9.04  9.08 13.96  0.00 10.10  0.0 0  0.00  0.00 
K  6.95  2.57  4.16  0.00  0.00  0.00  0.00  0.00  5.03  0.00  0.00 22.99  9.23  0.00  7.17  0.00 19.6 8  0.00  0.00 
M  0.00  0.00  6.22  0.00  0.00  0.00  0.00  5.35  0.00  0.00  0.00 18.89  7.17  0.00  0.00  0.00  4.5 9  0.00  6.81 
F  0.00  4.66  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.22  0.00  0.00  4.1 4  0.00  4.64 
P 42.77  0.00 11.64  0.00 36.62  0.00  0.00  0.00  9.35 28.38  0.00  0.00  0.00  0.00  0.00  0.00  0.0 0  0.00  0.00 
S  2.94  4.69  4.46  0.00  7.17  0.00 29.02  0.00 1 9.05  0.00  0.00 27.88 16.52  0.00  0.00  0.00  0.0 0  0.00  0.00 
T 16.88  6.20 29.34  0.00  5.03  0.00  0.00  0.00  7.17  9.41  0.00  4.05 23.01  0.00 36.20  0.00 13.7 5  0.00 29.77 
W  0.00  0.00  6.43  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  6.35  0.00  0.00  0.00  0.0 0  0.00  0.00 
Y  4.69 38.12  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  7.17  0.00  0.00 16.52  0.00  9.8 2  0.00  0.00 
V 15.63  0.01  0.01  0.01  0.01 20.62  0.01  0.01  3.68 37.21  0.01  0.01  0.01 60.70 26.63 15.30  0.0 1  0.01 13.05 
 
H  0.40  0.46  0.36  0.36  0.31  0.28  0.22  0.21  0.09  0.04  0.05  0.03  0.03  0.03  0.03  0.04  0.06  0.13  0.19 
E  0.27  0.32  0.29  0.31  0.31  0.33  0.38  0.30  0.14  0.10  0.11  0.20  0.84  0.89  0.90  0.86  0.73  0.46  0.31 
C  0.33  0.22  0.35  0.33  0.38  0.39  0.40  0.49  0.77  0.86  0.84  0.77  0.13  0.08  0.07  0.10  0.21  0.41  0.50 

h h 
i 

training data for residue i 

SVM Binary Classifier 

a) 

b) 

Sequence 
Profile 

SSCP 

 

Figure 5.2:  Conceptual view of training SVM binary classifier for SS prediction (h = 5).   
(a) Training with sequence profile alone.  (b) Training with sequence profile and SSCP. 
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5.4 Evaluation of Secondary Structure Prediction 

The following metrics are used to measure the quality of SS prediction: 

1. The Three-state Single Residue Accuracy measure (Q3) has four components denoted by QH, 

QE, QC, and Q3.  For s ∈{H, E, C}, Qs is the percentage of correctly predicted residues over 

all residues with observed label s.  Q3 is the overall accuracy calculated as the percentage of 

correctly predicted residues over the total in all three SS states. 

2. The Matthew’s Correlation Coefficients (MCC) [54] has three components denoted by CH, CE 

and CC.  Each of them is calculated from a formula that accounts for both over- and under-

predictions.  A perfect prediction yields a value of 1, while a random prediction yields a near 

zero or even negative value. 

3. The Segment Overlap (SOV) is designed to evaluate SS prediction on a non-per-residue basis.  

The original version, invented in 1994 by Rost et al. [55], has two serious problems.  First, it 

yields un-normalized values that have no defined upper-bound, making it difficult for 

comparison.  Second, the extension factor 
�
 is miscalculated, resulting in inflated values that 

do not truly reflect the prediction quality.  Fortunately, both problems have been corrected in 

a re-definition of SOV in 1999 [56] by Zemla et al.  Unless specified otherwise, the corrected 

version is intended whenever SOV is mentioned in the remainder of this thesis. 

5.5 Experiments and Results 

5.5.1 Rotation Test 

The data sets and method for the rotation test were as described in Section 4.7.1, except that the 

training set was also used for SSCP generation and SVM training in addition to motif cluster 
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creation.  Assignment rank R was set to 6.  Parameters for SVM binary classifiers were 1.5 for 

error trade-off and 0.1 for �  in the radial basis function used as the kernel [42].  SVMlight [57] was 

extensively used throughout the experiment.  The results are listed in Table 5.1. 

Table 5.1:  Prediction accuracy of SVM MAX trained without SSCP (top values) and trained 
with SSCP (bottom values) in the rotation test.  Bolded pairs (3 instances) indicate a drop in 
accuracy after SSCP was used.  A positive delta on the last row indicates an average 
improvement with SSCP (delta = average bottom value – average top value). 

Train-
ing Set 

Testing 
Set 

Q3 
(%) 

QH 
(%) 

QE 
(%) 

QC 
(%) CH CE CC 

SOV 
(%) 

