
Data Scratchpad Prefetching for Real-time Systems

Muhammad R. Soliman and Rodolfo Pellizzoni
University of Waterloo, Canada. {mrefaat, rpellizz}@uwaterloo.ca

Abstract— In recent years, the real-time community has
produced a variety of approaches targeted at managing on-
chip memory (scratchpads and caches) in a predictable way.
However, to obtain safe Worst-Case Execution Time (WCET)
bounds, such techniques generally assume that the processor is
stalled while waiting to reload the content of on-chip memory;
hence, they are less effective at hiding main memory latency
compared to speculation-based techniques, such as hardware
prefetching, that are largely used in general-purpose systems.
In this work, we introduce a novel compiler-directed prefetching
scheme for scratchpad memory that effectively hides the latency
of main memory accesses by overlapping data transfers with
the program execution. We implement and test an automated
program compilation and optimization flow within the LLVM
framework, and we show how to obtain improved WCET
bounds through static analysis.

I. INTRO

The performance of computer programs can be signifi-
cantly affected by main memory latency, which has largely
remained similar in recent years. As a consequence, cache
prefetching has been extensively researched in the archi-
tecture community [1]. Prefetching techniques incorporate
hardware and/or software to hide cache miss latency by
attempting to load cache lines from main memory before they
are accessed by the program. The essence of these techniques
is speculation of the data locality and the cache behavior,
which makes them unsuitable to provide Worst-Case Execu-
tion Time (WCET) guarantees for real-time programs.

In the context of real-time systems, in recent times there
has been significant attention to the management of on-chip
memory. In particular, a large number of allocation schemes
for scratchpad memories have been proposed in the literature;
compared to caches, ScratchPad Memory (SPM) requires
an explicit management of transfers from/to main memory.
We note that cache memories can also be managed in a
predictable manner similar to SPM, for example employing
cache locking [2]. These techniques allow the derivation
of tighter WCET bounds by statically determining which
memory accesses target on-chip and which main memory.
However, they do not solve the fundamental memory latency
problem, because they generally assume that the core is
stalled while the content of on-chip memory is reloaded.

To address such issue, in this paper we present a novel
compiler-directed prefetching scheme that optimizes the allo-
cation of program data in on-chip memory with the objective
to minimize the WCET. Our method relies on a Direct
Memory Access (DMA) controller to move data between on-
chip and main memory. Compared to related work, we do
not stall the program while transferring data; instead, we rely
on static program analysis to determine when data is used in
the program, and we prefetch it into on-chip memory ahead
of its use so that the time required for the DMA transfer can
be overlapped with the program execution. As we show in
our evaluation, for certain benchmarks our solution allows

to drastically reduce the stall time due to memory latency.
More in details, we provide the following contributions:
• We describe an allocation mechanism for SPM that

manages DMA transfers with minimum added overhead
to the program. To statically determine which accesses
target the SPM, we introduce a program representation
and allocation constraints based on refined code regions.

• We develop an allocation algorithm for data in scratch-
pad memory that takes into account the overlap between
DMA transfers and program execution.

• We show how to model the proposed mechanism in the
context of static WCET analysis using a standard data-
flow approach for processor analysis.

• We fully implement all required code analysis, opti-
mization and transformation steps within the LLVM
compiler framework [3], and test it on a collection of
benchmarks. Outside of loop bound annotations, our
prototype is able to automatically compile and optimize
the program without any programmer intervention.

The rest of the paper is organized as follows. We recap
related work in Section II. We then introduce a motivating
example in Section III. We detail the region-based program
representation in Section IV, and our proposed allocation
mechanism in Section V. Section VI discusses the allocation
algorithm, and Section VII introduces the WCET abstraction
for our prefetch mechanism. Finally, we present the compiler
implementation in Section VIII and experimental results in
Section IX, and provide concluding remarks in Section X.

II. RELATED WORK

ScratchPad Memory (SPM) management has been widely
explored in the literature, both for code and data allocation.
We focus on data SPM as it drew more attention in the
literature due to the challenges connected to data usage anal-
ysis and optimization. Many approaches target improving the
average case performance [4], [5], [6], [7], [8], [9]. Other
mechanisms optimize the allocation for the WCET in real-
time systems [10], [11], [12], [13]. In general, management
techniques are divided between static or dynamic. Static
methods partition the data memory between the SPM and
the main memory and assign fixed allocation of the SPM at
compile-time [6], [10]. On the other hand, dynamic methods
adapt to the changing working data set of the program by
moving objects between the SPM and main memory during
run-time [4], [5], [13], [9], [11], [7]. Since our proposed
scheme allows us to more efficiently hide the cost of data
transfers, we focus on a dynamic approach.

The closest related work in the scope of dynamic methods
for data SPM are [7], [8], [14], which utilize prefetching
through DMA. In [7], the authors use a SPM data pipelin-
ing (SPDP) technique that utilizes Direct Memory Access
(DMA) to achieve data parallelization for multiple iterations
of a loop based on iteration access patterns of arrays. The
work in [8] proposes a general prefetching scheme for on-
chip memory. It exploits the usage of DMA priorities and
pipelining to prefetch arrays with high reuse to minimize

1

DMA_COPY(x)

BB1

BB2

BB3

BB4

CHECK_DMA(x)

DMA_COPY_BACK(x)
DMA_COPY(y)

CHECK_DMA(x)
CHECK_DMA(y)

Stall = 0

Stall = 20

With PrefetchWithout Prefetch

y

BB5

COPY_BACK(x)

COPY(x)

COPY(y)

Stall = 20

Stall = 20

x

x

Stall = 40

DMA(x)

DMA(y)

DMA(x)

Fig. 1: Motivating Example

the energy and maximize average performance. In [14], the
authors add a DMA engine to the processor to control the
DMA transfers using a job queue, similarly to the mechanism
proposed in our work. They also provide high level functions
to manage the DMA. However, no optimized allocation
scheme is discussed. Furthermore, all three discussed works
target the average case rather than the worst case.

In the context of real-time systems, the closest line of work
is the PRedictable Execution Model (PREM) [15], [16], [17].
Under PREM, the data and code of a task is prefetched into
on-chip memory before execution, preferably using DMA.
A variety of co-scheduling schemes (see for example [18],
[19]) have been proposed to avoid stalling the processor by
scheduling the DMA operations for one task with the exe-
cution of another task on the same core. However, we argue
that such approaches suffer from three main limitations, that
we seek to lift in this work. 1) Statically loading all data and
code before the beginning of the program severely limits the
flexibility and precision of the allocation. 2) DMA transfers
cannot be overlapped with the execution of the same task,
only other tasks. This makes the proposed approaches less
suitable for many-core systems, where it might be preferable
to execute a single task/thread on each core. 3) With the
exception of [20], the proposed approaches assume manual
code modification, which we find unrealistic in practice. An
automated compiler toolchain is described in [20], but since
it relies on profiling, it cannot guarantee WCET bounds.

III. MOTIVATING EXAMPLE

In this section, we present an example that shows the ben-
efit of data prefetching in scratchpad-based systems. Given a
set of data objects used by a program, the general scratchpad
allocation problem is to determine which subset of objects
should be allocated in SPM to minimize the WCET of the
program. Since the latency of accessing an object in the SPM
is less than in main memory, we can compute the benefit
in terms of WCET reduction for each object allocated in
the SPM. We model the program’s execution with a Control
Flow Graph (CFG) where nodes represent basic blocks, i.e.,
straight-line pieces of code. In particular, Figure 1 shows the
CFG of a program where object x is read/written in basic
blocks BB2 and BB4 and object y is read in BB4. Note that
BB2 and BB4 are loops, since they include back-edges (i.e.,
the program execution can jump back to the beginning of the
block); hence, x and y can be accessed many times. Assume
that the SPM can only fit x or y. A static SPM allocation

approach will choose to allocate either x or y for the whole
program execution. A dynamic SPM allocation approach will
try to maximize the benefit by possibly evicting one of the
two objects to fit the other during the program execution.

Let the benefit of accessing x from the SPM instead of
the main memory be 100 cycles for BB2 and 10 cycles for
BB4. Similarly, the benefit for accessing y from the SPM
in BB4 is 70 cycles. Let the cost to transfer x from main
memory to the SPM or vice-versa be 20 cycles, and the cost
for y 40 cycles. Then, for static allocation, the total benefit
of allocating x is 100+10 = 110 cycles and the cost is 2*20
cycles (fetch x from memory to SPM at the beginning of the
program and write it back from SPM to main memory at
the end). Similarly, the benefit for allocating y is 70 cycles
and the cost is 20 cycles (fetch only as y is not modified,
so there is not need to write it back to main memory). The
optimal allocation would choose x as it has a net benefit of
70 cycles versus 50 cycles for y.

In previous approaches that adopt dynamic allocation, the
program execution has to be interrupted to transfer objects
either using a software loop or a DMA unit. We represent this
case in the without prefetch box in Figure 1. In the example,
x is fetched before BB2 and written back after BB2 to empty
the SPM for y. Then, y is fetched before BB4. Since x is
allocated in the SPM for BB2 and y is allocated for BB4, this
results in a total benefit of 100+70 = 170. The program will
stall before BB2 to fetch x, after BB2 to write-back x, and
before BB4 to fetch y. The total cost is 20+ 20+ 40 = 80
cycles as the execution has to be stalled for each fetch/write-
back transfer. The net benefit is 170−80 = 90 cycles, which
is 20 cycles better than the static allocation.

However, if memory transfers can be parallelized with
the execution time of the program, we next show that we
can exploit the SPM more efficiently. We illustrate the
prefetching sequence in the with prefetch box in Figure 1.
Let us assume that the amount of execution time that can be
overlapped with DMA transfers is 30 and 40 cycles for BB1
and BB3, respectively. We start prefetching x before BB1 by
configuring the DMA to copy x from main memory to SPM.
Then, we poll the DMA before BB2 where x is first used
to ensure that the transfer has finished. Since transferring x
requires less cycles than the maximum overlap for BB1 (20
versus 30), the prefetch operation for x finishes in parallel
with the execution of BB1; hence, there is no need to stall
the program before x can be accessed from the SPM in BB2.
Before BB3, we first write-back x so that we have enough
space in the SPM to then prefetch y. We propose to schedule
both transfers back-to-back, e.g. using a scatter-gather DMA,
in parallel with the execution of BB3. Since the amount
of overlap for BB3 is 40, the write-back for x completes
after 20 cycles, leaving 20 additional cycles of overlap for
the prefetch of y. Hence, by the time BB4 is reached, the
CPU stalls for 40−20 = 20 cycles to complete prefetching
y before using it in BB4. For the described prefetching
approach, the benefit is the same as the dynamic allocation.
However, the cost is lower as the CPU only stalls for 20
cycles. The net benefit is 170−20 = 150 cycles, compared
to 90 cycles without prefetching.

IV. REGION-BASED PROGRAM REPRESENTATION

The motivating example shows that the cost of copying
objects between main memory and SPM can be reduced by
overlapping DMA transfers with program execution. How-
ever, to achieve a positive benefit, we also need to predict
whether any given memory access targets the SPM rather
than main memory. In general, programs contain branches

2

and function calls, making such determination possibly de-
pendent on the execution path. To produce tight WCET
bounds, a fundamental goal of our approach is to statically
determine which memory accesses are in the SPM regardless
of the flow through the program. To achieve this objective,
in this section we consider a program representation based
on code regions [21] and we add constraints on how objects
can be allocated in the SPM based on regions.

We consider a program composed of multiple functions.
Let G f = (N,E) be the CFG for function f , where N is
the set of nodes representing basic blocks and E is the set
of edges. A Single Entry Single Exit (SESE) region is a
sub-graph of the CFG that is connected to the remaining
nodes of the CFG with only two edges, an entry edge
and an exit edge. A region is called canonical if there
is no set of regions that can be combined to construct it.
Any two canonical regions are either disjoint or completely
nested. The canonical regions of a program can be organized
in a region tree such that the parent of a region is the
closest containing region, and children of a region are all
the regions immediately contained within it. Two regions are
sequentially composed if the exit of one region is the entry
of the following region. Note that a basic block with multiple
entry/exit edges does not construct a region by itself.

Figure 2a shows an example CFG and its canonical
regions. The corresponding region tree is shown in Figure 2b.
In this example, region r1 is the parent of regions r2,r3
and r4. Regions r2 and r3 are sequentially composed; this
is represented by a solid-line box in the figure.

In the rest of the paper, we use the term allocation to
refer to the act of reserving a space for an object in the
SPM at a given address during the execution of the program
code. In our solution, we restrict the allocation of objects
on a per-region basis: space for an object is reserved upon
entering a region, and the object is then evicted from the
SPM upon exiting the same region. This guarantees that the
object is available in the SPM independently of which path
the program takes through the region; as an example, if we
allocate object x in r1, then we statically know that any
reference to x in BB5 will access the SPM independently
of whether the program flows through BB2−BB3 or BB4, or
of how many iterations of the loop in BB3 are taken.

Unfortunately, the proposed region-based allocation has
two limitations: 1) we cannot allocate an object in BB1 only,
because BB1 is not a region; 2) in the example, BB4 performs
a call to another function g(). Since the entirety of BB4 is
a region, we cannot decide to allocate an object only for
the call to g(), or only for the rest of the code of BB4. To
address these limitations, we propose to construct a refined
region tree that allows a finer granularity of allocation.

BB4

BB2

BB3

BB5

BB1

r2

r1

r4

r3

g()

(a) Program CFG

BB4

BB2

BB3

BB5

BB1

r2

r1

r4

r3

f()r1

r2 r3 r4

BB4b

BB2

BB3

BB5

BB1

r2

r1

r3
BB4a

f()

r'8

r'5

r4r'7

r'11

r1

r'5 r'6 r'11

r4r'7

r'10

r'6

r'9

r'10
r2 r3

r'8

r'9

(b) Region tree

Fig. 2: Program CFG G f and region tree

To obtain the refined regions, we first construct a modified
graph Ḡ f =(N̄, Ē) from G f , where N̄ is the set of basic block
nodes, call nodes and merge/split nodes and Ē is the set of
edges such that:
• Each call to a function in G f is split into a separate call

node.
• A merge/split node is inserted before/after a basic block

/ call node with multiple entry/exit edges.
Note that after the transformation, every node in Ḡ that is not
a merge/split node has a single entry and a single exit; hence,
it is a region. We denote a region that consists of a sequence
of sequentially composed regions as a sequential region.
A sequential region is not canonical as it is constructed
by combining other regions. Finally, we construct the re-
fined region tree by considering both canonical regions and
maximal sequential regions, i.e., any sequential region that
encompasses a maximal sequence of sequentially composed
regions. It is proved in [22] that adding maximal sequential
regions to the tree still results in a unique region tree.

