
Interior-Point Algorithms Based on Primal-Dual

Entropy

by

Shen Luo

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2006

c©Shen Luo 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We propose a family of search directions based on primal-dual entropy in the context of interior

point methods for linear programming. This new family contains previously proposed search

directions in the context of primal-dual entropy. We analyze the new family of search directions

by studying their primal-dual affine-scaling and constant-gap centering components. We then

design primal-dual interior-point algorithms by utilizing our search directions in a homogeneous

and self-dual framework. We present iteration complexity analysis of our algorithms and provide

the results of computational experiments on NETLIB problems.

iii

Acknowledgements

I would like to express my deepest thank to my supervisor, Dr. Levent Tunçel. Without his

continues guidance and support, I could not complete this thesis. I would also like to thank the

two readers, Dr. Henry Wolkowicz and Dr. Chek Beng Chua, for their comments and careful

reading of the draft.

Thanks my parents for their love and continues encouragement. Although they were not in

Canada when I was writing the thesis, I can always feel their support.

Last, I want to express my sincere appreciation to my wife, Kun He, for her love, encourage-

ment, and being my company in this hard but fruitful journey in Canada.

iv

Contents

1 Introduction 1

2 Fundamentals of Interior Point Methods 8

2.1 Central Path and its Neighborhoods . 8

2.2 The Classical Primal-Dual Interior-Point Methods 9

2.3 The Primal-Dual IPMs Based on Entropy . 12

2.4 Homogeneous and Self-Dual model . 15

2.5 Termination Technique for HSD Algorithms . 18

3 Some Fundamental Properties of the Entropic Search Directions 20

3.1 General Family of Entropic Directions . 20

3.2 Technical Lemmas for the Properties of Entropic Search Direction 21

3.3 Performance of Entropic Search Direction in Predictor-Corrector Algorithm 28

3.4 Performance of Entropic Search Direction in Monotone LCP Problem 33

4 Analysis on the General Family of Search Directions Based on Primal-Dual

Entropy 36

5 Computational Results on the Entropic Direction Family 50

v

Chapter 1

Introduction

The entropy concept has played important roles in many areas such as statistical mechanics, ther-

modynamics and information theory. The concept we refer to in this thesis is the informational

entropy. This definition was proposed in a paper of Shannon [22]. This entropy stands for a

quantitative measure of the amount of uncertainty about the possible outcome of a probabilistic

experiment.

Consider a probabilistic experiment having n discrete possible final states a1, . . . , an with the

respective discrete probabilities p1, . . . , pn satisfying the following conditions:

pi ≥ 0, i ∈ {1, 2, . . . , n}, and

n
∑

i=1

pi = 1. The informational entropy is defined as below:

S = −k
n
∑

i=1

pi ln(pi)

where k is a positive constant depending on a suitable choice for the unit of measure and it is

defined that 0 ln 0 := 0.

In this thesis, e stands for the logarithmic constant and e stands for the vector of all ones

whose dimension will be clear from the context. ln(x) where x ∈ R
n stands for the vector

(ln(x1), ln(x2), . . . , ln(xn))T . We use lower case letters such as x, s, v for vectors and upper case

letters such as A, X, S, V for matrices. If x is defined, then X is the diagonal matrix with

Xii = xi for all i. Rn
+ stands for the n dimensional nonnegative real vector. Rn

++ stands for the

n dimensional positive real vector.

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1.1: Graph of f(x) in 2-dimensional case (projection on one dimension)

Lemma 1.1. Let f : {x ∈ R
n
++ :

n
∑

i=1

xi = n} → R be defined as:

f(x) :=
n
∑

i=1

xi ln(xi).

Then f is strictly convex on R
n
++ and its unique minimizer is x∗ := e.

Proof. We know ∇f(x) = e+ln(x), ∇2f(x) = X−1 is positive definite since x ∈ R
n
++. Therefore,

f is a strictly convex function.

We consider the constrained problem:

min f(x)

s.t.

n
∑

i=1

xi = n, (x > 0).

The Lagrangean for this problem L(x, λ) = f(x)+λ

(

n−
n
∑

i=1

xi

)

, and ∇2
xxL(x, λ) = ∇2f(x) ≻ 0

for all x ∈ Rn
++. We find that (x = e, λ = 1) satisfies the KKT conditions. Since ∇2L(x, λ) ≻ 0,

we know x = e will be the only global minimizer for this problem by the property of strict

convexity.

2

Shannon’s Entropy has been applied to many optimization problems such as transportation

problems [7], Linear Programming (LP) problems [8], some infinite dimensional convex optimiza-

tion problems [5], [6], [17] and convex constrained programming problems [13]. In the paper

[7] and [8], The author added an entropy constraint to the original LP problem and simplified

the problem to a dual problem of Lagrange multipliers. He developed an iterative procedure

to solve the Lagrange multipliers for this dual problem. In the book [9], the frame of entropy

maximization technique via convex programming was discussed in detail. The entropy function

is used widely in infinite dimensional convex optimization problems in the areas such as spec-

tral estimation and crystallography [5], [6], [17]. The conjugate of the Shannon Entropy is the

Burg Entropy, which has the formulation −
∫ ∞

0
ln(x)dx ≡ −

n
∑

i=1

ln(xi). When we are facing some

infinite dimensional convex optimization problems such as the entropy maximization problems,

instead of solving directly, we can solve the dual problem which is a convex problem of finite

dimensions [5]. Then the dual problem is known to be easy to solve. In the paper [13], surrogate

Lagrangean technique [10] and maximum entropy criterion is used to develop several entropy

based algorithms for convex constrained programming problems.

The entropy function is also used in other LP solving techniques such as the barrier term in

augmented Lagrangean method. The entropy function is almost always used on only one of the

primal or dual forms, i.e., it is applied to the primal problem or the dual problem separately. In

this thesis, we will explore the Primal-Dual entropy for LP solving.

We consider the LP problems in the following standard form:

(P) minimize cTx

subject to Ax = b, x ≥ 0,

where c is in R
n, A is in R

m×n, and b is in R
m. In this thesis, all vectors are column vectors.

Without loss of generality, we always assume A has full row rank. If A does not have full row

rank, then either the linear system Ax = b has no solution, or Ax = b has some redundant equa-

tions. We can remove those redundant equations without changing the solution set of Ax = b,

and then we have a new matrix which is of full row rank.

We use (P) to denote the primal problem, the corresponding dual problem is:

3

(D) maximize bT y

subject to AT y ≤ c.

s := c− AT y is called the dual slack vector. By definition, for a feasible solution (y, s) of (D), y

uniquely identifies s. Conversely, since A has full row rank, s part of a feasible solution of (D)

uniquely identifies y. Sometimes, we only refer to s instead of (y, s) when we talk about a feasible

solution of (D).

We define the Primal-dual entropy for the above problem as

n
∑

j=1

xjsj ln(xjsj). And we will

discuss it in the context of Interior Point Methods in the next chapter.

We use the following notations to denote various sets related to the feasible regions of (P)

and (D):

F(P) := {x ∈ R
n
+ : Ax = b},

F+(P) := {x ∈ R
n
++ : Ax = b},

F(D) := {s ∈ R
n
+ : AT y + s = c for some y ∈ R

m},
F+(D) := {s ∈ R

n
++ : AT y + s = c for some y ∈ R

m},
F+ := F+(P) ⊕F+(D).

We say that x ∈ R
n is primal feasible if x ∈ F(P); x is strictly primal feasible if x ∈ F+(P).

Similarly, s ∈ F(D) is called dual feasible; s ∈ F+(D) is called strictly dual feasible.

Next we’d like to introduce the reparameterization of nonlinear systems and the effects of

reparameterization on Newton’s Method. We will use this technique to derive new search direc-

tions in Chapter 3.

Define F1 : R
n1 → R

n, F2 : R
n2 → R

n such that n1 +n2 = n. We will try to solve the system:

F1(x) − F2(y) = 0 ⇔ F1(x) = F2(y).

Define a reparameterization function ψ : R
n → R

n such that ψ(F1(x)) = ψ(F2(y)). If we select

ψ as a bijection, then the two systems F1(x) = F2(y) and ψ(F1(x)) = ψ(F2(y)) are equivalent.

To apply Newton’s method, we need F1, F2 to be continuously differentiable. We require the

same of ψ as well. Depending on the choice of ψ which depends on F1, F2, Newton’s method has

different performance when applied to the original system and the new formulation.

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

90

100

Figure 1.2: Newton’s method for f(x) = ex − e2. The curve is f(x) = ex and the horizontal line

stands for f(x) = e2. The dots stand for the xi we find in each iteration.

We observe that if we apply Newton’s method to the new system, it may be better than

applying Newton’s method directly to the original system at least in some cases. We give out

two examples as blew and some more examples can be found in [3].

Example 1: We choose the original system as ex − e2 = 0. If we solve this system by

Newton’s method directly, we may choose the starting point x = 4 and calculate the derivative

of f(x) = ex − e2 at point xi in every iteration until the distance ‖xi − xi+1‖ ≤ ǫ where ǫ is the

desired accuracy (here we set ǫ = 10−10). We need 7 iterations to find the solution x = 2(as

shown in the Figure above). If we apply ψ(x) = ln(x) to the system ex = e2, then we can deduce

the solution at once.

Example 2: Consider the system

Xs = 5e,

x1 + x2 = 10,

s1 + s2 = 10,

where x ∈ R
2
++, s ∈ R

2
++.

5

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

50

Figure 1.3: Newton’s method applied to original problem (projection on the (x2, s2)-space).

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

50

Figure 1.4: Newton’s method applied to system after we reparemeterize it with ψ(x) = ln(x)

(projection on the (x2, s2)-space).

6

We select the starting point x0 := [4.6, 5.4]T , s0 := [5.9, 4.1]T . If we apply Newton’s method

directly, then we need 5 iterations to achieve the accuracy of 10−4. While if we apply Newton’s

method to the system after changing Xs = 5e to ln(Xs) = ln 5e, we need only 3 iterations to

achieve the same accuracy. We can get a direct impression from the figures below.

These examples are extremely simple and biased; however, we will show that reparameteriza-

tions can also have positive effect on much more complicated systems in this thesis.

This thesis has been structured in five chapters. The first one is the introduction, which is

what we are going through now. The second chapter presents the fundamentals of Interior Point

Methods which are necessary for the theories developed in the later chapters. The third chapter

generalizes a class of entropic search directions and then presents some technical lemmas and

complexity analysis of two existing entropic search directions when applied to different neigh-

borhoods or models. The fourth chapter analyzes the iteration complexity for the algorithms

using the generalized search directions from the entropic family. The fifth chapter presents the

results of the computational experiments comparing the performance of the algorithms based on

different search directions in this family within the wide neighborhood.

7

Chapter 2

Fundamentals of Interior Point

Methods

2.1 Central Path and its Neighborhoods

Before we describe the primal-dual algorithms, we first define some of the main ingredients:

• central path and

• various neighborhoods of the central path.

We assume for the next definition that F+ 6= ∅.
The central path C is a set of strictly feasible points that plays an important role in primal-dual

interior-point method. It is parameterized by a scalar µ > 0, and each point (xµ, yµ, sµ) ∈ C
solves the following system:

AT y + s = c, s > 0,

(CP) Ax = b, x > 0,

Xs = µe.

8

Note that every solution (xµ, yµ, sµ) of (CP) satisfies µ = xT s
n

(implied by Xs = µe). From now

on, when (x, s) is clear from the context, µ denotes xT s
n

.

We define the central path as:

C = {(xµ, yµ, sµ) : µ > 0}.

It can be shown [29] that (xµ, yµ, sµ) ∈ C is defined uniquely for each µ > 0.

As µ → 0+, the central path converges to an optimal primal-dual solution of the original

problems (P) and (D). The central path thus guides us to a solution along a route which keeps

all x and s components strictly positive and decreases the pairwise products xjsj, j = 1, 2, . . . , n,

to zero at roughly the same rate.

For a given β ≥ 0, we define the following neighborhoods of the central path:

N2(β) := {(x, s) ∈ F+ : ‖Xs
µ

− e‖2 ≤ β};
N∞(β) := {(x, s) ∈ F+ : ‖Xs

µ
− e‖∞ ≤ β};

N−
∞(β) := {(x, s) ∈ F+ :

xjsj

µ
≥ 1 − β, for all j }.

N2(β) is also called the narrow neighborhood, N−
∞(β) is also called the wide neighborhood.