RS126 
70.28 
73.01 

75.56 
79.61 

45.54 
53.80 

78.59 
77.44 

0.59 
0.65 

0.48 
0.55 

0.51 
0.53 

63.07 
67.82 

PP187 
70.68 
72.78 

76.93 
79.80 

43.69 
50.31 

79.79 
78.76 

0.60 
0.64 

0.47 
0.52 

0.53 
0.55 

67.13 
68.86 

BB55 

CB396 
71.08 
73.05 

78.85 
81.35 

44.42 
50.13 

78.62 
78.03 

0.60 
0.65 

0.49 
0.53 

0.54 
0.55 

68.51 
69.37 

BB55 
70.47 
72.26 

71.85 
72.28 

52.70 
58.90 

77.84 
78.76 

0.58 
0.63 

0.48 
0.53 

0.53 
0.53 

67.53 
69.47 

PP187 
71.45 
73.57 

74.13 
75.84 

51.71 
57.26 

79.77 
80.40 

0.62 
0.67 

0.49 
0.54 

0.54 
0.55 

68.16 
69.31 

RS126 

CB396 
70.87 
73.55 

75.13 
77.52 

50.97 
57.02 

77.91 
78.99 

0.60 
0.67 

0.49 
0.54 

0.53 
0.54 

68.35 
70.45 

BB55 
73.41 
75.37 

76.26 
77.62 

57.48 
61.85 

78.49 
79.85 

0.63 
0.67 

0.54 
0.58 

0.56 
0.58 

70.64 
72.05 

RS126 
73.65 
75.78 

78.05 
80.39 

56.89 
61.91 

78.61 
79.10 

0.66 
0.71 

0.55 
0.58 

0.55 
0.56 

68.09 
71.14 

PP187 

CB396 
73.91 
76.24 

78.98 
81.36 

56.30 
61.12 

78.94 
79.86 

0.65 
0.71 

0.55 
0.60 

0.56 
0.58 

71.19 
72.62 

BB55 
75.73 
77.04 

78.47 
78.63 

59.55 
64.11 

81.03 
81.85 

0.67 
0.70 

0.59 
0.61 

0.59 
0.60 

73.30 
74.03 

RS126 
72.96 
75.14 

76.47 
78.82 

56.51 
62.59 

78.50 
78.56 

0.65 
0.69 

0.54 
0.58 

0.53 
0.56 

67.15 
70.44 

CB396 

PP187 
75.47 
77.28 

78.58 
79.55 

58.42 
64.19 

81.96 
82.37 

0.69 
0.72 

0.58 
0.61 

0.58 
0.60 

71.39 
72.67 

Average 
72.50 
74.59 

76.61 
78.56 

52.85 
58.60 

79.17 
79.50 

0.63 
0.68 

0.52 
0.56 

0.55 
0.56 

68.71 
70.69 

Delta 2.09 1.95 5.75 0.33 0.05 0.04 0.01 1.98 
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5.5.2 Jackknife Test 

As described in Section 4.7.2, data sets in the rotation test were likely to contain overlaps and 

yield unjust results, so a jackknife test was needed to evaluate the genuine contribution of SSCP.  

The data set (i.e. CB396) and method were as described in Section 4.7.2, except once again that 

each training set was used to generate SSCP and train SVM classifiers in addition to creating 

motif clusters.  Assignment rank R and all parameters for SVM classifiers remained the same.  

The results from the jackknife test and their averages are shown in Table 5.2. 

Table 5.2:  Prediction accuracy of SVM MAX trained without SSCP (top values) and trained 
with SSCP (bottom values) in a ten-iteration jackknife test.  Bolded pairs (3 instances) 
indicate a drop in accuracy after SSCP was used.  A positive delta on the last row indicates an 
average improvement with SSCP (delta = average bottom value – average top value). 

Iteration Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOV (%) 

1 
72.15 
74.10 

74.30 
76.34 

55.44 
60.90 

78.49 
78.60 

0.63 
0.68 

0.51 
0.55 

0.53 
0.55 

68.57 
70.63 

2 
74.44 
75.97 

79.03 
78.85 

57.33 
63.39 

79.07 
79.86 

0.66 
0.69 

0.56 
0.59 

0.57 
0.58 

69.77 
71.58 

3 
71.94 
74.35 

80.36 
81.57 

50.26 
55.77 

76.87 
78.58 

0.64 
0.69 

0.51 
0.56 

0.53 
0.55 

69.50 
70.15 

4 
71.61 
73.29 

76.37 
76.92 

52.78 
58.07 

77.18 
77.99 

0.62 
0.65 

0.51 
0.54 

0.53 
0.54 

68.37 
70.52 

5 
72.36 
74.23 

77.21 
79.13 

52.96 
58.54 

78.32 
78.10 

0.65 
0.68 

0.51 
0.55 

0.54 
0.55 

70.23 
71.43 

6 
73.57 
75.84 

79.72 
81.89 

56.68 
61.96 

77.05 
77.79 

0.65 
0.71 

0.55 
0.59 

0.55 
0.57 

71.58 
73.01 

7 
72.09 
73.56 

78.23 
79.25 

52.07 
55.06 

77.62 
78.65 

0.64 
0.67 

0.51 
0.53 

0.53 
0.55 

70.11 
71.61 

8 
70.81 
72.86 

76.23 
77.50 

51.23 
56.07 

76.56 
77.80 

0.62 
0.66 

0.50 
0.53 

0.51 
0.53 

66.54 
68.57 

9 
73.13 
75.01 

76.25 
77.82 

56.36 
62.51 

79.52 
79.33 

0.64 
0.68 

0.55 
0.59 

0.55 
0.56 

70.78 
72.92 

10 
70.70 
72.86 

74.93 
77.24 

50.48 
56.39 

77.72 
77.72 

0.61 
0.65 

0.49 
0.53 

0.52 
0.54 

66.34 
67.97 

Average 
72.28 
74.21 

77.26 
78.65 

53.56 
58.87 

77.84 
78.44 

0.64 
0.68 

0.52 
0.56 

0.53 
0.55 

69.18 
70.84 

Delta 1.93 1.39 5.31 0.60 0.04 0.04 0.02 1.66 
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The improvements (i.e. the deltas) in Table 5.1 are generally larger than those in Table 

5.2.  This is within expectation as overlaps between training and testing sets in the rotation test 

helped generate more reliable SSCP, which in turn contributed to greater improvements in SS 

prediction.  The differences, however, are not significant.  For instance, there has been a drop of 

only 8% in Q3 and 16% in SOV going from the rotation test to the jackknife test.  Hence, while 

being slightly biased, results from the rotation test can be considered valid. 

5.5.3 Discussion 

Both tests have shown that by combining SSCP with sequence profile for training and 

classification, SVM MAX predictor showed improvements in all Q3, MCC and SOV measures.  

Specifically, SSCP contributed to an average Q3 improvement of 2.09% (from 72.50% to 

74.59%) in the rotation test and 1.93% (from 72.28% to 74.21%) in the jackknife test.  It did so 

by boosting the prediction accuracy for helixes and strands, the latter in particular.  In other 

words, SSCP helped the predictor be more certain when determining if a residue was part of a 

helix or strand.  Moreover, the use of SSCP also resulted in visible improvements in all aspects of 

MCC and SOV, regardless of tests and data sets.   

Unfortunately, improvements to QC and CC were only minimal.  After all, clusters could 

only capture regions with strong sequence-structure correlations, a condition excluding most 

coils.  Consequently, cluster assignments made to segments along coil regions were mostly 

incorrect, leading to unreliable SS confidence values and subsequently the negligible increase in 

coil prediction accuracies. 
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Chapter 6 

Conclusion and Future Work 

6.1 Approximation Algorithm for Tertiary Structure Prediction 

Recall from Section 4.6 that the DP algorithm for local tertiary structure prediction has a runtime 

of O(n L3 (R+1)L+1), where n is the length of the target protein, L is the segment length, and R is 

the assignment rank.  The exponential term restricts R to a small value such as 3 in this study.  

Note that a larger R means a larger conformational search space (see Figure 4.4(a)) and possibly 

better predictions as a result.  Unfortunately, while a large value of R such as 10 or more might be 

desirable, it would lead to a prohibitive execution time. 

