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Abstract

Across North America, water supply and distribution systems (WSDs) are controlled

manually by operational staff - who place a heavy reliance on their experience and judge-

ment when rendering operational decisions. These decisions range from scheduling the

operation of pumps, valves and chemical dosing in the system. However, due to the

uncertainty of demand, stringent water quality regulatory constraints, external forcing

(cold/drought climates, fires, bursts) from the environment, and the non-stationarity of

climate change, operators have the tendency to control their systems conservatively and

reactively. WSDs that are operated in such fashion are said to be ’reactive’ because: (i)

the operators manually react to changes in the system behaviour, as measured by Super-

visory Control and Data Acquisition (SCADA) systems; and (ii) are not always aware of

any anomalies in the system until they are reported by consumers and authorities. The

net result is that the overall operations of WSDs are suboptimal with respect to energy

consumption, water losses, infrastructure damage and water quality.

In this research, an intelligent platform, namely the Real-time Dynamically Dimen-

sioned Scheduler (RT-DDS), is developed and quantitatively assessed for the proactive

control and optimization of WSD operations. The RT-DDS platform was configured to

solve a dynamic control problem at every timestep (hour) of the day. The control prob-

lem involved the minimization of energy costs (over the 24-hour period) by recommending

’near-optimal’ pump schedules, while satisfying hydraulic reliability constraints. These

constraints were predefined by operational staff and regulatory limits and define a toler-

ance band for pressure and storage levels across the WSD system. The RT-DDS platform

includes three essential modules. The first module produces high-resolution forecasts of

water demand via ensemble machine learning techniques. A water demand profile for the
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next 24-hours is predicted based on historical demand, ambient conditions (i.e. temper-

ature, precipitation) and current calendar information. The predicted profile is then fed

into the second module, which involves a simulation model of the WSD. The model is used

to determine the hydraulic impacts of particular control settings. The results of the simu-

lation model are used to guide the search strategy of the final module - a stochastic single

solution optimization algorithm. The optimizer is parallelized for computational efficiency,

such that the reporting frequency of the platform is within 15 minutes of execution time.

The fidelity of the prediction engine of the RT-DDS platform was evaluated with an

Advanced Metering Infrastructure (AMI) driven case study, whereby the short-term water

consumption of the residential units in the city were predicted. A Multi-Layer Perceptron

(MLP) model alongside ensemble-driven learning techniques (Random forests, Bagging

trees and Boosted trees) were built, trained and validated as part of this research. A three-

stage validation process was adopted to assess the replicative, predictive and structural

validity of the models. Further, the models were assessed in their predictive capacity

at two different spatial resolutions: at a single meter and at the city-level. While the

models proved to have strong generalization capability, via good performance in the cross-

validation testing, the models displayed slight biases when aiming to predict extreme peak

events in the single meter dataset. It was concluded that the models performed far better

with a lower spatial resolution (at the city or district level) whereby peak events are far

more normalized. In general, the models demonstrated the capacity of using machine

learning techniques in the context of short term water demand forecasting - particularly

for real-time control and optimization.

In determining the optimal representation of pump schedules for real-time optimization,

multiple control variable formulations were assessed. These included binary control statuses

and time-controlled triggers, whereby the pump schedule was represented as a sequence of
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on/off binary variables and active/idle discrete time periods, respectively. While the time

controlled trigger representation systematically outperformed the binary representation in

terms of computational efficiency, it was found that both formulations led to conditions

whereby the system would violate the predefined maximum number of pump switches per

calendar day. This occurred because at each timestep the control variable formulation was

unaware of the previously elapsed pump switches in the subsequent hours. Violations in the

maximum pump switch limits lead to transient instabilities and thus create hydraulically

undesirable conditions. As such, a novel feedback architecture was proposed, such that

at every timestep, the number of switches that had elapsed in the previous hours was

explicitly encoded into the formulation. In this manner, the maximum number of switches

per calendar day was never violated since the optimizer was aware of the current trajectory

of the system. Using this novel formulation, daily energy cost savings of up to 25% were

achievable on an average day, leading to cost savings of over 2.3 million dollars over a ten-

year period. Moreover, stable hydraulic conditions were produced in the system, thereby

changing very little when compared to baseline operations in terms of quality of service

and overall condition of assets.
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Chapter 1

Introduction

In treating and delivering water to consumers, consisting of residents, businesses and in-

dustries, Ontario expends over 20 peta-joules (PJ) of energy per year, an amount enough

to light every home in the province [101]. For example, water distribution in Toronto uses

more electricity than the Toronto Transit Commission (TTC) and five times the energy

consumed by all the city’s streetlights and traffic signals [100]. Moreover, water infras-

tructure in Ontario is at significant risk of failure. The City of Toronto experiences over

1,600 pipe bursts annually which results in a tremendous volume of water lost [100]. At

the provincial scale, water loss is estimated at 12% of municipal water takings in Ontario

[101] representing an average annual volume of 375 million cubic metres (m3). To put that

figure into perspective, that’s equivalent to 8 times the annual average water consumption

of Toronto. In response, significant investments have been made to optimize operational

practices in Canadian water utilities.
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1.1 Motivation

A water supply and distribution system (WSD) is designed and engineered to deliver

potable water at a regulated quality and pressure to end-consumers, including but not

limited to residents, businesses and industries. In order to meet this objective, the WSD

draws its water from an initial source, typically a water treatment facility reservoir or

groundwater well system, and delivers this water through a complex network of pipes,

valves, pumping systems and elevated storage tanks, as shown in Figure 1.1.

In Ontario, most WSDs are controlled manually by municipal operational staff (op-

erators) who place a heavy reliance on their experience and judgement when rendering

operational decisions. Operational decisions typically include scheduling pumping systems

and valves with the objective of delivering high quality water to consumers at an ac-

ceptable pressure. However, due to the steadily increasing and dynamic demand of their

consumers, stringent water quality regulatory constraints, unanticipated external forcing

from the environment (due to cold/drought climates, fires and pipe bursts), as well as the

non-stationary influences of climate change, operators have the tendency to control their

pumping systems conservatively and reactively. WSDs that are operated in such manner

are said to be conservative and reactive because:

1. the primary goal of operators is to ensure reliability of supply, therefore little effort

is placed on enhancing operational efficiency for day-to-day usage;

2. the operators manually react to Supervisory Control and Data Acquisition (SCADA)

measurements, and only change the operation scheme when certain thresholds are

reached [13]; and

3. water supply operators are typically not directly aware of any anomalies in the system
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(i.e. most pipe bursts, fires, contamination events) until reported by consumers and

authorities.

Figure 1.1: Simplified Block Diagram of Typical Pressurized Water Supply and Distribu-

tion Processes

The net result is that the daily operations are suboptimal with respect to operational

performance and risk, namely energy consumption, water losses and water quality. It is

anticipated that as our climate changes, the quality, quantity, and accessibility of our water

resources will change and potentially degrade in some locations. This in turn will require

increased energy inputs to purify water of variable quality or pump water from greater

depths or distances. This increased energy use will potentially lead to greater greenhouse

gas emissions. All of this would ultimately reinforce climate change and create a vicious

circle [55].
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1.2 Proposed Solution

Automated control systems represent a promising technologic advance towards enhanc-

ing distributed water quality, process robustness and operational efficiency [75]. System-

wide control, considering the complex, non-linear interactions between different operational

units, is increasingly replacing the traditional perspective of localized, manual control. De-

signing a successful controller requires detailed knowledge of the entire system, specifically

the process to be controlled and its response to control actions. Lack of specic tools to

support the design and validation of practical control solutions is a bottleneck to achieving

the consolidation of automatic control in the water industry [75].

The primary objective of this research is to develop and quantitatively assess the per-

formance of a real-time control (RTC) platform that aims to enhance the operational

efficiency of Canadian WSDs. In particular, this platform seeks to address the aforemen-

tioned operational challenges by shifting the paradigm of operations in water utilities from

reactive to proactive management. Ideally, proactive management implies that operators

have sufficient information on how the WSD system will behave in the future, thus better

informing current operational decision-making.

Specifically, this involves empowering WSD operators with the ability to:

1. meet specific system performance objectives, such as minimizing energy consumption

costs;

2. maintain or improve the reliability of the system’s daily hydraulic performance;

3. dynamically optimize control settings (i.e. pump schedules) based on constantly

changing and unforeseen conditions, such as increased or decreased demand, emer-

gency scenarios, or maintenance schedules;
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4. review the impact of supply and distribution operational decisions on difficult to mea-

sure parameters, such as in-network pressures and water quality, without installing

additional expensive sensing hardware; and

5. explore additional key performance indicators (KPIs) in real-time on critical WSD

infrastructure.

It is anticipated that by shifting operations towards a proactive management approach

whereby operational decision-making is informed in real-time via a priori insight of the

system dynamics, the net result will be efficiency improvements in terms of energy con-

sumption and hydraulic reliability. This notion holds particularly true for large, complex

water distribution systems where an objective, automated control system would undoubt-

edly outperform human judgement alone. Moreover, having an operating strategy also

provides a degree of comfort that the control system can recover from the current state to

any prescribed threshold at a specied time that might be imposed for operational reasons

[75].

To encapsulate the proactive management paradigm into a RTC computational frame-

work, the control problem is formulated as a dynamic scheduling optimization problem

that is repeatedly solved at every time-step of the control horizon. As such, the proposed

platform is designed modularly with the following essential modules:

1. a predictive engine to create short-term predictions of system demand. This module

captures information on the system’s disturbance variables, in other words, variables

that influence the performance of the system but cannot be controlled;

2. a hydraulic simulation model to assess the hydraulic impact of operational decisions

on the system. The simulation model ensures that decision-making is guided by
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physically-based principles and represents the a priori knowledge of the decision-

maker; and

3. an optimization engine to generate optimal operational decisions. The optimization

algorithm guides the selection of operational decisions and is intended to support

operator decision making with respect to scheduling.

The first module, the predictive engine, produces high-resolution forecasts of the system

water demand via machine learning techniques. A water demand profile for the control

horizon (i.e. next 24-hours of operation) is predicted based on temporal indicators such as

the day of the week, time of the day, whether the day is a national holiday or not, as well

as exogenous variables such as ambient conditions (i.e. temperature, precipitation).

The second module involves a calibrated hydraulic simulation model of the WSD system

and is used to determine the impacts of control settings on important parameters such as

storage tank levels, junction pressures and water age. The predictions generated in the first

model are used as inputs in the simulation model. The model outputs are used to guide

the search strategy of the optimization engine which in turn selects the control settings to

be evaluated within the model.

Finally, the optimization engine is intended to heuristically adapt the control strategy

to the current conditions based on an internal evaluation of the system state as produced

by the simulation model. In this research, the optimization engine consists of the novel,

parsimonious stochastic heuristic optimizer, namely the Dynamically Dimensioned Search

Algorithm [185].
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1.3 Related Research

Over the past decade, exploration of modelling software, automated controls and opera-

tional optimization of WSDs in academia has been growing steadily.

Some of the earliest operational optimization research involves formulating cost-optimized

hourly pump-schedules, known as the offline pump-scheduling problem. These pump sched-

ules are characterized as offline since they are disconnected from SCADA and thus do not

dynamically change in response to operational changes. Offline pump schedule optimization

was extensively explored using linear programming [133][58][140], global population-based

stochastic optimizers such as Genetic Algorithms (GAs)[102][187][174], Simulated Anneal-

ing [60], Ant-colony Optimization (ACO) ] [96]. However, these studies primarily focus

on improving the computational efficiency of the optimizers in tackling single-objective

problems such as energy efficiency and minimizing design costs rather than addressing the

operational control challenges of the WSDs. Moreover, the single-objective optimization

approach has considerable limitations compared with the multi-objective approach. Pri-

marily, a single objective formulation requires judgement regarding formulating multiple

conflicting objectives as constraints.

From an operational optimization perspective, offline multi-objective formulations are

relatively new in water supply and distribution research. Most notably, [90] use water qual-

ity, pumping cost, and tank sizing objectives in an integrated framework with constraints

on threshold storage-reliability. The formulation aims to support decisions on trade-off

behaviour of pump operation versus tank sizing and water quality. However, some of the

limitations of this formulation include:

1. the pump schedule decision variables were represented as variable speed settings.
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Since most municipalities utilize constant-speed pumps, the decision variables would

have to be reformulated;

2. each pump decision variable represented an aggregated pumping station, additional

constraints are required to capture detailed pump behaviour within a pumping sta-

tion; and

3. the computational intensity required for a real distribution network would be signif-

icant.

Similarly, [106] generates trade-offs between water quality and pumping. They fur-

ther extended those previous studies to regional multi-quality WSDs with the main aim

to investigate under which circumstances the competing nature of these trade-offs exists

and how these trade-offs change with different water quality configuration of the system.

Other studies analyze operations of WSDs involving the minimization of energy costs for

pumping as the first objective and pump maintenance [83][95][193][163][16] or greenhouse

gas (GHG) emissions [197] as the second objective. Moreover, [123] combine single and

multi-objective differential evolution algorithms with an articial neural network for explor-

ing demand operational strategies in the northern part of the Rhodes Island, Greece. The

primary drawback of the offline operations optimization approach is that the formulation

lacks flexibility from the point of view of a control system. In other words, pump schedules

are formulated as single hardcoded rule-based strategies that are unable to dynamically

adjust to constantly-changing operations, fluctuating demands and other non-linear dis-

turbances that exist in real urban WSDs.

As a response to these limitations, real-time (online) optimization was proposed. Through

integration with live operational data, an automated, online controller can dynamically ad-

just to constantly fluctuating operational conditions. Some of the earliest work in real-time
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control and optimization was developed through the Potable Water Distribution Manage-

ment (POWADIMA) Project. The project involved the conceptual design and development

of a prototype real-time controller [75][145][171] and its application to real urban networks

such as Haifa-A [158] and Valencia [111]. The controller presented in the POWADIMA

project integrated the following primary elements: (1) a surrogate Artificial Neural Net-

work (ANN) model to simulate the hydraulic behaviour of the tested WSDs; and (2) a

GA-based optimizer. While this controller configuration produced considerable savings in

an offline operational optimization mode, several opportunities for further development are

subsequently described.

Many researchers have proposed using meta-modeling techniques in lieu of fully cal-

ibrated EPANET hydraulic simulation models [186][75][144][145][171][81][125][40] for op-

erational optimization. While these methods present an opportunity to greatly reduce

the computational intensity of simulations [111], which is certainly an attractive feature

for real-time control applications, several limitations exist. Meta-modelling involves re-

placing a large, complex WSD model with either a reduced order model representation

[159][171][40] or capturing the domain knowledge of the hydraulic model with an ANN

[29][75][144][111]. The latter involves training the ANN with the steady-state output of

the hydraulic simulation model. Specifically, training and validation datasets including the

inputs and outputs of the model must be constructed. Typically, the input layer consists

of different spatial demand patterns, tank and reservoir initial conditions as well as pump

control settings. Meanwhile, the output layer comprises the energy consumption of the

control settings, changes in tank and reservoir levels, as well as hydrostatic pressures and

flow rates at key monitoring sites in the WSD [111].

Firstly, the computational intensity of the training process needs could be prohibitively

large. This is because the complexity of the ANN architecture is directly correlated to the
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size and complexity of the WSD model, particularly with real, complex systems. As such,

the training and validation process could consume considerable computational time and

effort [40].

Secondly, the domain knowledge of surrogate ANN models is inherently limited by the

training data they are exposed to. In this manner, the ANN models may be less adaptive

to emergency scenarios (fire flows, power outages etc.) than fully calibrated hydraulic

models depending on the availability of data. This is problematic given that one of the

value-enhancing features of a real-time controller is to guide operational decision-making

towards stable operations. However, ANN models are arguably more robust, in the sense

that they are operating system independent, generally easy to interface with and more

fault tolerant than hydraulic models. Lastly, both the ANN and hydraulic model would

require retraining as the infrastructure configuration of operations in real, large systems

change, an example of this includes but is not limited to changing valve positions; as

well as maintenance and servicing of various units. However, retraining an ANN may be

considerably faster and less resource intensive than calibrating a hydraulic model.

Surrogate ANN models are inherently less accurate than EPANET hydraulic models

[40]. This phenomenon arises due to the introduction of uncertainty in the training and

validation process. Moreover, error is propagated at every hour of the ANN predictions

because state variables such as tank levels appear as output variables in the ’ith’ control

timestep but are then used as input variables in the ’i+1’ timestep [145]. As such, error is

propagated forward for the duration of the control horizon. Lastly, even a small error in the

metamodel can have significant impacts on the objective space of the optimization process

[40]. This is because a small error could potentially translate to a loss of feasibility (known

as a false positive decision set). Conversely, such an error could result in the exclusion of a

feasible solution from the optimization trajectory (known as a false negative decision set).
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Overall, such errors can negatively influence the optimizer trajectory or at worst result in

the recommendation of possibly detrimental operational decisions.

A critical examination of proposed real-time controllers in the literature reveal a heavy

reliance on variants of GAs as part of the optimization procedure [75][145][171][81][125][40].

GAs belong to a class of stochastic population-based algorithms that draws on the Dar-

winian mechanics of natural selection. While the characteristics of GAs are not universal,

they typically involve the following elements [122]:

1. generation of an initial population of potential solutions;

2. computation and ranking of solutions based on a predefined fitness metric;

3. a selection metric of candidate solutions to participate in a mating operator, where

information from two or more parent solutions are combined to create offspring so-

lutions; and

4. mutation of each individual offsprings to maintain diversity

GAs are best suited to solving combinatorial optimization problems with very large so-

lution spaces which cannot be solved using more conventional optimization methods [187]

and can generally converge towards globally optimal solution given a large enough compu-

tational budget. Moreover, GAs are widely available through various open-source libraries

(GAlib, DEAP Project, Pyvolution) and commercially-available packages (optiGA) for im-

plementation. Nonetheless, some limitations exist, particularly in the context of real-time

operations optimization.

One of the greatest drawbacks of GAs is that they require a high number of function

evaluations to achieve convergence. Since GAs generate solutions stochastically, there is
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also the added risk that irrational and infeasible solutions are obtained as part of the opti-

mization runs, thus consuming a large portion of the computational budget. In the context

of WSD simulations, each function evaluation entails a full extended-period simulation of

the system, which is a computationally expensive process [187]. The net result is that GA

optimization is time consuming and convergence is often slow.

Moreover, as a population based algorithm, GAs are inherently complex and thus re-

quire diligence and subjective decision-making for parameter tuning and operator defini-

tion. This applies for each element in the optimization procedure including but not limited

to defining initial population sizes; as well as selection, mating and mutation metrics and

associated parameters. For example, in the context of WSD pump scheduling, a decision

maker is not only responsible for defining the decision variable representation but must

also develop and empirically test recombination operators for the mating of these decision

variables. Outside of a research and development environment, the decision-making and

empirical verification required for algorithm parametrization and operator development

might preclude their use in industry.

Another notable metaheuristic algorithm that has been used as part of the optimiza-

tion procedure of a real-time controller includes the Multialgorithm-genetically-adaptive-

method (AMALGAM). AMALGAM was used by [125] in their multi-objective real-time

optimization of the Araraquara water distribution system in Brazil. [125] were perhaps

the first to formulate online WSD operations optimization as a multi-objective control

problem. The proposed optimization approach explicitly considers the maximization of

reliability/ resilience of water supply in addition to the minimization of pumping energy

costs to explore the complex trade-off between these two objectives. However, the multi-

objective optimization strategies produced by AMALGAM resulted in solutions that were

marginally better (7-13%), equivalent (0.3%) and at times worse (-27-46%) than the base-
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line operations. Overall, the operational reliability values of the optimized solutions were

not dissimilar when compared to the baseline historical operations, with the exception that

notably more pump switches were triggered in the former. The mixed performance of the

optimization procedure is indicative that additional work is still required to develop novel

optimization algorithms that are better suited to real-time pump scheduling.

Aside from a discussion on optimization algorithm performance and model represen-

tation, an area of control theory that has had limited exploration in the online optimiza-

tion of WSDs is the feedback assessment of the feasibility and optimality of the overall

control trajectory. To date, feedforward strategies are commonly proposed in research

[75][145][171][81][125][40], whereby optimal pump schedules are produced at every timestep

of a larger predefined control horizon. However, none of the above controllers have incorpo-

rated trajectory awareness into the generation of these optimal pump schedules. In other

words, each pump schedule is produced virtually independently of those produced in the

past. The net result is that this may lead to an overall suboptimal or infeasible trajectory.

[125] appear to be the only researchers to describe a detailed post-processing strategy to

validate the feasibility and optimality of the recommended pump schedules. As a departure

from the typical feedforward formulation, this post-processing strategy involves creating

a combined optimized schedule (COS), which includes the current trajectory (previously

selected decisions) as well as the current optimal solution (newly recommended decision).

The evaluation of the COS involves a minimization of both pump switches and pumping

during peak-hours. However, this post-processing strategy is computationally inefficient

because significant evaluation and modification of the recommended schedule is conducted

after an optimization run has already been completed. The net result is that an already

expensive optimization process is virtually overwritten.
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1.4 Research Objectives

The overarching goal of this research is to develop and quantitatively assess a Real-time

Control (RTC) platform for the implementation with an Ontario-based water supply and

distribution system (WSD). At a high level, this involved achieving the following core

objectives:

1. the generalizable formulation of a real-time control (RTC) model for WSDs;

2. the adaptation of a suitable optimization algorithm to solve the formulated real-time

control model; and

3. the development of a data-driven demand prediction engine as part of the RTC model.

There are significant challenges associated with the development of a generalizable real-

time control model for WSDs. Specifically, these unique challenges include overcoming the

difficulty associated with interfacing with and iteratively evaluating WSD models. Many

commercially available simulation packages do not have application programmable inter-

faces (APIs) that allow for ease of communication. As such, the primary challenges include,

firstly identifying an open-source WSD simulation modelling software, and secondly cre-

ating an API to effectively communicate with the open-source system model. Moreover,

traditional WSD models can have prohibitively, long simulation run-times (on the order

of 30, 60 seconds). Therefore, another challenge involves reducing the run-time of the

simulation model to ensure effective evaluation in real-time, without a significant loss of

information and solution quality.

Another key challenge in the formulation of the RTC model involves finding the most

effective control variable formulation. In this research, various control variable formulations
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are introduced and quantitatively assessed to avoid inadvertently introducing biases in

the proposed control strategy, as well as maintaining hydraulic feasibility throughout the

control horizon. Moreover, to address some of the previously mentioned limitations of

feedforward pump scheduling, a novel feedback real-time control strategy is formulated

in this research. Specifically, this involves introducing ’trajectory awareness’ explicitly

into the formulation of the optimization process at every timestep. In this approach, the

recommended pump schedule at every timestep is feasible and near-optimal with respect

to both the current trajectory and the planned control horizon. Additionally, no post-

processing is required once an optimal pump schedule has been determined. The nuances

of this control strategy will be described in Chapter 3.

Once the RTC model has been formulated, a suitable optimization algorithm is required

to dynamically optimize the WSD at every timestep. As an alternative to commonly-used

evolutionary optimization algorithms, a novel optimization engine has been developed and

integrated for the proposed RTC platform. The primary motivation behind designing a

dedicated optimization platform was to encapsulate human decision making or an ’expert’

knowledge of the system into a parsimonious automated framework. Specifically, this

research involves the configuration and implementation of Single Objective Dynamically

Dimensioned Search (DDS) Algorithm suite for real-time control.

In addition to the development of the novel optimization algorithm, the required com-

putational budget for producing near-optimal solutions in the context of real-time control

is explored. This information is valuable for the optimal allocation of computing resources

in a real-time context since there exists a trade-off relationship between computing core-

hours utilisation and quality of solution obtained during sampling interval. Moreover,

understanding this trade-off relationship can inform the determination of an optimal con-

trol resolution (i.e. hourly, 30 mins, 15 mins etc.) for the real-time controller. This
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research will aim to identify alternative computational efficiency measures to implement

a fully integrated calibrated model-based control. Integrating a full hydraulic model into

the RTC platform allows for a more comprehensive evaluation of the current and projected

behaviour of the WSD, thus empowering the operational staff to render decisions based on

a holistic a priori understanding of system performance. The primary computational effi-

ciency measures will involve the implementation of a parallelized framework for distributed

and shared memory computing architectures, namely through the implementation of the

thread-safe EPANET2 model [97] and MPI-based communications.

Another key contribution of this research involves leveraging machine learning tech-

niques to develop short-term predictions of water demand for real-time management.

Specifically, by applying a rigorous model validation framework, the effectiveness of data-

driven modelling can be assessed at various resolutions. Moreover, the relative influence of

exogenous variables such as temperature and precipitation on the prediction of the water

demand are studied. This information is valuable in a Canadian context where water de-

mand is more sensitive to climate variability. Furthermore, it provides information on the

robustness of the prediction engine, particularly in the context of real-time applications

where a connection to a weather station database may be temporarily disrupted.

Lastly, this research explores the added-value of integrating the RTC platform with

an Ontario based WSD. The projected energy savings of the RTC platform are evaluated

against baseline operations, as well as manual attempts to optimize operations. Moreover,

benchmarking the performance of the RTC platform in response to disturbances in the

projected water demand provides an evaluation of the robustness of the platform in han-

dling the expected variations in daily control. While the objective function of the RTC

platform provides a spot calculation of the total system energy consumption, additional

pumping KPIs are calculated and provided in real-time. These additional KPIs for each
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pump, namely the daily cost and utilization rates, the consumption-supply efficiency ra-

tio (m3/s), as well as the peak and average energy consumption (kWh), provide a richer

overview of the detailed performance of the WSD pumping infrastructure.

1.5 Organization of Thesis

The thesis is organized to describe how each of the specific research objectives in Section

1.4 was achieved. Chapter 1 outlines the research motivation and gives a key literature

overview on RTC research in WSD management. Chapter 2 then outlines the fundamentals

and literature needed to understand how to build a hydraulic model of a WSD. With the

appropriate background covered, the thesis then describes how each of the specific research

objectives are tackled in Chapters 3, 4 and 5. These chapters are each associated with the

three specific research objectives in Section 1.4 and each are organized to go deeply into the

existing literature and then outline the selected methodology, sometimes a newly developed

approach, needed to address each objective.

To this extent, Chapter 3 provides an in-depth analysis of how to develop a real-

time control platform for WSDs. Specifically, Section 3.2 outlines the architecture of the

proposed real-time controller; Sections 3.3-3.5 describe the formulation of the objective

function, control variables and state variables, respectively; and lastly 3.6 describes the

novel feedback formulation.

Chapter 4 describes the development of the Real-time Dynamically Dimensioned Schedul-

ing (RT-DDS) algorithm that is used to guide the development of optimal control variables

as part of the RTC platform. Specifically, 4.3.1 discusses, in detail, the algorithm search

heuristic; 4.3.2 discusses the parallelization strategy to enhance the computational effi-

ciency of the optimization algorithm and 4.4 describes how the optimization algorithm
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interfaces with the WSD hydraulic model.

An essential component of the RTC platform involves the prediction of the system

disturbances. As such, Chapter 5 presents the development and validation of an artificial

neural network, alongside ensemble machine learning algorithms, to predict water demand

profiles based on exogenous variables. Subsection 5.3 describes the theoretical formula-

tion of the machine learning-driven predictive models and 5.4 outlines a comprehensive

framework for the assessment and validation of the selected models.