BB4b

BB2

BB3

BB5

BB1

r2

r1

r3
BB4a

g()

r'8

r'5

r4r'7

r'11

r'6

r'9

r'10

(a) Refined program CFG

BB4

BB2

BB3

BB5

BB1

r2

r1

r4

r3

f()r1

r2 r3 r4

BB4b

BB2

BB3

BB5

BB1

r2

r1

r3
BB4a

f()

r'8

r'5

r4r'7

r'11

r1

r'5 r'6 r'11

r4r'7

r'10

r'6

r'9

r'10
r2 r3

r'8

r'9

(b) Refined region tree

Fig. 3: Refined program CFG Ḡ f and region tree

Figure 3 shows the refined CFG and region tree for the
example in Figure 2. We added merge points before BB3
and BB5, and split points after BB1 and BB3. Assuming that
function g() is called at the beginning of BB4, we split BB4
to a call node BB4a that contains the function call and a
basic block BB4b for the rest of the instructions in BB4. In
the refined region tree in Figure 3b, regions r1,r′7 and r4 are
sequential regions. The regions r1 to r4 are the same as in
the original region tree, while regions r′5 to r′11 are added as
a result of the refinement process. We refer to r′3 as a call
region as it contains the call node BB4a. Finally, we use the
term trivial region to denote any leaf of the refined region
tree (r′5,r

′
11,r2,r′8,r

′
9 and r′10 in the example); note that by

definition, each trivial region must comprise either a single
basic block or a single call node, i.e., trivial regions represent
code segments in the program. Since allocations are based on
regions, for simplicity we will omit individual nodes when
representing CFGs and instead draw regions.

V. ALLOCATION MECHANISM

We now present our proposed allocation mechanism in
details. In the rest of the paper, we assume the following:
• We focus solely on the allocation of data SPM, as it

is generally more challenging. We assume a separate
instruction SPM that is large enough to fit the code.

• The allocation is object-based, meaning that we do not
allow allocation of parts of an object. Transformations

3

like tiling and pipelining could further improve the
allocation, especially for small sizes of SPM. We keep
this possible expansion to future work.

• We assume that the target program does not use re-
cursion or function pointers and that local objects have
fixed or bounded sizes. We argue that these assump-
tions conform with standard conventions for real-time
applications.

• We assume that all loops in the program are bounded.
The bounds can be derived using compiler analysis,
annotations or profiling.

• We use pointer analysis to determine the references of
the load/store instructions. A points-to set is composed
for each pointer reference. The size of the points-to
set depends on the precision of the pointer analysis.
An allocation-site abstraction is used for dynamically
allocated objects to represent objects, i.e., to consider a
single abstract object to stand in for each run-time object
allocated by the same instruction [23]. To be able to
allocate a dynamically allocated object, an upper bound
on the allocation size should be provided at compile-
time.

• For simplicity, we consider a system comprising a
single core running one program. However, the pro-
posed method could be extended to a multicore system
supporting a predictable arbitration for main memory as
long as each core is provided with private or partitioned
SPM.

As discussed in the motivating example, to efficiently
manage the dynamic allocation of multiple objects we require
a DMA unit capable of queuing multiple operations. In gen-
eral, many commercial DMA controllers with scatter-gather
functionality support such requirement, albeit the complexity
of managing the DMA controller in software and checking
whether individual operations have been completed could
increase with the number of transfers. As a proof of concept,
we based our implementation on a dedicated unit, which we
call the SPM controller; we reserve implementation on a
COTS platform as future work 1.

Our proposed mechanism works by inserting allocation
commands in the code of the program, which are then
executed by the SPM controller. The process of allocating an
object starts with reserving space in the SPM and prefetching
the object from main memory if necessary (ALLOC com-
mand). Then, once the prefetch operation is complete, the
SPM address is read and passed to the memory references
that access the object (GETADDR command). Finally, the
object is evicted from the SPM and written back to main
memory if necessary (DEALLOC command). As discussed
in Section IV, we restrict object allocation based on regions;
hence, the ALLOC command is always inserted at the
beginning of a region, and the corresponding DEALLOC
command at the end of the same region. In the rest of the
section, we first detail the operation of the SPM controller,
followed by the semantic of the allocation commands. Fi-
nally, we provide a comprehensive allocation example.

A. SPM controller
Figure 4 shows the proposed SPM controller and its

connections to an SPM-based system. There is a separate
instruction SPM (I-SPM) that is assumed to fit the code of the
program. The data SPM (D-SPM) is managed by the SPM

1For example, the Freescale MPC5777M SoC used in previous work [16]
includes both SPM memory and a dedicated I/O processor that could be used
to implement the described management functionalities.

CPU

SPM
Controller

DMA D-SPMMemory

I-SPM

Object Table

Control
Unit

CPU

DMA

Pointer Table

DMA Queue

CMD Decoder

Fig. 4: SPM-based System

controller. Since the processor must be able to access the
SPM directly, the SPM is assigned an address range distinct
from main memory. The SPM controller is also a memory
mapped unit, since the CPU sends allocation commands
to the SPM controller by reading/writing to its address
range. The system incorporates a DMA unit for memory
transfers. The D-SPM is assumed to be dual-ports, which
means that access to the SPM by the CPU and transferring
data between SPM and main memory using DMA can occur
simultaneously. The proposed allocation method and WCET
analysis can be applied for single-port SPM, but this will
offer less opportunity to overlap the memory transfers. The
DMA is connected to a shared bus with the main memory.
This bus can be used by either the CPU or the DMA.
To efficiently support the parallization of memory transfers
with the execution time, the DMA is designed to work in
transparent mode: it transfers an object only when the CPU
is not using the main memory. Whenever the CPU requests
the memory bus, the DMA yields to the request and stalls
any ongoing transfer until the memory bus is released.

The SPM controller consists of command decoder, object
table, pointer table, DMA queue and control unit as shown
in Figure 4. As discussed, allocation commands are encoded
as load/store instructions to the SPM controller. So, the
command decoder reads the address and the data of the mem-
ory operation and decodes them into one of the allocation
commands; the control unit then executes the command using
the object table, the pointer table and the DMA queue.

The object table tracks the status of allocated objects in the
SPM. The entry of the object table contains the main memory
address (MM ADDR), the size of the object (SIZE), the SPM
address (SPM ADDR) and allocation flags. The flags reflects
the status of the object:

A (A)llocated in the SPM
PF OP (P)re(F)etching (OP)eration has been scheduled
WB OP (W)rite-(B)ack (OP)eration has been scheduled
WB (W)rite-(B)ack when de-allocated if used
U (U)sed in the SPM
USERS number of current users of the object

USERS field records the number of allocations that have
issued an ALLOC command for the object and still using it,
i.e., the corresponding DEALLOC has not been reached. It
is incremented by ALLOC and decremented by DEALLOC.
We show an example for the usage of this flag in Section V-
C. The DMA is configured with source address, size and

4

a destination address extracted from an entry in the object
table. DMA operations are scheduled in the DMA queue
that allows scheduling multiple DMA transfers and executing
them in FIFO order.

The pointer table is used to disambiguate pointers dur-
ing run time. An entry in the pointer table consists of
the main memory address (MM ADDR) of a pointer, flag
(ALIASED) and a reference to an entry in the object table
(OBJ TBL IDX). If MM ADDR aliases with the main mem-
ory address range of an object in the object table, the flag
ALIASED is set and the index of the aliased object is stored
in OBJ TBL IDX.

B. Allocation Commands
Commands (ALLOC/ DEALLOC/ GETADDR) manage

the allocation of objects/pointers in the SPM. Table com-
mands (SETMM/ SETSIZE/ SETPTR) are used to set the
object and pointer tables in the SPM controller.

Two commands, SETMM and SETSIZE, set the main
memory address and the size of an object in the entry
OBJ TBL IDX in the object table:

SETMM OBJ TBL IDX, MEM ADDR

SETSIZE OBJ TBL IDX, SIZE

These commands are used to initialize the object table, add
the information of dynamically-allocated objects or change
the set of objects tracked by the table during run-time.

A pointer resolution command SETPTR is required for
pointers:

SETPTR PTR TBL IDX, MEM ADDR

This command configures the entry PTR TBL IDX in the
pointer table with memory address MEM ADDR. This mem-
ory address is compared with the valid entries of the object
table to find the entry of the pointee object. If the pointee is
found, ALIASED flag is set and the table index of the object
is stored in OBJ TBL IDX. All the allocation commands
on pointers check the pointer entry for the aliasing object
to use in allocation. Alias checking can be implemented
in one cycle using a one-shot comparator or over multiple
cycles comparing one entry at a time. If the number of
entries in the object table is large, an alias set that specifies
which objects that can alias with the pointer can be used
to reduce the number of comparisons. For the sake of
simplicity of analysis, we assume in this paper a one-cycle
implementation.

Next, we present the allocation commands. An allocation
command can be issued for an object or a pointer. However,
an object entry OBJ T BL IDX is required for both cases. We
use T BL IDX to refer to an entry in the object or pointer
table based on a flag PT R. If PT R = 0, OBJ T BL IDX =
T BL IDX . If PT R = 1, PT R T BL IDX = T BL IDX and
OBJ T BL IDX is obtained from the pointer entry in the
pointer table.

ALLOCXX TBL IDX, MEM ADDR, PTR

DEALLOC TBL IDX, PTR

GETADDR TBL IDX, PTR

ALLOCXX command reserves the space in the SPM at
MEM ADDR and schedules a DMA transfer if necessary.
There are four versions of ALLOCXX command according
to the flags (XX): ALLOC, ALLOCP, ALLOCW, AL-
LOCPW. The P flag directs the controller to prefetch the
object from the main memory. The SPM controller will

schedule a prefetch transfer for the object and set PF OP
flag in the object entry. If P flag is not used, the object is
allocated directly and A flag is set. Otherwise, A flag is set
once the prefetch transfer completes. The W flag sets the WB
flag in the object entry to direct the controller to copy back
the object to the main memory when de-allocated. P flag is
used in two cases: 1) if, during the execution of the region
where the object is allocated, the current value of the object
is read or 2) the object is partially written, e.g. writing some
elements of an array. W flag is used if the object is modified,
so that the main memory is updated with the new values after
de-allocating the object. Note that for local objects defined
in a function, there is no need to prefetch the object before
its first use in the function or write-back the object after its
last use in the function.

DEALLOC command de-allocates the object/pointer. If
the WB and U flags are set in the object entry, the controller
will schedule a write-back transfer, set WB OP flag and reset
A flag. Otherwise, the object will be de-allocated by simply
resetting A flag.

GETADDR command returns the current address of the
object/pointer. For a pointer, if ALIASED flag in the pointer
entry is not set, MMADDR is returned, otherwise the address
is checked for the object in OBJ ADDR T BL. If PF OP or
WB OP flag is set for the object, the controller stalls until
the DMA completes transferring the object. If no transfer is
scheduled or after the transfer finishes, the controller returns
SPM ADDR if A flag is set and MM ADDR otherwise.
GETADDR command is only added before the first use
of the object after an allocation/de-allocation. The address
returned by the command is then applied for all the next uses
until another allocation/de-allocation occurs. This process is
compiler-automated and does not require per-access address
translation from main memory to SPM addresses, as in
related work [11]; hence, we do not add extra overhead to
the critical path of the processor. For pointers, SETPTR and
GETADDR commands are required if the pointer can alias
with the content of the SPM even if the pointer itself is not
allocated.

If a prefetch transfer has been scheduled and a DEALLOC
command is issued for the object to be prefetched, the
transfer is canceled as the object is not needed anymore.
Also, if a write-back transfer has been scheduled for an
object and it was followed by ALLOCXX for the same
object, the transfer is canceled if the object is allocated to the
same SPM address, otherwise the transfer is not canceled.
This is particularly important for allocations within loops,
when the object can be allocated to the same address over
multiple iterations.

C. Example

Figures 5, 6 depict an example for the allocation process.
There are two objects x and y corresponding to entries 3 and
5 in the object table. Also, a pointer p is an argument to
function f and uses entry 0 in the pointer table. Figure 5
shows the CFG of two functions where r1-r10 represent
regions. x is read/written in r3, and the pointee of p is read
in r9. Note that function f , comprising regions r7 to r10, is
called from two different call regions, r4 with p = &x and r5
with p = &y . In the example, we assume that x is allocated
at address a1 in the SPM in sequentially composed regions
r2,r3 and r4. The argument of function f is allocated at a
different address a2 inside the function.

We use program points ¶ to ¾ to follow the allocation
process. Entries 3 and 5 of the object table, Entry 0 of the
pointer table and the DMA queue are traced in Figure 6 for

5

PF(y)

PF(x)
r2

r3

r4

r5

r6

r8

r9

r10

DEALLOC(3,0)

GETADDR(3,0)

ALLOCPW(3,a1,0)

2

6

1

x

f(x)

f(y)

ALLOCP(0,a2,1)

GETADDR(0,1)

DEALLOC(0,1)

p
5

4

7

8

9

r1 r7 SETPTR(0,p)
3

WB(x)

WB(x)

Fig. 5: Allocation Example

these program points. At ¶, x is allocated to address a1 with
P and W flags. In the object table, PF OP is set to indicate x
is being prefetched, WB is set to indicate a write-back when
de-allocated, and USERS is incremented. A prefetch transfer
PF(x) is scheduled in the DMA queue. At ·, GETADDR
checks entry 3 for the address; as PF(x) did not finish at
this point, the CPU is stalled. When the prefetch finishes, x
is allocated, PF OP is reset, A is set; and the CPU continues
execution. Also, U is set to mark x as used in the SPM. In r4,
function f is called. At ¸, SETPTR(0, p) sets the address
for p in entry 0 of the pointer table and apply alias checking
with the object table. As p aliases with x at this point,flag
ALIASED is set and OBJ T BL IDX refers to entry 3 in the
object table. An allocation of p to a2 is issued; however, its
pointee x is already in the SPM at address a1. So, no new
allocation at a2 is performed, and USERS is incremented in
entry 3 to indicate that two ALLOC commands (users) have
been executed for x. GETADDR at ¹ returns a1. When p
is deallocated at º, USERS is decremented in entry 3 of the
object table. However, x is not evicted as there is another
user for it. When x is deallocated at », x is evicted as this
is the last user of x in the SPM. As WB and U are set, a
write-back is scheduled for x. f is called again in r5. The
same process to set entry 0 in the pointer table at point ¼
is done with the address of y and OBJ T BL IDX refers to
entry 5 in the object table. Then, p is also allocated to a2
with P flag. So, a prefetch is scheduled for y. Before p is
used in r9, GETADDR is executed. At this point the write-
back transfer of x is done and the prefetch for y is partially
completed. The CPU stalls till y is completely prefetched,
then U flag is set in entry 5, address a2 is returned, and
the execution continues at ½. Finally, p is deallocated at ¾
which evicts y. No write-back is needed as WB flag is not
set.

An essential observation is that the state of the SPM
and the sequence of DMA operations in function f depend
on which region calls f : if f is called from r4, then x is
already available in SPM at address a1, and the allocation
of p to a2 is not used. If instead f is called from r5, p is
allocated to a2 and the object y must be prefetched from
main memory. Therefore, let σ be the context under which
a region executes, i.e., the sequence of call regions starting
from the main function; note that since the main function
of the program is not called by any other function, the only
valid context for regions in the main is σ = /0. We denote the

execution of a region rn in a context σ as rσ
n , which we call a

region-context pair. Then, allocation decisions, which involve
adding allocation commands in the code, must be based on
regions, but the state of the SPM and DMA operations, which
are needed for WCET estimation, depend on region-context
pairs. Intuitively, this is equivalent to considering multiple
copies of each region rn, one for each context in which rn
can execute.