To draw a balance, a viable option would be to develop an approximate DP algorithm 

that sacrifices optimality for an execution time allowing larger values of R.  An example that has 

been considered is a “greedy” DP algorithm.  For each assignment �  to be appended, the 

algorithm keeps track of the R * L assignment sets such that the last assignment in every set 

touches � .  The greedy nature comes in when �  is appended to the set such that the resultant set 

yields the highest objective score.  While the optimality for the final prediction is lost, the runtime 
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requirement is only O(nR2L3).  Unfortunately, the option has not been further investigated since 

proving an approximation guarantee for the algorithm would be another research topic on its own. 

6.2 A Better DP Objective Function 

There is one aspect regarding the current DP objective function (i.e. Equation (4.3)) that might 

require some major refinement.  For convenience, the objective function is restated in Equation 

(6.1) below.  Please refer to Section 4.5 for further details. 

 ��
==

=
1 - 

0  

1 - 

0  

) ,(   ) ,(     )(
n

i

n

i

iXconflict-iXscoreqXF  (6.1) 

Function conflict might not always have appropriately reflected the structural disagreement 

between overlapping assignments in some circumstance.  Recall from Section 4.5 that conflict(X, 

i) returns the average dihedral angle difference between all pairs of overlapping assignments in X 

covering position i.  Assume for now that there are only two assignments � 1 and � 2 in X covering 

position i, and at that position the phi angles are 0o and 100o for � 1 and � 2 respectively4.  By 

definition, conflict(X, i) returns |100o – 0o| / 1 = 100o.  If another assignment � 3 is subsequently 

appended to X to produce X’ such that it covers position i with a phi angle of 50o, then conflict(X’, 

i) only returns (|100o – 0o| + |100o – 50o| + |50o – 0o|) / 3 = 66.67o.  In other words, the addition of 

� 3 has “harmonized” � 1 and � 2 by partially hiding their serious structural disagreement, which is 

certainly flawed.  Improving the objective function by minimizing or even eliminating the 

deficiency is the key to achieving better predictions. 

                                                      
4 WLOG, psi angles have been ignored for simplicity. 
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6.3 Prediction using PSI-BLAST Profiles 

Aside from HSSP-derived sequence profiles, this study has also been conducted using PSI-

BLAST profiles, but only briefly because of a restriction imposed by the clustering algorithm 

described in Chapter 3.  The distance function shown in Equation (3.1) assumes that all profile 

entries are non-negative and all entries for every residue sum to 1.  Unfortunately, PSI-BLAST 

profiles contain log-odds entries that violate all these assumptions.  Although PSI-BLAST does 

provide a frequency profile in its output as depicted in Figure 6.1, using the frequency profile for 

clustering and prediction have only produced results similar to the ones obtained with HSSP-

derived profiles.  A possible reason for the disappointment is that the real strength of PSI-BLAST 

lies in its sophisticated mechanism behind generating unbiased log-odds profiles.  Consequently, 

PSI-BLAST will not contribute to any significant improvement unless the clustering algorithm 

can be made to take advantage of its log-odds profiles.  Despite a promising direction for 

enhancement, it is not pursued at present as it requires making substantial changes. 

    A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V    A  R  N  D  C  Q  E  G  H  I  L  K  M   F  P  S  T  W  Y  V 
M -3 -3 -4 -5 -3 -3 -4 -5 -4  0  4 -3  8 -1 -4 -4 - 3 -3 -3 -1    0  0  0  0  0  0  0  0  0  0 43  0 57   0  0  0  0  0  0  0 
K  0  3 -1 -3 -5  3 -1 -3  0 -1 -4  6 -3 -5 -3 -2 - 1 -5 -4 -3    9 12  2  0  0 16  0  0  1  4  0 54  0   0  0  0  2  0  0  0 
L -2  0 -5 -5 -3  0 -4 -5 -4  2  5 -4  0 -2 -5 -2 - 3 -4 -3 -1    3  5  0  0  0  6  0  0  0 14 68  0  0   0  0  4  0  0  0  0 
F -3  1  0 -2 -4  1 -3  1 -2 -1 -2  0 -1  2  4  1  0 -4 -1 -3    0 10  5  2  0  7  0 10  1  4  4  7  2  11 22 10  5  0  2  0 
A  2 -3 -2 -2  5 -3 -1 -4 -2  0  2 -3 -2 -3 -1  0 - 2 -4 -2  1   23  1  2  2 13  0  4  0  1  6 26  0  0   0  3  5  1  0  1 11 
Q  0  1  1 -1  0  1  0  4  3 -5 -4  0 -4 -4 -1 -2  0 -4  0 -4    9  8  8  2  2  6  5 33  7  0  1  4  0   0  3  0  6  0  3  0 
G -3  1  2  1  2 -1  0  4 -3 -2 -2  2 -4 -5 -4 -1 - 2 -5 -5 -4    0  7 11  7  5  2  5 40  0  2  5 12  0   0  0  3  1  0  0  0 
T -3  6 -2 -2 -5 -1 -3  0  1 -3 -3  3  2  0 -4 -3 - 2  0  0  1    1 44  1  2  0  2  0  6  3  0  1 16  5   4  0  0  2  1  3 10 
S -2 -2 -3 -3  0 -1  1 -3 -2  0  3  2 -1  1  1  0  1 -4 -3  1    1  1  1  1  2  1  9  1  1  4 27 16  1   6  6  6  8  0  0  9 
…  

Figure 6.1:  PSI-BLAST profiles in a PSP output file, where the dotted line separates log-
odds profile (left) from frequency profile (right) 

6.4 Motifs Capturing Long-Range Residue Interactions 

The current sequence-structure motifs can only capture local inter-residue interactions, so they are 

not very helpful for beta-sheet prediction.  In the long run, the solution is to study non-local 

motifs formed primarily by interactions between distant residues.  Conceptually, a non-local 
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motif of size n would comprise n local sequence-structure motifs and up to (n)(n–1)/2 interactions 

among the n motifs.  Figure 6.2 shows an instance of non-local motif x of size n = 2. 

 N 

C 

motif x 

 

Figure 6.2:  Motif x capturing the distant interaction between two stretches of the same 
protein, where ‘N’ and ‘C’ denote the N and C termini respectively 

One method for discovering non-local motifs of size n is to extract all local sequence-

structure motifs, select all n-tuples of mutually interacting local motifs, and perform clustering on 

the resultant n-tuples.  The primary issue with the extraction of non-local motifs is that there 

might not be sufficient training data (i.e. resolved protein structures) to give rise to any significant 

motifs, even for n = 2.  Other issues may also arise such as those concerning the measurement of 

distances between n-tuples of segments and the determination of a suitable similarity threshold.  

In spite of all the issues, extraction of non-local motifs is worth exploring as a systemic way for 

categorizing and analyzing long-range interactions.  In the future, non-local motifs might even be 

combined with the local ones to directly predict global tertiary structures. 