For β ≥ 1
2 , the following neighborhood was also used:

NE(β) := {(x, s) ∈ F+ : 1
2 − β ≤ ln(

xjsj

µ
) ≤ 1

2 + β, for all j }.

2.2 The Classical Primal-Dual Interior-Point Methods

After the groundbreaking paper of Karmarkar [12], Interior-Point Methods(IPMs) for linear pro-

gramming became a very active area of research. The algorithm proposed in that paper is the first

proven polynomial-time IPM for LP solving. After the paper was published, many researchers

were inspired and many interesting theoretical results for IPMs burst out since then. Interior

Point Methods are now among the most effective methods for solving LP problems and their

various generalizations. For a survey, we refer to one recent book on this subject [29]. In this

thesis, we deal with so-called primal-dual IPMs.

9

Among all variants of interior-point methods, symmetric primal-dual interior-point methods

have good performance in practice and induced many significant theoretical results such as termi-

nation technique [14], homogeneous and self-dual model [28] and etc.. On the one hand, they have

the best worst-case iteration complexity obtained so far and induced significant results in theory;

on the other hand, they are easy to implement and the most efficient from a computational point

of view (see, e.g. Anderson et al. [1]).

Suppose we have (x, s) ∈ F+, which is an approximate solution of (CP) with µ := xT s
n

. We

want to decrease the complementary gap xT s. So, we aim for another pair (x+, s+) ∈ F+ such

that µ+ := (x+)
T

s+

n
is smaller than µ and/or (x+, s+) is closer to the central path than (x, s).

Let γ ∈ [0, 1] such that µ+ = γµ. Now, applying Newton’s method to the system of equations

(CP) where µ is replaced by γµ, we obtain the following system (CPS) of linear equations:

0 AT I

A 0 0

S 0 X

dx

dy

ds

=

0

0

−XSe+ γµe

.

The displacement (dx, dy, ds) is a Newton step towards the point (xγµ, yγµ, sγµ) ∈ C, at which

the pairwise products xjsj are equal to γµ.

For γ = 1, the equations (CPS) define a constant-gap centering direction, a Newton step to-

ward the point (xµ, yµ, sµ) ∈ C, at which all the pairwise products xjsj are identical to µ. Along

this direction, the complementary gap is kept constant. At the other extreme, the value γ = 0

gives the standard Newton step, which is known as the primal-dual affine-scaling direction in this

special setting.

Now, we introduce the definition of the iteration complexity of IPMs. At the beginning of the

algorithm, we are given x0, s0 both strictly feasible in problems (P) and (D) respectively. Define

µk := 〈xk,sk〉
n

, we need to find out the vectors xk and sk by an algorithm such that both vectors

are feasible and for the desired accuracy ǫ ∈ (0, 1), µk ≤ ǫµ0. We call (xk, sk) an ǫ-solution if the

vectors satisfy the conditions referred to in the last sentence. We call the number of iterations

to achieve an ǫ-solution the iteration complexity. In the practical algorithms, we start from an

initial feasible point (x0, s0) and the complementary gap (xk)T (sk) is reduced at each iteration.

We call the termination subroutine every 3 iterations after we reach an ǫ-solution, i.e., after the

complementarity gap decreases from (x0)T s0 to ǫ(x0)T s0. It is proven that we can obtain an

10

exact optimal solution in polynomially many iterations by a proper termination technique if the

initial data A, b, c are rational ([23], Chapter 4; also see Section 2.5 for detail). The termination

technique we use in this thesis is in [16].

We first introduce the predictor − corrector algorithm proposed by Mizuno ,Todd and Ye

[16]. It is proved that we can obtain an ǫ-solution in O(
√
n ln 1

ǫ
) steps by the following algorithm.

Algorithm 2.1.

Input (A,x0, s0, b, c, ǫ, η), where A,x0, s0, b, c are defined in the (HLP) formulation in Section 2.4,

ǫ is the desired tolerance, β = 1
4 .

Define k:=0;

while xT s > ǫ

If k is even, execute predictor step as below,

solve the linear system (CPS) with γ = 0, then

let

x(α) := xk + αdx > 0,

s(α) := sk + αds > 0,

α⋆ := max{α : (x(α), s(α)) ∈ N2(2β)}.
Let xk+1 := x(α⋆); sk+1 := s(α⋆);

else

execute the corrector step as below,

solve the linear system (CPS) with γ = 1, then

let

xk+1 := xk + dx,

sk+1 := sk + ds,

end

k := k + 1.

repeat

11

2.3 The Primal-Dual IPMs Based on Entropy

In the Ph.D thesis of Li [13], the author proposed several algorithms based on entropy. The thesis

applied Shannon’s (informational) entropy measure and Jaynes’ maximum entropy criterion in

the solving of constrained optimization problems.

In Li’s thesis, a constrained optimization problem is divided into a number of subproblems

which are analogous to the micro-states of a statistical thermodynamic system by introducing

the idea of surrogate Lagrangean [10]. Surrogate multipliers represent probabilities of the system

being in each micro-state. An optimizing process is then interpreted as the transition of the

system to an equilibrium state. We know that entropy of thermodynamic system should attain

a maximum value in stable state. Jayne’s maximum entropy criterion is employed to formulate

the surrogate multipliers, i.e., using an entropy maximization model to calculate least biased

probabilities in thermodynamic system.

In summary, the method proposed in [13] updates x in the feasible region and the surrogate

multiplier λ separately and alternatively. It does not belong to the IPMs we are currently using.

However, the following result of [13] is meaningful in the exploration of new search directions in

IPMs.

Lemma 2.1. Let x > 0, s > 0 and δ(x, s) :=
n
∑

j=1

xjsj

nµ
ln

(

xjsj

µ

)

. Then,

1. [13, 25] δ(x, s) ≥ 0;

2. [25] equality holds above if and only if Xs = µe;

3. [13, 25]

n
∑

j=1

xjsj ln

(

xjsj

µeδ

)

= 0.

Proof. The first inequality is proved in [25]. The third equality is trivial by definition. We prove

the second part as below.

Define uj :=
xjsj

µ
, ∀j ∈ {1, 2, . . . , n}. Then, δ(u) = 1

n

n
∑

j=1

uj ln(uj). We have,

∇δ(u) = 1
n
(e+ ln(u)), ∇2δ(u) = 1

n
U−1 ≻ 0. Therefore, δ(u) is strictly convex.

We consider the constrained problem:

min δ(u)

s.t.

n
∑

j=1

uj = n, u > 0.

12

We know the Lagrangean for this problem L(u, λ) = δ(u) + λ(n −∑n
j=1 uj), and ∇2

uuL(u, λ) =

∇2δ(u) ≻ 0. We found that (u = e, λ = 1
n
) satisfies the KKT conditions. Since ∇2

uuL(u, λ) ≻ 0,

we know u = e is the unique global minimizer for this problem by the property of strict convexity.

Thus the minimum value of δ(u) is achieved only at u = e where δ(x, s) = 0. Due to the definition

of u, we know that Xs
µ

= u = e, i.e., Xs = µe.

In the paper of Tunçel and Todd [25], a new search direction is proposed by introducing the

proximity measure δ(x, s) defined above (which measures how close (x, s) is to the central path)

and δ(x, s) is closely related to the formulation of Primal-Dual Entropy. From now on, when x

and s are clear from the context, we use δ to stand for δ(x, s).

We use the following notations.

In the kth step, xj := xk
j , sj := sk

j ,

D := X
1
2S− 1

2 , we use D to scale the primal and dual space to the v-space where v := X
1
2S

1
2 e.

This will make the arguments easier. w := −v + δv − V ln(V v
µ

).

wp is the orthogonal projection of w on the null space of matrix AD.

wq = w − wp, dx := Dwp, ds := D−1wq.

We define: x(α) := x+ αdx, s(α) := s+ αds.

We determine the step size by using α⋆ := max{α : (x(α), s(α)) ∈ NE(β)}. Then compute

the next point by xk+1 := x(α⋆), sk+1 := s(α⋆), this process will continue until the convergence

criteria is satisfied.

It is proved in [25] that in the neighborhood of NE(3/2), the above algorithm will terminate

in O(n ln 1
ǫ
) steps to get an optimal solution. This search direction has some good properties

which we will explore later. We will use w to stand for −v + δv − V ln(V v
µ

) in the context.

We know that new search directions may be deduced via some alternative description of the

central path. Recall the standard KKT conditions defining the central path:

AT y + s = c, s > 0

(CP) Ax = b, x > 0

Xs = µe.

Assume that we are given a continuously differentiable strictly monotone function Ψ(x) : R
n
++ →

13

R
n where the strict monotone property is componentwise. Any such function determines an IPM

in a natural way. If we replace the last vector equation of (CP) by its equivalent: Ψ(Xs) = Ψ(µe),

then apply Newton’s method to this new system in order to approximate a point on the central

path corresponding to the parameter (1 − θ)µ. Then a new search direction is defined.

If we replace the last vector equation of (CP) by its equivalent: ln(Xs) = ln(µe), i.e., let

Ψ(v) = ln(v), then apply the Newton method to this new system to approximate a point on

the central path corresponding to the parameter µ+. This direction (dx, ds) coincides with the

direction derived from w if we choose µ+ such that ln µ
µ+

= 1 − δ(x, s).

In the paper by Zhang and Li [30], another search direction is proposed and discussed within

the wide neighborhood N−
∞(1

2). This search direction also arises from the technique of introducing

algebraically equivalent central path with Ψ(v) = ln(v). It has the form:

−σv + δv − V ln(V v
µ

), with σ ∈ (0.5, 1), and σ < min{1, ln 1
1−β

}.

It is shown that an infeasible-start Primal-Dual interior-point algorithm based on the above

search direction can achieve iteration complexity of O(n2 ln 1
ǫ
) in a wide neighborhood when

applied to monotone LCPs [30].

There are several search directions proposed with different functions Ψ(x), such as the direc-

tion of Jansen et al. [11] and Nazareth [18]. For instance, we can take Ψ(x) = −X−1e which will

yield the search direction proposed in [11] (see [25]).

In the paper of Bai, El Ghami and Roos [2], the authors gave out a large class of search

directions in a similar way. They choose strictly convex differentiable Ψ(v) such that Ψ(v) is

minimized at v = e and Ψ(e) = 0 and also based on the properties of up to the third order

derivative of Ψ(v). The authors summarized the properties for different Ψ(x) and proposed

some new Ψ(x) which can induce search directions of good performance with respect to iteration

complexity. Peng, Roos and Terlaky used similar methods to derive a search direction based on a

called self-regular function Ψ(x)([20, 21]), while they use a direction that can be characterized as

a steepest decent direction in a scale space instead of using the classical Newton direction. The

prototype self-regular kernel function is given by:

Ψp,q(t) =
tp+1 − 1

p(p + 1)
+
t1−q − 1

q(q − 1)
+
p− q

pq
(t− 1),

where p ≥ 1 and q > 1. The best theoretical iteration complexity for a large-update algorithm

based on self-regular functions isO(n
q+1
2q ln(1

ǫ
)). A recent paper [19] used the same search direction

14

with [30] to solve LP problems and achieved polynomial convergence. The authors also discussed

the relationship between reparameterization of the central path and the self-regular functions

approach [21] by showing a reparameterization function Ψ(x) = x
q+1
2 can induce the search

direction in [21]. There are still many open problems in this class of directions based on the large

number of possible functions Ψ(v).

2.4 Homogeneous and Self-Dual model

The algorithm proposed in [30] is one of the infeasible-start algorithms. The other algorithms

mentioned in our last section all require that we know an initial strict feasible point in the set

F+ at the very beginning. However, we know that it is not easier to find a strictly feasible point

than to find the optimal solution for an LP problem. So we need some way to guarantee that we

will have a strictly feasible point in F+ when the algorithm initializes.

We found that by using homogeneous and self-dual model of LP problem we can have some ad-

vantage in the aspect mentioned above.

Linear system Ax = b is called homogeneous if b = 0.

It is a well known skill to attack a standard form LP by solving a related homogeneous artificial

LP problem such as the formulation stated in next paragraph. It is easily seen that x = 0 will

always be feasible for the artificial homogeneous problem. In our discussion, we allow a single

non-homogeneous constraint, which is often called a normalizing constraint.

For the problems (P) and (D), the approximate solution of the following homogeneous Linear

system yields an optimal solution of (P).

Ax −bt = 0 x ≥ 0 (2.1)

−AT y −s +ct = 0 s ≥ 0 (2.2)

bT y −cTx = 0 (2.3)

If t = 1, then

(2.1) stands for the feasibility of (P),

(2.2) stands for the feasibility of (D),

(2.3) stands for the primal-dual zero gap attainment.