VI. ALLOCATION PROBLEM

We now discuss how to determine a set of allocations
for the entire program with the objective to minimize the
program’s WCET. For the remaining of the section, we let
SSPM to denote the size of the SPM. V = {v1, . . . ,v j, . . .} is
the set of allocatable objects, where S(v j) denotes the size of
object v j. We let R = {r1, . . . ,rn, . . .} be the set of program
regions across all functions. Without loss of generality, we
assume that region indexes are topologically ordered, so that
each parent region has smaller index than its children, each
call region has smaller index than the regions in the called
function, and sequentially composed regions have sequential
indexes; this is also the order used in Figure 5. Note that
such topological order must exist since the refined region
tree for each function is unique, and furthermore the call
graph has no loops due to the absence of recursion. To
define the relation between region-context pairs we introduce
a parent function ℘(rσ

n) for a region-context rσ
n in function

f as follows: if rn is the root region of the refined region tree
for f , then ℘(rσ

n) = rσ ′
m , where rσ ′

m is the region-context that
calls f in context σ . Otherwise, ℘(rσ

n) = rσ
m, where rm is the

parent region of rn. As an example based on Figure 5, assume
that r4 executes in context σ . Then when r7 is called from r4,
r7 executes in context σ ∪r4. We further have ℘(rσ∪r4

7) = rσ
4 ,

while for example ℘(rσ∪r4
8) = rσ∪r4

7 . Finally, to generalize
the problem for the usage of pointers, let P= {p1, . . . , pk, . . .}
be the set of pointers in the program. As the pointee of the
pointer can change based on the program flow, we define
χrσ

n (pk) as the points-to set for pointer pk in region-context
rσ

n . For simplicity, we refer to the allocation of the pointee
of pointer as the allocation of the pointer. We define Srσ

n (pk)
as the size of pk in region-context rσ

n which is computed as:

Srσ
n (pk) = max

v∈χrσ
n
(pk)

S(v)

Note that the pointee of pk can be a global, local objects from
the set of objects in V or a dynamically allocated object. In
case of dynamic allocation, v refers to a dynamic allocation
site in the program.

We begin by formalizing the conditions under which a set
of allocations are feasible as a satisfiability problem. This
is similar to a multiple knapsack problem where regions
are knapsacks (available space in SPM), except that we add
additional constraints to model the relation between regions.
Remember that to allocate an object v j (pointer pk) in a
region rn, we have to assign an address in the SPM to the
object (pointer). Hence, an allocation solution is represented
by an assignment to the following decision variables over all
regions rn ∈ R and all objects v j ∈V (pointers pk ∈ P):

alloc
v j
rn =

{
1, if v j is allocated in rn

0, otherwise
assign

v j
rn = address assigned to v j in rn

allocpk
rn =

{
1, if pk is allocated in rn

0, otherwise

6

00

00

x 1 30 x 1 30

x 1 30 x 1 30

x 1 30 x 1 30

x 1 30 x 1 30

y 1 50 y 1 50

y 1 50 y 1 50

y 1 50 y 1 50

Object Table : Entries 3, 5

x 80 a1 0 1 0 1 0 13

y 40 0 0 0 0 0 05

x 80 a1 0 1 0 1 0 13

y 40 0 0 0 0 0 05

MM_ADDR SIZE SPM_ADDR A PF_OP WB_OP WB U USERSIDX MM_ADDR SIZE SPM_ADDR A PF_OP WB_OP WB U USERSIDX

x 80 a1 1 0 0 1 1 13

y 40 0 0 0 0 0 05

x 80 a1 1 0 0 1 1 13

y 40 0 0 0 0 0 05

x 80 a1 1 0 0 1 1 23

y 40 0 0 0 0 0 05

x 80 a1 1 0 0 1 1 23

y 40 0 0 0 0 0 05

x 80 a1 1 0 0 1 1 23

y 40 0 0 0 0 0 05

x 80 a1 1 0 0 1 1 23

y 40 0 0 0 0 0 05

x 80 a1 1 0 0 1 1 13

y 40 0 0 0 0 0 05

x 80 a1 1 0 0 1 1 13

y 40 0 0 0 0 0 05

x 80 a1 0 1 0 0 0 03

y 40 a1 0 0 0 0 0 05

x 80 a1 0 1 0 0 0 03

y 40 a1 0 0 0 0 0 05

x 80 a2 0 1 0 0 0 03

y 40 a1 0 1 0 0 0 15

x 80 a2 0 1 0 0 0 03

y 40 a1 0 1 0 0 0 15

x 80 a2 0 0 0 0 0 03

y 40 a1 1 0 0 0 1 15

x 80 a2 0 0 0 0 0 03

y 40 a1 1 0 0 0 1 15

x 80 a2 0 0 0 0 0 03

y 40 0 0 0 0 0 05

x 80 a2 0 0 0 0 0 03

y 40 0 0 0 0 0 05

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1 PF(x)PF(x)PF(x)

WB(x)WB(x)WB(x)

DMA Queue

WB(x)WB(x)PF(y) WB(x)PF(y)

MM_ADDR ALIASED OBJ_TBL_IDXIDX MM_ADDR ALIASED OBJ_TBL_IDXIDX

2

3

4

5

6

7

8

9

1

Pointer Table : Entry 0

Fig. 6: SPM Controller State for Allocation Example in Figure 5

assignpk
rn = address assigned to pk in rn

An allocation solution is feasible if the allocated objects
fit in the SPM at any possible program point. As discussed
in Section V-C, the state of the SPM depends on the context
under which a region is executed. Hence, we introduce new
helper variables to define the availability of an object v j
(pointer pk) in a region-context rσ

n :

avail
v j
rσ
n

=

{
1, if v j is available in SPM for execution of rσ

n

0, otherwise
address

v j
rσ
n

= address of v j in the SPM during execution of
rσ

n

availpk
rσ
n

=

{
1, if pk is available in SPM for execution of rσ

n

0, otherwise
addresspk

rσ
n

= address of pk in the SPM during execution of
rσ

n
We can determine the value of the helper variables based on
the allocation. We first discuss the basic constraints assuming
that the points-to information is not available. In this case,
allocation of a pointer is handled as an allocation of an
object. After that, we discuss how the constraints can be
modified to consider aliasing between objects and pointers.

1) Basic Constraints: We present a set of necessary and
sufficient constraints for an allocation problem in which
points-to information is not available.

∀v j,rσ
n : alloc

v j
rn ∨avail

v j
℘(rσ

n)
⇔ avail

v j
rσ
n
. (1)

∀pk,rσ
n : allocpk

rn ∨availpk
℘(rσ

n)
⇔ availpk

rσ
n
. (2)

Equation 1 (2) simply states that v j (pk) is available in the
SPM during the execution of rσ

n if either v j (pk) is allocated
in rn, or if v j (pk) was already available in the SPM during
the execution of the parent region-context pair.

∀v j,rσ
n : avail

v j
℘(rσ

n)
⇒ address

v j
rσ
n
= address

v j
℘(rσ

n)
. (3)

∀pk,rσ
n : availpk

℘(rσ
n)
⇒ addresspk

rσ
n
= addresspk

℘(rσ
n)
. (4)

∀v j,rσ
n : ¬avail

v j
℘(rσ

n)
∧alloc

v j
rn ⇒ address

v j
rσ
n
= assign

v j
rn . (5)

∀pk,rσ
n : ¬availpk

℘(rσ
n)
∧allocpk

rn ⇒ addresspk
rσ
n
= assignpk

rn . (6)

Equations 3, 5 (4, 6) specify the address in the SPM
for objects (pointers). If the object (pointer) was already
available in the parent region-context, then the address is
the same. Otherwise, if the object (pointer) is allocated in
rn, then the address is the one assigned by the allocation.

Finally, given the object (pointer) availability and address
for each region-context pair, we can express the feasibility
conditions for the allocation problem.

∀v j,rσ
n : avail

v j
rσ
n
⇒ address

v j
rσ
n
+S(v j)≤ SSPM. (7)

∀pk,rσ
n : availpk

rσ
n
⇒ addresspk

rσ
n
+Srσ

n (pk)≤ SSPM. (8)

∀v j,vk,rσ
n , j 6= k : (avail

v j
rσ
n
∧availvk

rσ
n
)⇒

(address
v j
rσ
n
+S(v j)≤ addressvk

rσ
n
)∨

(addressvk
rσ
n
+S(vk)≤ address

v j
rσ
n
)

(9)

∀p j, pk,rσ
n , j 6= k : (avail

p j
rσ
n
∧availpk

rσ
n
)⇒

(address
p j
rσ
n
+Srσ

n (p j)≤ addresspk
rσ
n
)∨

(addresspk
rσ
n
+Srσ

n (pk)≤ address
p j
rσ
n
)

(10)

∀v j, pk,rσ
n : (avail

v j
rσ
n
∧availpk

rσ
n
)⇒

(address
v j
rσ
n
+S(v j)≤ addresspk

rσ
n
)∨

(addresspk
rσ
n
+Srσ

n (vk)≤ address
v j
rσ
n
)

(11)

Equation 7 (8) states that if v j (pk) is in the SPM during
the execution of rσ

n , then it must fit within the SPM size.
Equations 9 to 11 state that if two objects/pointers are in the
SPM during the execution of rσ

n , then their addresses must
not overlap. Note that the size for a pointer is dependent on
the region-context pair. Giving a points-to set χrσ

n (pk), the
size required for allocating pk in rσ

n is the maximum size of
all objects in the points-to set.

7

r2

r3

r4

r1

p=&y

px

py

Fig. 7: Example of Pointer Definition

∀pk,rσ
n : de f pk

rσ
n
⇒¬allocpk

rn (12)

The constraint in Equation 12 states that the allocation
of pointer pk is not allowed in rn (allocpk

rn = 0) if pk is
defined in rn, i.e., pk can change its reference in the region.
This constraint is required for correctness of execution and
analysis. This case is depicted in Figure 7 where pointer p is
defined in region r3 to point to y rather than x. Hence, p can
be allocated in r2 and r4 while allocp

r3 = 0,allocp
r1 = 0. The

allocation of p in r3 or r1 will result in pointer invalidation
as any reference to p after its definition in r3 should point
to y not x.

As long as Equations 7 to 11 are satisfied for a given
solution in all region-context pairs, all objects fit in the SPM;
hence, the allocation problem can be feasibly implemented.
To do so, we next discuss how to determine the list of
commands (ALLOC/DEALLOC/GETADDR) that must be
added to each region. For a region rn that is not sequentially
composed, an ALLOC is inserted at the beginning of the
region and a DEALLOC at the end of the region.

In the case of sequential regions, to reduce the number of
DMA operations, we note the following: if the same object
v j is allocated in two sequentially composed regions rp and
rq with the same assigned address, then there is no need
to DEALLOC v j at the end of rp and ALLOC it again
at the beginning of rq. Hence, we consider the maximal
sequence of sequentially composed regions rp, . . . ,rq such
that for every region rn in the sequence: alloc

v j
rn = 1 and

the address assign
v j
rn assigned to v j is the same. We then

add the ALLOC command at the beginning of rp and the
DEALLOC command at the end of rq. The P and W flags of
the ALLOC command are set as discussed in Section V-B
based on the usage throughout the whole sequence. The same
procedure applies for a pointer pk allocated in a sequence of
sequentially composed regions.

Also, we note the following for object v j and pointer pk
such that v j ∈ χrσ

n : if object v j and pointer pk are allocated
in overlapped sequence of sequentially composed regions,
DMA operations on the pointer are inserted to re-locate the
pointee to avoid pointer invalidation. The example shown in
Figure 8 shows the case where object x is allocated to address
a1 in r2,r3 and r4, pointer p is allocated to address a2 in r3,r4
and r5, and object y is allocated to a1 in r5 and r6. If p can
point to x, it will be already in address a1 in the SPM when
p is allocated in r3 and x will not be copied to address a2.
However, the copy of x at a1 should be written-back after r4

r2

r3

r4

r5

r6

DEALLOC(3,0)

ALLOCPW(3,a1,0)

x

p

ALLOCPW(0,a2,1)

DEALLOC(0,1)

DEALLOC(0,1)

ALLOCPW(0,a2,1)ALLOCPW(5,a1,0)

DEALLOC(5,0)

y

p

x

y

Fig. 8: Allocation Overlap Example

to allocate y to a1. Using p in r5 with the assumption that x
is in the SPM will result in a conflict. So, a re-location must
be guaranteed after r4, so that the copy of x is moved to a2
before y is fetched to a1. Note that the relocation commands
will cancel each other if p is not pointing to x.

Example: refer to the example in Figure 5, where p is
allocated in two regions in sequence (r8 and r9). ALLOC
is inserted before r8 and DEALLOC is inserted after r9. P
flag is set in ALLOC even though x is not used in r8, but
it is read in r9. Similarly, W is not set as x is not modified
in neither r8 nor r9.

Finally, to compute the WCET for the program, we need
to determine whether an ALLOC/DEALLOC command
triggers a DMA operation; this again depends on the context
σ in which a given region rn is executed, as demonstrated by
the example in Section V-C. As in Equation 3, we know that
the ALLOC will be canceled if v j was already available in
the parent region-context; hence, for a region rn that performs
an ALLOC on v j and a context σ , the ALLOC generates a
DMA prefetch on v j only if both the P flag in the ALLOC
is set and avail

v j
℘(rσ

n)
= 0 (similarly for DEALLOC, a DMA

operation is generated if the W flag is set and avail
v j
℘(rσ

n)
= 0).

2) Aliasing Constraints: The feasibility problem can be
relaxed using the points-to information of each pointer.
Points-to information are derived from a must-may alias
analysis. We consider the must-alias points-to sets with
object v j and pointer pk such that χrσ

n (pk) = {v j}; which
is a common case with passing by reference in functions. In
this case, the allocation of either v j or pk in region-context
rσ

n means that both v j and pk are available in the SPM in this
region-context. The constraints can be extended if there are
multiple pointers that only point to v j in a region-context.

alloc
v j
rn ∨allocpk

rn ∨avail
v j
℘(rσ

n)
∨avail

v j
℘(rσ

n)
⇔ avail

v j
rσ
n
. (13)

alloc
v j
rn ∨allocpk

rn ∨avail
v j
℘(rσ

n)
∨availpk

℘(rσ
n)
⇔ availpk

rσ
n
. (14)

Equations 13, 14 replace Equation 1 , 2 and state that v j
and pk are available in the SPM during the execution of rσ

n if
v j or pk is allocated in rn, or if v j or pk was already available
in the SPM during the execution of the parent region-context
pair. Note that in Equation 14, v j can be available in the
parent region-context ℘(rσ

n) while pk is not available in it

8

if pk changes its reference in the children of ℘(rσ
n), i.e.,

χrσ
n (pk) 6= {v j}. In that case, Equation 14 is not applicable

to ℘(rσ
n) and allocpk

℘(rσ
n)

= 0 according to Equation 12.

avail
v j
℘(rσ

n)
⇒ addresspk

rσ
n
= address

v j
℘(rσ

n)
. (15)

¬avail
v j
℘(rσ

n)
∧alloc

v j
rn ∧¬allocpk

rn ⇒

address
v j
rσ
n
= addresspk

rσ
n
= assign

v j
rn .

(16)

¬avail
v j
℘(rσ

n)
∧allocpk

rn ∧¬alloc
v j
rn ⇒

addresspk
rσ
n
= address

v j
rσ
n
= assignpk

rn .
(17)

¬avail
v j
℘(rσ

n)
∧alloc

v j
rn ∧allocpk

rn ⇒

(address
v j
rσ
n
,address

v j
rσ
n
) = γ(assign

v j
rn ,assignpk

rn).
(18)

Equation 3 still applies for v j as the availability in the
parent dominates any allocation in the region. However, the
address pk inherits the address of the v j if it is available in its
parent as in Equation 15. If v j is not available in the parent,
there are two cases:
Equations 16,17 state that if only v j or pk is allocated,

the address of v j and pk is the assigned address of the
allocated one.

