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Figure 1: A variety of dynamic foam, film, and bubble scenarios captured by our method. Left: A small foam rearranges and settles to
equilibrium. Center: A snapshot of an evolving catenoid soap film joining two circular wires, an instant before the film pinches apart. Right: A
bubble with a wire constricting its mid-section gradually squeezes to one side.

Abstract

Simulating the delightful dynamics of soap films, bubbles, and foams
has traditionally required the use of a fully three-dimensional many-
phase Navier-Stokes solver, even though their visual appearance is
completely dominated by the thin liquid surface. We depart from ear-
lier work on soap bubbles and foams by noting that their dynamics
are naturally described by a Lagrangian vortex sheet model in which
circulation is the primary variable. This leads us to derive a novel
circulation-preserving surface-only discretization of foam dynamics
driven by surface tension on a non-manifold triangle mesh. We rep-
resent the surface using a mesh-based multimaterial surface tracker
which supports complex bubble topology changes, and evolve the
surface according to the ambient air flow induced by a scalar circu-
lation field stored on the mesh. Surface tension forces give rise to
a simple update rule for circulation, even at non-manifold Plateau
borders, based on a discrete measure of signed scalar mean curvature.
We further incorporate vertex constraints to enable the interaction
of soap films with wires. The result is a method that is at once
simple, robust, and efficient, yet able to capture an array of soap
films behaviors including foam rearrangement, catenoid collapse,
blowing bubbles, and double bubbles being pulled apart.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation

Keywords: fluids, vortex sheet, circulation, non-manifold mesh

1 Introduction

Although we encounter bubbles and foam on a daily basis while
drinking coffee, washing the dishes, or playing with children’s toys,
the motion and structure of these phenomena are difficult to under-
stand and even more difficult to simulate with a computer.

Soap bubbles are essentially layers of immiscible fluids: air on the
inside, a thin film of liquid, and then air on the outside again. The sur-
face tension of the liquid drives the bubble toward a shape with less
surface area, while air pressure forces the bubble to maintain a con-
stant volume. These behaviors are described by the Navier-Stokes
equations, which can be exceptionally difficult to solve accurately,
especially when confronted with the large density jumps, immiscible
fluid interfaces, stiff surface tension forces, and extremely thin liquid
surfaces required for bubble motion.

Prior work has successfully simulated foam dynamics using an Eule-
rian approach. These approaches utilize considerable computational
resources for the detailed calculation of the air dynamics within each
bubble and the accurate resolution of film geometry. We propose a
new model which solves the problem more economically while guar-
anteeing several important theoretical properties by construction.

Our proposed model is the first numerical method for the dynamics
of soap films, bubbles, and foams that is based on the equations of
non-manifold vortex sheets.

We model soap film structures as non-manifold vortex sheets driven
by surface tension forces. We propose a discrete model to evolve
the sheet as it deforms and undergoes topology changes such as
pinching, merging, and rearrangement.

We represent the geometry using a Lagrangian non-manifold triangle
mesh decorated with material region tags. We store circulation
variables on the vertices; by Kelvin’s circulation theorem this ensures
a circulation-preserving model by construction. Numerical results
exhibit nearly dissipation-free dynamics.

The use of the vortex sheet equations ensures an exactly divergence-
free velocity field via the Biot-Savart law, and integrating mesh
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vertex positions through the induced velocity field leads to excellent
volume preservation over long simulations.

We derive a simple, discrete update rule for the effect of surface
tension forces on the non-manifold sheet, based on a discrete mea-
sure of mean curvature. We formulate the update rule in a manner
that generalizes immediately to the case of non-manifold junctions.
This yields stable film behavior even along complex foam junctions.
Through the addition of a simple vertex constraint mechanism, we
support wire loops and structures to control the bubbles and films,
enabling a variety of familiar bubble interactions.

Our complete computational model provides a compact description
of foam dynamics that requires no volumetric discretization or linear
system solve, is computationally efficient as compared to traditional
Eulerian techniques, and is robust enough to animate complicated
foam dynamics on a standard workstation.

2 Related Work

The behaviors of bubbles and foams are a subject of substantial
interest across a variety of scientific and engineering disciplines (e.g.,
[Weaire and Hutzler 2001; Weaire 2013; Saye and Sethian 2013]).
The reproduction of their visual characteristics was addressed in a
pair of articles by Glassner [2000a; 2000b]; more recent authors
have explored the dynamic simulation of bubbles.

Particulate Bubbles One simple approach to small-scale bubble
dynamics is to treat each bubble as a particle, with various rules
controlling their interactions, such as the early work of Kück et
al. [2002]. Later work has yielded increasingly realistic behavior,
and often used these models to add bubble details to traditional
volumetric liquid simulations [Greenwood and House 2004; Hong
et al. 2008; Kim et al. 2010; Busaryev et al. 2012; Patkar et al. 2013].