6.5 Conclusion 

The partition of short protein segments into clusters of local sequence-structure motifs has 

profound applications.  It effectively reveals the composition and fold characterizing each motif, 
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enabling the inference of structural formation and functional role.  Besides biological studies, 

these motif clusters achieve discretization of protein conformational space and provide an 

adequate mapping between sequence and structure, all contributing to the success of their 

employment to both secondary and tertiary structure prediction.  The promising results obtained 

in this study could mark the beginning of a wide range of potential applications for motif clusters, 

which include fold recognition, domain detection, functional annotation, and structural correction 

for NMR and X-ray Crystallography.  
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Appendix A 

Listing of Sequence-Structure Motifs 

This appendix presents some significant sequence-structure motifs discovered by clustering the 

set of proteins known as CB396 [49].  Each entry shows the number of segments exhibiting the 

motif, the dihedral angle plot, the log-odds profile, and the 3D backbone drawing.  In each 

dihedral angle plot, the phi angle is denoted by a blue (dark) line and the psi angle is denoted by a 

magenta (light) line.  Please refer to Section 3.6 for further details. 

 

-Helices 

511 

-180

-90

0

90

180

H H H C C C S S

 

     0   1   2   3   4   5   6   7 
A   •   1   •   •   1   1   1   •  
R   •   •   •   1   •  -1   •   1  
N   •  -1  -2   •   •  -1  -1   •  
D   1   •  -1   •   •  -2  -1   1  
C  -2  -1   •  -1  -1   •   •  -2 
Q   1   •   •   1   1   •   •   1 
E   1   1  -1   1   1  -1   •   1 
G  -1  -1  -2  -1  -1  -2  -2  -1 
H   •   •  -1   •   •   •   •   • 
I  -1   •   1  -1  -1   1   •  -1 
L  -1   •   1   •  -1   1   1  -1 
K   1   •  -1   1   1  -1   •   1 
M  -1   •   1   •  -1   1   1  -1 
F  -2   •   •  -1  -1   •   •  -2 
P   •  -1  -2  -1  -1  -2  -2  -1 
S   •   •  -1   •   •  -1   •   • 
T   •   •  -1  -1   •  -1  -1   • 
W  -1   •   •  -1  -1   •   •  -1 
Y  -1   •   •  -1  -1   •   •  -1 
V  -1   •   1  -1  -1   •   •  -1  
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-Strands 

196 
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-90

0

90

180
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     0   1   2   3   4   5   6   7 
A   •   •   •   •   •  -1   •   • 
R   •  -1  -1   •   •   •  -1   • 
N  -1   •   •   •  -1   2   •   1 
D   •   •  -2   •  -1   •   •   • 
C  -1  -1  -3  -2  -2  -2  -2  -1 
Q   •   •  -1   •  -1  -1   1   • 
E  -1   1  -1   •   •  -1   1   • 
G  -2  -1  -1  -1   •   2   •   • 
H  -1  -1  -1   1   •   •   1  -2 
I   2   •   1   •  -2  -3  -2  -1 
L   •   •   1   •   •  -1  -2  -1 
K   •   •  -1   •   •   •  -1   • 
M   •   •   •   1   1  -1   •  -2 
F  -1  -1   1   •   •  -1   •  -1 
P  -1   •  -1   1   2   •   •   1 
S  -1   •   •   •   •   •   1   1 
T   •   1  -1  -1   •  -1   •   1 
W   •   •  -2  -2   1  -3  -2  -1 
Y   •  -1  -2  -1   •  -2   •   • 
V   1   •   1   •  -1  -2  -1   •  

 

Helix C-Caps 

58 

-180

-90

0

90

180

H H H C C C S S

 

     0   1   2   3   4   5   6   7 
A   •   1   •   •   1   1   1   •  
R   •   •   •   1   •  -1   •   1  
N   •  -1  -2   •   •  -1  -1   •  
D   1   •  -1   •   •  -2  -1   1  
C  -2  -1   •  -1  -1   •   •  -2 
Q   1   •   •   1   1   •   •   1 
E   1   1  -1   1   1  -1   •   1 
G  -1  -1  -2  -1  -1  -2  -2  -1 
H   •   •  -1   •   •   •   •   • 
I  -1   •   1  -1  -1   1   •  -1 
L  -1   •   1   •  -1   1   1  -1 
K   1   •  -1   1   1  -1   •   1 
M  -1   •   1   •  -1   1   1  -1 
F  -2   •   •  -1  -1   •   •  -2 
P   •  -1  -2  -1  -1  -2  -2  -1 
S   •   •  -1   •   •  -1   •   • 
T   •   •  -1  -1   •  -1  -1   • 
W  -1   •   •  -1  -1   •   •  -1 
Y  -1   •   •  -1  -1   •   •  -1 
V  -1   •   1  -1  -1   •   •  -1  

 

41 

-180

-90

0

90

180

H H H H H C C C

 

     0   1   2   3   4   5   6   7 
A   •   •   •   •   •   •   •   • 
R   1   •   1   •   •   •   •   • 
N   •  -1   •   •   1   •   •   • 
D   1  -1   •   1   •  -1   •   1 
C  -3  -1  -1  -3  -1  -1  -1   • 
Q   1   •   •   1   •   •   1  -1 
E   1   •   •   1   •   •   •   • 
G  -1  -1  -1  -1  -1  -1  -1  -1 
H  -1   •   •   •   1   •   •   • 
I  -1   1   •  -1  -1   1  -1   • 
L   •   1   1  -1   •   1  -1   • 
K   1   •   •   1   1   •   1   • 
M   •   •  -1   •   •   •  -1   • 
F   •   •   •   •   •   •  -1   • 
P   •  -1   •   •   •  -1   2   1 
S   •   •   •   •   •   •   •   • 
T  -1  -1   •  -1   •   •   •   • 
W  -1   1  -1   •  -2  -3  -1   1 
Y  -1   •   •   •   •   •   •  -1 
V  -1   •   •  -2  -1   1  -1   •  
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-90

0

90

180

H H H C C C S S

 

     0   1   2   3   4   5   6   7 
A   1   •  -1   1   •   •  -1  -1 
R   •   •   1  -2   •   •  -1   • 
N  -1   •   1  -1   •   •  -1  -2 
D  -1   •   •  -1   1   •  -1  -2 
C  -1  -3   •   •  -2  -1  -1   • 
Q   •   1   1  -2   •   •   •   • 
E   •   1   •  -1   •   1   •  -1 
G  -2  -1  -1  -1   •  -1  -2  -1 
H  -1   •   1   •   •   1   •   • 
I   •  -1  -1   1  -2   •   1   1 
L   1   •   •   1  -1  -1   •   1 
K   •   1   1  -1   1   1   •  -1 
M   1  -1   •  -1  -2  -1  -1  -1 
F   •   •   •   •  -2   •   •   • 
P   •   •  -1  -1   1   •   2   1 
S   •   1  -1   •   •   •   •   • 
T   •  -1  -1  -1   •  -1   •  -1 
W  -1  -2   •  -1  -1  -1  -2   • 
Y   •   •   1   •  -2   1   •   • 
V   1  -1  -1   1  -1   •   1   1  
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21 