Equation 18 state that if both v j and pk are allocated, the
assigned address for each of them to be determined
with an arbitrary function γ that depends on how
the allocation is implemented. In this work, we use
γ(assign

v j
rn ,assignpk

rn) = assign
v j
rn as we consider relo-

cation of the pointer as we illustrated before in the
example shown in Figure 8.

Example: refer to the example in Figure 5, where p is
allocated with assigned address a2 in r8. For context σ ∪ r5,
we have availp

r
σ∪r5
7

= availy

r
σ∪r5
7

= 0, since χrσ
7 ∪r5

(p) = {y}

and y is not available in rσ
5 , the parent of rσ∪r5

7 . Hence,
we also have addressp

r
σ∪r5
8

= addressy

r
σ∪r5
8

= a2. However,

for context σ ∪ r4 we obtain availp
r

σ∪r4
7

= availx
r

σ∪r4
7

= 1,

since χrσ
7 ∪r4

(p) = {x} and x is available in rσ
4 . So, we get

addressp
r

σ∪r4
7

= addressx
r

σ∪r4
7

= a1.

The constraints for SPM size are the same as in
Equations 7, 8. Equations 10, 11 for address over-
lap are not applied for must alias cases. That is, if
χrσ

n (pk1) = χrσ
n (pk2) = {v j}, then their address ranges match

addresspk1
rσ
n

= addresspk2
rσ
n

= address
v j
rσ
n

. So, Equations 11, 10
is not applied between pk1, pk2,v j for region-context rσ

n .
We illustrated the possible aliasing constraints for one

pointer and one object. Another set of constraints can be de-
rived for aliasing pointers or pointers with multiple pointees
in their points-to set. We do not detail these constraints as
they exploit a may-alias which means the constraints do not
represent necessity.

A. WCET Optimization
For a given allocation solution

{alloc
v j
rn ,assign

v j
rn ,allocpk

rn ,assignpk
rn |∀v j, pk,rn}, the described

procedure determines the set of objects available in the
SPM and the set of DMA operations for each region-context
rσ

n . Assuming that bounds on the time required for SPM
and main memory accesses are known, this allows us
to determine the benefit (WCET reduction) for every

trivial region in context σ , as well as the length of DMA
operations. For a dynamic allocation approach without
prefetch, the length of DMA operations could simply be
summed to the execution time of the corresponding region,
since DMA operations stall the core.

However, for our proposed approach with prefetching, the
cost of DMA operations depend on the overlap: since DMA
works in transparent mode, for a trivial region the maximum
amount of overlap is equal to the execution time of its
code minus the time that the CPU accesses main memory
directly. Furthermore, since the length of DMA operations
is generally longer than the execution of a trivial region,
the total overlap depends on the program flow. Therefore,
we compute the amount of overlap as part of an integrated
WCET analysis, which we present in Section VII. We solve
the allocation problem by adopting a heuristic approach that
first searches for feasible allocation solutions, and then run
the WCET analysis on feasible solutions to determine their
fitness; we discuss it next in Section VI-B.

Finally, we note that the proposed region-based allocation
scheme is a generalization of the approaches used in related
work on dynamic allocation. In [10], the authors applied
a structured analysis to choose a set of variables for static
allocation. They analyzed innermost loop as Directed Acyclic
Graph (DAG) for worst case path and then collapsed the loop
into a basic block to analyze the outer loop. The region tree
representation captures this structure as loops, conditional
statements and functions as regions. The dynamic allocation
in [5] is based on program points around loops, if statements
and functions which can be matched with an entry/exit of
a region. In [13], Deverge et al. proposed a general graph
representation that allows different granularities of alloca-
tion. The authors formulated the dynamic allocation problem
based on the flow constraints which can also be applied to
the region representation. All such approaches use heuristics
to determine the overall program allocation. Hence, to allow
a fair evaluation focused on the benefits of data prefetching,
in Section IX we compare our proposed scheme against a
standard dynamic allocation approach with no overlap using
the same region-based program representation and search
heuristic.

B. Allocation Heuristic
The allocation heuristic adopts a genetic algorithm to

search for near-optimal solutions to the allocation problem.
• Chromosome Model: The chromosome is a binary

string where each bit represents one of the alloc
v j
rn

decision variables. Note that we do not represent the
assign

v j
rn decision variables in the chromosome; instead,

we use a fast address assignment algorithm as part of
the fitness function to find a feasible address assignment
for a chromosome.

• Fitness Function: The fitness f it of a chromosome rep-
resents the improvement in the WCET of the program
with this allocation if it is feasible. The fitness function
first applies the address assignment algorithm to the
chromosome. If the allocation is not feasible, the chro-
mosome has f it = 0. Otherwise, we execute the WCET
analysis after the program is transformed to insert the
allocation commands; the fitness of the allocation is
then assigned as f it = WCETMM −WCETalloc where
WCETMM is the WCET with all the objects in main
memory and WCETalloc is the WCET for the analyzed
solution.

• Initialization: The initial population P(0) is generated
randomly with feasible solutions, i.e., f it > 0.

9

Algorithm 1 Address Assignment

Input: region information, {alloc
v j
rn ,allocpk

rn |∀v j, pk,rn}
1: for all region rn by increasing index starting with r1 do
2: end addrrn ← ASSIGN ADDRESSES(rn)

3: function ASSIGN ADDRESSES(rn)
4: end addrrn = maxσ{end addr℘(rσ

n)
}

5: if rn−1 is not sequentially composed with rn then
6: for all v j such that alloc

v j
rn do

7: assign
v j
rn ← end addrrn

8: end addrrn ← end addrrn +S(v j)

9: for all pk such that allocpk
rn do

10: assignpk
rn ← end addrrn

11: end addrrn ← end addrrn +maxσ (Sσ (pk))

12: else
13: for all v j such that alloc

v j
rn ∧alloc

v j
rn−1 do

14: assign
v j
rn ← assign

v j
rn−1

15: for all pk such that allocpk
rn ∧allocpk

rn−1 do
16: assignpk

rn ← assignpk
rn−1

17: for all v j such that alloc
v j
rn ∧¬alloc

v j
rn−1 do

18: Compute assign
v j
rn using best fit based on

already assigned addresses
19: for all pk such that allocpk

rn ∧¬allocpk
rn−1 do

20: Compute assignpk
rn using best fit based on

already assigned addresses
21: maxv

rn ←max
v j s.t. alloc

v j
rn
{assign

v j
rn +S(v j)}

22: maxp
rn ← maxpk s.t. alloc

pk
rn
{assignpk

rn +

maxσ (Sσ (pk))}
23: end addrrn ←max{maxv

rn ,maxp
rn}

• Evolution Operations: The evolution process incorpo-
rates random random selection, one-point crossover and
random bit mutation to generate P′(t + 1). The elite
chromosomes with highest fitness from P(t) and P′(t +
1) are chosen to form the next population P(t +1).

• Termination: The algorithm is terminated after k gen-
eration or if the best chromosome does not change for
n generations.

The address assignment algorithm is depicted in Algo-
rithm 1. Given a chromosome, the region tree is traversed in
topological order assigning addresses to the allocated objects
and pointers in each region. The topological order visits all
the nodes with the same parent before visiting the children.
For the root of a function, all the parents (call regions)
of the function are visited before the root of the function.
Also, for a sequence of sequentially composed regions, the
order of the sequence is maintained. After the objects in a
region are assigned to SPM addresses, an end address to the
last allocated address is maintained. For each region rn, the
previous end address is the maximum of all parent regions
(note that if rn is not the root of its function, it has a single
parent region). For a region that is not sequentially composed
or the first region in a sequence of regions, addresses are
iteratively assigned to the allocated objects starting from
the previous end address. For a region in a sequence, an
allocated object maintains the same address as the previous
region if the object is allocated in both. Otherwise, a best fit

r2

r7

r5r4

r1

r6

r3

d d'

d"
t=8,tvj=7t=10,tvj=3

GETADDR(vj)

Fig. 9: WCET Example: Merging states from different paths

algorithm is used to assign the remaining addresses. The end
address for each region is then computed as the maximum
end address for any allocated object. Note that the algorithm
trivially ensures that objects/pointers allocated in a region
cannot overlap with any object or pointer that is available in a
parent; hence, Equations 9, 11 are always satisfied. However,
the algorithm is not optimal, since it does not consider that
an allocation might not be required in any context where the
object is already available in the SPM or the aliasing between
objects and pointers. Finally, the allocation is considered
feasible only if the end address never exceeds the SPM size;
this guarantees that Equations 7, 8 are also satisfied.

VII. WCET ANALYSIS

We discuss how to model the behavior of our prefetch
mechanism in the context of static timing analysis so that
a safe bound to the WCET of the program running unin-
terrupted can be computed. We assume a given allocation
solution computed based on Section VI. We rely on the stan-
dard approach of Data Flow Analysis (DFA) [24], where the
detailed state of the hardware is generalized into an abstract
state based on the theory of abstract interpretation [25], [26].
To avoid maintaining a different state for each path through
the program, the analysis relies on computing fixed points by
“merging” states when paths joins (i.e., branch join and loops
entry/exit). In detail, given two abstract states d and d′, we
need to compute a join operator ∨ such that the resulting
state d′′ = d ∨ d′ is more general than either d or d′. We
model time as natural numbers, i.e., processor clock cycles.

We begin by providing an intuitive discussion of the
challenges of handling our prefetching mechanism, followed
by our intended solutions. In what follows, we use function
(x)+ as a shorthand or max(0,x) and P(A) to denote the
powerset of set A. As discussed in Section IV, let Ḡ f =
(N̄, Ē) to denote the refined CFG for function f . To keep
track of the program execution, it is useful to formally define
the concept of program state:

Definition 1 (State): The program execution is defined as
the transformation of a program state. We let Σ be the set
of all possible program states; we use s ∈ Σ to denote an
individual state and S ⊆ Σ to denote a set of states. The
state at any given point in the execution of the program
represents the amount of elapsed time s.t since the beginning
of the program, and the content of all hardware registers and
memories.

Definition 2 (Transfer Function): For every edge e :
BBi→ BB j in Ḡ f and context σ for f , we define a transfer
function Te,σ : Σ→Σ such that: if s is the program state at the
beginning of the execution of BBi and the program execution

10

flows from BBi to BB j, then s′ = Te,σ (s) is the program
state at the beginning of the execution of BB j. Function
T ′

e,σ : P(Σ)→P(Σ) denotes the obvious set-extension of
function Te,σ , i.e. T ′

e,σ (S) = ∪s∈STe,σ (s).
Note that based on Definition 2 2, if the execution cannot

flow from node BBi to BB j for any state in S, then T ′
e,σ (S) =

/0. Given a set of initial program states Sentry with t = 0 3,
a WCET analysis could then simply proceed as follows:
enumerate all paths through every function in the program;
for each path through the program, iteratively apply function
T ′

e,σ starting from state set Sentry for all edges comprising
the path, obtaining a set of final states Sexit . The WCET can
then be obtained as the maximum time elapsed for any state
in any final state set Sexit . Since based on our assumptions
the number of paths through the whole program is finite, this
approach is computable, but it is generally computationally
intractable for all but the simplest programs, as the number
of paths is exponential in the number of branches/loops in
the program.

To obtain a tractable analysis, WCET techniques typically
attempt to prune paths that cannot lead to the WCET by
making local decisions: ideally, we could examine each
branch point in the CFG one at a time, determine which
branch leads to the WCET, and exclude from the analysis
all other branches, thus implicitly identifying the Worst Case
Execution Path (WCEP) through the program. In practice,
this might not be possible, because the worst case path
through a branch might depend on the path taken through
another branch preceding or following the one under anal-
ysis, either due to the program semantic (i.e., some paths
might be invalid) or due to architectural considerations (i.e.,
an hardware operation started during a basic block might
influence the timing of a successive basic block).

Since our objective is to show how to integrate our
proposed prefetching scheme in existing WCET frameworks,
in the rest of the section we focus on architectural analysis.
To explain how we model the behavior of DMA operations,
consider as an example the execution of the CFG and
associated region tree in Figure 9 in a context σ . Assume
that the analysis for the path through rσ

4 has computed a
program state s with an upper bound to the execution time
of the program up to this point equal to t = 10, and an
upper bound to the remaining time to complete a DMA
fetch operation for an object v j equal to tv j = 3. For the path
through rσ

5 , we instead have a state s′ with t = 8, tv j = 7, i.e.,
the execution takes longer along the path through rσ

4 than
through rσ

5 , but results in a shorter remaining DMA time.
Assume now that a GETADDR command on object v j is
executed at the beginning of region/context rσ

7 . The amount
of time that the command will block is then equal to tv j minus
the amount of overlap that the DMA operation has with rσ

6 , or
zero if the operation completes during rσ

6 . Assume a simple
case where the execution through rσ

6 requires ∆ units of time
and performs no access to main memory, so that the DMA
operation can overlap up to ∆. The program can then resume
from GETADDR at time t+∆+max(tv j−∆,0). Hence, note
that for ∆= 7, the worst case path is through rσ

4 , resulting in a

2Also note that Te,σ defines a deterministic machine: assuming we know
the state s at the beginning of the basic block, we can compute the exact
state s′ along e. If the machine is non-deterministic, the definition can be
modified to return a set of states rather than a single state while maintaining
the same theoretical framework, see [26].

3Note that in general, a set of program states must be considered, rather
than a single state, because the initial state of the hardware, including the
program inputs, is not known.

time of 17 units against 15 for the path through rσ
5 . However,

for ∆ = 3, the worst case path is through rσ
5 , with a time of

15 time units against 13 for the path through rσ
4 . In summary,

we cannot determine which path through a branch leads to
the worst case unless we analyze the regions following the
branch in the CFG (rσ

6 and rσ
7 in the example). This shows

that the WCEP determination is a global decision.
A typical solution to the global decision problem is to

employ a Meet Over Path (MOP) solution: if we do not know
which state to use for b4, we can abstract the execution of
the program by considering a new join state s′′ that is worse
than either s or s′. Such state does not need to represent
any real execution of the system (i.e., it is abstract), as long
as we can prove that the WCET obtained based on s′′ is
no smaller than the ones determined based on s and s′. In
this case, a trivial solution would be to computing a join
state s′′ with t = max(10,8) = 10 and tv j = max(3,7) = 7.
However, this would lead us to over-approximate the time
for the GETADDR, resulting in 17 time units for ∆ = 3,
rather than the computed bound of 15 time units. Therefore,
we seek to derive a tighter abstraction.