Eulerian Bubbles A different albeit more expensive tack is to
model the bubbles themselves with volumetric multiphase fluid
simulations. Since the thickness of the bubble’s liquid film is on
the order of micrometers, its mass is effectively negligible and can
be treated as such; thus the main challenges are to simulate the air
flow interior to the bubble with appropriate surface tension forces on
the interface, and to represent the evolving non-manifold geometric
structure of foams. Hong and Kim [2003] were the first in graphics
to make use of a multiphase flow solver to model bubbles, applying
surface tension as a smoothed body force. Hong and Kim [2005]
adapted earlier work in computational physics [Kang et al. 2000],
using ghost-fluid methods to incorporate surface tension boundary
conditions for fully submerged bubbles. In a similar vein, Mihalef
et al. [2006] simulated boiling water. To allow multiple bubbles
in mutual contact and thereby support foam structures, Zheng et
al. [2006] presented a regional level set method that generalizes the
standard level set method to more than two regions. Zheng et al. also
proposed a semi-implicit surface tension discretization to improve
stability. Losasso et al. [2006] similarly extended the particle level
set method to many regions to adapt Hong’s work to the case of
multiple interacting liquids. Kim et al. [2007] artificially inflated
bubbles to compensate for volume drift. Saye and Sethian [2013]
added a model for film drainage operating on different time scales.

Mesh-Based Bubbles Since the visual appearance of bubbles
is entirely dominated by the soap film itself, a seemingly natural
approach is to focus modeling efforts there. D̆urikoviç [2001] pro-
posed such a method in which the bubble surface is represented
by a deformable mass-spring system on a triangle mesh. Simple
surface tension forces based on the Laplace-Young equation are

applied to the vertices, assuming bubbles maintain a near-spherical
configuration. Similarly, Brochu [2006] proposed a preliminary
boundary-element discretization of 2D droplet dynamics, and Zhang
et al. [2012] used a surface-only mass-spring model for real-time
animation of triangulated liquid droplets. Batty et al. [2012] mod-
eled thin sheets of viscous liquid with surface tension using triangle
meshes, but did not address bubbles. Though computationally at-
tractive, these models concentrate the mass of the system on the
(thin) liquid film, whereas in the case of bubbles the film is effec-
tively massless relative to the surrounding air flow. Zhu et al. [2014]
applied a similar thin-sheet idea to inviscid liquids and films, and
modeled the influence of wind by coupling to a standard dense Eule-
rian grid method. This approach yielded compelling animations of
blowing bubbles, soap film catenoids pinching apart, and waterbell
shapes, though it cannot model multi-bubble foam structures.

A more accurate approach to mesh-based modeling of bubbles and
foams at equilibrium is to construct a discrete surface energy based
on the area of the interfaces subject to a volume constraint per
bubble, and seek to minimize it. This is the approach taken by the
venerable Surface Evolver technique [Brakke 1992]. Since surface
tension forces are proportional to interface mean curvature, the
resulting discrete surface energy gradient in this model is essentially
equivalent to discrete mean curvature operators common in graphics
[Pinkall and Polthier 1993; Meyer et al. 2002]. Recent work on
constant-mean-curvature surfaces [Pan et al. 2012] modifies the
energy functional to simultaneously optimize mesh quality.

Methods for volumetric simulation of multiphase flows have also
made use of explicit moving meshes. For example, conforming
Lagrangian tetrahedral meshes with dynamic remeshing allow for
a finite element discretization of multiple regions with area-based
surface tension discretized on the interface triangles [Misztal et al.
2012; Clausen et al. 2013]. Rather than use a volumetric tetrahedral
mesh, Da et al. [2014] presented Los Topos, a multi-region extension
of the El Topo triangulated mesh-based surface tracking package
[Brochu and Bridson 2009], and applied it to Eulerian grid-based
volumetric multiphase liquids. Our work makes use of Los Topos to
handle the complex topological rearrangements exhibited by foams.
In general, these mesh-based volumetric methods rely on a complete
discretization of the fluid domain, rather than the surface alone, and
have not been applied to bubble dynamics.

Vortex-Based Fluids Vortex methods model incompressible
flows by relying on an alternative basis representation [Cottet and
Koumoutsakos 2000]. Rather than choosing the primary variable
to be velocity, which must be constrained to lie in the space of
incompressible vector fields, vortex methods evolve the dynamics
using the curl of velocity, or vorticity, ω = ∇ × u. This family
of methods guarantees incompressibility by construction, avoids
numerical dissipation common to traditional methods, and provides
a terser representation of the velocity field.

A variety of Lagrangian discretizations of the vorticity equation
have been used including particles [Park and Kim 2005], filaments
[Angelidis and Neyret 2005; Angelidis et al. 2006; Weissmann and
Pinkall 2009; Weissmann and Pinkall 2010; Barnat and Pollard
2012], and sheets [Pfaff et al. 2012; Brochu et al. 2012], along with
circulation-based Eulerian discretizations [Elcott et al. 2007]. The
conserved variable in all of these cases is circulation, though Mullen
et al. [2009] presented an interesting energy-preserving Eulerian
discretization. Zhang and Bridson [2014] recently proposed an im-
proved Particle-Particle Particle-Mesh (PPPM) strategy to accelerate
the major bottleneck in Lagrangian vorticity-based schemes: evalua-
tion of the Biot-Savart kernel to reconstruct the velocity field. Earlier
work used the Fast Multipole Method (FMM) [Brochu et al. 2012],
truncated the required kernel evaluations [Pfaff et al. 2012; Vines



et al. 2014], or suffered the O(N2) cost of pairwise evaluation.