If the above homogeneous LP has a solution (x, y, t) with t > 0, then x
t

is a primal optimal

15

solution, (y
t
, s

t
) is a dual optimal solution.

An LP problem is called self-dual problem if its dual is equivalent to itself.

E.g.:

(SD) minimize c̃Tu

subject to ÃTu ≥ b̃, u ≥ 0

where Ã ∈ R
n×n is skew-symmetric, (i.e., ÃT = −Ã), and b̃ = −c̃ ∈ R

n. Then the problem

(SD) is equivalent to its dual. If (SD) has a feasible solution ũ, then ũ is also feasible in the

dual problem, and the objective values sum to zero. Therefore, by the duality theory of linear

programming, (SD) has an optimal solution and the optimal value is zero.

According to the methodology mentioned in [28], we can construct a homogeneous and self-

dual artificial LP problem (HLP) related to (P) and (D) as below.

Given any x0 > 0, s0 > 0, and y0 free,

min ((x0)T s0 + 1)θ

(1) s.t. Ax −bt +bθ = 0

(2) −AT y +ct −cθ ≥ 0

(3) bT y −cTx +zθ ≥ 0

(4) −bT y +cTx −zt = −((x0)T s0 + 1)

(5) y free, x ≥ 0, t ≥ 0, θ free,

where

b := b−Ax0, c := c−AT y0 − s0, z := cTx0 + 1 − bT y0.

The relationships (1)-(3), with t = 1 and θ = 0, represent primal and dual feasibility (with

x ≥ 0) and reversed weak duality, so they define primal and dual optimal solutions. To achieve

16

feasibility for x = x0 and (y, s) = (y0, s0), the artificial variable θ is added with appropriate

coefficients and the constraint (4) is added to achieve self duality.

Denote the slack vector for the inequality constraint (2) by s and by κ the slack scalar for the

inequality constraint (3). We can see that (HLP) is homogeneous and self-dual.

The following are the properties of the (HLP) model [28].

• The Dual of (HLP), denoted by(HLD), has the same form as (HLP), i.e., (HLD) is simply

(HLP) with (y, x, t, θ) being replaced by (y′, x′, t′, θ′). Here y′, x′, t′, θ′ make up the dual

multiplier vector for constraints (1), (2), (3), (4) respectively.

• (HLP) has a strictly feasible point for every choice of x0 > 0, s0 > 0:

y = y0, x = x0 > 0, t = 1, θ = 1, s = s0 > 0, κ = 1.

• (HLP) has an optimal solution and its optimal solution set is bounded.

• The optimal value of (HLP) is zero, and for any feasible point, (y, x, t, θ, s, κ) ∈ Fh, here Fh

denotes the set of all points (y, s, t, θ, s, κ) that are feasible for (HLP):

((x0)T s0 + 1)θ = xT s+ tκ.

• There is an optimal solution (y⋆, x⋆, t⋆, θ⋆ = 0, s⋆, κ⋆) ∈ Fh, such that:

x⋆ + s⋆

t⋆+κ⋆

 > 0

which we call a strictly self-complementary solution.

If we choose y0 := 0, x0 := e, and s0 := e, then (HLP) becomes:

17

min (n+ 1)θ

(1) s.t. Ax −bt +bθ = 0

(2) −AT y +ct −cθ ≥ 0

(3) bT y −cTx +zθ ≥ 0

(4) −bT y +cTx −zt = −(n+ 1)

(5) x ≥ 0, t ≥ 0,

where

b := b−Ae, c := c− e, z := cT e+ 1.

If we look at the solution of (HLP), we can derive the optimal solution of (LP) by using the

theorem below.

Theorem 2.2. [28] Let (y⋆, x⋆, t⋆, θ⋆ = 0, s⋆, κ⋆) be a strictly self-complementary solution for

(HLP).Then:

• (P) has a solution (neither infeasible nor unbounded) if and only if t⋆ > 0. In this case,

(x⋆/t⋆) is an optimal solution for (P) and (y⋆/t⋆, s⋆/t⋆) is an optimal solution for (D);

• if t⋆ = 0, then κ⋆ > 0, which implies that cTx⋆ − bT y⋆ < 0, i.e., at least one of cTx⋆ and

−bT y⋆ is strictly less than 0. If cTx⋆ < 0 then (D) is infeasible; if −bTy⋆ < 0 then (P) is

infeasible; and if both cTx⋆ < 0 and −bT y⋆ < 0 then both (P) and (D) are infeasible.

So homogeneous and self-dual model can guarantee that we have a strictly feasible solution

when one interior point algorithm initializes.

2.5 Termination Technique for HSD Algorithms

For the Primal-Dual algorithms we will refer to in this thesis, we can always apply the termi-

nation technique described in [27]. Define ϕ be the index set {j : xk
j ≥ sk

j , j = 1, 2, . . . , n},

18

denote by B those columns in A corresponding to ϕ and by N the rest of the columns in A.

Then, we use a least-squares projection to create an optimal solution (y, x, t, κ) that is strictly

self-complementary from an ǫ-solution (yk, xk, sk, θk, tk, κk) of (HLP).

Case 1. If tk ≥ κk, we solve for y, xB , and t from

min ‖yk − y‖2+ ‖xk
B − xB‖2+ (tk − t)2

s.t. BxB −bt = 0

−BTy +cBt = 0

bT y −cTBxB = 0

otherwise,

Case 2. If tk < κk, we solve for y, xB , and κ from

min ‖yk − y‖2+ ‖xk
B − xB‖2+ (κk − κ)2

s.t. BxB = 0

−BTy = 0

bT y −cTBxB −κ = 0

This projection guarantees that the resulting x⋆
B and s⋆

N (s⋆
N = cN t

⋆ − NT y⋆ in Case 1 or

s⋆
N = −NT y⋆ in Case 2) are positive and t⋆ is positive in Case 1 and κ⋆ is positive in Case 2, as

long as (xk)T sk + tkκk is small enough in the algorithms. This is explained in detail in the paper

of Ye [27] and Mehrotra [14]. It can be deduced from an interesting lemma as below.

Lemma 2.3. [14] Given an interior solution xk and sk in the solution sequence generated by any

primal-dual interior point algorithm, define ϕk := {j : xk
j ≥ sk

j}. Then, we have:

for some K sufficiently large but finite, ϕk = ϕ for all k ≥ K.

Remark: The statement “some K sufficiently large but finite” in the lemma above is equiv-

alent to the statement that we have (xk)T sk + tkκk less than some fixed small number which is

independent of k [14].

In the paper of Ye [27], the performance of the algorithm after applying this termination

technique is discussed. The termination technique is also seem to be very efficient using numerical

tests [14].

19

Chapter 3

Some Fundamental Properties of the

Entropic Search Directions

3.1 General Family of Entropic Directions

We have

w = −v + δv − V ln

(

V v

µ

)

in the v-space. This vector w completely determines the search direction for the algorithm in

[25]. w as a vector in R
n is a non-negative linear combination of three vectors −v, v, −V ln(V v

µ
).

One way to generalize the search direction w is to allow weights other than 1 for each of the three

vectors above. Since −v and v are clearly linearly dependent, we use two coefficients λ1 ∈ R,

λ2 ∈ R and consider

w(λ1, λ2) := −v + λ1v − λ2V ln
V v

µ
.

Notice that any positive multiple of w(λ1, λ2) yields the same primal-dual algorithm (multi-

plying w(λ1, λ2) by k, divides step size α by k). Therefore, by a normalization of w(λ1, λ2), we

can reduce one of the parameters.

One obvious way to normalize is to enforce

‖w(λ1, λ2)‖2 = 1.

20

Instead, we will normalize so that

x(α)T s(α) = (1 − α)xT s.

We can deduce the following relationship between λ1 and λ2 from this normalizing condition.

xTds + sTdx = −nµ = V Tw(λ1, λ2) ⇔ −nµ = −nµ+ λ1nµ− λ2nµδ ⇔ λ1 = δλ2.

Therefore, we propose a class of search directions w(η) based on the above statement. We use

the following notations.

w(η) := −v + η
[

δv − V ln
(

V v
µ

)]

, where η ≥ 0.

w(η)p is the projection of w(η) onto the null space of matrix AD.

w(η)q := w(η) − w(η)p, dx := Dw(η)p, ds := D−1w(η)q.

Here dx and ds can also be achieved from the following system (HCPS):

0 AT I

A 0 0

S 0 X

dx

dy

ds

=

0

0

V w(η)

.

Obviously the direction w is included in this family of search directions with η = 1. Moreover,

the direction proposed in [30] is also included in this family with η = 1
σ
, i.e., max

{

1,− 1
ln(1−β)

}

<

η ≤ 2.

3.2 Technical Lemmas for the Properties of Entropic Search Di-

rection

To analyze the general family of entropic search directions, we need to understand the proximity

measure δ well. We present some technical lemmas first which we will use in further analysis.

Lemma 3.1. For every α ∈ R such that |α| ≤ 1, we have :

α− α2

2(1 − |α|) ≤ ln(1 + α) ≤ α.

This lemma is well-known, one proof can be found in [24]. We will use it to estimate the value

of δ in N∞(β) next.

21

Lemma 3.2. Let β ∈ [0, 1) such that (x, s) ∈ N∞(β). Then,

1 − 3β

2(1 − β)n

∥

∥

∥

∥

Xs

µ
− e

∥

∥

∥

∥

2

2

≤ δ ≤ 1

n

∥

∥

∥

∥

Xs

µ
− e

∥

∥

∥

∥

2

2

.

Proof. The right-hand-side inequality was proved in [25]. We prove the left-hand-side inequality

here. Let β ∈ [0, 1), such that (x, s) ∈ N∞(β). Then we have:

δ =

n
∑

j=1

xjsj

nµ
ln

(

xjsj

µ

)

≥
n
∑

j=1

xjsj

nµ

[

xjsj

µ
− 1 −

(
xjsj

µ
− 1)2

2(1 − |xjsj

µ
− 1|)

]

≥ 1

n

∥

∥

∥

∥

Xs

µ
− e

∥

∥

∥

∥

2

2

− max
j=1,...,n

(

1

2n(1 − |xjsj

µ
− 1|)

)

n
∑

j=1

xjsj

µ

(

xjsj

µ
− 1

)2

≥ 1

n

∥

∥

∥

∥

Xs

µ
− e

∥

∥

∥

∥

2

2

− (1 + β)

2n(1 − β)

∥

∥

∥

∥

Xs

µ
− e

∥

∥

∥

∥

2

2

=
1 − 3β

2(1 − β)n

∥

∥

∥

∥

Xs

µ
− e

∥

∥

∥

∥

2

2

.

In the above, the first inequality uses Lemma 3.1, the second inequality follows from the fact that

(x, s) ∈ N∞(β).

Corollary 3.3. For every (x, s) ∈ N∞(1
4), δ ≥ 1

6n

∥

∥

∥

Xs
µ

− e
∥

∥

∥

2

2
. Moreover, for every (x, s) ∈

N∞(1
10), δ ≥ 7

18n

∥

∥

∥

Xs
µ

− e
∥

∥

∥

2

2
.

We also observe that the lower bound of δ approaches 1
2n

∥

∥

∥

Xs
µ

− e
∥

∥

∥

2

2
as
∥

∥

∥

Xs
µ

− e
∥

∥

∥

∞
goes to 0.

After the analysis of the proximity measure δ, it is proper to review the search direction

w in another aspect, i.e., we can decompose it into two orthogonal parts : affine-scaling and

constant-gap centering.

Consider again the search direction w = −v+ δv − V ln(V v
µ

). For δ < 1, −(1− δ)v represents

the affine-scaling component. It was stated in [25] that the other component of w behaves like

the centering direction in terms of its first order behaviour. We already know the upper and

22

lower bound of δ within N∞(β), so we can easily estimate the part of −v + δv. So we just need

to estimate the part of V ln(V v
µ

) within N∞(β).

Lemma 3.4. Let β ∈ [0, 1
2). Then, for every (x, s) ∈ N∞(β), we have:

(

δ − 2 − β2

4β2 − 6β + 2

)

v + µV −1e ≤ w ≤ (δ − 2)v + µV −1e

Proof. If
∥

∥

∥

V v
µ

− e
∥

∥

∥

∞
≤ β, we know that (1 − β)e ≤ V v

µ
≤ (1 + β)e.