Intuitively, this can be achieved by abstracting the states s
and s′ for the execution through rσ

4 and rσ
5 into abstract states

d and d′. An abstract state d is composed of two information:
the elapsed program execution time d.t, and a set of timers
{tv j}. For an object v j, d.tv j represents the worst case time
required to complete either a prefetch or write-back operation
in the allocation queue; since the allocation queue is served
in FIFO order, this represents the time to transfer that specific
object, plus the time required for all operations ahead of it
in the queue. For the example in Figure 9, let d be the state
through rσ

4 and d′ be the state through rσ
5 . Since there is only

one DMA operation in the queue, we have d.t = 10,d.tv j = 3
and d′.t = 8,d′.tv j = 7, i.e., the abstract states are equivalent
to the corresponding program states. The join state d′′ =
d∨d′ is then computed as follows:

d′′.t = tmax = max(d.t,d′.t), (19)

and for every timer tv j :

d′′.tv j = max
(
d.tv j−(tmax−d.t),d′.tv j−(tmax−d′.t)

)
. (20)

Based on Equations 19, 20, we compute a join state for the
example d′′.t = max(10,8) = 10,d′′.tv j = (3− (10−10),7−
(10−8)) = 5. Note that this abstraction is tighter compared
to the values t = 10, tv j = 7 obtained by the trivial over-
approximation; in particular, it is easy to see that for the
provided example, the time for the GETADDR command
computed based on d′′ is exactly equal to the worst case
between d and d′ for any value of ∆, albeit for more
complex cases involving multiple DMA operations it is still a
(tighter) over-approximation. However, the abstraction does
not correspond to any “real” program state, since the values
of t and tv j are different than the program state at rσ

7 for
either execution paths. The key intuition is that adding ∆

units of time to the execution time of the program is always
worse than adding ∆ units of time to the length of timers,
since a GETADDR might block the program for a time at
most equal to the length of the corresponding timer. Hence,
if the execution time along two paths differs by a value ∆, we
are guaranteed to obtain an upper bound if we consider the
longest execution time but subtract ∆ units of time from the
timers along the shortest path, as performed in Equation 20.

Note that in general, a single DMA operation could
overlap with many regions, and the amount of overlap can
be further modified by the path through each region and

11

allocation commands for both the same and other objects.
Due to the presence of the max term in Equation 20,
modeling the WCET problem as an ILP (a technique also
known as implicit path enumeration [24]) would require
adding a large number of auxiliary variables. Therefore, we
propose to instead compute the WCET by performing the
MOP procedure using a structure-based approach [24] that
relies on the region tree, as summarized in Algorithm 2.

Algorithm 2 WCET Analysis

Input: initial program state d with d.t = 0, region informa-
tion, allocation solution

1: d← ANALYZE REGION(r1, /0,d)
2: return d.t +maxv j{d.tv j}

3: function ANALYZE REGION(r,σ ,d)
4: if r is trivial region then
5: d← STATE TRANSFER(r,σ ,d)
6: if r calls a region rn then
7: d← ANALYZE REGION(rn,σ ∪ r,d)
8: else
9: for all paths pi in r do

10: di← d
11: for all subregions rn along pi do
12: di← ANALYZE REGION(rn,σ ,di)
13: d← JOIN(r,σ ,{di})
14: return d

Starting from an initial abstract program state d and region
r1, the root of the main function, the algorithm recursively
calls function ANALY ZE REGION to update state d based
on the execution of region r in context σ . If r is a trivial
region, then function STAT E T RANSFER is used to update
d based on the region’s code, including any allocation
command. Note that we need to pass the context σ to the
function, since as explained in Section VI, the availability
and address of objects in the scratchpad depends on the
context for the region. If the region is a call region, we
also need to recursively invoke ANALY ZE REGION on the
called region after updating the context. If region r is not
trivial, then we need to recursively analyze all sub-regions
along every path in r; this results in an updated state di for
each path pi. The states are then joined by function JOIN.
If region r has no backedge (i.e., it is not a loop), then the
function simply applies the join operator over all states di. If
the region is a loop, then function JOIN performs a fixed-
point iteration over the abstract state based on loop iteration
bounds (since such fixed point iteration is a well-understood
technique in DFA [25], [26], we do not discuss it further). At
the end of the analysis, we return the total elapsed time plus
the maximum timer length, to indicate the need to complete
any remaining write back operation.

In the next section, we first provide required prelimi-
naries on the underlying mathematical principles of DFA
using the MOP approach. We then formally introduce our
abstraction and prove it correct in Section VII-B. Note that
while Algorithm 2 enumerates region, in practice the only
regions that contain code and must thus be analyzed are
trivial regions, containing one basic block each. Hence, for
simplicity and to be consistent with previous analyses, we
discuss the MOP procedure over basic blocks using the
refined CFG Ḡ f . Finally, note that while we focused on

modeling the behavior of DMA operations, the abstract state
can also model both architectural states, such as the state of
the processor pipeline [26], as well as the value of program
variables, which can be used to exclude invalid paths (flow
analysis) and compute loop bounds [27].

A. Preliminaries
The theory of abstract interpretation [25] provides a formal

way to describe a mathematical model for the state of the
program. In this section, we base our discussion on the
formulation of DFA with abstract interpretation for WCET
analysis proposed in [26].

Definition 3 (Bounds for Partially Ordered Set):
Consider a set A with partial order ≤A. We say that
an element a ∈ A is an upper bound (lower bound) for a
subset Y of A iff ∀y ∈ Y : y ≤A a (respectively, a ≤A y). We
further say that a is the unique least upper bound (greatest
lower bound) for Y , and write a = ∨AY (respectively,
a = ∧AY) iff for all other upper bounds b of Y it holds
a≤A b (respectively, b≤A a).

For simplicity, for a set Y = {a,b}, we shall write a∨A b
(a∧A b) as a shorthand for ∨AY (∧AY).

Definition 4 (Complete Lattice): A partially ordered set
(A,≤A) is said to be a complete lattice if any subset Y of A
admits both a least upper bound and a greatest lower bound.

Observation 5 (Concrete State Set): The set P(Σ) to-
gether with the subset partial relation ⊆ is a complete lattice,
where S∨S′ = S∪S′ and S∧S′ = S∩S′.

The complete lattice
(
P(Σ),⊆

)
is used to model the

“real” (concrete) state of the system; in this sense, the partial
order ⊆ represents a relation of generality, in the sense that
if S⊆ S′, we can say that S′ is more general (since it contains
more program states), or equivalently less precise, compared
to S.

Definition 6 (Monotone Function): Let (A,≤A) and
(B,≤B) be partially ordered sets. A function f : A→ B is
said to be monotone iff: ∀a,a′ ∈ A : a≤A a′⇒ f (a)≤B f (b).

Definition 7 (Abstraction): We say that a complete lattice
(D,≤D) is an abstraction for the concrete state

(
P(Σ),⊆

)
iff there exists a monotone function γ : D→P(Σ) such that:

∀S ∈P(Σ) : ∃d ∈ D : S⊆ γ(d). (21)
γ is also called the concretization function of the abstrac-

tion. Since the concretization function is monotone, for every
d≤D d′, it must hold: γ(d)⊆ γ(d′). In other words, the partial
order ≤D on D must express a relation of generality similar
to the one for the concrete state. Furthermore, Equation 21
ensures that for every concrete state S, there exists an abstract
state d that “contains” S.

Based on the described framework, the MOP DFA is then
carried out as follows: we first obtain an initial abstract
state dentry such that Sentry ⊆ γ(dentry). We then traverse
the DFG using an abstract transfer function T̂e,σ : D→ D,
which represents the abstraction of the transfer function Te,σ
to the abstract state D. Whenever we need to join paths
for two abstract states d,d′, we compute a new join state
d′′= d∨D d′. After obtaining a final abstract state dexit for the
program, we then determine the WCET as the largest elapsed
time in γ(dexit). There are two fundamental advantages to this
approach: 1) as discussed in the example in Section VII,
we can represent states that cannot occur in the concrete
execution of the system. 2) Since the abstract state set
D is a model of the system, we can ignore program and
architectural details that are too complex to handle in the
analysis, albeit at the cost of decreased analysis precision.
Overall, the goal is to obtain an abstract transfer function

12

T̂e,σ that can be computed in a reasonable amount of time,
rather than evaluating Te,σ on all program states contained
in a concrete state set S, which is generally computationally
intractable. The following theorem states the fundamental
sufficient condition on the abstract transfer function that we
use in this work.

Theorem 8 (MOP II Correctness; Theorem 3.3.5 in [26]):
Let D be an abstraction for P(Σ). If for every edge e, the
transfer function T̂e,σ satisfies the following property:

S⊆ γ(d)⇒T ′
e,σ (S)⊆ γ(T̂e,σ (d)), (22)

then the MOP analysis over D using an initial state dentry :
Sentry ⊆ γ(dentry) is a correct analysis for the program,
meaning that Sexit ⊆ γ(dexit).
Intuitively, Equation 22 means that applying the abstract
transfer function T̂e,σ (d) results in a state that is more
general compared to applying the concrete transfer function
T ′

e,σ . In turn, this implies that if we start with an initial
abstract state dentry that is more general than the initial
concrete state Sentry, we will obtain a final abstract state dexit
that is still more general (hence, a safe approximation) than
the final concrete state Sexit .

B. Abstract State Model
We detail our abstraction for WCET analysis in this sec-

tion. Since our goal is to show how to handle the scratchpad
controller, for the sake of simplicity we will consider the
simplest possible model for the rest of the hardware system,
namely, an in-order CPU where the number of clock cycles
required to process the instructions in each basic block does
not depend on previous block (i.e., no pipelining effects
between blocks), and memory accesses stall the CPU. Under
this model, we let tcomp be the maximum computation time
for a code block without considering the stall time due to
load/store operations, tspm be the maximum time for SPM
accesses, and tmm the maximum time for main memory
accesses; the total execution time of the basic block can then
be bounded as tcomp + tspm + tmm plus the GETADDR block-
ing time. We will also not include any memory state (i.e.,
value assigned to variables) in the abstract state. However,
please note that both memory state and other architectural
states could be included in the abstract state following well-
established WCET analysis techniques [26]. Finally, again
for simplicity and to match our implementation, we will
assume that all scratchpad commands can be executed in
one clock cycle, i.e. we do not handle the command queue.
However, if the alias check takes multiple clock cycles, the
effects of the command queue could be handled by adding
an additional timer to the abstract state, as it will become
clearer in the rest of the discussion.

Based on Theorem 8, in the rest of the section we provide
the following steps:
• define abstract state set D and its partial order ≤D. This

is done in Definitions 11 and 14;
• prove that (D,≤D) is a complete lattice (Lemma 15);
• define concretization function γ (Definition 18), prove

that it is monotone and it satisfies Equation 21
(Lemma 19);

• define T̂e,σ (d) (Definition 25);
• finally, prove that Equation 22 holds (Theorem 31).

This ensures that all assumptions in Theorem 8 hold, hence
proving that the MOP analysis over the described abstraction
is correct.

We begin by providing a definition for the program state
s that will be used throughout the section. In what follows,

let tx
dma denote the time required for the DMA operation

(prefetch or write-back) for an object x, while for a pointer
x it denotes the maximum DMA operation time of any object
pointed to by x.

Definition 9 (Trailing DMA time): We define the trailing
length of any DMA operation in the allocation queue as
follows:
• the trailing length of the operation at the front of the

queue is the time remaining to complete the operation;
• the trailing length for any other operation on an object

v is tv
dma plus the trailing length of the operation

immediately ahead in the queue.
Essentially, the trailing length for an operation represents

the maximum DMA time required to complete it, considering
that operations in the allocation queue are served in FIFO
order.

Definition 10 (Abstract Timers): Let V be the set of all
objects and A be the set of all addresses assigned to
objects/pointers by the address assignment algorithm. We
define the following set of abstract timers:
• For an object v, the abstract prefetch timer Tpr

v is a
single value Tpr

v .t ∈ N.
• For an object v, the abstract write-back timer Twb

v is
a tuple {Tpr

v .t,Tpr
v .A} with Twb

v .t ∈ N and Twb
v .A ∈

P(A).
• For a pointer p, the abstract prefetch timer Tpr

p is a tuple
{Tpr

p .t,Tpr
p .V} with Tpr

p .t ∈ N and Tpr
p .V ∈P(V).

• For a pointer p, the abstract write-back timer Twb
p is

a tuple {Twb
p .t,Twb

p .A,Twb
p .V} with Twb

p .t ∈ N, Twb
p .V ∈

P(V) and Twb
p .A ∈P(A).

For simplicity, we use the symbol T to denote any abstract
timer, defining T.V = {v} for the timers of object v, and
T.A = /0 for prefetch timers. We call the value t the timer’s
trailing length, A its address set, and V its points-to set. We
write T= 0 to mean T.t = 0,T.A = /0,T.V = /0.

Definition 11 (DMA Abstraction): An abstract state d is
a tuple d = {d.t, . . . ,d.Tpr

vi ,d.Twb
vi
, . . . ,d.Tpr

pk ,d.Twb
pk
, . . . ,},

comprising one prefetch and one write-back timer for each
object vi and each pointer pk. We call d.t ∈ N the abstract
elapsed time. Let D be the set of all abstract states.

Intuitively, an abstract state is composed of an elapsed
time, which is an upper bound to the time elapsed since
the beginning of the program, and a prefetch and write-
back timer for every object and every pointer. For all timers,
the trailing length T.t models the trailing length of any
prefetch or write-back operation for that object/pointers. In
essence, our abstraction models the cumulative DMA time
required for the operations of a given object/pointer, rather
than the ordered list of DMA operations. Since the same
pointer can point to different objects during its lifetime,
pointer timers must also store the point-to list T.V . Finally,
write-back timers additionally store the address at which the
object/pointer was allocated. As explained in Section V-B,
this is required to cancel a write-back operation if the same
object is allocated at the same address. To allow the MOP
procedure, T.A must be defined as a set of addresses (i.e.,
an element of the powerset of A) so that the union over
different paths can be computed.

To simplify notation, we further define the following
intuitive operations on timers.

Definition 12 (Operations on Timers): We define the fol-
lowing operations, where ∆ ∈ N.
• T′=T+∆ returns the timer T′ where T.t is incremented

by ∆.

13

• T′ = T− ∆ returns the timer T′ where T.t is decre-
mented by ∆ if ∆ < T.t; otherwise, T′ = 0.

• T′ = T\ v returns the timer T′ where T′.V = T.V \{v}
if T.V 6= {v}; otherwise, T′ = 0.

• T′′ = T∨T′ where T′′.t = max(T.t,T′.t),T′′.A = T.A∪
T′.A,T′′.V = T.V ∪T′.V .

• T′′ = T∧T′ where T′′.t = min(T.t,T′.t),T′′.A = T.A∩
T′.A,T′′.V = T.V ∩T′.V .

Definition 13 (Partial Order for Abstract Timers): We
define the partial order ≤ on abstract timers such that
for any two timers T,T′ for the same object/pointer and
operation (prefetch or writeback):

T≤ T′⇔ T.t ≤ T′.t and T.V ⊆ T′.V and T.A⊆ T′.A. (23)
Definition 14 (Partial Order on DMA Abstraction): We

define the partial order ≤D on the abstraction D such that
for any two abstract states d,d′:

d ≤D d′⇔ d.t ≤ d′.t and ∀ timer T : d.T+d.t ≤ d′.T+d′.t.
(24)

Since ⊆ is a partial order on any set, and ≤ is a total
order on N, it is trivial to see that ≤D is also a partial order.
Intuitively, d′ is larger than d if and only if it has both a
larger elapsed time, and a larger value of elapsed time plus
timer for every object and pointer; following the example
in Section VII, this implies that d′ is guaranteed to cause a
larger delay on successive basic blocks compared to d. We
next show that (D,≤D) is a complete lattice.