Although vortex methods are most commonly applied to smoke, a
few authors have considered the role of vortex sheets at or near a
liquid interface. Golas et al. [2012] used a hybrid approach: a vortex
particle method handles the large interior of the flow domain, and
this is coupled to a regular grid-based simulator applied on a narrow
band around the liquid interface or solid boundaries. In the context
of deep ocean waves, Keeler and Bridson [2014] achieved a surface-
only discretization by combining the El Topo surface tracker with
the solution of a specific boundary integral equation derived under a
potential flow assumption. Another use for vorticity equations at the
liquid interface is to provide additional detail to a lower resolution
fluid simulation [Kim et al. 2009; Bojsen-Hansen and Wojtan 2013],
similar in spirit to the use of vortex particles that augment smoke
simulations with turbulent detail [Selle et al. 2005; Pfaff et al. 2009].

Vortex Sheets We make use of a vortex sheet formulation of the
vorticity equation. Early numerical work in this direction was car-
ried out by Tryggvason [1988], Agishtein and Migdal [1989], and
Pozrikidis [2000] among others. Recently Stock [2006; 2008] pro-
posed a circulation-based discretization that has since been extended
to smoke animation [Pfaff et al. 2012; Brochu et al. 2012]. The
main source of vorticity for smoke is fluid density gradients (i.e.,
baroclinity), which requires some quantities to be converted back
and forth between vorticity and circulation. For bubbles the vorticity
source is surface tension, which possesses a simple integration rule
that works directly in the space of circulations.

3 Smooth Setting

A soap film is a thin sheet of liquid immersed in an ambient fluid
medium, typically air. When the film has a spherical topology, it is
known as a soap bubble, and when multiple such bubbles contact,
they form a non-manifold network of films known as a foam.

We focus on centimeter-scale soap films, whose dynamics are gen-
erally dominated by (a) the surface tension of the film, along with
(b) the (assumed) incompressibility and (c) inertia of the ambient
air. For the centimeter length scale, the inertia of the liquid itself
is negligible; the temporal evolution of the film is governed by the
motion of the ambient air.

To capture this behavior, we model the interface as a vortex sheet.

3.1 Kinematics of a vortex sheet

A vortex sheet is an immersed surface delimiting a discontinuity in
(only) the tangential component of a velocity field in 3-space. While
the tangential component of velocity is generally discontinuous, the
component normal to the vortex sheet remains continuous.

Consider a surface f : M → R3 immersed in ambient space, where
M ⊂ R2 is a reference domain. To each surface point f(X) we
associate a unit surface normal n(X) : M → S2.

The state of a vortex sheet is encoded by its position f and a scalar
field Γ : M → R called the circulation [Pozrikidis 2000].

Circulation We note that circulation is most typically defined
as a quantity associated to a given closed loop; in a slight abuse of
terminology, borrowed from other works on vortex sheets [Pozrikidis
2000], we take circulation to be a pointwise quantity, by identifying
each point f(X) with an arbitrary loop, as follows.

To understand the geometry behind Γ(X), consider an arbitrary
closed loop L that pierces the sheet at x = f(X) and some fixed
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Figure 2: Sign convention
for pointwise circulation.

reference point x0 = f(X0) (refer to
the inset figure). Γ(X) measures the
alignment of the velocity field to tan-
gent motion along the closed loop, i.e.,

Γ(X) =

∮
L

u · dx.

Above, we emphasized the word arbitrary because for any two
loops L1 and L2 both piercing the sheet only at x and x0,

∮
L1

u ·
dx =

∮
L2

u · dx ([Pozrikidis 2000]). We emphasized the word
fixed because the scalar field Γ is meaningful only if the same
reference point x0 is used for all evaluations of Γ(X),X ∈ M .
Furthermore, selecting a different reference point x′0 is equivalent to
uniformly offsetting the entire field by some fixed constant, Γ′(X) =
Γ(X) + C. Note that Fig. 2 establishes a correspondence between
the orientation of the surface (normal) and the sign of the circulation.

Recovering the ambient velocity from the circulation With Γ
as our state variable, we can evaluate the velocity field in 3-space in
two steps. First we recover the vortex sheet strength, γ : M → R3,

γ = n×∇fΓ, (1)

2

1

n
γ

Figure 3: Conventions for vor-
tex sheet strength, for a sheet
separating regions 1 and 2.

where ∇f is the surface gradi-
ent operator for f . Observe that
by construction γ is tangential to
the surface (because of n×) and
divergence-free (because it is a
right-angle rotation of a gradient
field). Note that the direction of γ
is determined by the local∇fΓ di-
rection, independent of the choice
of the reference point x0. Vortex
sheet strength represents vorticity
confined to the sheet, under the re-
lationship ω = γδ(f), with Dirac delta δ.

From the vortex sheet strength we recover the ambient velocity,
u : R3 → R3 through the Biot-Savart integral

u(x) =
1

4π

∫
f

γ × (x− x′)

‖x− x′‖3 df ′. (2)

The field u is divergence-free by construction. Thus, a velocity field
derived from vortex sheet kinematics is automatically able to capture
the dynamics of incompressible fluids without explicit enforcement
of the incompressibility condition.

x
x

0

x′

Next, we consider two nearby
points x and x′ on the vortex sheet.
The integration loop for circulation
at x′ intersects the sheet at x′ and
the reference point x0, and can be
broken down as the sum of two
loops: one between x0 and x, and
one between x and x′. The former
corresponds to the circulation at x. Therefore, the difference be-
tween Γ(X) and Γ(X′) is the velocity integral around the latter
loop, which is represented by the tangential velocity jump u at x
as the two points approach each other. This reveals the following
relation, which is needed in Section 3.3 (see [Pozrikidis 2000] for
details):

∆u = ∇fΓ. (3)



3.2 Dynamics of self-advection

In the absence of external forces, the evolution of the circulation
field is given by Kelvin’s circulation theorem:

DΓ

Dt
= 0, (4)

where D denotes the total (equivalently material or advective) deriva-
tive.