-180

-90

0

90

180

H H H H H C C C

 

     0   1   2   3   4   5   6   7 
A   •   •   1  -1   1   1  -1   • 
R   •   •   1  -1   •   •   •  -1 
N   •   1  -1   •   1   1   1   1 
D  -1   1   •  -1   •   1   •   1 
C  -1  -3  -1   •  -5  -4  -2  -5 
Q   •   1   1  -1   1   1   •   1 
E   •   1   •   •   1   1   •   1 
G  -1  -1   •  -1  -2  -1   2   • 
H   •   •  -1   1  -1  -1   •  -1 
I   1  -3  -1   1   •  -1  -2  -2 
L   •  -1   1   •   •  -1  -1  -2 
K   •   1   •   •   1   •   •   1 
M   1   •   1   1   •   •  -2  -1 
F   •   •   •   1  -1  -3  -2  -1 
P   •  -2  -1  -2  -2   •  -1   1 
S  -1   •   •  -1  -1   •   •   • 
T  -1  -1   •  -1  -1   •  -1   • 
W  -1  -1  -2   2  -3  -2  -5  -2 
Y   •  -1   •   2   •   •  -1  -1 
V   1  -2  -1   •  -1  -2  -1  -1  

 

16 

-180

-90

0

90

180

H H H C C C S S

 

     0   1   2   3   4   5   6   7 
A   •   •   •  -1   1   •   1   • 
R   1   1   •   •   •  -1  -1  -3 
N   •   •   •   1  -1   •  -1 -11 
D   •   •  -2   1  -2   2   • -11 
C  -2  -2  -1  -3   1  -4  -1  -1 
Q   1   1   •   1  -3   1  -1  -7 
E   1   1  -2   •  -2   •   •  -5 
G  -1  -1  -2   2  -2  -2   1  -4 
H   •   •   2   •   •   •  -1  -3 
I  -1  -1  -1  -3   •  -1  -1   2 
L   •  -1   •  -2   •   •   •   • 
K   2   1   •   1   •   1  -1 -11 
M  -1   •   •  -2  -2  -3   •   • 
F  -3  -2   1  -4   •  -2  -1   • 
P  -2  -2  -1   •   2  -1  -3  -4 
S   •   •  -1  -1  -1   •   •  -1 
T  -1   •   1  -2  -2   •  -1  -1 
W  -4  -3  -1 -11  -2  -1  -3  -3 
Y  -1   1   1  -2  -2  -1  -1  -2 
V  -1  -1   •  -2   1  -1   1   3  

 

Inter-Strand Turns and Hairpins 

26 

-180

-90

0

90

180

S S S C S S S S

 

     0   1   2   3   4   5   6   7 
A   1   •   •   •   •   •   •   • 
R  -1   •  -1  -1   •   •   •  -1 
N  -1   •   •   •   1  -1  -2   • 
D  -1   •  -1   1   •  -1  -1  -1 
C  -2  -1  -1  -2  -5  -4  -2  -1 
Q   •   1  -1   •   1   •   •   • 
E   •   1  -1   1   1   •   •   • 
G  -1  -2   •   •   •  -2  -1  -2 
H   •   •   •  -1   1  -1  -1   • 
I   •   •   •  -1  -1   1   1   1 
L   •   •   •  -1  -2   1   •   • 
K   •   •   •   1   1   •   •   • 
M  -1   •  -1  -1  -2  -1   •  -1 
F   1   •  -1  -2  -1   •   1   • 
P   1   •   •   •  -1   1   •   • 
S   •   •   1   1   1   •   •   • 
T   •   1   •   1   •   •   •   1 
W   •   •  -4  -3   •  -2  -4  -2 
Y   •   •   1  -1   •  -2   1   • 
V   •   •   1   •  -1   1   1   1  
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-180

-90

0

90

180

S S S C C S S S

 

     0   1   2   3   4   5   6   7 
A   •   •  -1  -1  -1   •  -1  -1 
R   •   •   •   •   •   1  -1   1 
N  -1   •   •   2   1   1  -1  -1 
D  -2   1   1   1   1   •  -1  -1 
C   •  -1  -1  -4  -3  -3  -1   1 
Q   •   1   •   •  -1   1   •   • 
E  -1   •   •   •   •   1   •   • 
G  -2  -1   •   1   2   •  -1  -2 
H  -1   •   •  -1  -1   •  -2   • 
I   1   •   •  -3  -2  -2   1   1 
L   •   •   •  -3  -2  -2   1   • 
K  -1   •   •   1   •   2   •   • 
M   •   •   •  -2  -3  -1   •  -1 
F   1   •   •  -2  -2  -1   •   1 
P  -1  -2  -1  -1  -1  -1   •  -2 
S  -1   •   •   •   •   •  -1  -1 
T   1   •   •  -1  -1   •   1   • 
W  -2   1   2  -4  -2  -2   1  -1 
Y   1   •   1  -2  -1   •   •   1 
V   1   1   •  -3  -1   •   1   1  
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20 

-180

-90

0

90

180

S S C C C C C S

 

     0   1   2   3   4   5   6   7 
A   •  -2  -2   •  -1  -2   •  -1 
R  -1   •  -1   •   •  -1   1   • 
N  -1  -1   1   1   2   1   1  -1 
D  -2  -2   2   1   2  -1   •  -1 
C   •  -1  -1  -1  -4  -2  -2   • 
Q  -2   •   •   •   1  -1   1  -1 
E  -1   •   •   1   1  -1   1  -1 
G  -1  -1  -1   •   •   3   •  -2 
H  -1   •  -1  -1   •  -1   •   • 
I   1   1  -2  -2  -2  -2  -1   • 
L   1   1  -1  -2  -2  -1  -1   • 
K  -1   1   •   1   •   •   1   • 
M   •   •  -1  -2  -3  -1  -1   • 
F   1   •  -1  -1  -3  -2  -2   • 
P  -2  -1  -1   1  -2  -1  -1   2 
S  -1  -1   •   •   •  -1   •  -1 
T  -1   •   2   •   1  -1   •   • 
W   1  -2   • -11 -11  -2  -3   • 
Y   1   •  -1  -2  -2  -2  -2   • 
V   1   1  -2  -1  -3  -2  -1   1  

 