On the one hand, using Lemma 3.1, we have:

−V ln

(

V v

µ

)

= V ln(µV −2e) = V ln(e+ µV −2e− e) ≤ V (µV −2e− e) = µV −1e− v,

on the other hand, using Lemma 3.1 again and the facts that (x, s) ∈ N∞(β), β ∈ [0, 1
2), for every

i ∈ {1, 2, . . . , n}, we have:

vi ln
µ

v2
i

≥ vi

[

µ

v2
i

− 1 −
(µ

v2
i

− 1)2

2(1 − | µ

v2
i

− 1|)

]

≥ vi

(

µ

v2
i

− 1

)

− vi

2(2 − 1
1−β

)

β2

(1 − β)2

≥ µv−1
i − vi −

β2vi

4β2 − 6β + 2
.

Therefore, within N∞(β), for β ∈ [0, 1
2), we can conclude this lemma holds.

Corollary 3.5. For every (x, s) ∈ N∞(1
4),

(δ − 2 − 1

12
)v + µV −1e ≤ w ≤ (δ − 2)v + µV −1e.

We are interested in the behavior of the search direction w which is proposed in [25] when it

is applied to the predictor step of the P-C algorithm framework and the performance of w in the

23

wide neighborhood. We found that the estimation of the following quantities plays an important

role in the analysis. So we present the related results here.

We define uj :=
xjsj

µ
, ∀j ∈ {1, 2, . . . , n} and

∆21(u) :=

n
∑

j=1

u2
j ln(uj),

∆12(u) :=
n
∑

j=1

uj ln2(uj),

∆22(u) :=

n
∑

j=1

u2
j ln2(uj).

We drop the argument u, (e.g. we write ∆ij instead of ∆ij(u)) when u is clear from the

context.

Lemma 3.6. Let β ∈ [0, 1
4] and assume that (x, s) ∈ N∞(β). Then,

ξijnδ ≤ ∆ij ≤ ζijnδ, ij ∈ {21, 22}, (3.1)

where

ξ21 = 2(1 − β) ln(1 − β) + 3(1 − β),

ζ21 = 2(1 + β) ln(1 + β) + 3(1 + β),

ξ22 = 6(1 − β) ln(1 − β) + 2(1 − β) + 6(1 − β) ln2(1 − β),

ζ22 = 6(1 + β) ln(1 + β) + 2(1 + β) + 6(1 + β) ln2(1 + β).

Let β ∈ [0, 1
2] and assume that (x, s) ∈ N−

∞(β). Then,

ξ12nδ ≤ ∆12 ≤ ζ12nδ,

where

ξ12 = 0, ζ12 = 2(ln(n) + 1).

Proof. Let fij(u) := ∆ij − ξijnδ, Fij(u) := ζijnδ − ∆ij.

Define Ω := {u ∈ R
n : eTu = n, 3

4e ≤ u ≤ 5
4e}, we define two classes of general constrained

optimization problems:

min
u∈Ω

Fij(u) and min
u∈Ω

fij(u).

24

∇f21(u) = (2U − ξ21I) ln(u) + u− ξ21e; ∇2f21(u) = 2Diag(ln(u)) − ξ21U
−1 + 3I;

∇F21(u) = ζ21e+ ζ21 lnu− 2U ln(u) − u; ∇2F21(u) = ζ21U
−1 − 3I − 2Diag(ln(u));

∇f22(u) = −ξ22e− ξ22 lnu+ 2U ln2(u) + 2U lnu;

∇2f22(u) = −ξ22U−1 + 2I + 6Diag(ln(u)) + 2Diag(ln2(u));

∇F22(u) = ζ22e+ ζ22 lnu− 2U ln2(u) − 2U lnu;

∇2F22(u) = ζ22U
−1 − 2I − 6Diag(ln(u)) − 6Diag(ln2(u)).

For u > 0, 2 ln(ui) + 3 − ξ21
ui

is an increasing function of ui. Therefore, if ∇2f21(u) is positive

semidefinite at u = (1 − β)e, then ∇2f21(u) is positive semidefinite, ∀u ∈ Ω. That is,

2 ln(1 − β) + 3 − ξ21
1−β

≥ 0 ⇔ ξ21 ≤ 2(1 − β) ln(1 − β) + 3(1 − β).

For u > 0, ζ21
ui

− 2 ln(ui) − 3 is a decreasing function of ui. Whence, if ∇2F21(u) is positive

semidefinite at u = (1 + β)e, then ∇2F21(u) is positive semidefinite, ∀u ∈ Ω. That is,

−2 ln(1 + β) − 3 + ζ21
1+β

≥ 0⇔ ζ21 ≥ 2(1 + β) ln(1 + β) + 3(1 + β).

For u > e−3e, ζ22
ui

− 6 ln(ui) − 2 − 2 ln2(ui) is a decreasing function of ui. Hence if ∇2F22(u)

is positive semidefinite at u = (1 + β)e, then ∇2F22(u) is positive semidefinite, ∀u ∈ Ω. That is,

−6 ln(1+β)−2−2 ln2(1+β)+ ζ22
1+β

≥ 0 ⇔ ζ22 ≥ 6(1+β) ln(1+β)+2(1+β)+6(1+β) ln2(1+β).

Similarly, for u > e−3e, − ξ22
ui

+6 ln(ui)+2+2 ln2(ui) is an increasing function of ui. Therefore,

if ∇2f22(u) is positive semidefinite at u = (1−β)e, then ∇2f22(u) is positive semidefinite, ∀u ∈ Ω.

That is,

6 ln(1−β)+2+2 ln2(1−β)− ξ22
1−β

≥ 0 ⇔ ξ22 ≤ 6(1−β) ln(1−β)+2(1−β)+6(1−β) ln2(1−β).

If we consider the constrained optimization problems defined before and ξ21, ζ21, ξ22 and ζ22

bounded as above. The Lagrangeans have the forms below,

L21(u, λ) = f21(u) − λ1(n− eTu) − λT
2 (u− 3

4e) − λT
3 (5

4e− u),

L21(u, λ) = F21(u) + λ1(n− eTu) + λT
2 (u− 3

4e) + λT
3 (5

4e− u),

L22(u, λ) = f22(u) − λ1(n− eTu) − λT
2 (u− 3

4e) − λT
3 (5

4e− u),

L22(u, λ) = F22(u) + λ1(n− eTu) + λT
2 (u− 3

4e) + λT
3 (5

4e− u),

where λ1 ∈ R, λ2 ∈ R
n
+, λ3 ∈ R

n
+. We define λ := [λ1;λ2;λ3] ∈ R

2n+1.

We found that for u⋆ = e, there are multiplier vectors λ21 = (ξ21 − 1)e1, λ21 = (ζ21 − 1)e1,

λ22 = ξ22e1 and λ22 = ζ22e1 such the KKT conditions are satisfied respectively. Here ei is the

ith unit vector whose dimension will be clear from the context (in this case 2n + 1). We also

know ∇2
uuL21(u

⋆, λ21) = ∇2f21(u), ∇2
uuL21(u

⋆, λ21) = ∇2F21(u), ∇2
uuL22(u

⋆, λ22) = ∇2f22(u),

∇2
uuL22(u

⋆, λ22) = ∇2F22(u) are positive semidefinite respectively. Therefore, using the second

order sufficient condition for a global minimizer, u∗ is the global minimizer of these problems

25

with objective values all equal to 0. We can conclude f21(u
∗) ≥ 0, F21(u

∗) ≥ 0, f22(u
∗) ≥ 0 and

F22(u
∗) ≥ 0 which imply the estimation of ξ21, ζ21, ξ21 and ζ22.

The conclusion that ξ12 = 0 obviously holds due to the nonnegativity of the vectors x, s, u

and Diag(ln(u)) ln(u).

We would like to discuss the estimation of ζ12 within N−
∞(1

2) next.

For ζ12 = 2(ln(n) + 1), ∇F12(u) = 2(ln(n) + 1)e+ 2(ln(n) + 1) ln(u)−Diag(ln(u)) ln(u)− 2 ln(u),

∇2F12(u) = 2 ln(n)U−1 − 2Diag(ln(u))U−1.

If we consider the constrained optimization problem

min
u∈Rn

F12(u) subject to eTu− n = 0, u− 1
2e ≥ 0,

the Lagrangean has the form L∗
12(u, λ) = F12(u) − λ1(e

Tu− n) − λT
2 (u− 1

2e).

It is obvious that ∇2F12 is positive definite if u < ne while we know that u ≤ n+1
2 e within N−

∞(1
2).

Hence we can conclude that F12 is strictly convex here. Moreover, we found for u⋆ = e, there

is a multiplier vector λ∗12 = ζ12e1, such that the KKT conditions are satisfied. Therefore, u⋆ is

the global minimizer of the optimization problem. We notice that F12(u
⋆) = 0 which implies the

conclusion.

Corollary 3.7. For every (x, s) ∈ N∞(1
4), u = Xs

µ
as defined before, we have

0 ≤ 1.8nµ2δ ≤ ∆21(u) ≤
9

2
nµ2δ,

∆22(u)µ
2 < 5nδ.

Lemma 3.8. Let x > 0, s > 0. Then ∆12 ≥ nδ2. Moreover, equality holds if and only if

Xs = µe.

Proof. We already know that ∆12 =

n
∑

j=1

uj ln2(uj) and δ = 1
n

n
∑

j=1

uj ln(uj), hence we only need to

prove the following inequality in terms of uj :

n
∑

j=1

uj ln2(uj) ≥
1

n

n
∑

j=1

uj ln(uj)

2

⇔

n
∑

j=1

uj

n
∑

j=1

uj ln2(uj) ≥

n
∑

j=1

uj ln(uj)

2

.

26

Since uj ≥ 0, so
√
uj ≥ 0 and

√
uj| ln(uj)| ≥ 0, according to Cauchy-Schwartz inequality, we have

n
∑

j=1

uj

n
∑

j=1

uj ln2(uj) ≥

n
∑

j=1

uj | ln(uj)|

2

≥

n
∑

j=1

uj ln(uj)

2

and the first equality holds if and only if (U)
1
2 e and U

1
2 | ln(u)| are linearly dependent, that is,

| ln(uj)| = constant for every j. We know uj can only be in the form of {c, 1
c
} where 1

n
≤ c ≤ 1.

The second inequality holds if and only if

n
∑

j=1

uj ln(uj) =

n
∑

j=1

uj| ln(uj)|, i.e.,
∑

uj<1

uj ln(uj) = 0,

this holds if and only if the set {j : uj < 1} is empty, which means u = e. The first equality will

hold when we set c = 1 which also means u ≥ e, but
n
∑

j=1

uj = n. Therefore, the conclusion holds

if and only if Xs
µ

= e.

27

3.3 Performance of Entropic Search Direction in Predictor-Corrector

Algorithm

We are interested in the performance of the search direction w when it is applied in the predictor

step of the Predictor-Corrector Algorithm. So we propose the following algorithm.

Algorithm 3.1.

Input (A,x0, s0, b, c, ǫ), where (x0, s0) is strictly feasible primal-dual initial point,

ǫ is the desired tolerance, β = 1
4 .

define k:=0;

while xT s > ǫ

if k is even, then we execute the predictor step,

calculate δ,D, v,w,wp, wq according to the notations stated in Section 2.3;

solve the system (HCPS) to get the unique solution dx and ds,

let

x(α) := xk + αdx > 0,

s(α) := sk + αds > 0,

α⋆ := max{α : (x(α), s(α)) ∈ N2(2β)}.
Let xk+1 := x(α⋆), sk+1 := s(α⋆).

else

execute the corrector step as below,

solve the linear system (CPS) with γ = 1 to get dx, ds, then

let

xk+1 := xk + dx,

sk+1 := sk + ds.

end

k := k + 1.

repeat

28

Figure 3.1: sketch of predictor-corrector algorithm

Lemma 3.9. For the Primal-Dual path-following methods based on the search directions belong

to the entropic family proposed in Section 3.1, we have the following relationship between step

length and iteration complexity. That is, if the step length for each iteration is Ω(1
f(n)) where

f : N+ → N+, then the algorithm needs at most O(f(n) ln(1
ǫ
)) steps to achieve an ǫ-solution.

Proof. We know that there is a good property for the entropic search direction family we proposed,

i.e.,

x(α)T s(α) = (1 − α)xT s.

If the step length αi for each iteration is Ω(1
f(n)), then αi >

c
f(n) where c is a positive constant.

From Lemma 3.1, we have,

(xk)T (sk) =

k
∏

i=1

(1 − αi)(x0)T (s0) ≤ e
− kc

f(n) (x0)T (s0).