Consider the consequences on implementation. As the vortex sheet
deforms under the advection induced by the ambient air, the scalar
circulation field remains constant. This property sets circulation
apart from a vorticity-based representation of the velocity field,
avoiding explicit handling of vortex stretching and simplifying the
numerical implementation.

3.3 Dynamics with surface tension

With surface tension, the circulation field no longer remains constant;
instead its evolution is governed by a simple, local law.

Neglecting viscosity and external forces, we have the momentum
equation for the incompressible Euler equations

Du

Dt
= −∇p

ρ
(5)

everywhere away from the sheet, where∇ is the canonical gradient
of R3. Taking the difference of the limiting values across the sheet
gives the relation

D∆u

Dt
= −∇(p1 − p2)

ρ
= −∇f (p1 − p2)

ρ
(6)

on the sheet. For the second equality, we have used the fact that
∇(p1−p2) = ∇f (p1−p2), which holds because the velocity jump
∆u is tangential to the surface.

The pressure jump p1 − p2 is balanced by the surface tension

p1 − p2 = σ(H1 −H2), (7)
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where p1, p2 are the pressures on each side of
the surface, σ is the surface tension coefficient
and H1, H2, are the (signed, scalar-valued)
mean curvatures of the two liquid-air inter-
faces possessed by a soap film immersed in air.
We use the convention that the mean curvature is positive when the
interface is convex toward the liquid. For a manifold patch of the
vortex sheet we simply have that H1 = −H2, since the conceptual
“two” sides of our idealized thin sheet geometrically coincide while
possessing opposing orientations. However, we have explicitly bro-
ken out the two contributions as a foreshadowing of our treatment
of triple-junctions.

Substituting (3) and (7) into (6) yields

D∇fΓ

Dt
= −σ

ρ
∇f (H1 −H2). (8)

By linearity of differentiation, we find D∇fΓ

Dt
= ∇f

DΓ
Dt

. Applying
this rule and integrating both sides gives

DΓ

Dt
= −σ

ρ
(H1 −H2), (9)

where we have chosen to discard the integration constant, recalling
that Γ is only defined up to the choice of a constant, equivalently the

choice of a reference point. For an alternative derivation, refer to
Pozrikidis [2000] who builds on an argument by Baker et al. [1982].

Note that circulation evolves in proportion to the scalar-valued mean
curvature; this may be contrasted against other representations of
the velocity field, for which the consideration of surface tension can
involve the vector-valued mean curvature normal.

Discussion We have arrived at the temporal evolution of the cir-
culation Γ subject to inertia and surface tension. The attendant
evolution of the ambient velocity field thus accounts for inertia, sur-
face tension, and (due to the Biot-Savart law) incompressibility.

The simplicity and locality of the evolution (9) become pronounced
when one adopts a Lagrangian discretization of the soap film: the up-
date to the state variables requires simply the evaluation of the mean
curvature. To our knowledge this circulation-based temporal evolu-
tion of vortex sheets subject to surface tension has not previously
been employed to model soap films.

4 Discrete Setting

4.1 Spatial discretization

Figure 4: Oscillating
cube.

Nonmanifold triangle mesh without
boundary We represent the geome-
try of our discrete soap film using a
piecewise linear triangulated surface,
i.e., a triangle mesh. The mesh con-
tains non-manifold edges and vertices
where soap films meet along Plateau
borders [Weaire and Hutzler 2001].

Our mesh is always watertight, i.e., it
does not have open boundaries. We ac-
commodate scenarios where the soap
film has a prescribed open boundary (e.g., a wire) by ignoring a part
of the mesh in the dynamics, as discussed in Section 4.6.

Regions We enumerate each watertight region of the mesh (i.e.,
each bubble volume), assigning a unique integer index to each region.
Two regions with a common interface are called a region-pair.

Circulation For the purpose of modeling vortex sheets, we have
interpreted circulation as a pointwise quantity [Stock 2006]; that is,
it is a scalar field restricted to the surface . Recall that the orientation
of the circulation gradient together with the surface normal deter-
mines the orientation of the vortex sheet strength: γ = n ×∇fΓ.

γ
Γ2

Γ1

n

Γ3

We therefore sample the scalar circulation field
Γ at vertices of the triangle mesh. This gives
rise to a piecewise linear field over triangles,
whose gradient (and therefore also the sheet-
strength) is piecewise constant, and which co-
incides with the vertex-based discrete curva-
ture measure used below. (This is to be con-
trasted with previous work which placed pointwise circulation on
edges [Stock 2006; Pfaff et al. 2012; Brochu et al. 2012].)

We associate a distinct scalar circulation field to each region-pair.
Thus, manifold vertices store one circulation scalar, while triple-
junction vertices store three circulation scalars, one for each region-
pair incident to the vertex. Quadruple-points, which also arise fre-
quently in stable foams, will store six circulations, and so forth.

Region-pair interfaces and circulations must satisfy a consistent sign
convention. Our implementation chooses the interface normal as



oriented from the higher index region to the lower; the recovered
velocity is independent of this arbitrary choice, so long as circulation
variables are consistently oriented relative to the surface normal,
using the convention codified in Fig. 2.