In order to expeditiously investigate each objective, the general strategy in this the-

sis was to first find an appropriate and readily available case study for methodological

testing with the eventual plan to implement all components in an RTC system for the

City of Guelph. Chapter 6.1 describes the successful application of data-driven demand

prediction techniques for an independent case study, namely the City of Abbotsford. Un-

fortunately, due to time and data constraints, demand forecasting was not possible for

the City of Guelph case study and so the RTC system applied to the City of Guelph was

not tested with the prediction model developed in Chapter 6.1. Instead, Chapter 6.2 ap-

plies the developed RTC system using historical demand scenarios and compares results

to two alternative pumping strategies (including the current strategy used by the City of

Guelph). Additionally, 6.2 explores the influence of forecasting errors on the real-time con-

trol strategy, by applying a Gaussian-noise model to the assumed demand scenario. In this

manner, the behaviour of a real-time control platform with an embedded prediction engine

is simulated. The RTC application in Chapter 6.2 embeds the various RTC formulations

of Chapter 3 and the corresponding optimization algorithm from Chapter 4.
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Chapter 2

Modelling Water Supply and

Distribution Systems

WSDs are complex, in terms of both topology and size, and often experience significant

growth and change as cities continue to expand. A typical WSD in Ontario can supply

potable water to populations exceeding 100,000, with larger cities such as Toronto ser-

vicing populations of over 2 million. As such, the potential impact of utility decisions is

substantial. For this reason, it is imperative to create mathematical models for WSDs such

that quantitative evidence informs utility decision-making.

2.1 Hydraulics of Water Supply and Distribution

WSDs are topologically represented as graph networks, whereby a collection of nodal ob-

jects is connected via link objects, as shown in Figure 2.1. Nodal objects consist of storage

infrastructure (tanks and reservoirs) as well as demand junctions, whereas link objects con-
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sist of supply and conveyance infrastructure (pumps, pipes and valves). Note that demand

junctions represent consumer end-points, in other words, locations in the network where

water is withdrawn.

Figure 2.1: Example WSD Topology known as the Anytown Network [191]

To create mathematical models describing the hydraulic relationship of these nodes and

links in WSDs, steady-state behavior is often assumed. In this steady-state assumption,

the hydraulic behavior is constant within a predefined discrete timestep (i.e. an hour).

The granularity of this timestep can be adjusted at the discretion of the hydraulic modeler

based on the desired resolution of the model. The steady-state formulation governing flow,

pressure, and energy loss in the WSD is based on mass and energy conservation laws.

Using these conservation laws, continuity relationships for each closed network of links in
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WSDs can be established.

2.1.1 Conservation of Mass

The principle of conservation of mass states that the net mass in a control volume must

remain constant over time. The quantity of mass in a system cannot change unless more

mass is added to a system or mass has been removed from a system. In the steady-state

formulation of a WSDs, the water is assumed to be completely incompressible, implying

it has a constant density. Hence, the mass flow rate can be equivalently expressed as

a volumetric flowrate (Q). As such, the volumetric flowrate into the system must equal

the volumetric flow rate out of the system since there is no internal storage of water

[114][192][173]. The principle of conservation of mass (based on volumetric flow) is thus

applied at every junction throughout the network. Incidence matrices, A1 and A2, are used

to describe the connectivity of pipes to junctions and fixed-head nodes (tanks, reservoirs),

respectively. Specifically, each element of these matrices (aij) is used to describe the

direction of flows (i.e. whether a flow is entering or leaving) at every junction or node, as

shown in Equation 2.1 below.

aij =

{ , 1 Qj is entering node i

0 Qj is unconnected to node i

1 Qj is leaving node i

(2.1)

The incidence matrix element, aij, gives the direction of the flow, whereby +1 and -1

values correspond to inflows and outflows at the node, respectively. Note that a value of

0 indicates that a given pipe is not connected to the junction. As such, volumetric flow

balance at every ith junction in the network is achieved by summing the volumetric flows
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(Qi) from each jth connecting pipe. The demand (Di) at the ith junction is also included

in the flow balance, as shown in Equation 2.2 [192][182].

∑
aijQj +Di = 0 (2.2)

2.1.2 Conservation of Energy

The principle of conservation of energy states that the total energy at a certain location in a

system equals the energy at a further point in a system plus the energy change due to losses

(i.e. due to friction) or gains (i.e. due to pumps) [114][192]. The total amount of energy at

a given location in a WSD system can be represented by the energy grade line (EGL). The

EGL is a term that represents the summation of the pressure head (hydrostatic energy),

elevation head (potential energy), and the velocity head (kinetic energy). Similarly, the

Hydraulic Grade Line (HGL) represents the sum of the elevation and pressure head, which

corresponds to the height that water will rise vertically in a tube attached to the pipe and

open to the atmosphere [192]. Equation 2.3 describes the total energy head at an arbitrary

point, i, in the network.

Hi = Zi +
Pi

γ
+
v2i
2g

(2.3)

The total head (H) is expressed as the ”energy per unit weight” and is given in terms

of the pressure head (P/γ), the elevation head (Z), and the velocity head (v2/2g), where

P is the pressure in pipes, γ is the unit weight of the fluid, v is the fluid velocity and g is

the gravitational acceleration.

In closed conduit flow, the energy loss between two points can be calculated as the

difference in the HGL and is defined as total head loss (dH). Assuming the flow in the
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pipeline has a constant velocity (that is, acceleration is equal to zero), the system can be

balanced based on the pressure difference, gravitational forces, and shear forces [192] as

described in Equation 2.4.

dHi,i+1 = (Zi +
Pi

γ
), (Zi+1 +

Pi+1

γ
) (2.4)

Total head loss (dHT ), as shown in Equation 2.5, consists of frictional head loss (dHf )

due to the shear stress that develops due to the fluids contact with the pipe wall, and

minor head losses (dHm) due to various pipe network components/form (i.e. valves, bends,

fittings, etc.) and turbulence within the bulk fluid [18]. In most systems, frictional head

loss accounts for the clear majority of energy losses.

dHT = dHf + dHm (2.5)

Frictional head loss can be calculated using the Hazen-Williams Equation which is a

function of the bulk fluid flowrate through the pipe (Q), pipe sectional length (L), pipe

diameter (D), and pipe roughness. The Hazen Williams Equation represents pipe roughness

using an empirical parameter known as the Hazen Williams C coefficient. The C coefficients

generally vary between 100 and 140, whereby larger values are indicative of smoother pipes

with lower roughness values. The Hazen Williams head loss equation is shown in Equation

2.6.

dHf (m) =
aL

(C1.852D4.87)
Q1.852 (2.6)

It is common practice to lump the parameters associated with a given pipe section

into a single resistance parameter (kf ). This allows for a more parsimonious formulation
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when a network is large and has multiple pipe characteristics or when the modeler wishes

to use an alternative formulation, such as the Darcy-Weisbach or Manning Equation, for

computing the head loss across a pipe section. As such, the head loss relationship can be

generalized as shown in Equation 2.7 [114].

dHf = kfQ
n (2.7)

As mentioned earlier, minor losses are generated due to the turbulence within the bulk

fluid flow as it moves through sudden pipe contractions and expansions, various valve

fittings and pipe bends. As such, empirically determined minor loss coefficients (KL) are

used to describe these various disturbances in the pipe system. The equation for minor

head loss (dHm) is thus expressed as shown in Equation 2.8.

dHm =
KL

2g
Q2 (2.8)

Similarly, the minor loss coefficients can be conveniently lumped into a single minor

loss resistance term (Km). Using Equation 2.5, as well as the generalized formulations for

frictional and minor losses described in Equations 2.7 and 2.8, the total head losses across

any given pipe section can be expressed by Equation 2.9 below.

dHT = (Kf +KL)Qn = kQn (2.9)

Since a WSD system may contain many pipes and junctions, matrix notation is used to

describe the hydraulic state of the system at any given point in time. As such, a column

vector, detailed in 2.10, is used to compactly define all flows in pipes or other links (pumps,
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valves etc.) in the WSD system, where NP represents the total number of pipes in the

system (Simpson, 2010).

Q =
[
Q1 Q2 ... QNP

]
(2.10)

Similarly, the general column vector of total heads at each node (excluding fixed head

nodes such as reservoirs and tanks) is given by Equation 2.11 where NJ represents the

total number of junctions [173].

H =
[
H1 H2 ... HNJ

]
(2.11)

Note that for the pressure throughout the system to be uniquely determined, at least

one location must have a fixed hydraulic head that is a known function of the external flow

[192].

Moreover, since the energy loss relationships for an arbitrary pipe within a WSD system

are non-linear, an iterative solver is required to successively solve a set of linear approxima-

tions to the system of equations. For this reason, the Global Gradient Algorithm (GGA)

was developed by [182]. Since the GGA method is used in the EPANET simulation mod-

elling platform, an overview is provided, subsequently.

In the Todini and Pilati GGA method, both the heads and flows are solved for simulta-

neously in a sequential iterative process. The GGA utilizes a set of mass balance equations

for each junction node, and energy equations for each pipe, which are solved in matrix

form for the change in flow (dQ) and the change in head (dH) in the system. New flow

values are then calculated (updated) and used as inputs for the next iteration. The system

is iterated until the dQ and dH values converge to zero (or a small error tolerance). When
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the dQ and dH converge to zero, the flows and heads in the network are known, and the

appropriate head loss-discharge relationship is maintained in each pipe.

Using the column vector representation of flow (Q) and demand (D) as well as the

incidence matrix, the volumetric flow balance of Equation 2.1 can be described in matrix

notation as shown in Equation 2.12.

AT
1Q+D = 0 (2.12)

Similarly, the head loss relationship described in Equation 2.9 can be rearranged in

terms of the total energy heads (H) at two successive junctions of a pipe in the network (or

between a junction and fixed-node) as shown in Equation 2.13. Note that each successive

energy head is an element in the previously defined column vector.

− kQn +Hj+1, Hj = 0 (2.13)

Using the derivative of Equation 2.13, a gradient diagonal matrix G is defined in Equa-

tion 2.14 [173].

G = diag{−kjQn−1
j } =


−k1Qn−1

1 0 ... 0

0 −k2Qn−1
2 ... 0

0 ... ... 0

0 0 ... −kNPQ
n−1
NP

 (2.14)

Combining Equations 2.12, 2.14, the resulting head loss expression for pipes in a WSD

system is given by Equation 2.15.

−GQ+ AT
1H + AT

2 e = 0 (2.15)
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Equations 2.15 and 2.12 further yield the combined partitioned matrix formulation [173]

as given in Equation 2.16.

 G −A1

−AT
1 0

Q
H

−
AT

2 e

D

 = 0 (2.16)

To solve the above non-linear systems of equations, the Jacobian matrix (J) is defined

in Equation 2.17 to yield the linear system detailed in Equation 2.18 [173].

J =

 nG −A1

−AT
1 0

 (2.17)

J

dQ
dH

 =

gQ− A1H − AT
2 e

−A1Q−D

 (2.18)

Qk

Hk

+

dQ
dH

 =

Qk+1

Hk+1

 (2.19)

Equation 2.18 is iteratively solved for the change in flow (dQ) and the change in head

(dH) in the system. It requires an initial estimate of flows (Q0) in each pipe that may not

necessarily satisfy the volumetric flow balance. New flow values (represented as iteration

k+1) are then updated using Equation 2.19 and used as inputs (during iteration k) for the

next iteration. The system is iterated until the dQ and dH values converge to a small error

tolerance.
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2.2 Overview of Pumping Systems

For water utilities, pumping is the primary consumer of energy, with typically 90 to 95% of

the total energy purchases used by pumping stations [30]. As such, pumping energy costs

are often the highest operating expenditures for water utilities [131]. In WSDs, pumps are

used to overcome elevation differences between the suction and discharge points, as well as

the energy losses, due to friction over the pipe distance that occur within the system.

These factors directly contribute to the high-energy consumption of pumping systems.

In addition to these energy requirements, the conversion of electrical power to water power

suffers from inefficiencies further increasing energy needs [131]. Pumping stations typically

consist of an electric motor, a pump and, in the case of a variable speed pump, a converter.

In this configuration, electrical energy is converted into hydraulic energy of water; however,

a fraction of energy is lost and converted into heat [186].

Each pump delivers a certain flow rate (Q) as a nonlinear function of the total pressure

head (H), the pressure imparted to the water by the pump, at its discharge flange [85].

This nonlinear relationship is known as the pump characteristic curve and is provided by

the pump manufacturer. The manufacturer will also typically provide information on the

pumps efficiency (p) and required shaft power (P) over the same range of flows and total

heads. The latter is the mechanical power that needs to be delivered by the pump motor

[85]. The pump characteristic curve describes the hydraulic behavior of a single pump with

a single-sized impeller operating at its nominal speed. As shown in Figure 2.2, Head is

plotted on the vertical (Y) axis of the curve while the flowrate is plotted on the horizontal

(X) axis. A valid pump curve must have a monotonically decreasing head with increasing

flow rate.

Similarly, the manufacturers pump efficiency can be plotted against the pumps flowrate
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Figure 2.2: Example Pump Characteristic and Efficiency curves [131]

range, as shown in Figure 2.2. As described in [186], the overall efficiency (wire to water),

of the pump unit is a product of the individual efficiencies of the converter, the motor, and

the pump. The converter efficiency is usually assumed to be constant at the higher speeds

and can reach between 95 and 98%. The efficiency of the electric motor is a function of

the output power and, if the motor is operating above 50% of its rated load, its efficiency

is comparatively constant and around 89% in this case. The shape and magnitude of the

pump efficiency curve is of interest since an optimal efficiency point is clearly defined [131].

This optimum of the pump efficiency curve is known as the Best Efficiency Point (BEP). It
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is desirable for a pump to operate with a flowrate at the BEP, or within the range around

it where efficiencies are generally quite high before they drop off.

Figure 2.3: Example Three-Point Pump Characteristic Curve produced by EPANET2 [155]

Both the efficiency and pump characteristic curves for every pump in a WSD system

can be specified as inputs in the EPANET2 simulation platform. In EPANET2, the pump

curve is mathematically expressed as a power law [155], as shown in Equation 2.20.

Hp = H0, BQ
C
P (2.20)

The curve is a continuous function fitted to three bounding points as shown in Figure

2.3.
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1. Shutoff Head (H0), defined as the maximum head delivered when the flowrate is zero

2. Design flow, the flow and head conditions (Q1, H1) at the desired operating point

3. Maximum Flow, the flow and head conditions (Q2, H2) corresponding to the maxi-

mum flowrate the pump can deliver without damage (known as pump runout)

The power law parameters, B and C, are computed in Equations 2.21, 2.22, as functions

of the shutoff, design and maximum flow heads [85].

B = (H0, H2)e
clnQp (2.21)

C =, ln(
H0 −H2

H0 −H1

)(ln(
Q2

Q3

))−1 (2.22)

Flow through a pump is unidirectional. If system conditions require more head than

the pump can produce, EPANET shuts the pump off. If more than the maximum flow is

required, EPANET extrapolates the pump curve to the required flow, even if this produces

a negative head [155].

As mentioned earlier, the purpose of a pump is to provide the required energy in a

WSD to offset energy losses and elevation differences. As such, a system head-capacity

curve (known as the system curve) is used to graphically characterize the head that must be

overcome for a range of system discharges, as shown in Figure 2.4. The total dynamic head

(TDH) that a pump must deliver is the arithmetic sum of the static and dynamic head. The

static head is defined as the actual lift required between the suction and discharge points;

whereas the dynamic head represents the pressure required to overcome the frictional and

minor head losses due to water flow through pipes, valves, and bends. Note that the static
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Figure 2.4: Family of System Capacity Curves [192]

lift is independent of the flow rate through the system. As shown in Figure 2.4, the TDH

grows quadratically as the flowrate (Q) that the pump delivers in the system increases.

By superimposing the system capacity curve onto the pump characteristic curve, it

is evident that there is only one intersection point. This point, known as the operating

point, captures the only possible flow rate and pressure in that system with that pump

conguration [192]. The operating point also coincides with a certain efficiency and power

consumption. For a well-designed WSD system, this operating point should be as close
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as possible to the BEP [85]. Often in application, pumps are operated in parallel within

a pumping station to increase the capacity of the system. The advantages of operating

pumps in parallel are to provide operational:

1. redundancy, when pumps are taken offline for maintenance; and

2. flexibility, to expand the operating range of the pumping system

When operating in parallel, the combined pumping system flowrate is calculated as the

sum of the individual pump flowrates at the same head. While considering a range of static

lifts, operating pumps in parallel thus allows for an expansion of pump operating points.

The dynamic power consumption model, detailed in Equation 2.23, of a single pump

can be calculated as a function of the total wire-to-water efficiency, delivered flowrate and

total dynamic head [131].

Pt =
(ρgQtHt)

ηt
(2.23)

Integrating the power consumption allows for the determination of the total energy

consumption over a discrete time interval, as shown in Equation 2.24.

Et =

∫
Ptdt (2.24)

However, the desired flow rates and, hence, power consumption is usually not constant.

Two methods are commonly applied in practice to control the flow rate [85]:

1. a throttling valve downstream of the pump (steepening the system curve); or
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2. modifying the rotational speed of the pump impeller (moving up or down the pump

curve) through a Variable Frequency Drive (VFD).

The traditional method of flow control involves the installation of a throttling valve

downstream of the pump. Adjusting the position of the control valve results in more

friction (dynamic system head) and consequently in a changed system curve. However,

this process is significantly less efficient than modifying the rotational speed through a

VFD [85].

2.3 Overview of Storage Systems

Elevated tanks and reservoirs are critical storage infrastructure in WSDs and are typically

used to achieve the following [192]:

1. to provide equalization storage capacity to meet fluctuations in demand;

2. to provide reserves for fire-fighting use and other emergency situations; and

3. to stabilize pressures in the distribution system.

Since water use in most WSDs varies significantly over the course of the day, these

variations in use can be met by filling and draining storage tanks. The process of filling

and draining storage tanks to provide a relatively stable production rate, is known as

equalization [114].

Moreover, the elevation of water stored in a tank directly determines the pressure in all

pipes directly connected to the tank (i.e., not served through a pressure-reducing valve or
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pump). As such, large storage tanks can stabilize in-network pressures, despite fluctuations

in demand or changes in pumping schedules [114].

Lastly, storage tanks provide an economical and reliable supply for emergency flows in

the system, in particular, for meeting short-term large demands placed during firefighting

[114].

Reservoirs and tanks are represented as boundary nodes in the EPANET2 modelling

platform, implying that their heads are known in the initialization of the simulation model.

The primary distinction between the two storage infrastructure types is the behavior of the

HGL. A reservoir can supply or accept water with such a large capacity that the HGL of

the reservoir is assumed to remain constant [192][114]. However, unlike reservoirs, storage

tanks have HGLs that fluctuate based on the inflow and outflow of water.

Figure 2.5: Schematic Representation of an Elevated Storage Tank [192]

In EPANET2, reservoirs are represented as an infinite external source, and are used to

35



model sources of water supply such as lakes, rivers, groundwater aquifers, and tie-ins to

other systems [155]. Meanwhile, tanks have a finite storage volume, implying it is possible

to completely fill or drain them. Operationally, these tanks are designed and maintained

to avoid rapid cycling between the bounds. Floating storage or storage that is said to be

floating-on-the-system is defined as storage volumes located at elevations such that the

HGL immediately outside the tank is virtually identical to the water level or HGL within

the tank. In this type of storage, water can flow freely into and out of the tank [114].

An issue that has drawn a great deal of interest is the problem of water turnover

within storage facilities [114]. Much of the water volume in storage tanks is dedicated to

fire protection. Unless utilities make a deliberate effort to exercise (fill and draw) their

tanks, or to downsize the tanks when the opportunity presents itself, there can be both

water aging and water mixing problems. The latter can lead to stratification and/or large

stagnant zones within the water volume [114].

Figure 2.6: Example Volume Curve [155]

EPANET2 allows for the modeler to specify a volume curve to describe the storage

capacity of a given tank. The Volume Curve determines how storage tank volume varies as
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a function of water level [155]. It is used when it is necessary to accurately represent tanks

whose cross-sectional area varies with height. The lower and upper water levels supplied

for the curve must contain the bounding lower and upper limits between which the tank

operates. An example of a tank volume curve is given in Figure 2.6.

2.4 Model Development and Calibration

Classically, WSD models have been broadly categorized as either Steady-state or Extended

Period Simulations (EPS). Steady state simulations are used to determine the hydraulic

state of WSDs assuming unchanging initial and boundary conditions. These simulations

provide a snapshot of the system at a single instance in time. In contrast, an EPS provides

information on the dynamic behavior of WSDs over a period of time. An EPS is thus

a consecutive series of steady state models simulated at discrete time intervals, whereby

the previously defined steady-state behavior and governing laws apply. In the context

of this research, the implications of EPS models on real-time control will be investigated

extensively.

The development of a WSD simulation model requires the following key steps:

1. defining the topology of the WSD;

2. importing the attributes of key infrastructure components in the WSD; and

3. calibrating the network parameters to ensure the fidelity of model predictions.

The topology of the WSD is typically defined by importing utility asset mapping infor-

mation, such as pipes, tanks, and pumps, from a Geographical Information System (GIS)
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platform into the hydraulic model. However, given the comprehensive nature of the GIS

asset maps, there is typically far more piping elements in GIS than a user would want

represented in the hydraulic model [192]. For instance, GIS asset maps may contain each

individual service connection and all valves included in the system. This large volume of

data would require significant processing, a task that can be both tedious and erroneous.

As such, appropriate model skeletonization is required. Skeletonization is the process of

extracting only the most salient features of a WSD for inclusion in the hydraulic model

[192]. One of the primary methods of skeletonization is through the systematic reduction

of junctions.

Junctions, topologically represented as nodes, are points in the WSD network where

links join and where water enters or leaves the network. These junctions, depending on

the resolution of the model, may represent end-consumers at any of the following scales of

resolution:

1. Residential level (single residential or multi-residential), whereby every housing unit

is represented as a junction. This represents the highest level of modelling resolution,

and captures the dynamics of demand of every housing unit in the system. From an

operations perspective, this may be far too much detail than required.

2. Tie-ins and intersection level, in this representation, housing units are aggregated at

the nearest intersection. This represents a moderate level of skeletonization.

3. Subdivision-level (Figure 2.7), whereby an entire subdivision or cluster of housing

units are represented as a single node with an aggregated demand. In this represen-

tation, all piping within a subdivision are removed, with all demands being attributed

to a single junction.
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In the subdivision level resolution, the model will indicate the impact of the demands

associated with the subdivision on the overall hydraulic network. However, the modeler

will not be able to determine how pressures and flows vary within the subdivision [192].

This is perhaps the ideal resolution for operational purposes. Further efforts for model

skeletonization can be achieved via automated algorithms, but these are beyond the scope

of this research and are not further discussed in this work. The interested reader should

explore model reduction techniques presented in [192] [159] [128] [129] [135] and [43].

Figure 2.7: Construction of junctions at subdivision level of resolution in a WSD (Modified

based on [192])

Once the model has been defined topologically, attributes describing the behavior of

these topological units (pumps, pipes, junctions and tanks) are required to establish bound-

ary conditions and accurately represent the performance of the real WSD system. Infor-

mation such as pump curves, control rules, customer metered consumption, tank geometry
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and electricity pricing plans are readily available with reasonable accuracy. However, other

parameters such as the spatial variability of demand and the roughness factor of pipes are

significantly more difficult and expensive to measure effectively. As such, these difficult-

to-measure parameters need to be inversely determined through a process known as model

calibration. Since state estimates of the WSD behavior, such as tank levels, are readily

available through SCADA, model calibration is achieved by adjusting difficult-to-measure

model parameters until the discrepancies between model results and SCADA data mea-

surements are minimized to some satisfactory level [190]. Model calibration is thus the

iterative process of reviewing the accuracy of the data, validating and adjusting model

assumptions to maximize the agreement between simulated and observed realities.
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Chapter 3

Control System Design & Integration

The daily operation of a water supply and distribution system (WSD) can easily be for-

mulated as a multiple-input, multiple-output (MIMO) nonlinear optimal control problem

composed of [169]:

1. an objective function (J) that is to be minimized;

2. a set of observable output variables (Y) that describe the current state of the system,

hereby known as state variables;

3. a set of input variables (U) that are controllable either directly or indirectly, hereby

known as control variables; and

4. a set of disturbance variables (W) that cannot be controlled but have a measurable

influence on the trajectory of both the state variables and the cost function.

As such, the goal of the control engineer is to design a controller that can minimize

deviations from the desired objective by manipulating the control variables and observ-
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ing the state variables of the system to ensure they are within some predefined range of

tolerance.

3.1 Overview of Control Strategies

Control strategies can be classified as either reactive or predictive based on the architecture

of the controller and the manner through which control actions are generated. Control

actions in a reactive control system are based entirely on current estimates of the system,

meanwhile predictive control uses predictions of the future state of the system to generate

control actions, often employing some form of optimization and internal model of the

system.

Some examples of reactive and predictive controllers include variants of Proportional

Integral Derivative (PID) and Model Predictive Control (MPC), respectively. This section

will provide a general overview of both control strategies.

3.1.1 Proportional-Integral (PI) Control

A well-established reactive control strategy in operational water management is Propor-

tional Integral (PI) control (as detailed in [126][107]), depicted in Figure 3.1, whereby the

control action (U) is a function of the measured state variable’s (Ym) deviation from a de-

sired set-point (Ysp) as well as its cumulative error over time. The PI controller leverages

two corrective modes to update its control actions: proportional and integral control [169].

As demonstrated in the block diagram, the PI controller of Fig. 3.1 is a feedback process

that receives an output signal from a process, compares it with a predefined set-point, and

subsequently maps it to a control action (input signal). For digital control systems, the
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Figure 3.1: Proportional Integral Control Schematic

set point can be set locally or remotely. For local control, an operator may manually enter

the desired set at a computer terminal. However, some controllers have a remote set-

point option that permits them to receive an external set-point from another controller.

For digital control systems, the input signals are first converted from an analog to digital

signal prior to the control calculations. Then, the calculated value of the controller output

is converted from a digital signal back to an analog signal for transmission to the actuator

[169].

In proportional control, the objective is to minimize the error signal, e(t). The error

signal is defined as the difference between the desired set-point of a state variable (Ysp)

and its current estimate (Ym), as shown in Equation 3.1 [169]:

e(t) = Ysp(t), Ym(t) (3.1)

Using the calculated error signal, the control action can be determined, as shown in

Equation 3.2 [169].
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U(t) = KP e(t) +KI

∫ t

0

e(t)dt (3.2)

Each term in Equation 3.2 represents the influence of proportional and integral re-

sponses on the overall calculation of the control action. The proportional response takes

immediate corrective action by influencing the control action behaviour proportionally to

the current error signal, meanwhile the integral response evaluates the cumulative error

signal until the current timestep. Similarly, each response term is scaled by constants KP

and KI , known as the proportional and integral gain coefficients, respectively. The key

concepts behind proportional control are that [169]:

1. the controller gain can be adjusted to make the controller output changes as sensitive

as desired to deviations between set point and controlled variable; and

2. the sign of Kp can be chosen to make the controller output increase or decrease as

the error signal increases.

Typically, incorporating the integral control action is significant because it is responsible

for eliminating the sustained offset error between the steady-state measurement and the

desired set-point. However, in the context of water resource management, the integral

control action could potentially be omitted. This is particularly the case for reservoir or

storage level based control, whereby an operator specifies a desirable tank level set-point.

In this case, if the current tank level remains well above the minimum level, oscillations

about the set-point may be inconsequential. However, this requires a conservative level

set-point.
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3.1.2 Dead-band triggers

In the operation of WSDs, dead-band controllers can also be used to create pump control

rules. A dead-band controller is a control strategy that evaluates the current state variable

measurement against an upper or lower threshold value [168]. The dead-band trigger is set

to inactive in case of an up-crossing of the upper threshold YU and it is active in case of

a down-crossing of the lower threshold YL. In the range in-between, the trigger retains its

former state. This formulation can be mathematically described in Equation 3.3[168]:

U(t) =

{ 1 if Y(t-1) ≤ YL

0 if Y(t-1) ≥ YU

U(t− 1) otherwise

(3.3)

This form of pump control is known as level-based control, since the pumps are triggered

based on the water levels of a storage tank or reservoir. Level-based control strategies are

designed to ensure that the water levels in each tank or reservoir remain within a predefined

operating range. If the water level falls below or above the desired operating range, the

pump status is toggled as on and off, respectively.