Lemma 15: (D,≤D) is a complete lattice, where for any
two abstract states d,d′ with tmax = max(d.t,d′.t) and tmin =
min(d.t,d′.t):
• for d′′ = d∨D d′ it holds d′′.t = tmax and for any timer
T : d′′.T=

(
d.T− (tmax−d.t)

)
∨
(
d′.T− (tmax−d′.t)

)
;

• for d′′ = d ∧D d′ it holds d′′.t = tmin and for any timer
T : d′′.T=

(
d.T+(d.t− tmin)

)
∧
(
d′.T+(d′.t− tmin)

)
.

Proof: We formally prove that (D,≤D) is a lattice,
i.e., for any two elements d and d′, d∨D d′ is the least upper
bound to d,d′ and d∧D d′ is the greatest lower bound to d,d′;
the completeness of the lattice (i.e., the fact that we can find
a least upper bound and greatest lower bound for any subset
Y of D) then follows from the completeness of the sets N,
P(A), P(V) used to represent times and address/object
sets.

Consider d′′ = d∨D d′. Since d′′.t = max(d.t,d′.t), d′′.t is
the smallest value that satisfies the partial order constraints
d.t ≤ d′′.t and d′.t ≤ d′′.t. Similarly, since d′′.T.A = d.T.A∪
d′.T.A, it is the smallest set that satisfies d.T.A⊆ d′′.T.A and
d′.T.A ⊆ d′′.T.A; the same argument applies to T.V . Next,
assume without loss of generality that d.t ≤ d′.t. Based on
Definition 12 we then obtain: d′′.T.t + d′′.t = max

(
d.T.t−

(tmax−d.t),d′.T.t−(tmax−d′.t)
)
+d′′.t =max(d.T.t−d′.t+

d.t,d′.T.t) + d′.t = max(d.T.t + d.t,d′.T.t + d′.t); hence,
d′′.T.t is the smallest value that satisfies the partial order
constraint for timer trailing length (Equation 24), concluding
the proof for the least upper bound.

We omit the proof for the greatest lower bound as it is
specular to the least upper bound.

Note that the operator d ∨D d′ computes the same upper
bound as in Equations 19, 20.

Definition 16 (Generation of DMA Operations): Given
an abstract state d and a DMA operation for object v in
the allocation queue for a program state s, we say that a
timer d.T can generate the operation if it is of the same
type (prefetch or write-back) as the timer and its trailing
length is less than or equal to d.T.t; additionally, v must be
contained in d.T.V ; finally, for a write-back timer, the SPM
address of the operation must be contained in d.T.A.

Observation 17: By definition, if a timer T can generate a
DMA operation, then any timer T′ :T≤T′ can also generate
that operation.

Definition 18 (Concretization Function): Given any ab-
stract state d, the concrete state S = γ(d) is the set of all
feasible program states s for which:
• the elapsed time t since the beginning of the program

is less than or equal to d.t; let ∆ = d.t− t;
• for any DMA operation in the allocation queue with

trailing length greater than ∆, there is at least one timer
d.T such that d.T+∆ can generate the operation.

Definitions 16, 18 are key to understand how the abstrac-
tion works. In essence, the key idea is that adding ∆ units
of time to the elapsed time is always worse than increasing
the trailing lengths of timers by the same amount ∆. Hence,
if the difference between elapsed times for the abstract and
program state is ∆, the program state can contain any DMA
operation with trailing length up to ∆; while for operations
with larger trailing length k > ∆, a timer of the correct
type/address/points-to set is required with k ≤ d.T.t +∆.

Lemma 19: The DMA Abstraction D is a valid abstraction
for P(Σ).

Proof: We first show that Equation 21 holds. Given a
concrete state S, we construct the abstract state d such that d.t
is an upper bound to the elapsed time of any program state
s ∈ S, and for any object v: d.Tpr

v .t is an upper bound to the
trailing length of any prefetch operation for v in s; d.Twb

v .t
is an an upper bound to the trailing length and d.Twb

v .A is
the union of the SPM addresses of any write-back operation
for v in s. It then immediately follows that for any s ∈ S,
the elapsed time for s is less than or equal to d.t and every
DMA operation is generated by a timer in d; hence, based
on Definition 18, we have s ∈ γ(d) and thus S⊆ γ(d).

It remains to show that γ is monotone. Consider two
abstract states d ≤D d′; we have to show that s ∈ γ(d)⇒
s ∈ γ(d′). Let t be the elapsed time of s; then it must
hold t ≤ d.t ≤ d′.t. Define ∆ = d.t − t; since ∆ ≥ 0, based
on Definition 14 it must hold for any timer: d.T+ ∆ ≤
d′.T+∆+(d.t ′− d.t). Hence, if an operation of s can be
generated by timer d.T+∆, it can also be generated by timer
d′.T+∆+(d.t ′−d.t). This concludes the proof.

It now remains to define the abstract transfer function
T̂e,σ , and prove Equation 22. We start by defining a set of
helper functions. For simplicity of notation, we will consider
three-valued logic variables which can assume one of the
following values: {True, False, Unknown}. In particular, for
each ALLOC/DEALLOC command on an object/pointer x
we define an exec flag with the following meaning: if exec =
True, then the value of the USERS field for the object pointed
to by x is guaranteed to be 0 before an ALLOC and 1 before
a DEALLOC; this implies that the corresponding command
is effectively executed. If instead exec = False, USERS is
guaranteed to be greater than 0/1 for an ALLOC/DEALLOC;
hence, the command does not cause any state change. Finally,
if exec = Unknown, then no assumptions on the value of the
USERS can be made. In our approach, the exec flags are
statically computed by the allocation algorithm: for a given
allocation, if there is no enclosing allocation (in an ancestor
region) on the same object, then exec = True. If there is an
enclosing allocation which is guaranteed to be on the same
object, then exec = False. Otherwise, exec = Unknown; note
this case is required to handle pointers where the value of
USERS can only be determine at run-time.

Definition 20 (ALLOC function): The function d′ =
ALLOC(d,x,a,BB, pr,exec), where x is an object or pointer,
a an address, BB a basic block, pr a binary flag and exec

14

a three-valued flag, modifies the abstract state d into d′ by
performing the following steps:

1) if exec = True and d.Twb
x .A = {a} and x points to a

single object v in BB, then d′.Twb
x = d.Twb

x \ v;
2) then if pr = 1 and exec 6= False, d′.Tpr

x .t is set to the
maximum trailing length of any timer plus tx

dma and
d′.Tpr

x .V is the union of d.Tpr
x .V and the points-to list

of x in BB.
Definition 21 (DEALLOC function): The function d′ =

DEALLOC(d,x,a,BB,wb), where wb is a binary flag, mod-
ifies the abstract state d into d′ by performing the following
steps:

1) if exec = True and x points to a single object v in BB,
then d′.Tpr

x = d.Tpr
x \ v;

2) then if wb = 1 and exec 6= False, d′.Twb
x .t is set to

the maximum trailing length of any timer plus tx
dma;

d′.Twb
x .A = d.Twb

x .A∪{a}; and d′.Twb
x .V is the union of

d.Twb
x .V and the points-to list of x in BB.

Functions ALLOC and DEALLOC are applied every time
an ALLOC or DEALLOC command is encountered in a
basic block. Based on the discussion in Section V-C, the
ALLOC command is guaranteed to cancel a write-back
operation on the same object if the two allocations target the
same address in the SPM. This is performed in the ALLOC
function by checking that the address of the write-back timer
coincides with the address of the ALLOC, and removing the
pointed-to object from the points-to set of the write-back
timer. Note that for an object timer, this is equivalent to
resetting the timer to 0, since by definition every object points
to itself only; however, for a pointer we can do so only if
there is no ambiguity in the points-to list (i.e., the pointer
points to a single object in b). Then, if pr = 1, meaning
that a prefetch operation must be scheduled, the function
intuitively “appends” a new operation of length tx

dma to the
end of the allocation queue by setting the prefetch timer
to the maximum trailing length in the queue plus tx

dma. The
behavior of the DEALLOC function is equivalent. Finally, all
steps are dependent on the value of exec: to conservatively
capture the worst case, we add a timer if the command could
be executed (exec = True or Unknown), but we remove a
timer only if we are certain that the command is executed
(exec = True).

Definition 22 (ELAPSE function): The function d′ =
ELAPSE(d,∆,Λ), with ∆,Λ ∈ N, modifies the abstract
state d into d′ such that: d′.t = d.t + ∆ and ∀ timer T:
d′.T= d.T−Λ.

Intuitively, the function ELAPSE is used to increment
time: the elapsed time is increased by ∆ and every abstract
timer is decreased by an amount Λ. Note that Λ≤∆, since the
DMA unit is stalled while the CPU accesses main memory.

Definition 23 (GETADDR stall): Given an abstract state
d, we say that a GETADDR command on object/pointer x
in basic block BB stalls on a timer d.T iff the intersection
of the points-to list of x in BB and d.T.V is not empty.

Definition 24 (Depending ALLOC/DEALLOC): We say
that an ALLOC/DEALLOC command for object/pointer x
in basic block BB depends on a GETADDR command for
object/pointer y in the same basic block iff the intersection
of the points-to lists of x and y in BB is not empty.

Intuitively, if a GETADDR stalls on a timer, then in the
worst case we need to wait until that timer elapses before
the GETADDR can proceed. Similarly, if an ALLOC/DEAL-
LOC depends on GETADDR, then in the worst case the
GETADDR will stall on any DMA operation added by the
ALLOC/DEALLOC.

Definition 25 (Abstract Transfer Function): Consider a
CFG edge e : BB→ BB′. Let the execution for BB along
e be divided into a set of consecutive intervals, such that
the set of intervals cover all executed instructions but
any change to the state of the SPM controller (including
stalling the core due to a blocking command) only happens
between one interval and the next. Then abstract transfer
function T̂e,σ (d) is computed by applying an iterative set
of transformations of the abstract state d using functions
ELAPSE, ALLOC, DEALLOC based on the order of
intervals, ALLOC, DEALLOC and GETADDR commands
in BB:
• For each interval, let tcomp, tmm and tspm be the maximum

computation time, main memory and SPM time for
the interval, assuming that all load/stores to any object
vi (pointer pk) access main memory iff spmvi

r j = 0
(respectively, spmpk

r j = 0) for all regions that contain BB.
Then transform the state into ELAPSE(d, tBB

comp + tBB
mm +

tBB
spm, t

BB
comp + tBB

spm).
• For a GETADDR command on object/pointer x, trans-

form the state into ELAPSE(d,∆,∆), where ∆ is the
maximum trailing length of any timer on which the
GETADDR stalls.

• For an ALLOC command on object/pointer x, transform
the state into ALLOC(d,x,a,BB, pr,exec), where a is the
SPM address of the ALLOC and pr = 1 if the P flag is
set.

• For a DEALLOC command on object/pointer x, trans-
form the state into DEALLOC(d,x,a,BB,wb,exec),
where a is the SPM address of the DEALLOC and
wb = 1 if the W flag is set in the ALLOC command
corresponding to this DEALLOC.

Note that in Definition 25, the execution of the code within
the basic block is modeled by advancing elapsed time by the
maximum execution time tcomp+tmm+tspm and decreasing all
timers by tcomp+tspm, which is the time that DMA operations
can proceed in parallel with the CPU assuming a dual-ported
SPM. If the SPM is single-ported, we amend the definition
to instead decrease the timers by tcomp only.

We are now ready to prove our main Theorem 31, which
shows that Equation 22 holds for the described abstraction,
hence concluding our proof obligations. Due to its com-
plexity, we first present the intuition behind the proof and
introduce several supporting lemmas. We first prove that the
equation holds assuming that the order of ALLOC/DEAL-
LOC/GETADDR commands and other instructions in the
basic block is known. Intuitively, we construct a chain of
abstract and program states, starting at the beginning of the
basic block until its end; each successive pairs of states
di,si and di+1,si+1 represent the state changes caused by the
execution of an SPM commands, or time elapsed executing
instructions. In particular, in Lemmas 27-30 we prove that
at each step in the chain si ∈ γ(di)⇒ si ∈ γ(di); this ensures
that the abstract state always remains more general than the
concrete state, as required in Equation 22.

Lemma 26: Consider a DEALLOC command in basic
block BB for object/pointer x, and let v be the object pointed
to by x in BB. If for v it holds USERS = 1 before executing
the DEALLOC, then the WB flag for v is equal to the W
flag for the corresponding ALLOC command.

Proof: Since allocations for objects/pointers that might
point to the same object must be fully nested, if USERS = 1
before the DEALLOC, then it must have hold USERS = 0
before the corresponding ALLOC; hence, the value of the
WB flag after the ALLOC command is equal to the W
flag. Furthermore, any nested allocation on the same object

15

v cannot modify the WB flag, given that after the original
ALLOC it holds USERS = 1 for v. Hence, the value of the
WB flag before the DEALLOC must still be equal to the W
flag for the corresponding ALLOC.

Lemma 27: Let s be the program state after the instruc-
tion(s) for an ALLOC command has been decoded and
processed, but before any change to the state of the SPM
controller is made, and let s′ be the state after the changes
(if any). Furthermore, let d′ be computed based on abstract
state d according to Definition 20, where x,a,BB, pr,exec
are determined based on the ALLOC command. Then s ∈
γ(d)⇒ s′ ∈ γ(d′).

Proof: By definition, no instruction is processed be-
tween s,s′, hence no time elapses and s.t = s′.t. Furthermore
by Definition 20, we have d.t = d′.t; hence, ∆ = d.t− s.t =
∆′ = d.t−s′.t. Therefore, to show s′ ∈ γ(d′), we only need to
prove that the timers in d′ generate all DMA operations in
s′ with trailing length greater than ∆ = ∆′. Hence, consider
changes to the list of DMA operations between s and s′ and
to the values of timers between d and d′. If a DMA operation
is removed, then all DMA operations in s′ must also be in
s, except that operations in s′ might have smaller trailing
length (if the removed operation was ahead in the queue).
Hence, they can still be generated by the abstract state.
Similarly, if a timer T is changed such that d.T≤ d′.T, then
all operations generated by T in s can also be generated in
s′ (Observation 17). In summary, we only need to prove that
the inclusion s′ ∈ γ(d′) is maintained for the following two
changes to the program and abstract state: a DMA operation
is added, or a timer T is changed and d.T � d′.T; we call
the second case a timer removal.

Timer removal: Note that for step 2 in Definition 20,
it holds d.T ≤ d′.T by construction. Hence, we only con-
sider step 1, where d′.Twb

x = d.Twb
x \ v if exec = True and

d.Twb
x .A = {a} and x points to a single object v in BB. To

prove that the inclusion s′ ∈ γ(d′) is maintained, we show that
any DMA operation on object v generated by d.Twb

x in s must
be removed in s′. By assumption, any such operation must
be a write-back at the same address a as the ALLOC, the
ALLOC command is for the same object v as the operation,
and the command is executed (exec = True); hence, based
on Section V the ALLOC command will indeed cancel the
DMA operation.