4.2 Temporal discretization

Since we work in the Lagrangian frame of the moving surface, the
time-evolution equation for circulation (9) indicates that we can sim-
ply advect vertices according to the ambient velocity, and integrate
surface tension forces into the vertex-based circulations (§4.3). In
the absence of surface tension, circulations are carried along and
naturally conserved. We apply forward Euler to integrate the ver-
tex positions under the velocity field u induced by circulations, as
computed from the Biot-Savart law (§4.4).

4.3 Integrating Surface Tension

We integrate surface tension forces into the circulation using the
(discrete, scalar, signed, pointwise) mean curvature at the liquid-air
interface. Recall that since we have only surface tension forces, and
no baroclinic terms, we avoid the need to convert back and forth
between circulation and vorticity: integration is performed directly
in the space of circulations.

We take a forward Euler step, updating the circulation associated to
each region-pair (i, j), i < j via

∆Γv
i,j = −σ∆t

ρA
(Hv

i −Hv
j ) (10)

whereA is the Voronoi area of the vertex [Meyer et al. 2002], used to
convert from integrated to pointwise curvature, and Hv

i , Hv
j are the

integrated signed scalar mean curvatures at vertex v due to the liquid-
air interface at incident regions i and j, respectively. Recall from
the smooth setting that Hv

i is positive when region i is outwardly
convex at v.

To evaluate Hv
i , we consider only the triangles incident to vertex v

and region i. We sum the signed scalar mean curvature of incident
edges. For each edge e, we take He

i = |e|θ, where |e| is the edge
length, and θi is the dihedral angle given by cos θi = n1

i ·n2
i , and n1

i ,
n2
i are the outwardly oriented normals of the two incident triangles

to e for region i [Cohen-Steiner and Morvan 2003]. The sign of He
i

is unambiguous, based on the outward orientation of region i. Then
the signed scalar vertex curvature, Hv

i , is

Hv
i =

1

2

∑
e

He
i (11)
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where the factor of one half ac-
counts for the fact that the inte-
grated edge curvature is divided
amongst its two vertices.

This unified treatment is applied
identically whether a vertex lies
on simple manifold regions, or
on a complex triple, quadruple,
or even higher-order junction.

Plateau borders At a triple-junction the total effect of surface
tension will be zero on all of the three circulations, Γv

1,2,Γ
v
1,3,Γ

v
1,3,

only when all three curvatures are equal, Hv
1 = Hv

2 = Hv
3 . This

recovers the proper 120◦ angle Plateau border equilibrium, as dic-
tated by Plateau’s laws, and illustrated in Fig. 5. A similar behavior
occurs for quadruple-points, where the four curvatures become equal

Figure 5: A triple-bubble at
equilibrium exhibits a stable
central Plateau border.

with angles of θ ≈ 109.47◦. Al-
though higher order junctions can
also balance in this manner, they are
typically unstable.

Discussion For our mean curva-
ture computation, we initially at-
tempted to use the familiar cotan
Laplace curvature discretization,
which gives rise to a mean curva-
ture normal vector, Hn; however,
our dynamics requires signed mean
curvature scalars, H . While the lat-
ter could theoretically be extracted
from the former by an inner product
with an appropriately oriented surface normal, we encountered diffi-
culties in the use of various options for discrete vertex normals n.
Without a discrete unit normal n that is guaranteed to be in precise
alignment with Hn, the scalar mean curvature H extracted from
Hn may have an incorrect sign.

4.4 Evaluating Biot-Savart

Given the circulation values stored on each vertex, including multi-
valued circulations on non-manifold vertices, we can convert to
vortex sheet strength, and use the Biot-Savart law to find the velocity
at any point in the domain.

From γ = n×∇fΓ we uniquely recover the vortex sheet strength on
a per-triangle basis. The triangle normal n is computed in standard
fashion recalling our earlier orientation convention, and the scalar
circulations on the vertices define a linear circulation field on the
triangle from which the constant gradient can be readily recovered.
Since the vortex sheet strength is a per-triangle quantity, no changes
are needed to evaluate Biot-Savart near non-manifold geometry.

Our expression for the Biot-Savart law, with regularization per Pfaff
et al. [2012], is:

u(x) =
1

4π

∫
S

γ(x′)× x− x′

(|x− x′|+ α2)3/2
dx′. (12)

Thus the velocity u at a point x in space is an integral over the
surface, which we discretize with one-point quadrature at triangle
barycenters. We set the regularization parameter α to half the mean
mesh edge length. We perform a direct O(N2) evaluation of this
integral; proven FMM [Brochu et al. 2012] or PPPM [Zhang and
Bridson 2014] techniques exist to drop this to essentially O(N).

4.5 Integrating Position

The velocity can be evaluated at the mesh vertices in order to perform
time integration of the vertex positions. We again use forward Euler,
although higher order schemes could be readily incorporated (both
here and when integrating surface tension) at the cost of additional
Biot-Savart evaluations. Since we use forward Euler to integrate
surface tension into circulation (effectively updating velocity), and
then use forward Euler to advect positions based on the (updated)
velocity, we are in fact applying a Symplectic Euler scheme.

4.6 Solid Interaction

To support simple solid interactions with wire loops (e.g., Fig. 7), we
develop a projection method to constrain the motion of the vertices.
Given a set of constrained vertices and their desired trajectories, our



approach locally modifies the circulations of the constrained vertices
to induce the necessary sheet velocities.