We need ⌈f(n)
c

ln(1
ǫ
)⌉ steps to decrease (xk)T (sk) from (x0)T (s0) to ǫ(x0)T (s0), i.e., the iteration

complexity is O(f(n) ln(1
ǫ
)).

For example: For the algorithm mention in [25], the step length for each iteration is at least

Ω(1
n
), and the iteration complexity is O(n ln(1

ǫ
)).

29

Theorem 3.10. The iteration complexity of Algorithm 3.1 is O
(√
n ln 1

ǫ

)

.

Proof. If we apply the direction w to predictor step in P-C algorithm, then we need to find the

lower bound for the step length to decide the iteration complexity.

For (x, s) ∈ N2(
1
4), the following formula can guarantee that (x(α), s(α)) ∈ N2(

1
2).

n
∑

j=1

[

xj(α)sj(α)

(1 − α)µ
− 1

]2

≤
n
∑

i=1

(

xjsj

µ
− 1

)2

+
3

16
. (3.2)

The left-hand-side can be expanded as below:
n
∑

j=1

(

xj(α)sj(α)

(1 − α)µ
− 1

)2

=

n
∑

j=1

(

uj − 1 +
αu

(1 − α)
(δ − lnuj) +

α2

(1 − α)µ
(wp)j(wq)j

)2

=
n
∑

j=1

[

(uj − 1)2 +
α2(uj)

2

(1 − α)2
(δ2 + ln2 uj − 2δ lnuj)

+ α4

(1−α)2µ2 (wp)
2
j (wq)

2
j + 2(uj − 1)(

αuj

(1−α)(δ − lnuj) + α2

(1−α)µ (wp)j(wq)j)

+2
α3µuj

(1−α)2µ2 (δ − lnuj)(wp)j(wq)j

]

.

Further simplification results in the following formulation:

α
1−α

δ2
n
∑

j=1

(µuj)
2 + ∆22 − 2δ∆21

+ α3

1−α

n
∑

j=1

(wp)
2
j (wq)

2
j

+2

n
∑

j=1

[

u2
jµ

2δ − µ2δuj − u2
jµ

2 ln(uj) + µ2uj lnuj

]

+2α
n
∑

j=1

µuj(wp)j(wq)j + 2
α2

1 − α

n
∑

j=1

δµuj(wp)j(wq)j

−2 α2

1−α

n
∑

j=1

µuj(wp)j(wq)j ln(uj) ≤
3(1 − α)µ2

16α
.

After expansion of the terms in the inequality (3.2) as shown above, we get an inequality

providing a sufficient condition for the predictor step length α.

We have:

d4α
4 + d3α

3 + d2α
2 + d1α+ d0 ≤ 0,

where

B :=

n
∑

j=1

µuj lnuj(wp)j(wq)j ,

30

C :=

n
∑

j=1

µuj(wp)j(wq)j ,

d0 := −3µ2 ≤ 0,

d1 := 32δµ2β2 + 32nδµ2 − 32∆21 + 6µ2 ≤ 2δµ2 + 2µ2 + 6µ2 ≤ 9µ2.

The estimation for d1 is based on Corollary 3.3.

d2 := 16(nµ2δ2 + ∆22 + δ2µ2β2 − 2δ∆21 + 2C) − d1 + 3µ2 ,

d3 := 32(δ − 1)C − 32B,

d4 := 16

n
∑

j=1

(wp)
2
j(wq)

2
j .

Now we should analyze the properties of these coefficients.

Since vj = x
1
2
j s

1
2
j and we know that within N2(

1
4),

3
4 < |v

2
j

µ
| < 5

4 , 0 ≤ δ ≤ 1 and more precisely, 1
96n

≤ β2

6n
≤ δ ≤ β2

n
≤ 1

16n
on the boundary of N2(

1
4).

According to the result in [15], we know that:

‖Wpwq‖ ≤
√

2
4 ‖r‖2, i.e.,

√

√

√

√

n
∑

j=1

(wp)
2
j (wq)

2
j ≤

√
2

4

n
∑

j=1

r2j

where rj = −vj + δvj − vj ln

(

v2
j

µ

)

.

|r2j | ≤ v2
j

∣

∣

∣

∣

−1 + δ − ln

(

v2
j

µ

)∣

∣

∣

∣

2

≤ 25
16v

2
j .

The second inequality of above is due to the facts that

∣

∣

∣

∣

ln

(

v2
j

µ

)∣

∣

∣

∣

≤ 1
4 and 0 ≤ δ ≤ 1

16n
within

N2(
1
4).

d4 = 16

n
∑

j=1

(wp)
2
j (wq)

2
j ≤ 2

n
∑

j=1

r2j

2

≤ 625

128

n
∑

j=1

µuj

2

≤ 625

128
n2µ2 ≤ 5n2µ2.

Within N2(
1
4), ln(uj) ≤ 1, using Cauchy-Schwartz inequality we have:

|B| =

∣

∣

∣

∣

∣

∣

n
∑

j=1

µuj ln(uj)(wp)j(wq)j

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

µuj |ln(uj)(wp)j(wq)j |

≤
n
∑

j=1

µuj|(wp)j(wq)j | ≤

√

√

√

√

n
∑

j=1

(wp)2j (wq)2j

√

√

√

√

n
∑

j=1

µ2u2
j

≤ 3nµ

4

√

(n+ β2)µ2 ≤ 3
√

2

4
n

3
2µ2.

31

Similarly,

|C| ≤
n
∑

j=1

µuj|(wp)j(wq)j | ≤
3
√

2

4
n

3
2µ2;

Moreover,

C ≤
∑

{i:(wp)j(wq)j≥0}
µuj(wp)j(wq)j ≤

∑

{i:(wp)j(wq)j≥0}

µ2u2
j

4
≤ 1

4
(n+ β2)µ2 ≤ nµ2

2
.

Since |δ − 1| < 1, we get:

d3 = 32(δ − 1)C − 32B < 32|C| + 32|B| ≤ 96n
3
2µ2.

Using Lemma 3.6 and Corollary 3.7, for every (x, s) ∈ N2(
1
4),

we have: ∆22 ≤ 5
16µ

2 and ∆21 ≤ 9
32µ

2. So:

d2 = 16(nµ2δ2 + ∆22 + 2∆21 − 2nµ2δ + δ2µ2β2 − 2δµ2β2 − 2δ∆21 + 2C) − 3µ2

≤ 16(nµ2δ2 +
5

16
µ2 +

9

16
µ2 + 0 + δ2µ2β2 + 0 + 0 + 2C) − 3µ2

≤ 16(nβµ2 + µ2 + nµ2) − 3µ2

≤ 32nµ2.

After relaxation of the inequality, we get:

5n2α4 + 96n
3
2α3 + 32nα2 + 9α ≤ 3. (3.3)

Suppose α has the form α = 1
E
√

n
, we can see that if E = 60, then (3.3) is satisfied and so does

(3.2).

We get the result that the step length α of predictor step is at least 1
60

√
n
. For the corrector step,

the search direction is the constant-gap direction defined before. We know from the paper [28]

that the complementary gap does not change in this step while the iterate will return to N2(
1
4).

Since we apply Algorithm 3.1 in the context of HSD model to get the starting point (x0, s0), we

have the following inequality by using similar analysis in Lemma 3.9,

32

(xk)T (sk) =

k
∏

i=1,i is even

(1 − αi)(x0)T (s0) ≤ e
− k

120
√

n (x0)T (s0).

We conclude that the iteration complexity for Algorithm 3.1 is O
(√
n ln 1

ǫ

)

.

3.4 Performance of Entropic Search Direction in Monotone LCP

Problem

The monotone linear complementarity problem [4], denoted by LCP, is to find x ∈ R
n, such that

x ≥ 0, Mx+ q ≥ 0, xT (Mx+ q) = 0, where M ∈ R
n×n is a positive semidefinite matrix, q ∈ R

n

is a vector. Primal-Dual path-following IPM is effective in solving LCPs [26].

By using the technique of constructing an auxiliary sequence [31] and embedding the Monotone

LCP problem into the HSD model, we find that we get some improvement on the iteration

complexity of Primal-Dual path-following algorithm which uses the entropic search direction of

[30] within N−
∞(β). This search direction is derived by introducing algebraically equivalent central

path with Ψ(v) = ln(v). It has the form:

−σv + δv − V ln(V v
µ

), with σ ∈ (0.5, 1), and σ < min{1, ln 1
1−β

}.

The proof will use an auxiliary sequence (uj , vj) constructed for analysis purpose while it is

not necessary to be calculated in practical algorithm.

Define: (u0, v0) ∈ {(x, y) ∈ R
2n : Mx + h = y}, choose (x0, y0) > 0 and (x0, y0) ≥ (u0, v0).

The auxiliary sequence (uj , vj) is defined as below:

uk+1 := uk + αk(dxk + xk − uk), vk+1 := vk + αk(dyk + yk − vk).

In the paper [30], the authors constructed sequence (uj , vj) in a similar manner with that in

[31]. We use different sequence construction within HSD model and get different result. We’d

like to list some lemmas independent with the construction of (uj , vj) first.

The iteration complexity analysis is based on the potential reduction method and the poten-

tial function is :

33

φ(x, s) :=
1

µ

n
∑

j=1

xjsj ln(xjsj).

Lemma 3.11. [31]

‖Dkdxk‖2
2 + ‖(Dk)−1dsk‖2

2 + 2(dxk)T dsk = ‖(xksk)
1
2 ln(xksk/µk exp(δ − σ))‖2

2,

where Dk = (Xk)−
1
2 (Sk)

1
2 .

The goals of this lemma are to estimate the value of 2(dxk)T dsk and to facilitate the definition

of ςk later.

Define:

νk =

(

n

1 − β

) 1
2 (xk − uk)T sk + (sk − vk)Txk

(xk)T (sk)
,

ςk = σ2 + δ lnn− δ2 + 2βk
(x0 − u0)(s0 − v0)

(x0)T s0
,

ωk =

(

νk +
√

ν2
k + ς2k

)2

.

Lemma 3.12. [31] ‖Dkdxk‖2
2 + ‖(Dk)−1dsk‖2

2 ≤ ωk(x
k)T sk and {ωk} is bounded.

Since the sequence is proved to be global Q-linear convergent ([30], Lemma 7), i.e., the value

for the potential function in iteration k + 1 satisfies φk+1 = φ0(1 − ̺)k. The above definitions

will help us to identify the order of ω which is closely related to ̺. It is essential to estimate the

value of ̺ to determine the iteration complexity.

Lemma 3.13. ([30], Lemma 6)

For the step length α,

αk ≥ min

(

exp(−σ)

1 − β
,
min((1 − β)σ, 2 − 2σ)

nω

)

.

For the factor ̺ which is related to the reduction of potential function:

̺(αk) ≥ min

(

exp(−σ)

1 − β
,
min((1 − β)σ, 2 − 2σ)

nω

)(

σ − min((1 − β)σ, 2 − 2σ)

nω

)

.

34

The above lemma gives a relationship between ω and ̺.

Theorem 3.14. If we apply search direction w1 = −σv + δv − V ln(V v
µ

) to Monotone LCP

problem in the wide neighborhood N−
∞(β) where σ ∈ (0.5, 1), and σ < min{1, ln 1

1−β
}, We can

achieve iteration complexity of O(n ln4 n ln(1
ǫ
)).

Proof. If we embed this problem in a HSD model and assume (u0, v0) = e, (x0, y0) = e where

e is the all one vector of dimension 2n, we get a strictly feasible initial point at the beginning.

Then we know νk = 0, ςk = σ2 + δ lnn − δ2, where 0 ≤ δ < n
2 ln n

2 . Since 0 < δ < lnn, in the

worst case, ςk ≤ ln2 n + 1, ωk ≤ (ln2 n + 1)2, so ̺k = O(1
n ln4 n

), the iteration complexity is at

most O(n ln4 n ln(1
ǫ
)).

In [30], the author proposed an infeasible-start algorithm based on one entropic search di-

rection and proved the iteration complexity of O(n2 ln(1
ǫ
)). We used the same technique and

proved the iteration complexity of O(n ln4 n ln(1
ǫ
)) for this search direction because that we em-

ploy the properties of homogeneous and self-dual model to get a feasible starting point. In the

next chapter, we use some other technique to analyze the iteration complexity of this entropic

search direction for LP problems in HSD model. The result is O(n lnn ln(1
ǫ
)).