20 

-180

-90

0

90

180

S S C C C C S S

 

     0   1   2   3   4   5   6   7 
A  -1  -1   •   •  -1  -2  -1  -1 
R   •  -1   •   •   •   1   2   • 
N  -2   2   •   1   1   1  -1  -1 
D  -2   2   •   1   1   1  -1  -1 
C  -1  -2  -2  -2  -2  -5  -1  -2 
Q  -1  -1   •   1  -1   1   1   • 
E  -1  -1   1   •   •   •   1   • 
G  -2  -1  -1   •   •   2  -2  -2 
H   •   •  -1   •   •   •  -1  -1 
I   1  -2  -1  -1  -3  -3  -1   1 
L  -1  -2   •  -1  -2  -2   •   1 
K   •   •  -1   1   1   1   2   • 
M  -1  -2   •  -2  -1   •  -3   1 
F   1  -1  -1  -2  -2  -1  -2   • 
P   •  -1   2  -1  -1  -2  -2  -3 
S  -1   •   •   1   1   •   •  -1 
T   •  -1   •   •   2  -2   •   1 
W   1   1  -1  -1  -1  -2  -2   • 
Y   2  -1   •  -2  -3  -2  -1   • 
V   1  -2   •  -1  -2  -3  -1   1  

 

18 

-180

-90

0

90

180

S S C C C S S S

 

     0   1   2   3   4   5   6   7 
A   •   •   •  -1   •  -1   •   • 
R  -1   •  -1  -1  -1   1  -3  -1 
N  -3   •   •   1   •  -1  -3  -1 
D  -4  -1   •  -1   2  -2  -3   • 
C  -1  -5  -2  -3  -1  -1  -2  -4 
Q  -2   1   •  -3   2   1  -2   • 
E  -2   1   1  -1   1   •  -2   1 
G  -1   •  -2   3  -1  -2  -3  -1 
H  -2   •  -1  -1   •  -1  -2   • 
I   1  -2   •  -5  -2   •   2   • 
L   1  -2   •  -3  -3  -1   1   1 
K  -1   2   •  -1   •   1  -2   • 
M   •  -2  -3  -1   •  -1   •  -1 
F  -1  -1   •  -4  -3   •  -1  -2 
P   •   1   2  -2  -3   •  -4   • 
S  -1   1   •  -2   1   •  -2   • 
T  -1   •  -1  -3   •   1  -2   1 
W  -3  -4 -11  -3  -1   •  -3  -2 
Y  -1  -1  -1  -6   •   •  -3  -1 
V   2  -1   •  -4  -2   •   3   •  

 

Strand-Helix Turns 

63 

-180

-90

0

90

180

S S S S C H H H

 

     0   1   2   3   4   5   6   7 
A   •  -1   •   •  -1   •   •   • 
R   •  -1   •   •  -1   •   •   • 
N   •  -1   •  -1   1   •   •   • 
D   •  -1   •  -1   2   1   1   1 
C  -1   •   •   •  -1  -1  -2  -2 
Q   •   •   •  -1  -1   •   •   1 
E   •   •   •  -1   •   1   1   1 
G  -1  -1  -2  -1  -1  -1   •  -1 
H   •   •   •   •   •  -1   •   • 
I   •   •   •   1  -2  -1  -2  -1 
L   •   •  -1   1  -1   •  -1   • 
K   •   •   •  -1   •   •   1   • 
M   •   •   •   •  -1  -1  -1  -1 
F   •   1   •   1  -1  -1  -1   • 
P   •   •   •   •   1   2   •  -1 
S   •   •   •  -1   1   •   •   • 
T   •   •   •  -1   1   •   •   • 
W   •   •  -1   1  -3  -1  -2   • 
Y   •   1   •   1  -2  -1  -1   • 
V   1   1   1   1  -1  -1  -1  -1  
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29 

-180

-90

0

90

180

S S C C C H H H

 

     0   1   2   3   4   5   6   7 
A   •   1   •   •  -1   •   1   • 
R   1   •  -1   •  -2   •   •   • 
N  -1  -1  -2   •   2  -1   •  -1 
D  -1  -1  -1   •   2   •   1   1 
C  -2  -1   •  -3  -2  -2  -3  -2 
Q   1   •  -1  -1  -1   •   •   1 
E   •   •  -1   •   •   •   2   2 
G  -2  -1  -1  -1  -1  -1  -1  -2 
H   1  -1   •   •   •  -1  -1   1 
I   1   •   1  -1  -2  -1  -1  -1 
L   •   •   •  -1  -3   •  -1  -1 
K   •   •  -1   •  -1   •   •   • 
M   •  -1  -1   •  -2   •  -1  -1 
F   •   •   •   •  -3  -1  -2  -1 
P  -1   1   •   1   •   2  -1  -2 
S  -1   •  -1   •   1   •   •   • 
T  -1   •   •   1   1   •   •   • 
W  -1   •  -1  -1  -1  -2  -1   • 
Y   •   •   1  -1  -1  -1  -1  -1 
V   1   1   2   •  -2  -1  -1  -1  

 

Inter-Helix Turns 

44 

-180

-90

0

90

180

H H C C C H H H

 

     0   1   2   3   4   5   6   7 
A   •   1   •   •  -1   •   •   • 
R  -1   1   •  -1  -1   •  -1   • 
N  -1   •   •   •   1   •   •   • 
D  -1   1   •   •   2   •   1   1 
C   •  -3   •   •  -1  -3  -2   • 
Q   •   •   •   •   •   •   1   1 
E   •   1   •  -1   •   •   1   1 
G  -1  -1  -1  -1   •  -1  -1  -1 
H  -2   •   •   •   •  -1  -1   • 
I   •  -1   •   1  -2   •  -2  -2 
L   1  -1   •   1  -1   •  -1  -1 
K   •   1   •  -1   •   •   •   • 
M   1   •   1   1  -1   •  -2  -1 
F   •  -1   •   •  -2  -1  -2  -1 
P   •   •  -2  -2   2   1   •  -1 
S   •   •   •   •   1   •   •   • 
T   •   •   •   •   •   •   •   1 
W   1  -2   •  -1  -2  -1  -2   • 
Y   •  -1   •   •  -1   •  -1   • 
V   •  -1   •   1  -1  -1  -1   •  

 

40 

-180

-90

0

90

180

H H H H C H H H

 