While the level-based control strategy is very simple to formulate and deploy, some of

the disadvantages include:

1. the operational strategy is continuously reacting to the current state of the system

and has no foresight of its future dynamics;

2. the controller is vulnerable to anomalous system behaviour, for instance, if a large

demand flow occurs, the system would expend significant energy to drive the tanks

back to the desired operating range; and
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3. the controller does not explicitly handle transient stability. A pump may alternate

its status between online and offline many times within a given control horizon, to

ensure that a tank is within its operating range, thus leading to system instabilities

from undesirable pressure transients.

3.1.3 Model Predictive Control

Model Predictive Control (MPC) is a method of controlling complex multivariable systems

with nonlinearities which arise from operational constraints. Predictive control operates by

performing constrained optimization to generate control actions, and thus allows operators

to run their processes much closer to constraints than would be possible with conventional

linear controllers [70].

While feedback based control strategies, such as PI control, base their control actions

on historical and current system states, MPC uses predicted future state trajectories.

Naturally, an MPC formulation requires a reasonably accurate internal model of the process

to be controlled. Using an internal reference model, control actions can be dynamically

mapped to predicted output responses. In other words, using an internal reference model,

input variable measurements can be used to predict future values of the outputs so that the

required manipulations in the input variables can be determined. Moreover, MPC offers

several important advantages [169]:

1. the process model captures the dynamic and static interactions between input, out-

put, and disturbance variables;

2. constraints on inputs and outputs can be systematically imposed on the controller;
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3. the control calculations can be coordinated with the calculation of optimum set

points; and

4. accurate model predictions can provide early warnings of potential problems.

Figure 3.2: Model Predictive Control Block Diagram Schematic [169]

The block diagram in Figure 3.2 provides a conceptual overview of the MPC framework.

As shown, the process model is used to generate predictions of the state variables. The

residuals, difference between the predicted and actual outputs, are then used as the feed-

back signal to update predictions. These predictions are then used to calculate set-points

and a sequence of control actions.

A general non-linear, discrete time dynamic system, is described in Equation 3.4,

whereby ’f’ represents the non-linear mathematical model of an arbitrary WSD system,

and is a function of its state variables (Y), control variables (U) and disturbance variables

(W) [44]. The superscripts, k and k + 1 , represent the current and succeeding control

timesteps, respectively.

Y (k+1) = f(Y k, Uk,W k) (3.4)
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Equation 3.4 is used to render predictions of the state variable (Yk) over a finite horizon

T, known as the control horizon, at discrete sampling instants (k = 0,1, 2,..., T). At the

current sampling instant, denoted by k, the MPC strategy calculates a set of T values of

the control variables (Uk).

The set consists of the input at the current timestep Uk and T-1 future inputs. The

inputs are calculated so that a set of T predicted outputs reaches the set point in an

optimal manner. The input signal and state variables are assumed to be constant during

each sampling timestep (k) in the horizon. Thus, the sequence of T control variables over

the control horizon is determined by formulating a dynamic optimization problem over the

finite horizon, as detailed in Equation 3.5. In doing so, the set of possible control actions

is restricted such that the optimization is performed only over a finite set of ’decision

variables’, rather than over a set of continuous functions [168].

Under the hypothesis of knowing the realization of the disturbance variables over the

same control horizon (T), a sequential MPC approach can be formulated as [44]:

minU∈[0,T ]

{ T∑
k=0

J(yk, uk)

}
s.t. H(yk, uk, wk) ≤ 0 ∀k = 1, 2, ...T

(3.5)

In Equation 3.5, J is an arbitrary cost function associated with each state transition

and H is a function that represents the hard constraints imposed on the state variables at

each sampling instance over the horizon. Note that Y represents the simulated (observable)

state variable outputs of the system.

A distinguishing feature of MPC is its receding horizon approach. Although a sequence

of T control actions is calculated at each sampling instant, only the first control variable,

Uk
k , is implemented, while the rest are archived [116]. Then a new sequence is calculated at
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the next sampling instant Uk+1, after new state variable measurements become available,

again, only the first input move (Uk+1
k ) is implemented. The receding horizon approach is

detailed in Figure 3.3.

Figure 3.3: Receding Horizon Approach in Model Predictive Control Strategies. Note that

in this research the control and prediction horizons are equivalent and are together denoted

as ’T’ for simplicity (i.e. M = P = T) [169]

With the receding horizon approach, an additional terminal constraint may be defined

and introduced into the optimization formulation of Equation 3.5 [113]. The terminal

function introduces a cost element as a function of the terminal timestep (T) in the horizon

and serves to penalize the overall objective function as detailed in 3.6

minU∈[0,T ]

{ T∑
k=0

J(yk, uk) + F (yk+T )

}
(3.6)
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Many extensions to the classical formulation of MPC have been developed. One such of

these is known as Economic Model Predictive Control (EMPC). It differs from the classical

MPC strategy based on tracking a given reference, in that an economic performance index

is optimized [195]. The optimal control actions of EMPC are often found by minimizing

an economic cost function that measures the performance in a control horizon. Hence, the

cost function of EMPC is usually not set in a quadratic form but in a time-varying manner

usually depending on an exogenous price signal.

3.2 Real-time Control Architecture

The conceptual architecture of any RTC system involves the integration with a WSD’s

Supervisory Control and Data Acquisition (SCADA) system which is essentially composed

of sensors and actuators. Sensors collect information about the current state of the WSD

system, while actuators (i.e. valves and pumps) modify the process and controllers adjust

actuators with a certain objective. Some examples of sensors in WSDs include:

1. Level transducers that monitor the water levels in reservoirs and elevated tanks;

2. Pressure transducers that measure the pressure head within each pressure zone; and

3. Flowmeters that measure the flowrate of water through pipes at each DMA.

The SCADA system supports the data transfer from remote terminal units (RTUs),

via a cellular communication module, to a central workstation, whereby incoming and

outgoing data is managed.
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Figure 3.4: High Level Overview of RTC Architecture and SCADA Integration

Figure 3.4 provides a detailed overview of the hierarchical structure of the real-time

control system. Starting from the lowest level of abstraction, the ’WSD’ level, sensory in-

formation from flowmeters and pressure sensors is collected, and analog control signals are

transmitted to pumps and valves. The communication level (denoted as Comm. Module)

encapsulates all industrialized input-output (I/O) modules such as programmable logic

controllers (PLCs) and RTUs. The low level control layer refers to the rudimentary op-

erations that collate information and provide operator control through a human-machine

interface (HMI). The process of directly influencing the supervisory control system is hereby

referred to as active control. Otherwise, control actions may be transmitted to a decision

support interface for operational staff to review and subsequently modify local control

rules accordingly. The latter process is hereby referred to as passive control. While both

paradigms have their respective advantages, this research focuses on the development of

a passive RTC paradigm, in a controlled research environment that is disconnected from
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the SCADA infrastructure. The successful execution of a passive RTC paradigm is that it

provides operational staff with the flexibility to learn about their system through a deci-

sion support interface as well as override any recommendations if necessary. In this case,

local control rules usually act as a ’fail safe’ level which is triggered if communications fail

between the RTC platform and the supervisory control system.

In this research, the E-MPC representation is formulated with the objective of minimiz-

ing the daily operational energy consumption (J) due to pumping. The control variables

(U) are the pump settings over the control horizon, the state variables (Y) are the levels at

tanks and system pressures at monitoring junctions, and lastly the disturbance variables

include the water demand profiles of each pressure zone. The control horizon was selected

to be 24 hours (T = 24) with an hourly control timestep since this represents sufficient

resolution for balancing operations decisions such as long term planning and short-term

efficiency. At every kth timestep, the goal is thus to minimize the operational energy cost

of the system (Jk) by manipulating the pump settings over the control horizon (Uk) and

regularly checking whether the inequality constraints placed on the state variables (Yk)

are satisfied to ensure reliability of performance. Note that the superscript ’k’ suggests

that each variable is computed at the current kth timestep.

The global RTC platform proposed in this research, hereby referred to as RT-DDS,

requires the use of a dynamic model of the process to compute, ahead of time, optimal

control strategies for the actuators based on the current state of the system provided

by SCADA, and the current disturbance predictions. The computation procedure of an

optimal control schedule, depicted in Figure 3.5, considers all the physical and operational

constraints of the dynamic system.

At the beginning of an arbitrary control timestep, k, the current estimates of all tank

and reservoir levels, valve statuses, as well as pump statuses are extracted from SCADA
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Figure 3.5: Block Diagram of RTC-DDS platform

and used as initial condition arrays. In the absence of SCADA data, for example in a non-

operational research environment, these initial condition arrays can be determined using

the simulated model output of the previous timestep, k-1.

Prior to initializing the dynamic optimization process, a disturbance matrix, Wk, for

the kth timestep, is populated with the predicted water demands for the WSD system as

shown in Equation 3.7. The matrix captures the predicted water demands for all T hours

in the horizon starting at the current timestep, k. Each column in the matrix corresponds

to a unique demand pattern (with a total of ’d’ unique patterns). A demand pattern may

encapsulate the unique demand profile at a district metered area (DMA), pressure zone

(PZ) or unique customer-type. Each row corresponds to each discrete timestep in the

control horizon (with a total of T timesteps). In the absence of data at the DMA or PZ

level, the matrix is collapsed into a single array that can be generalized for the entire WSD

system.
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W k =


W k

1 W k
2 ... W k

d

W k+1
1 W k+1

2 ... W k+1
d

... ... ... ...

W k+T−1
1 W k+T−1

2 ... W k+T−1
d

 (3.7)

Once the state variable vectors and disturbance matrix have been populated, the dy-

namic optimization problem is launched. The optimization engine is initialized with a

warm start solution, as described in Chapter 4, and is executed until the computational

budget is reached. The computational budget of the RTC-DDS platform is constrained by

the desired reporting frequency of the operator. At every kth control timestep, RTC-DDS

iteratively generates a control variable matrix, (Uk) as shown in Equation 3.8 whereby

each row represents the timestep in the control horizon and each column represents the

pump to be controlled.

Uk =


Uk
1 Uk

2 ... Uk
p

Uk+1
1 Uk+1

2 ... Uk+1
p

... ... ... ...

Uk+T−1
1 Uk+T−1

2 ... Uk+T−1
p

 (3.8)

At every iteration, the EPANET2 simulation platform is called and performs a hydraulic

analysis of the input control matrix. The simulation platform, in return, outputs several

state variable matrices, including the pressure heads (Yk
pres) for all ’j’ monitoring junctions

and water levels (Yk
lvl) at all ’r’ tanks , as detailed in Equation 3.9.
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Yk
lvl =


Y k
1 Y k

2 ... Y k
r

Y k+1
1 Y k+1

2 ... Y k+1
r

... ... ... ...

Y k+T−1
1 Y k+T−1

2 ... Y k+T−1
r



Yk
pres =


Y k
1 Y k

2 ... Y k
j

Y k+1
1 Y k+1

2 ... Y k+1
j

... ... ... ...

Y k+T−1
1 Y k+T−1

2 ... Y k+T−1
j



(3.9)

These state variable outputs are then used to evaluate the hard constraints imposed on

the optimization process.

3.3 Objective Function

The objective (or cost) function is used as a metric to guide the optimization trajectory

towards an optimal control scheme. In this research, the objective function is designed to

encapsulate the total operational costs incurred while managing WSD pumping systems

over the duration of the control horizon. These operational costs can be divided into four

main categories: (i) energy costs; (ii) maximum load costs; (iii) maintenance costs; and

(iv) labour costs.

Since it is difficult to quantify the impact of the RTC platform on labour costs without

a long-term evaluation of the operator productivity, this metric is neglected from the
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objective function formulation. Similarly, maintenance costs are difficult to quantify and

are thus estimated using a surrogate measure. Specifically, the number of pump toggles is

used but is formulated as a constraint on the system as opposed to a cost that is embedded

in the objective function.

A large variety of electricity purchasing options, in the form of regulated price plans

(RPP), may be available to water utilities, the most common being time-of-use or flat

electricity rates. These RPP structures can vary significantly across a single WSD system,

such that smaller pumps in the system may be running on a flat rate tariff while neighboring

larger pumping stations may be operating under time-of-use contracts. As such, these

RPP structures are represented as hourly electricity spot price matrices (SP), whereby

each column represents the RPP for each pump, while each row represents the price for

each timestep in the control horizon.

The pump energy consumption model uses the total dynamic head (Hk), flow rates

(Qk) and total ’wire-to-water’ efficiency (ηt) to compute the hourly energy consumption

of each operational pump (Ek).

The computed hourly pumping energy consumption is then coupled with the respective

electricity spot prices to compute the hourly operating cost (CAD) over the control horizon

[186][192]. In lieu of a prediction model for the spot prices, they may be retrieved from

historical data. The hourly pumping energy cost matrix (Ck) is formulated as the product

of the electricity hourly spot price and the discrete hourly energy consumption, as detailed

in Equation 3.10.

Ck = SP · Ek (3.10)

The total system daily energy costs (Jk) can thus be expressed as the arithmetic sum
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of the energy costs at each pump, p, over the entire duration of the control horizon as

detailed in Equation 3.11.

Jk =
P∑

p=1

k+T−1∑
t=k

Ck
p,t (3.11)

3.4 State Variable Handling

While optimizing the energy performance of the WSD system remains the primary ob-

jective, ensuring the hydraulic reliability of supply whilst minimizing disruptions to the

current operational quality of service provided by the WSD is critical to ensuring a real-

izable real-time control strategy. These quality of service guidelines may be formulated as

mathematical constraints on the optimization procedure as part of the RTC platform.

Specifically, the optimization search space at every control timestep was constrained

via explicitly-defined operational and regulatory targets that were placed on both the state

and control variables. This included targets for:

• pressure control;

• storage management;

• hydraulic stability; and

• transient stability.

Controlling pressure is desired to not only guarantee the quality of service for end-

consumers but also provides an opportunity to minimize leakages [75]. For this reason, the
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pressure head at critical geographical regions of the network is monitored, such that, the

pressure at any critical demand junction node, Yj, during any control timestep, k , is bound

between a minimum (Pmin) and maximum (Pmin) regulatory value. If a pressure constraint

was violated, the violation was normalized based on the maximum possible violation as

defined in Equation 3.12.

εtj =

{ |Y k
j ,Pmax|

Pmax,Pmin
if P t

j ≥ Pmax

|Y k
j ,Pmin|
Pmin

if P t
j ≤ Pmin

0 otherwise

(3.12)

These violations are computed for every monitoring junction and then archived in a

pressure violation signal matrix (εPr).

Effective storage management is required as a standard of service to not only guarantee

the reliability of supply for emergency scenarios but also regulate pressures in the system.

The total available storage in the system can be controlled by placing constraints on the

tank levels. Specifically, predefined minimum (Lmin) and maximum (Lmax) thresholds are

placed on each storage unit. These thresholds may be explicitly defined as part of the RTC

platform or may be implicitly handled by the EPANET2 model. Violations from storage

thresholds are computed in a similar manner to the pressure violations, for every ’r’ tank

at the kth timestep, as detailed in Equation 3.13.

εkr =

{ |Y k
r ,Lmax|

Lmax,Lmin
if Y k

r ≥ Lmax

|Y k
r ,Lmin|
Lmin

if Y k
r ≤ Lmin

0 otherwise

(3.13)

These storage violations are computed for every elevated tank and reservoir and then

archived in a storage level violation signal matrix (εLvl). Note that the inequality con-
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straints of the tank allowable range are handled implicitly by the EPANET2 model by

specifying maximum and minimum levels directly in the model file. In doing so, the

EPANET2 model generates warning messages and halts execution once the tank is emp-

tied.

One of the primary challenges with the implementation of an RTC platform involves

ensuring the long-term stability of the controlled system [70]. This is because, at every

control timestep the optimization process is blind to the system state beyond the control

horizon. Although the system may be ’optimal’ at every control timestep, over time the

system may be vulnerable to degrading performance. Eventually, this degrading perfor-

mance may lead to instability in the system behavior. Two approaches may be used to

address this issue of long term stability:

1. one may extend the control horizon such that it is less short-sighted; or

2. one may impose terminal constraints onto the existing control horizon.

Terminal constraints are defined as conditions that can be imposed onto a system, with

any arbitrary control horizon, such that the system state is forced to a particular value at

the end of the control horizon. From a WSD operations perspective, terminal constraints

can be used to guarantee long-term hydraulic stability in the system. Specifically, this can

be achieved by placing terminal constraints on the storage tanks. This works to ensure that

the tank levels are not gradually declining over-time, thus stabilizing pressure and ensuring

sufficient volume for emergency flows over time. Moreover, the terminal constraints need

not be imposed at the end of the control horizon. For instance, operators may wish that

the tanks are refilled at the beginning of their shifts, just before the morning peak demand

period, as opposed to the end of the calendar day. The timestep at which the terminal

constraint is imposed is defined as the terminal period.

59



The tank level deficit (εdef ) is defined as the difference between the initial level in the

tank (Y k
k ) and the level at the predefined terminal period (Y k

k+T−1) as detailed in Equation

3.14. A negative deficit value is indicative that the tank is operating with a surplus level.

εkdef =

{ |Y k
r ,Y k+T−1

r |
Y k
r

if Y k+T−1
r ≤ Y k

r

0 if Y k+T−1
r ≥ Y k

r ·εMADL

(3.14)

A tolerance value is also defined in the event that the operator wishes to allow a

maximum allowable deficit level (εMADL). This εMADL can be useful when defining multiple

terminal constraints on a given tank. For instance, an operator may wish to allow the tanks

to retain 80% of the initial volume at the end of the control horizon, but may impose a

stricter constraint such that the tank is equal or exceeds the initial volume by the morning

peak. Moreover, the operator can specify multiple εMADL for various tanks, thus allowing

smaller tanks to deviate by a larger band at the end of the control horizon, since they are

easier to instantaneously fill or empty.

Frequent pump toggling causes wear and tear of pumps, which, in turn, increases main-

tenance costs. Moreover, frequent pump switches generate pressure surges and transient

hydraulic instability in the system. Thus, in practice operators tend to minimize the num-

ber of pump toggles in a given control horizon in order to potentially mitigate future main-

tenance costs as well as promote transient stability. Many researchers considering energy

cost include the number of pump switches as a constraint in the optimization formulation

[102][187][96].

While the aforementioned constraints have been most frequently implemented, other

researchers have placed constraints on the:

1. total pumping power at a pumping station based on the installed capacity [145];
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2. source flowrates and velocities [140]; and

3. warnings produced by the EPANET2 hydraulic simulator for infeasible hydraulic

conditions [96].

While constraints are typically handled via penalty functions, these methods inadver-

tently introduce subjectivity into the optimization formulation. This is because penalty

functions generate a trade-off between constraint violations and objective function values.

Specifically, lower penalty parameter values would allow large constraint violations in re-

turn for small reductions in the objective value, meanwhile higher penalty parameter values

would require a larger decrease of the objective value to compensate for the same amount

of constraint violation [96].

As such, in this research, constraint violations were handled using a modified version of

the penalty-free candidate solution ranking approach [41]. This method quantifies the rela-

tive magnitude of constraint violations for infeasible solutions so that the relative quality of

two infeasible solutions can be compared [41]. The constraint handling process implements

the following logic:

1. between two infeasible solutions, the one with the least total violations is always

assigned a better objective function value;

2. between an infeasible and a feasible solution, the feasible one is always assigned a

better objective function value; and

3. between two feasible solutions, the one which is less costly is always assigned a better

objective function value.
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3.5 Control Variable Formulation

With the objective of manipulating pump operations over the duration of the control

horizon, a number of mathematical representations may be used to encapsulate an arbitrary

pump control setting (hereby referred to as a pump schedule). For fixed speed pumps, a

pump schedule is designed to represent the hours during a control horizon that a pump

is either on or off. Meanwhile for variable speed pumps, pump schedules should capture

the speeds at which the pump should be operated at during the control horizon. As such,

pump schedule representations should be carefully selected based on the physical type of

pumping system they are meant to control (i.e. variable speed pumps versus fixed speed

pumps), as well as the design and objective of the control scheme.

In this research, a number of explicit pump schedule representations for the purpose of

real-time control are formulated and evaluated. These include:

• Binary and discrete status control; and

• Modified Time controlled Triggers

The formulation of implicit pump schedules, such as level-based control, are omitted

in this research since these represent reactive control strategies. In addition, this research

formally introduces a novel modification to the above representations in order to enhance

the stability of the real-time controller.

3.5.1 Binary and Discrete Status Control

Binary Status Control (BSC) is the most commonly used explicit formulation of pump

schedules both in the context of offline optimization [102][193][60] and real-time control
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[145][81][171][111][158]. As suggested by its name, BSC represents the schedule of an

arbitrary pump as a binary sequence with dimensions equal to the length of the control

horizon. Specifically, the control horizon is discretized into Nt equal intervals. During each

interval, the status of the pump is assumed to be held constant. The status during each

interval is thus a decision variable that can be manipulated by the optimization algorithm.

Intuitively, a single binary value is used to represent the pump’s status during each interval,

whereby active and idle statuses are indicated with values of one and zero, respectively.

Figure 3.6 provides an example of how to map an arbitrary 24-hour schedule for a single

pump with the BSC representation.

Figure 3.6: Mapping an arbitrary pump schedule to Binary Status Control formulation

Depending on the desired resolution of control, the operator can specify the size of each

interval (i.e. hourly, 30 minutes, 15 minutes etc.). However, the size of the sequence, and

thus the memory required, increases with increasing resolution.
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The BSC representation can be modified to provide the flexibility of being able to

capture the behaviour of both fixed and variable speed pumps as detailed in Equation

3.15. For variable speed pumps, each decision variable in the sequence can be formulated

as either a discrete variable from a fixed set of integers, known as Discrete Status Control

(DSC) [90], or alternatively as a continuous variable bound by 0 and 1. In the former, the

fixed set of discrete integers represent the range of allowable speeds (that the pump can

operate at), the latter suggests that the speeds may be toggled as some fraction of the

maximum capacity.

Udisc
i ∈ [0, 1, ..., Nsp]{

U cont
i ∈ R | 0 ≤ U cont

i ≤ 1}
(3.15)

While the Binary and Discrete formulations provide the flexibility of representing both

types of pumping systems, there exist a few challenges in its implementation. Most no-

tably, neither representation has any mechanism to explicitly control the number of pump

toggles that occur in the control horizon. As such, this formulation is prone to generating

hydraulically infeasible solutions over the optimization search trajectory. Moreover, the

BSC and DSC formulations are computationally intensive. This is because an array size of

at least Nt is required to represent a Nt-sized control horizon. As such, the decision space

grows at a rate of 2Nt∗Np as Nt and Np are increased. This computational intensity creates

a barrier for real-time implementation time in large network systems with a significant

number of pumps to control.
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3.5.2 Time Controlled Triggers

An alternative to the status based formulations involves representing pump schedules as a

function of the time spent active or idle. This concept was initially introduced for offline

pumping optimization by [157] and [115], but was then formally defined by [25] and [96].

In their proposed formulation, the number of consecutive hours a pump is active and then

subsequently idle is encoded in a sequence of integer pairs [Ui, Ui+1] called Time Controlled

Triggers (TCT). As such, each TCT pair represents a pump switch. In this manner, the

number of pump switches can be explicitly managed in the TCT formulation simply by

defining the number of consecutive active and idle pairs.

Figure 3.7: Mapping an arbitrary pump schedule to the TCT formulation

Figure 3.7 provides an overview of how to map a hypothetical 24-hour schedule for a

single pump to the TCT formulation.In this hypothetical example, there is a maximum of 6

allowable pump switches and this constraint is implictly handled with 6 decision variables.

The range of each decision variable in the TCT sequence depends on the desired reso-
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lution of control. Using discrete values, an hourly resolution can be achieved by limiting

the bounds to [0,24], whereas a 15-minute or 30-minute resolution can be achieved with

bounds of [0,96] and [0,48], respectively. To be consistent with the binary representation,

we assume an hourly control resolution over a 24-hour control horizon in this research.

Moreover, the TCT formulation can accommodate the scenario whereby a given pump

uses less than the maximum number of pump switches. This is demonstrated in Figure 3.8

whereby zeros are placed in all subsequent elements in the sequence to represent unchanged

statuses.

Figure 3.8: Handling single pump with fewer than maximum allowable switches

Equations 3.16 and 3.17 describe how the TCT representation can be formulated math-

ematically for a single pump. Assuming that a maximum allowable number of switches,

Smax, is permitted, the total number of decision variable pairs is thus Smax.

U = [U1, U2, ..., USmax ] (3.16)
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U1 ∈ [0, Tctrl]

Ui ∈ [0, Tctrl,

i−1∑
j=1

Uj], ∀i ∈ 1, ..., Smax

(3.17)

Note that the sum of all elements in the TCT sequence must sum up to the total

number of hours in the control horizon (Tctrl) as shown in 3.18.

Smax∑
i=1

Ui = Tctrl (3.18)

In this manner, the individual decision variables in the TCT sequence are not indepen-

dent. The subscript ’i’ denotes the sampling order through which the decision variables are

perturbed. As such, the decision variable denoted by i=1 does not necessarily represent the

first decision variable in the TCT sequence, rather it represents the first randomly drawn

sample.

The primary motivation for the TCT formulation is to overcome some of the limitations

of the binary status formulation whereby the maximum number of pump switches is not

explicitly handled. By representing a pump schedule by the maximum number of allowable

switches, the TCT formulation does not allow for exceedances in pump switches during a

particular control horizon. This formulation ensures that a greater fraction of the decision

space is feasible. Moreover, since the number of pump switches is necessarily a fraction of

the hours in a given control horizon (typically 3-6 pump switches are allowed in operations),

the decision space size is greatly reduced. To reinforce this notion, consider a single pump

that must be scheduled over a 24-hour control horizon with an hourly resolution. Since the

binary status formulation allows for a pump to have one of two possible states at every hour,

the size of the decision space for the control horizon is 224 or 16,777,216 possible options.
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However, if the number of pump switches is restricted to six (Nsw ≤ 6), as depicted in

Figure 3.7, the size of decision space is reduced to 5,408,312 feasible options [98]. As such,

by using the TCT formulation to explicitly limit the number of pump switches, the decision

space (number of solutions) is reduced in size by 67% relative to the binary status control

approach. The computational effort required to generate and handle a large number of

pumps in complex networks is significantly less intensive than the binary formulation.

However, there exist a few limitations with the TCT formulation. Firstly, this formula-

tion is unable to represent variable speed pumps since each element represents the number

of hours a pump is active or idle. Moreover, while the TCT formulation effectively con-

strains the number of pump switches during a given control horizon, in a real-time context,

it has no memory of previously incurred switches and may thus lead to decision variable

solutions that are optimal and feasible in the current control horizon, but infeasible in the

overall trajectory of the day.

3.6 Feedback Formulation

In this research, the previously described pump schedule representations are reformulated

for real-time control applications. Specifically, the definition of a novel feedback repre-

sentation is formalized. The feedback representation is designed as an alternative to the

traditional feedforward real-time pump scheduling methods commonly proposed in liter-

ature [145][81][158][111][125]. In feedforward scheduling, a pump schedule is produced at

every control timestep (1 hour) for the duration of a predefined control horizon (typically

24 hours). The primary limitation of this feedforward scheduling approach is that, at each

timestep, the proposed schedule is unaware of the number of pump switches that have

already occurred in the past since it is not formulated to encapsulate any short-term mem-
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ory of the system. The immediate consequence of this limitation is that it may lead to

situations where the total number of switches in a day violates the maximum allowable

limit. However, only one study [125] realized this limitation, but none have incorporated

this feedback awareness directly into the optimization formulation.