Operation insertion: Assume that a prefetch operation
for v is inserted in the allocation queue (potentially after
canceling a write-back). Based on Section V, the following
must then be true: the P flag is set, USERS = 0 for v before
the ALLOC, and the points-to list of x in BB must include v.
This implies pr = 1 and exec 6= False, hence, Tpr

x is modified
in step 2 of Definition 22. Now let k be the maximum trailing
length of any DMA operation in s before the write-back
removal (if any), and K be the maximum trailing length of
any timer in d. Based on Definition 18, it must hold: k ≤
K +∆. Similarly, let k̄, K̄ be the maximum trailing lengths
after the write-back removal: based on the previous timer
removal case, if a timer is reset in the abstract state, then
the corresponding operation is removed from the program
state, thus it also holds k̄≤ K̄+∆. The trailing length of the
appended prefetch operation for v in s′ is then k̄+tv

dma, while
based on Definition 20 for d′ we set the timer d′.Tpr

x .t =
K̄+tx

dma, where d′.Tpr
x .V is union of d′.Tpr

x .V and the points-
to set for x. Since x can point to v, then tx

dma ≥ tv
dma, implying

k̄ + tv
dma ≤ K̄ + ∆ + tx

dma = d′.Tpr
x .t + ∆′. Hence, the added

prefetch operation in s′ is generated by d′.Tpr
x , concluding

the proof.
Lemma 28: Let s be the program state after the instruc-

tion(s) for a DEALLOC command has been decoded and
processed, but before any change to the state of the SPM
controller is made, and let s′ be the state after the changes
(if any). Furthermore, let d′ be computed based on abstract
state d according to Definition 21, where x,a,BB,wb,exec
are determined based on the DEALLOC command. Then
s ∈ γ(d)⇒ s′ ∈ γ(d′).

Proof: Similarly to the proof of Lemma 27, we have
∆ = d.t− s.t = ∆′ = d.t− s′.t and we only need to prove that
the inclusion s′ ∈ γ(d′) is maintained for any DMA operation
insertion and timer removal.

As in Lemma 27, a timer Tpr
x can only be removed in step

1; but since exec = True and x points to a single object v
in BB, this guarantees that any DMA operation on object v
generated by d.Tpr

x in s must be removed in s′. The only
operation that can be inserted is a write-back in step 2.
Assuming the operation is for object v, it must hold that
before the DEALLOC, the WB flag for v is set, USERS = 1
and x points to v. Based on Lemma 26, this implies that the
P flag for the corresponding ALLOC is set, hence wb = 1 in
Definition 21. Following the same reasoning as in Lemma 27,
it then follows that the added write-back operation in s′ is
generated by d′.Tpr

x .
Lemma 29: Let s be the program state after the instruc-

tion(s) for a GETADDR command has been decoded and
processed, but before any change to the state of the SPM
controller (including stalling the CPU) is made, and let s′
be the state after the changes (if any). Furthermore, let
d′ be computed based on abstract state d according to
Definition 22, where ∆ = Λ is the maximum trailing length
of any timer in d on which the GETADDR stalls. Then
s ∈ γ(d)⇒ s′ ∈ γ(d′).

Proof: Let ∆̄ be the amount of time that the program
stalls due to the GETADDR command. Then s′.t = s.t + ∆̄,
any DMA operation with trailing length less than or equal
to ∆̄ in s is removed from s′, while all other operations have
a trailing length reduced by ∆̄. Let also K = d.t − s.t ≥ 0.
Based on the SPM controller behavior in Section V, ∆̄ is the
maximum trailing length of any DMA operation that stalls
the GETADDR. We consider two cases: 1) ∆̄≤K; then, there
might be no timer in d that generates the maximum length
operation, hence we can only assert ∆ ≥ 0. 2) ∆̄ > K; then,
there must a timer T in d such that ∆̄≤ d.T.t+K. Since this
timer can generate the operation, by definition GETADDR
stalls on the timer. Hence, we have ∆̄ ≤ ∆+K. Combining
the two cases we obtain:

∆≥ (∆̄−K)+. (25)

Now consider K′ = d′.t− s′.t; to prove the inclusion of s′
in d′, we have to show that K′ is non-negative. Note that
based on Definition 22, we have d′.t = d.t +∆, and for each
timer: d′.T= d.T−∆. Hence, we obtain: K′ = d.t+∆−s.t−
∆̄ = K +∆− ∆̄. Substituting Equation 25 then yields: K′ ≥
K +(∆̄−K)+− ∆̄≥ K +(∆̄−K)− ∆̄ = 0. It then remains to
prove that operations in s′ can be generated by d′.

Therefore, consider any operation in s′ with trailing length
k′ greater than K′; we have to prove that the operation is
generated by a timer in d′. Let k be the trailing length of the
operation in s, then k = k′+ ∆̄. We then obtain: k = k′+ ∆̄ >
K′+ ∆̄ = K+∆− ∆̄+ ∆̄ = K+∆≥K. Since k > K, then there
must exist a timer T in d that generates the operation, with
k ≤ d.T.t +K. Note this implies d.T.t ≥ k−K = k′+ ∆̄−
(K′−∆+ ∆̄) > K′+ ∆̄−K′+∆− ∆̄ = ∆; since d.T.t > ∆, it
thus holds d.T.t = d′.T.t+∆ (i.e., timer T is not reset in d′).
We then obtain: k′ = k− ∆̄≤ d.T.t +K− ∆̄ = (d′.T.t +∆)+
(K′−∆+ ∆̄)− ∆̄ = d′.T.t +K′. Therefore, the trailing length

16

of d′.T is sufficient to generate the DMA operation in s′,
completing the proof.

Lemma 30: Consider an interval of time where the pro-
gram executes with no change to the state of the SPM
controller (including stalling the CPU) during the interval,
and let tcomp, tmm and tspm be the maximum computation
time, main memory and SPM time for the interval, assuming
that all load/stores to any object vi (pointer pk) access
main memory iff spmvi

r j = 0 (respectively, spmpk
r j = 0) for all

regions that contain the interval. Furthermore, let s be the
program state at the beginning of the interval, s the state at
the end of the interval, and d′ be computed based on abstract
state d according to Definition 22 with ∆ = tcomp+tmm+tspm
and Λ = tcomp + tspm. If the latency for access to main
memory is greater than or equal to the latency for access
to the SPM, then s ∈ γ(d)⇒ s′ ∈ γ(d′).

Proof: Let t̄comp, t̄mm and t̄spm denote the actual com-
putation, main memory and SPM times for the interval,
rather than the upper bounds. Then by definition we have
tcomp ≥ t̄comp and tmm ≥ t̄mm. Note that for the SPM time it
might hold t̄spm≥ tspm, since some load/stores operations that
are assumed to access main memory might access the SPM
in the actual program execution; however, since memory
latency is at least equal to SPM latency, it must still hold
tmm + tspm ≥ t̄mm + t̄spm. Now define ∆̄ = t̄comp + t̄mm + t̄spm
and Λ̄ = t̄comp + t̄spm; note we must have ∆̄, Λ̄ ≥ 0. Finally,
let δ = ∆− ∆̄ and λ = Λ̄−Λ. Note δ ≥ 0, and furthermore:
δ +λ = ∆−Λ− (∆̄− Λ̄) = tmm− t̄mm ≥ 0.

By assumption on the behavior of the interval, s′.t = s.t +
∆̄, any DMA operation with trailing length less than or equal
to Λ̄ in s is removed from s′, while all other operations have
a trailing length reduced by Λ̄. Also based on Definition 22:
d′.t = d.t + ∆. Let K = d.t − s.t ≥ 0, we then have K′ =
d′.t − s′ = d.t +∆− s.t −∆+ δ = K + δ ; thus K′ ≥ K ≥ 0,
and to satisfy the inclusion s′ ∈ γ(d′) it remains to show that
operations in s′ can be generated by d′.

Therefore, consider any operation in s′ with trailing length
k′ greater than K′; we have to prove that the operation
is generated by a timer in d′. The trailing length of that
operation in s must be k = k′+ Λ̄ > K′ ≥ K; hence, there
must be a timer T in d that generates that operation, such
that:

k ≤ d.T.t +K. (26)

This implies d.T.t + K ≥ k′ + Λ̄ > K′ + Λ + λ , and thus
d.T.t > (K′−K)+Λ+λ = Λ+δ +λ ≥Λ. Based on Defini-
tion 22, we have d′.T.t = d.T.t−Λ, and since d.T.t > Λ, it
thus holds d.T.t = d′.T.t+Λ (i.e., timer T in not reset in d′).
Substituting the expression for d.T.t in Equation 26 yields:
d′.T.t+Λ+K = d′.T.t+Λ+K′−δ ≥ k = k′+Λ+λ , which
is equivalent to: d′.T.t + K′ ≥ k′ + δ + λ ≥ k′. Therefore,
the trailing length of d′.T is sufficient to generate the DMA
operation in s′, completing the proof.

Note that while we proved Lemma 30 for the dual-ported
SPM case, the Lemma is also valid for the single-port case
where Λ = tcomp, Λ̄ = t̄comp, since it still holds δ +λ = tmm+
tspm− t̄mm− t̄spm ≥ 0.

Theorem 31: Equation 22 holds for the described DMA
Abstraction (D,≤D) with abstract transfer function T̂e,σ (d).

Proof: We need to show S ⊆ γ(d) ⇒ T ′
e,σ (S) ⊆

γ(T̂e,σ (d)) for every edge e : BB→ BB′. Since by definition
T ′

e,σ (S) = ∪s∈STe,σ (s), this is equivalent to showing that
∀d ∈D,∀s∈ γd, if the execution can flow along edge e from
state s with d′ = T̂e,σ (d) and s′ = Te,σ (s), it must hold:
s′ ∈ γ(d′).

Since in Definition 25 we have described T̂e,σ (d) as an
iterative transformation based on the scratchpad commands
within basic block BB, we apply the same technique to Te,σ ,
and describe the transformation of the program state s based
on a sequence of instruction intervals and ALLOC/DEAL-
LOC/GETADDR commands. Note that since basic blocks in
the extended CFG do not contain branches or function calls,
every execution of BB along e has the same sequence of
intervals/commands as the one considered by T̂e,σ (d).

Without loss of generality, let N be the total number of
intervals and commands. Let us define a set of abstract
states {d0, . . . ,dN} and program states {s0, . . . ,sN}, where
d0 = d,s0 = s and for 0 < i ≤ N, di and si represent the
abstract and program state after the Nth interval/command in
the sequence. Then by definition: d′ = dN ,s′ = sN . Now note
that based on Lemma 30 for intervals and Lemmas 27, 28, 29
for commands, it holds si−1 ∈ γ(di−1)⇒ si ∈ γ(di). Hence,
by induction on i, it also holds: s0 ∈ γ(d0)⇒ s′= sN ∈ γ(dN),
concluding the proof.

Applying Definition 25 requires a precise knowledge of
the position of each command in basic block BB. For sim-
plicity of implementation, it can also be useful to formulate
an analysis where the only available timing information are
upper bounds to the computation, memory and SPM times
tBB
comp, tBB

mm and tBB
spm for the entire basic block, rather than

individual intervals, and only the relevant ordering of SPM
commands in the basic block is known.

Definition 32 (Imprecise Abstract Transfer Function):
Consider a CFG edge e : BB→ BB′, and let tBB

comp, tBB
mm, tBB

spm
represent the maximum computation time, main memory and
SPM time for basic block BB, assuming that all load/stores
to object vi (pointer pk) access main memory iff spmvi

r j = 0
(respectively, spmpk

r j = 0) for all regions that contain BB. We
can then compute an abstract transfer function T̃e,σ (d) by
applying an iterative set of transformations of the abstract
state d using functions ELAPSE, ALLOC, DEALLOC
based on the order of ALLOC, DEALLOC and GETADDR
commands in BB:
• Order the set of transformations as follows: first, ap-

ply transformations for each GETADDR command and
each ALLOC/DEALLOC command that depends on a
GETADDR or is followed by another ALLOC/DEAL-
LOC that depends on a GETADDR, in the order
in which the commands appear in BB; then, apply
the transformation for BB’s execution time; then, ap-
ply transformations for each ALLOC/DEALLOC com-
mands that has not been considered yet, in the order in
which they appear in BB.

• For a GETADDR command on object/pointer x, trans-
form the state into ELAPSE(d,∆,∆), where ∆ is the
maximum trailing length of any timer on which the
GETADDR stalls.

• For an ALLOC command on object/pointer x, transform
the state into ALLOC(d,x,a,BB, pr,exec), where a is the
SPM address of the ALLOC and pr = 1 if the P flag is
set.

• For a DEALLOC command on object/pointer x, trans-
form the state into DEALLOC(d,x,a,BB,wb,exec),
where a is the SPM address of the DEALLOC and
wb = 1 if the W flag is set in the ALLOC command
corresponding to this DEALLOC.

• To transform the state based on BB’s execution time, ap-
ply function ELAPSE(d, tBB

comp+tBB
mm+tBB

spm, t
BB
comp+tBB

spm).
Intuitively, the imprecise transfer function works as fol-

lows: we assume that all ALLOC/DEALLOC commands that

17

do not depend on a GETADDR are “pushed” to the end
of the basic block, since doing so adds prefetch and write-
back operations at the last possible time, hence maximizing
the blocking that can be suffered by following basic block.
On the other hand, GETADDR commands (and depending
ALLOC/DEALLOC) are “pulled” to the beginning of the
basic block, since this maximizes the amount of blocking
that the GETADDR suffers due to DMA operations started
in preceding basic blocks.

Theorem 33: Equation 22 holds for the described DMA
Abstraction (D,≤D) with abstract transfer function T̃e,σ (d).

Proof: [Proof Sketch]
Consider e : BB→ BB′, and let d′ = T̂e,σ (d) and d′′ =

T̃e,σ (d). As in the proof of Theorem 31, we have to show
that s∈ γ(d)⇒ s′ ∈ γ(d′′), where s′ is the program state after
the execution of BB along e starting from program state s.

Next note that the only case in which commands can be
reordered in Definition 32 is when an ALLOC/DEALLOC
that does not depend on any GETADDR is pushed to the end
of the basic block. By definition, the ALLOC/DEALLOC
command cannot operate of any timer that are checked by
a GETADDR; hence, reordering the commands in this way
cannot change the behavior of the SPM controller. Therefore,
it remains to argue that the following three changes will
maintain the order d′ ≤D d′′: 1) moving a GETADDR to
the beginning of the basic block; 2) moving a non-dependent
ALLOC/DEALLOC to the end of the basic block; 2) moving
a dependent ALLOC/DEALLOC (or an ALLOC/DEALLOC
followed by a dependent one) to the beginning of the basic
block.

GETADDR. Let ∆ be the blocking time of the GETADDR
for the precise abstraction (T̂e,σ (d)). Since in T̃e,σ (d) the
GETADDR is moved at the beginning of the interval, the
trailing length of any timer on which GETADDR can stall
must be greater than or equal to the trailing length in the
precise abstraction; hence, ∆̃ ≥ ∆, where ∆̃ is the blocking
time for the imprecise abstraction. Following the same argu-
ment as in Lemma 29, we have ∆̃ ≥ ∆ ≥ ∆̄, where ∆̄ is the
actual blocking time for s, which then implies s′ ∈ γ(d′′).

Non-dependent ALLOC/DEALLOC. Note that moving
an ALLOC/DEALLOC while keeping the same order of
dependent commands does not change which timers are
removed (if any). Hence, consider any timer T added by the
ALLOC/DEALLOC. Since the command is moved to the end
of the basic block, it must hold d′.T.t ≤ d′′.T.t, and hence
d′ ≤D d′′; since s′ ∈ γ(d′) by Theorem 31, then s′ ∈ γ(d′′)
by monotonicity of γ .