Since the tangential motion of the sheet does not necessarily cor-
respond to tangential motion of the actual liquid film [Pozrikidis
2000], we seek only to constrain the normal motion of the sheet
by modifying circulations. In the tangential direction, we simply
snap the vertices to their desired position in the tangent plane. This
reduces the number of active constraints from 3n to n for a set of n
constrained vertices. Conveniently, each (manifold) vertex carries a
single circulation, giving us exactly n constraints for n degrees of
freedom. We can recover a square, dense linear system to find the
necessary circulations as follows.

We describe the computation of the Biot-Savart integral for this set
of vertices as a matrixB applied to the affected circulation variables,
Γc, yielding a relation u = BΓc. We seek a change in circulations
∆Γc such that a vertex’s normal velocity component changes by
∆v · n, where ∆v represents the difference between current and
target velocity. We must solve the linear system

NTB∆Γc = NT ∆v (13)

where N is a matrix composed from the discrete vertex normals of
the vertices. For robustness against the possibility of (near-) singu-
larity we employ Tikhonov regularization, by adding the identity
matrix scaled such that its influence is small and independent of time
step and mesh resolution:

(BTNNTB + λ2I)∆Γc = BTNNT ∆v, (14)

where λ = 0.025/ē is the regularization parameter, and ē is the
average edge length. This corresponds to a mild preference for
smaller changes in circulation. The computed ∆Γc is directly added
to the circulation variables and the simulation continues.

At times, we would like to animate an open soap film bounded
by a wire, although the Los Topos package currently requires that
all regions be closed and watertight. We therefore approximate
open scenarios by adding a film of inactive and non-rendered ghost
triangles that do not participate in the dynamics (i.e., circulation evo-
lution, Biot-Savart evaluation, etc.), but do close up the open region.
Moreover, we observe that in the presence of an open boundary,
having vorticity in the interior of the soap film is insufficient, since
those degrees of freedom cannot adequately encode a path of air
flow from below the film to above (and vice versa) around the film
boundary. As a result the flow behaves as if the air volumes above
and below the film are conserved separately, even though the two
regions are well connected outside the sheet boundary. The top row
of Figure 6 illustrates this phenomenon in 2D. We therefore place an
additional vorticity degree of freedom on each open boundary edge
along the edge tangent direction (Figure 6 bottom row), and solve
for their strength using the same projection method above.

5 Time Integration

Our complete time integration loop is given by Algorithm 1.

Algorithm 1 Time Integration Loop

while simulating do
Integrate Surface Tension into Circulations (§4.3)
Recover Velocity from Circulation (Biot-Savart) (§4.4)
Integrate Vertex Positions Using Velocity (§4.5)
Enforce Constraints via Projection (§4.6)
Perform Remeshing and Topology Changes, Los Topos (§5.1)

end while

Air flow

Figure 6: 2D illustration of the treatment of vorticity at open bound-
ary. The thick blue lines are the vortex sheet, with the yellow dots
being the boundary. Top: The interior vorticity (orange arrows)
lacks the ability to represent an airflow path from below to above the
sheet. Bottom: The additional vorticity degrees of freedom (yellow)
provides the airflow path around the open boundary.

Figure 7: Left:A double-bubble being gradually pulled apart by two
wire loop (constraints) on either end. Right:A stable non-manifold
film structure spanning an octahedron-shaped wire.

5.1 Discrete Mesh Evolution

Our discrete soap film model relies on the ability to represent non-
manifold liquid interfaces as Lagrangian triangle meshes, and to treat
the topological changes that arise as bubbles deform and rearrange.
We make use of the Los Topos multimaterial surface tracking pack-
age introduced by Da et al. [2014], which was tailor-made for these
types of topology changes, including bubble splitting, multi-bubble
merging, and so-called T1 processes (essentially foam rearrange-
ment).

We treat Los Topos largely as a black box: we provide proposed
vertex trajectories for the vertices of the triangle mesh, and the
algorithm finds an updated watertight mesh that satisfies these tra-
jectories as nearly as possible, after handling topological changes
and remeshing. Since we rely on storing circulation data at mesh
vertices, we must also reassign circulation values to affected vertices
whenever a remeshing operation is performed. We therefore use a
slightly smaller set of operations to reduce resampling: edge split-
ting, edge collapse, T1 processes, and snapping. For edge splitting,
edge collapse, or snapping (coalescing nearby unconnected vertices),
we project the new vertex position onto the old mesh and compute
a new circulation value by barycentric interpolation over triangles.
For a T1 process, which amounts to duplicating and separating an
existing vertex, the two resulting vertices are assigned the circulation
of the old vertex. (We eschew edge flipping, which changes geom-
etry without changing vertices leading to temporal discontinuities,
and vertex smoothing, which moves nearly all vertices and leads to
oversmoothing of circulation.)