While at every timestep the proposed schedule is necessarily feasible during the current

control horizon, the total number of switches in a given calendar day remains uncon-

strained. This phenomenon is illustrated in Figure 3.9. The net result is that as the

real-time controller proceeds forward in time, it may lead to oscillatory behaviour and

transient hydraulic instability, in terms of pressure surges and backwater effects in the

system.

Figure 3.9: Motivating the Feedback Scheduling Paradigm

The proposed feedback scheduling method is designed to address these limitations by

explicitly encapsulating short term memory into the decision variable formulation at every

control timestep. This method is conceptually agnostic to the representation of the decision

variable sequence and can thus be easily adapted to binary status control to represent

variable speed pumps. However, in this section we demonstrate the formulation with the

previously defined TCT formulation. As such, the newly reformulated TCT variables are
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hereby referred to as Feedback-Time Controlled Triggers (F-TCT).

Figure 3.10: Decomposition of control horizon into operating and planning horizon

The control horizon T ctrl was previously defined as the sequence of T discrete control

time steps (hours) used during the real-time optimization process. In other words, it is the

duration of time that a pump is scheduled for (i.e. 24 hours). In the feedback formulation,

this control horizon is decomposed into two smaller subsets: the operating T oper and plan-

ning horizons T plan, as shown in Figure 3.10. The operating horizon represents the number

of hours in the control horizon that are part of the current calendar date. That is to say,

the fraction of the pump schedule that occurs in the current calendar day. Meanwhile, the

planning horizon represents the duration of hours in the control horizon that occur outside

the current calendar day, and thus encapsulate the hours in the pump schedule that are

being planned beyond the current operational shift. As such, the total number of hours in

both the operating and planning horizons must necessarily sum up to the total hours in the

control horizon. Moreover, the number of hours in the operating horizon must equal the

difference between the total hours in the control horizon and the number of elapsed hours

T elaps in the current day. The planning horizon is thus equal to the number of elapsed

hours in the current day. This definition is further described mathematically in Equation
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3.19.

Tctrl = 24, 0 ≤ Telaps ≤ 23

Toper + Tplan = Tctrl

Tplan = Telaps

(3.19)

By decomposing the control horizon into operating and planning horizons, short-term

memory of the current calendar date’s trajectory can be explicitly encoded into the decision

variable formulation. Since the total elapsed switches (Selaps) in a given day up until the

current timestep are known, the remaining allowable switches in the current day are also

known. As such the remaining switches can be used as an upper bound on the maximum

allowable switches in the operating horizon (Soper). In this manner, the operating horizon

decision space is dynamically adjusted based on the elapsed trajectory of pump switches

in the day. With this formulation, the number of switches encountered in a given calendar

date never violates the predefined maximum. As such, the total allowable switches (Smax)

in the control horizon must equal the arithmetic sum of number of switches allocated both

in the operating and planning horizons (Splan). This notion is further defined in Equation

3.20.

Soper = Smax, S
elaps, Soper ∈ [0, Smax]

Splan = Smax, S
oper = Selaps, Splan ∈ [0, Smax]

(3.20)

Adopting the F-TCT formulation, the decision variable (U) sequence is now decomposed

into operating and planning subsets of sizes (Soper) and (Splan), respectively. In each

subset, the maximum number of hours available for allocation is equal to T oper and T plan,

respectively. With this decomposition, the decision variable size is unchanged relative
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to the standard feedforward TCT formulation. Equation 3.21 describes how the F-TCT

representation can be formulated in vector format, meanwhile Equation 3.22 demonstrates

how each element in the vector sequence is calculated mathematically. Note that each

subset of F-TCT sequence follows the previously defined TCT sampling archetype.

U = [U oper, Uplan]

U oper = [U1, U2, ..., USoper ]

Uplan = [U1, U2, ..., USplan ]

(3.21)

U oper
1 ∈ [0, T oper], Uplan

1 ∈ [0, T plan]

U oper
i ∈ [0, T oper,

i−1∑
j=1

Uj], ∀i ∈ 1, ..., Soper

Uplan
i ∈ [0, T plan,

i−1∑
j=1

Uj], ∀i ∈ 1, ..., Splan

(3.22)

Note that the sum of all elements in each F-TCT subset must sum up to the total

number of hours in its respective horizon, as detailed in Equation 3.23.

Soper∑
i=1

Ui = T oper,
Splan∑
i=1

Ui = T plan (3.23)

In this manner, the individual decision variables in the F-TCT sequence are not inde-

pendent. At each jth sampling instant, the jth decision variable is constrained by zero and

the total unallocated hours in the horizon. Similar to the TCT formulation, the decision

variable denoted by i = 1 does not necessarily represent the first decision variable in the

F-TCT sequence, rather it represents the first randomly drawn sample. Moreover, the

decision variable sampling sequences in both subsets are independent of each other, that
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is to say, the sampling order in the operating sequence does not influence the order in the

planning horizon and vice versa.

An example representation of the F-TCT formulation is provided in Figure 3.11. In

this example, the previously presented hypothetical schedule (Figure 3.7) for a single pump

is used. The number of elapsed hours is assumed to be 11 in this example (i.e. the current

timestep is 11AM), with 6 maximum allowable switches. In this example, 3 switches have

already elapsed. As such, the decision variable sequence size for both the operating and

planning horizons is restricted to 3 each. Given that 11 hours have elapsed, the number

of hours available for allocation in the operating and planning horizons is 13 (from 11AM

- 12AM, exclusively) and 11 (12AM - 10AM, the subsequent day), respectively. This can

be seen by simply summing the elements in each subset.

Since this new formulation is dependent on the system’s short-term history of pump

scheduling, a few boundary conditions need to be imposed to prevent instability in the

system, in the event of anomalous scenarios. These conditions may occur in the following

cases where:

1. a pump has used none or a small fraction of allowable switches throughout the ma-

jority of the current calendar date; and

2. a pump has used all of its allowable switches during the current calendar date.

In the former condition, the controller is at risk of recommending a large number of

switches within a short duration of time, particularly at the end of the calendar day, thus

leading to oscillatory behaviour and transient instabilities. In the latter, the controller

must be informed to no longer allow any pump switches in the operating horizon in order

73



Figure 3.11: Formulation of feedback time-control triggers

to prevent a constraint violation. As such, the last known status of the pump is held

constant until the end of the operating horizon.

As such, various sub-processes are defined to prevent frequent oscillations in pump

statuses. Specifically, two ’If-Then’ conditional statements were encoded as part of the

stability analysis. These are described in Table 3.1. Condition 1 describes the course of

action if the operating horizon is less than or equal to the maximum number of switches

and the number of allowable operating switches is non-zero. In this case, the controller sets

the available number of operating switches to zero, thus preventing the pump from toggling

statuses during remainder of operating horizon. The remaining switches are reallocated to

the planning horizon.
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Table 3.1: Conditional Statements for Stability Control

Index Condition (IF) Action (THEN)

1 Toper ≤ Smax and

Soper > 0

Soper = 0; Splan = Smax,

CONSTANT[k] = True

2 Toper ≤ Tctrl

2
and

Soper ≥ Toper

Smax

Soper = Toper

Smax
;

Splan = Smax, Soper

In the event that the operating horizon is less than or equal to half the control horizon

and the allowable number of operating switches exceeds the operating horizon divided by

the maximum number of switches, Condition 2 is triggered. In this event, the number

of allowable operating switches is scaled proportionally to the number of hours in the

operating horizon divided by the maximum number of switches. Figure 3.12 describes

the algorithmic pathway for implementing the feedback scheduling formulation for F-TCT

decision variables.

The first sub-process involves processing the elapsed trajectory information and storing

it in memory for subsequent use. Specifically, the total number of elapsed switches, the

number of allowable switches in the operating and planning horizons, the number of hours

in the operating and planning horizons are determined.

Once this preliminary information is stored, the elapsed trajectory information is

screened for boundary conditions. These conditions include occurrences when either the

operating or planning horizons are zero, at the beginning and end of the calendar day,

respectively. In these conditions, the standard TCT formulation is used since no trajec-

tory information is required. A second round of screening is done for stability handling
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Figure 3.12: Flowchart of feedback formulation sub-processes

using the previously described conditional statements. In the event that the conditions are

triggered, the trajectory information is overwritten to scale the allowable switches in the

operating horizon accordingly.

Finally, once the allowable switches for both the operating and planning horizons have

been allocated, this information alongside the horizons are encoded compactly for use in

the optimizer’s selection and perturbation algorithm. These algorithms will be described

in detail in the subsequent chapter.
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Chapter 4

Optimization Engine

In this research, an optimization algorithm is required to guide the generation of real-time

pump schedules that are not only adaptive to the current hydraulic conditions of the system

but are also near-optimal in order to drive down energy costs over the control horizon. As

such, this section begins with an overview of the most commonly applied optimization

algorithms for water resource applications. Given the nonlinearity and complexity of the

systems under investigation, we omit traditional derivative-based solvers from this review

and focus on metaheuristic optimization methods.

As defined by [208], a metaheuristic is an iterative generation process which intelligently

leverages different learning strategies to effectively explore the search space of a particular

problem and find near-optimal solutions. Unlike traditional optimization algorithms which

rely on derivative-based methods to localize optimal values of objective functions, meta-

heuristics incorporate structured randomness for search and follow empirical guidelines,

often motivated by observations of natural phenomena, or an inherent understanding of

the system being studied [104].
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The primary advantages of using metaheuristics over traditional derivative based solvers

include the ability to:

• solve problems with complex, non-linear mathematical properties [150]. Most tradi-

tional methods are unable to deal with nonlinearities, discontinuities and multi-modal

response surfaces;

• perform both global and local searches of the fitness function, increasing the chances

of finding near-optimal solutions to complex problems [118]; and

• easily integrate with simulation models bypassing the need to simplify or reduce the

problem (i.e. via linearization).

Broadly speaking, metaheuristic optimization methods can be categorized into two

groups including population-based and single solution based methods [104]. The former

include algorithms that generate and evolve a population of candidate solutions. Popular

examples of these algorithms include but are not limited to genetic algorithms (GAs), par-

ticle swarm optimization (PSO) and ant colony optimization (ACO). Meanwhile, the latter

includes algorithms that generate and evolve a single candidate solution. Popular examples

of these algorithms include but are not limited to simulated annealing, Tabu-search, and

various other trajectory or local search methods. In this chapter, both categories will be

discussed for use in the context of real-time control and optimization of WSDs.

4.1 Overview of Population-based Optimization

Genetic Algorithms have been the most commonly applied metaheuristic optimization

method within water resources applications. At a high level, they apply the Darwinian
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concept of natural selection to select and evolve candidate solutions with the highest ’fitness

values’ thus converging to the ’fittest’ solution.

Figure 4.1: Generalized workflow of Genetic Algorithms

According to [122], GAs can be broadly characterized by the following generalized

elements:

1. generation of an initial population of potential solutions known as chromosomes;

2. computation of a fitness metric for each chromosome;

3. ranking of chromosomes according to metric;

4. selection of candidate solutions to participate in a mating operator, where information

from two or more parent solutions are combined to create offspring solutions; and

5. mutation of each individual offspring to maintain diversity and prevent premature

convergence to local optima.

These elements are executed iteratively for a predefined computational budget, known

as generations, or until a suitable solution is determined. The underlying principle of this

method is that candidate solutions with high fitness values contain specific characteristics
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in their ’chromosomes’ that are important for optimizing the objective function [122].

As such, by mating high-performing parent candidate solutions, it is expected that the

produced offspring may attain superior characteristics relative to their parents. In this way,

the algorithm simulates survival of the fittest objective function values, without requiring

derivative information [59].

However, the obvious limitations in the application of population-based algorithms (e.g.

GA and PSO) is that they require significant computational-overhead for the reproductive

cycle of populations and evaluation of fitness functions for every individual [3]. Moreover,

sub-processes such as selection, mating and mutation require further subjective decision-

making and parameter tuning.

4.2 Requirements for Real-time Optimization

The ’No Free Lunch’ theorem, proposed by [196], stipulates that an optimization algo-

rithm capable of consistently outperforming all other algorithms for all classes of problems

simply does not exist. As such, this research does not aim to qualify the selection of an

optimization algorithm based on results demonstrated in literature. Rather, the necessary

structural requisites of an algorithm for the specific purposes of RTC are listed and used

to guide the selection of a suitable algorithm. These include:

1. Flexibility - an ability to handle both continuous and discrete decision variables;

2. Scalability - an ability to handle large decision spaces (50 - 100 decision variables);

3. Explorative - an ability to conduct both Global and local searches;
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4. Computational efficiency - Rapidly converge to a near-optimal solution without sig-

nificant computational overhead;

5. Parsimony - optimization algorithm requires no parameter tuning - all parameters

are well-defined;

6. Ease of Use - modularly designed and can easily integrate with simulation model

within an RTC platform.

As mentioned in the previous chapter, pump schedules can be formulated as either

discrete or continuous decision variables. As such, the required optimizer must be able

to conduct elementary operations such as processing, selection and perturbation on both

discrete and continuous variables. Moreover, given that a real WSD system is likely to

have dozens of pumps (often exceeding 50), the optimizer should be able to handle large

decision spaces for the generation and evolution of decision variables during the search

trajectory. These needs immediately eliminate the possibility of using traditional solvers.

Since a simulation model is required to calculate the impact of control variables on the

objective function, the optimization method should be able to easily integrate with a sim-

ulation model. Moreover, given that model execution times can range anywhere between

1-30 seconds, the computational efficiency of the algorithm is necessarily bottlenecked by

the execution time. The algorithm should thus be easily parallelizable or able to converge

to good solutions rapidly (with a constrained computational budget). This means the opti-

mizer should be able to produce meaningful results within the reporting frequency specified

by the decision-maker. While this is ultimately a function of the problem formulation and

the complexity of the simulation, the optimizer type can greatly influence performance.

As such, Population-based algorithms are deemed as unsuitable candidates for RTC. This
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is because they require significant computational-overhead for the reproductive cycle of

populations and evaluation of fitness functions for every individual (Alba et al., 2013).

Lastly, an optimization algorithm should be able to perform both exploration (i.e.

global search) and exploitation (i.e. local search) of the fitness function, increasing the

chances of finding near-optimal solutions to complex problems [118].

4.3 Dynamically Dimensioned Search

Based on the aforementioned criteria for RTC applications, a dedicated optimization algo-

rithm, namely the Dynamically Dimensioned Real-time Scheduling (DD-RTS) algorithm

was developed. The DD-RTS algorithm is the real-time extension of the Dynamically Di-

mensioned Search (DDS) algorithm, initially introduced by [185]. DD-RTS is specifically

designed to efficiently generate candidate control variable settings for the real-time control

and optimization of water resource infrastructure. DDS is a novel and simple stochastic

single-solution based heuristic global search algorithm that was developed for the purpose

of finding good global solutions (as opposed to globally optimal solutions) within a specified

evaluation budget [185]. The algorithm is designed to scale the search to the user-specified

number of function evaluations and thus has no other stopping criteria. In this manner, it

is well suited for real-time control applications where the stopping-criteria is constrained

by the user-specified reporting frequency.

In summary, the algorithm searches globally at the start of the search trajectory and

becomes a more local search as the number of iterations approaches the computational

budget. The adjustment from global to local search is achieved by dynamically scaling the

number of dimensions in the neighborhood. This dynamic scaling is adjusted stochastically

throughout the search trajectory by reducing the number of dimensions to include in the
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neighborhood at every iteration. Note that the neighborhood is defined as the subset of

decision variables that are selected to be perturbed, i.e. modified from their current best

value. This search trajectory is designed to match the human decision-making behaviour

that may occur in operations, whereby an operator starts by changing many control vari-

ables and then iteratively refines these variables until converging onto an optimal set.

The DDS algorithm suite considered in this research consists of:

1. the continuous, single objective version of DDS [185]; and

2. the discrete version of DDS (HD-DDS) [183].

HD-DDS is a discrete extension to the simple and efficient DDS algorithm [185].The

primary difference between DDS and HD-DDS is that the discrete nature of the decision

variables must be accounted for in the neighborhood perturbation step of the original

DDS algorithm. In HD-DDS, these perturbation magnitudes are randomly sampled from

a discrete probability distribution that approximates a normal distribution with a mean of

zero [183]. The perturbation strategies from both DDS and HD-DDS are adapted in the

real-time extension, DD-RTS.

In this chapter, the necessary modifications that were added to the real-time extension

of DDS, DD-RTS, are discussed in detail. These include:

1. Modified Search Heuristics, whereby the neighborhood selection and perturbation

techniques are adapted specifically for the purpose of real-time scheduling;

2. Computational Efficiency Methods, whereby parallelization, warm-start initialization

and pre-emption techniques are adopted for improving the runtime of the optimiza-

tion algorithm for real-time implementation;
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3. Simulation Model integration, whereby the necessary application programming in-

terfaces (API) for communicating with the EPANET2 simulation model within a

real-time optimization framework are developed.

4.3.1 Search Heuristic

The DD-RTS algorithm is designed to generate near global optimal control variable settings

within the predefined reporting frequency of the real-time controller, following a modified

DDS heuristic. Recall that the core heuristic elements of the DD-RTS algorithm can be

generalized as shown in Figure 4.2.

Figure 4.2: Generalized workflow of DDS Algorithms

In the DD-RTS algorithm, the decision variables of the optimization problem are defined

using the control variable representations described in Chapter 3. When using the F-TCT

and TCT formulations, each time trigger element in the pump schedule is treated as its

own decision variable. For example, if a hypothetical system has only 5 pumps with 6

maximum allowable switches per pump, then the system has 30 decision variables in total.

Similarly, in the binary representation each hour in the schedule is treated as a decision

variable. For the same hypothetical system, the binary representation would yield a total

of 120 decision variables.
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In DD-RTS, the generalized heuristic is extended as detailed in Figure 4.3, given the

F-TCT formulation. Note that the initialization, neighborhood selection and perturbation

strategies are conducted independently for each pump in the system.

Figure 4.3: Workflow of DD-RTS Algorithm

The algorithm starts by initializing all decision variables with a warm solution. In the

context of real-time control, a warm solution is a near-optimal solution for a historical day

that has a similar disturbance (demand) profile [134]. The definition of warm solution can

also be broadened to include any approximate initial pump schedule. Results for similar

days either that occurred recently or from a prior year near the same date are likely near

optimal. This is because demand patterns within a given season do not significantly vary
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from one another. As such, previously developed optimal solutions can be archived for

initialization. An alternative method to generate warm solutions involves using the con-

temporaneous pump schedule of a previous control timestep. Lastly, to generate schedules

that are fairly consistent, the pump schedules at every control timestep may be initialized

with the contemporaneous schedule produced at the first hour of the day (hour 0). In doing

so, the optimizer will not likely significantly deviate from the optimal solution generated

at hour 0, except in the event that an anomalous condition arises. This form of warm start

is particularly attractive for creating schedules that do not significantly change at every

timestep in a given day, a feature that may be particularly attractive for an operator.

Once a warm solution is initialized, it must also be validated when using the F-TCT

formulation to ensure that the prescribed allowable switches for both the operating and

planning horizons are not violated. This process involves simply enumerating the total

number of switches encountered in the warm solution during each horizon (Sk) and then

evaluating whether they fall within the allowable thresholds (Smax). In the event that the

number of switches in one of the horizon exceeds the maximum allowable limit (Nexc > 0),

then the smallest status in that horizon, denoted by argmin(X), are collapsed until the

limit is satisfied. The rationale for selecting the smallest statuses was to remove switches

that are likely to have minimal impact on the overall system schedule. Once the smallest

statuses have been removed from the schedule, the remaining unallocated hours (valj) are

spilled onto the adjacent statuses. For example, if a pump was active for 8 hours and then

idle for the next 2 hours (the minimal value in the schedule), then the two hours are spilt

onto the active status - resulting in a schedule where the pump is on for 10 hours. This

process is repeated until all exceedances in the maximum number of switches are removed

from the schedule.

This process of collapsing exceedances in the maximum number of switches is detailed
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mathematically in Equation 4.1.

Sk > Smax → Nexc = Smax − Sk ∀k = [oper, plan]

Nexc > 0→ indj = argmin(X); valj = min(X)

Xp
rem,j = φ; Xp

ind,j+/−1 = |valj|

∀j = 1, ..., |Nexc|

(4.1)

Once initialized, the selection and perturbation strategies are initiated for each pump

in the system, as detailed in the pseudo-code provided in Figure 4.4.

Figure 4.4: Pseudo-code of DD-RTS Heuristics
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The process of including decision variables in the neighborhood of perturbation involves

defining two stochastic variables, the probability of including decision variables (Pincl) and

the current perturbation probability (Ppert). The probability of perturbing a given decision

variable (Ppert) in the neighborhood is a scalar value and is stochastically driven by the

current progress in the optimization process as detailed in Equation 4.2.

Ppert =
log(i)

log(N)
(4.2)

whereby i is the current iteration and N is the maximum number of iterations. In DD-

RTS, each pump is selected into the neighborhood and perturbed independently of other

pumps. As such, Pincl is a matrix of size NP x NS, whereby NP is the number of pumps

and NS is the number of allowable switches. Each entry is sampled from the continuous

uniform distribution. This process guarantees that each pump has equal probability of

selection for perturbation at every iteration of the search trajectory, contingent on the

current perturbation probability. At every iteration, the elements that are smaller in value

than Ppert are filtered and included in the neighborhood. Through this mechanism, fewer

decision variables are included in the neighborhood at every iteration.

Once the subset of decision variables has been selected for inclusion into the neighbor-

hood, candidate control variables are created by perturbing each decision variable in the

neighborhood. Note that DDS is a greedy algorithm and thus only perturbs the current

best candidate solution at every iteration.

If the neighborhood for perturbation is non-empty, the perturbation process is initiated

iteratively for each pump. As shown in the pseudo-code in Figure 4.4, the first step involves

determining the total number of hours in the schedule that are static (Tstatic) and will not

be perturbed as part of the algorithm. This is achieved by enumerating the total number of
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hours attributed to decision variables that are not included in the neighborhood (NC). In

doing so, the total number of hours remaining that are available for perturbation (Tremain)

are easily determined by subtracting the fixed hours (Tstatic) from the total hours in the

control horizon (Thorizon). Note that the sum of all elements in the neighborhood for a given

pump must necessarily equal the total number of hours available for allocation (Tremain) for

the same pump. Once the bounding conditions for perturbation are known, each decision

variable for a given pump is normalized by the maximum available hours (Tremain) for

the same pump. This ensures the decision variable is scaled to the continuous domain as

bounded by [0,1].

Once the decision variable has been scaled, the standard DDS perturbation strategy for

continuous variables is deployed. These perturbation magnitudes are randomly sampled

from a normal distribution with a mean of zero and constant variance, as detailed in

Equation 4.3 [185].

xnew(i,j) = xcurr(i,j) + σ(i,j)N(0, 1);

σ(i,j) = r(xmax
(i,j) − xmin

(i,j))

xmax
(i,j) = 1, xmin

(i,j) = 0

(4.3)

Note that xnewij and xcurrij represent the newly perturbed and current best decision

variable, respectively. The subscript i represent the time trigger index as part of the TCT

or F-TCT sequence, meanwhile the subscript j represents the pump being scheduled. The

only algorithm parameter to set in the DDS algorithm is the scalar neighborhood size

perturbation parameter (r) that defines the random perturbation size standard deviation

as a fraction of the decision variable range. However, this parameter is well-defined and

does not require any tuning [185]. In the event that xnewij falls outside the acceptable range

of the decision variable [0,1], it is reflected using the techniques described in [185].
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Recall that when perturbing decision variables as part of the TCT and F-TCT control

variable formulation, the sum of all time triggers in the sequence (pump schedule) must

sum up to the total number of hours in the control horizon. In this manner, the individual

decision variables in the TCT sequence are not independent. This is particularly evident

once the decision variables are rescaled back to the original discrete domain after perturba-

tion. Given the dependency of each decision variable in the neighborhood, it is important

to control the order in which each decision variable in the neighborhood is perturbed.

Perturbing decision variables in the same order at every iteration leads to schedules that

are biased, since each decision variable will have a non-constant perturbation variance.

The consequence of bias schedules is that they may be inadvertently biased towards ac-

tivating pumps during unfavourable hours (such as peak periods) or deactivating pumps

for large periods of time. The influence of the sampling order on perturbation magnitude

distribution in a given optimization trajectory is detailed in Figure 4.5.

As shown in Figure 4.5, the first decision variable, denoted by U1, exhibits the expected

distribution shape. Note that the distribution only contains a large number of zero values

since negative hours are not possible and are thus bounded by zero. However, it is clear

that each decision variable in the sequence exhibits a drastically different perturbation

distribution.

In an idealized perturbation strategy, each decision variable in the given pump schedule

should have a similar perturbation magnitude distribution, thus ensuring that each variable

is not preferentially selected for a certain value. This problem can be easily addressed by

simply shuffling the perturbation sampling order of the neighborhood at every iteration

with random permutations of the indices. The result of this shuffled sampling order is

demonstrated in Figure 4.6.
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Figure 4.5: Perturbation of TCT decision variables without randomized sampling order.

Example pump is displayed with 6 decision variables, whereby each decision variable was

initialized with a current best solution value of 4 hours

4.3.2 Parallelization Strategy

Parallel evolutionary algorithms have been extensively investigated in the literature, hav-

ing been applied to water distribution systems [50]; hydrological model calibration prob-

lems [48][180][204]; and groundwater management [180][88][149]. For example, [37] devel-

oped a parallel genetic algorithm library (PGAPACK) in FORTRAN by coupling cluster

based parallel computing with the Non-Dominated Sorting Genetic Algorithm II (NSGAII)

[42] to calibrate a 139 parameter hydrological model of the Calapooia watershed. Simi-

larly, [180] tested a parallelized version of the Epsilon-NSGAII with the Argonne National
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Figure 4.6: Perturbation of TCT decision variables with randomized sampling or-

der.Example pump is displayed with 6 decision variables, whereby each decision variable

was initialized with a current best solution value of 4 hours

Laboratory’s Infinicon MPI on a Linux cluster for the SAC-SMA model and a long-term

groundwater monitoring (LTM) application. In summary, these studies demonstrated that

by using parallel computing associated with optimization, solutions can be improved and

computation times can be reduced dramatically. However, the obvious limitations in the

applications lie in the implementation of population-based algorithms (e.g. GA, SCE,

PSO, etc.) which require significant computational-overhead for the reproductive cycle of

populations and evaluation of fitness functions for every individual [2]. DDS has at least

three advantages relative to these algorithms:
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1. it has an immediate efficiency advantage because it is not population-based;

2. it is designed to find good solutions quickly and thus it adjusts to the user-specified

computational scale to generate good solutions without requiring any algorithm pa-

rameter adjustment; and

3. it has only one algorithm parameter that is easily interpreted and has a well-established

default value that has been shown to produce good results over a range of test prob-

lems. No algorithm parameter fine-tuning is required.

To promote flexibility in end-user adoption, the Dynamically Dimensioned Search

(DDS) algorithm suite described in the previous subsection was parallelised for both shared

memory (local multi-core desktop applications) and distributed memory (high performance

computing clusters) architectures using the Message Passing Interface (MPI). The MPI

library is a collection of subroutines that allows parallel computational nodes to com-

municate with each other by transmitting and receiving messages. MPI is recognised as

the standardised approach to programming heterogeneous memory systems including both

shared memory within a single node as well as distributed memory across multiple nodes

[79].

For the purpose of environmental optimization, the MPI model typically exploits the

Single Program Multiple Data (SPMD) construct to simultaneously execute multiple sim-

ulation runs (with unique parameter sets) using the same single optimizer and model

executable. In this study, the ’single program’ refers to the previously described DDS al-

gorithm Suite. The SPMD construct is advantageous because it allows for point to point

communication between nodes, as well as asynchronous and transparent message trans-

ferring. The asynchronous nature of message passing is particularly advantageous in the

context of the DDS algorithm suite as it serves to minimize idling-time. Note that unlike
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threads, MPI uses a statically allocated group of computational nodes which are defined

at the beginning of program execution. Each node is assigned a unique identifier called a

’rank’ for identification purposes.