35

Chapter 4

Analysis on the General Family of

Search Directions Based on

Primal-Dual Entropy

We proposed a general family of search directions based on Primal-Dual Entropy in the last

chapter. We’d like to analyze the iteration complexity of Primal-Dual path-following algorithm

based on this family here.

Lemma 4.1. Let x > 0, s > 0. For η ≥ 0, ‖w(η)‖2
2 = nµ[1 − η2(δ2 − ∆12

n
)].

Proof. Let x > 0, s > 0. We have,

‖w(η)‖2
2 =

n
∑

j=1

v2
j

(

δη − 1 − η ln
xjsj

µ

)2

=
n
∑

j=1

xjsj

(

δ2η2 + 1 + η2 ln2

(

xjsj

µ

)

+ 2η ln

(

xjsj

µ

)

− 2δη − 2δη2 ln

(

xjsj

µ

))

= nµδ2η2 + nµ+ η2∆12 + 2nηµδ − 2δηnµ − 2nµδη2δ

= nµ+ η2∆12 − nµη2δ2

= nµ

[

1 − η2

(

δ2 − ∆12

n

)]

.

The third equality is due to the definition of δ and ∆12, the other equalities are trivial.

36

Figure 4.1: Sketch for Primal-Dual path-following method

Algorithm 4.1.

Input (A,x0, s0, b, c, ǫ, η), where A,x0, s0, b, c are defined in the (HLP) formulation in Chapter 2,

ǫ is the desired tolerance, 1 ≤ η = O(1), β := 1
2 .

while xT s > ǫ

calculate δ,D, v,w(η), w(η)p , w(η)q according to the notations above;

solve the system (HCPS) to get the unique solution dx and ds,

let

x(α) := x+ αdx > 0,

s(α) := s+ αds > 0,

α⋆ := max{α : (x(α), s(α)) ∈ N−
∞(β)}.

Let x := x(α⋆); s := s(α⋆).

repeat

37

Theorem 4.2. When we apply the Algorithm 4.1 to a LP problem, we can deduce that the

algorithm will converge to an ǫ-solution in at most O(n ln(n) ln 1
ǫ
) steps.

Proof. For each j ∈ {1, . . . , n}, let uj :=
xjsj

µ
as before.

Let us consider the search direction w in the wide neighborhood of N−
∞(1

2). For the next iteration

to stay in the same neighborhood, the step length α should satisfy the following condition. For

every j ∈ {1, 2, . . . , n},

uj +
α

1 − α
uj(δη − η ln(uj)) +

α2

1 − α

(wp)j(wq)j
µ

≥ 1/2. (4.1)

We know from [15] that |(wp)i(wq)i| ≤ ‖w(η)‖2/4. Since all of our discussion is within N−
∞(1

2),

we know that: uj ≥ 1
2 , ∀j. We also deduce that uj ≤ n+1

2 , ∀j from the fact
n
∑

j=1

uj = nµ. So we

know:

0 ≤ ∆12 ≤ max(ln2 uj)

n
∑

j=1

uj = n ln2

(

n+ 1

2

)

, 0 ≤ δ ≤ ln n+1
2 .

After relaxation, (4.1) can be transformed to the following formulation:

uj +
α

1 − α
uj(δη − η ln(uj)) −

α2

1 − α

(

nµ+ η2µ∆12 − nµδ2η2

4µ

)

≥ 1/2,

i.e.,

4

(

uj −
1

2

)

+ 4α

(

ujδη − uj ln(uj)η − uj +
1

2

)

− α2(n+ η2∆12 − nδ2η2) ≥ 0.

We will discuss 3 cases by the range of uj .

If uj ≥ 1, further relaxation can achieve the following:

−α2

(

n+ n ln2 n+ 1

2
η2

)

+ 1 + 4α

(

ujδη − ηuj ln(uj) − uj +
1

2

)

+ 2

(

uj −
1

2

)

≥ 0,

38

i.e.,

−α2

(

n+ n ln2 n+ 1

2
η2

)

+ 1 + 2

(

uj −
1

2

)

[

2
uj

uj − 1
2

α (δη − η ln(uj) − 1) + 1

]

+ 2α ≥ 0.

Let α ≤ 1
4
√

n ln(n)η
, then the above inequality holds.

If 1 > uj ≥ 9
16 , relaxation can result in the following formulation:

−α2

(

n+ n ln2 n+ 1

2
η2

)

− 2α+
1

4
≥ 0.

Let α ≤ 1
16

√
n ln(n)η

, then the above inequality holds.

If 1
2 ≤ uj ≤ 9

16 , relaxation can result in the following formulation:

−α2(n+ ∆12η
2) + 4αujδη + 4α

(

1

2
ln

16

9
η − 1

16

)

≥ 0,

for η ≥ 1, further relaxation can achieve the following inequality,

−α2(n+ ∆12η
2) + 2αδη +

3

4
α ≥ 0.

Using Lemma 3.6, we know that if α ≤ 1
10n ln(n)η with η ≥ 1, then the above inequality holds.

The step length should have the value of at least min
{

1
10n ln(n)η ,

1
16

√
n ln(n)η

}

.

For the case η = 1, we can see the α = 1
10n ln(n) will be a proper step length for each step.

Hence the iteration complexity for Algorithm 4.1 is O(n ln(n) ln 1
ǫ
) according to Lemma 3.9.

We note that we need ‖w(η)‖2
2 to be small to achieve better iteration complexity, so we con-

sider another choice of η as below.

39

Algorithm 4.2.

Input (A,x0, s0, b, c, β, ǫ), where A,x0, s0, b, c are defined in the (HLP) formulation in Chapter 2,

ǫ is the desired tolerance, β determines the wide neighborhood we set.

while xT s > ǫ

if
∥

∥

∥

xjsj

µ
− e
∥

∥

∥

2

2
≤ 1

4n
,

calculate the affine-scaling direction (dx, ds) as stated in Chapter 2,

define

x(α) := x+ αdx > 0,

s(α) := s+ αds > 0,

α⋆ := max{α : (x(α), s(α)) ∈ N−
∞(β)}.

Let x := x(α⋆), s := s(α⋆);

else

define η := 1q
∆12

n
−δ2

,

calculate ∆12, δ,D, v,w(η), w(η)p , w(η)q as defined before,

solve the system (HCPS) to get the unique solution dx and ds,

define

x(α) := x+ αdx > 0,

s(α) := s+ αds > 0,

α⋆ := max{α : (x(α), s(α)) ∈ N−
∞(β)}.

Let x := x(α⋆), s := s(α⋆).

end

repeat

40

Lemma 4.3. Let x > 0, s > 0 be such that ∆12 > nδ2. Then for η := 1q
∆12

n
−δ2

, we have

‖w(η)‖2
2 = 2nµ.

Proof. Since ∆12 > nδ2, η is well defined, then this lemma is trivial according to Lemma 4.1.

Lemma 4.4. Let (x, s) ∈ ∂N−
∞(1

2). Then η = 1q
∆12

n
−δ2

≤ 3
√
n.

Proof. η = 1q
∆12

n
−δ2

=
√

n√
∆12−nδ2

. Hence we need to estimate the value of (∆12 − nδ2) at the

boundary of N−
∞(1

2), i.e., we have at least one entry of u to be 1
2 , without loss of generality, we

set un = 1
2 . Therefore, we have:

∆12 − nδ2 =
1

2
ln2(2) +

n−1
∑

j=1

uj ln2(uj) −
1

n

n−1
∑

j=1

uj ln(uj) −
ln 2

2

2

=
1

2
ln2(2) +

ln 2

n

n−1
∑

j=1

uj ln(uj) −
ln 2

4

+
n−1
∑

j=1

uj ln2(uj) −
1

n

n−1
∑

j=1

uj ln(uj)

2

=
1

2
ln2(2) +

ln 2

n

(

nδ +
ln 2

4

)

+

n−1
∑

j=1

uj ln2(uj) −
1

n

n−1
∑

j=1

uj ln(uj)

2

≥ 1

2
ln2(2) +

n−1
∑

j=1

uj ln2(uj) −
1

n− 1
2

n−1
∑

j=1

uj ln(uj)

2

≥ 1

2
ln2(2).

The first inequality is due to the nonnegativity of δ and 1
n
< 1

n− 1
2

. The second inequality

can be deduced by Cauchy-Schwartz inequality using similar method as in Lemma 3.5. Therefore

η ≤
√

2n
ln 2 ≤ 3

√
n.

Theorem 4.5. If we apply the Algorithm 4.2 to N−
∞(1

2), we can deduce that the algorithm con-

verges to an ǫ-solution in at most O(n ln(n) ln 1
ǫ
) steps.

Proof. For each j ∈ {1, . . . , n}, let uj :=
xjsj

µ
as before. We use w to stand for w(η) in this proof.

Let us consider the search direction w in the wide neighborhood of N−
∞(1

2). For the next iteration

to stay in the same neighborhood, the step length α should satisfy the following condition for

41

every j ∈ {1, 2, . . . , n},

uj +
α

1 − α
uj(δη − η ln(uj)) +

α2

1 − α

(wp)j(wq)j
µ

≥ 1/2. (4.2)

We know from [15] and Lemma 4.1, Lemma 4.2 that |(wp)j(wq)j | ≤ ‖w(η)‖2/4 = nµ
2 .

After relaxation, (4.2) can be transformed to the following formulation:

uj +
α

1 − α
uj(δη − η ln(uj)) −

α2

1 − α

n

2
≥ 1/2,

i.e.,

2

(

uj −
1

2

)

+ 2α

(

ujδη − uj ln(uj)η − uj +
1

2

)

− nα2 ≥ 0.

We discuss 3 cases by the range of uj .

If uj ≥ 1, further relaxation can achieve the following:

−2nα2 + 1 + 4α

(

ujδη − ηuj ln(uj) − uj +
1

2

)

+ 2

(

uj −
1

2

)

≥ 0.

i.e.,

−2nα2 + 1 + 2

(

uj −
1

2

)

[

2
uj

uj − 1
2

α (δη − η ln(uj) − 1) + 1

]

+ 2α ≥ 0.

We know the estimation of η from Lemma 4.4 and we can deduce that the above inequality holds

for α ≤ 1
6
√

n ln n
.

If 9
16 ≤ uj < 1, relaxation can result in the following formulation:

−2nα2 − 2α+
1

4
≥ 0.

Let α ≤ 1
16

√
n
, then the above inequality holds.

42

If 1
2 ≤ uj ≤ 9

16 , relaxation can result in the following formulation:

−2nα2 + 2αujδη + 2α

(

1

2
ln

16

9
η

)

+ (1 − α)

(

uj −
1

2

)

≥ 0,

further relaxation can get the following formulation,

−2nα2 +
αη

4
≥ 0.

Since ∆12 < n ln2 n and δ ≥ 0, we know η = 1q
∆12

n
−δ2

> 1
ln(n) , we can deduce that the above

inequality holds for α ≤ 1
8n ln(n) .

The step length α should have the value of at least min{ 1
6
√

n ln(n)
, 1

16
√

n
, 1

8n ln(n)}. We can

conclude the α = 1
8n ln(n) is a proper step length for each step. From Lemma 3.9 we can conclude

that the iteration complexity is O(n ln(n) ln 1
ǫ
).

In order to study the relationship between the parameter η and step length α, we did some

analysis and computational experiments to explore the rule for ”best” η to achieve maximal step

length. (Because, maximizing the step length is equivalent to minimizing the complementary gap

along the given direction.)

In order to find the ”best” η such that the step length α can achieve maximum within N−
∞(1

2)

at every iteration, we need to solve a 2-dimensional constrained programming problem in every

iteration.

Define uj =
xjsj

µ
, v = X

1
2S

1
2 e, w(η) = −v + η

[

δv − V ln(V v
µ

)
]

as before, wp := PADw(η),

PAD is the projection operator onto the null space of AD, wq := w(η) − wp.

maximize α (CS)

(1) subject to 0 < α < 1,

(2) η ≥ 0,

(3) ∀j ∈ {1, 2 . . . , n}, (wp)j(wq)j

µ
α2 + α

(

ujδη − uj ln(uj)η − uj + 1
2

)

+
(

uj − 1
2

)

≥ 0.

43

Define:

tp := PAD(δv − V ln(V v
µ

)), tq := δv − V ln(V v
µ

) − tp, vp := PAD(−v), vq := −v − vp.

In the plane search for the optimal solution η∗ and α∗, we want η∗ more accurately than α∗,

e.g., we need η∗ to have the accuracy of 10−10 while we may only need α∗ to have the accuracy

of 10−4 since only η∗ will be involved in the computation of the search directions dx and ds.