6 Results

We illustrate the effectiveness of our method with a range of exam-
ples. The results are organized to show how our method effectively
preserves circulation, handles solid boundaries, and stably simu-



Test Vertices Faces Simulation time per frame (s) Number of frames Total time (min)
Cube oscillation 4274 8544 1.29 6736 145
Double bubble 5204 10496 1.94 3560 115
Octahedron 854 1951 0.319 564 3
Bubble in a ring 1122 2240 0.309 1533 8
Catenoid pinching 1153 2294 0.96 1500 24
Pulling double bubble apart 1003 1998 0.276 5000 23
Bubble cluster 2734 5787 0.695 2214 25
Bubble popping 1971 4099 0.321 28000 150
Sweeping ring 3070 6129 0.504 7500 63

Table 1: Simulation time for various examples. A frame always corresponds to one time step of simulation.

lates non-manifold foam configurations. The size of the simulation
meshes and simulation times are summarized in Table 1. The max-
imum percentage deviations in the total volume of enclosed air
over the entire simulations for the cube, double-bubble, and foam
rearrangement examples was 2.2%, 2.4%, and 0.05% respectively.

Figure 8: The equilibrium
bubble.

Circulation preservation The
circulation-based discretization
in Section 4 allows our bubbles
to preserve circulation over long
simulations while being relatively
insensitive to the effects of remesh-
ing. Figure 4 uses an initially
cube-shaped bubble to illustrate
how our method maintains bubble
oscillations over very long periods.
The bubble remains stable and tem-
porally smooth despite re-meshing
and re-sampling the circulation
variables as often as needed to
preserve mesh quality. The sphere
also maintains a remarkable degree
of symmetry throughout.

Note that our explicit integration scheme is not unconditionally sta-
ble, and we must introduce some damping (by slightly diffusing Γ
along the sheet) in order to maintain stability. Conveniently how-
ever, this can also provide a reasonable visual approximation of
air viscosity, as we demonstrate by re-running the same oscillating
cube bubble with a substantially increased damping coefficient. As
expected it settles rapidly to a stable spherical configuration (Fig.
8), demonstrating that our method achieves the desired steady-state
equilibrium for this canonical example.

Figure 9: A double-bubble.

Moving beyond the simple
sphere topology, we perform
a similar oscillation test on
an initially stretched double
bubble, shown inset. Here,
and throughout our exam-
ples, the velocity of the am-
bient air flow plays the dom-
inant role in the motion, in
this case generating the in-
teresting wobbling behavior;
this velocity is compactly en-
coded by the triangle mesh.
Furthermore, we see that surface tension behaves naturally on the
triple curves and the interior interface joining the two bubbles.

Interaction with solid boundaries Our solid boundary condition
explained in Section 4.6 allows us to simply and stably simulate
bubbles interacting with solid obstacles like metal wires or bubble
wands. Figure 1, center, shows how pulling apart two metal rings

can correctly stimulate the catenoid soap film shape and eventual
separation of a single soap film. Here we have also made use of non-
simulated triangles to illustrate that our numerical method supports
open films (although our underlying surface tracker does not). When
the separation occurs, sharp geometric features are created near-
instantaneously, but again the simulation remains stable.

Figure 7, left, shows a double-bubble being pulled apart by two
metal rings until they undergo splitting and become fully separated.
While the pinching behavior is similar to the catenoid case, here we
see a triple junction curve shared by two bubbles collapsing to a
point and separating as opposed to the earlier example involving the
collapse of a single film.

Figure 1, right, illustrates a squished bubble constrained by a sta-
tionary loop. The surface tension forces lead the bubble to gradually
squeeze to one side as the combined system relaxes towards a more
stable configuration. Such an example would be difficult to achieve
with a standard Eulerian scheme due to the complex boundary con-
ditions created by the wire.

Figure 10: Sweeping a metal ring through space to blow bubbles.

Figure 10 simulates blowing bubbles from a wire ring, by sweeping
the ring through space in the axial direction. The inertia of the air
mass pushes the initially flat soap film to bulge out until it pinches
off into individual bubbles.

Non-manifold foam dynamics Next we step from single and
double film and bubble configurations up to the more general case
of highly complex non-manifold film and foam structures. Figure
7, right, shows a network of non-manifold soap films stretched over
an octahedron, a common physics experiment for children. We
initialize the geometry a short distance from its equilibrium, and
observe that it quickly settles and remains stable.

Our final pair of test cases involves a free-floating foam consisting of
ten bubbles combined together in a complicated, non-manifold non-
equilibrium state (Fig. 1, left). Upon initiating the dynamics, the
bubbles naturally shift and rearrange until they find an equilibrium.
To up the ante, we take the same drifting foam and intermittently
puncture a random bubble by directly deleting the relevant interface
triangles. At each pop the foam suddenly ripples and the bubbles
quickly shift into new non-manifold equilibrium configurations in
accordance with the dynamical laws.



7 Discussion

We have approached foam simulation from a markedly different
direction than earlier alternatives, yielding a number of trade-offs,
including limitations.

From the standpoint of versatility, purely Eulerian methods currently
dominate. Given their long line of investigation, Eulerian methods
support a broad range of features that we have yet to explore, includ-
ing accurate modeling of viscosity, application to volumetric liquids,
and bidirectional coupling with complex rigid and deformable ob-
jects. On the other hand, Eulerian methods require that bubbles be
significantly larger than the grid scale in order to resolve the desired
velocity field and film geometry without excessive dissipation or
volume loss; even then, explicit volume control may be necessary.
Although circulation- or energy-preservation has been considered by
a few Eulerian schemes [Elcott et al. 2007; Mullen et al. 2009], con-
serving these quantities in an Eulerian setting remains challenging
in the presence of fluid interfaces. In contrast to Eulerian meth-
ods, our approach efficiently handles all the dynamics on the mesh
surface itself, notably without the need for a large linear solve; fur-
thermore, circulation is preserved in a natural and simple manner,
and in particular in the presence of non-manifold fluid interfaces.