A typical HPC architecture comprises a cluster of nodes interconnected via a high-

throughput, low latency network. As such, using a system of ’m’ computational nodes,

a ’Manager-Worker’ Architecture is adopted whereby one (1) node is demarcated as the

manager and the remaining ’m-1’ are workers. In this parallelization construct, the man-

ager node is used to distribute messages to each worker node. Each message consists of

two parts: (i) data transmitted, decision variables (DV) in the context of optimization;

and (ii) an envelope which contains the rank of the sender and receiver and a data stream

tag. The tag serves the purpose of demarcating different messages being passed between

the same senders and receivers. Each worker has its own local memory and evaluates the

message with a predefined objective function (OF) asynchronously and independently of

the other. The ’Manager-Worker’ paradigm is depicted in Figure 4.7.

Note that for local computing applications, whereby hyper-threading (simultaneous

multi-threading introduced by Intel) is implemented, the optimal number of workers al-

located per manager is determined by the number of physical cores available not by the

number of virtual or logical cores. This allocation was selected because the virtual cores

share executional resources and would need to contend for resources under the context of

large data processing applications such as optimization problems. As such, a dedicated

physical core per worker was determined to be ideal for such applications.

In the context of the single-objective version of DDS, the algorithm is divided into

two functional units: manager and worker. The manager unit is then further subdivided

into receiving and transmission sub-units. The receiving sub-unit contains instructions

for probing and receiving solution vectors from any available workers. Note that probing
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Figure 4.7: Manager-Worker Communication Paradigm

refers to continuously pinging the workers to see if any messages are ready to be received.

Intuitively, the transmission sub-unit contains instructions for dispatching decision variable

(DV) vectors to workers. The interior workflow and inter-communication for the manager

and worker units of the Single Objective (DDS) is provided in Figure 4.8.

Initially, decision variable vectors are generated and are subsequently dispatched to

available worker nodes. At each worker node, the objective function is evaluated with its

respective DV vector. Once the objective function execution has completed, the worker

transmits a signal to the manager indicating that it has completed its task. Upon re-

ceipt of the signal, the objective function (OF) value and index of the signalled worker

is sent back to the manager receiving block. The manager immediately verifies whether

the current best solution should be updated based on the received solution and then per-

turbs the current best solution to generate a new decision variable vector to be sent to

the indexed worker (conforming to greedy algorithm heuristics). As such, the algorithm
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Figure 4.8: Manager-Worker Algorithm Flowchart for Single-Objective DDS

is executed asynchronously parallel such that no computation waiting times are incurred.

That is to say, at any given iteration, each worker evaluates its respective DV vector, while

the manager waits for any incoming signals to generate new solution vectors. This cycle
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perpetuates until the available computational budget has been reached.

Note that the probability of decision variable inclusion in the neighborhood (Pn) was

modified from that originally specified in [185]. Pn is specified as follows in Equation 4.4.

Pn = 1.0− (ln(i− its−m))

(ln(N −m)
(4.4)

The implications of this modification are that for the first cycle of decision variable

dispatching, Pn is fixed at 1.0 to promote greater exploratory search behaviour at the

beginning of the optimization trial for each worker node. Furthermore, Pn changed at

every iteration (i) such that a smooth exponentially decreasing curve for the probability

of neighborhood inclusion is produced. Note that ’m’ is the number of worker nodes and

’its’ denotes the number of initial solution generation iterations.

4.3.3 Model Preemption

As defined in [148], deterministic model preemption refers to the termination of model

simulations that have demonstrated such poor performance that the solution will definitely

not contribute to guiding the search strategy. An attractive property of this technique is

that the application of the deterministic preemption strategy leads to exactly the same

optimization trajectory as when it is not applied, that is to say, the optimization experiment

is not disrupted by the inclusion of model preemption.

Model preemption is particularly attractive in the real-time control of WSDs. Since

the user defined reporting frequency constrains the computational budget of the optimiza-

tion experiment at each control timestep, slow simulations greatly hinder the optimization

search trajectory. As such, it is highly desirable to terminate poor simulations prema-

turely. In this research, since the quality of the simulation cannot be determined via an
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Figure 4.9: Manager-Worker Preemption Strategy

intermediate objective function, the hydraulics of the simulation run must define the model

preemption threshold. If, during a model simulation, any of the interim hydraulic state
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variables exceed the predefined operational constraint, then there is no doubt that contin-

uing evaluation of the current model parameter set is unnecessary because the objective

function in question will not change the behavior of the overall search trajectory. As such,

pressure and tank level constraints are used as preemption thresholds.

As described in Figure 4.9, the Manager node is responsible for pre-empting low quality

Worker nodes (via terminal task kill command), as well as interim objective function

monitoring. In order to minimize processor idling time, interim monitoring is conducted

while the Manager pings all Workers for final objective function value responses. If no

Workers have reported back a solution, the Manager checks the Worker output directories

to see if any interim output data was recorded. In the event that output data was recorded

within a given Worker directory, the Manager collects the Process Identifier (PID) of the

executable being launched by that Worker, as well as the Worker rank and the time that

the corresponding output file was modified. This information is used to allow the Manager

to terminate the correct Worker model executable (as identified by its PID) if necessary.

As mentioned earlier, the basis for termination is determined by premature constraint

violations.

4.4 Simulation Model Interface

NETInterface.py is an operating system agnostic python API that allows the DD-RTS

optimizer to effectively interface with the EPANET2 dynamically linked shared object

libraries and dynamically linked libraries, i.e. libepanet .so and epanet .dll , respectively.

These libraries were compiled in Linux using the EPANET C source code [155] and the

GNU Compiler Collection (GCC), as well as in Windows using the same compilation

procedure. The goal of this API is to allow for the efficient and modular coupling of a
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hydraulic model in a Python environment, thus allowing for a user to implement various

analytic operations. The API leverages the Ctypes library in Python for communication

with the library files. The flowchart in 4.10 provides a syntactical overview of the workflow

when calling NETInterface.py .

The first module initWDN is used to initialize the WSD model and store the network

properties as a structured array in memory. These properties include the network size

parameters (number of nodes, pipes, pumps, reservoirs and tanks), the network object ID

tags (identification names of all nodes and links in the system) and iterable indices of all

key network objects such as pumps, reservoirs and tanks. This information is important

for downstream operations such as decoding decision sets produced by the optimizer into

a pattern-based pump schedule. Moreover, the current boundary conditions of the system

are ported as initial conditions into the model by setting initial levels and statuses for each

tank and pump in the system. Additionally, the forecasted demand profile for the control

horizon is applied to the model. Furthermore, system state matrices are initialized in this

module.

The second module parseDVs receives the decision set containing strings of discrete

decision variables (DVs) from the optimizer as well as the indices of the pumps from the

previous module, initWDN . These DVs encapsulate the time-triggered or binary control

schedule for pump operations (as described in Chapter 3). The module then decodes the

decision set and creates a pattern-based pump schedule for the simulation model to execute

accordingly.

Once the DVs have been loaded onto the network, the runWDN module simply ex-

ecutes the hydraulic analysis for an extended period simulation (EPS). The simulation

period is based on the specified control horizon and is traversed at a dynamic hydraulic

time-step. The hydraulic time step is based on the minimum of the demand pattern, re-
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Figure 4.10: NET Interface.py process flow diagram, the dashed arrows indicate that data

is being stored in memory, while bolded lines indicate the order in which functions are

called. Function names are written in bold text.

porting time step and status change of the tanks and reservoirs. The simulation results are

then populated into the previously initialized system state matrices. These state matrices
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capture the dynamics of the system states over the simulation period, including pressures

(P) across all demand nodes, levels (L) in all tanks, as well as the total dynamic head

(TDH) and flowrate (Q) through all pumps. These performance matrices are critical for

checking post-simulation system constraints to ensure a feasible solution has been achieved.

Once the hydraulic simulation has finished running, the populated system state matrices

are fed into the checkCONS module. This module checks to ensure that the optimization

model constraints are satisfied. In the event that the constraints are not satisfied the

objective function is not calculated and the program is terminated prematurely. When all

constraints are satisfied, the objective functions are computed.

The objective function module calcENERGY is computed based on the system state

matrices. The calcENERGY module computes the energy cost of each individual pump

schedule as well as the total energy cost of the system using each pump’s unique rate

structure, as defined in Chapter 3. Moreover, key performance indices of the system

such as utilization rates, energy intensity, peak energy consumption and average energy

consumption are computed.
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Chapter 5

Prediction Engine

As part of the real-time control platform, a predictive engine is required to create short-

term forecasts of disturbances imposed onto the system. This module is required to capture

information on variables that influence the performance of the system but cannot be con-

trolled. Generating robust predictions of disturbance variables is a necessary precursor for

proactive control in order to better inform current operational decision-making. In the

context of water supply and distribution infrastructure, the disturbance variable of inter-

est is the utility’s water demand. As such, this chapter aims to discuss and evaluate the

modelling techniques implemented to generate robust forecasts of water demand based on

information that is readily made available to utilities.

5.1 Overview of Demand-side Management

The primary goal of a city’s water supply and distribution system (WSD) is to reliably

satisfy consumer demand. In the context of water distribution, this implies continually
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providing consumers with high quality water in adequate volumes at reasonable pressures.

As such, forecasting a city’s water consumption is a crucial component in the successful

planning, design and control of WSD infrastructure. Water demand forecasting is typically

done in multiple temporal resolutions depending on the intended functionality [13] [56]

[45].These include:

1. Long term planning, forecast monthly demand values a few years into the future,

to serve as a basis for decision making on system expansion, as well as large scale

capital projects or maintenance activities;

2. Medium term planning, forecast weekly demand values a few months into the future,

which allows municipalities to optimize maintenance scheduling and small to medium

scaled projects; and

3. Short term planning, forecast hourly demand values, 24 to 48 hours into the future, to

accurately schedule pumping to minimize electricity costs while maintaining system

tank volume and pressure requirements.

Short-term (hourly one-day ahead) forecasts can be instrumental in the implementa-

tion of a fully-automated control system. Such forecasts would enable operational staff

to anticipate the system’s water demand profile in advance and optimize their pumping

infrastructure and water treatment production flow accordingly. Such optimization efforts

could lead to reduced energy costs, minimizing non-revenue water (leakages) as well as

ensuring reliability of supply. This paradigm of proactive, optimized operations is the

fundamental driver behind the emerging trend towards smarter cities.

As such, the goal of this research is to develop and investigate the performance of

data-driven machine learning based model for short-term water demand forecasting.
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5.2 Overview of Data-driven Methods

In recent years, water demand forecasting has been an active area of research. Broadly,

the literature can be classified into the following approaches to addressing the prediction

task:

1. Linear time series analysis;

2. Nonlinear regression methods;

3. Artificial Neural Networks (ANNs), including their hybrid variants; and

4. Other Machine Learning techniques: Support Vector Regression (SVR), Projection

Pursuit Regression (PPR), Multivariate Adaptive Regression Splines (MARS) and

Random Forests (RF)

Early works addressed this question by using mainly traditional statistical models. Ex-

amples of linear methods are univariate time series analysis e such as exponential smooth-

ing and autoregressive integrated moving average models, and linear regression models

[5][103][206]. The linear methods have been widely used because they are easy to develop

and implement, in addition to being simple to understand and interpret. However, water

demand data have varying degrees of nonlinearity, which may not be adequately handled

by the linear methods [154].

The ANN has been effective for analyzing nonlinear time series such as water demand.

ANN models have also been used to model weekly peak demand [74]. This notion was

further reinforced by [1] who developed and compared relative performance of: (i) 39

multiple linear regression models; (ii) 9 autoregressive integrated moving average models;
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and (iii) 39 ANN models; his study concluded that the latter perform the best. Moreover,

[73], [74] and [21] observed that ANN models outperform regression and univariate time

series analysis.

Notably, [56] developed a dynamic architecture for ANNs, DAN2, as a comprehensive

approach to water demand forecasting. In their research, [56] demonstrated that DAN2 was

effective in producing forecasts without the explicit use of exogenous variables (weather,

demographic factors etc.). DAN2 is structurally distinct from the traditional feedforward

backpropagation (FFBP) ANN model. The general philosophy of this model is based on

the principle of learning and accumulating knowledge at each layer, propagating and ad-

justing this knowledge forward to the next layer, and repeating these steps until the desired

network performance criteria are reached. The number of layers in DAN2 architecture is

dynamically defined and depends on the complexity of the underlying process and the

desired level of accuracy.

Other hybrid ANN methods have also been investigated. [154] make use of the Evolu-

tionary Artificial Neural Networks (EANNs) to predict water demand for up to 24 hours

in the future. They argue that EANNs are well suited for water demand forecasting due to

their self-learning ability which helps them to adapt to the ever-changing operating condi-

tions in the WSDs. The second advantage concerns the robustness of the model building

process since EANNs dramatically reduce the effort required from a human expert to de-

sign an ANN model. The third advantage concerns the practicality of the methodology

since it does not make use of many or ad hoc explanatory variables.

Moreover, [66] compares five methods: ANN; projection pursuit regression (PPR);

multivariate adaptive regression splines (MARS); random forest (RF); and support vector

regression (SVR). In their work, the ANN was configured with a single hidden layer using

the BP algorithm, whereby the number of nodes and learning rate was varied. Additionally,
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the SVR model was built using a Radial Basis Kernel Function (RBF). Nine variants were

considered by varying the gamma parameter of the Kernel function. Lastly, the random

forest was configured by varying the number of trees within the ensemble. Up to 2 lags of

hourly water demand; demand for previous week, temperature, wind velocity, pressure and

rain measurements were all used as features in the prediction modelling. They concluded

that the SVR model performed the best.

5.3 Predictive Models

In this research, the model building and evaluation process has been limited to:

1. single estimators, the multi-layer perceptron (MLP); and

2. ensemble-based machine learning techniques such as Random Forests, Adaboost Re-

gression Trees and Bagging Regression Trees.

All subroutines including data processing, model building, fitting and validation are

developed in a Python environment leveraging the Scikit-learn, Numpy and Pandas li-

braries. The Scikit-learn library provides multiple high level classes and functions for the

easy implementation of single and ensemble-based regression models.

5.3.1 Multi-layer Perceptron

ANNs are biologically inspired data-driven processes capable of mapping complex and

noisy non-linear relationships between input and output data sets. The MLP is a class of

ANNs with a feedforward (FF) architecture whereby its nodes are hierarchically arranged
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in layers starting with the input layer and ending with the output layer. In between, a

number of internal layers, called hidden layers, provide most of the MLP’s computational

power [82]. The nodes in each layer are connected to the next layer through unidirectional

paths starting from one layer and ending at the subsequent layer. A simple topological

representation is provided in Figure 5.1.

Figure 5.1: 3-layer MLP Schematic Representation [124]

To represent the MLP topology mathematically (as shown in Equation 5.1), let X

represent a system input vector composed of a number of data features and Y represent

the system output vector consisting of a number of target variables. The weight matrix,

denoted as W, is composed of individual weights for each neuron and connects input,

hidden and output neurons. The output value Yk of a typical kth neuron, is obtained from

the activation function G, with respect to the sum of the inner product of vector X and
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Wk and the threshold value, Θk: [82][124]

Yk = G(XWk + Θk) (5.1)

The bias effect (induced by the threshold value) is intended to inhibit the activity

of some nodes occasionally [82]. The activation function, G, for neurons in the hidden

layer and output layer, provides a bounded nonlinear mapping of the input signal, and is

mathematically described as a sigmoid function in Equation 5.2.

G(x) =
1

1 + e−x
(5.2)

In this research, various hidden layer topologies are investigated. Since only one output

value is predicted, only a single neuron is used in the output layer.

The backpropagation (BP) learning algorithm used to update the weighted parameters

is based on the gradient descent technique for solving optimization problems. Specifically,

it involves the minimization of the network cumulative error (detailed in Equation 5.3),

which represents the sum of N squared errors, where N is the number of training patterns

(input-target pairs) presented to the network for learning purposes. Note that the squared

errors refer to the square of the Euclidian norm of the vectorial difference between the kth

target output vector T(k) and the kth actual output vector Y(k) of the network [82].

MinEc = E2 =
1

2

∑
(T (k)− Y (k))2 (5.3)

The algorithm is designed in such a way as to update the weights in the direction of the

gradient descent of the cumulative error (with respect to the weight vector). The interested

reader is recommended to consult [156] for further details on the BP algorithm.
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In this research, the Levenberg-Marquardt (LM) algorithm was used as the learning

algorithm. Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was de-

signed to approach second-order training speed without having to compute the Hessian

matrix. Since the performance function has the form of a sum of squares (as is typical in

training feedforward networks), then the Hessian matrix and gradient can be approximated

as shown in Equations 5.4 and 5.5, respectively.

H = JTJ (5.4)

g = JT e (5.5)

where J is the Jacobian matrix that contains first derivatives of the network errors

with respect to the weights and biases, and e is a vector of network errors. The Jacobian

matrix can be computed through a standard backpropagation technique that is much less

complex than computing the Hessian matrix. The Levenberg-Marquardt algorithm uses

this approximation to the Hessian matrix in the Newton-like update shown in Equation

5.6 [82].

Wk+1 = Wk(JTJ + uI)−1JT e (5.6)

A comprehensive description of the LM algorithm, as well as the application of the

algorithm to ANN training is provided by [110] and [63], respectively. Note that the Mean

Squared Error (MSE) and Pearson Correlation Coefficient (r) functions were selected as

the error function to measure the predictive performance of the model. These functions

were selected in place of the traditionally used Mean Absolute Percentage Error (MAPE),
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because MAPE cannot be used if there are zero values (which often occurs in demand

data) because there would be a division by zero.

5.3.2 Ensemble-based methods

A methodology in machine learning that is widely accepted as a technique to enhance the

predictive performance of trained models is ensemble learning [64][27]. Ensemble learning

is based on the principle that fitting a finite number of estimators can produce better

predictions than fitting a single estimator in the same response space [64]. The underlying

assertions behind this claim are that a finite number of estimators greatly reduces the

uncertainty associated with fitting a single estimator to a complex, nonlinear and noisy

function. Moreover, in fitting multiple estimators, the variance and bias of the prediction

errors are greatly reduced. Each estimator thereby exhibits complementarity, such that the

individual learners make up for each other’s deficiencies when solving the same problems

[201].

Ensemble learning strategies may be categorized as either homogenous or heteroge-

neous. In the former, each base estimator has the same model architecture and is trained us-

ing the same learning algorithm, only with different hyper-parameters and training datasets

[201]. Meanwhile, the latter suggests that each individual base model is constructed us-

ing different modelling techniques (i.e. support vector regression, MLP or decision trees).

Broadly speaking, each ensemble learning strategy involves two main subroutines, one

whereby diverse base estimators are generated and the other where these estimators are

aggregated to enhance the predictive performance [201].

The two most common ensemble techniques that are considered in this research include:

1. Bootstrap Aggregation techniques, whereby multiple homogenous estimators are
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built in parallel from different instances of the training dataset; and

2. Boosting techniques, whereby multiple homogenous estimators are iteratively built

upon each other in a chain on the same dataset.

Bootstrap Aggregation (bagging) techniques [27], as its name implies, involve creating

bootstrap samples (Lb) from a given training set, L, of size N. These samples are drawn

stochastically with replacement, such that each sample is selected with equal probability,

1
N

. As a consequence of sampling with replacement, each bootstrap set may have samples

appearing multiple times while some may be left out entirely. This process of generating

data subsets is repeated for the total number of predefined estimators in the ensemble,

whereby each (Lb) is drawn from the bootstrap distribution approximating the underlying

distribution of L. Once each estimator has been fit to its respective dataset, the estimators

are aggregated using an averaging technique.

On the other hand, boosting algorithms are designed to produce weak estimators in

a sequence, whereby each new estimator has higher probability of being trained on sam-

ples which were not predicted well by the previous model [46][52]. Each sample in the

training set is assigned a probability of being included when choosing samples for train-

ing the ensemble members. The probabilities are updated based on the models’ accuracy

of estimation. AdaBoost, introduced by [166], is the most widely used boosting method.

While a detailed discussion on the algorithm is beyond the scope of this research, its

central concept involves generating diverse estimators by assigning heavier weights to the

training samples that are hard to train. Each subsequent estimator is dependent on the

performance of those generated before and pays more attention to the training sets learned

badly previously [166].

In this research, the bagging (Bagging Trees, Random Forests) and boosting (Adaboost)

112



techniques that were explored include using decision tree regressors as base estimators. De-

cision tree regressors are designed to create a model that predicts the value of a response

variable by learning simple decision rules inferred from the data’s feature space [28]. De-

cision tree estimators are particularly attractive because they:

1. are flexible estimators that are uniquely positioned for ensemble techniques;

2. require little data preparation, feature space does not require normalization; and

3. can handle both numerical and categorical feature spaces, rendering it an attractive

choice for demand forecasting, whereby a continuous variable is predicted based on

categorical features.

5.4 Model Assessment and Validation

When building and training prediction models for regression, model validation is a signif-

icant step that is often overlooked. Many researchers have limited the validation process

to assessing the predictive performance of trained models on an independent validation set

[198]. While this is undoubtedly a necessary component, the validation process ought to

be more comprehensive, given that the overall objective of model validation is to ensure

that a trained model does not contain known or detectable flaws.

In order to achieve this, this research adapts the three-stage validation framework

proposed by [68] and extends it for single estimator and ensemble-based regression models

beyond ANNs. The framework includes the assessment of three aspects of model validation

including replicative, predictive and structural validity.
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Replicative validation involves assessing whether a trained model has captured the

underlying relationship in the data used for model training [68]. It is motivated by the

premise that there exists some nonlinear function ’f’ that maps between the input feature

space (X) and the output response variable (Y) with an array of Θ parameters and some

noise model, given by ε.

Y = f(Θ, X) + ε (5.7)

Since variations of least square methods are used as objective functions as part of the

training routine, the statistical distribution of the residuals are presumed to have zero

mean and constant variance, as well as be mutually uncorrelated [68].

Additionally, in order to make inferences about the model parameters, it is often as-

sumed that the residuals follow a Gaussian distribution. Therefore, an indicator that a

regression model has been successful in approximating the relationship that is contained

in the training data is that the residuals observe the aforementioned assumptions.

In this research, replicative validity is assessed via the following critical metrics:

1. Scatter plots, where paired measurements and model predictions are plotted against

each other. This visual evaluation method provides a simple graphical assessment

of how well the model fits the training data. For an accurate, unbiased model, the

points should plot along the 1:1 line. Due to the influences of noise, scatter about

the 1:1 is anticipated, however systematic divergences from the line are indicative

of unmodelled behavior. This plot is a useful tool to gauge how the model may

underestimate or overestimate certain regions of the response function.
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2. Quantile-Quantile (Q-Q) plots of measured versus predicted response variable, simi-

lar to the scatter plot, the Q-Q plots reveal any biases in the predicted responses of

the model. To construct a Q-Q plot of the model predictions against the observa-

tions, the data sets are independently sorted and subsequently plotted against each

other. If the modelled and observed data are similarly distributed, points should plot

approximately along the 1:1 line.

3. Histogram of residuals, in an effort to assess the Gaussian residual distribution as-

sumption, a histogram of the residuals is produced. This plot provides a quick,

graphical summary of the scale and symmetry of the residuals.

4. Auto-correlation function (ACF) of residuals, provides another metric to gauge whether

the assumptions of the error model were followed. The ACF measures the serial cor-

relation in the residuals as a function of lags (k) and the Pearson product-moment

correlation coefficient (coefficient).

ACF = corr(εt, εt−k) (5.8)

If the ACF values lie within the 95% confidence bands around zero then the residuals

are deemed to have no auto-correlation. However, significantly non-zero ACF values

and a non-random pattern indicate that the residuals are serially correlated.

Once replicative validation of the trained regression model has been successfully com-

pleted, then it is evident that the trained model provides a good fit of the training dataset

[68]. However, the next phase of the validation process requires that the trained model is

evaluated against independent sets of data that the model has not seen. The goal with

this phase of validation, known as predictive validation, is to assess the generalization ca-

pacity of the model. Recall that the goal of machine learning is to develop models that are
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able to learn about the general relationships in datasets, rather than memorize the specific

patterns in them, such that it can perform well over a broad range of previously unseen

datasets. As such, another goal of the predictive validation phase is to assess whether the

trained model has been overfitted to the training data. Overfitting can be quantitatively

assessed through the use of error metrics on the independent testing datasets. Moreover,

the previously described validation plots can be used to assess the performance of the

model with the testing set.

Ideally, the error metrics computed for the model predictions during the testing set

should be very close in value to those computed based on the training set, indicating

that the model has good generalization capacity. Significant deviations in performance are

indicative of mode overfitting. Moreover, a direct visual comparison can be particularly

useful for quickly identifying how the predictions might differ from the observations in

different temporal regions of the dataset, such subtleties are often not obvious from the

goodness-of-fit metrics.

In this research, we extend the predictive validation methods proposed by [68] through

the use of cross-validation techniques rather than traditional, fractional data splitting

techniques. While many researchers in literature [1][66][56] use traditional fractional data

splitting (commonly 70-30 splits for training and testing, respectively), this technique

may lead to predictive models with higher variance in their predictions. This is because

the model is only exposed to a single dataset for generalization. Lastly, tuning model

hyper-parameters, the parameters that are not adjusted as part of training process, with

a single training and testing set is a methodological error. Many researchers [66][154]

iteratively tune hyper-parameters by fitting the model to a training set and evaluating

error metrics on a testing set. In this manner, knowledge about the test set can leak into

the model and thereby corrupt goodness-of-fit evaluation metrics. As such, the model loses
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its generalization performance. However, some researchers may address this problem by

further splitting the original dataset with yet another fraction known as the validation

set. The obvious limitation of partitioning the available data into three sets is a drastic

reduction of the number of samples which can be used for generalizable learning.

The strategy employed in this research to bypass these limitations is the use of cross-

validation (CV). The most commonly used CV technique, k-fold cross-validation, randomly

divides the data into ’k’ folds of data of equivalent size [89]. At every ′kth′ iteration, the

′kth′ block is held out in turn and the other ’k-1’ blocks are used to train the model.

The held-out block is used for testing, whereby predictions are rendered and summarized

into goodness-of-fit performance metrics. This process is iterated until all ’k’ blocks have

been used as testing sets at least once. The ’k’ estimates of performance are subsequently

averaged to get the overall resampled estimate.

In dividing the dataset into k subsets, the predictive model is exposed to a greater

variety of plausible conditions, thereby increasing the generalization capacity of the model

and drastically reducing the variance of the errors. Generally speaking, the bias of a

resampling procedure is thought to be related to how much data is held out [89]. If 50% of

the dataset is held out using 2-fold CV, the estimates will be more biased than when only

10% of the dataset is held out. On the other hand, the conventional wisdom is that holding

less data out decreases precision since each hold-out sample has less data to get a stable

estimate of performance [89]. As such, it is often useful to interpret the predictive error of

the trained model in terms of bias and variance when assessing the quality of fitness.

The last phase of the model validation process involves assessing the structural vali-

dation, as defined by [68]. This last stage is motivated by a need to assess the a priori

knowledge and understanding of the physical processes that inform the prediction of the

response variable. In doing so, the modeler is able to truly gauge how valuable each feature
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is in generating model predictions, thereby justifying the structure of the selected model.

Specifically, structural validation involves assessing the relative influence of the selected

feature space on the response variable via a sensitivity analysis (SA). SA methods can be

generally categorized as either local or global-based.