Dependent ALLOC/DEALLOC. Any timer added by a
dependent ALLOC/DEALLOC will by definition cause a
GETADDR in BB to stall. Similarly, any ALLOC/DEAL-
LOC followed by a dependent command will increase the
maximum trailing length of any timer, hence increasing the
trailing length of the dependent timers. Therefore, moving
these commands to the beginning of the basic block imme-
diately before the GETADDR cannot decrease the program
stall time compared to the precise abstraction, meaning ∆̃≥∆

and s′ ∈ γ(d′′) from Lemma 29.

VIII. IMPLEMENTATION

A compiler-integrated flow is used to implement the
allocation algorithm. The flow analyzes the program, runs the
allocation algorithm, applies the required transformations,
and generates an executable. We integrated our flow with the
open-source LLVM compiler [3]. The program is compiled

to the optimized IR representation, then the allocation is
implemented using the following passes.
• Convert Stack Variables to Globals. Each function

frame on the stack has two components: a) temporary
spilled registers and calling context; b) local objects.
Allocating the full stack might be unfeasible if the
maximum stack depth does not fit in the SPM. In order
to allow a flexible allocation scheme for the stack, a pass
is implemented to promote large local objects to global
objects [12]. This reduces the maximum stack size, so
that it can be considered an object in the allocation
algorithm, and allows allocating local objects either in
main memory or in the SPM without the need to manage
multiple stacks.

• Region Tree Generation. We use the provided region
analysis in LLVM to construct the refined region tree.

• SPM allocation. The allocation algorithm generates
an optimized allocation solution. As discussed in Sec-
tion VI-B, we compute the fitness of a feasible solution
by analyzing the WCET. So, the code is transformed
to insert the allocation commands and to modify the
memory references and then the program is analyzed
for WCET.

• Code Transformation. Transforming the code includes
inserting allocation commands and modifying memory
references. As each region is defined by two edges,
we simply insert a new basic block with the alloca-
tion commands (ALLOC/DEALLOC) on this edge
(entry/exit). Most of these basic blocks are optimized
by the compiler and integrated with other basic blocks
when possible. For GETADDR commands, we find
the first instruction that references an object after an
allocation/de-allocation and insert GETADDR before
it. After that, all the references to the object until the
next allocation/de-allocation are modified to the address
returned by GETADDR command.

• WCET Analysis. The LLVM IR code is compiled to
assembly code for the target processor. The execution
time for each basic block is extracted from the program
assembly based on the processor model. We use the
information from the back-end to conduct the WCET
analysis.

• Code generation. The assembly code for the final
allocation is generated and a linker script that specifies
the memory sections is used to produce the executable.

IX. EVALUATION

The evaluation of the prefetching approach for the data
SPM allocation is performed using a simple model of MIPS
processor with a 5-stages pipeline and no branch predictor.
For memory instructions, we consider a latency for a word
access to main memory of 10 cycles, 1 cycle to SPM and 1
cycle to the SPM controller. For the DMA, we use a similar
model as in [28] such that the latency to initialize the transfer
to/from main memory is 10 cycles and the latency per word
is 2 cycles.

We consider three cases: 1) static allocation only; 2)
dynamic allocation without prefetching; 3) and dynamic
allocation with prefetching. As discussed in Section VI-A,
we applied our allocation algorithm for all three cases as it
can serve as an alternative heuristic to the static and dynamic
allocation approaches in the previous work, thus allowing
a fair comparison. Note that the stack always resides in
the SPM as its size becomes small after reducing its depth
by the converting stack variables to globals as discussed in
Section VIII and its access rate is usually high.

18

1000 2000 3000 4000 5000
SPM Size (Bytes)

0.0

0.2

0.4

0.6

0.8

Id
ea

lit
y

Fa
ct

or
Dynamic w/o Overlap
Dynamic w/ Overlap

(a) aes

1000 2000 3000 4000 5000 6000
SPM Size (Bytes)

0.0

0.1

0.2

0.3

0.4

0.5

Id
ea

lit
y

Fa
ct

or

Dynamic w/o Overlap
Dynamic w/ Overlap

(b) compress

1000 1200 1400 1600 1800 2000
SPM Size (Bytes)

0.00

0.05

0.10

0.15

0.20

0.25

Id
ea

lit
y

Fa
ct

or

Dynamic w/o Overlap
Dynamic w/ Overlap

(c) histogram

500 1000 1500 2000 2500 3000
SPM Size (Bytes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Id
ea

lit
y

Fa
ct

or

Dynamic w/o Overlap
Dynamic w/ Overlap

(d) g272

500 1000 1500 2000 2500 3000
SPM Size (Bytes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Id
ea

lit
y

Fa
ct

or

Dynamic w/o Overlap
Dynamic w/ Overlap

(e) spectral

2000 4000 6000 8000 10000
SPM Size (Bytes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Id
ea

lit
y

Fa
ct

or

Dynamic w/o Overlap
Dynamic w/ Overlap

(f) lpc

500 1000 1500 2000
SPM Size (Bytes)

0.0

0.2

0.4

0.6

0.8

Id
ea

lit
y

Fa
ct

or

Dynamic w/o Overlap
Dynamic w/ Overlap

(g) gsm

0 50000 100000 150000 200000
SPM Size (Bytes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Id
ea

lit
y

Fa
ct

or

Dynamic w/o Overlap
Dynamic w/ Overlap

(h) edge detect

Fig. 10: Ideality factor

We tested the allocation algorithm for multiple bench-
marks from UTDSP, MediaBench, and CHStone suites. We
present 8 kernels from these suites. We avoided benchmarks
that have the following criteria: 1) benchmarks with system
calls, as we cannot analyze their WCET without the OS code;
2) benchmarks that access only the stack or have very small
sizes for static and local objects.

We define the ideal case as the case of initially
having all the data of the program in the SPM. Fig-
ure 10 shows the ideality factor as a function of
the size of the SPM. The ideality factor is computed
as
(
WCET (static)−WCET (dynamic)

)
/
(
WCET (static)−

WCET (ideal)
)
, where the denominator represents the best

hypothetical improvement in WCET relative to the static
allocation and the numerator is the improvement for the
dynamic case. The ideality factor represents how close the
allocation is to the ideal case compared to the static alloca-
tion, with a value of 1 indicating a performance equivalent
to the ideal case. We plot the ideality factor for two cases:
w/o prefetching and w/ prefetching. For each benchmark,
we vary the range of the SPM sizes starting from the size in
which at least one object can fit in the SPM.

A. Results Analysis
As discussed in [5], the dynamic allocation without

prefetching is more beneficial than the static allocation only
for intermediate SPM sizes which can fit some but not all
of the objects in the SPM. That is, for small sizes of the
SPM where none of the objects can fit in the SPM and
for large sizes where most of the objects can fit in the
SPM, the benefit of dynamic and static allocation is similar
without prefetching. For object-based approaches like our
method, the range of the SPM sizes that shows benefit for
the dynamic allocation is dependent on the number, sizes and
live ranges of the objects of the program. The significance of
dynamic allocation appears when there are multiple objects
with distinct live ranges and the size of the SPM can fit some
but not all of them.

Prefetching allows the allocation of objects with low
access rate as it can reduce the transfer cost. When the

size of the SPM is large enough to fit most of the objects,
prefetching outperforms the static allocation in choosing the
memory transfer points to minimize the transfer cost. For
intermediate SPM sizes where dynamic allocation is useful,
prefetching can still offer additional benefit by hiding the
transfer cost when there are opportunities to overlap the
memory transfers.

Histogram is an example of a program that does not
provide space for optimization as it has two main arrays with
similar size whose live ranges interfere. So, the dynamic
allocation does not have the flexibility to reallocate the
objects during run-time. The prefetching approach also does
not gain much as the objects are used at the beginning of
the program. For compress and edge-detect, we are able
dynamically reallocate the objects. However, the program
does not offer much overlap because the objects are used
inside a loop or because the objects are very large and
the program does not have enough overlap. The results for
benchmarks aes, g272, spectral, lpc, and gsm show that
the prefetching approach excels in the ranges where there
is dynamic allocation and there are chances to overlap the
memory transfers. When the static allocation is similar to
the dynamic allocation, the prefetching approach can still
achieve significant gains as it can overlap the transfer until
the first use of the object.

The solving time for the allocation algorithm depends on
the number of possible allocations, the size of the CFG of
the program and the genetic algorithm parameters. In the
experiments, we used a population of 100 chromosomes and
termination parameters k = 500,n = 10. The solving time
varied between few seconds to around 15 minutes. Inserting
the allocation commands increases the executable code size
by at most 1.2% for the tested programs.

X. CONCLUSIONS

In this paper, we introduced a framework for predictable
data SPM prefetching. Our approach is automated within a
compilation flow that is integrated with LLVM compiler. We
provided a hardware/software design that includes an SPM
controller, an allocation algorithm and a WCET analysis.

19

The experiments have shown the potential of our prefetching
technique to provide a predictable mechanism to hide the
latency of main memory transfers and efficiently manage the
data SPM with low overhead.

Our framework can be extended to handle pointer-based
memory accesses for static, stack and dynamically allocated
objects. The performance of the allocation algorithm can be
enhanced to tackle large objects and loops using transfor-
mations like tiling and data pipelining. We plan to integrate
these mechanisms in our framework in future work.

REFERENCES

[1] S. Mittal, “A survey of recent prefetching techniques for processor
caches,” ACM Comput. Surv., vol. 49, no. 2, pp. 35:1–35:35, Aug.
2016.

[2] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-
lizzoni, “A survey on cache management mechanisms for real-time
embedded systems,” ACM Comput. Surv., vol. 48, no. 2, pp. 32:1–
32:36, Nov. 2015.

[3] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the Interna-
tional Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, ser. CGO ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75–.

[4] N. Nguyen, A. Dominguez, and R. Barua, “Memory allocation for
embedded systems with a compile-time-unknown scratch-pad size,”
ACM Trans. Embed. Comput. Syst., vol. 8, no. 3, pp. 21:1–21:32, Apr.
2009.

[5] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” ACM Trans.
Embed. Comput. Syst., vol. 5, no. 2, pp. 472–511, May 2006.

[6] O. Avissar, R. Barua, and D. Stewart, “An optimal memory alloca-
tion scheme for scratch-pad-based embedded systems,” ACM Trans.
Embed. Comput. Syst., vol. 1, no. 1, pp. 6–26, Nov. 2002.

[7] Y. Yang, M. Wang, Z. Shao, and M. Guo, “Dynamic scratch-pad
memory management with data pipelining for embedded systems,” in
Computational Science and Engineering, 2009. CSE ’09. International
Conference on, vol. 2, Aug 2009, pp. 358–365.

[8] M. Dasygenis, E. Brockmeyer, B. Durinck, F. Catthoor, D. Soudris,
and A. Thanailakis, “A combined dma and application-specific
prefetching approach for tackling the memory latency bottleneck,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 14, no. 3, pp. 279–291, March 2006.

[9] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap data allocation
to scratch-pad memory in embedded systems,” J. Embedded Comput.,
vol. 1, no. 4, pp. 521–540, Dec. 2005.

[10] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “Wcet centric
data allocation to scratchpad memory,” in 26th IEEE International
Real-Time Systems Symposium (RTSS’05), Dec 2005, pp. 10 pp.–232.

[11] J. Whitham and N. Audsley, “Studying the applicability of the scratch-
pad memory management unit,” in 2010 16th IEEE Real-Time and
Embedded Technology and Applications Symposium, April 2010, pp.
205–214.

[12] S. Kim, “Using scratchpad memory for stack data in hard real-time
embedded systems,” in Proceedings of the Memory Architecture and
Organization Workshop, 2011.

[13] J.-F. Deverge and I. Puaut, “Wcet-directed dynamic scratchpad mem-
ory allocation of data,” in Proceedings of the 19th Euromicro Confer-
ence on Real-Time Systems, ser. ECRTS ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 179–190.

[14] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and
J. M. Mendias, “An integrated hardware/software approach for run-
time scratchpad management,” in Proceedings of the 41st Annual
Design Automation Conference, ser. DAC ’04. New York, NY, USA:
ACM, 2004, pp. 238–243.

[15] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium, April 2011, pp. 269–279.

[16] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak,
R. Pellizzoni, and M. Caccamo, “A real-time scratchpad-centric os
for multi-core embedded systems,” in 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), April
2016, pp. 1–11.

[17] P. Burgio, A. Marongiu, P. Valente, and M. Bertogna, “A memory-
centric approach to enable timing-predictability within embedded
many-core accelerators,” in Real-Time and Embedded Systems and
Technologies (RTEST), 2015 CSI Symposium on, Oct 2015, pp. 1–8.

[18] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. Buttazzo, “Memory-processor co-scheduling in fixed priority sys-
tems,” in Proceedings of the 23rd International Conference on Real
Time and Networks Systems, ser. RTNS ’15. New York, NY, USA:
ACM, 2015, pp. 87–96.

[19] A. Alhammad, S. Wasly, and R. Pellizzoni, “Memory efficient global
scheduling of real-time tasks,” in 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, April 2015, pp. 285–296.

[20] R. Mancuso, R. Dudko, and M. Caccamo, “Light-PREM: Automated
software refactoring for predictable execution on cots embedded
systems,” in 2014 IEEE 20th International Conference on Embedded
and Real-Time Computing Systems and Applications, Aug 2014, pp.
1–10.

[21] R. Johnson, D. Pearson, and K. Pingali, “The program structure tree:
Computing control regions in linear time,” in Proceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design and
Implementation, ser. PLDI ’94. New York, NY, USA: ACM, 1994,
pp. 171–185.

[22] J. Vanhatalo, H. Völzer, and J. Koehler, “The refined process structure
tree,” in Proceedings of the 6th International Conference on Business
Process Management, ser. BPM ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 100–115.

[23] Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Found. Trends
Program. Lang., vol. 2, no. 1, pp. 1–69, Apr. 2015.

[24] R. Wilhelm et al., “The worst-case execution-time problem : Overview
of methods and survey of tools,” ACM Trans. Embed. Comput. Syst.,
vol. 7, no. 3, pp. 36:1–36:53, May 2008.

[25] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxi-
mation of fixpoints,” in Conference Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. Los Angeles, California: ACM Press, New York, NY,
1977, pp. 238–252.

[26] S. Thesing, “Safe and precise wcet determination by abstract in-
terpretation of pipeline models,” Ph.D. dissertation, Universitt des
Saarlandes, Postfach 151141, 66041 Saarbrcken, 2004.

[27] T. Lundqvist, “A wcet analysis method for pipelined microprocessors
with cache memories,” Ph.D. dissertation, School of Computer Science
and Engineering, Chalmers University of Technology, Sweden, 2002.

[28] X. Yang, L. Wang, J. Xue, T. Tang, X. Ren, and S. Ye, “Improving
scratchpad allocation with demand-driven data tiling,” in Proceedings
of the 2010 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, ser. CASES ’10. New York, NY,
USA: ACM, 2010, pp. 127–136.

20

	Intro
	Related Work
	Motivating Example
	Region-Based Program Representation
	Allocation Mechanism
	SPM controller
	Allocation Commands
	Example

	Allocation Problem
	Basic Constraints
	Aliasing Constraints

	WCET Optimization
	Allocation Heuristic

	WCET Analysis
	Preliminaries
	Abstract State Model

	Implementation
	Evaluation
	Results Analysis

	Conclusions
	References