     0   1   2   3   4   5   6   7 
A   •   •   1   1  -1   •   •   • 
R   •   •   1   •  -1  -1   •   • 
N  -1  -1   •   •   2  -1   •   • 
D   •  -2   •   •   1   •   1   • 
C  -5  -1   •  -2   •  -2  -4  -1 
Q   •   •   1   1   •   •   1   • 
E  -1   •   1   1   •   •   1   • 
G  -2  -2  -2   •  -2  -1   •  -2 
H  -1   •   •   •   1  -1  -1   • 
I   •   1  -1  -2  -1  -2  -1   • 
L   1   1  -1  -1  -1  -1  -1   1 
K   •   •   1   1   •   •   •   • 
M   1   •   •  -1   1  -1  -1   • 
F   1   1   •  -2   •  -1  -1   1 
P   •  -1  -2  -2  -1   3   •  -1 
S   •   •   •   1   •   •   1   • 
T  -1  -1  -1   •  -1  -1   •  -1 
W   1   •  -2  -2   •  -1  -2  -1 
Y   1   •  -1  -1   1  -1   •   • 
V  -1   •  -1  -1  -1  -1  -1   •  

 

36 

-180

-90

0

90

180

H H C C C C H H

 

     0   1   2   3   4   5   6   7 
A   •   1   1  -1  -1  -1   •   • 
R   1   •   •  -1   •  -1   •   1 
N   •   •   •   1  -2   1   •   • 
D   •   •  -1   •  -2   2  -1   1 
C  -2  -2  -2  -2   •  -2  -1  -1 
Q   •   1   •   •   •  -2  -1   • 
E   1   1   •  -1  -1   •   •   1 
G  -2  -1  -1   3  -2   •  -1  -1 
H   •   •   1  -1  -1  -1   •   • 
I  -1  -1  -1  -3   1  -3   •  -2 
L  -1  -1   1  -2   1  -2   1  -1 
K   2   1   •   •   •   •   •   1 
M  -1  -1   1  -1   1  -2   •  -1 
F  -2  -2   1  -2   1  -1   1  -2 
P  -2  -2  -4  -2   •   1   2   • 
S   •   •  -1  -1  -2   1  -1   • 
T  -1   •   •  -3  -1   1  -1  -1 
W  -1   •  -1  -1   1  -1   •  -1 
Y  -1  -2   1  -2   1  -1   •  -1 
V  -1  -1  -2  -3   1  -2   •  -1  
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Helix N-Caps 

33 

-180

-90

0

90

180

C C C H H H H H

 

     0   1   2   3   4   5   6   7 
A  -1   •  -1   •   •   •   1   1 
R  -1   •  -1  -1   •   •   •   • 
N   1  -1   1  -1   •   •  -3  -1 
D   1  -1   1   •   1   1  -2  -1 
C  -2   •  -2  -1  -1  -3   •   • 
Q   •   •  -1   •   •   1  -1   • 
E   •   •  -1   •   2   1   •   • 
G   2  -2   •  -1  -1  -1  -2  -2 
H   •  -1  -1  -1  -1   •  -2  -1 
I  -2   •  -4   •  -2  -1   1   • 
L  -2   1  -2   1  -1   •   1   • 
K   •   •   •  -1   •   •  -1   • 
M  -1   1  -2   •  -2  -1   •   • 
F  -2   •  -2   •  -2  -1   •   • 
P  -1   •   1   1   •  -2  -3  -1 
S   •  -1   2  -1   1   •  -1  -1 
T  -1   •   1  -1   •   •  -1  -1 
W  -2   •  -3   •  -1  -1   •   • 
Y  -1   1  -2   •  -1  -1   •   • 
V  -2   •  -2   •  -1  -1   1   •  
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Appendix B 

Listing of Protein Data Sets 

This appendix lists the proteins found in all data sets used in this study, which include BB55, 

RS126, PP187, and CB396.  Each protein is represented by its PDB ID and chain ID (if exist).  

Note that there are only 317 proteins in CB396 as some of the proteins have been split into 

multiple disjoint peptides to make up a total of 396 entries. 

 

BB55 selected by Bystroff and Baker [20]: 

1ANV 1APY A 1AYL 1BMF A 1BMF D 1BMF G 1BRO A 1CEM 
1CPO 1DEK A 1DIV 1FIE A 1FRV A 1FRV B 1GAL 1GND 
1GPL 1GTM A 1HAV A 1HLR A 1HTP 1HTT A 1HXP A 1IGN A  
1IHF B 1KXU 1LBD 1LBU 1LCL 1LNH 1MSP A 1OTG A 
1OXY 1QBA 1REQ A 1RIE 1SFE 1STM A 1TAQ 1TFE 
1TFR 1VCC 1VHI A 1VNC 1WHI 1XEL 1XSM 1XVA A 
1ZYM A 2AYH 2EBN 2ENG 2STV 4KBP A   

 

RS126 selected by Rost and Sander [37]: 

1A45 1ACX 1AZU 1BBP A 1BDS 1BKS A 1BKS B 1BMV 1 
1BMV 2 1CBH 1CC5 1CDT A 1CRN 1CSE I 1CYO 1DUR A 
1ECA 1ETU 1FC2 C 1FDL H 1FKF 1FND 1FXI A 1G6N A 
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1GD1 O 1GDJ 1GP1 A 1HIP 1IL8 A 1IQZ A 1L58 1LAP 
1LMB 3 1MCP L 1MRT 1OVO A 1PAZ 1PPT 1PYP 1R09 2 
1RBP 1RHD 1S01 1SH1 1TGS I 1TNF A 1UBQ 256B A 
2AAT 2AK3 A 2ALP 2CAB 2CCY A 2CYP 2FOX 2GBP 
2GLS A 2GN5 2HMZ A 2I1B 2LHB 2LTN A 2LTN B 2MEV 4 
2MHU 2OR1 L 2PAB A 2PCY 2PHH 2RSP A 2SNS 2SOD B 
2STV 2TGP I 2TMV P 2TSC A 2UTG A 2WRP R 3AIT 3BLM 
3CD4 3CLA 3CLN 3EBX 3HMG A 3HMG B 3ICB 3PGM 
3RNT 3TIM A 4BP2 4CMS 4CPA I 4CPV 4GR1 4PFK 
4RHV 1 4RHV 3 4RHV 4 4RXN 4SDH A 4SGB I 4TS1 A 4XIA  A 
5CYT R 5ER2 E 5HVP A 5LDH 5LYZ 6ACN 6CPA 6CPP 
6CTS 6DFR 6HIR 6TMN E 7CAT A 7ICD 7RSA 8ABP 
8ADH 9API A 9API B 9INS B 9PAP 9WGA A   

 

PP187 selected by Jones [14]: 