Local methods are perhaps the most well-known forms of SA. These methods funda-

mentally measure the effects of a single parameter on the model output while holding all

other parameters constant. It is for this reason that they are also known as one-factor-at-

a-time (OAT) methods. Local methods are often qualitative, implying that they provide

a rough estimation of parameter influence on model output. However, they preclude any

information regarding the relative importance of each parameter. Further, they do not

assess the interactions between parameters.

In contrast, global methods consider the effects of parameters on the output while simul-

taneously varying all parameters in the input space. This method enables the identification

of interactions in non-linear models and yields quantitative information about the model.

The quantitative nature of such approach provides information on the model output vari-

ance explained by each input factor. These methods are attractive to researchers in envi-

ronmental fields of study where most models are highly non-linear and over-parameterised.

As such, in this research, the sensitivity analysis methods proposed by [68] are extended

to include a well-known global-based method, namely Sobol’s Sensivity Analysis.

The core idea of Sobol’s method is to quantify the variance that each parameter con-

tributes to the total variance of the model output (Nossent et al, 2012). The variance

contribution of each parameter is a result of either the variations of an individual param-

eter, called the main effect of that parameter, or by the interaction of a parameter with

one or more parameters in the input space. The total variance of the model output, V(Y),
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can be described in Equation 5.9 (Sobol’ 2001; Saltelli et al, 2010):

V (Y ) =

p∑
i=1

Vi +

p−1∑
i=1

p∑
j=i+1

Vij + ...+ V1,..,p (5.9)

Note that Vi represents the variance contribution due to the input parameter, Xi i.e.

the main effect of Xi on Y, whereas Vij is the variance contribution due to interactions

between parameters Xi and Xj.

The variance contributions to the total model output variance by individual parameters

as well as the interactions between parameters are gauged as ratios known as Sensitivity

indices (SI).

These indices are computed using Monte Carlo methods. The details of this method-

ology are omitted from this research but can be found in works by [175][160]. The Sobol

quasi-random sampling method was employed as part of the framework due to its low dis-

crepancy (low deviation from uniformity). In comparison to standard sampling methods

such as Latin Hypercube Sampling (LHS), quasi-random sampling has been demonstrated

to maximise coverage of the input space and avoid clustering. This phenomenon is visu-

alised in two-space, as depicted in Figure 5.2.

In summary, the Sobol quasi-random sampling method provides optimal uniformity as

sample size approaches infinity, displays a good distribution for small initial sample sets

and is generally a fast computational algorithm.The detailed mathematical descriptions of

the Sobol method have been omitted from this discussion, but can be found in [175][160].

The implementation of Sobol Quasi-random sampling in the SA framework is drawn from

the works by [80].
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Figure 5.2: Comparison between Pseudo-Random (left) and Quasi-Random Sampling

(right) (Commons Wikimedia, 2011)
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Chapter 6

Case Studies and Numerical

Experiments

6.1 Case Study 1: AMI-driven Prediction of Water

Demand

The City of Abbotsford, Figure 6.1, is part of the Fraser Valley Regional District (FVRD)

in the Lower Mainland of British Columbia. As in the rest of the Lower Mainland, the

FVRD has experienced considerable growth over the past twenty years, with sixty percent

(60%) of this growth occurring in Abbotsford. With a population of more than 131,000,

Abbotsford is the fifth largest city in British Columbia.

This population growth is expected to put significant strain on the city’s water infras-

tructure. Per the Master Planning completed by AECOM (2010), future water demands, in

2031, cannot be met by the current water supply system and 2007 peak day demands were
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Figure 6.1: Geographical Map of the city of Abbotsford

marginally below available supply limits. The Master Planning process has also identified

significant levels of non-revenue water (17.5%) in the municipalities.

To address the challenges of non-revenue water and demand-side management, the city

commissioned the installation of over 25,000 smart water meters as part of the city’s new

Advanced Metering Infrastructure (AMI). These smart meters allow for all residential and

business water meters to be read remotely via a regular radio frequency transmission sent

directly from each individual meter. Since 2011, nearly every property receiving water from
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the City’s water system have had their meter connected to a radio transmitter that sends

reading data to City Hall. The AMI technology would significantly improve the ability to

detect leaks, to disaggregate water use for each sector, to understand indoor versus outdoor

demands, and to monitor the effectiveness of water conservation programs.

The goal is to develop and quantitatively assess the performance of machine-learning

driven predictive models in forecasting hourly demand on both large (over 20,000 meters)

and small (single meter) spatial scales. In doing so, the generalization capacity of the

models in predicting demand at both scales is assessed.

6.1.1 Data Structure

The AMI (hereby referred to as the ’smart water grid’) collects water consumption data

from various meters within the distribution network at fixed one hour intervals and then

continuously relays this information back to the city. Each record contains the following

fields:

• Meter related fields (Meter ID, Recording device ID, Service Point ID, Channel Num-

ber and Type). This field identifies the meter or the measurement device. It is a

categorical variable and can be a combination of digits and characters;

• Customer related fields (Account ID, Customer ID), characterizes the location and

customer type associated with the meter;

• UTC Timestamp, the timestamp field represents the actual time when the measure-

ment was recorded; and

• Consumption value and measurement metric,This is the actual consumption over a

time period. The consumption is measured in cubic meters.
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The customer information associated with each record was used to categorize the con-

sumers by type. Specifically, the following consumers were identified: Single Family Res-

idential (SFRES), Multiple Family Residential (MFRES), Commercial, Industrial, Insti-

tutional and Agricultural. A more comprehensive breakdown of the consumer types and

their relative water consumption is presented in Figure 6.2.

Figure 6.2: Consumption Share of each Consumer Type.

The smart water grid was also mapped in a GIS environment to visualize the spatial

heterogeneity of the infrastructure. Typically, each consumer type would have its own

unique water demand behaviour. However, in this research, predictive modelling is applied

exclusively on the SFRES and MFRES consumer types (23,429 meters) since they represent

the largest share of the city’s consumption. With 23,429 meters under analysis, the total
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size of the dataset for training and validation represents 2.05 ∗ 108 data-points. As such,

these meters were filtered on the GIS map and are presented in Figure 6.3 for visualization.

Figure 6.3: Geospatial Visualization of Smart meters. The SFRES and MFRES are de-

marcated in blue and yellow, respectively; meanwhile other consumer types (such as Agri-

culture, Industrial etc.) are grayed out.

The water demand forecast model will also rely on other external data sources. One

important factor that affects water consumption is the weather, or more precisely the

temperature and precipitation. Given that robust weather data is required in real-time,

this research leverages the DarkSky API (darksky.net) as part of the RTC platform. The
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Dark Sky API was selected because it is backed by a wide range of weather data sources,

which are aggregated together to provide an accurate forecast for a given location. This

renders it a particularly attractive choice for real-time applications whereby local weather

stations may return erroneous data or be temporarily inaccessible. Using the Dark Sky

API’s ’Time Machine Request’, hourly and daily weather conditions for a particular date

are returned. When training a model, historical observations of weather conditions are

used, whereas when implemented in real time, forecasted estimates of weather conditions

are used. This means in research mode, historical observations are exclusively utilized.

6.1.2 Feature Selection

Prior to any exploratory or predictive modelling, one year of raw data (September 2012

- August 2013) was ingested and processed in Python for quality management. This is

because water demand data is often erroneous with multiple missing fields and timestamps.

The following processing techniques were applied to ensure the dataset was in usable form

for subsequent modelling tasks:

1. Handling of missing values, in the event that measurements were not collected, statis-

tical data imputation methods were used. In this case, missing values were imputed

by using a moving average from previously available data points.

2. Timestamp handling, since the raw data timestamps are recorded in Coordinated

Universal Time (UTC), they must be converted to the local timezone (Pacific Stan-

dard Time) in order to gain insight into the temporal dynamics of the data.

3. Synchronization, since multiple data sources are being used (e.g., consumption and

weather) it was ensured that no time synchronization issues between them existed.
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Analogous to electricity demand, water demand is a nonstationary, stochastic time se-

ries that may include a trend in the mean, non-constant variance, and discontinuities [45].

As such, selecting appropriate features as inputs to the predictive model is perhaps the

most important step in building a robust and accurate model. In the drinking water indus-

try, many variables are considered influential in determining water demand, ranging from

socioeconomic to various derivatives of weather-related variables [45]. A good understand-

ing of the factors influencing demand and reliable estimates of the parameters describing

demand behavior and consumption patterns are prerequisites to a good forecast [12]. In

the context of hourly short-term urban water demand forecasts, [78] used temperature,

rainfall and one hour of lagged demand as explicit features, whereas [66] used up to 2 lags

of hourly demand, the previous week’s demand, temperature, wind velocity, pressure and

rain. In this research, the inputs to the model have been defined in explicit form in con-

trast with the implicit formulation proposed by [4] and [56] whereby the current demand

is predicted based on historical demand only.

Intuitively, the dynamics of water demand is strongly correlated with the temporally

cyclic behaviour of its consumers. Typically, the water demand illustrates a diurnal shape,

whereby a peak occurs in the morning, as most consumers prepare for their work or school

day. The consumption then smoothes out during midday and then peaks again at the end

of the standard business hours.

As such, time driven features are perhaps the most intuitive and commonly used fea-

tures and are derived from the date/timestamp data associated with each metered record.

These timestamps were extracted and transformed into integer-based categorical features

including:

• Time of day, this is the hourly index value of the day and takes on integer values
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between 0 and 23;

• Day of week, this represents the index day of the week and takes values between 1

(representing Sunday) to 7 (Saturday);

• Month of year, this represents the monthly index and takes on values between 1

(representing January) to 12 (December); and

• Holiday, this is a binary value feature that takes the values of 0 for regular days or

1 for national holidays.

Figure 6.4 visualizes the influence of day types on water demand. As shown, on week-

ends the early water demand peak is smoother in comparison to a standard weekday. This

is supported by the notion that consumers typically wake up later and at variable times

on weekends.

Figure 6.4: Example Representation of Abbotsford Multi-family Residential Water De-

mand on weekdays and weekends
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Moreover, using the Python ’holiday’ library, each date was filtered with the Canadian

National Holiday database in order to determine whether the given day was a holiday

or not. [15] have shown that national holidays typically behave as weekends and greatly

influence the dynamics of water demand. As such, a binary indicator that takes on the

values of 0 for a regular day or 1 for a holiday was used as a temporal feature as well.

Figure 6.5 reinforces the notion that national holidays behave similarly to weekends.

Figure 6.5: Example Representation of Abbotsford Multi-family Residential Water De-

mand on National Holidays

In addition to the temporal features, independent weather measurement features were

also incorporated into the model. A Dutch study [12] found that when coupling forecasting

models with weather inputs, the largest forecasting errors can be reduced by 11%, and the

average errors by 7%. This improvement can be relevant when higher forecasting accuracies

are necessary for optimal control or for anomaly detection. Furthermore, it is anticipated

that in a Canadian context, the incorporation of weather data is likely to further enhance

forecasting accuracy due to the highly variable weather conditions in comparison to the
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moderate Dutch weather patterns. As such, hourly temperature measurements were incor-

porated. However, instead of using continuous or cumulative precipitation measurements

as a feature, a binary indicator was adopted instead. The binary indicator returns a value

of 0 or 1 if the current date is a clear day or foggy/rainy, respectively. The motivation for

this simplification was to mimic the approximate reasoning of human consumers, whereby

the average consumer is not concerned about the exact measurement of precipitation when

deciding to irrigate his/her lawn but rather uses intuition based on his/her own under-

standing of the probability of precipitation. Other factors such as wind velocity and air

pressure were deemed insignificant and were not included in the model.

Figure 6.6: Example Representation of Abbotsford Multi-family Residential Water De-

mand, Visual assessment of temperature influence

It can be observed in Figure 6.6 that additional demand occurs in the evening hours

during hot days. This is due to the additional sprinkler water consumption that occurs in

residential units during hot, summer days. Moreover, larger demands are seen during the

morning periods over a larger band, with the peak occurring earlier in the morning.
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Lag features, time shifted values of the actual demand were also included in the model.

For example, lag 1 features will hold the demand value in the previous hour relative to

the current timestamp. In this model, lag features for the previous 6 hours (lags 1-6) were

utilized. In addition, lag features from the same hour during the previous day (lag-24)

and the previous week (lag-168) were added. The input database to the prediction engine

is assembled using the features as column fields whereby each observation is recorded as

a row. The target database will be composed of the hourly water demand consumed by

the city, reported in cubic meters per second (m3/s). The feature space of the predictive

model, excluding the lag terms, include:

• Xhour, a categorical discrete value representing the current hour of the day

• Xday, a categorical discrete value index representing the current day of the week

• Xmonth, a categorical discrete value index denoting the Month of the year

• Xholiday, a binary indicator whether day of the week is a national holiday

• Xtemp, a continuous value denoting the current ambient temperature (reported in

deg. Celsius)

• Xprecip- a binary indicator to denote whether current conditions are dry or rainy/cloudy

6.1.3 Results and Discussion

The MLP and ensemble tree regression models are quantitatively assessed using the three-

stage validation framework proposed in Chapter 5 and are evaluated using (1) a reduced

dataset (single MFRES meter); and (2) a larger dataset consisting of all residential meters
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(over 23,000 SFRES and MFRES meters). In doing so, the generalization capacity of the

models are assessed at both the subdivision and city-level resolution. In each case, the error

model assumptions are tested by diagnostic metrics on the residuals, as well as by evaluat-

ing the predictive performance on independent validation sets. The structural validity of

the model is then assessed by performing a sensitivity analysis on the model’s features to

gauge their relative influence on the model’s predictive capacity. The model configurations

that were evaluated are summarized in Table 6.1. Note that hyper-parameter optimiza-

tion was conducted manually, using predominantly Scikit-learn’s (scikit-learn.org/) default

model settings.

Table 6.1: Model configurations for training and validation of estimators. MLP hidden

layer size is given by the total number of entries in {} where each entry denotes the

number of hidden neurons in that layer.

Model Model Architecture

MLP Hidden-layers: {15,12,10,9,8,7}; tanh

Random Forest 1000 estimators; default parameters

Bagging Trees 1000 estimators; default parameters

Boosted Trees 1000 estimators; default parameters

As part of the replicative validation phase, 10-fold cross validation was conducted to

assess the fidelity of the MLP model. The summary statistics (R2) from the cross-validation

testing of the single MLP estimator and ensemble decision tree models are shown in Table

6.2 for both the single meter and total residential meter datasets. At first glance, the

summary statistics of Table 6.2 suggest that the ensemble estimators, when compared to

the single estimator, exhibit less variance in their predictions, and are more robust in terms
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of prediction errors in the testing sets. This appears to hold true at both scales of resolution.

However, using the suggested metrics as part of the replicative validation framework, the

reliability of these models can be further scrutinized. A preliminary analysis to compare

between the two model types is done at the single meter resolution since the potential

errors and biases are likely to be more pronounced, as suggested by Table 6.2.

Table 6.2: Confidence Intervals for Coefficient of Determination (R2) in validation datasets

Model R2 Single Meter R2 Total Residential (23,429 meters)

MLP 0.71 +/- 0.03 0.95 +/- 0.01

Random Forest 0.75 +/- 0.02 0.97 +/- 0.01

Boosted Trees 0.75 +/- 0.02 0.97 +/- 0.01

Bagging Trees 0.74 +/- 0.02 0.96 +/- 0.01

Figure 6.7 provides a visualization of the MLP estimator’s performance in terms of the

residuals’ ACF, histogram, Quantile-Quantile and regression plot of predictions versus ob-

servations. These visualizations are generated using the validation sets of the single meter

dataset. Similarly, Figure 6.8 provides the same level of visualizations for the Random

Forests. Since the Gradient Boosted Tree and Bagging Tree models performed similarly as

the Random Forests, their visualizations are omitted.

As shown in the ACF plot in Figure 6.7, the MLP model displays a trend in the

residuals, with statistically significant serial correlation evident in the 6th and 10th lag

components. This serial correlation is indicative of a deficiency in the model, potentially

attributed to the omission of important input information. The behavior of the residuals

can be further investigated via the provided histogram. While the shape of the histogram

of residuals is suggestive that the residuals are approximately normally distributed, the
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Figure 6.7: Multilayer Perceptron Error Diagnostics: (a) Observed versus Predicted re-

gression plot (top left), (b) Residual histogram, (top right), (c) Residual ACF, (bottom

left) and (d) Quantile-Quantile plot of observed versus predicted measurements (bottom

right)

distribution is slightly offset from the standard normal distribution. This is typically in-

dicative that there is a slight bias in its predictive capacity. However, the residuals are

fairly tightly distributed about the mean. The Q-Q plot of the residuals and the regres-

sion plot of the predicted versus observed response variable both reinforce the previously
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indicated model bias. It appears that the model is unable to reliably predict peak factors

in the demand signal, as shown by the significant deviation from the 1:1 line on both the

Q-Q and regression plots.

Figure 6.8: Random Forests Error Diagnostics: (a) Observed versus Predicted regression

plot (top left), (b) Residual histogram, (top right), (c) Residual ACF, (bottom left) and

(d) Quantile-Quantile plot of observed versus predicted measurements (bottom right)

Figure 6.8 highlights the performance of the Random Forest model. The models show

no trends in the ACF plot, and have no significant serial correlation. However, the residual
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behaviour is similar to the MLP model, whereby a bias in the peak factors is evident.

Albeit, the bias is slightly less prominent in the ensemble models, in comparison with the

MLP model.

Figure 6.9: MLP Predicted versus Observed Demands: Validation Set Results

The predictive validity of the models is further investigated by assessing the perfor-

mance of each estimator against multiple independent test sets. A visual comparison of

each model is provided in Figures 6.9 - 6.10 for the MLP and ensemble models, respectively.

It is evident that in both cases, the models are able to capture the dynamics of the water
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demand signal quite well. However, it is clear that the models are unable to effectively

capture the large peak signals, despite capturing the dynamics of the troughs in the model.

Figure 6.10: Random Forest Predicted versus Observed Demands: Validation Set Results

One of the reasons why the models are unable to capture the peaks effectively is because

of the high-resolution nature of the demand dataset. Since the models are being fit to the

observed water demand at a single metered location directly, the demand is more sensitive

to daily fluctuations in peak consumption. At the DMA level, these fluctuations would be

less pronounced and the model would be more equipped to capture the peak behavior. To
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corroborate this hypothesis, the aforementioned validation metrics and visualizations are

applied to the total residential dataset, consisting of water demand measurements from

23,429 meters. Owing to its superior performance at the single meter resolution, the error

diagnostics and predictive performance in the validation set of the Random Forest model

is demonstrated in Figures 6.11 and 6.12, respectively.

The ACF plot in Figure 6.11 suggests that at the total residential scale, the Random

Forest model displays a slight trend in the residuals, with statistically significant serial

correlation evident in the 4th lag component. As suggested earlier, this serial correlation

is indicative of a slight deficiency in the model.However, the residuals are fairly tightly

distributed about the mean, as shown in the histogram, and follow the 1:1 line quite

closely in both the Q-Q and regression plots. This suggests that the previously indicated

model bias is substantially decreased at the total residential scale.

Figure 6.12 further reinforces the reduction in model bias when predicting at the total

residential scale. It is evident that the peaks and troughs are well characterized in the

predictions with no substantial errors.

Lastly,the Sobol sensitivity analysis was conducted to validate the structure of the pro-

posed models. In doing so, the relative importance of each feature in informing predictions

of the total residential water demand are assessed. As demonstrated in the barplot pro-

vided in Figure 6.13, the exogenous variables were not particularly important. In fact,

the results from the sensitivity indices seem to suggest that the following previous de-

mand measurements are most informative and are perhaps sufficient for building a robust

forecasting model:

• the previous two hours of demand, denoted by Lags ’1’ and ’2’

• the previous day’s demand at the same hour, denoted by Lag ’24’
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Figure 6.11: Random Forests Error Diagnostics at the Total Residential Scale: (a) Ob-

served versus Predicted regression plot (top left), (b) Residual histogram, (top right), (c)

Residual ACF, (bottom left) and (d) Quantile-Quantile plot of observed versus predicted

measurements (bottom right)

• the previous week’s demand at the same hour, denoted by Lag ’168’

This strong dependency on previous measurements is undoubtedly an outcome of the

periodical behaviour of human water consumption. It suggests that in the absence of
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Figure 6.12: Random Forest Predicted versus Observed Demands - Validation Set Results

at the Total Residential Scale

exogenous data, the model will still perform relatively well based on previous predictions

alone. Nonetheless, the proposed prediction engine will not preclude the use of exogenous

data since this information would be particularly useless for real-time management during

anomalous conditions.

It is difficult to compare the presented model’s performance with those presented in the

literature, since those models were fit to data at various data resolutions [4][124][56][154].
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Figure 6.13: Sobol Sensitivity Indices produced via 7,000 iterations of the Random Forest

Prediction Model

In a study that uses a directly comparable performance metric [1], hourly R2 values of 0.792

and 0.896 (respectively) for their best ANN model configuration and wavelet-analysis ANN

were reported.Moreover, [4] reported RMSE values of 4.63 and 14.64 for their predictive

modelling during the training and validation phases, respectively. Similarly, [124] reported

Pearson Correlation coefficient (r) values of 0.73-0.92 during training and 0.55-0.91 during

testing for the various MLP-BP configurations that were tested. They also concluded
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that their DAN2 model performed more consistently with r values ranging between 0.76-

0.88 during training and 0.85-0.91 during testing. Further, Herrera et al. reported MAE

and RMSE values of 3.02 and 4.33 for their best overall model. [56] found that when the

weekday and weekend models were combined, the training MAPE for this model was 2.08%

and the forecasting MAPE was 3.00%.

6.2 Case Study 2: Real-time Control and Optimiza-

tion

The City of Guelph, Ontario (Guelph) was selected as a pilot project for the implemen-

tation and evaluation of this novel RTC platform. Guelph is located in the Grand River

Watershed, which is part of the Lake Erie Source Protection Region, and services a popu-

lation of approximately 125,000 consumers. Guelph is also one of the largest municipalities

in Canada to rely almost exclusively on groundwater for its drinking water supply (City of

Guelph Water Supply Master Plan, 2006). Guelph’s water supply and distribution system

consists of 570 kilometers of water mains ranging in diameter from 100 mm to 900 mm,

five underground storage reservoirs with a combined capacity of 48,000 cubic meters, three

elevated water storage towers and 22 pumping stations (City of Guelph Water Supply

Master Plan, 2006).

The City’s hydraulic model was previously calibrated and updated in 2011 and in-

cluded a complete update of all pump curves, reservoirs, elevated tanks and demands. The

2012 demands for an average and a maximum demand day were added to the model and

calibrated accordingly. This model was utilized as the starting point for this project.
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Figure 6.14: City of Guelph Water Supply System Map (City of Guelph Water Supply

Master Plan, 2006)
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6.2.1 Input Datasets

The Guelph pumping systems consist entirely of constant-speed pumps (CSP). As such

the input datasets of interest to be incorporated in the model include Pump Performance

and Efficiency Curves.

The City completed a number of field tests to verify the operating pump curves of

each pumping system. This data encapsulates the head-flow relationships of each pumping

system and defines its hydraulic performance over a wide range of operating conditions.

Moreover, in order to calculate the amount of energy consumed by each pump, efficiency

curves were added to the model. The City provided manufacturers’ data sheets. Only the

most updated datasets were incorporated in order to keep the model parsimonious.

Guelph Hydro charges the City at four different rate structures depending on the size

and type of the service. These rate structures were incorporated as inputs to the hydraulic

model:

1. Service Size 1, Monthly load demand less than 50 kW:

(a) regulated Price Plan (RPP) Time-of-Use Pricing, the consumption in kilowatt

hours is separated into three periods: on-peak, mid-peak and off-peak, with a

different cost rate for each period; and

(b) RPP Two-Tiered Pricing, the consumption in kilowatt hours (kWh) is separated

into two price tiers under the government’s Regulated Price Plan with the price

threshold being 750 kWh based on a 30-day billing period. As the threshold

is typically exceeded within the initial 24 hours of operation during a monthly

billing period the upper threshold (greater than 750 kWh) is utilized in model.

2. Service Size 2, Monthly load demand between 50 and 999 kW:
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(a) weighted Average Hourly Spot Market Price (WAHSP), the Weighted Average

Hourly Spot Price (WAHSP) is applied to non-RPP and non-retail customers,

without interval metering; and

(b) hourly Ontario Energy Price, interval-metered customers are billed at the Hourly

Ontario Energy Price (HOEP).

Water demand information was incorporated in the model to reflect the standard op-

erational scenario archetypes, namely a Typical Day. The Typical Day was chosen as

October 3, 2012 with a demand of 44 ML/d.

6.2.2 Boundary Conditions and Operational Constraints

In order to establish initial and bounding conditions for the optimization strategy, state

variables were monitored in real-time via outputs from the hydraulic model and were

subsequently evaluated against operational constraints. Pump schedules that produced

operational constraint violations were demarcated as infeasible and were not recommended

as part of the optimization strategy. Initial conditions are set at the beginning of each

timestep using SCADA measurements of the state variables. In lieu of such measurements,

the simulation output from the previous timestep is used.

As detailed in Chapter 3, constraints were set on system pressure and storage. Terminal

constraints to ensure the stability of the controller were also imposed on the storage tanks

and reservoirs. Table 6.3 summarises the operational constraints that have been imposed

onto each state variable.

In order to improve model response time a subset of representative monitoring junctions

was selected to assess the feasibility of system pressures. These monitoring junctions
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Table 6.3: Guelph Operational Constraints

State Variables Constraint Description

Tank Levels Tank levels must be maintained above 50%

of the total storage capacity to account for

emergency fire flows.

Tank Terminal Constraints Tank levels at the end of the day must exceed

or be equal to the tank levels at the beginning

of the day with an allowance equal to that

produced via manual optimization efforts.

Demand Junction Pressures All pressures at monitoring junctions must

fall within the acceptable operational range

of 275 kPa (28 m) and 700 kPa (71 m)

Pump Status Switches The number of pump status toggles must not

exceed 5-6 per pump per day

include 20 sites that are well distributed across the distribution network to capture the

spatial dynamics of the system’s pressure profile .

A system-wide diagram of the simulation model depicting pressure monitoring sampling

locations is provided in Figure 6.15.

6.2.3 Results and Discussion

One of the research questions was to investigate alternative computational efficiency mea-

sures to implement a fully integrated calibrated model-based control. As mentioned earlier,
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Figure 6.15: Model output of pressure monitoring junctions. The high-pressure belt is

delimited with a black rectangle.

integrating a full hydraulic model into the RTC platform allows for a more comprehen-

sive evaluation of the current and projected behaviour of the WSD, thus empowering the

operational staff to render decisions based on a holistic a priori understanding of system

performance.

The first step involved simply processing the EPANET2 model input file and stripping

any extraneous content. While this process was laborious, the simulation model runtime

was reduced by over an order of magnitude, from 30 seconds to 3 seconds. Furthermore,
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by reducing the amount of network information that was stored in memory, and efficiently

handling input and output hydraulic data throughout the platform at every model evalu-

ation, the runtime per simulation was further reduced to 1.8 seconds.

However, the primary computational efficiency measure involved parallelizing the RT-

DDS framework for distributed and shared memory computing architectures, namely through

the implementation of MPI-based communications. While on average, computational bud-

gets of 500 and 1,000 iterations were sufficient in converging to what appeared to be

near-optimal solutions (true optimal is unknown), these budgets still resulted in an aver-

age reporting frequency of 15-30 mins. The reporting frequency is critical since operators

require time to consider implementing the optimized pump schedule for the next hour.

This is still a considerable achievement when using a fully calibrated hydraulic model, but

further computational efficiencies could be achieved via parallelization. When using the

MPI formulation of RT-DDS on a local server, the reporting frequency at each timestep

could be reduced to 10 minutes with 1,000 iterations. Alternatively, the optimizer could

be executed with many more iterations. A 10-minute reporting frequency is on-par with

those reported by [145] when using a surrogate ANN model.