Note that the quadratic terms in α and η for the constraint in (3) have different properties

as below.

For η, it has the form α2 (tp)i(tq)i

µ
η2. The sign of the coefficient of η2 does not change as α changes.

For α, coefficient of α2 is
(vp+ηtp)i(vq+ηtq)i

µ
. It may change sign as η changes. So the algorithm

below will decrease α in some strategy and try to find a feasible η for a fixed α.

Algorithm 4.3.

Input (A,x0, s0, b, c, ǫ), where A,x0, s0, b, c are defined in the (HLP) formulation in Chapter 2,

ǫ is the desired tolerance.

while xT s > ǫ

α := 1;

while α > 0

calculate δ, u, vp, vq, tp, tq as defined before, and transform

(CS) into quadratic system of η. Then solve the system (CS)

to verify if there exists positive η satisfying the constraints (3) of (CS) for current α.

if such η exists, η⋆ := η, αη := α, exit;

if such η does not exists, decrease α as below:

if α > 1
10 , let α := α− 0.05; else α := 0.95α.

repeat

calculate δ,D, v,w(η∗), w(η∗)p, w(η∗)q as defined before,

solve the system (HCPS) to get the unique solution dx and ds.

Let x := x(αη∗); s := s(αη∗).

repeat

44

For the procedure to verify if there exists positive η which satisfies the n inequalities in the

constraints (3) of (CS), each constraint is a quadratic problem for η and can induce a feasible

interval for η. If the intersection of all the intervals corresponding to the n inequality constraints

is not empty, we then find the η corresponding to a step length α. We use the following procedure

to determine the feasible interval of η for a given step length α.

Algorithm 4.4.

Input δ, u, vp, vq, tp, tq, α, where δ, u, vp, vq, tp, tq as defined before.

α is the current step length for testing.

For j = 1 to n

a0(j) := α2 (tp)j(tq)j

µ
,

b0(j) := αujδ − uj lnujα− α2((vp)j(tq)j + (vq)j(tp)j),

c0(j) := α2(vp)j(vq)j + (1 − α)(uj − 1
2).

Solve the inequality of η, i.e., a0(j)η
2 + b0(j)η + c0(j) ≥ 0.

If a0(j) = 0, b0(j) = 0 and c0(j) ≥ 0,

r1(j) := 0, r2(j) := 0, r3(j) := −∞, r4(j) := +∞;

if a0(j) = 0, b0(j) = 0 and c0(j) < 0,

r1(j) := −∞, r2(j) := +∞, r3(j) := −∞, r4(j) := −∞;

If a0(j) = 0 and b0(j) > 0,

r1(j) := 0, r2(j) := 0, r3(j) := − c0(j)
b0(j)

, r4(j) := +∞;

if a0(j) = 0 and b0(j) < 0,

r1(j) := 0, r2(j) := 0, r3(j) := −∞, r4(j) := − c0(j)
b0(j)

;

If a0(j) > 0 and b0(j)
2 − 4a0(j)c0(j) < 0,

r1(j) := 0, r2(j) := 0, r3(j) := −∞, r4(j) := +∞;

if a0(j) < 0 and b0(j)
2 − 4a0(j)c0(j) < 0,

r1(j) := −∞, r2(j) := +∞, r3(j) := −∞, r4(j) := −∞;

If a0(j) > 0 and b0(j)
2 − 4a0(j)c0(j) ≥ 0,

r1(j) :=
−b0(j)−

√
b0(j)2−4a0(j)c0(j)

2a0(j) , r2(j) :=
−b0(j)+

√
b0(j)2−4a0(j)c0(j)

2a0(j) ,

r3(j) := −∞, r4(j) := +∞;

if a0(j) < 0 and b0(j)
2 − 4a0(j)c0(j) ≥ 0,

r1(j) := 0, r2(j) := 0,

r3(j) :=
−b0(j)+

√
b0(j)2−4a0(j)c0(j)

2a0(j) , r4(j) :=
−b0(j)−

√
b0(j)2−4a0(j)c0(j)

2a0(j) ;

end

repeat

Define [t1, t2] := [max
j

(r3(j)),min
j

(r4(j))].

The feasible region is the intersection of (−∞, r2(j)] ∪ [r1(j),+∞), j ∈ {1, . . . , n} with [t1, t2].

45

While ∃j such that (r2(j) − t1)(t2 − r1(j)) < 0

(r2(j) − t1)(t2 − r1(j)) < 0 means that (−∞, r2(j)] ∪ [r1(j),+∞)

intersects with [t1, t2] at only one end.

if (r2(j) − t1)(t2 − r1(j)) ≤ 0 and r2(j) ≥ t1,

t2 := r2(j);

if (r2(j) − t1)(t2 − r1(j)) ≤ 0 and r1(j) ≤ t2,

t1 := r1(j);

if (r2(j) − t1)(t2 − r1(j)) ≥ 0 and r1(j) > t2 or r2(j) < t1,

stop searching η for current α.

end

repeat

Define M0 := {j : t1 ≤ r2(j) ≤ t2, t1 ≤ r1(j) ≤ t2}.
If t1 ≤ t2,

the union of intervals [t1, min
j∈M0

(r1(j))] and [max
j∈M0

(r2(j)), t2] are the feasible region

for η if one of them exists. We choose the maximal η for convenience.

end

46

-

-
j1

j2

-

-

-
j3

j4

j5
t1 t2

t1 t2

t3 t4

t t

t t

t t

t t

t t

The sketch for the η verifying procedure.

Lemma 4.6. The Algorithm 4.4 defined above is valid to determine if the feasible η exists and

can find the ”best” η if it exists.

Proof. From the Algorithm 4.4 defined above, we can see that there are two kinds of intervals

for the constraints in (3). One form is the union of two open intervals ,i.e., (−∞, r1(j)] and

[r2(j),∞), denote the constraints in this class as K1. Another is the convex interval [r3(j), r4(j)]

and denoted by K2 the constraints in this class. These two cases are shown in the j1 and the

j2 axis above. It is easy to find the intersection of the convex intervals which is [t1, t2] :=

[max
j∈K2

(r3(j)), min
j∈K2

(r4(j))]. While it is hard to have the intersection of [t1, t2] with the intervals in

class K1. In the above algorithm, we decrease the closed interval [t1, t2] by intersecting it with

the intervals which intersect with the convex interval at only one end, i.e., to eliminate the cases

belong to the situations of the j3 and the j4 axis. If the convex interval [t1, t2] exists, we can

assume that all the remaining intervals in K1 intersect the convex interval at both ends. Denote

these remaining intervals by M ′, then we find two feasible intervals for η as shown in the j5 axis,

i.e., [t1, t3 := min
j∈M ′

(r1(j))] or [t4 := max
j∈M ′

(r2(j)), t2].

We give out an example as below.

47

-

-
j1

j2

-

-
j3

j4

t t

t t

t t

t t

One instance for the η verifying procedure.(step 1)

We will try to find the intersection of intervals on the above 4 axis by using Algorithm 4.4

-
j1

-

-
j3

j4

t1 t2

t t

t t

t t

One instance for the η verifying procedure.(step 2) j2 processed.

We will try to find the intersection of convex interval [t1, t2] with the non-convex intervals.

48

-

-
j1

j5

-
j6

t1 t2

t1 t2

t3 t4

t t

t t

t tt t

One instance for the η verifying procedure (step 3). j3, j4 processed.

t1, t2 are adjusted according to the intervals on j3, j4 which intersect with [t1, t2] only at one end.

One instance for the η verifying procedure (step 4). j1 processed.

[t1, t3], [t4, t2] is the feasible region of η.

With Algorithm 4.3, we improve the iteration complexity dramatically in practice as shown

in the next chapter. We analyze its iteration complexity as below.

Theorem 4.7. When we apply the Algorithm 4.3 to solve LP problems, we can deduce that the

algorithm will converges to an ǫ-solution in at most O(n ln(n) ln 1
ǫ
) steps.

Proof. From the analysis of Algorithm 4.1, we can see the step length is at least 1
10n ln n

for each

iteration step if η = O(1) ≥ 1. From the definition of Algorithm 4.3, we know the step length

derived for each iteration should be at least 1
10n ln n

, i.e., longer than Algorithm 4.1. So from

Lemma 3.9, we know the iteration complexity for Algorithm 4.3 is at most O(n ln(n) ln 1
ǫ
).

The result above is not satisfying. It is no better than the algorithms using some fixed η, we

may need some other theoretical ”tools” to explore if better iteration complexity can be achieved

in the future.

49

Chapter 5

Computational Results on the

Entropic Direction Family

We did some experiments on a PC (HP P-M 1.4G 256M RAM) using the software MATLAB

version 6.5. The LP problems for test are those in the problem set of NETLIB [33]. They

represented most of the cases of interesting LP problems.

We implemented the Algorithms 4.1 -4.3 in MATLAB code for the artificial HSD LP problems

as shown in Chapter 2. In the coding we reused some input and output subroutines from the

LIPSOL software [32] developed by Zhang. The initial feasible solution is y0 := 0, x0 := e,

s0 := e, θ = 1, t = 1 and κ = 1. we solve the quadratic inequality system X(α)s(α)
(1−α)µ ≥ 1

2e to get

the maximal step length α such that (x(α), s(α)) ∈ N−
∞(1

2) in each iteration. This method is of

better efficiency than backtracking method. Define ǫ := 10−6, we set the termination criteria as

following:

(x/t)T s/t < ǫ, ‖Ax/t− b‖∞ < ǫ and ‖AT y/t+ s/t− c‖∞ < ǫ.

If the criteria is satisfied, we will get one ǫ-solution of the original problem in the form (x
t
, y

t
, s

t
)

from a strictly self-complementary solution (y, x, θ = 0, t, κ, s) of the HSD problem [28].

In order to avoid the accumulated error in the equality constraints, after each iteration we

let:

b=b− χ1/θ,

c=c+ χ2/θ,

50

z=z − χ3/θ,

where χi is the error, i.e.,

χ1 = Ax− bt+ bθ,

χ2 = AT y + ct− cθ − s,

χ3 = bT y − cTx+ zθ − κ.

By using this method, we can dump errors into the column that is guaranteed to be a nonbasic

column. This technique is inspired by the content in paper [27].

The table below includes the majority of NETLIB problems and compares the performance

of the directions proposed in this thesis within the wide neighborhood N−
∞(1/2). All the search

directions belong to the entropic family we proposed in Chapter 3 and have the form w(η) =

−v + η[δv − V ln(V v
µ

)].

The parameter η is the key factor for the performance of the algorithms. The columns

η = 1, . . . , 4 denote the iteration numbers we used to achieve ǫ-solution using Algorithm 4.1 with

different choice of η = O(1). the column η0 denotes the iteration numbers we used to achieve

ǫ-solution with Algorithm 4.2. The last column η∗ stands for the iteration numbers for Algorithm

4.3 to achieve ǫ-solution.

From the table below, we find that Algorithm 4.2 has the worst performance and Algorithm

4.3 needs the least number of iterations to achieve convergence. For Algorithm 4.1, different

values of η result in different performance even for the same LP problem while it seems η = 2

wins most of the problems in NETLIB. We think it is interesting to have some statistical results

for the ”best” η in Algorithm 4.3 so that we may find some rules inside.

We select the problems ”bandm”, ”scsd6”, and ”lotfi” as examples. The following figures give

out some impression for the value of η∗, α∗, δ and ∆12. We also give out the figures for the value

of ∆12
(nδ) and ∆12

(nδ2)
. When the iterate is on the central path, we define ∆12

(nδ) := 0 and ∆12
(nδ2)

:= 0.