1A34 A 1ACI 1AE9 A 1AFW B 1AH7 1AJZ 1AK0 1ALV A 
1AMM 1AMU A 1AOH B 1AOP 1AOZ A 1ARS 1ARU 1AT0 
1AVM A 1AYL 1BFD 1BGF 1BQU B 1CAA 1CBN 1CEI 
1CEL A 1CEM 1CHM A 1CLC 1CMB A 1COY 1CPO 1CSH 
1CUK 1CYN A 1CYO 1DAA A 1DJA 1DMB 1DMR 1DUP A 
1ECL 1EMA 1ESF A 1EXT A 1EZM 1FKF 1FLE I 1FMK 
1FUA 1FVK A 1GAI 1GD1 O 1GLQ A 1GND 1GOF 1GPB 
1GPR 1GZI 1HAN 1HCZ 1HFC 1HPM 1HRD A 1HSB A 
1HTR P 1HXN 1HXP A 1HYP 1IGD 1IOW 1ISO 1ISU A 
1JBC 1JDW 1KAP P 1KID 1KNB 1KPT A 1KVD A 1LAM 
1LDG 1LIS 1LMB 3 1LTS A 1MDL 1MLA 1MML 1MOL A 
1MRK 1MSK 1MTY D 1MTY G 1MUG A 1NAH 1NNC 1NOX 
1NP4 1OBW B 1OIS 1ONC 1ONR A 1OPC 1ORC 1OSP O 
1OTF A 1PBE 1PGS 1PK4 1PMI 1PNK A 1PNK B 1PPN 
1PTY 1QBA 1QNF 1RA9 1REG X 1RHS 1RIE 1RKD 
1RPO 1RSS 1SFT A 1SGP I 1SJU 1SKZ 1SLU A 1SRI A 
1STM A 1SVB 1TFE 1THG 1THV 1TVD A 1TX4 A 1TYS 
1TYV 1UBS B 1UCH 1UDG 1UTG 1UXY 1VCC 1VHB A 
1VHH 1VIE 1VJS 1VOM 1VPS A 1VPT 1WBA 1WER 
1WHI 1WJD B 1XIK A 1YGE 1YTB A 1ZNB A 2ABK 2ARC A 
2BAA 2CBA 2CCY A 2CMD 2CTC 2CY3 2END 2ENG 
2ERL 2ILK 2LTN B 2MSB A 2NLL B 2OHX A 2PHY 2PSP A 
2RAN 2RN2 2SIC I 2TGI 2VPF B 3CLA 3PTE 4BCL 
4RHN 5CYT R 8RUC K      

 

CB396 selected by Cuff and Barton [46]:  

154L 1AAZ B 1ADD 1ADE B 1AHB 1ALK B 1AMG 1AMP 
1AOR B 1AOZ B 1ASW 1ATP I 1AVH B 1AYA B 1BAM 1BCX 
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1BDO 1BET 1BFG 1BNC B 1BOV B 1BPH A 1BRS E 1BSD B 
1CBG 1CDL G 1CEI 1CEL B 1CEM 1CEO 1CEW I 1CFB 
1CFR 1CGU 1CHB E 1CHD 1CHK B 1CHM B 1CKS C 1CLC 
1CNS B 1COI 1COL B 1COM C 1CPC L 1CPN 1CQA 1CSM B 
1CTF 1CTH B 1CTM 1CTN 1CTU 1CXS A 1CYX 1DAA B 
1DAR 1DEL B 1DFJ I 1DFN B 1DIH 1DIK 1DIN 1DKZ A 
1DLC 1DNP B 1DPG B 1DSB B 1DTS 1DUP A 1DYN B 1ECE B  
1ECL 1ECP F 1EDD 1EDM C 1EDN 1EFT 1EFU D 1EPB B 
1ESE 1ESL 1EUU 1FBA B 1FBL 1FDT 1FIN D 1FJM B 
1FUA 1FUQ B 1GAL 1GCB 1GCM C 1GEP 1GFL B 1GHS B 
1GKY 1GLN 1GMP B 1GND 1GOG 1GP2 A 1GP2 G 1GPC 
1GPM D 1GRJ 1GTM C 1GTQ B 1GYM 1HAN 1HCG B 1HCR A 
1HIW S 1HJR D 1HMP B 1HMY 1HNF 1HOR B 1HPL B 1HSL B  
1HTR P 1HUP 1HVQ 1HXN 1HYP 1IGN B 1ILK 1INP 
1IRK 1ISA B 1ISU B 1JUD 1KIN B 1KNB 1KPT B 1KRC A 
1KRC B 1KTE 1KTQ 1KUH 1LAT B 1LBA 1LBU 1LEH B 
1LIB 1LIS 1LKI 1LPB A 1LPE 1MAI 1MAS B 1MCT I 
1MDA J 1MDA M 1MDT A 1MJC 1MLA 1MMO H 1MNS 1MOF 
1MRR B 1MSP B 1NAL 4 1NAR 1NBA C 1NCG 1NDH 1NFP 
1NGA 1NLK L 1NOL 1NOX 1NOZ B 1OAC B 1ONR B 1OTG C 
1OVB 1OXY 1OYC 1PBP 1PBW B 1PDA 1PDN C 1PDO 
1PGA 1PHT 1PII 1PKY C 1PMI 1PNM B 1PNT 1POC 
1POW B 1PPI 1PTR 1PTX 1PYT A 1QBB 1QRD B 1REC 
1REG Y 1REQ C 1RHG C 1RIE 1RIS 1RLD S 1RLR 1RPO 
1RSY 1RVV Z 1SCU D 1SCU E 1SEI B 1SES A 1SFE 1SFT B  
1SMN B 1SMP I 1SPB P 1SRA 1SRJ A 1STF I 1STM E 1SVB  
1TAB I 1TAQ 1TCB A 1TCR A 1TFR 1THT B 1THX 1TIE 
1TIF 1TIG 1TII C 1TML 1TND B 1TPL B 1TRB 1TRH 
1TRK B 1TSP 1TSS B 1TUL 1TUP C 1UBD C 1UDH 1UMU B 
1VCA B 1VCC 1VHH 1VHR B 1VID 1VJS 1VMO B 1VNC 
1VOK B 1VPT 1WAP V 1WFB B 1WHI 1XVA B 1YPT B 1YRN A  
1ZNB B 1ZYM B 2AAI B 2ABK 2ADM B 2AFN C 2ASR 2BAT 
2BLT B 2BOP A 2CMD 2CPO 2DKB 2DLN 2DNJ A 2EBN 
2END 2ERL 2GSQ 2HFT 2HHM B 2HIP B 2HPR 2MLT B 
2MTA C 2NAD B 2NPX 2OLB A 2PGD 2PHY 2POL B 2REB 
2RSL A 2SCP B 2SIL 2SPT 2TGI 2TMD B 2TRT 2YHX 
3BCL 3CHY 3COX 3ECA B 3INK D 3MDD B 3PGK 3PMG B 
4FIS B 5SIC I 6RLX C 6RLX D 821P    
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