The second set of numerical experiments that was conducted with the City of Guelph

RTC case study involved evaluating the relative performance of each control variable for-

mulation, namely the TCT and BSC representations. Specifically, the relative performance

of each control variable is assessed based on its influence on the convergence quality of op-

timization search trajectory at each timestep, the computational efficiency of execution

across various computational scales, as well as the observable variability of recommended

pump schedules.

Figure 6.16 shows the convergence behaviour of both the BSC and TCT formulations on

a representative control timestep (hour 0). In this experiment, both representations were
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Figure 6.16: Convergence Profile of serial TCT and serial BSC on representative control

timestep, 1000 function evaluations (run-time of less than 2,000 seconds). Both TCT and

BSC were initialized with the same warm start solution in two unique experiments (1,2).

initialized with the same warm solution and were provided the same computational budget.

It is clearly observable that the TCT formulation is able to rapidly converge to the feasible

region of the decision space, as well as achieve near-optimal results within a fraction of

the computational budget. In fact, Figure 6.16 demonstrates that the TCT formulation is

able to achieve superior decision schedules than the manual recommendations within 1/8th

of the required budget. This suggests that the TCT formulation can produce superior

schedules than a human-optimized schedule within 5 minutes of computational time, or

1.5 minutes when parallelized across a typical desktop computer’s processing cores.

Figure 6.16 further suggests that the TCT formulation can perform robustly within a

10-minute reporting frequency without the need to substitute a full hydraulic model with a
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surrogate representation. On the other hand, it is evident that binary representation faces

challenges with breaking out of the infeasible region of the decision space throughout the

search trajectory. The demonstrated convergence ultimately reinforces the computational

limitation of the BSC formulation, whereby the decision space for the same TCT schedule

is orders of magnitude larger, as demonstrated in Chapter 3. While this limitation can

be addressed by feeding the BSC formulation with a feasible, near-optimal warm solution,

this requirement renders this formulation undesirable for emergency scenarios, where rapid

adaptation is required and no previously known feasible or optimal solutions exist.

However, it should be noted that the BSC formulation, shown in Appendix B, produces

recommended schedules that are far more uniform than those produced by the TCT formu-

lation, also shown in Appendix B. Independent tests were run with the same computational

budget and warm start solution to see how the recommended optimal schedules produced

by each formulation vary from one another. The goal of this experiment was to gauge how

each formulation’s recommendations would vary on a daily basis under standard operat-

ing conditions, whereby little deviations in demand are observed. In idealized scenario,

the optimizer would converge to similar recommended decision schedules when fed with

the same warm solution, computational budget and disturbance profile. This would be

attractive for operational staff who would ideally not like to change their modus operandi

significantly on a daily basis.

Unsurprisingly, Appendix B reveals that the BSC formulation results in recommended

schedules that vary insignificantly in comparison with the TCT formulation. This is be-

cause the large discrete decision space results in changes that are sparsely distributed across

multiple pumps and control horizon whereas perturbations in the tighter decision space of

the TCT formulation result in larger changes in the schedule.

In assessing the BSC and TCT performance results on a typical day, it was found
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that both formulations significantly outperformed the manual and baseline operations. As

demonstrated in Figure ??, both the BSC and TCT formulations yielded maximimum

energy cost savings of 26% and 31%, respectively, relative to baseline operations. This

translated to per annum savings of $247,547 and $293,807, or $7.2/ML or $8.4/ML of

production flow, respectively.

However, as predicted, it should be noted that in a few occasions both the TCT and BSC

formulations resulted in schedules that violated the maximum permissible pump switches.

These violations can be observed in Appendix A. Given the favourable convergence per-

formance of the TCT representation and a need to address the potential for pump switch

violations, the performance of the F-TCT formulation was further investigated.

Figure 6.17: Convergence Profile of F-TCT on representative control timestep, 1000 func-

tion evaluations (run-time of less than 2,000 seconds)
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As demonstrated in Figure 6.17, the F-TCT formulation exhibits a similar convergence

profile as the original TCT formulation. This is particularly attractive given that every

timestep the F-TCT formulation is solving a more constrained problem than the TCT

counterpart. In this manner, the F-TCT guarantees that no pump switch violations are

incurred over the duration of any calendar day (also detailed in Appendix A).

Figure 6.18: Average Energy Savings of F-TCT Real-time Controller relative to Manual

and Baseline Operations

A summary of the total energy savings produced by the F-TCT driven real-time con-

troller is presented in Figure 6.18. As observed, a maximum savings of 25% (24.5% on

average) can be achieved via the optimized strategy for the Typical day scenario. The

energy savings were benchmarked relative to Guelph’s baseline operations as well as the

consultant’s manual optimized recommendations (as part of SWI project). While the an-

ticipated total energy savings are less than those initially produced by the TCT (31%)

and binary (26%) formulations, the F-TCT formulation is more robust since it guarantees
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that at any arbitrary calendar date the operational limits on pump switches are never

exceeded. In this manner, the F-TCT formulation is likely to create more desired system

hydraulic behavior. The distribution of energy cost savings results obtained from repeated

experiments with each control variable formulation is detailed in Figure 6.19.

Figure 6.19: Boxplot of Normalized Energy Savings for each Control Variable Formulation,

BSC, TCT and F-TCT. 3 experiments were conducted for BSC and F-TCT, and 7 were

conducted for TCT.

However, it should be noted that Figures 6.18 and 6.19 reveal that the F-TCT formula-

tion performs well relative to manual operations with the assumption of perfect knowledge

of the system demand profile. As such, further investigation is required to assess its per-

formance when demands are forecasted in real-time. While insufficient data was provided

to be able to train a prediction engine for forecasting demand in the City of Guelph,

the behaviour of a prediction engine was simulated by introducing Gaussian noise to the

known forecasts. In doing so, the demand profile at every control timestep is disturbed
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in a manner similar to the errors produced by a prediction model. The introduction of

Gaussian noise to the forecasts is assumed to be a valid approach given that the distribu-

tion of the forecasting error residuals in Chapter 6.2 are normally distributed. Example

noise-perturbed demand profiles are provided in Figure 6.20.

Figure 6.20: Typical Day Demand Profile Perturbed with Gaussian Noise. 1000 simulated

profiles are shown against the known typical day demand (in black).

At every control timestep, a new noise-perturbed demand profile was generated based

on the known noise-free profile at that time. This was done to simulate the self-correcting

behaviour of the prediction engine in real-time whereby the actual known demand observa-

tions from SCADA are used to initialize the demand predictions at every timestep. When

evaluating the F-TCT formulation with the noise-perturbed demand profile, it was found

that the algorithm still maintained hydraulic feasibility and generated energy cost savings

that were in the same range (21%) as those produced with the perfect demand assumption.
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The cost savings were evaluated by evaluating the recommended pump schedule (produced

with the noise-perturbed demands) at the end of the day with the known demands. This

demonstrates that the control formulation is adaptive to changes in the demand profile.

Figure 6.21: Averaged Pressure head profile of F-TCT driven RT-DDS

The state variable outputs, namely pressure and tank levels, for the F-TCT driven

platform were assessed in detail as part of the analysis, and are summarized via Figures

6.21-6.22 for visualization.

The observed pressures for each zone are averaged across all monitoring nodes and

visualized in Figure 6.21. It is immediately evident that under the real-time optimized

scenarios, pressure head levels across each zone change very little from existing conditions.

Moreover, the pressures within each zone are tightly coupled with no significant changes

in both morning and evening peak demand hours. This is particularly attractive from an
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Figure 6.22: Elevated Storage Tank Levels produced by F-TCT driven RT-DDS

operational perspective, whereby significant changes in pressure within a typical day are

undesirable.

As detailed in Figure 6.22, the elevated storage tank levels vary within a fairly tight

operational band (30% of capacity). This band is desirable for maintaining emergency

storage volumes in the system. RT-DDS further ensures that the tanks do not lose stability

over the day by ensuring the terminal constraints are satisfied. As observed, all tanks are

nearly full right before both morning and evening peak hours, and then experience a decline

as pumps are shut-off as part of the optimization process. The Speedvale tank experiences

the sharpest decline after the morning peak demand.

Detailed information on pump key performance indicators (KPIs) can be instrumental

for operators to assess how their assets are performing in real-time. As such, plots of the
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Figure 6.23: Contribution of each Pumping System to overall cost

system pump KPIs are provided in Figures 6.23 - 6.24. Included are the projected daily

cost contributions of each pumping system, the energy intensity (kWh/m3) and pump

utilization rates (%), and lastly the pumping system average and peak energy consump-

tions. These plots enable an operator to proactively assess how efficiently each pump is

operating and the average consumption, utilization and costs attributed to each pump in

the system. These plots could be used to reinforce or contradict the operator’s judgement

on which pumps should be scheduled most frequently. As observed in Figure 6.23, the

largest cost contributor to the total system costs is the Woods pumping station, largely

due to its rated capacity. However, as shown in Figure 6.24, the Woods system is actually

relatively efficient. For this reason, the Woods system is fairly well utilized by the RT-DDS

platform. Other large cost contributors include the Arkell, Park St.,Downey and Emma
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Figure 6.24: Energy Intensity versus Utilization Rates for each pumping system

well systems.

It can also be generally observed that the RT-DDS algorithm intelligently schedules

pumps such that pumps with the highest efficiencies (lower energy intensity) are utilized

the most (as demonstrated by the utilization versus energy intensity plot provided in

Figure 6.24). For example, the Calico and Helmar pumping systems suffer from relatively

high energy intensity rates (KWh/m3), yet have utilization rates below 15%. Conversely,

pumps with relatively low energy intensity rates (KWh/m3), such as Robertson, Arkell,

Paisley and Woods, were utilized the most. It should be noted that the Emma well pump

seems to be the exception to this case. However, the Emma pump system was not a control

variable and was thus responding to the system hydraulic conditions based on it’s existing

tank setpoints.
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Long-term potential cost savings that can be achieved through the use of the RT-DDS

platform were also projected. The projection assumes that the platform is able to gener-

ate cost savings consistently each year over its lifetime, with no substantial degradation

in performance. The 10-year projected savings was computed ignoring the influence of

annualized growth, inflation and interest rates, in order to provide a lower bound estimate

of potential long term savings.

Table 6.4: Long-term Cost Savings of Real-time Controller

RT-DDS Savings

Estimated Annual Cost $951,519

Percentage Savings 25%

Annual Cost Savings $233,589

Savings over Lifetime $2,335,891

As demonstrated in Table 6.4, the long term cost savings are substantial. Note that

these savings scale proportionally to the size and complexity of the distribution system

under analysis. As such, integrating an RTC platform with WSDs across the province could

yield significant savings in terms of both annualized costs and Greenhouse Gas emissions.
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Chapter 7

Concluding Remarks

In this research, a novel predictive real-time control and optimization platform, RT-DDS,

is introduced and quantitatively assessed. The platform is designed to provide real-time

pump control setting recommendations in the form of a 24-hour schedule based on current

system conditions and is thus able to dynamically adjust to changes in the system. The

RT-DDS platform was configured to solve an optimization problem at every timestep in

the control horizon (24-hours) through the minimization of energy costs while maintaining

system behaviour within a predefined regulatory and operational tolerance band.

In doing so, multiple control variable formulations were assessed. These included binary

control statuses and time-controlled triggers whereby the pump schedule was represented

as a sequence of on/off binary variables and active/idle discrete time zones, respectively.

However, it was found that both formulations led to conditions whereby the system would

violate the predefined maximum number of pump switches per calendar day. This occurred

at each timestep because the control variable formulation was unaware of the elapsed

switches in the subsequent hours. As such, a novel feedback architecture was proposed,
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such that at every timestep, the number of switches that had elapsed in the previous hours

was explicitly encoded into the formulation. In this manner, the maximum number of

switches per calendar day was never violated. Using this novel formulation, daily energy

cost savings of up to 25% were achievable on an average day, which translated to savings of

over 2.3 million dollars over a ten year period. Moreover, stable hydraulic conditions were

produced in the system, thereby changing very little when compared to baseline operations

in terms of quality of service and overall condition of assets.

The prediction engine of the RT-DDS platform was evaluated with an AMI-driven case

study, whereby the water consumption of the residential units in the city were predicted. A

Multi-Layer Perceptron (MLP) and ensemble-driven learning techniques (Random forests,

Bagging trees and Boosted trees) were all built, trained and validated as part of this re-

search. A three-stage validation process was adopted to assess the replicative, predictive

and structural validity of the models. The models were tested at two resolutions to assess

the generalization capacity of the models at predicting water demand at a single meter, and

then at the city-scale, by predicting the total residential demand. While the models proved

to have strong generalization capability, via good performance in the cross-validation test-

ing, all models experienced slight biases when aiming to predict extreme peak events in

the single meter dataset. It was concluded that the models performed far better at the

city resolution whereby peak events are far more normalized. Moreover, the relative influ-

ence of exogenous parameters was assessed via a global sensitivity analysis. In doing so, it

was found that a sufficiently robust model could be constructed using historical demand

measurements alone. In general, the models demonstrated the capacity of using machine

learning techniques in for short term water demand forecasting particularly in the context

of real-time control and optimization.

The following research recommendations are made to further enhance the performance
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of the proposed RT-DDS platform:

• it is recommended that a multi-objective optimization problem is formulated to assess

how well the real-time platform can negotiate the trade-off between reliability of

supply and minimization of costs;

• the resilience of the RT-DDS platform ought to be further investigated by testing the

platform with several emergency conditions such as blackouts and fire flows;

• it is recommended that high-resolution surrogate models of the water supply and

distribution infrastructure are explored in order to enhance the robustness of the

RT-DDS platform;

• the platform can be integrated with water quality data to assess how well water

quality objectives such as water age minimization and chlorine residual stabilization

can be adapted into the framework; and

• from an algorithmic optimization perspective, it is recommended that various search

heuristics be further explored to assess whether preferential activation of pumps based

on efficiency and capacity can enhance overall system performance.

162



References

[1] Adamowski, J., Chan, H. F., Prasher, S. O., Ozga-Zielinski, B., and

Sliusarieva, A. Comparison of multiple linear and nonlinear regression, autore-

gressive integrated moving average, artificial neural network, and wavelet artificial

neural network methods for urban water demand forecasting in montreal, canada.

Water Resources Research 48, 1 (2012).

[2] Alba, E., Luque, G., and Nesmachnow, S. Parallel metaheuristics: recent

advances and new trends. International Transactions in Operational Research 20, 1

(2013), 1–48.

[3] Alba, E., Nakib, A., and Siarry, P. Metaheuristics for Dynamic Optimization,

1 ed., vol. 433 of 10. Springer, Berlin Heidelberg, 2013.

[4] Alvisi, S., Franchini, M., and Marinelli, A. A short-term, pattern-based

model for water-demand forecasting. Journal of Hydroinformatics 9, 1 (2007), 39–

50.

[5] Anderson, R. L., Miller, T. A., and Washburn, M. C. Water savings from

lawn watering restrictions during a drought year, fort collins, colorado. JAWRA

Journal of the American Water Resources Association 16, 4 (1980), 642–645.

163



[6] Anzaldi, G., Rubion, E., Corchero, A., Sanfeliu, R., Domingo, X., Pi-

juan, J., and Tersa, F. Towards an enhanced knowledge-based decision support

system (dss) for integrated water resource management (iwrm). Procedia Engineering

89 (2014), 1097–1104.

[7] Arrondo, A., Redondo, J., Fernandez, J., and Ortigosa, P. M. Paral-

lelization of a non-linear multi-objective optimization algorithm: Application to a

location problem. Applied Mathematics and Computation 255 (3/15 2015), 114–124.

[8] Asadzadeh, M., Razavi, S., Tolson, B. A., and Fay, D. Pre-emption strate-

gies for efficient multi-objective optimization: Application to the development of lake

superior regulation plan. Environmental Modelling Software 54 (4 2014), 128–141.

[9] Asadzadeh, M., Tolson, B. A., and Burn, D. H. A new selection metric for

multiobjective hydrologic model calibration. Water Resources Research 50, 9 (2014),

7082–7099.

[10] Athanasiou, S., Staake, T., Stiefmeier, T., Sartorius, C., Tompkins, J.,

and Lytras, E. Daiad: Open water monitoring. Procedia Engineering 89 (2014),

1044–1049.

[11] Bai, Y., Wang, P., Li, C., Xie, J., and Wang, Y. A multi-scale relevance

vector regression approach for daily urban water demand forecasting. Journal of

Hydrology 517 (9/19 2014), 236–245.

[12] Bakker, M., van Duist, H., van Schagen, K., Vreeburg, J., and Ri-

etveld, L. Improving the performance of water demand forecasting models by

using weather input. Procedia Engineering 70, Complete (2014), 93–102.

164



[13] Bakker, M., van Schagen, K., and Timmer, J. Flow control by prediction

of water demand. Journal of Water Supply: Research and Technology - Aqua 52, 6

(09/01 2003), 417–424.

[14] Bakker, M., Vreeburg, J. H. G., Palmen, L. J., Sperber, V., Bakker, G.,

and Rietveld, L. C. Better water quality and higher energy efficiency by using

model predictive flow control at water supply systems. Journal of Water Supply:

Research and Technology - Aqua 62, 1 (02/01 2013), 1–13.

[15] Bakker, M., Vreeburg, J. H. G., van Schagen, K. M., and Rietveld,

L. C. A fully adaptive forecasting model for short-term drinking water demand.

Environmental Modelling Software 48 (10 2013), 141–151.

[16] Baran, B., von Lucken, C., and Sotelo, A. Multi-objective pump scheduling

optimisation using evolutionary strategies. Advances in Engineering Software 36, 1

(2005), 39 – 47.

[17] Barham, R. H., and Drane, W. An algorithm for least squares estimation of

nonlinear parameters when some of the parameters are linear. Technometrics 14, 3

(1972), 757–766.

[18] Berardi, L., Giustolisi, O., and Todini, E. Enhanced global gradient algo-

rithm: A general formulation. In Proceedings of World Environmental and Water Re-

sources Congress 2009 - World Environmental and Water Resources Congress 2009:

Great Rivers (2009), vol. 342, pp. 209–218.

[19] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press,

Inc., New York, NY, USA, 1995.

165



[20] Boccelli, D. L. Optimal scheduling of booster disinfection in water distribution

systems. J. Water Resour. Plann. Manage. 124 (1998), 99.

[21] Bougadis, J., Adamowski, K., and Diduch, R. Short-term municipal water

demand forecasting. Hydrological Processes 19, 1 (2005), 137–148.

[22] Boulos, P., Wu, Z., Orr, C., Moore, M., Hsuing, P., and Thomas, D.

Optimal pump operation of water distribution systems using genetic algorithms.

In American Water Works Association Distribution System Symposium (Denver,

Colorado, 2001).

[23] Bounds, P. Efficient energy management of a large-scale water supply system. Civ.

Eng. Environ. Syst. 23 (2006), 209.

[24] Bowden, G. J. Optimal division of data for neural network models in water re-

sources applications. Water Resour. Res. 38 (2002), 1010.

[25] B.Paechter, Lopez-Ibanez, M., and Prasad, T. D. Ant-Colony Optimization

for Optimal Pump Scheduling.

[26] Braun, M., Bernard, T., Piller, O., and Sedehizade, F. 24-hours demand

forecasting based on sarima and support vector machines. Procedia Engineering 89

(2014), 926–933.

[27] Breiman, L. Bagging predictors. Machine Learning 24, 2 (1996), 123–140.

[28] Breiman, L. Random forests. Machine Learning 45, 1 (2001), 5–32.

[29] Broad, D. R. Water distribution system optimization using metamodels. J. Water

Resour. Plann. Manage. 131 (2005), 172.

166



[30] Bunn, S. Closing the loop in water supply optimisation. In 2007 IET Water Event

(2007), pp. 71–82.

[31] Candelieri, A., and Archetti, F. Identifying typical urban water demand

patterns for a reliable short-term forecasting the icewater project approach. Procedia

Engineering 89 (2014), 1004–1012.

[32] Candelieri, A., Soldi, D., and Archetti, F. Short-term forecasting of hourly

water consumption by using automatic metering readers data. Procedia Engineering

119 (2015), 844–853.

[33] Carbone, M., Garofalo, G., and Piro, P. Decentralized real time control

in combined sewer system by using smart objects. Procedia Engineering 89 (2014),

473–478.

[34] Chen, J., and Boccelli, D. L. Demand forecasting for water distribution sys-

tems. Procedia Engineering 70 (2014), 339–342.

[35] Cheng, W. P., Yu, T. C., and Xu, G. Real-time model of a large-scale water

distribution system. Procedia Engineering 89 (2014), 457–466.

[36] Chorley, M., and Walker, D. Performance analysis of a hybrid mpi/openmp

application on multi-core clusters. Journal of Computational Science 1, 3 (8 2010),

168–174.

[37] Confesor, R., and Whittaker, G. Automatic calibration of hydrologic mod-

els with multi-objective evolutionary algorithm and pareto optimization1. JAWRA

Journal of the American Water Resources Association 43, 4 (2007), 981–989.

167



[38] Coulbeck, B., Brdys, M., Orr, C. H., and Rance, J. P. A hierarchical

approach to optimized control of water distribution systems: Part i decomposition.

Optimal Control Applications and Methods 9, 1 (1988), 51–61.

[39] Coulbeck, B., Brdys, M., Orr, C. H., and Rance, J. P. A hierarchical

approach to optimized control of water distribution systems: Part ii. lower-level

algorithm. Optimal Control Applications and Methods 9, 2 (1988), 109–126.

[40] Dandy, G. C., Maier, H. R., and Broad, D. R. Optimal operation of complex

water distribution systems using metamodels. Journal of Water Resources Planning

and Management 136, 4 (2010), 433–443.

[41] Deb, K. An efficient constraint handling method for genetic algorithms. Computer

Methods in Applied Mechanics and Engineering 186, 24 (6/9 2000), 311–338.

[42] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A fast and elitist

multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Trans-

actions on 6, 2 (2002), 182–197.

[43] Deuerlein, J. W. Decomposition model of a general water supply network graph.

J. Hydraul. Eng. 134 (2008), 822.

[44] Diehl, M., Ferreau, H. J., and Haverbeke, N. Efficient Numerical Methods

for Nonlinear MPC and Moving Horizon Estimation. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2009, pp. 391–417.

[45] Donkor, E., Mazzuchi, T., Soyer, R., and Roberson, J. A. Urban water

demand forecasting: Review of methods and models. Journal of Water Resources

Planning and Management 140, 2 (02/01; 2015/11 2014), 146–159.

168



[46] Drucker, H. Improving regressors using boosting techniques. In Proceedings of

the Fourteenth International Conference on Machine Learning (San Francisco, CA,

USA, 1997), ICML ’97, Morgan Kaufmann Publishers Inc., pp. 107–115.

[47] Drucker, H., Schapire, R. E., and Simard, P. Improving performance in

neural networks using a boosting algorithm. In Advances in Neural Information

Processing Systems 5, [NIPS Conference] (San Francisco, CA, USA, 1993), Morgan

Kaufmann Publishers Inc., pp. 42–49.

[48] Ercan, M. B., Goodall, J. L., Castronova, A. M., Humphrey, M., and

Beekwilder, N. Calibration of swat models using the cloud. Environmental Mod-

elling Software 62 (12 2014), 188–196.

[49] Espinoza, F. P. Effects of local search algorithms on groundwater remediation

optimization using a self-adaptive hybrid genetic algorithm. J. Comput. Civ. Eng.

20 (2006), 420.

[50] Filion, Y., MacLeod, S., and Roshani, E. Evaluating the impact of climate

change mitigation strategies on the optimal design and expansion of the amherstview,

ontario, water network: Canadian case study. Journal of Water Resources Planning

and Management 138, 2 (2012), 100–110.

[51] Fontenot, E., Ingeduld, P., and Wood, D. Real Time Analysis of Water

Supply and Water Distribution Systems. American Society of Civil Engineers, 06/17;

2015/11 2003, pp. 1–10.

[52] Freund, Y., and Schapire, R. A decision theoretic generalization of on-line

learning and an application to boosting, 2010.

169



[53] Gage, G., Helmcke, S., and Prigent, O. The 21st century water utility ini-

tiative: How to boost operational performance of water utilities by up to 20 Water

Science and Technology 68, 7 (2013), 1487–1494.

[54] Ganidi, N., and Holden, B. Real time control of water distribution systems using

a multi-criteria decision-support tool for optimal water network management a case

study. Procedia Engineering 89 (2014), 495–501.

[55] Garrick, N., and Felder, M. Water and the future of the canadian economy

report. Tech. rep., The Innovolve Group, 294 Richmond Street East, Suite 200,

Toronto, Ontario, 2010.

[56] Ghiassi, M., Zimbra, D., and Saidane, H. Urban water demand forecasting

with a dynamic artificial neural network model. Journal of Water Resources Planning

and Management 134, 2 (03/01; 2015/11 2008), 138–146.

[57] Ghiassi, M., Zimbra, D. K., and Saidane, H. Medium term system load

forecasting with a dynamic artificial neural network model. Electric Power Systems

Research 76, 5 (2006), 302 – 316.

[58] Giacomello, C., Kapelan, Z., and Nicolini, M. Fast hybrid optimization

method for effective pump scheduling. Journal of Water Resources Planning and

Management 139, 2 (03/01; 2016/11 2013), 175–183.

[59] Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning,

1st ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[60] Goldman, F., and Mays, L. The application of simulated annealing to the optimal

operation of water systems. American Society of Civil Engineers (ASCE), 1999.

170



[61] Hadka, D., Madduri, K., and Reed, P. Scalability analysis of the asynchronous,

master-slave borg multiobjective evolutionary algorithm. In Parallel and Distributed

Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th Inter-

national (2013), pp. 425–434.

[62] Hadka, D., and Reed, P. Large-scale parallelization of the borg multiobjec-

tive evolutionary algorithm to enhance the management of complex environmental

systems. Environmental Modelling Software 69 (7 2015), 353–369.

[63] Hagan, M. T., and Menhaj, M. B. Training feedforward networks with the

marquardt algorithm. IEEE Transactions on Neural Networks 5, 6 (1994), 989–993.

[64] Hansen, L. K., and Salamon, P. Neural network ensembles. Pattern Analysis

and Machine Intelligence, IEEE Transactions on 12, 10 (1990), 993–1001.

[65] Harou, J. J., Garrone, P., Rizzoli, A. E., Maziotis, A., Castelletti, A.,

Fraternali, P., Novak, J., Wissmann-Alves, R., and Ceschi, P. A. Smart

metering, water pricing and social media to stimulate residential water efficiency:

Opportunities for the smarth2o project. Procedia Engineering 89 (2014), 1037–1043.

[66] Herrera, M., Torgo, L., Izquierdo, J., and Perez-Garcia, R. Predictive

models for forecasting hourly urban water demand. Journal of Hydrology 387, 12

(6/7 2010), 141–150.

[67] Hughes, T. C. Peak period design standards for small western u.s. water supply

systems1. JAWRA Journal of the American Water Resources Association 16, 4

(1980), 661–667.

171



[68] Humphrey, G., Maier, H., Wu, W., Mount, N., Dandy, G., Abrahart,

R., and Dawson, C. Improved validation framework and r-package for artificial

neural network models. Environmental Modelling Software 92 (6 2017), 82–106.

[69] Hutton, C., Kapelan, Z., Vamvakeridou-Lyroudia, L., and Savi, D. Deal-

ing with uncertainty in water distribution system models: A framework for real-time

modeling and data assimilation. Journal of Water Resources Planning and Manage-

ment 140, 2 (02/01; 2015/11 2014), 169–183.

[70] Huzmezan, M., and Maciejowski, J. M. Reconfigurable flight control of a

high incidence research model using predictive control. In Control ’98. UKACC

International Conference on (Conf. Publ. No. 455) (1998), pp. 1169–1174 vol.2.