In comparison to related surface-based discretizations of thin sheets
and films [Batty et al. 2012; Zhu et al. 2014], our focus on centimeter-
scale soap films justifies neglecting certain quantities: we do not
track mass or thickness of the liquid, nor tangential component
of the dynamics. Instead, we focus on the complex geometry of
non-manifold foam structures and its attendant topology changes,
moreso than any existing purely triangle mesh-based scheme for
foam. Our treatment of air-dominated dynamics also requires no
coupling with a grid-based solver.

Some of our method’s limitations appear to be inherent to the vortex
sheet model, but many offer exciting directions for future inves-
tigation. Our current derivation assumes inviscid incompressible
flow, so that proper viscous boundary layers (e.g., vortex shedding)
and divergent flows (e.g., inflating bubbles) remain out of reach;
it may be interesting to introduce a limited form of divergence in
the form of normal motion, via an operator splitting approach. The
assumption of equal densities on either side of the sheet removes the
baroclinic terms, which play a crucial role in previous vortex sheet
smoke methods as well as potential extensions to small-scale liquid
droplets. There is also ample room for further acceleration [Brochu
et al. 2012; Zhang and Bridson 2014], as the method currently re-
lies on a direct Biot-Savart evaluation that scales quadratically and
explicit time integration of notoriously stiff surface tension forces.

We believe our circulation-based discretization is attractive both for
its minimalist representation of complex soap film dynamics, and
for the concrete numerical and computational benefits it offers. We
have shown that it preserves volume effectively and exhibits minimal
dissipation, while being fast and stable enough to handle a range of
compelling foam and bubble behaviors. Having so far addressed the
dynamics of both turbulent smoke and soap foams, we anticipate
that vortex sheet techniques have a great deal yet to offer.

Acknowledgments

This work was supported in part by the NSF (Grant IIS-1319483),
ERC (Grant ERC-2014-StG-638176), NSERC (Grant RGPIN-
04360-2014), Adobe, and Intel. We would also like to thank Hen-
rique Teles Maia, Liding Zeyu, Yonghao Yue, Papoj Thamjaroem-
porn and Rohan Sawhney for their assistance.

References

AGISHTEIN, M. E., AND MIGDAL, A. A. 1989. Dynamics of
vortex surfaces in three dimensions: Theory and simulations.
Physica D: Nonlinear Phenomena 40, 1, 91–118.

ANGELIDIS, A., AND NEYRET, F. 2005. Simulation of smoke
based on vortex filament primitives. In Symposium on Computer
Animation, 87 – 96.

ANGELIDIS, A., NEYRET, F., SINGH, K., AND
NOWROUZEZAHRAI, D. 2006. A controllable, fast and
stable basis for vortex based smoke simulation. In Symposium on
Computer Animation, 25–32.

BAKER, G. R., MIRRON, D. I., AND ORSZAG, S. A. 1982. Gen-
eralized vortex methods for free-surface flow problems. J. Fluid
Mech. 123, 477–501.

BARNAT, A., AND POLLARD, N. S. 2012. Smoke sheets for
graph-structured vortex filaments. In Symposium on Computer
Animation, 77–86.

BATTY, C., URIBE, A., AUDOLY, B., AND GRINSPUN, E. 2012.
Discrete viscous sheets. ACM Trans. Graph. (SIGGRAPH) 31, 4,
113.

BOJSEN-HANSEN, M., AND WOJTAN, C. 2013. Liquid surface
tracking with error compensation. ACM Trans. Graph. (SIG-
GRAPH) 32, 4, 79:1–79:10.

BRAKKE, K. 1992. The surface evolver. Experimental Mathematics
1, 2, 141–165.

BROCHU, T., AND BRIDSON, R. 2009. Robust topological opera-
tions for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4,
2472–2493.

BROCHU, T., KEELER, T., AND BRIDSON, R. 2012. Linear-time
smoke animation with vortex sheets. In Symposium on Computer
Animation, 87–95.

BROCHU, T. 2006. Fluid animation with explicit surface meshes
and boundary-only dynamics. Master’s thesis, Citeseer.

BUSARYEV, O., DEY, T. K., WANG, H., AND REN, Z. 2012.
Animating bubble interactions in a liquid foam. ACM Trans.
Graph. (SIGGRAPH) 31, 4, 63.

CLAUSEN, P., WICKE, M., SHEWCHUK, J. R., AND O’BRIEN,
J. F. 2013. Simulating liquids and solid-liquid interactions with
Lagrangian meshes. ACM Trans. Graph. 32, 2, 17.

COHEN-STEINER, D., AND MORVAN, J.-M. 2003. Restricted
delaunay triangulations and normal cycle. 237–246.

COTTET, G.-H., AND KOUMOUTSAKOS, P. 2000. Vortex Methods:
Theory and Practice. Cambridge University Press.

DA, F., BATTY, C., AND GRINSPUN, E. 2014. Multimaterial
mesh-based surface tracking. ACM Trans. Graph. (SIGGRAPH)
33, 4, 112:1–112:11.

DURIKOVIC, R. 2001. Animation of soap bubble dynamics, cluster
formation and collision. Computer Graphics Forum (Eurograph-
ics) 20, 3, 67–76.

ELCOTT, S., TONG, Y., KANSO, E., SCHRÖDER, P., AND DES-
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