51

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Figure 5.1: The ”best” η for each iteration for ”bandm”

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2: Step length for each iteration for ”bandm”

52

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure 5.3: The value of δ for each iteration for ”bandm”

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

Figure 5.4: The value of ∆12 for each iteration for ”bandm”

53

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

Figure 5.5: The value of ∆12
(nδ) for each iteration for ”bandm”

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

Figure 5.6: The value of ∆12
(nδ2)

for each iteration for ”bandm”

54

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

Figure 5.7: The ”best” η for each iteration for ”lotfi”

0 5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.8: Step length for each iteration for ”lotfi”

55

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 5.9: The value of δ for each iteration for ”lotfi”

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

Figure 5.10: The value of ∆12 for each iteration for ”lotfi”

56

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

Figure 5.11: The value of ∆12
(nδ) for each iteration for ”lotfi”

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 5.12: The value of ∆12
(nδ2)

for each iteration for ”lotfi”

57

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.13: The value of α for each iteration for ”scsd6”

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.14: The value of η for each iteration for ”scsd6”

58

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 5.15: The value of δ for each iteration for ”scsd6”

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Figure 5.16: The value of ∆12 for each iteration for ”scsd6”

59

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Figure 5.17: The value of ∆12
(nδ) for each iteration for ”scsd6”

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

Figure 5.18: The value of ∆12
(nδ2)

for each iteration for ”scsd6”

60

Remark: From the figures above, we observe that ∆12
nδ

has a upper bound 3 in all the 3 cases. If

this is true in general cases, this will help us to improve the iteration complexity of Algorithm

4.2 to be O(n
√

lnn ln(1
ǫ
)). We hope that the value of ∆12

nδ2 may also have some upper bound, then

we can deduce that the Algorithm 4.2 may have better iteration complexity than we proved in

Chapter 4. This is an open problem we may explore in the future. We also tested the Algorithm

4.3 without the restriction that η is positive. We observe that although in some steps, negative

η is feasible, we always can find some positive η which is also feasible for the given α. It is an

interesting problem to explore whether there is always a positive η for the maximal possible step

length.

61

Direction η = 1 η = 2 η = 3 η = 4 η0 η∗

NETLIBName Dimension Nonzero

sc105 106 ∗ 103 281 29 38 49 68 52 20

sc205 206 ∗ 203 552 30 36 49 69 761 22

scagr7 130 ∗ 140 553 35 39 46 57 56 26

scagr25 472 ∗ 500 2029 39 44 54 67 86 35

gfrd− pnc 617 ∗ 1092 3467 44 51 55 65 111 32

afiro 28 ∗ 32 88 28 31 37 44 64 17

scsd1 78 ∗ 760 3148 27 31 37 42 71 18

scsd8 398 ∗ 2750 11334 32 33 39 47 92 23

grow22 441 ∗ 946 8318 57 70 79 111 156 35

grow7 141 ∗ 301 2633 44 58 67 78 144 34

blend 75 ∗ 83 522 31 32 33 41 41 20

sc50b 51 ∗ 48 119 27 34 40 46 41 16

sc50a 51 ∗ 48 131 33 34 38 41 44 18

grow15 301 ∗ 645 5665 39 47 78 103 144 36

vtp.base 199 ∗ 203 914 50 50 58 62 122 42

scsd6 148 ∗ 1350 5666 33 33 38 42 78 22

share2b 97 ∗ 79 730 40 40 41 47 66 22

e226 224 ∗ 282 2767 61 53 57 76 68 38

tuff 334 ∗ 587 4523 123 115 119 123 98 40

Israel 175 ∗ 142 2358 57 44 46 63 80 44

lotfi 154 ∗ 308 1086 48 47 54 60 72 35

capri 272 ∗ 353 1786 55 54 65 63 81 36

fit1p 628 ∗ 1677 10894 120 84 98 133 166 34

beaconfd 174 ∗ 262 3476 46 41 47 56 57 21

modszk1 686 ∗ 1622 3170 111 86 89 112 167 56

62

Direction η = 1 η = 2 η = 3 η = 4 η0 η∗

degen3 1504 ∗ 1818 26230 40 38 59 60 69 34

recipe 92 ∗ 180 752 40 38 44 48 99 19

sctap3 1481 ∗ 2480 10734 49 44 48 55 113 32

kb2 44 ∗ 41 291 41 40 45 54 72 30

ganges 1310 ∗ 1681 7021 55 53 59 70 165 42

fit1d 25 ∗ 1026 14430 52 47 51 58 165 35

degen2 445 ∗ 534 4449 39 37 40 48 69 33

ship08s 779 ∗ 2387 9501 62 55 63 67 127 34

ship04l 403 ∗ 2118 8450 62 58 64 80 161 33

ship04s 403 ∗ 1458 5810 60 56 59 81 214 34

agg 489 ∗ 163 2541 281 267 336 > 400 357 49

agg2 517 ∗ 302 4515 65 59 63 78 140 42

agg3 517 ∗ 302 4531 58 54 61 67 129 42

boeing1 351 ∗ 384 3865 66 57 59 74 162 47

boeing2 167 ∗ 143 1339 66 52 55 70 113 38

stocfor2 2158 ∗ 2031 9492 94 75 77 89 157 58

d6cube 404 ∗ 6184 37704 77 74 80 89 81 37

wood1p 245 ∗ 2594 70216 73 50 55 89 > 140 39

adlittle 57 ∗ 97 465 64 52 53 61 77 27

stair 357 ∗ 467 3857 86 37 56 70 87 31

scfxm3 991 ∗ 1371 7846 216 108 108 167 145 71

Nesm 663 ∗ 2923 13988 99 79 79 89 218 68

brandy 221 ∗ 249 2150 70 50 50 52 79 36

maros 847 ∗ 1443 10006 103 77 72 83 212 37

ship12s 1152 ∗ 2763 10941 147 98 85 86 146 51

ship12l 1152 ∗ 5437 21597 129 125 105 108 187 48

63

Direction η = 1 η = 2 η = 3 η = 4 η0 η∗

sctap1 301 ∗ 480 2052 105 78 73 79 91 34

standata 360 ∗ 1075 3038 124 87 80 87 129 28

fffff800 525 ∗ 854 6235 101 95 87 92 167 61

stair 357 ∗ 467 3857 47 42 37 46 86 32

stocfor1 118 ∗ 111 474 82 60 57 64 88 24

bnl1 644 ∗ 1175 6129 91 81 80 83 120 69

sctap2 1091 ∗ 1880 8124 53 46 45 56 110 34

pilot4 411 ∗ 1000 5145 109 110 95 97 > 160 86

bore3d 234 ∗ 315 1525 80 60 52 63 97 38

bandm 305 ∗ 472 2659 61 51 48 51 61 36

forplan 162 ∗ 421 4916 93 73 72 101 138 56

scrs8 491 ∗ 1169 4029 136 98 82 83 127 50

sctap2 1091 ∗ 1880 8124 78 66 60 57 102 36

scfxm1 331 ∗ 457 2612 123 162 141 127 121 46

scfxm2 661 ∗ 914 5229 147 164 144 159 140 51

seba 516 ∗ 1028 4874 130 119 102 100 115 56

standmps 468 ∗ 1075 3686 124 81 69 65 167 38

share1b 118 ∗ 225 1182 239 199 175 161 129 53

standgub 361 ∗ 1366 3281 188 150 117 99 329 31

czprob 930 ∗ 3523 14173 237 156 130 116 > 350 67

25fv47 822 ∗ 1571 11127 158 82 92 80 116 57

bnl2 2325 ∗ 3489 16124 146 111 109 101 173 65

64

Bibliography

[1] E. D. Anderson, J. Gondzio, Cs. Mészáros, and X. Xu, ”Implementation of interior-point

methods for large scale linear programs, in Interior Point Method of Mathematical

Programming,” T.Terlaky, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands,

pp. 189-252, 1996.

[2] Y. Q. Bai, M. El Ghami and C. Roos, ”A comparative study of kernel function for primal-

dual interior-point algorithms in linear optimization,” SIAM Journal of Optimization, vol.

15,pp. 101-128, 2004.

[3] A. Ben-Israel, ”Newton’s Method with Modified Functions,” Contemporary Mathematics,

vol. 204, pp39-50, 1995.

[4] R. W. Cottle, J. S. Pang and R.E. Stone, ”The linear complementarity Problem,” Boston

Academic, U.S.A., 1992.

[5] A. Decarreau, D. Hilhorst, C. Lemaréchal, and J. Navaza. ”Dual methods in entropy

maximization. Application to some problems in crystallography,” SIAM J. Optimization,

Vol.2(2) pp.173-197, 1992.

[6] N. J. Dusaussoy and I. E. Abdou. ”The extended MENT algorithm: a maximum entropy

type algorithm using prior knowledge for computerized tomography,” IEEE Transactions

on Signal Processing, Vol. 39(5), pp. 1164-1180, 1991.

65

[7] S. Erlander, ”Accessibility, Entropy and the Distribution and Assignment of Traffic, ”

Transportation Research, vol. 11, pp. 149-153, 1977.

[8] S. Erlander, ”Entropy in Linear Programs,” Mathematical Programming, vol. 21, pp.

137-151, 1981.

[9] S. C. Fang, J. R. Rajasekera and H. S. J. Tsao, ”Entropy Optimization and Mathematical

Programming,” Kluwer Academic Publishers, Boston/London/Dordrecht, (ISBN 0-7923-

9939-0), 1997.

[10] H. J. Greenberg, W. P. Pierskalla, ” Surrogate Mathematical Programming,” Operations

Research, vol. 19, pp. 924-939, 1970.

[11] B. Jansen, C. Roos, and T. Terlaky, ”A polynomial primal-dual Dikin-type algorithm for

linear programming,” Mathematics of Operations Research, Vol.21, pp. 341-353, 1996.

[12] N. K. Karmarkar, ”A new polynomial-time algorithm for linear programming,” Combina-

torica, vol.4, pp. 373-395, 1984.

[13] X. Li, ”Entropy and Optimization,” Ph.D. Dissertation, University of Liverpool, U.K., 1987.

[14] S. Mehrotra, Y.Ye, ”Finding an interior point in the optimal face of linear programs,”

Mathematical Programming, vol 62, pp. 497-515, 1993.

[15] S. Mizuno, ”A new polynominal time method for a linear complementarity problem”

Mathematical Programming, vol. 56, pp. 31-47, 1993.

[16] S. Mizuno, M. J. Todd and Y. Ye, ”On adaptive-step primal-dual interior-point algorithms

for linear programming,” Mathematics of Operations Research, vol. 19, pp. 964-981, 1993.

66

[17] C. Nadeu and M. Bertran. ”A flatness based generalized optimization approach to spectral

estimation,” Signal Processing, pp. 311-320, 1990.

[18] J. L. Nazareth, ”A reformulation of the central path equations and its algorithmic

implications,” Technical Report 94-1, Department of Pure and Applied Mathematics,

Washington State University, Pullman, WA, 1994.

[19] S. Pan, X. Li, and S. He, ”An infeasible primal-dual interior point algorithm for linear

programs based on logarithmic equivalent transformation,” Journal of Mathematical

Analysis and Applications, vol. 314, pp.644-660, 2006.

[20] J. Peng, C. Roos, and T. Terlaky, ”Self-regular functions and new search direcion for linear

and semidefinite optimization,” Mathmatical Programming, vol. 93, pp. 129-171, 2002.

[21] J. Peng, C. Roos, and T. Terlaky, ”Self-Regularity: A new paradigm for Primal-Dual

interior-point algorithms,” Princeton University Press, Princeton, NJ, 2002.

[22] C. E. Shannon, ”The Mathematical Theory of Communication,” Bell System Technical

Journal, vol. 27, pp. 279-428 and 623-656, 1948.

[23] L. Tunçel, ”Semidefinite Optimization” lecture notes, 2005.

[24] L. Tunçel, ”Convex optimization: barrier function and interior point methods,” lecture

notes, March 1998.

[25] L. Tunçel, M.J.Todd, ”On the interplay among Entropy, Variable Metrics and Potential

Functions in Interior-Point Algorithms,” Computational Optimization and Applications,

vol. 8, pp. 5-19, 1997.

[26] S. Wright, ”Primal-Dual Interior-Point Methods,” SIAM, Philadephis Hall, U.S.A., 1997.

67

[27] Y. Ye, ”On the finite convergence of interior-point algorithms for linear programming,”

Mathmatical Programming, vol. 57, pp. 325-335, 1992.

[28] Y. Ye, M. J. Todd and S. Mizuno, ”An O(
√
nL) iteration homogeneous and self-dual lin-

ear programming algorithm,” Mathematics of Operations Research, vol. 19, pp. 53-67, 1994.

[29] Y. Ye, ” Interior Point Algorithms, Theory and Analysis,” John Wiley & Sons, Chichester,

UK, 1997.

[30] P. Zhang, X. Li, ”An infeasible-start path-following method for monotone LCPs,” Mathe-

matical and Computer Modelling, vol 39, pp. 23-31, 2003.

[31] Y. Zhang, ”On the convergence of a class of infeasible interior point methods for the

horizontal linear complementarity problems,” SIAM J. Optim Vol 4, pp208-227, 1994.

[32] Y. Zhang, LIPSOL code using MATLAB, www.caam.rice.edu/ zhang/lipsol/, 1992.

[33] The NETLIB lp/data, http://www.netlib.org/lp/data/ .

68