[71] Irons, L., Boxall, J., Speight, V., Holden, B., and Tam, B. Data driven

analysis of customer flow meter data. Procedia Engineering 119 (2015), 834–843.

[72] Ivetic, D., Vasilic, Z., Prodanovic, D., and Stanic, M. Implementing q

method to accelerate the optimization of pressurized pipe networks. Procedia Engi-

neering 89 (2014), 618–625.

[73] Jain, A., Kumar Varshney, A., and Chandra Joshi, U. Short-term water

demand forecast modelling at iit kanpur using artificial neural networks. Water

Resources Management 15, 5 (2001), 299–321.

[74] Jain, A., and Ormsbee, E. L. Short-term water demand forecast modeling

techniques-conventional methods versus artificial intelligence. Journal (American

Water Works Association) 94, 7 (2002), 64–72.

172



[75] Jamieson, D., Shamir, U., Martinez, F., and Franchini, M. Conceptual

design of a generic, real-time, near-optimal control system for water-distribution

networks. Journal of Hydroinformatics 9, 1 (Portland Press Ltd 2007), 3–14.

[76] Jank, B. Instrumentation, control and automation of water and wastewater treat-

ment and transport systems 1993. Water Science Technology 28, 11-12 (1993).

[77] Jayasekara, P., Illangasinghe, D., Dahanayake, J., Wickramage, K.,

and Munasinghe, R. Improving efficiency of existing water distribution networks

by centralized monitoring. In Proceedings of the 2007 3rd International Conference

on Information and Automation for Sustainability, ICIAFS (2007), pp. 25–30.

[78] Jentgen, L., Kidder, H., Hill, R., and Conrad, S. Water consumption

forecasting to improve energy efficiency of pumping operations. Tech. rep., Awwa

Research Foundation, 6666 West Quincy Avenue, Denver, CO 80235-3098, 2007.

[79] Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., and Chap-

man, B. High performance computing using mpi and openmp on multi-core parallel

systems. Parallel Computing 37, 9 (9 2011), 562–575.

[80] Joe, S., and Kuo, F. Constructing sobol sequences with better two-dimensional

projections. SIAM Journal on Scientific Computing 30, 5 (2008), 2635–2654.

[81] Kang, D. Real-time optimal control of water distribution systems. Procedia Engi-

neering 70, Complete (2014), 917–923.

[82] Karray, F., and De Silva, C. Soft Computing and Intelligent Systems Design:

Theory, Tools, and Applications. Pearson/Addison Wesley, 2004.

173



[83] Kelner, V., and Leonard, O. Optimal pump scheduling for water supply using

genetic algorithms. In Int. Congress on Evolutionary Methods for Design, Optimiza-

tion and Control with Applications to Industrial Problems (Barcelona, Spain, 2003),

EUROGEN 2003.

[84] Ketabchi, H., and Ataie-Ashtiani, B. Assessment of a parallel evolutionary

optimization approach for efficient management of coastal aquifers. Environmental

Modelling Software 74 (12 2015), 21–38.

[85] Keyser, W. D., Amerlinck, Y., Urchegui, G., Harding, T., Maere, T.,

and Nopens, I. Detailed dynamic pumping energy models for optimization and con-

trol of wastewater applications. Journal of Water and Climate Change 5, 3 (Portland

Press Ltd 2014), 299–314.

[86] Kim, J., Choi, D., Kim, D., and Lee, D. Water distribution operation systems

based on smart meter and sensor network. Procedia Engineering 89 (2014), 444–448.

[87] Klempous, R., Kotowski, J., Nikodem, J., and Ulasiewicz, J. Optimization

algorithms of operative control in water distribution systems. Journal of Computa-

tional and Applied Mathematics 84, 1 (1997), 81–99.

[88] Kollat, J. B., and Reed, P. M. Comparing state-of-the-art evolutionary multi-

objective algorithms for long-term groundwater monitoring design. Advances in Wa-

ter Resources 29, 6 (6 2006), 792–807.

[89] Kuhn, M., and Johnson, K. Applied predictive modeling. New York, NY :

Springer, c2013, 2013.

174



[90] Kurek, W., and Ostfeld, A. Multi-objective optimization of water quality,

pumps operation, and storage sizing of water distribution systems. Journal of Envi-

ronmental Management 115 (2013), 189 – 197.

[91] Laspidou, C., Papageorgiou, E., Kokkinos, K., Sahu, S., Gupta, A., and

Tassiulas, L. Exploring patterns in water consumption by clustering. Procedia

Engineering 119 (2015), 1439–1446.

[92] Li, X., Wei, J., Li, T., Wang, G., and Yeh, W. A parallel dynamic pro-

gramming algorithm for multi-reservoir system optimization. Advances in Water

Resources 67 (5 2014), 1–15.

[93] Lingireddy, S., and Wood, D. Improved operation of water distribution systems

using variable-speed pumps. Journal of Energy Engineering 124, 3 (12/01; 2016/11

1998), 90–103.

[94] Lopez-Ibanez, M. Operational optimisation of water distribution networks, 2009.

[95] Lopez-Ibanez, M., Prasad, T., and Paechter, B. Multi-objective optimisa-

tion of the pump scheduling problem using spea2. In Evolutionary Computation,

2005. The 2005 IEEE Congress on (2005), vol. 1, IEEE, pp. 435–442.

[96] Lopez-Ibanez, M., Prasad, T., and Paechter, B. Ant colony optimization for

optimal control of pumps in water distribution networks. Journal of Water Resources

Planning and Management 134, 4 (2008), 337–346.
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Appendix A

Optimized Schedules Generated by

RT-DDS

Recommended schedules produced at the end of the control horizon are presented for the

binary status, time controlled trigger and feedback formulations. Violations of maximum

allowable pump switches are delimited with red text.
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Control Variable Binary Status Control (BSC) Schedule

Pump	Name 2012-10-02	0:00 2012-10-02	1:00 2012-10-02	2:00 2012-10-02	3:00 2012-10-02	4:00 2012-10-02	5:00 2012-10-02	6:00 2012-10-02	7:00 2012-10-02	8:00 2012-10-02	9:00 2012-10-02	10:00 2012-10-02	11:00
Arkell	14 0 0 0 1 0 1 0 1 0 1 1 1
Arkell	1 1 1 1 1 1 1 0 0 0 0 1 1
Arkell	6 1 1 1 1 0 1 0 0 0 0 1 1
Arkell	7 1 1 1 1 1 1 0 0 0 0 1 1
Arkell	8 1 1 1 1 1 1 0 0 0 0 0 1

Clythe	B2 1 1 1 1 1 1 0 0 0 0 1 1
Paisley	B2 1 1 1 1 1 1 0 1 0 0 1 1
Paisley	HL4 1 1 1 1 1 1 0 0 0 1 1 0

Robertson	B1 1 0 0 0 0 0 0 1 1 1 1 1
Robertson	B2 1 0 0 0 0 0 0 1 1 1 1 1
Robertson	B3 0 0 0 0 0 0 0 0 0 0 0 0

UofG	W 1 1 1 1 1 1 1 1 1 0 0 0
Woods	3 1 1 1 0 1 1 0 0 0 0 1 1
Woods	4 0 0 0 0 0 0 0 1 1 1 1 1
Woods	5 1 1 1 1 1 1 1 1 1 1 1 1

Pump	Name 2012-10-02	12:00 2012-10-02	13:00 2012-10-02	14:00 2012-10-02	15:00 2012-10-02	16:00 2012-10-02	17:00 2012-10-02	18:00 2012-10-02	19:00 2012-10-02	20:00 2012-10-02	21:00 2012-10-02	22:00 2012-10-02	23:00
Arkell	14 1 1 1 0 1 0 0 0 1 1 1 1
Arkell	1 1 1 0 1 0 0 0 0 0 1 1 1
Arkell	6 1 1 1 1 0 0 0 0 1 0 1 1
Arkell	7 1 1 1 1 0 0 0 0 0 1 1 1
Arkell	8 0 0 1 1 0 0 0 0 1 1 1 0

Clythe	B2 1 0 1 0 0 0 0 1 1 1 1 1
Paisley	B2 1 1 1 1 0 0 0 0 1 1 1 1
Paisley	HL4 0 1 1 1 1 0 0 0 0 0 1 1

Robertson	B1 1 1 1 0 0 1 1 1 1 1 1 1
Robertson	B2 1 1 1 1 1 1 1 1 1 1 1 1
Robertson	B3 0 0 0 0 0 0 0 0 0 0 0 0

UofG	W 0 0 0 0 0 0 0 0 0 0 0 0
Woods	3 0 1 1 1 0 0 0 0 1 1 0 0
Woods	4 1 1 1 1 1 1 1 1 1 1 1 1
Woods	5 1 1 1 1 1 1 1 1 1 1 1 1
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Control Variable Time Triggered Control (TCT) Schedule

Pump	Name 2012-10-02	0:00 2012-10-02	1:00 2012-10-02	2:00 2012-10-02	3:00 2012-10-02	4:00 2012-10-02	5:00 2012-10-02	6:00 2012-10-02	7:00 2012-10-02	8:00 2012-10-02	9:00 2012-10-02	10:00 2012-10-02	11:00
Arkell	14 1 0 0 0 0 0 0 0 0 0 0 0
Arkell	1 1 1 0 0 0 0 0 0 0 0 1 1
Arkell	6 1 1 0 0 1 1 1 1 0 1 1 1
Arkell	7 1 1 1 0 0 0 0 0 1 0 0 0
Arkell	8 1 0 0 0 1 1 1 1 1 1 1 1

Clythe	B2 1 1 0 0 0 0 0 0 0 0 0 0
Paisley	B2 0 0 0 0 0 0 0 0 1 1 1 1
Paisley	HL4 0 1 1 1 1 1 0 1 0 0 1 1

Robertson	B1 1 1 0 0 0 0 0 1 1 1 1 1
Robertson	B2 1 1 0 1 1 1 1 1 1 1 1 1
Robertson	B3 0 0 0 0 0 0 0 0 0 0 0 0

UofG	W 1 1 1 1 1 1 1 1 1 1 0 0
Woods	3 0 1 1 0 1 1 1 1 1 0 1 1
Woods	4 0 0 0 0 0 0 0 0 0 0 1 1
Woods	5 0 1 1 1 1 0 0 1 1 1 1 1

Pump	Name 2012-10-02	12:00 2012-10-02	13:00 2012-10-02	14:00 2012-10-02	15:00 2012-10-02	16:00 2012-10-02	17:00 2012-10-02	18:00 2012-10-02	19:00 2012-10-02	20:00 2012-10-02	21:00 2012-10-02	22:00 2012-10-02	23:00
Arkell	14 0 1 0 1 1 1 1 0 0 0 0 1
Arkell	1 1 1 0 0 0 0 0 0 0 1 0 0
Arkell	6 1 1 1 1 0 0 1 0 0 0 0 0
Arkell	7 0 0 1 0 1 1 1 1 1 0 0 0
Arkell	8 1 1 1 1 0 1 0 1 1 0 0 0

Clythe	B2 0 0 0 0 0 0 0 0 0 0 0 0
Paisley	B2 1 0 1 1 1 0 1 1 1 1 1 1
Paisley	HL4 0 0 0 1 1 0 1 0 1 1 1 1

Robertson	B1 1 1 1 1 0 1 1 1 1 1 1 1
Robertson	B2 1 1 1 1 1 1 1 1 1 1 1 1
Robertson	B3 0 0 0 0 0 0 0 0 0 0 0 0

UofG	W 0 0 0 0 0 0 1 1 1 1 1 1
Woods	3 0 0 0 0 0 0 0 0 0 0 0 0
Woods	4 0 0 1 1 1 1 1 1 1 1 1 1
Woods	5 0 1 1 1 1 1 1 1 1 1 1 1
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Control Variable Feedback Time Triggered Control (F-TCT) Schedule

Pump	Name 2012-10-02	0:00 2012-10-02	1:00 2012-10-02	2:00 2012-10-02	3:00 2012-10-02	4:00 2012-10-02	5:00 2012-10-02	6:00 2012-10-02	7:00 2012-10-02	8:00 2012-10-02	9:00 2012-10-02	10:00 2012-10-02	11:00
Arkell	14 1 1 1 0 0 0 0 1 1 1 1 0
Arkell	1 1 1 1 1 1 1 1 1 1 1 1 1
Arkell	6 1 1 1 1 1 0 0 1 1 1 1 1
Arkell	7 1 1 1 1 1 0 0 0 0 0 0 1
Arkell	8 1 1 1 0 1 1 0 1 1 1 1 1

Clythe	B2 1 0 0 0 1 1 1 1 1 1 1 0
Paisley	B2 0 1 1 0 0 0 0 0 1 1 1 1
Paisley	HL4 0 1 0 1 1 1 1 1 1 1 0 1

Robertson	B1 1 1 0 0 0 0 0 0 1 1 1 1
Robertson	B2 1 1 1 1 1 1 1 1 1 1 1 1
Robertson	B3 0 0 0 0 0 0 0 0 0 0 0 0

UofG	W 1 1 1 1 1 1 1 1 1 1 0 0
Woods	3 0 1 0 1 1 1 1 1 1 1 1 1
Woods	4 0 0 0 0 0 0 0 0 0 0 0 0
Woods	5 0 1 1 1 1 0 0 1 1 1 1 1

Pump	Name 2012-10-02	12:00 2012-10-02	13:00 2012-10-02	14:00 2012-10-02	15:00 2012-10-02	16:00 2012-10-02	17:00 2012-10-02	18:00 2012-10-02	19:00 2012-10-02	20:00 2012-10-02	21:00 2012-10-02	22:00 2012-10-02	23:00
Arkell	14 1 0 1 1 1 1 1 1 1 1 1 1
Arkell	1 1 0 0 0 0 0 0 0 0 0 0 0
Arkell	6 1 0 0 0 0 0 0 0 0 0 0 0
Arkell	7 1 0 0 0 0 0 0 0 0 0 0 0
Arkell	8 0 1 1 1 1 1 1 1 1 1 1 1

Clythe	B2 1 0 0 0 0 0 0 0 0 0 0 0
Paisley	B2 1 1 1 0 1 1 1 1 1 1 1 1
Paisley	HL4 1 1 0 0 0 0 0 0 0 0 0 0

Robertson	B1 1 0 0 1 0 1 1 1 1 1 1 1
Robertson	B2 1 1 1 1 1 1 1 1 1 1 1 1
Robertson	B3 0 0 0 0 0 0 0 0 0 0 0 0

UofG	W 0 0 0 0 0 0 1 1 1 1 1 1
Woods	3 1 1 1 1 1 1 1 1 1 1 1 1
Woods	4 0 0 0 0 0 0 0 0 0 0 0 0
Woods	5 1 1 1 1 0 1 1 1 1 1 1 1
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Appendix B

Variability of Schedules Generated

by RT-DDS

The variability of the BSC and TCT recommended schedule is depicted. Three unique

schedules are generated from distinct optimization runs, with the same warm solution

initialization. Note that green and white cells denote hours where the pumps are active

and idle, respectively.
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BINARY	SCHEDULE	TRIAL	1:	0:00	-	11:00

2012-10-02	0:00 2012-10-02	1:00 2012-10-02	2:00 2012-10-02	3:00 2012-10-02	4:00 2012-10-02	5:00 2012-10-02	6:00 2012-10-02	7:00 2012-10-02	8:00 2012-10-02	9:00 2012-10-02	10:00 2012-10-02	11:00

Arkell	14 1 0 1 1 1 1 1 0 0 0 1 1

Arkell	1 1 1 1 1 1 1 1 0 0 0 0 1

Arkell	6 1 1 1 1 1 0 1 0 0 0 0 1

Arkell	7 1 1 1 1 1 1 1 0 0 0 0 1

Arkell	8 1 1 1 1 1 1 1 0 0 0 0 0

Clythe	B2 1 1 1 1 1 1 1 0 0 0 0 1

Paisley	B2 0 1 1 1 1 1 1 0 1 0 0 1

Paisley	HL4 0 1 1 1 1 1 1 0 0 0 1 1
Woods	3 0 1 1 1 1 1 1 0 0 0 0 1

BINARY	SCHEDULE	TRIAL	2:	0:00	-	11:00

2012-10-02	0:00 2012-10-02	1:00 2012-10-02	2:00 2012-10-02	3:00 2012-10-02	4:00 2012-10-02	5:00 2012-10-02	6:00 2012-10-02	7:00 2012-10-02	8:00 2012-10-02	9:00 2012-10-02	10:00 2012-10-02	11:00

Arkell	14 1 0 1 1 1 1 1 0 0 0 0 0

Arkell	1 1 1 1 1 1 1 1 0 0 1 1 0

Arkell	6 1 1 1 1 1 1 1 0 1 0 0 1

Arkell	7 1 1 1 1 1 1 1 1 1 1 1 0

Arkell	8 1 1 1 1 1 1 1 1 0 0 0 0

Clythe	B2 1 1 1 1 1 1 1 1 1 0 0 0

Paisley	B2 0 1 1 1 1 0 0 0 0 0 1 1

Paisley	HL4 0 1 1 1 1 1 1 0 0 0 0 1
Woods	3 0 1 1 1 0 1 1 0 0 0 0 1

BINARY	SCHEDULE	TRIAL	3:	0:00	-	11:00

2012-10-02	0:00 2012-10-02	1:00 2012-10-02	2:00 2012-10-02	3:00 2012-10-02	4:00 2012-10-02	5:00 2012-10-02	6:00 2012-10-02	7:00 2012-10-02	8:00 2012-10-02	9:00 2012-10-02	10:00 2012-10-02	11:00

Arkell	14 1 1 1 1 1 1 1 0 0 0 0 1

Arkell	1 1 1 1 1 0 1 1 0 0 0 0 1

Arkell	6 1 1 1 1 0 1 1 0 0 0 0 1

Arkell	7 1 1 1 1 1 1 1 0 0 0 0 1

Arkell	8 1 1 1 1 1 1 1 0 0 0 0 1

Clythe	B2 1 1 1 1 1 1 1 0 0 1 0 1

Paisley	B2 0 1 1 1 1 1 0 0 0 0 0 1

Paisley	HL4 0 1 1 1 1 0 1 0 0 0 0 1
Woods	3 0 1 1 1 1 1 1 0 0 0 0 1
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BINARY	SCHEDULE	TRIAL	1:	12:00	-	23:00

2012-10-02	12:00 2012-10-02	13:00 2012-10-02	14:00 2012-10-02	15:00 2012-10-02	16:00 2012-10-02	17:00 2012-10-02	18:00 2012-10-02	19:00 2012-10-02	20:00 2012-10-02	21:00 2012-10-02	22:00 2012-10-02	23:00

Arkell	14 1 1 1 1 1 0 0 0 0 0 1 1
Arkell	1 1 1 1 0 1 0 0 0 0 0 1 1

Arkell	6 1 1 1 1 1 0 0 0 0 1 1 1

Arkell	7 1 1 1 1 1 0 0 0 0 0 1 1

Arkell	8 1 1 1 0 1 0 0 0 0 1 1 1

Clythe	B2 1 0 1 1 0 0 0 1 1 1 1 1

Paisley	B2 1 1 1 1 1 0 0 0 0 1 1 1

Paisley	HL4 0 1 1 1 1 1 0 0 0 0 0 1
Woods	3 1 1 1 1 1 0 0 0 0 1 1 0

BINARY	SCHEDULE	TRIAL	2:	12:00	-	23:00

2012-10-02	12:00 2012-10-02	13:00 2012-10-02	14:00 2012-10-02	15:00 2012-10-02	16:00 2012-10-02	17:00 2012-10-02	18:00 2012-10-02	19:00 2012-10-02	20:00 2012-10-02	21:00 2012-10-02	22:00 2012-10-02	23:00

Arkell	14 1 1 0 0 0 0 0 1 1 1 1 1

Arkell	1 0 1 1 0 0 0 0 0 0 1 1 1

Arkell	6 1 1 1 1 0 0 0 0 1 1 1 1

Arkell	7 1 1 1 1 0 0 0 0 0 1 1 1

Arkell	8 1 1 1 0 0 0 0 0 0 1 1 1

Clythe	B2 1 1 1 1 0 0 1 1 0 0 1 1

Paisley	B2 1 1 0 1 0 0 1 1 1 1 1 1

Paisley	HL4 1 1 1 1 1 0 0 0 0 1 0 0
Woods	3 1 1 1 1 0 0 0 1 1 1 1 1

BINARY	SCHEDULE	TRIAL	3:	12:00	-	23:00

2012-10-02	12:00 2012-10-02	13:00 2012-10-02	14:00 2012-10-02	15:00 2012-10-02	16:00 2012-10-02	17:00 2012-10-02	18:00 2012-10-02	19:00 2012-10-02	20:00 2012-10-02	21:00 2012-10-02	22:00 2012-10-02	23:00

Arkell	14 1 1 1 1 0 0 0 0 0 1 1 1

Arkell	1 1 1 1 1 1 0 0 0 0 0 0 1

Arkell	6 1 1 1 1 1 0 0 0 0 0 1 1

Arkell	7 1 1 1 1 0 0 0 0 0 1 1 1

Arkell	8 1 1 1 1 1 0 0 0 0 1 1 1

Clythe	B2 1 1 1 1 1 0 0 0 1 1 1 1

Paisley	B2 1 1 1 1 1 0 0 0 1 1 0 1

Paisley	HL4 1 1 1 1 1 1 0 0 0 0 1 1
Woods	3 1 1 1 0 1 0 0 0 0 0 0 1
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TCT	SCHEDULE	TRIAL	1:	0:00	-	11:00

2012-10-02	0:00 2012-10-02	1:00 2012-10-02	2:00 2012-10-02	3:00 2012-10-02	4:00 2012-10-02	5:00 2012-10-02	6:00 2012-10-02	7:00 2012-10-02	8:00 2012-10-02	9:00 2012-10-02	10:00 2012-10-02	11:00

Arkell	14 1 0 0 0 0 0 0 0 0 0 0 0

Arkell	1 1 1 0 0 0 0 0 0 0 0 0 1
Arkell	6 1 1 0 0 0 1 1 1 1 1 1 1
Arkell	7 1 1 1 1 0 0 0 0 1 1 0 0
Arkell	8 1 0 0 0 1 1 1 1 1 1 1 1

Clythe	B2 1 1 0 0 0 0 0 0 0 0 0 0

Paisley	B2 0 1 0 0 0 0 1 1 1 1 1 0

Paisley	HL4 0 1 1 1 1 1 1 1 1 1 0 0
Woods	3 0 1 1 1 1 1 1 1 1 1 1 1

TCT	SCHEDULE	TRIAL	2:	0:00	-	11:00

2012-10-02	0:00 2012-10-02	1:00 2012-10-02	2:00 2012-10-02	3:00 2012-10-02	4:00 2012-10-02	5:00 2012-10-02	6:00 2012-10-02	7:00 2012-10-02	8:00 2012-10-02	9:00 2012-10-02	10:00 2012-10-02	11:00

Arkell	14 1 0 0 0 0 0 1 1 1 1 0 0

Arkell	1 1 1 1 1 1 1 1 1 1 1 1 1

Arkell	6 1 1 1 1 1 1 1 1 1 1 1 1

Arkell	7 1 1 1 1 1 1 0 0 0 1 1 0

Arkell	8 1 0 0 1 1 1 1 1 1 0 0 0

Clythe	B2 1 1 1 0 0 1 1 1 1 1 1 1

Paisley	B2 0 1 1 1 0 0 0 0 0 0 0 0

Paisley	HL4 0 1 1 1 1 1 1 1 1 1 0 0
Woods	3 0 0 0 0 0 0 1 1 1 1 1 1

TCT	SCHEDULE	TRIAL	3:	0:00	-	11:00

2012-10-02	0:00 2012-10-02	1:00 2012-10-02	2:00 2012-10-02	3:00 2012-10-02	4:00 2012-10-02	5:00 2012-10-02	6:00 2012-10-02	7:00 2012-10-02	8:00 2012-10-02	9:00 2012-10-02	10:00 2012-10-02	11:00

Arkell	14 1 1 1 1 1 1 0 0 0 0 0 0

Arkell	1 1 1 1 1 1 1 1 1 1 1 1 1

Arkell	6 1 1 1 1 1 1 1 0 0 0 1 1

Arkell	7 1 1 1 1 1 1 1 1 1 1 1 1

Arkell	8 1 1 1 1 1 1 0 0 0 0 0 0

Clythe	B2 1 1 1 1 1 1 0 1 1 1 1 1

Paisley	B2 0 0 0 0 0 0 0 0 0 1 1 1

Paisley	HL4 0 1 1 0 1 1 1 1 1 1 1 1
Woods	3 0 1 1 0 1 1 1 1 1 1 1 0
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TCT	SCHEDULE	TRIAL	1:	12:00	-	23:00

2012-10-02	12:00 2012-10-02	13:00 2012-10-02	14:00 2012-10-02	15:00 2012-10-02	16:00 2012-10-02	17:00 2012-10-02	18:00 2012-10-02	19:00 2012-10-02	20:00 2012-10-02	21:00 2012-10-02	22:00 2012-10-02	23:00

Arkell	14 0 1 1 1 1 1 1 0 0 0 0 0

Arkell	1 1 1 1 0 0 0 0 1 0 0 0 0

Arkell	6 1 1 1 1 1 0 0 0 0 0 0 0

Arkell	7 0 0 1 1 1 1 1 1 1 1 0 0

Arkell	8 1 1 1 1 1 1 0 1 1 0 0 0

Clythe	B2 0 0 0 0 0 0 0 0 0 0 0 0

Paisley	B2 1 1 1 1 1 1 1 1 0 0 0 0

Paisley	HL4 0 0 0 1 1 1 1 0 0 1 1 1
Woods	3 0 0 0 0 0 0 0 0 0 0 0 0

TCT	SCHEDULE	TRIAL	2:	12:00	-	23:00

2012-10-02	12:00 2012-10-02	13:00 2012-10-02	14:00 2012-10-02	15:00 2012-10-02	16:00 2012-10-02	17:00 2012-10-02	18:00 2012-10-02	19:00 2012-10-02	20:00 2012-10-02	21:00 2012-10-02	22:00 2012-10-02	23:00

Arkell	14 0 0 0 0 0 0 0 0 0 1 1 1

Arkell	1 1 1 1 1 1 0 0 0 0 0 0 0

Arkell	6 1 1 1 1 1 1 0 0 0 0 0 1

Arkell	7 0 0 0 0 0 1 1 1 1 1 1 0
Arkell	8 1 1 1 1 1 1 1 1 0 0 0 0

Clythe	B2 1 1 1 1 1 1 1 1 1 1 1 0

Paisley	B2 0 0 0 0 0 0 0 0 0 0 1 1

Paisley	HL4 0 1 0 0 0 0 0 0 1 1 1 1
Woods	3 1 1 1 1 1 1 1 0 0 0 0 0

TCT	SCHEDULE	TRIAL	3:	12:00	-	23:00

2012-10-02	12:00 2012-10-02	13:00 2012-10-02	14:00 2012-10-02	15:00 2012-10-02	16:00 2012-10-02	17:00 2012-10-02	18:00 2012-10-02	19:00 2012-10-02	20:00 2012-10-02	21:00 2012-10-02	22:00 2012-10-02	23:00

Arkell	14 0 0 0 0 0 0 0 0 0 0 1 1

Arkell	1 1 1 1 0 1 1 1 1 1 1 1 0

Arkell	6 0 0 0 0 0 0 0 1 1 1 1 0

Arkell	7 0 0 0 1 1 1 0 0 1 1 0 0

Arkell	8 0 1 1 1 1 1 1 0 0 0 0 0

Clythe	B2 1 0 0 1 1 1 1 1 1 1 0 0

Paisley	B2 1 1 1 0 0 0 0 0 1 1 1 1

Paisley	HL4 1 1 1 1 1 1 1 1 1 0 0 0
Woods	3 0 0 0 0 0 0 0 0 1 0 0 0
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